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CHAPTER 1 

INTRODUCTION 

Statistical theory and its application provide the foundation to modern 

systematic inquiry in the behavioral, physical and social sciences disciplines 

(Fisher, 1958; Wilcox, 1996). It provides the tools for scholars and researchers to 

operationalize constructs, describe populations, and measure and interpret the 

relations between populations and variables (Weinbach & Grinnell, 1997; Wilcox, 

1996).Tests of equivalence, for example, are uniquely suited to research where 

the objective is to demonstrate that two populations are equivalent on a 

particular measure (Cribbie, Gruman & Arpin-Cribbie, 2004; Gruman, Cribbie & 

Arpin-Cribbie, 2007).  

Equivalency testing provides behavioral and social sciences researchers 

the necessary tools to conduct analyses that evaluate the degree to which 

different conditions produce similar results. The most commonly used 

equivalency testing approaches, symmetrical confidence intervals and interval 

hypothesis testing, assume data normality (Berger & Hsu, 1996; Johnson & 

Duke, 2008). Such an assumption poses particular concern to behavioral and 

social sciences researchers; behavioral and social sciences data sets rarely 

follow normal distribution patterns (Keseleman, et al 1998; Micerri, 1989; 

Pearson & Please, 1975).  
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Study Significance 

In developing an empirical study design, it is necessary that the underlying 

assumptions of the statistical methods employed in the study be adequately 

understood. Although usage of equivalency tests has increased amongst 

behavioral and social sciences researchers, several authors (Mutke and Holm-

Mueller, 2004; Kristofersson and Navrud, 2005) have reported that the majority 

of documented studies on equivalency testing are conducted without 

acknowledgment of the normality assumption, or on the extent to which non-

normality may exist in the data sets. As will be discussed in the literature review 

section of this study, the four most commonly used equivalency tests rely on the 

assumption of normality. Given that the majority of real data analysis in the 

behavioral and social sciences is comprised of non-normally distributed data, it is 

important that researchers be aware of the effects of non-normal data sets on 

the probability of detecting equivalence between populations. 

Problem Statement 

Determining equivalence between two populations requires the 

investigator acknowledge the underlying assumptions and limitations of the 

various statistical approaches, evaluate the appropriateness of their data sets, 

and select the approach that is most suitable for optimal results. To date, the 

number of published studies on the probability of detecting equivalency when 

data is non-normally distributed is limited (Jones, Jarvis, Lewis & Ebutt, 1996).  
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Aim of Study 

The aim of this study is two-fold, it will (1) examine the effects and 

management of non-normally distributed data on equivalency tests under varied 

conditions for a two-sample design; and (2) compare the properties of showing 

equivalence between populations at the smallest effect sizes (.001δ selected for 

this study).The present study has the following research objectives: 

1. To assess the impact of data non-normality on three traditional 

equivalency tests commonly used by behavioral and social sciences 

researchers: Schuirmann’s two one-sided t-test; Anderson and Hauck’s 

nonequivalence null hypothesis; and Patel and Gupta’s procedure.  

2. To assess the impact of sample size under varying degrees of normality 

and non-normality. 

3. To assess the impact of data non-normality on Type I error rate 

performance. 

4. To provide recommendations based on the findings of the above. 

Limitations to the Study 

The following limitations to the study are presented below:  

1. Is limited to addressing the underlying assumption of normality, and 

excludes underlying assumptions of heteroscedasticity.  

2. Is limited to detecting non-equivalence at the smallest effect size, and 

excludes a comparative power analysis. A statistical power analysis may 

be either retrospective (post hoc) or prospective (a priori). A prospective 

analysis may be used to determine a required sample size to achieve 
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target statistical power, and a retrospective power analysis computes the 

statistical power of a test given sample size and effect size (Park, 2008). 

The data sets will be computer simulated from one theoretical distribution 

(Gaussian) and two real world data sets: Smooth Symmetric and Extreme 

Asymmetry as described by Micerri (1989).  

3. Is limited to three traditional equivalency tests most commonly used by 

behavioral and social sciences researchers: Schuirmann’s two one-sided 

t-test; Anderson and Hauck’s nonequivalence null hypothesis; and Patel 

and Gupta’s procedure. 

Human Subjects 

 Human subjects will not be employed in this study. The Behavioral 

Protocol Summary Form was submitted to the Wayne State University 

Behavioral Investigation Committee; exemption was granted on September 14, 

2009.  

Identification of Variables 

For the stated purpose of this study, the following variables are defined as 

follows in Table 1. 

Table I. Monte Carlo Study Variables 

Variable  Variable Function 
% of rejection rates  Dependent 

Alpha level ( α ) 
 

Independent 
 

Length of Equivalence Interval 
 

Independent 
 

Sample size (n) 
 

Independent 
 

Sampling Distribution  Independent 
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Definition of Statistical Terms 
 

For the stated purpose of this study, the following terms are defined as 

follows: 

Alpha level. The pre-specified level of significance used in selecting the 

critical value, and refers to the probability of making a Type I error if Ho is 

rejected (Hinkle, Weirsman & Jurs, 1998). 

Confidence interval. An interval between two numbers with an associated 

probability p which is generated from a random sample of an underlying 

population, such that if the sampling was repeated numerous and the interval 

recalculated from each sample according to the same method, a proportion of p 

of the intervals would contain the population parameter in question (Cohen & 

Cohen, 1983). 

Critical mean difference: Any difference smaller than would be considered 

meaningless within the framework of the study (Cribbie, Gruman & Arpin-Cribbie, 

2004). 

Distribution: The arrangement of values/outcomes that demonstrates 

observed frequency (Hinkle, Weirsman & Jurs, 1998). 

Distribution-free tests: Tests hypotheses without relying on underlying 

assumptions about population parameters (Sawilowsky & Fahoome, 2003). 

Equivalency interval: Primarily dependent on subjective “level of 

confidence” with which to declare two (or more) populations equivalent (Cribbie, 

Gruman & Arpin-Cribbie, 2004). 
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Equivalence tests: Statistical methods for determining if populations are 

equivalent on a specific dependent variable (Schuirmann, 1987). 

Kurtosis: A measure of the degree to which a distribution is peaked 

(Wilcox, 1996). 

Monte Carlo simulation: Computer simulations that involve statistical 

sampling and allow for the measuring of mathematical properties of statistical 

tests (Harwell, 1990). 

Normal distribution: A bell-shaped curve with a skewness value of 0 and a 

kurtosis value of 0 (Wilcox, 1996). 

Power: The probability of rejecting the null hypothesis when it is false also 

known as Type II error (Hinkle, Weirsman & Jurs, 1998). The statistical power is 

the ability of a test to detect an effect, if the effect actually exists (Ibid). 

 Robustness: (1) Pertains to statistical test and the extent that violating its 

assumptions does not affect the probability of its Type I error (Hunter & May, 

1993). (2) Pertains to Type II error and the compliment of the power of the 

statistical test (Sawilowsky, 1990). 

Sample size: The number of scores in the subset of the population 

(Wilcox, 1996). 

Skew: The lack of symmetry of a distribution of scores, elongation of 

either the left or right tails (Wilcox, 1996) 
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CHAPTER 2 

LITERATURE REVIEW 

Overview of Equivalency Tests  

Tests of equivalence are the appropriate techniques where the research 

objective is to demonstrate that two populations are equivalent on a particular 

measure. Equivalency tests are designed to assess if population or treatment 

differences are acceptably small to rule in favor of equivalence (Anderson & 

Hauck, 1983; Schuirmann, 1987; Selwyn & Hall, 1984; Westlake, 1976). Barker, 

Luman, McCauley & Chu (2002) have described the procedure as follows:  

   In equivalence testing, the null hypothesis is “a difference of ∆ or more.” Thus,  α is 
the probability of concluding that the populations differ by less than ∆ when, in fact, the 
difference is ∆ or more. Similarly, β is the probability that the populations’ coverage will 
be found to differ by at least ∆ when the true difference is less than ∆” (p. 1058). 

 
Testing for equivalence requires that the investigator (1) specify an 

equivalency interval and (2) determine if the difference between the population 

means or medians is within the specified equivalence interval. The null 

hypothesis ( 0H ) is stated such that the statistical test is evidence of non-

equivalence: the populations or groups differ by more than a tolerably small 

amount, designated as∆. The alternative hypothesis ( 1H ) are the populations or 

groups differing by less than∆, or that they are similar or equivalent on the 

dependent variable or measure (Anderson & Hauck, 1983; Rouanet, 1996; 

Schuirmann, 1987; Selwyn & Hall, 1984; Westlake, 1976):  

            10H : ≤− CT µµ L∆  versus :11H  CT µµ − > L∆ ,     and 

20H : ≥− CT µµ  L∆  versus 21H : CT µµ −  < L∆ .  
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Equivalency Tests and Applicable Areas of Research 

Long-standing convention amongst researchers in the behavioral and 

social sciences has been to study and determine statistically significant 

differences between populations or programs. Due to lack of familiarity with 

equivalency tests, many researchers continue to use statistically significant 

difference tests when in fact the study aim is to determine similarity or 

equivalence between populations or treatments (Cribbie, Gruman & Arpin-

Cribbie, 2004; Gruman, Cribbie & Arpin-Cribbie, 2007). Nevertheless, 

equivalency tests have been demonstrated to be of significant theoretical and 

practical relevance in empirical research scenarios located in varied research 

and cost analysis scenarios (Rogers, Howard & Vessey, 1993; Cribbie, Gruman 

& Arpin-Cribbie, 2004; Kristofersson and Navrud, 2005).  

Behavioral/Psychometrics Research Scenarios: Where the research 

objective might be to demonstrate parallelism between two forms, the correlation 

of test form A with a criterion which may be construed as a measure of validity, 

may be compared to the correlation of test form B to the same criterion. It is 

known that the shorter of the two test forms, B, is less prohibitive in time and cost 

to administer than test form A. Equivalency testing would be used to compare 

the correlation coefficients for the longer test form A and the alternative short 

parallel test form B based on Lord and Norvick (1968) mental test theories. 

Behavioral studies conducted by Rogers, et al drew on examples of baseline 

equivalence assessment and the assessment of equivalency in efficacy between 

cognitive and behavioral interventions (Rogers, Howard & Vessey, 1993).  
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Cost Benefit Analyses: In organizational management, the efficacy of 

different therapeutic programs designed to treat alcoholic employees may be 

compared. If for example, the efficacy is the same for cognitive- and behavioral-

based intervention programs; management may recommend and implement the 

intervention that is least cost and time-prohibitive. Among education economists 

and policy makers, the program objective might be to demonstrate that early 

intervention programs are of equal benefit to rural and metropolitan children. Two 

potentially under-utilized settings for equivalency testing are Forensic Science 

(e.g., ballistics matching) and Criminal Justice. For the 38 states that allow 

capital punishment for specific offenses, the related human cost of Type I error is 

clearly catastrophic (M. Addonizio, personal communication, August 18, 2009). 

Health Care Research Scenarios: Demonstrating equivalency is of great 

importance in medical and allied health care research, most notably 

pharmaceutical research and manufacturing. With the explosive growth in the 

manufacture and selling of generic drugs, federal regulatory agencies demand 

that pharmaceutical manufacturers demonstrate in clinical trial studies, the 

equivalency between proposed generic drugs and the more expensive, but 

established, referent drug (Brown, Hwang & Munk, 1997). Within the current U.S. 

health care system model, there exists a vast array of surgical procedures that 

effect physician decision making. Amongst surgeons and health insurance 

companies, the question posed is not “which procedure is superior?”, but “are 

they bioequivalent with regards to patient outcomes?” If in clinical trials 

bioequivalence has been established, determinations will be made based on 
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tradeoffs in costs, access and utilization, and risk incurred by patients (Breslow 

and Day, 1980).  

Equivalency Test Models 

 Gruman, et al (2007) has stated: “…researchers require a statistical 

technique designed specifically to test the degree to which different conditions 

produce similar results. Tests of equivalence serve this purpose” (p 134). 

Amongst behavioral and social sciences researchers, the four most commonly 

used tests of equivalence are Westlake’s symmetric confidence interval 

(Westlake, 1976); Schuirmann two one-sided t-test (Schuirmann, 1987; 1979); 

Anderson and Hauck’s nonequivalence null hypothesis (1983); and Patel and 

Gupta (1984). The Westlake model is an example of the confidence interval 

approach to equivalency testing; the latter three are examples of the interval 

hypothesis testing approach. 

Westlake Symmetric Confidence. 

 The confidence interval approach uses experimental data to formulate 

confidence intervals mean or median differences (or ratios). The researcher 

constructs a confidence interval that is compared to the limits of the equivalence 

interval, ∆1 and ∆2, which is selected a priori, or predetermined, by the researcher 

or regulatory agency (Seaman & Serlin, 1998; Stegner, Bostrom & Greenfield, 

1996). Should the entire constructed interval fall within the upper and lower 

limits, the two populations or groups are considered equivalent, if not, 

equivalence between populations or groups is rejected (Seaman & Serlin, 1998). 
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 Westlake (1972) and Metzler (1974) proposed the use of confidence 

intervals as a statistical method to test for equivalence in place of the 

inappropriate use of the null hypothesis tests of statistically significant 

differences. “Testing the null hypothesis of no difference is inappropriate for 

studies in which the primary objective is to demonstrate that two populations are 

equivalent, rather than different on a dependent measure” (Gruman, Cribbie & 

Arpin-Cribbie, 2007, p 133). Later, after observing, “most clinicians tend to make 

their equivalence statements in a symmetrical manner” (p 741, 1976), Westlake 

proposed a confidence interval adjusted to be symmetric about zero for the 

mean difference or one for ratios and proportions: 

 The conventional method of setting confidence intervals for the difference of the 
means of two normal populations gives an interval which is not, in general, symmetrical 
about zero. A modification of the conventional method leads to symmetry about zero is 
discussed and is recommended as particularly appropriate for use in bioequivalence 
trials. This modification has the effect of decreasing the "effective" length of the 
confidence interval, on which the decision concerning bioequivalence is based, while 
increasing the confidence coefficient (abstract, 1976). 
 
  The confidence interval of mean difference formulated by Westlake 

(1972) and Metzler (1976) is given as follows: 

cµ  - ∆ < Tµ  < cµ  +∆ .  (1) 

where cµ  denotes the population mean of the control or referent group 

where Tµ  denotes the population mean of the experimental treatment group.  

Westlake and Metzler’s method may be understood as the construction of a 

confidence interval for Tµ  that is symmetric about cµ . Re-arrangement of the T-

statistic yields: 

),()( CTACATLCTCTACATUC AASkAASk −<− −−+<−−+ µµµ   (2)  
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where TA denotes the sample mean for the experimental treatment group 

where CA denotes the sample mean of the control or referent group 

where Lk  = tα  denotes the lower or 5th percentile 

where Uk = t1-α   denotes the upper or 95th percentile, and  

where Lk and Uk  are selected so that ∫
U

L

k
k

Tdf = 1 –α .  

 Thus, the probability of T between Lk and Uk  based on a central t-

distribution with dfnn CT 2−+ or 2 degrees of freedom, is equal to 1 –α , where 

Tn  denotes size of experimental group and Cn  denotes size of control or referent 

group. To assure symmetry of the confidence interval, the following statements 

must prove valid: 

)( CTACATL AASk −−=∆ − )( CTACATU AASk −+= −    (3) 

This result indicates that: 

     ).(2)( CTACATUL AASkk −=+ −                           (4) 

Westlake (1989) estimated the probability of establishing equivalence would 

increase with the use of the symmetric confidence interval at approximately zero 

for mean differences (approximately unity for the ratio of means). 

 Critique of the Westlake symmetric confidence interval. 

 Chow & Liu (1992) and Frick (1987) have noted that Westlake’s 

symmetric confidence interval has at minimum 1 – α  coverage probability and is 

conservative in the sense that the real Type I error rate might be at most the 

nominal α  level. Mantel (1977) and Mandallaz & Mau (1981) identified two 

significant limitations to the model. Firstly, the upper and lower limits are 
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artificially constructed such that the direction of the difference is not obvious. A 

conventional confidence limit of 93< 1µ  - 2µ < 128 reflects that the mean for 

group 1 is higher than the mean for group 2. The Westlake symmetric 

confidence interval does not provide information on location.   

Secondly, the tail probabilities are not symmetric: as the difference 

between means increases, the confidence interval shifts from two-sided to one-

sided. This becomes a significant disadvantage as probabilities result in a 

confidence interval with the shortest length (Kendall & Stuart, 1961). Metzler 

(1988) advised that the symmetrical confidence interval be retained as a 

statistical method for decision-making, but not for estimation or testing. Serlin 

(1993) found difficulty with symmetric confidence interval method because it is 

not related to the research hypothesis of equivalence.    

Due to the above stated reasons, the Westlake symmetric confidence 

interval will not be included in this study. However, other confidence interval 

methods have been suggested for testing of equivalence. Lock (1984) proposed 

a procedure for constructing a confidence interval for the ratio of means based 

on the Fieller theorem (Fieller, 1954). Chow & Shao (1990) put forward a joint 

confidence region for assessing equivalence.  

 The Schuirmann Two One-Sided t -Test. 

 The determination of equivalence between populations or groups is based 

on the inspection of differences in the parameter of interest between two 

populations, such as the mean or median (Schuirmann, 1981; 1987; Anderson & 

Hauck, 1883). However, it is noted that no two groups or treatments have 
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precisely the same mean or median. Based on this supposition, two groups or 

treatments that differ by a clinically unimportant difference in either direction may 

still be accepted as equivalent. These clinically unimportant differences must be 

determined a priori by the researcher, and, based on them, interval null 

hypotheses are formulated (Schuirmann, 1987; Welleck, 2003). Based on the 

interval hypothesis approach, several hypothesis tests for equivalence were 

formulated. Lehmann (1986) described the common approach to testing range 

null hypotheses. The domain of well known and frequently used interval 

hypothesis testing methods for equivalence include the Schuirmann two one-

sided t-test (1981; 1987); the Anderson and Hauck nonequivalence null 

hypothesis (1983); and the Patel and Gupta procedure (1984).  

 Schuirmann (1981; 1987) first introduced the use of an interval hypothesis 

for assessing equivalence, and is the most widely used by behavioral and social 

science researchers when the research objective is to determine equivalency 

between populations (Hsu et al, 1994; Berger & Hsu, 1996; Gruman, Cribbie & 

Arpin-Cribbie, 2007).The popularity of the test may be attributed to its bounded 

Type I error rate, good power (≥0.80), and a well-behaved rejection region (Hsu 

et al, 1994). Rogers, Howard & Vessey (1993) are credited with introducing the 

Schuirmann two one-sided t-test with examples of its application to behavioral 

and social science research literature. Gruman, Cribbie & Arpin-Cribbie (2007) 

summarized the Schuirmann model as follows: 

 The first step in conducting Schuirman’s test of equivalence is to establish a 
critical mean difference for declaring two population means equivalent (D). Any mean 
difference smaller than D would be considered meaningless within the framework of the 
experiment. The selection of an equivalency interval (D) is an important aspect of 
equivalence testing that is primarily dependent on a subjective “level of confidence” with 
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which to declare two (or more) populations  equivalent. This level of confidence can 
take on many different forms including a  raw value (e.g., mean test scores different 
by 10 points), a percentage difference (e.g. +/- 10%), a percentage of the pooled 
standard deviation difference, etc (p.134, 2007). 
 
The interval hypothesis test for equivalence is formulated as follows 

≤− CTH µµ:0 L∆  or ≥− CT µµ  U∆ (5) versus 
 

  1H : L∆  < 
CT µµ − < U∆ .   (6) 

 
 It is assumed that the samples meet the underlying assumptions of being 

randomly and independently selected from normally distributed populations with 

equal variance (Berger & Hsu, 1997). Two one-sided hypothesis tests can be 

used to establish equivalence as the null hypothesis relates to the 

nonequivalence of the population means and can be expressed as two sets of 

one-sided hypotheses (Rogers, Howard & Vessey, 1993; Seaman & Serlin, 

1998)                 10H : ≤− CT µµ ∆L versus :11H  CT µµ − >∆L,  (7)  and 

20H : ≥− CT µµ  ∆L versus 21H : CT µµ −  < ∆L. (8) 
 

The first set of hypotheses is intended to verify that the difference between the 

population means is not too small, while the second set of hypotheses is 

intended to confirm that the difference between population means is not too 

large.  The two sets of one-sided hypotheses are tested by the following set of 

statistics: 

             
ACAT

LCT
L S

AA
T

−

∆−−
=           (9)     and 

 

  
ACAT

UCT
U S

AA
T

−

∆−−
=           (10) 

 
for the second set of hypotheses. Under the normality assumption, LT  and UT  
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follow a t-distribution with dfnn cT 2−+  (2 degrees of freedom), equivalence is 

established only if both 10H  and 20H  are simultaneously rejected:  

       ),2( α−+− cTL nntT  and ),2( α−+− cTU nntT  

where t ),2( α−+ cT nnt  is the 100(1- α ) percentile of the t-distribution 

with dfnn cT 2−+ .  

 To establish equivalency, it is noted that only the test that yields a larger 

ρ -value is required and sufficient for decision-making. If the test with a larger ρ -

value results in a rejection of the null hypothesis for a givenα , it follows then, 

that the test with a smaller ρ -value must yield a rejection as well (Wang, 

DasGupta & Hwang, 1996). The conclusion of equivalency is established on the 

simultaneous rejection of both tests; if the ρ -values of the two tests are the 

same, both tests lead to the same conclusion (Schuirmann, 1987). Based on the 

above rationale, only the test with the larger ρ -value is necessary for the 

assessment of equivalency. Furthermore, because the result from the test with 

the smaller ρ -value is pre-empted by the test of the larger ρ -value, the Type I 

error rate is equal to that assigned to the test with the larger ρ -value 

(Schuirmann, 1987; Berger & Hsu, 1997).  

 A Type I error can only be committed when this hypothesis is rejected. 

This is because 10H  and 20H  is mutually exclusive and only one of them can be 

true. Schuirmann (1987) demonstrated that the same conclusion would be 

reached using his two one-sided t-test method at Type I error rate of α  and the 

conventional 100(1-2α ) % confidence interval. From this perspective, the two 
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one-sided t-test method and the traditional confidence interval approach are 

noted to be operationally equivalent (Schuirmann, 1987; Berger & Hsu, 1997).  

 Critique of the Schuirmann Two One-Sided t-Test. 

 Chow and Liu (1992) found in a small simulation study that the 1-2α  

confidence interval does not guarantee that, over time, the chance of the 1-2α  

confidence interval being within the acceptance limits is at least 1-2α . Only 

91.5%, 43.9% and 7.5% of confidence intervals were within the equivalence 

limits for intra-subject variability of 20%, 30% and 40%, respectively. In addition, 

the two one-sided t-test method was found to be conservative in terms of Type I 

error rate (Chow & Liu, 1992). Cribbie, Gruman & Arpin-Cribbie (2004) found the 

Schuirmann two one-sided t-test “To be more effective than Student’s t-test at 

detecting population mean equivalence with large samples sizes (n=25); 

however, Schuirmann’s test of equivalence performs poorly relative to Student’s 

t-test with small sample sizes and /or inflated variances “(p.1, 2004).  

 Anderson and Hauck’s Nonequivalence Null Hypothesis Procedure. 

 Instead of using LT and UT  defined previously to assess 10H  and 20H , 

respectively, Anderson and Hauck (1983) proposed a technically simple 

procedure for evaluating 0H : ≤− CT µµ L∆  or 
CT µµ − ≥ U∆  directly. For the 

Anderson and Hauck procedure, the test statistic is given as           

ACAT

ULCT
AH S

AA
T

−

=
∆+∆−− 2/)(

    (11) 

Under the assumption of normality of the population distributions, the test 

statistic AHT  follows a non-central t-distribution with non-centrality parameter   
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∆+∆−−
=

δ
δ           (12) 

The test will reject 0H  in favor of equivalence if AHT  falls between two  
 
critical values LC and UC , which satisfy 

 
       UAHL CTCP <<( │ CT µµ −  =∆L, δ 2) = 

 

                                  UAHL CTCP <<( │ CT µµ −  =∆U, δ 2) =α .     (13)      
 

However, Anderson and Hauck (1983) demonstrated that only a single critical  
 
value TU CCC == is required. The critical valueC  may be obtained by solving  
 
the following: 
                                      (P │ AHT  │ C< │ 2,δµµ LCT ∆=− ) =                                                                             

             

            (P │ AHT │ C< │ CT µµ −  =∆L, δ 2) =α              (14) 
 
 The decision about equivalence can also be based on the ρ -value. With 

the observed data, the empirical ρ -value can be calculated under the null 

hypothesis. If the non-centrality parameter is known, the ρ -value is given by 

     (P=ρ │ AHT  │ AHt< │
CT µµ −  =∆U, δ 2),               (15) 

where AHt is the observed value of AHT . If ≤ρ α , the null hypothesis is rejected 

and equivalence is then concluded. On the other hand, if the non-centrality 

parameter is unknown, approximation to the −ρ value is used. Anderson and 

Hauck (1983) considered three approximations based on the non-central t-, 

central t- and normal distributions. Among the three approximations, the central 

t-distribution approximation was found to be the best in terms of power 

(Anderson & Hauck, 1983).  
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Since the sample standard deviation, ρs , is a consistent estimator of the 

population standard deviationδ , the non-centrality parameter at the limit of the 

equivalence interval, for example, 
CT µµ −  =∆U, can be estimated by 

       δ =   UL ∆+∆ ,        (16)  

  ACATS −2  
and therefore, the statistic 
 

   
ACAT

ULCT
AH S

AA
T

−

=
∆+∆−−

−
2/)(

δ           (17) 

 -     UL ∆+∆   
       ACATS −2   
 

 
ACAT

UCT

S

AA

−

∆−−
=  

 
approximately follows a central t-distribution with dfnn cT 2−+ .  

 Assuming 0>AHT H, it is noted that at the upper limit of the equivalence 

interval, ∆U, δ−AHT  is equal to UT  of the Schuirmann two one-sided t-test. 

Similarly, at the lower limit, ∆L, - δ−AHT  is equal to UT  of the Schuirmann two 

one-sided t-test. However, Chow & Liu (1992, p 92) observed that Anderson and 

Hauck’s test is always more powerful than the Schuirmann two one-sided t-test. 

In addition, Anderson and Hauck (1983) demonstrated in a simulation study that 

the power of their method always exceeds the power of both the Schuirmann 

and Westlake methods.  
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 Patel - Gupta’s Procedure. 

 The Patel - Gupta procedure is similar to the Anderson & Hauck test: a 

single test is used to evaluate the null hypothesis involving a pre-specified 

difference (∆). However, unlike Anderson & Hauck (1983), which employed the 

central t- distribution as approximation, Patel-Gupta (1984) utilized non-central F-

distributions to test 

                                                    0H : │ 21 µµ −  │≥ ∆ 

against the alternative given by 

0H : │ 21 µµ − │< ∆ 

where ∆ is some pre-determined clinically important difference. Patel-Gupta’s 

test statistic is given by 

2
22

2
11   )()(

S

AAnAAn
F

++−
=γ          (18) 

Under the null hypothesis it is distributed as a non-central F-distribution with 1-

degree of freedom and 2−+ cT nn , and approximate non-centrality parameter 

          γ  =       ( 21nn )   ∆2                  (19) 
n       δ 2 

with the usual notation for the mean, sample size and estimated standard 

deviation. The null hypothesis is rejected if  cF n ≤− γ,2,1  where  

        (P cF n ≤− γ,2,1 │ 0H ) = α              (20) 

One significant drawback to both the methods are that both are slightly liberal in 

the sense that the real Type I error rate might exceed the nominal level (Chou & 

Liu, 1992; Frick, 1990; Shuirmann, 1987).  
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 There is no one optimal test to be found for the purpose of establishing 

equivalency: it has been determined that there are tradeoffs in Type I error rate, 

statistical power, and shape of the rejection region (Chow & Liu, 1992; Berger & 

Hsu, 1996; Perlman & Wu, 1999). The α  level for the Westlake and Schuirmann 

procedures can both be slightly conservative in the sense that the real Type I 

error rate might be at most the nominal α  level. The Anderson and Hauck and 

Patel and Gupta procedures can both be slightly liberal in the sense that the real 

Type I error rate might exceed the nominal α  level. Berger & Hsu (1996, p 289) 

commented on the continued popularity of the Schuirmann procedure: “Although 

not the most powerful version of equivalence testing available, the ‘simplicity and 

intuitive appeal’ of the two one-sided t-test has led to its widespread use and 

acceptance”.  

Equivalency Tests and Violations to Normality 

When considering statistical methods to detect the degree to which 

equivalence may exist, it is important that researchers understand the statistical 

properties of these tests under conditions that may or may not meet underlying 

assumptions. All four equivalency tests are predicated on underlying 

assumptions that samples are randomly and independently selected from 

normally distributed populations with equal variances (Gruman, Cribbie & Arpin-

Cribbie, 2007). However, various studies in pharmaceutical (Metzler & Hung, 

1983; Zhou, He & Yuan, 2004), behavioral and social sciences research 

(Keselman, et al, 1998; Micerri, 1989; Pearson & Please, 1975) have 

demonstrated that the underlying assumption of normal distribution of real data 
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is frequently violated.  

In an investigation of 440 distributions taken from education and 

psychology studies, Micceri found that none of the data sets followed normal 

distribution patterns and just 3% were identified as relatively symmetric with light 

tails (Micceri, 1989). Studies conducted by Bridge & Sawilowsky (1999) and 

Barber & Thompson (1998) found distributions in medicine often display extreme 

skewness. It has also been determined that non-normally distributed data sets 

greatly affect hypothesis tests incorporating the t and F-statistics (Bradley, 1968; 

Fahoome & Sawilowsky, 2000; Kerlinger & Lee, 2000; Zimmerman, 1998). The 

Schuirmann two one-sided t-test assumes samples are drawn from a normal 

distribution. However if normality has been violated, then “tests such as the two 

one-sided t-test which is based on the Student t-distribution is inappropriate” 

(Berger & Hsu, 1996; p 287). Therefore, if the presence of non-normal 

distributions is a rule rather than an exception, researchers must take a close 

look at the shape of their data and the tests they are applying. 

Characteristics of Non-Normally Distributed Data 

 Researchers and statisticians have been concerned with non-normally 

distributed data reaching back to the early nineteenth century (Pearson & 

Please, 1975; Stigler, 1973). Non-normally distributed data is common in 

practice, and has been documented in many applied studies (Keselman, et al 

1998; Micceri, 1996; Pearson & Please, 1975). Non-normally distributed data is 

of concern to researchers as it has an effect on statistical procedures such as 

summary statistics and hypothesis tests. Micceri (1989) identified several factors 
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that might contribute to violation of normal distribution of data: 

   Other factors that might contribute to a non-Gaussian error distribution in 

the population of interest include but are not limited to (a) the existence of 

undefined subpopulations within a target population having different abilities or 

attitudes, (b) ceiling or floor effects, (c) variability in the difficulty of items within a 

measure, and (c) treatment effects that change not only the location parameter 

and variability but also the shape of a distribution (p 157).  

Detecting Departure from Normality  

 Sawilowsky & Fahoome (2003) identified the characteristics of a normal 

distribution: a mean, µ, of 0.00, a standard deviation, σ, of 1.00, skewness of 

0.00 and kurtosis of 3.00 (Sawilowsky & Fahoome, 2003). In characterizing and 

summarizing data (i.e., measures of central tendency, dispersion), the main 

concern has been robustness of the statistical procedure to normality. The term 

robust, when used to describe a statistical procedure, refers to the insensitivity of 

parametric statistics to violations of their assumptions. Non-normality of data 

may occur due to a variety of reasons including growth or decay in which the 

underlying distribution is exponential, multimodal lumpy (Micceri, 1989), mass at 

zero with gap (Sawilowksy & Hillman, 1992) or some non-Gaussian shape.  

 Examples of non-normal distributions include contaminated distributions 

that are Gaussian in shape, but contaminated by the presence of outliers 

(Wilcox, 1997). Outliers are values occurring in the dataset and are significantly 

larger or smaller than other values; thus creating bias toward  measures of 

central tendency (location) and dispersion: the sample mean and variance (Ibid, 
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1997).  Wilcox (1997) made several observations on the characteristics of 

contaminated distributions: (1) measures of central tendency do not fall in the 

same location of the tail, and (2) exhibited variance that is larger than the normal 

distribution.   

 The mean of a contaminated distribution will demonstrate bias in the 

direction of the skewed tail of the distribution and is not a robust estimator of 

location (Sawilowsky & Fahoome, 2003). The median, which is much less 

sensitive to the presence of outliers in the distribution, is a more robust estimate 

of the center of the distribution (Ibid, 2003). Lastly, Wilcox was noted that 

“Outliers and heavy-tailed distributions are serious practical problems because 

they inflate the standard error of the sample mean…Modern robust methods 

provide an effective way of dealing with this problem” (p 2, 1997).  
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CHAPTER 3 

METHODS 

The aim of this study is examine the effects and management of non-

normally distributed data on equivalency tests under varied conditions for a two-

sample design; and to compare the properties of showing equivalence between 

populations at the smallest effect size, .001δ , selected for this study. A Monte 

Carlo simulation study is designed to address the following research questions:  

1. Which, if any, of the tests examined in this study control Type I error?  

2. If the Type I error rate is not controlled, under what conditions are tests 

liberal or conservative? 

3. Is there an overall best test to recommend for the management of non-

normally distributed data? 

4. Are there specific circumstances that dictate which of the three models is 

most appropriate under conditions in which normality is violated? 

This study is limited to three of the four traditional equivalency tests discussed in 

the literature review: Schuirmann’s two one-sided t-test; Anderson and Hauck’s 

nonequivalence null hypothesis; and Patel and Gupta’s procedure. As discussed, 

the Westlake symmetric confidence interval approach is found to be rather 

conservative in terms of Type I error rate: it will not be included in the study. 

Monte Carlo Design 

Harwell (1990) defined the Monte Carlo simulation study as a series of 

computer simulations capable of measuring the mathematical properties of a 
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given statistical test achieved by allowing for the simulation and control of all 

variables under investigation: 

In the typical MC study of a given statistical test the following process is repeated 
for a large number of samples: data are simulated which reflect a specific relationship 
among variables... The values of the statistical test provide information on its properties 
(e.g., the proportion of the “significant” values on the test). If the underlying assumption 
of the test were satisfied, exact statistical theory would guarantee that the test would 
have a specified type I error rate and would permit the probability of rejecting a false 
statistical hypothesis to be computed. Monte Carlo studies permit these characteristics 
to be examined when underlying assumptions are violated (p.4). 
  

This study will employ Monte Carlo simulation techniques using Dell DIM 

4600, Dell XPS 210 and Essential Lahey Fortran 90 v. 4 software (Lahey 

Computer Systems, 1995-2000). A program will be written and compiled using 

Essential Lahey Fortran 90 v.4 that will compare the Type I error rate of three 

statistical tests under conditions of both normal and non-normally distributed 

data sets. Data will be generated using pseudo-random number generator, 

provided through the Essential Lahey Fortran 90 v.4 software. Sub-routines will 

be derived from BFRA, a Fortran module, developed by Blair (1987) and updated 

by Dr. G. Fahoome, Department of Educational Evaluation and Research, at 

Wayne State University. 

Methodology 
 

Utilizing Monte Carlo simulation techniques, Schuirmann’s two one-sided 

t-test; Anderson and Hauck’s nonequivalence null hypothesis; and Patel and 

Gupta’s procedure will be compared for the probability of detecting equivalence 

under conditions in which underlying assumptions of normality are violated. The 

three equivalency tests will be compared with regards to percentage of rejection 

rates.  
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Study Parameters 

Three variables were manipulated in this study including nominal α  level; 

sample size, sampling distribution, and length of the equivalence interval. The 

critical mean difference for establishing equivalence with the Schuirmann two 

one-sided t-test was 1 throughout all conditions. 

Sample Size and Nominal Alpha. 

“One of the primary motivations for utilizing tests of equivalence is that as 

sample size increases, the probability of finding even trivial mean differences 

statistically significant becomes larger.” (Cribbie, Gruman & Arpin-Cribbie, 2004). 

The sample size balance and imbalance were selected based on their 

representation of real world datasets often used in behavioral, health and social 

sciences research studies (Keselman, et al 1998). For the case of equal 

numbers of observations per group, one million repetitions were conducted for 

the sample size combinations n1, n2 = (10, 10); (20, 20); (40, 40); and (60, 60) 

using nominal alpha levels of .001, .01, and .05. For the case of unequal 

numbers of observations per group, one million repetitions were conducted for 

sample size combinations n1, n2 = (10, 20); (10, 40); (10, 60); (20, 40); (20, 60); 

and (40, 60) using nominal alpha levels of .001, .01 and .05.  

Length of Equivalence Interval. 

Three levels of length of equivalence interval in standard deviation units 

are used. The length of the equivalence interval denoted by  ∆ is .001δ , .005δ , 

and .01δ . The standard deviation was set at unity; this is because the length of 

the equivalency interval is a function of the standard deviation. The purpose of 
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the study is not to conduct a comparative power analysis: it is a comparison of 

the properties of showing equivalence. As such, recommended effect sizes 

should be very small with the point being the reverse of the typical power study. 

In other words, which of the competitors shows non-equivalence at the smallest 

effect size? (S. Sawilowsky, personal communication, June 2, 2009). 

Sampling Distributions. 

 For points of comparison, three population distributions have been 

selected. The selected distributions are the Gaussian (normal) and two identified 

by Micceri (1989) as possessing “real world data” characteristics representative 

of education and psychology data sets: the Smooth Symmetric, and Extreme 

Asymmetry, Achievement. The theoretical variate values generated from the 

standard normal distribution provide the baseline for comparison with the ‘real 

world’ variate values generated by the Smooth Symmetric and Extreme 

Asymmetry, Achievement data sets.  

1. Gaussian (Normal) Distribution.  

 This bell shaped distribution has equally weighted tails and distributions of 

scores. The mean and median = 0.00, standard deviation = 1.00, skew= 0.00, 

and kurtosis = 3.00  (Sawilowsky & Blair, 1992). 

 
Figure1. Gaussian (Normal) Distribution (Sawilowsky & Fahoome, 2003) 
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2. Smooth Symmetric.  

The Smooth Symmetric data set is similar to the normal distribution 

however it is distinguished by a light skew and a small variance in kurtosis from 

the normal distribution. It has a mean = 13.91, median =13.00, standard 

deviation = 4.91, skew = 0.01 and kurtosis = 2.66. The Smooth Symmetric 

demonstrates an 11.3% variance from normal kurtosis, thus slightly playkurtic 

(Ibid, 1992). 

 
 

Figure 2. Achievement: Smooth Symmetric (Sawilowsky & Fahoome, 2003) 
 

3. Extreme Asymmetry, Achievement. 

 The Extreme Asymmetry, Achievement data set has a mean = 24.5, 

median =27.00, standard deviation = 5.79, skew =1.64, and kurtosis = 4.11. The 

Extreme Asymmetry, Achievement data set demonstrates a 37% variance 

(leptokurtic) from normal kurtosis (Ibid, 1992). 
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Figure 3. Achievement: Extreme Asymmetry, Growth (Sawilowsky & Fahoome, 2003) 
 
 
Study Design 

For the purposes of this study only the two-sample case was considered. 

The conditions placed on the generated observations are varied and include 

nominal α  level; sample size, sampling distribution, and length of the 

equivalence interval. The levels of these experimental conditions are selected so 

as to reflect test usage in applied studies and to yield reasonable levels of 

statistical power (≥0.80).  

For the purpose of examining the Type I error rate for the combinations 

previously outlined, 1,000,000 repetitions per condition are simulated. For each 

repetition, two independent samples are randomly generated based on the given 

condition. Each of the three tests examined in this study will be applied to the 

generated samples, and failure to reject/rejection of the null hypothesis will be 

recorded. Simulated Type I error rates for a test can then be obtained on 

completion of the 1,000,000 repetitions by dividing the number of times that the 
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test exceeded the associated critical values by 1,000,000. The simulated Type I 

error rates for each test will be tabulated and summarized for each condition, 

then compared with regards to percentage of rejection rates. 

The robustness of each statistical test with respect to Type I error rate, will 

be assessed using the Bradley (1978) liberal criterion test. According to Bradley, 

a statistical test is determined robust with respect to Type I error rate if the 

empirical rate of Type I error falls within the range of +/- .5α . Specifically, the 

upper and lower range of robustness is 0.00105 and 0.00095 at nominal 

α =0.001; 0.0105 and 0.005 at α =0.01; and 0.0525 and 0.0475 at nominal 

α =0.05. Simulated values above the upper robustness limit will be recorded as 

liberal (L); simulated values below the lower robustness limit will be recorded as 

conservative (C). Given the null hypothesis and alternative hypothesis for 

equivalence: 

0H : The difference between means falls above or below the limits of the 

equivalency interval; the means are found to be non-equivalent.  

1H : The mean difference falls within the limits of the interval; the means 

are found to be equivalent. 

Within the above paradigm, conservative’ suggests that the test declares 

that the means are equivalent, less often than at the desired Type I error rate, 

when they are in fact not equivalent. Conversely, liberal suggests that it is 

concluded that the means are equivalent, more often than at the desired Type I 

error rate (ibid, 1978). 
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CHAPTER 4 

RESULTS 

The findings are presented from the Monte Carlo simulation study on the 

effects of non-normal distributions on the performance of Schuirmann’s two one-

sided t-test, Anderson & Hauck’s non-equivalence null hypothesis, and Patel-

Gupta’s procedure, under conditions of small effect sizes. The first section 

presents findings as they relate to the effects of population variability on the 

performance of each test, as measured by percent of rejection rate. The second 

section presents a comparison of the properties of showing equivalence, for the 

purpose of determining which equivalency test showed non-equivalence at the 

smallest effect size, .001δ  selected for this study. 

Non-Normal Distribution Effects  

Table 2 displays the average rejection rates under each condition 

(Gaussian/normal, Smooth Symmetric & Extreme Asymmetry) for the nominal α  

levels of .001, .01, and .05 at different levels of sample size combinations. The 

average rejection rates under the normal distribution, represents the benchmark 

for comparison with average rejection rates under the Smooth Symmetric and 

Extreme Asymmetric data sets. For the nominal α =.001 level and sample sizes 

n1, n2=10, 10 through n1, n2=20, 40, the tests were applied to non-normally 

distributed sample sets where they rejected at statistically significantly higher 

rates in comparison to tests applied to normally distributed sample sets. As 

nominal α  level increased to .01, tests applied to non-normally distributed 
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sample sets n1, n2=10, 60 through n1, n2=60, 60 rejected at slightly lower rates in 

comparison to normally distributed sample sets.  

Table 2. Percentage of Rejection Rates (Average) for nominal α  at .001δ  
n α  NORM SSYM EXASY 

10, 10 .001 .0% .00067% .00067% 
 .01 .00067% .00067% .00067% 
 .05 .00096% .00096% .00096% 
     

10, 20 .001 .0% .00060% .00060% 
 .01 .00060% .00060% .00060% 
 .05 .00087% .00087% .00087% 
     

10, 40 .001 .0% .00053% .00053% 
 .01 .00053% .00053% .00053% 
 .05 .00077% .00077% .00077% 
     

10, 60 .001 .0% .00047% .00047% 
 .01 .00063% .00047% .00047% 
 .05 .00067% .00050% .00050% 
     

20, 20 .001 .0% .00040% .00040% 
 .01 .00057% .00040% .00040% 
 .05 .00057% .00043% .00043% 
     

20, 40 .001 .0% .00033% .00033% 
 .01 .00050% .00033% .00033% 
 .05 .00040% .00033% .00033% 
     

20, 60 .001 .00027% .00027% .00027% 
 .01 .00040% .00027% .00027% 
 .05 .00030% .00030% .00030% 
     

40, 40 .001 .00030% .00020% .00020% 
 .01 .00030% .00020% .00020% 
 .05 .00027% .00023% .00023% 
     

40, 60 .001 .00013% .00013% .00013% 
 .01 .00020% .00013% .00013% 
 .05 .00020% .00020% .00020% 
     

60, 60 .001 .00010% .000060% .000060% 
 .01 .00010% .000060% .000060% 
 .05 .00010% .000060% .000060% 
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Gaussian  

 Under the Gaussian distribution, it was determined that as the 

equivalency length interval increased from .001δ , to .005δ , to .01δ , 

respectively; no changes in percentage of rejection rates occurred. Given these 

findings, only outcomes reported at the equivalency length interval, .001δ , will 

be presented. Tables for outcomes at equivalency length intervals .005δ  and 

.01δ , are presented in Appendix A and B, respectively. Further investigation 

determined statistically significantly lower (ρ<.05) rejection rates at nominal alpha 

level α =.001and sample sizes n1, n2=10, 10 through n1, n2=20, 40 in comparison 

with rejection rates at nominal α =.01 and .05, respectively. For the above 

conditions, it was determined that all three tests showed non-equivalence (see 

Table 3). For nominal a=.01, for sample sizes n1, n2=10, 10 and n1, n2=10, 40; 

the Schuirmann t-test rejected at a statistically significantly lower rate (ρ<.05) in 

comparison to the Anderson & Hauck and Patel-Gupta tests.  

Under the normal distribution, the Schuirmann t-test showed non-

equivalence in approximately 90% of conditions (n1, n2=10, 10 through n1, n2=20, 

60), in comparison with the Anderson & Hauck (60%; n1, n2=10, 10 through n1, 

n2=20, 40), and Patel-Gupta tests (60%; n1, n2=10, 10 through n1, n2=20, 40), 

respectively. Overall, under normal conditions, all three traditional equivalency 

tests showed non-equivalence under the smallest equivalency interval, for the 

lowest nominal a level, for samples sizes N≤60.  
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Table 3. Gaussian: Percentage of Rejection Rates for nominal α at .001δ   
n α  SCHUI A&H P-G 

10, 10 .001 .0% .0% .0% 
 .01 .0% .001% .001% 
 .05 .0009% .001% .001% 
     

10, 20 .001 .0% .0% .0% 
 .01 .0% .0009% .0009% 
 .05 .0008% .0009% .0009% 
     

10, 40 .001 .0% .0% .0% 
 .01 .0% .0008% .0008% 
 .05 .0007% .0008% .0008% 
     

10, 60 .001 .0% .0% .0% 
 .01 .0005% .0007% .0007% 
 .05 .0006% .0007% .0007% 
     

20, 20 .001 .0% .0% .0% 
 .01 .0005% .0006% .0006% 
 .05 .0005% .0006% .0006% 
     

20, 40 .001 .0% .0% .0% 
 .01 .0005% .0005% .0005% 
 .05 .0004% .0004% .0004% 
     

20, 60 .001 .0% .0004% .0004% 
 .01 .0004% .0004% .0004% 
 .05 .0003% .0004% .0004% 
     

40, 40 .001 .0003% .0003% .0003% 
 .01 .0003% .0003% .0003% 
 .05 .0002% .0003% .0003% 
     

40, 60 .001 .0% .0002% .0002% 
 .01 .0002% .0002% .0002% 
 .05 .0002% .0002% .0002% 
     

60, 60 .001 .0001% .0001% .0001% 
 .01 .0001% .0001% .0001% 
 .05 .0001% .0001% .0001% 
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Smooth Symmetric, Achievement  

The Smooth Symmetric data set is most similar in behavior to the 

standard normal distribution, and is the population set identified most closely with 

the Gaussian (Micceri, 1989). Comparison of rejection rates generated under the 

Smooth Symmetric data set revealed both similarities (inner test-consistency), 

and differences (rate of rejections) to outcomes produced under the normal 

distribution. For nominal α =.001 and sample sizes n1, n2=10, 10 through n1, 

n2=20, 40; the Anderson & Hauck and Patel-Gupta tests rejected at statistically 

significantly (ρ<.05) higher rates in comparison with rejection rates reported by 

both tests under the normal distribution. For all three nominal α  levels, the 

Anderson & Hauck and Patel-Gupta tests rejected at approximately the same 

rates. In contrast, for the nominal α =.001, the rejection rate of the Schuirmann t-

test decreased from 30% (normal distribution) to .0% (Smooth Symmetric). 

Furthermore, as the nominal alpha level increased from nominal α =.001 to 

nominal α =.01, the rejection rate of the test decreased from 70% (normal) to 

.0% (Smooth Symmetric).  
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Table 4. Smooth Symmetric: Percentage of Rejection Rates for nominal α  at .001δ  
n α  SCHUI A&H P-G 

10, 10 .001 .0% .001% .001% 
 .01 .0% .001% .001% 
 .05 .0009% .001% .001% 
     

10, 20 .001 .0% .0009% .0009% 
 .01 .0% .0009% .0009% 
 .05 .0008% .0009% .0009% 
     

10, 40 .001 .0% .0008% .0008% 
 .01 .0% .0008% .0008% 
 .05 .0007% .0008% .0008% 
     

10, 60 .001 .0% .0007% .0007% 
 .01 .0% .0007% .0007% 
 .05 .0001% .0007% .0007% 
     

20, 20 .001 .0% .0006% .0006% 
 .01 .0% .0006% .0006% 
 .05 .0001% .0006% .0006% 
     

20, 40 .001 .0% .0005% .0005% 
 .01 .0% .0005% .0005% 
 .05 .0001% .0005% .0005% 
     

20, 60 .001 .0% .0004% .0004% 
 .01 .0% .0004% .0004% 
 .05 .0001% .0004% .0004% 
     

40, 40 .001 .0% .0003% .0003% 
 .01 .0% .0003% .0003% 
 .05 .0001% .0003% .0003% 
     

40, 60 .001 .0% .0002% .0002% 
 .01 .0% .0002% .0002% 
 .05 .0002% .0002% .0002% 
     

60, 60 .001 .0% .0001% .0001% 
 .01 .0% .0001% .0001% 
 .05 .0001% .0001% .0001% 
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Extreme Asymmetry, Achievement 

The Extreme Asymmetry data set is distinguished by its extreme negative 

skew, in comparison to the Gaussian distribution. For the three nominal α  

levels, the performance of the Anderson & Hauck and Patel-Gupta tests mirrored 

the performance under the Smooth Symmetric data set. In contrast, for the 

nominal α =.05, the rejection rate of the Schuirmann t-test decreased from 100% 

(normal) to 80% (Extreme Asymmetry). For nominal α =.05, the Schuirmann t-

test showed non-equivalence for sample sizes n1n2 =40, 60 and n1n2 =60, 60.  
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Table 5. Extreme Asymmetry: Percentage of Rejection Rates for nominal α  at .001δ  
n α  SCHUI A&H P-G 

10, 10 .001 .0% .001% .001% 
 .01 .0% .001% .001% 
 .05 .0001% .001% .001% 
     

10, 20 .001 .0% .0009% .0009% 
 .01 .0% .0009% .0009% 
 .05 .0001% .0009% .0009% 
     

10, 40 .001 .0% .0008% .0008% 
 .01 .0% .0008% .0008% 
 .05 .0001% .0008% .0008% 
     

10, 60 .001 .0% .0007% .0007% 
 .01 .0% .0007% .0007% 
 .05 .0001% .0007% .0007% 
     

20, 20 .001 .0% .0006% .0006% 
 .01 .0% .0006% .0006% 
 .05 .0001% .0006% .0006% 
     

20, 40 .001 .0% .0005% .0005% 
 .01 .0% .0005% .0005% 
 .05 .0001% .0005% .0005% 
     

20, 60 .001 .0% .0004% .0004% 
 .01 .0% .0004% .0004% 
 .05 .0001% .0004% .0004% 
     

40, 40 .001 .0% .0003% .0003% 
 .01 .0% .0003% .0003% 
 .05 .0001% .0003% .0003% 
     

40, 60 .001 .0% .0002% .0002% 
 .01 .0% .0002% .0002% 
 .05 .0% .0002% .0002% 
     

60, 60 .001 .0% .0001% .0001% 
 .01 .0% .0001% .0001% 
 .05 .0% .0001% .0001% 
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Performance of Equivalency Tests 

The outcomes obtained in the Monte Carlo study supported previously 

published findings of the general performance of each of the above tests under 

standard normal conditions. Additional insight specific to (a) comparisons of the 

properties of showing equivalence, and (b) which of the above competitors 

showed non-equivalence at the smallest effect size, .001, selected for this study.  

Table 6. Type I Error Rate of Equal Sample Sizes for nominal α =.001 at .001δ  
 Schuirmann Anderson & Hauk Patel & Gupta 
Normal     
n1, n2=10,10 .000000 .000000 .000000 
n1, n2=20,20 .000000 .000000 .000000 
n1, n2=40,40 .000003 .000003 .000003 
n1, n2=60,60 .000001 .000001 .000001 
    
Smooth 
Symmetric 

   

n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
    
Extreme 
Asymmetry 

   

n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
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Table 7. Type I Error Rate of Equal Sample Sizes for nominal α =.01 at .001δ  
 Schuirmann Anderson & Hauk Patel & Gupta 
Normal     
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000005 .000006 .000006 
n1, n2=40,40 .000003 .000003 .000003 
n1, n2=60,60 .000001 .000001 .000001 
    
Smooth 
Symmetric 

   

n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
    
Extreme 
Asymmetry 

   

n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
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Table 8. Type I Error Rate of Equal Sample Sizes for nominal α =.05 at .001δ  
 Schuirmann Anderson & Hauk Patel & Gupta 
Normal     
n1, n2=10,10 .000009 .000010 .000010 
n1, n2=20,20 .000005 .000006 .000006 
n1, n2=40,40 .000002 .000003 .000003 
n1, n2=60,60 .000001 .000001 .000001 
    
Smooth 
Symmetric 

   

n1, n2=10,10 .000009 .000010 .000010 
n1, n2=20,20 .000001 .000006 .000006 
n1, n2=40,40 .000001 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
    
Extreme 
Asymmetry 

   

n1, n2=10,10 .000001 .000010 .000010 
n1, n2=20,20 .000001 .000006 .000006 
n1, n2=40,40 .000001 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
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Table 9. Type I Error Rate of Unequal Sample Sizes for nominal α =.001  
               at .001δ  
 Schuirmann Anderson & Hauk Patel & Gupta 
Normal     
n1, n2=10, 20 .000000 .000000 .000000 
n1, n2=10, 40 .000000 .000000 .000000 
n1, n2=10, 60 .000000 .000000 .000000 
n1, n2=20, 40 .000005 .000000 .000005 
n1, n2=20, 60 .000000 .000004 .000004 
n1, n2=40, 60 .000002 .000002 .000002 
    
Smooth 
Symmetric 

   

n1, n2=10, 20 .000000 .000009 .000009 
n1, n2=10, 40 .000000 .000008 .000008 
n1, n2=10, 60 .000000 .000007 .000007 
n1, n2=20, 40 .000000 .000005 .000005 
n1, n2=20, 60 .000000 .000004 .000004 
n1, n2=40, 60 .000000 .000002 .000002 
    
Extreme 
Asymmetry 

   

n1, n2=10, 20 .000000 .000009 .000009 
n1, n2=10, 40 .000000 .000008 .000008 
n1, n2=10, 60 .000000 .000007 .000007 
n1, n2=20, 40 .000000 .000005 .000005 
n1, n2=20, 60 .000000 .000004 .000004 
n1, n2=40, 60 .000000 .000002 .000002 
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Table 10. Type I Error Rate of Unequal Sample Sizes for nominal α =.01  
                 at .001δ  
 Schuirmann Anderson & Hauk Patel & Gupta 
Normal     
n1, n2=10, 20 .000000 .000009 .000009 
n1, n2=10, 40 .000000 .000008 .000008 
n1, n2=10, 60 .000005 .000007 .000007 
n1, n2=20, 40 .000005 .000005 .000005 
n1, n2=20, 60 .000004 .000004 .000004 
n1, n2=40, 60 .000002 .000002 .000002 
    
Smooth 
Symmetric 

   

n1, n2=10, 20 .000000 .000009 .000009 
n1, n2=10, 40 .000000 .000008 .000008 
n1, n2=10, 60 .000000 .000007 .000007 
n1, n2=20, 40 .000000 .000005 .000005 
n1, n2=20, 60 .000000 .000004 .000004 
n1, n2=40, 60 .000000 .000002 .000002 
    
Extreme 
Asymmetry 

   

n1, n2=10, 20 .000000 .000009 .000009 
n1, n2=10, 40 .000000 .000008 .000008 
n1, n2=10, 60 .000000 .000007 .000007 
n1, n2=20, 40 .000000 .000005 .000005 
n1, n2=20, 60 .000000 .000004 .000004 
n1, n2=40, 60 .000000 .000002 .000002 
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Table 11. Type I Error Rate of Unequal Sample Sizes for nominalα =.05  
                at .001δ  
 Schuirmann Anderson & Hauk Patel & Gupta 
Normal     
n1, n2=10, 20 .000008 .000009 .000009 
n1, n2=10, 40 .000007 .000008 .000008 
n1, n2=10, 60 .000006 .000007 .000007 
n1, n2=20, 40 .000004 .000005 .000005 
n1, n2=20, 60 .000003 .000004 .000004 
n1, n2=40, 60 .000002 .000002 .000002 
    
Smooth 
Symmetric 

   

n1, n2=10, 20 .000008 .000009 .000009 
n1, n2=10, 40 .000007 .000008 .000008 
n1, n2=10, 60 .000001 .000007 .000007 
n1, n2=20, 40 .000001 .000005 .000005 
n1, n2=20, 60 .000001 .000004 .000004 
n1, n2=40, 60 .000002 .000002 .000002 
    
Extreme 
Asymmetry 

   

n1, n2=10, 20 .000001 .000009 .000009 
n1, n2=10, 40 .000001 .000008 .000008 
n1, n2=10, 60 .000001 .000007 .000007 
n1, n2=20, 40 .000001 .000005 .000005 
n1, n2=20, 60 .000001 .000004 .000004 
n1, n2=40, 60 .000000 .000002 .000002 
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 Schuirmann Two One-Sided t-test  

 Table 12 displays the percentage of rejection rates for the Schuirmann t-

test for the three nominal α  levels for all sample size combinations. The 

Schuirmann t-test was the most conservative, rejecting at statistically significant 

lower rates (ρ=.05) in comparison to the more liberal, Anderson & Hauk and 

Patel-Gupta procedures. When data was sampled from Smooth Symmetric data 

set, the Schuirmann t-test, demonstrated non-equivalence at a statistically 

significantly higher rate (ρ=.05) in comparison to results produced under the 

normal distribution for nominal α  levels .001 and .01, for all sample size 

combinations.  

With data sampled from the Extreme Asymmetry data set, the 

Schuirmann t-test mirrored its performance under the Smooth Symmetric. In 

addition, for nominal α = .05, sample size combinations n1n2 (40, 60; 60, 60), 

this test demonstrated non-equivalence at a statistically significantly higher rate 

(ρ=.05) in comparison with results produced under the normal distribution. The 

Schuirmann t-test, for all three nominal α  levels, for all sample size 

combinations, rejected (.0%) at a statistically significantly lower rate (ρ=.001) in 

comparison to results produced under the normal distribution.  
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Table 12. Schuirmann: Percentage of Rejection Rates for nominal α  at .001δ   
n α  Norm SS EA 

10, 10 .001 .0% .0% .0% 
 .01 .0% .0% .0% 
 .05 .0009% .0001% .0001% 
     

10, 20 .001 .0% .0% .0% 
 .01 .0% .0% .0% 
 .05 .0008% .0008% .0001% 
     

10, 40 .001 .0% .0% .0% 
 .01 .0% .0% .0% 
 .05 .0007% .0007% .0001% 
     

10, 60 .001 .0% .0% .0% 
 .01 .0005% .0% .0% 
 .05 .0006% .0001% .0001% 
     

20, 20 .001 .0% .0% .0% 
 .01 .0005% .0% .0% 
 .05 .0009% .0001% .0001% 
     

20, 40 .001 .0% .0% .0% 
 .01 .0005% .0% .0% 
 .05 .0004% .0001% .0001% 
     

20, 60 .001 .0% .0% .0% 
 .01 .0004% .0% .0% 
 .05 .0003% .0001% .0001% 
     

40, 40 .001 .0003% .0% .0% 
 .01 .0003% .0% .0% 
 .05 .0002% .0001% .0001% 
     

40, 60 .001 .0% .0% .0% 
 .01 .0002% .0% .0% 
 .05 .0002% .0002% .0% 
     

60, 60 .001 .0001% .0% .0% 
 .01 .0001% .0% .0% 
 .05 .0001% .0001% .0% 
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Anderson and Hauck’s Nonequivalence Null Hypothesis 

Table 13 displays the percentage of rejection rates for the Anderson & 

Hauck nonequivalence null hypothesis procedure for the three nominal α  levels 

for all sample size combinations. The Anderson & Hauk is one of two liberal 

equivalency test examined in this study (Frick, 1990). For data sampled from the  

Smooth Symmetric and Extreme Asymmetry data sets, with nominal α =.001, 

small n1n2 (10, 10; 10, 20) to medium n1n2 (20, 20; 10, 40) size samples, the 

Anderson & Hauck procedure rejected at statistically significantly higher rates in 

comparison with results produced under the normal distribution. For data 

sampled from Extreme Asymmetry data set, for nominal α =.01, equal sample 

sizes n1n2 (10, 10; 20, 20; 40, 40; 60, 60), this procedure rejected at statistically 

significantly higher rates in comparison with results produced under the normal 

distribution.  
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Table 13. Anderson & Hauck: Percentage of Rejection Rates for nominal α  at .001δ  
n α  Norm SS EA 

10, 10 .001 .0% .001% .001% 
 .01 .001% .001% .001% 
 .05 .001% .001% .001% 
     

10, 20 .001 .0% .0009% .0009% 
 .01 .0009% .0009% .0009% 
 .05 .0009% .0009% .0009% 
     

10, 40 .001 .0% .0008% .0008% 
 .01 .0008% .0008% .0008% 
 .05 .0008% .0008% .0008% 
     

10, 60 .001 .0% .0007% .0007% 
 .01 .0007% .0007% .0007% 
 .05 .0007% .0007% .0007% 
     

20, 20 .001 .0% .0006% .0003% 
 .01 .0006% .0006% .001% 
 .05 .001% .0006% .0003% 
     

20, 40 .001 .0% .0005% .0005% 
 .01 .0005% .0005% .0005% 
 .05 .0004% .0005% .0005% 
     

20, 60 .001 .0004% .0004% .0004% 
 .01 .0004% .0004% .0004% 
 .05 .0004% .0004% .0004% 
     

40, 40 .001 .0003% .0003% .0003% 
 .01 .0003% .0003% .001% 
 .05 .0003% .0003% .0003% 
     

40, 60 .001 .0002% .0002% .0002% 
 .01 .0002% .0002% .0002% 
 .05 .0002% .0002% .0002% 
     

60, 60 .001 .0001% .0001% .0001% 
 .01 .0001% .0001% .0006% 
 .05 .0001% .0001% .0001% 
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Patel-Gupta Procedure  

Table 14 displays the percentage of rejection rates for the Patel-Gupta 

procedure for the three nominal α  levels for all sample size combinations. The 

Patel-Gupta procedure is considered to be a liberal equivalency test rejecting at 

rates comparable with the Anderson & Hauck procedure (Frick, 1990). Similar to 

the Anderson & Hauck, under conditions of the Smooth Symmetric and Extreme 

data sets, nominal α =.001,  small n1n2 (10, 10; 10, 20) to medium n1n2 (20, 20; 

10, 40) size samples, the Patel-Gupta procedure rejected at statistically 

significantly higher rates in comparison to results produced under the normal 

distribution. For nominal α =.01 and .05 levels, the Patel-Gupta procedure 

rejected at comparable rates to the Anderson & Hauck procedure under all data 

sets. 
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Table 14. Patel-Gupta: Percentage of Rejection Rates for nominal α at .001δ  
n α  Norm SS EA 

10, 10 .001 .0% .001% .001% 
 .01 .001% .001% .001% 
 .05 .001% .001% .001% 
     

10, 20 .001 .0% .0009% .0009% 
 .01 .0009% .0009% .0009% 
 .05 .0009% .0009% .0009% 
     

10, 40 .001 .0% .0008% .0008% 
 .01 .0008% .0008% .0008% 
 .05 .0008% .0008% .0008% 
     

10, 60 .001 .0% .0007% .0007% 
 .01 .0007% .0007% .0007% 
 .05 .0007% .0007% .0007% 
     

20, 20 .001 .0% .0006% .0003% 
 .01 .0006% .0006% .001% 
 .05 .001% .0006% .0003% 
     

20, 40 .001 .0% .0005% .0005% 
 .01 .0005% .0005% .0005% 
 .05 .0004% .0005% .0005% 
     

20, 60 .001 .0004% .0004% .0004% 
 .01 .0004% .0004% .0004% 
 .05 .0004% .0004% .0004% 
     

40, 40 .001 .0003% .0003% .0003% 
 .01 .0003% .0003% .0003% 
 .05 .0003% .0003% .0003% 
     

40, 60 .001 .0002% .0002% .0002% 
 .01 .0002% .0002% .0002% 
 .05 .0002% .0002% .0002% 
     

60, 60 .001 .0001% .0001% .0001% 
 .01 .0001% .0001% 0001% 
 .05 .0001% .0001% .0001% 
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CHAPTER 5 

DISCUSSION   

The present study examined the effects and management of non-normally 

distributed data on equivalency tests under varied conditions for a two-sample 

design; and compared the properties of showing equivalence between 

populations at the smallest effect sizes. An increasing body of literature has 

evolved within the social sciences research paradigms (clinical psychology, 

management operations) where the question of interest is whether the difference 

between two treatment means is large enough to be considered statistically 

significantly meaningful. Articles appearing in both health and social science 

literature (e.g., Brown, Hwang & Munk, 1997; Breslow & Day, 1980) have 

increased both the availability and the popularity of these procedures. However, 

little research into the statistical properties of these procedures under conditions 

of non-normally distributed data, and small effect sizes has been conducted.  

Summary of Tests’ Performance 

 The findings indicated that under conditions where sample sets were non-

normally distributed, the differences in the statistical properties of the three 

equivalency tests became most pronounced at the lowest nominal α =.001 for 

small to medium sample sizes. As defined previously in Chapter One of this 

study, statistical power is the probability of detecting an effect, given that the 

effect is actually present (Hinkle, Weirsman & Jurs, 1998). Overall, all three tests 

demonstrated low power (≤0.80) due to the relatively small sample size 
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combinations paired with small effect sizes(.001δ ), and failed to control Type I 

error. The Anderson & Hauck and Patel-Gupta tests reported rejection rates that 

remained relatively stable without regard to sample size or alpha level. In 

contrast, the rate of rejection reported for the typically conservative Schuirmann 

t-test, decreased steadily without regard to increase in both sample size and 

alpha level. 

Schuirmann Two One-Sided t-test 

Findings for this simulation study supported previous studies, showing the 

Schuirmann t-test to be extremely conservative, specifically for small (10, 10; 10, 

20) to medium (20, 20; 10, 40) sample size combinations under the Gaussian 

distribution. With increased sample size, the t-test improved its rejection rate, 

although the test never controlled the Type I error rate. With the introduction of 

non-normally distributed sample sizes, the t-test failed to reject (.0%) for all 

sample sizes, as the nominal α =.001 rate increased to α =.01. 

For data sampled from the data set which most closely resembles the 

normal distribution, the Smooth Symmetric; the test expanded its range for 

showing non-equivalence to include all sample sizes paired with nominal α =.001 

and .01. For data sampled from the Extreme Asymmetry data set, the test 

expanded its range for showing non-equivalence to include sample sizes N≥100 

paired with nominal α =.05. The above results are consistent with the manner in 

which the critical values for the Schuirmann t-test are determined: the smaller the 

interval width or the lower the nominal α  level, the less room the t-test has for 
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determining critical values and the less the actual condition resembles the way 

that the critical values are determined.  

Anderson & Hauck Non-Equivalence / Patel-Gupta Procedure  

There were only two conditions where the Anderson & Hauck and Patel-

Gupta procedures approached control of the Type I error rate: for the conditions 

of nominal α =.001, for sample sizes n1n2 (10, 10) to n1n2 (10, 20) drawn from the 

Smooth Symmetric and Extreme Asymmetry data sets. In terms of rejection 

rates, both procedures reported maximum rejection rates for all three nominal α  

levels, for non-equal small n1n2 (10, 20) to medium n1n2 (10, 40) size samples.  

Recommendations for Further Research 

 In general, all three tests demonstrated low power (≤0.80) due to the 

relatively small sample size combinations paired with small effect sizes (.001δ ). 

Optimal performance in relation to detecting equivalence occurred for the 

nominal α =.001, for small sample sizes n1n2 (10, 10; 10, 20) for data sampled 

under the Smooth Symmetric and Extreme Asymmetry data sets. However, the 

power properties of both tests were extremely low (≤0.80), and all three tests 

failed to control Type I error. Based on the findings of this study, none of the 

three tests are recommended as being superior to the other.  

 To more accurately understand the behavior of equivalency tests under 

conditions of small effect sizes, a more thorough study is recommended. Firstly, 

the sample sizes selected for this study did not result in sufficient power (≥0.80) 

for the three traditional equivalency tests. Pairing minimal sample size 

combinations of n1n2=80,140 through n1n2=120, 120 (10,000 repetitions), with 



55 
 

 

the effect sizes selected for this study would be expected to produce adequate 

power for the traditional tests. Secondly, this study did not consider the potential 

effects of variance heterogeneity on the standard error of the individual tests. 

Gruman, Cribbie & Arpin-Cribbie (2007), initiated work in this area by exploring 

modified tests of equivalence that incorporate heteroscedasticity error terms. 

Finally, future areas of research might include testing for non-equivalence under 

conditions where there are three or more groups, or where groups are 

dependent.  
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APPENDIX A. Individual Tests  
 

Table 15. Schuirmann One-Sided T-Test Type I Error Rate by Sampling Distribution 
 .001δ  
Sample Gaussian Smooth Symmetric Extreme Asymmetry 

  α =.05 α =.01 α =.001 α =.05 α =.01 α =.001 α =.05 α =.01 α =.001 

(10,10)  .000009 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,20) .000005 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(40,40) .000002 .000003 .000003 .000001 .000000 .000000 .000001 .000000 .000000 

(60,60) .000001 .000001 .000001 .000000 .000000 .000000 .000000 .000000 .000000 

(10,20) .000008 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,40) .000007 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,60) .000006 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,40) .000004 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,60) .000003 .000004 .000004 .000001 .000000 .000000 .000001 .000000 .000000 

(40,60) .000002 .000002 .000002 .000000 .000000 .000000 .000000 .000000 .000000 

 .005δ  
(10,10)  .000009 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,20) .000005 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(40,40) .000002 .000003 .000003 .000001 .000000 .000000 .000001 .000000 .000000 

(60,60) .000001 .000001 .000001 .000000 .000000 .000000 .000000 .000000 .000000 

(10,20) .000008 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,40) .000007 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,60) .000006 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,40) .000004 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,60) .000003 .000004 .000004 .000001 .000000 .000000 .000001 .000000 .000000 

(40,60) .000002 .000002 .000002 .000000 .000000 .000000 .000000 .000000 .000000 

 .01δ  
(10,10)  .000009 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,20) .000005 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(40,40) .000002 .000003 .000003 .000001 .000000 .000000 .000001 .000000 .000000 

(60,60) .000001 .000001 .000001 .000000 .000000 .000000 .000000 .000000 .000000 

(10,20) .000008 .000000 .000000 .000000 .000000 .000000 .000001 .000000 .000000 

(10,40) .000007 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,60) .000006 .000005 .000000 .000000 .000000 .000000 .000001 .000000 .000000 

(20,40) .000004 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,60) .000003 .000004 .000004 .000001 .000000 .000000 .000001 .000000 .000000 

(40,60) .000002 .000002 .000002 .000000 .000000 .000000 .000000 .000000 .000000 
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Table 16. Anderson & Hauck Non-Equivalent Null Hypothesis Type I Error Rate by 
Sampling Distribution 

 .001δ  
Sample Gaussian Smooth Symmetric Extreme Asymmetry 

  α =.05 α =.01 α =.001 α =.05 α =.01 α =.001 α =.05 α =.01 α =.001 

(10,10)  .000009 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,20) .000005 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(40,40) .000002 .000003 .000003 .000001 .000000 .000000 .000001 .000000 .000000 

(60,60) .000001 .000001 .000001 .000000 .000000 .000000 .000000 .000000 .000000 

(10,20) .000008 .000000 .000000 .000000 .000000 .000000 .000001 .000000 .000000 

(10,40) .000007 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,60) .000006 .000005 .000000 .000000 .000000 .000000 .000001 .000000 .000000 

(20,40) .000004 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,60) .000003 .000004 .000004 .000001 .000000 .000000 .000001 .000000 .000000 

(40,60) .000002 .000002 .000002 .000000 .000000 .000000 .000000 .000000 .000000 

 .005δ  
(10,10)  .000009 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,20) .000005 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(40,40) .000002 .000003 .000003 .000001 .000000 .000000 .000001 .000000 .000000 

(60,60) .000001 .000001 .000001 .000000 .000000 .000000 .000000 .000000 .000000 

(10,20) .000008 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,40) .000007 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,60) .000006 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,40) .000004 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,60) .000003 .000004 .000004 .000001 .000000 .000000 .000001 .000000 .000000 

(40,60) .000002 .000002 .000002 .000000 .000000 .000000 .000000 .000000 .000000 

 .01δ  
(10,10)  .000009 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,20) .000005 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(40,40) .000002 .000003 .000003 .000001 .000000 .000000 .000001 .000000 .000000 

(60,60) .000001 .000001 .000001 .000000 .000000 .000000 .000000 .000000 .000000 

(10,20) .000008 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,40) .000007 .000000 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(10,60) .000006 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,40) .000004 .000005 .000000 .000001 .000000 .000000 .000001 .000000 .000000 

(20,60) .000003 .000004 .000004 .000001 .000000 .000000 .000001 .000000 .000000 

(40,60) .000002 .000002 .000002 .000000 .000000 .000000 .000000 .000000 .000000 
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Table 17. Patel-Gupta Procedure Type I Error Rate by Sampling Distribution 
 .001δ  
Sample Gaussian Smooth Symmetric Extreme Asymmetry 

  α =.05 α =.01 α =.001 α =.05 α =.01 α =.001 α =.05 α =.01 α =.001 

(10,10)  .000010 .000010 .000000 .000010 .000010 .000010 .000010 .000010 .000010 

(20,20) .000006 .000006 .000000 .000006 .000006 .000006 .000006 .000006 .000006 

(40,40)   .000003 .000000 .000000 .000003 .000003 .000003 .000003 .000003 .000003 

(60,60) .000001 .000001 .000000 .000001 .000001 .000001 .000001 .000001 .000001 

(10,20) .000009 .000009 .000000 .000009 .000009 .000009 .000009 .000009 .000009 

(10,40) .000008 .000008 .000000 .000008 .000008 .000008 .000008 .000008 .000008 

(10,60) .000007 .000007 .000000 .000007 .000007 .000007 .000007 .000007 .000007 

(20,40) .000005 .000005 .000000 .000005 .000005 .000005 .000005 .000005 .000005 

(20,60) .000004 .000004 .000000 .000004 .000004 .000004 .000004 .000004 .000004 

(40,60) .000002 .000002 .000000 .000002 .000002 .000002 .000002 .000002 .000002 

 .005δ  
(10,10)  .000010 .000010 .000000 .000010 .000010 .000010 .000010 .000010 .000010 

(20,20) .000006 .000006 .000000 .000006 .000006 .000006 .000006 .000006 .000006 

(40,40)   .000003 .000000 .000000 .000003 .000003 .000003 .000003 .000003 .000003 

(60,60) .000001 .000001 .000000 .000001 .000001 .000001 .000001 .000001 .000001 

(10,20) .000009 .000009 .000000 .000009 .000009 .000009 .000009 .000009 .000009 

(10,40) .000008 .000008 .000000 .000008 .000008 .000008 .000008 .000008 .000008 

(10,60) .000007 .000007 .000000 .000007 .000007 .000007 .000007 .000007 .000007 

(20,40) .000005 .000005 .000000 .000005 .000005 .000005 .000005 .000005 .000005 

(20,60) .000004 .000004 .000000 .000004 .000004 .000004 .000004 .000004 .000004 

(40,60) .000002 .000002 .000000 .000002 .000002 .000002 .000002 .000002 .000002 

 .01δ  
(10,10)  .000010 .000010 .000000 .000010 .000010 .000010 .000010 .000010 .000010 

(20,20) .000006 .000006 .000000 .000006 .000006 .000006 .000006 .000006 .000006 

(40,40)   .000003 .000000 .000000 .000003 .000003 .000003 .000003 .000003 .000003 

(60,60) .000001 .000001 .000000 .000001 .000001 .000001 .000001 .000001 .000001 

(10,20) .000009 .000009 .000000 .000009 .000009 .000009 .000009 .000009 .000009 

(10,40) .000008 .000008 .000000 .000008 .000008 .000008 .000008 .000008 .000008 

(10,60) .000007 .000007 .000000 .000007 .000007 .000007 .000007 .000007 .000007 

(20,40) .000005 .000005 .000000 .000005 .000005 .000005 .000005 .000005 .000005 

(20,60) .000004 .000004 .000000 .000004 .000004 .000004 .000004 .000004 .000004 

(40,60) .000002 .000002 .000000 .000002 .000002 .000002 .000002 .000002 .000002 
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APPENDIX B. Findings for .005 δ  and .01 δ  
 

Table 18. Comparative Type I Error Rates for Equal Size Samples at .005δ  
 α  =.001 and .005δ  

 Schuirmann  Anderson & Hauk Patel & Gupta 
Normal     
n1, n2=10,10 .000000 .000000 .000000 
n1, n2=20,20 .000000 .000000 .000000 
n1, n2=40,40 .000003 .000003 .000003 
n1, n2=60,60 .000001 .000001 .000001 
Smooth Symmetric    
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
Extreme Asymmetry    
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
 α =.01 and .005δ  
Normal     
n1, n2=10,10 .000000 .000000 .000010 
n1, n2=20,20 .000005 .000006 .000006 
n1, n2=40,40 .000003 .000003 .000003 
n1, n2=60,60 .000001 .000001 .000001 
Smooth Symmetric  
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
Extreme Asymmetry  
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
 α =.05 and 005δ  
Normal     
n1, n2=10,10 .000009 .000010 .000010 
n1, n2=20,20 .000005 .000006 .000006 
n1, n2=40,40 .000002 .000003 .000003 
n1, n2=60,60 .000001 .000001 .000001 
Smooth Symmetric    
n1, n2=10,10 .000001 .000010 .000010 
n1, n2=20,20 .000001 .000006 .000006 
n1, n2=40,40 .000001 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
Extreme Asymmetry    
n1, n2=10,10 .000001 .000010 .000010 
n1, n2=20,20 .000001 .000006 .000006 
n1, n2=40,40 .000001 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
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Table 19. Comparative Type I Error Rates for Equal Size Samples at .01δ  
 α  =.001 and .01 δ  

 Schuirmann Anderson & Hauk Patel & Gupta 
Normal     
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000003 .000003 .000003 
n1, n2=60,60 .000001 .000001 .000001 
Smooth Symmetric    
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000000 
n1, n2=40,40 .000000 .000003 .000000 
n1, n2=60,60 .000000 .000001 .000000 
Extreme Asymmetry    
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
 α  =.01 and .01 δ  

Normal     
n1, n2=10,10 .000000 .000000 .000010 
n1, n2=20,20 .000005 .000000 .000006 
n1, n2=40,40 .000003 .000000 .000003 
n1, n2=60,60 .000001 .000001 .000001 
Smooth Symmetric    
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
Extreme Asymmetry    
n1, n2=10,10 .000000 .000010 .000010 
n1, n2=20,20 .000000 .000006 .000006 
n1, n2=40,40 .000000 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
 α =.05 and .01 δ  

Normal     
n1, n2=10,10 .000009 .000010 .000010 
n1, n2=20,20 .000005 .000000 .000006 
n1, n2=40,40 .000002 .000000 .000003 
n1, n2=60,60 .000001 .000001 .000001 
Smooth Symmetric    
n1, n2=10,10 .000001 .000010 .000010 
n1, n2=20,20 .000001 .000006 .000006 
n1, n2=40,40 .000001 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
Extreme Asymmetry    
n1, n2=10,10 .000001 .000010 .000010 
n1, n2=20,20 .000001 .000006 .000006 
n1, n2=40,40 .000001 .000003 .000003 
n1, n2=60,60 .000000 .000001 .000001 
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Table 20. Comparative Type I Error Rates for Un-Equal Size Samples at .005δ  
 Sample Size (n)  Schuirmann Anderson & Hauk Patel-Gupta 
Normal ( α=.001 and .005)  n1, n2=10, 20 .000000 .000000 .000000 
 n1, n2=10, 40 .000000 .000000 .000000 
 n1, n2=10, 60 .000000 .000000 .000000 
 n1, n2=20, 40 .000000 .000000 .000005 
 n1, n2=20, 60 .000004 .000004 .000004 
 n1, n2=40, 60 .000002 .000002 .000002 
Smooth Symmetric n1, n2=10, 20 .000000 .000009 .000009 
 n1, n2=10, 40 .000000 .000008 .000008 
 n1, n2=10, 60 .000000 .000007 .000007 
 n1, n2=20, 40 .000000 .000005 .000005 
 n1, n2=20, 60 .000000 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
Extreme Asymmetry n1, n2=10, 20 .000000 .000009 .000009 
 n1, n2=10, 40 .000000 .000008 .000008 
 n1, n2=10, 60 .000000 .000007 .000007 
 n1, n2=20, 40 .000000 .000005 .000005 
 n1, n2=20, 60 .000000 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
Normal (α=.01 and .005)  n1, n2=10, 20 .000000 .000009 .000009 
 n1, n2=10, 40 .000000 .000008 .000008 
 n1, n2=10, 60 .000005 .000007 .000007 
 n1, n2=20, 40 .000005 .000005 .000005 
 n1, n2=20, 60 .000004 .000004 .000004 
 n1, n2=40, 60 .000002 .000002 .000002 
Smooth Symmetric n1, n2=10, 20 .000000 .000009 .000009 
 n1, n2=10, 40 .000000 .000008 .000008 
 n1, n2=10, 60 .000000 .000007 .000007 
 n1, n2=20, 40 .000000 .000005 .000005 
 n1, n2=20, 60 .000000 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
Extreme Asymmetry n1, n2=10, 20 .000000 .000009 .000009 
 n1, n2=10, 40 .000000 .000008 .000008 
 n1, n2=10, 60 .000000 .000007 .000007 
 n1, n2=20, 40 .000000 .000005 .000005 
 n1, n2=20, 60 .000000 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
Normal (α=.05 and .01)  n1, n2=10, 20 .000008 .000009 .000009 
 n1, n2=10, 40 .000007 .000008 .000008 
 n1, n2=10, 60 .000006 .000007 .000007 
 n1, n2=20, 40 .000004 .000005 .000005 
 n1, n2=20, 60 .000003 .000004 .000004 
 n1, n2=40, 60 .000002 .000002 .000002 
Smooth Symmetric n1, n2=10, 20 .000001 .000009 .000009 
 n1, n2=10, 40 .000001 .000008 .000008 
 n1, n2=10, 60 .000001 .000007 .000007 
 n1, n2=20, 40 .000001 .000005 .000005 
 n1, n2=20, 60 .000001 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
Extreme Asymmetry n1, n2=10, 20 .000001 .000009 .000009 
 n1, n2=10, 40 .000001 .000008 .000008 
 n1, n2=10, 60 .000001 .000007 .000007 
 n1, n2=20, 40 .000001 .000005 .000005 
 n1, n2=20, 60 .000001 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
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Table 21. Comparative Type I Error Rates for Un-Equal Size Samples at .01δ  
 Sample Size (n) Schuirmann Anderson & Hauk Patel &  Gupta 
Normal ( α=.001 and .01) n1, n2=10, 20 .000000 .000000 .000000 
 n1, n2=10, 40 .000000 .000000 .000000 
 n1, n2=10, 60 .000000 .000000 .000000 
 n1, n2=20, 40 .000000 .000000 .000005 
 n1, n2=20, 60 .000004 .000004 .000004 
 n1, n2=40, 60 .000002 .000002 .000002 
Smooth Symmetric n1, n2=10, 20 .000000 .000009 .000009 

 n1, n2=10, 40 .000000 .000008 .000008 

 n1, n2=10, 60 .000000 .000007 .000007 

 n1, n2=20, 40 .000000 .000005 .000005 

 n1, n2=20, 60 .000000 .000004 .000004 

 n1, n2=40, 60 .000000 .000002 .000002 

Extreme Asymmetry n1, n2=10, 20 .000000 .000009 .000009 
 n1, n2=10, 40 .000000 .000008 .000008 
 n1, n2=10, 60 .000000 .000007 .000007 
 n1, n2=20, 40 .000000 .000005 .000005 
 n1, n2=20, 60 .000000 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
Normal ( α=.01 and .01) n1, n2=10, 20 .000000 .000009 .000009 
 n1, n2=10, 40 .000000 .000008 .000008 
 n1, n2=10, 60 .000005 .000007 .000007 
 n1, n2=20, 40 .000005 .000005 .000005 
 n1, n2=20, 60 .000004 .000004 .000004 
 n1, n2=40, 60 .000002 .000002 .000002 
Smooth Symmetric n1, n2=10, 20 .000000 .000009 .000009 

 n1, n2=10, 40 .000000 .000008 .000008 

 n1, n2=10, 60 .000000 .000007 .000007 

 n1, n2=20, 40 .000000 000005 .000005 

 n1, n2=20, 60 .000000 .000004 .000004 

 n1, n2=40, 60 .000000 .000002 .000002 

Extreme Asymmetry n1, n2=10, 20 .000000 .000009 .000009 
 n1, n2=10, 40 .000000 .000008 .000008 
 n1, n2=10, 60 .000000 .000007 .000007 
 n1, n2=20, 40 .000000 .000005 .000005 
 n1, n2=20, 60 .000000 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
Normal  ( α=.05 and .01) n1, n2=10, 20 .000008 .000009 .000009 
 n1, n2=10, 40 .000007 .000000 .000008 
 n1, n2=10, 60 .000006 .000007 .000007 
 n1, n2=20, 40 .000004 .000005 .000005 
 n1, n2=20, 60 .000003 .000004 .000004 
 n1, n2=40, 60 .000002 .000002 .000002 
Smooth Symmetric n1, n2=10, 20 .000001 .000009 .000009 

 n1, n2=10, 40 .000001 .000008 .000008 

 n1, n2=10, 60 .000001 .000007 .000007 

 n1, n2=20, 40 .000001 .000005 .000005 

 n1, n2=20, 60 .000001 .000004 .000004 

 n1, n2=40, 60 .000000 .000002 .000002 

Extreme Asymmetry n1, n2=10, 20 .000001 .000009 .000009 
 n1, n2=10, 40 .000001 .000008 .000008 
 n1, n2=10, 60 .000001 .000007 .000007 
 n1, n2=20, 40 .000001 .000005 .000005 
 n1, n2=20, 60 .000001 .000004 .000004 
 n1, n2=40, 60 .000000 .000002 .000002 
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Statistical theory and its application provide the foundation to modern 

systematic inquiry in the behavioral, physical and social sciences disciplines 

(Fisher, 1958; Wilcox, 1996). It provides the tools for scholars and researchers to 

operationalize constructs, describe populations, and measure and interpret the 

relations between populations and variables (Weinbach & Grinnell, 1997; Wilcox, 

1996). Given that the majority of real data analysis in the behavioral and social 

sciences is comprised of non-normally distributed data, it is important that 

researchers be aware of the effects of non-normal distributions on the probability 

of detecting equivalence between populations. 

The present study examined the effects and management of non-normally 

distributed data on equivalency tests under varied conditions for a two-sample 

design; and compared the properties of showing equivalence between 

populations at the smallest effect sizes. The findings for this report indicated that 

under conditions where sample sets were non-normally distributed, the 

differences in the statistical properties of the three equivalency tests became 
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most pronounced at the lowest nominal α =.001 for small to medium sample 

sizes. Optimal performance in relation to detecting equivalence occurred for the 

nominal α =.001, for small sample sizes n1n2 (10, 10; 10, 20) under the Smooth 

Symmetric and Extreme Asymmetry distributions. Overall, all three tests 

demonstrated low power due to the relatively small sample size combinations 

paired with small effect sizes, and failed to control Type I error. Based on the 

findings of this study, none of the three tests were recommended as superior to 

the other.  
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