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A Comparative Study for Bandwidth Selection in Kernel Density Estimation 
 

Omar M. Eidous Mohammad Abd Alrahem Shafeq Marie Mohammed H. Baker Al-Haj Ebrahem
Yarmouk University, Irbid, Jordan

 
 
Nonparametric kernel density estimation method does not make any assumptions regarding the functional 
form of curves of interest; hence it allows flexible modeling of data. A crucial problem in kernel density 
estimation method is how to determine the bandwidth (smoothing) parameter. This article examines the 
most important bandwidth selection methods, in particular, least squares cross-validation, biased cross-
validation, direct plug-in, solve-the-equation rules and contrast methods. Methods are described and 
expressions are presented. The main practical contribution is a comparative simulation study that aims to 
isolate the most promising methods. The performance of each method is evaluated on the basis of the 
mean integrated squared error for small-to-moderate sample size. Simulation results show that the 
contrast method is the most promising methods based on the simulated families considered. 
 
Key words: Probability Density Function, Bandwidth, Least Squares Cross-Validation, Biased Cross-
Validation, Contrast Method, Direct Plug-In, Solve-The-Equation Rules. 
 
 

Introduction 
The Kernel method is widely used in 
nonparametric density estimation. It produces a 
kernel estimator for the unknown probability 

density function (p.d.f) )(xf . Many researchers 
have observed that the choice of the bandwidth 
(smoothing) parameter, h, is crucial for the 
effective performance of the kernel estimator 
(for example, see Scott, 1992). A method that 
uses the data nXXX ,...,, 21  to produce a value 

for the bandwidth h is termed a bandwidth 
selector or data-driven selector. 

Various data-driven methods for 
selecting the bandwidth have been proposed and 
studied. Most of these methods are based on 
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minimizing the MISE or AMISE. Unfortunately, 
none of these are available in practice because 
all of them depend on the unknown probability 
density function. (See Bowman, 1984; Stone, 
1984; Hall & Marron, 1985; Scott & Terrell, 
1987; Sheather & Jones, 1991.) 

Marron (1988) presented a list of 
various methods with discussion, and a survey 
of smoothing methods for density estimation is 
provided by Titterington (1985). Sheather 
(1992) applied several bandwidth selectors to 
the Old Faithful data. Janssen, et al. (1995) 
developed and improved scale measures for use 
in bandwidth selection. Ahmad and Fan (2001) 
obtained the optimal theoretical bandwidth h in 
the general case. Ahmad and Mugdadi (2003) 
discussed data-based choices of the bandwidth 
and analyze the kernel density estimation. 

Let nXXX ,...,, 21  be a random sample 

of size n from a continuous univariate 

distribution with an unknown pdf )(xf , then 

the kernel density estimator of )(xf , x∈R is 
defined by Silverman (1986) as 
 

1

1ˆ ( ; ) ( )
n

ih
i

f x h K x X
n =

= − .  (1.1) 
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where )()( 11 −−= uhKhuKh . K is the kernel 

function and is assumed to be symmetric 
(Silverman, 1986), and h is the bandwidth (or 
the smoothing parameter) that controls the 
degree of smoothing applied to the data. Both K 
and h are under the control of the user, therefore, 
their determination is necessary in order to 
analyze results about the kernel estimator. 

The bandwidth can be chosen to 
minimize the asymptotic mean integrated square 
error, or AMISE (Silverman, 1986). In this case, 
h can be obtained by minimizing 
 

( )2ˆ ˆ( ) ( ( )) .M IS E B ia s f x V a r f x d x
∞

− ∞

 = +    

(1.2) 
 

If ˆ( )Bias f x  and ˆ( ( ))Var f x  are substituted 
into (1.2), then h is obtained by solving the 
following equation 
 

h

2
2 2

2
h

min  AMISE

1 ( )
   min  ( ) ( )

2

f xh f x k K t dt dx
nh

∞ ∞

−∞ −∞

=

  ′′ +  
   

 
 
Taking the derivative of AMISE with respect to 
h and equating to zero yields, 
 

1/5 1/5

2 /5 2 2 1/5
2

1/5

2
2

,

( ) ( )

( )
( )

h k K t d t f t d t n

K
k R f n

μ

−∞ ∞
− −

−∞ −∞

      
   
      

  
 
  

′′=

=
′′

 

(1.3) 
 
where 

2
2 ( )k t K t dt

∞

−∞

=  , 

2( ) ( ) ,K K t dtμ
∞

−∞

=   

and 

2( ) ( )R f f t dt
∞

−∞

′′ ′′=  . 

 

Formula (1.3) is disappointing because the 
optimal bandwidth is a function of the second 
derivative of the density function being 
estimated. Therefore, unless the true density is 
known, it is impossible to know the optimal 
bandwidth. Moreover, when the true density is 
known, no estimation problem exists. 

Nonetheless, the quantity 2( ( ))f x dx
∞

−∞

′′  in 

(1.3) can be estimated by using a kernel 
estimator. 
 

Methodology 
Selecting the Bandwidth 

The practical implementation of the 
kernel density estimator requires specification of 
the bandwidth h. A widely used criterion is to 
choose an h that minimizes the AMISE: the 
bandwidth controls the smoothness of the fitted 
density curve. Note that a larger h provides a 
smoother estimate with smaller variance and 
larger bias, while a smaller h produces a rougher 
estimate with larger variance and smaller bias. 

Most methods for choosing the 
bandwidth presented in the literature are 
proposed when the underlying probability 
density function, f(x) has support ( , )−∞ ∞ . In 
addition, by surveying the literature, it was 
found that the methods represented herein are 
commonly used to estimate the smoothing 
parameter h in practice. 
 
Least squares cross-validation (LSCV) 

Least squares cross-validation (LSCV), 
proposed by Rudemo (1982) and Bowman 
(1984), is a completely automatic method for 
choosing the bandwidth h. Following Rudemo’s 
(1982) derivations, the optimal bandwidth 
estimator can be obtained by minimizing: 
 

2 1 1

1

LSCV( )

ˆ ( ; ) 2 ( 1) ( )
n n

h i j
i j i

h

f x h dx n n K X X
∞

− −

= ≠−∞

=

− − −
 

(1.4) 
 
According to Rudemo (1982), formula (1.4) is 
derived based on the exact MISE. If the kernel 
function is Gaussian density, then 
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2

2

2

2 2
1 1

( )

2
2

1 1

ˆ ( ; )

1

1

2

i j

n n
ji

i j

X Xn n
h

i j

f x h dx

x Xx XK K dx
n h h h

e
n h π

∞

−∞

∞

−∞
= =

−
−

= =

− − =   
   

=






 
and 
 

2

2

( )

2

1 1

1 1
( ) .

2

i jX Xn n n n
h

h i j
i j i i j i

K X X e
h π

−
−

= ≠ = ≠

− = 
 

 
Therefore, 
 

2

2

2

2

( )

2
2

1 1

( )

1 1 1 2

1

LSCV( )=

1
     

2

1
     2 ( 1)

2

i j

i j

X Xn n
h

i j

X Xn n
h

i j i

h

e
n h

n n h e

π

π

−
−

= =

−
−− − −

= ≠

− −





 

(1.5) 
 
The optimal bandwidth h is obtained by 
minimizing the right side of (1.5) over h. 
 
Biased Cross-Validation (BCV) 

While LSCV method used exact MISE, 
the biased cross-validation (BCV) is based on 
the AMISE (Scott & Terrell, 1987). The BCV 
method suggests the use of the second derivative 
of the traditional kernel estimator as opposed to 
the unknown second derivative of f(x). The BCV 
objective function is thus given by: 
 

4
2 1

2
ˆBCV( ) ( ( ; )) ( ) ( )

4

hh k f x h nh Kμ μ−′′= +

(1.6) 
 

where 2( )f f dtμ
∞

−∞

=   and ˆ ( ; )f x h′′  is the 

second derivative of the kernel estimator and K 

is the Gaussian kernel. Because 2 1k =  and 

1
( )

2
Kμ

π
= , BCV(h) is given by 

 

2

2

2

2

2

2

( )

4 4
2 5

1 1

( )

2 2 4

1 1

( )

4 4

1 1

BC V ( )

1
    

2

3
    

32

                       ( )

1
   ( )

12

i j

i j

i j

X Xn n
h

i j

X Xn n
h

i j
i j

X Xn n
h

i j
i j

h

nh

h e
n h

h X X e

X X e

π

π

−
−

= =

−
−

= =

−
−

= =

=

+






− −


+ −



 

 

 

 
 
The optimal value of h is obtained by 
minimizing BCV(h) over h. 
 
Direct Plug-In (DPI) 

The DPI method is based on the idea of 
plugging in an estimate of unknown quantity 

( )( )rfμ in equation (1.6): 
 

( )2( ) ( )( ) ( )r rf f x dxμ
∞

−∞

=  , r = 2, 4, 6, 8, … 

 
Sheather and Jones (1991) developed an 

estimator for ( )( )rfμ  based on the kernel 
estimator with bandwidth g, which is given by: 
 

( ) 1 ( )

1

2 ( )

1 1

ˆ( ) ( ; )

( ).

n
r r

i
i

n n
r

g i j
i j

f n f X g

n K X X

μ −

=

−

= =

=

= −




 

(1.7) 
 
According to Wand and Jones (1995), the bias 
term of the estimator (1.7) can be made to 
vanish by choosing g to be equal 
 

1 /( 3 )( )

( 2 )
2

2 (0)

( )

rr

r
Kg

f k nμ

+

+

 −=  
 

        (1.8) 
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The problem is persistent because it is apparent 
from (1.8) that the optimal bandwidth g for 

estimating ( )( )rfμ  depends on ( 2)( )rfμ + . To 
overcome this problem Sheather and Jones 

(1991) suggested estimating ( )( )rfμ  at some 
stage and using a simple estimate of bandwidth 
g chosen with reference to a parametric family, 
usually a normal density. 

Thus, a family of DPI bandwidth 
selectors exist which depends on the number of 
stages of functional estimation before a normal 
scale (NS) is used. Such a rule will be called an 
l-stage DPI bandwidth selector and is denoted by 

,D̂PI lh . The NS may be considered to be a zero-

stage DPI bandwidth selector. Wand and Jones 
(1995) pointed out that no method exists for 
objective choice of the number of iterations that 
should be used. If f is a normal density with 

mean 0 and variance 
2σ , then according to 

Wand and Jones (1995), r will be 
 

/2
( )

1

( 1) !
( ) .

(2 ) ( / 2)!

r
r

r

rf
r

μ
σ π+

−=  

 
Note that simulation results presented for the 
DPI method in the simulation are based on the 
use of a two-stage DPI bandwidth selector to 
find the bandwidth. An algorithm for the two-
stage DPI method is given by Sheather and 
Jones (1991). 
 
Solve-the-Equation (STE) 

The solve-the-equation (STE) rule is 
based on the formula for the AMISE-optimal 
bandwidth. Many authors (Scott, et al., 1977; 
Sheather, 1986; Park & Marron, 1990; Sheather 
& Jones, 1991) have required that h be chosen to 
satisfy the relationship: 
 

1/5

2
2 4

( )
ˆ ( ( ))

Kh
k h n

μ
ψ γ

 
=  
 

 

 
where the pilot bandwidth for the estimation of 

4ψ  is a function γ of h. The choice of γ  may 

be denoted by: 
 

1/ 7(4)
1/ 7 5 / 72

4 1 6 2

2 (0)
ˆ ˆ( ) ( ( ) / ( ))

( )

K kh g g h
R K

γ ψ ψ 
= − 
 

 
where 4 1

ˆ ( )gψ  and 6 2ˆ ( )gψ  are kernel estimates 

of 4ψ  and 6ψ , respectively (Sheather & Jones, 

1991). The choice of 1g  and 2g  may be 

determined by using: 
 

1 / 7( 4 )

1
6 2

2 (0 )
ˆ
Kg

k nψ
 −=  
 

  

and 
1 / 9( 6 )

2
8 2

2 (0 )
ˆ
Kg

k nψ
 −=  
 

 

where: 

8 9

105
ˆ

ˆ32
ψ

π σ
= , 

 

6 7

15
ˆ

ˆ16
ψ

π σ
−= , 

 
( 4 ) (0 ) 3 2 ,K π=  

and 
(6) (0) 15 2K π= − . 

 
Note that this two-stage STE bandwidth selector 
was used to find the bandwidth in the simulation 

and the algorithm used to find the ,2
ˆ
STEh  was 

based on Sheather and Jones (1991). 
 
Contrast Method (CONT) 

Ahmad and Ran (1998) introduced the 
concept of kernel contrast to select the 
bandwidth h by studying its finite sample and 
asymptotic properties. The first step in the 
CONT method is to define the kernel density 
estimations ˆ ( x ; ) jf h  based on q kernels, 

qKKK ,...,, 21 , 2q ≥ . After selecting the 

contrast coefficients 1 2 qp , p ,..., p , where 

1

0
q

j
j

p
=

= , the bandwidth that minimizes the 

CONTMISE( )h  is selected. However, a reasonable 

choice for estimating h is to minimize 
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CONTISE( )h , which does not depend on the 

unknown density function f(t). This method was 
proposed by Ahmad and Ran (2004), where 
 

2

C O N T
1

ˆM IS E ( ) E ( ; )
q

j j
j

h p f x h d x
∞

=− ∞

  
 =  
   

  

 
and 
 

2

CONT
1

ˆISE ( ) ( ; ) .
q

j j
j

h p f x h dx
∞

=−∞

 
=  

 
  

 
Ahmad and Mugdadi (2003) showed that the 

estimator based on the CONTISE( )h  for f(x) is 

consistent. The density estimation using a kernel 
contrast is denoted by 
 

1

ˆ ˆ( x; ) ( ; ).
q

j j
j

f h c f x h
=

=   

 
The kernels may have an equal weight if q is 
chosen as an even integer, where 
 

1

1
q

j
j

c
=

= ; 1/jc q=  for j=1,…, q 

 
and 
 

0
1

=
=

q

j
jp ; 2j jp p= −  for j=1,…, / 2.q  

 
The simulation results in this article were found 

by taking, 1 2p p=− , 2 1p = − , 1 2 1/2c c= = , 

where 1 2,K K  are the two kernels N(0,1) and 

N(0,4), respectively. Therefore, 
 

CONT

2

1 2
1 1

ISE( )

1 1 1

2

n n
ji

i j

h

x Xx XK K dx
nh h nh h

∞

= =−∞

=

  − −  −          
 

 
Thus, 
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2
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1

1 22 2
1 1

2

22 2
1

ISE( )

1
     

2

1
 

1
 

2

n
i

i

n n
ji

i j

n
j

j

h

x XK dx
n h h

x Xx XK K dx
n h h h

x X
K dx

n h h

∞

=−∞

∞

= =−∞

∞

=−∞

=

  −       
− − −   

   
 −  +        






 
where: 

2

2
( )

2
1

1
2

ix X
i hx XK e

h π

−− 
 
 

− =  

and 
 

2

2

( )

8
2

1
.

2 2

jx X
j h

x X
K e

h π

−
− 

 
 

−
=  

 
Therefore, 
 

2

2

22

2 2

2

2

2

2
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2
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2
2 2

1

( )( )

2 8
2 2

1 1

2
( )

8
2 2

1

( )

10
2 2

1 1

( )

1 1

2 2

1 1 1

2 2 2

1 1

2 2 2

3 1

8

i
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j
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h

i

x Xx Xn n
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x Xn
h
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X Xn n
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ISE h
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e
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Simulation Study 

A simulation study was conducted to 
compare the several methods discussed for 
selecting the bandwidth of a kernel density 
estimator. The methods compared to estimate 
the bandwidth h - and consequently f(x) - are: 
least squares cross-validation (LSCV), biased 
cross-validation (BCV), direct plug-in (DPI), 
solve-the-equation (STE) rules and contrast 
(CONT). It is important to understand the effects 
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of the different methods for the estimator of f(x) 
for different values of the sample size, n. In this 
study, four different normal mixture densities 
were simulated; these densities are (Marron & 
Wand, 1992): 
 
a. Gaussian: 

1 ( ) ( )f x xφ= . 
 
b. Kurtotic Unimodal: 

2 1
2 1 / 1 03 3( ) ( ) ( )f x x xφ φ= +  

 
c. Bimodal:  

1 1
3 2 / 3 2 / 32 2( ) ( 1) ( 1)f x x xφ φ= + + −  

 
d. Strongly Skewed: 

1

8
1

4 (2/3)
1

1
( ) { 3[(2 / 3) 1]}

8
l

l

l
f x xφ −

−

=

= − −  

(1.9) 
 

where 1( ) ( )A u A u Aφ φ−=  and φ  

denotes the probability density function (pdf) of 
a standard normal variable, that is, 
 

2
2

1

2
1

( ) .
2

u
A

A u e
A

φ
π

−

=  

 
These densities represent Symmetric, Kurtotic 
Unimodal, Bimodal and Strongly Skewed 
distributions respectively. Figure 1 displays the 
shapes of these densities, which are a small 
subset of fifteen normal mixtures used by 
Marron and Wand (1992). 

The general normal mixtures density is 
given by (Marron & Wand, 1992): 
 

( )
1

( )
l

k

l l
l

f x w xσφ μ
=

= −  

 

where lμ−∞ < < ∞ , 0lσ >  and lw  is a 

vector with positive entries summing to unity 
(weight), for l=1, 2 ,…, k. It is assumed that f 
has a normal k-mixture density with parameters

2{ ( , , ) : 1, 2 , ..., }
ll lw l kμ σ = . 

Fryer (1976) and Deheuvels (1977) first 
showed that the MISE could be calculated 
exactly when both the underlying density and 
the kernel function are Gaussian. The integrated 
squared error (ISE) of the estimator - if the true 
underlying density is known to be f(x) as in 
equation (1.37) - is given by Marron and Wand 
(1992) as 
 

1 2

1 2

2 2 1/2

2

2 2
1 1

( )
1 1

ˆ ˆISE( ) ( ; ) ( )

1
( )

2
( )

( ,0)

l

n n

i ih
i i

n k

l i lh
i l

f f x h f x dx

X X
n

w X
n

U h

σ

φ

φ μ

∞

−∞

= =

+
= =

 = − 

= −

− −

+






 

where 
 

2 2 2 1/2
1 2 1 2

1 2
1 2

( )
1 1

( , )

         ( )
l l

k k

l l l lqh
l l

U h q

w w σ σφ μ μ+ +
= =

=

− 
 

 
and the kernel function K is the standard normal. 
Thus, it is more appropriate to analyze the 
expected value of the ISE, called the MISE. 

For each normal mixture density in (1.9) 
and each sample size n = 50, 100, 200, 500 that 
were simulated from f(x), 1,000 samples were 
artificially repeated from each f(x). For each 
sample, the bandwidth h based on LSCV, BCV, 
DPI, CONT and STE methods were obtained. 
Subsequently, for each sample the ISE values 
were obtained by using (1.9) according to the 
simulated density f(x). Subsequently, the MISE 
values were empirically determined as the mean 
of the ISE values obtained in each sample. Table 
1 displays the simulation results and the MISEs 
against the sample sizes for the different 
underling normal mixture densities. Moreover, 
the relative efficiencies of the contrast (CONT) 
method against LSCV, BCV, DPI and STE 
methods are given in Table 2. The rule of 
relative efficiency is given by 
 

*
ˆ( )ˆ(h)= ,

ˆ( )CONT

M ISE hRE
M ISE h
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where *ĥ  is the bandwidth which computed 

from the other methods (see Table 2). 
 

Conclusion 
Tables 1 and 2 show the main results of the 
simulation study. To provide insight into the 
effect of the sample size and different normal 
mixture densities on the performance of the 
various bandwidth selection methods, the 
following conclusions can be drawn: 
 

1. The MISE for the kernel estimator ˆ( ; )f x h  
decreases as the sample size increases for all 
simulated functions and for all different 
methods, which coincides with the 
theoretical properties of the kernel estimator. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. In terms of the MISE of ˆ( ; )f x h , the 
performance of the BCV method is 
acceptable when the data are simulated from 
a very skewed density ( 4 ( )f x ), while its 

performance is inefficient for the other 
densities. 

3. The MISE values of ˆ( ; )f x h  when h is 
estimated based on the LSCV or BCV 
method are large compared with the MISE 
values produced by the other methods for all 
simulated densities and for all sample sizes. 
 

Note that conclusions 2 and 3 suggest that these 
two methods should be disregarded as global 
method to select the bandwidth h. 
 

Figure 1: Some Normal Mixture Densities 

Gaussian Bimodal 

  
  

Kurtotic Unimodal Strongly Skewed 

  



BANDWIDTH SELECTION IN KERNEL DENSITY ESTIMATION 

270 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The MISE ( f̂ ) for Different Methods to Choose the Value of Bandwidth 
 

Method 
MISE ( f̂ ) 

Sample Size 
1( )f x  2( )f x  3( )f x  4( )f x  

DPI(2-stage) 

50 

0.12846 0.23448 0.15910 0.76199 

CONT 0.12481 0.22572 0.10643 0.58228 

LSCV 0.19144 0.28647 0.25236 0.94230 

BCV 0.40578 0.43591 0.39941 0.76748 

STE(2-stage) 0.13070 0.23831 0.17873 0.78334 

DPI(2-stage) 

100 

0.12730 0.21665 0.15063 0.75133 

CONT 0.12373 0.22057 0.09582 0.56732 

LSCV 0.16841 0.26467 0.23532 0.88068 

BCV 0.31693 0.38360 0.30008 0.71768 

STE(2-stage) 0.12530 0.23352 0.12739 0.76518 

DPI(2-stage) 

200 

0.12215 0.20491 0.14057 0.74043 

CONT 0.11160 0.21296 0.09271 0.55792 

LSCV 0.15314 0.25512 0.21145 0.83185 

BCV 0.25271 0.30184 0.23965 0.60122 

STE(2-stage) 0.11947 0.19695 0.12676 0.73857 

DPI(2-stage) 

500 

0.11903 0.19237 0.13929 0.73197 

CONT 0.11208 0.20337 0.09019 0.55088 

LSCV 0.13948 0.24905 0.19998 0.78332 

BCV 0.20559 0.28995 0.16698 0.56810 

STE(2-stage) 0.10785 0.18467 0.12599 0.71857 
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4. The DPI and STE methods produce similar 

results in term of their MISE values for all 
densities and for all sample sizes. The DPI 
method performs better than the STE 
method for small sample sizes and as the 
sample size increases the STE is better than 
the DPI method. This indicates that the 
convergence rate of the STE method is 
faster than that of the DPI method. 

5. The performance of the CONT method 
generally is better than the performance of 
the other methods. A significant 
improvement for the CONT method over the 
other methods is clearly demonstrated in the 
bimodal ( 3 ( )f x ) and the strongly skewed    

( 4 ( )f x ) models. 

6. The relative efficiency values in Table 2 
show that, for most of the densities and 
sample sizes, a considerable gain in the 
relative efficiency for the CONT method is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

achieved. The relative efficiency values are 
less than one in some cases, which indicates 
that the performance of the corresponding 
method is better than CONT method, but the 
relative efficiency remains acceptable in 
these cases. 

7. Comparing the MISE values for different 
methods when the data are simulated from 

4 ( )f x  to the MISE values when the data 

are simulated from the other densities, it 
may be concluded that 4 ( )f x  is difficult to 

estimate by any of the methods considered. 
That is, the strongly skewed density contains 
features that cannot be recovered from the 
sample sizes considered. 

8. On the basis of the simulation results, the 
CONT method may be recommended as a 
global method to select the bandwidth h in 
kernel density estimation. 

 

Table 2: The Relative Efficiency (RE) for Different Sample Sizes 
and Different Normal Mixture Densities 

Relative Efficiency 
Sample 

Size 1( )f x  2( )f x  3( )f x  4( )f x  

RE(h)= (2 )
ˆ( )

ˆ( )
DPI stage

CONT

MISE h
MISE h

−  

50 1.02924 1.03880 1.49487 1.30863 

100 1.02885 0.98222 1.57201 1.32435 

200 1.09453 0.96219 1.51623 1.32712 

500 1.06200 0.94591 1.54440 1.32872 

RE(h)=
ˆ( )
ˆ( )

LSCV

CONT

MISE h
MISE h

 

50 1.53385 1.26913 2.37113 1.61829 

100 1.36110 1.19993 2.45585 1.55235 

200 1.37222 1.19797 2.28076 1.49098 

500 1.24446 1.22461 2.21731 1.42194 

RE(h)=
ˆ( )
ˆ( )

BCV

CONT

MISE h
MISE h

 

50 3.25118 1.93119 3.75279 1.31806 

100 2.56146 1.73913 3.13170 1.26503 

200 2.26442 1.41735 2.58494 1.07761 

500 1.83431 1.42572 1.85142 1.03125 

RE(h)= (2 )
ˆ( )

ˆ( )
STE stage

CONT

MISE h
MISE h

−  

50 1.04719 1.05577 1.67932 1.34529 

100 1.01268 1.05871 1.32947 1.34876 

200 1.07052 0.92482 1.36727 1.32379 

500 0.96225 0.90804 1.39694 1.30440 
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This study has shown that the CONT 
method is a useful technique for choosing the 
bandwidth of the kernel estimator. The CONT 
method produces reasonable estimates for f(x) in 
almost all cases considered (see Table 2). 
Although the conclusions are based on four 
different densities, many other candidate shapes 
exist for the densities from which it is assumed 
that the data was obtained (Marron & Wand, 
1992). Therefore, it is not possible to claim that 
the CONT method performs better than the other 
methods for any set of data. However, based on 
the simulation study, the different methods can 
be ranked in ascending order (best to worst) 
according to their performances as follows: 
 

1. CONT. 
2. DPI (2-stage) and STE (2-stage ) 
3. LSCV 

and lastly, 
4. BCV 
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