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Median-Unbiased Optimal Smoothing and Trend Extraction 
 

Dimitrios D. Thomakos 
University of Peloponnese, 

Tripolis, Greece 
 

 
The problem of smoothing a time series for extracting its low frequency characteristics, collectively 
called its trend, is considered. A competitive approach is proposed and compared with existing methods 
in choosing the optimal degree of smoothing based on the distribution of the residuals from the smooth 
trend. 
 
Key words: Local linear, moving average, singular spectrum analysis, smoothing, splines, time series, 
trend extraction. 
 
 

Introduction 
A fundamental problem in time series analysis is 
smoothing a realization and extracting its low-
frequency characteristics, collectively called its 
trend. In the process of solving this problem a 
practitioner is faced with three underlying sub-
problems: (a) to define the nature of the trend 
(e.g., deterministic or stochastic) and its 
perceived degree of smoothness, (b) to decide on 
a particular class of models to use (e.g., 
polynomial or non-parametric approximations), 
and (c) to select, usually with a data-based 
approach (e.g., cross-validation) the degree of 
approximation (or smoothness) that will enable 
accurate extraction of the required trend 
features. A large amount of literature exists 
which deals with these problems and includes 
various proposed methods for addressing them. 
Although it is not possible to review this 
literature here; many related references can be 
found in books and monographs, such as, Härdle 
(1990), Fan and Gijbels (1996), Hart (1997), 
Golyandina, et al. (2001) and Fan and Yao 
(2003). 
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The methods depend on various 

assumptions about the data generating process 
(DGP) itself and its stability over time. 
However, in many applications one does not 
know or is not willing to make assumptions 
about the structure of the DGP and, 
consequently, is lead to use an approach 
unrelated to such specific assumptions. 
Examples include moving average (MA) 
smoothing, singular spectrum analysis (SSA) 
smoothing and all the known forms of non-
parametric smoothing, like smoothing splines 
(SS) and local linear (LL) smoothers. This 
choice of a non-parametric approximation 
usually takes care of problem (b), and partially 
(c) if methods such as cross-validation or plug-in 
bandwidths are used. 

As for problem (a), it is usually the case 
that the nature of the trend that one wants to 
extract is application-specific, as is its perceived 
degree of smoothness. However, some 
characteristics exist that are commonly accepted 
about the notion of a trend, such as: (i) it has 
most of its power concentrated in (a band of) the 
lower frequencies of the spectrum, (ii) it is more 
smooth (less volatile) than the actual 
observations, (iii) it reflects the central tendency 
of the process, and (iv) the observations are 
usually located in clusters above or below the 
trend component. 

Problem (c) is thus left, i.e. that of 
selecting the appropriate optimal degree of 
smoothing the observations for extracting the 
trend component. In the context of non-
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parametric methods, such as SS and LL, the 
choice of the degree of smoothing is guided by 
the bias-variance trade-off and a proximity 
criterion - such as the mean squared error (MSE) 
or the integrated mean squared error - is 
minimized directly or by variants of cross-
validation/plug-in methods. However, such 
criteria are invariably linked to the notion of fit 
(of various degrees) to the observations 
themselves not to the notion of an underlying 
trend. This runs contrary to the notion of the 
trend that passes through the center of the 
clusters of observations without tracking all their 
swings. In addition, for methods such as MA or 
SSA there are no formal procedures for selecting 
the degree of smoothing; the results of the 
proposed methodology can be applied in making 
such selections to these two methods as will be 
illustrated. 
 

Methodology 

Consider a stochastic process { }t t Z
X

∈
 and 

assume that a realization of size n from this 

process is available, for example, { }
1

n
t t

x
=

. The 

problem is how much to smooth the realization 
so as to successfully extract the low frequency 
characteristics, or the trend, of the process. No 
assumptions are made as to whether the trend is 
deterministic or stochastic. Such smoothing will 
lead to an additive decomposition of the form: 
 

= +k k
t t tx s u                           (1) 

 

where k
ts is the estimated smoothed component 

(the trend) of the series, that depends on a 

smoothing parameter k, and k
tu  is the estimated 

residual that also depends on k. Note that the 
above decomposition is not taken as the data 
generating process; rather it is the result of the 

smoothing operation. In particular, k
tu  is not 

assumed to be a realization from a true error 
process acting on tX . As such, the 

representation of equation (1) has applicability 
both in cases where a deterministic slowly 
varying function of time exists and where 

( )/k
ts g t n=  independent of k, and in cases 

where it does not, for example, in the context of 
a financial time series that possibly follows a 
random walk. 

The way the residuals k
tu  are distributed 

is important in understanding whether a 
component that roughly corresponds to the 
characteristics (i) to (iv) attributed to the trend of 
a realization has been successfully extracted. 
First, recall that any smoothing operation that 
successfully extracts a measure of central 
tendency leads to residuals with an 
approximately zero mean. It does not, however, 
necessarily lead to residuals that have zero 
median, so as to have a residual distribution 
where equal probability is placed in observing 
positive (above the trend) and negative (below 
the trend) residuals. 

This probabilistic symmetry of the 
residuals should be important because an 
extracted trend cannot possibly be accurate if it 
leads, on average, to more positive than negative 
residuals (or vice versa). In such a case the trend 
would be biased, either over- or under- 
estimating the low frequency movement of the 
process. If the problem of trend extraction is 
considered in the above context of symmetrizing 
the probability assigned to positive and negative 
residuals, it is necessary to look for a measure 
different than the MSE. A plausible way of 
proceeding is as follows. 

Let ( ) ( ) ( )sgn 0 0x I x I x= > − ≤  

denote the sign function and note that for any 

continuous random variable X, with ( )XF ⋅  as its 

distribution function, 
 

( ) ( ) ( ) ( )sgn 0 0 1 2 0 ,XX I X I X F= > − ≤ = −E E E
(2) 

 
the absolute value of the expected sign of X, 

( )sgn XE , is symmetric around ( )0 0.5XF =  

where it attains its unique minimum. It therefore 
follows that if the distribution of X is symmetric 
around zero (i.e., has a zero median) then 

( )sgn XE  is minimized. 

This can be adapted into a smoothing 
context and the absolute value of the expected 

sign of the residuals k
tu  can serve as the 
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objective function that should be minimized in 
choosing the degree of smoothing. Essentially 
this amounts to choosing the degree of 
smoothing so as to assign roughly equal 
probability to positive and negative residuals in 
accordance with characteristics (i) to (iv). This 
leads to consideration of the following: 
 

( ) ( )sgn 1 2 0k k
t uu F= −E              (3) 

 

where ( )k
uF ⋅  denotes the distribution function 

of the residuals. As noted, this function is 

minimized when ( ) ( )0.50 0.5 0k k
uF u= ⇔ = , that 

is, when the residuals are made to have a zero 
median. The trend component which will 
correspond to such residuals can now be called a 
median-unbiased trend. 

To practically implement this idea 
consider the empirical version of equation (3) 
which can be estimated in two equivalent ways 
as follows: 
 

( ) ( )
( ) ( )

1

1

1

1

MRS sgn

1 2 0

−
=

−

=
= − ≤





 n k
tt

n k
tt

k n u

n I u
  (4) 

 
where MRS denotes the mean residual sign 
based on the sample of observations. As can be 
observed from equation (4), the MRS can be 
obtained either using the average sign or using 
the empirical distribution function evaluated at 
zero. The most practical way of optimizing the 

( )MRS k  is by direct search over a grid of 

plausible values for the smoothing parameter. If 

{ }min max,K k k=  denotes such a grid then the 

optimal value k* is given by: 
 

( )* arg min MRSk Kk k∈=              (5) 

 
The range of grid values to consider is 

both problem-specific and method-specific and 
no general guidelines can be given. For example, 
if a moving average is to be used for smoothing, 
then k takes only integer values; if a kernel 
smoother is to be used then k takes real values – 

possibly in a pilot interval. To overcome this 
potential shortcoming one can alternatively 
consider using data-dependent, sub-sampling 
approaches. One variant of such a sub-sampling 
approach could be as follows: 
 
1. Split the observations into M non-

overlapping sections each of equal length 
/ 2m n≤ , for 1,...,j M= , with 

as m n→ ∞ → ∞  and /m n c→  for some 
constant c. 

2. Select a range of plausible values for each 
section, for example jK . 

3. Compute the optimal value of the smoothing 

parameter for each section, for example *
jk . 

4. Select the full sample optimal value of the 
smoothing parameter as the average of the 
parameters from each section, i.e., 

* 1 *

1
.−

=
= M

jj
k M k  

 
The above is just one sub-sampling method. 
Alternatively, the series can be split using a 
sliding window of length m, thus having M 
overlapping sections each of length m. This 
alternative is not further pursued herein but is 
easily implementable. 
 

Results 
The above methodology was applied to 
simulated time series and a real time series using 
different smoothers: symmetric MA, SSA, LL, 
SS and the Kalman fixed point (KF) smoother. 
All methods are appropriate under different 
conditions for the data generating process. For 
the LL smoothing and SS methods the degree of 
smoothing selected by the present methodology 
was compared with the degree of smoothing 
selected using generalized cross-validation 
(GCV) and plug-in (plug) methods respectively. 
The SSA smoother was used as in Thomakos 
(2008) with an asymptotically optimal 
decomposition of the covariance of the process, 
when the process has stochastic trends. All 
computations reported below were performed in 
R. 
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Simulated Series 
Two types of data generating process 

(DGP) were considered. The first is given as the 
sum of a deterministic, slowly varying function 

( )/g t n  and stationary errors and the second is 

given as the sum of a stochastic trend (a random 
walk) and stationary errors. Specifically, for the 
first DGP: 
 

DGP I: ( )/t tx g t n u= +               (6) 

 

with ( ) 2

1

2
/ cos j

jj

t
g t n t

n
πω

α β γ
=

 
= + +  

 
  

and with 1t t tu uφ ε−= + , ( )2~ 0,t N εε σ . For the 

trend function ( )/g t n  the critical parameters 

determining the degree of smoothness (and the 
complexity of the curve) are the frequencies 

/j jf nω= ; higher values decrease smoothness 

- see Figure 1 for an illustration (the black line 
corresponds to the less smooth trend, the red (or 
gray) line to the more smooth trend). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the final series tx the critical 

parameters are ( )2 2, / 1εφ σ φ −  , the persistence 

and the variance of the error term; higher values 
make it more difficult to separate the trend from 
the errors. In the end, consider the following 
combinations for the parameters: 
 

{ } { }
1 2

1 2

2 2

0, 2, 0.50, 0.25,

2, 5,10 , 0.0,0.8 ,

0.2

= = = = −
= = =

=ε

α β γ γ
ω ω φ

σ

. 

 
For the second DGP consider the well known 
form of signal-plus-noise or local level model 
as: 

DGP II: ( ),t t tx g S uα= +             (8) 

 

with ( ), t tg S Sα α= + , where α  is the drift 

parameter, 
1

t
t j j

S ε
=

=  is the random walk 

component of the series with normally  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The Smooth Trend Functions from DGP I of Equation (6) 
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distributed errors ( )2~ 0,t N εε σ , and where tu  

are the added errors that have either a normal or 

a t-distribution, that is, ( )2~ 0,t uu N σ  or t

( )6~tu t . The drift parameter is set to 0.1α = , 

the variance term of tε  is set to 2 20.2εσ =  and 

the variance of the normally distributed tu  is set 

to 2 20.6uσ =  (the later corresponds to a 1:3 

signal-to-noise ratio). Typical sequences from 
the DGP of equation (8) are shown in Figure 2 
(the black (upper) line corresponds to normally 
distributed additive errors, the red (lower) line to 
additive t-distributed errors). 

From each DGP, r = 1, 2 … 400 
realizations of sizes n = {200, 400} were 
simulated and for each realization the full 
sample and the sub-sampling approach was 
used, the latter with m = {50, 100} for the 
corresponding sample sizes, to compute the 
optimal value of the smoothing parameters of 
each method. The ranges of plausible values for 
minimizing the MRS were set to the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• For the symmetric MA and SSA methods 
that use integer values:

 { }2 1| 1,2,...,11,12K k k= + =  

• For the local linear smoothing that uses real 
values for the bandwidth: 

{ }121.5 | 1, 2,...,11,12k
xK s k−= = , 

where xs  denotes the standard deviation of 

the data. 
• For the smoothing splines that use real 

values for the smoothing parameter 

{ }| 0.00,0.14,...1,.36,1.50K k k= = , a 

sequence of 12 values in the interval [0.0, 
1.50]. 

 

With the selected *k , as computed 
either with the full sample or the sub-sampling 
approach, the mean absolute deviation of the 
true trend component from the estimated trend 
component is computed for each replication, that 

is ( )* *1
,1

nk k
r r t rt

m n g s−
=

= ⋅ − . Finally, the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Sample Realization of Stochastic Trend from DGP II of Equation (8) 
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average, 
* *4001

1
400k k

rr
m m−

=
=  , was computed 

as well as the optimal values of *k from all 400 
replications (note that the reported replication 

averages for integer *k  will not necessarily be 
odd numbers). These measures are reported in 
Tables 1 and 2 which show the results on the 
simulations for DGP I, and in Table 3 which 
shows the results for DGP II. 
 
Discussion of Simulation Results: DGP I 

For the smaller sample size of n = 200 
(see Table 1), the discussion can be separated 
into two cases: one for 0φ =  and the other for 

0.8φ = ; for the first case also note some small 

differences depending on the value of 2ω . Thus, 

for the parameter combination 20, 5φ ω= =  the 

performance of the sub-sampling approach is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

improving the average accuracy in extracting the 
trend for the MA and SS methods. There is no 
change for the local linear smoother. Note that 
only the moving average coupled with sub-
sampling performs on par with the GCV-based 
and plug-in approaches but this is an important 
result: the smoothing spline and local linear 
methods have their own approaches (GCV and 
plug-in) for selecting the degree of smoothing 
while the for a moving average there is no such 
existing method. 

For the parameter combination 

20, 10φ ω= =  however the results are much 

less satisfactory since no alternative beats the 
GCV-based and plug-in-based approaches. 
Turning next to the parameter combinations 
where 0.8φ =  a much improved picture results 
in terms of the performance of the proposed 
methodology and the use of moving averages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Average Absolute Deviation of True from Estimated Trend & Optimal Degrees of 
Smoothing; Simulations from DGP I and Sample Size n = 200 

 φ = 0 and ω2 = 5 
Smoother MA-full MA-sub SS-full SS-sub SS-GCV LL-full LL-sub LL-plug

*km  0.09 0.06 0.13 0.08 0.05 0.13 0.16 0.05 

*k  10 8 0.48 0.33 0.58 0.09 0.09 0.02 

 φ = 0.8 and ω2 = 5 

Smoother MA-full MA-sub SS-full SS-sub SS-GCV LL-full LL-sub LL-plug
*km  0.19 0.19 0.24 0.23 0.24 0.21 0.21 0.20 

*k  8 7 0.45 0.31 0.22 0.08 0.08 0.01 

 φ = 0 and ω2 = 10 

Smoother MA-full MA-sub SS-full SS-sub SS-GCV LL-full LL-sub LL-plug
*km  0.13 0.13 0.14 0.09 0.06 0.17 0.17 0.07 

*k  10 8 0.50 0.30 0.44 0.11 0.07 0.01 

 φ = 0.8 and ω2 = 10 

Smoother MA-full MA-sub SS-full SS-sub SS-GCV LL-full LL-sub LL-plug
*km  0.21 0.21 0.24 0.23 0.24 0.22 0.22 0.21 

*k  9 7 0.44 0.32 0.22 0.08 0.07 0.01 
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Here the use of either the full or sub-sampling 
approaches coupled with a moving average 
produces is better (when 2 5ω = ) or on par 

(when 2 10ω = ) with the alternative methods. 

When the sample size increases to n = 
400 (see Table 2) further improvements are 
observed in performance from the use of the 
proposed methodology – especially from the use 
of moving averages. Specifically, in all four 
parameter combinations considered, a moving 
average coupled with sub-sampling performs on 
par or better than GCV-based and plug-in-based 
approaches. Note that this improvement is more 
pronounced in some cases and is worth 
elaborating about. For example, in the case 
where 20.8, 5φ ω= = the moving average 

performs on par with the local linear smoother 
with plug-in selection of bandwidth; the 
smoothing splines do not perform as well. In the 
case where 20.8,  10,= =φ ω  the moving  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

average with sub-sampling outperforms the local 
linear smoother. Finally, the smoothing splines 
with sub-sampling now perform on par with the 
GCV-based smoothing splines. 

The results from the DGP I simulations 
show that the proposed methodology can be 
competitive to existing methods, by either: (1) 
assisting less sophisticated methods, such as 
moving averages, to perform well in smoothing 
and trend extraction, and/or (2) producing results 
using other methods, such as smoothing splines 
that are equivalent to the more sophisticated 
GCV or plug-in approaches. 
 
Simulation Results Discussion: DGP II 

Recall that the simulations of the second 
DGP of equation (8) do not have an underlying 
deterministic smooth function that serves as the 
trend component, but rather have a stochastic 
trend that is masked by additive errors. This type 
of DGP has a corresponding optimal smoother,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Average Absolute Deviation of True from Estimated Trend & Optimal Degrees of 
Smoothing; Simulations from DGP I and Sample Size n = 400 

 φ = 0 and ω2 = 5 
Smoother MA-full MA-sub SS-full SS-sub SS-GCV LL-full LL-sub LL-plug 

*km  0.05 0.04 0.13 0.06 0.03 0.12 0.16 0.04 
*k  11 10 0.55 0.40 0.59 0.10 0.09 0.02 

 φ = 0.8 and ω2 = 5 
Smoother MA-full MA-sub SS-full SS-sub SS-GCV LL-full LL-sub LL-plug 

*km  0.17 0.17 0.22 0.20 0.24 0.20 0.18 0.17 
*k  10 9 0.46 0.36 0.15 0.10 0.07 0.01 

 φ = 0 and ω2 = 10 
Smoother MA-full MA-sub SS-full SS-sub SS-GCV LL-full LL-sub LL-plug 

*km  0.10 0.07 0.14 0.07 0.05 0.15 0.17 0.05 
*k  11 10 0.58 0.38 0.45 0.11 0.07 0.01 

 φ = 0.8 and ω2 = 10 
Smoother MA-full MA-sub SS-full SS-sub SS-GCV LL-full LL-sub LL-plug 

*km  0.19 0.17 0.22 0.21 0.24 0.20 0.20 0.18 
*k  10 9 0.50 0.34 0.15 0.09 0.07 0.01 
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based on the state space representation of 
equation (8), the Kalman fixed point smoother. 
Results can thus be compared to this natural 
benchmark. Here the results are much more 
uniform across sample sizes and distributions 
and highly encouraging. For all cases considered 
in Table 3 there is at least one instance of either 
the MA or the SSA smoother, with sub-
sampling, that  

From the above discussion it is clear that 
a carefully, data-based, selected MA or SSA 
smoother can potentially perform as well or 
better than more sophisticated methods when 
extracting a stochastic trend from underlying 
additive errors. Note that the simplicity of these 
methods is important in the context of this 
discussion: they require no assumptions about 
the DGP of the problem to be made and can thus 
be applied universally. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Real Series: The U.S. GDP 
An interesting series, for which the 

current methodology is relevant, is that of the 
United States real Gross Domestic Product 
(GDP - series GDPC96 from the Federal 
Reserve Bank of St. Louis online database). This 
analysis includes the last 200 available quarters 
for the years 1958 to 2008. 

This series is the main economic 
indicator for the United States and from it the 
so-called output gap and the growth rate of the 
economy is computed. The logarithm of this 
series is plotted in Figure 3 which shows its 
salient characteristics, namely that it appears to 
be quite smooth and that it contains a trend 
component, which corresponds to the long-run 
(low frequency) movement of the economy. 

Considerable literature exists in 
economics related to which type of stochastic 
process is best suited for describing the series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Average Absolute Deviation of True from Estimated Trend & Optimal Degrees of 
Smoothing; Simulations from DGP II and Sample Sizes n = {200, 400} 

 Normally Distributed Errors, n = 200 

Smoother MA-full MA-sub SSA-full SSA-sub SS-GCV KF-full LL-sub LL-plug 
*km  0.24 0.22 0.22 0.21 0.21 0.20 0.32 0.21 

*k  9 7 9 7 0.56 n.a. 0.12 0.02 

 Normally Distributed Errors, n = 400 

Smoother MA-full MA-sub SSA-full SSA-sub SS-GCV KF-full LL-sub LL-plug 
*km  0.25 0.24 0.22 0.21 0.20 0.20 0.52 0.22 

*k  11 9 11 9 0.42 n.a. 0.19 0.02 

 t-Distributed Errors, n = 200 

Smoother MA-full MA-sub SSA-full SSA-sub SS-GCV KF-full LL-sub LL-plug 
*km  0.33 0.32 0.36 0.34 0.30 0.30 0.37 0.30 

*k  9 7 8 7 0.75 n.a. 0.13 0.04 

 t-Distributed Errors, n = 400 

Smoother MA-full MA-sub SSA-full SSA-sub SS-GCV KF-full LL-sub LL-plug 
*km  0.33 0.31 0.35 0.32 0.30 0.29 0.52 0.30 

*k  11 10 9 9 0.59 n.a. 0.18 0.03 
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However, no claims as to which process is 
indeed appropriate are put forth herein. Despite 
the visual proximity, it is not clear if a global 
deterministic trend is observed or a particular 

manifestation of a stochastic trend ( ),t t tg Sα
with structural changes. No definite answer has 
emerged from the related literature but the 
consensus agrees that a deterministic linear trend 
will be a poor approximation both because its 
shape does not agree with the underlying 
economic intuition and because it is not 
expected that such a global structure will remain 
stable over long periods of time. Therefore 
alternative ways of extracting the trend 
component by filtering or smoothing must be 
considered. 

The most popular smoother, in this and 
related macroeconomic contexts is the Hodrick 
and Prescott (1997) or HP smoother. Note that 
this smoother is only optimal under specific 
conditions for the DGP (see for example 
Dermoune, et al., 2007). Nevertheless, it is so 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

frequently used that its merits as an accurate 
representation of the DGP are not further 
discussed. The performance of the HP smoother 
and its degree of smoothing being selected by 
various methods are compared with the 
performance of the other smoothers we 
considered previously. 

The potential differences from the 
application of different smoothing methods in 
the GDP series can only be assessed indirectly 
because there is no true trend component with 
which to compare results. Thus, the residuals 
after smoothing - the output gap - are considered 
as the variable of interest on which performance 
comparisons can be made. 

The full and sub-sampling approaches 
have been applied to the MA, SSA and HP 
smoothers. In addition, the GCV-based 
smoothing splines were considered along with 
the plug-in based local linear smoother and the 
HP filter with an optimally selected value for the 
degree of smoothness (Dermoune, et al., 2007). 

Denote by 
* ,k j

tu  the residuals obtained  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Natural Logarithm of the U. S. Real Gross Domestic Product, 1958 to 2008 
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from the jth method and by 
* ,k HP opt

tu −  the 

residuals obtained using the HP smoother with 
an optimally selected degree of smoothing. For 
each of these series we report their sample 
standard deviation and a Kolmogorov-Smirnov 
type test for the differences in the empirical 

cumulative distribution between 
* ,k j

tu  and 
* ,k HP opt

tu − . To compute the latter test the 

following steps are used: 
 

1. Compute the empirical distributions of 
* ,k j

tu  

and 
* ,k HP opt

tu − , for example, ( )j
nF u  and 

( )HP opt
nF u− , over a grid of values, for 

example, u U R∈ ⊂ . 
2. Compute the Kolmogorov-Smirnov statistic 

( ) ( )sup j HP opt
n u U n nD n F u F u−

∈= −  for 

testing the equality of the underlying 
distributions.  

3. Obtain an appropriate critical value for the 
test in the above step using the bootstrap –
the stationary bootstrap (see Politis & 
Romano, 1994) was used in this study. 

 
A number of interesting results are summarized 
and can be read from Table 4. Immediately it is 
observed that the hypothesis of equal 
distributions for the output gap between the HP 
smoother and all the other smoothers is not 
rejected. Therefore, in terms of the distribution 
of the residuals, all smoothers are essentially 
equivalent. 

In addition there are a number of other 
interesting results that can be deduced from 
Table 4. First, note that the standard deviation of 
the residuals for the HP-based methods is 
 
 
 
 
 
 
 
 
 
 
 

practically the same irrespective of whether one 
uses the optimally selected degree of smoothing, 
as in Dermoune, et al. (2007), or uses the full or 
the sub-sampling methodology proposed herein. 

Second, the MA and SSA smoothers 
produce residuals with larger standard deviation 
than the previous HP smoothers but which are 
on par with the standard deviation of the 
residuals obtained when the HP smoother is 
applied with the default degree of smoothing 
(equal to 1,600) as originally recommended by 
Hodrick and Prescott (1997). That value of the 
standard deviation was found to be 0.015. 
Finally, as shown in Figures 4, 5 and 6, the 
smoothers can be clustered together based on the 
standard deviations of their residuals to visualize 
their similarities and differences. 

In Figure 4 the residuals from the three 
HP smoothers are plotted as in Table 4 plus the 
GCV-based smoothing spline smoother; it may 
be observed that the series are practically 
identical and this lends considerable support to 
the methodology proposed in this article as the 
residual series of the optimal HP smoother is 
able to be reproduced using both the full and 
sub-sampling approaches in minimizing the 
mean residual sign. 

In Figure 5 the residuals from the MA 
(full and sub-sampling), the SSA (full only) and 
the default HP smoothers are plotted. Again a 
remarkable degree of closeness in the shape and  
magnitude of the four series is observed, 
especially of the moving average with sub-
sampling and the default HP smoother. 

Finally, Figure 6 plots the residuals from 
the singular spectrum analysis smoother with 
sub-sampling and the local linear smoother with 
plug-in bandwidth and, again, the series look 
practically identical. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Standard Deviation of Residuals After Smoothing And Bootstrap-Based P-Value of the Kolmogorov-
Smirnov Test for Equality of Distributions Between Residual Series and the Residuals from the HP Smoother 

with Optimally Selected Degree of Smoothness 

Smoother HP-opt HP-full HP-sub MA-full MA-sub SSA-full SSA-sub SS-GCV LL-plug 
SD of 

Residuals 0.002 0.003 0.003 0.018 0.015 0.018 0.007 0.003 0.006 

p-value n.a. 0.922 0.822 0.962 0.902 0.972 0.717 0.800 0.825 
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Figure 4: Residuals from Three HP Smoothers and the Smoothing Spline 

-0
.0

15
-0

.0
05

0.
00

0
0.

00
5

0.
01

0
0.

01
5

HP optimal

Year

1960 1970 1980 1990 2000 2010

-0
.0

15
-0

.0
05

0.
00

0
0.

00
5

0.
01

0
0.

01
5

HP full

Year

1960 1970 1980 1990 2000 2010

-0
.0

15
-0

.0
05

0.
00

0
0.

00
5

0.
01

0
0.

01
5

HP sub

Year

1960 1970 1980 1990 2000 2010

-0
.0

15
-0

.0
05

0.
00

0
0.

00
5

0.
01

0
0.

01
5

SS GCV

Year

1960 1970 1980 1990 2000 2010

Figure 5: Residuals from MA, SSA and Default HP Smoothers 
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It is evident from the figures that both 
similarities and differences exist among the 
smoothers and this is due to both their 
underlying filters and to the way the optimal 
degree of smoothing is selected. To explain the 
results consider the fact that the HP smoother is 
the optimal smoother for a stochastic process 
that is stationary in second differences. 
Therefore its application will necessarily lead to 
excess differencing if the true DGP becomes 
stationary after first differencing. Because the 
first differences of the GDP series are probably 
stationary (see Figure 7), then the HP smoother 
will remove a broader band of frequency 
components than the one corresponding to the 
trend of the series. The same holds true for the 
GCV-based smoothing splines smoother. To 
visualize this observe the shapes of the series in 
Figures 4 to 6; it can also be judged from the 
shapes of their corresponding autocorrelation or 
spectral density functions. 

In Figures 8, 9 and 10 the spectral 
densities of the series that correspond to Figures  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4, 5 and 6 are presented, these figures reinforce 
The spectral shapes in Figure 8 show that the 
application of the HP smoother, with optimally 
selected degree of smoothing, removed the 
power corresponding to the business cycle 
frequencies, corresponding from 6 to 32 quarters 
(see for example Christiano & Fitzgerald, 2003). 
Its application is thus removing not just the trend 
but also the business cycle component of the 
series. Conversely, the spectral shapes in Figures 
9 and 10 are more in line with one another and 
with the idea of optimal smoothing for trend 
extraction. In all plots in these two figures the 
spectral densities have a single clear peak at 
frequencies corresponding to about 20 quarters 
(Figure 9) and 12 quarters (Figure 10) 
respectively. Both of these numbers fall within 
the range of the business cycles frequencies 
noted above. In fact, the peak of 12 quarters 
obtained by the smoothers in Figure 10 is almost 
the mid-range of the business cycles frequencies. 
Either the SSA smoother with sub-sampling or  
 

Figure 6: Residuals from Singular Spectrum Analysis and Local Linear Smoothers 
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Figure 7: Autocorrelation Function of Quarterly U.S. Real GDP Growth 
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Figure 8: Spectral Densities of Residual Series of Figure 4 
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Figure 9: Spectral Densities of Residual Series of Figure 5 
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Figure 10: Spectral Densities of Residual Series of Figure 6 
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the local linear smoother with the plug-in 
bandwidth appear to be a reasonable, 
economically viable compromise as those 
smoothers that capture the essence of the trend 
in U.S. output. 

Based on the above discussion findings from 
this study may be summarized as follows:  
• The proposed methodology can be used to 

achieve the same degree of smoothing for 
the HP smoother as that implied by other, 
more sophisticated, approaches. 

• A number of alternative smoothers lead to 
the same shape and properties for the output 
gap as the HP smoother and these smoothers 
can be clustered together based on the shape 
of the series and their corresponding spectral 
densities. 

Combining MA or SSA smoothers with 
subsampling leads to essentially the same results 
as the ones obtained by the default HP smoother. 

Analyses herein illustrate a high 
potential for the application of less sophisticated, 
universally applicable, smoothing methods in 
trend extraction. This article proposes a simple, 
intuitive and immediately applicable method for 
selecting the degree of smoothing for such 
methods. One of the advantages of the having 
such methods available is that they can be used 
for benchmarks against which other, more 
sophisticated methods, can be compared. 
 

Conclusion 
This article proposed a new methodology for 
selecting the degree of smoothing in problems of 
trend extraction. The method uses an alternative 
to, mean squared error, proximity criterion 
which is minimized for selecting the required 
value of the smoothing parameter. This criterion 
is based on the average sign of the residuals 
obtained after smoothing and its minimization 
implies a probabilistic symmetrization of the 
residuals: it was shown that the minimizing 
value implies that the resulting residuals have a 
zero median. 

The viability and usefulness of the 
proposed method is illustrated using simulations 
where the underlying type of trend is known. 
The results from these simulations are 
suggestive that the method is competitive 
because it can perform on par with - or better 
than - existing methods. In particular, it was 

shown that less sophisticated smoothing 
methods, like the moving average, for which no 
formal method for selecting the degree of 
smoothing exist, can be made to perform on par 
with more sophisticated methods. The use of 
sub-sampling can also help in improving 
performance. 

A number of extensions can be undertaken 
based on the current work include the following: 
• Consider the construction of confidence 

bands around the trend; since the method of 
this paper results in residuals with zero 
median such confidence bands can be based 
on the quantiles of the residual distribution. 

• Consider a more systematic, expanded 
comparison between smoothing methods 
and approaches for selecting the optimal 
degree of smoothing.  

• Apply the method of this article in the 
context of non-parametric autoregressive 
models and examine whether it can 
successfully be used in selecting both the 
degree of smoothing and the order of the 
model. 
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