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CHAPTER 1 INTRODUCTION TO PROFILE MONITORING 

This chapter provides an introduction on profile monitoring topic and some 

of existing profiling techniques considered in this research. Following the profile 

monitoring background is a summary of prior work (literature review) upon which 

the contributions of this thesis are built. 

1.1 Background 

We define profile monitoring as a relatively new trend in quality control 

applications used where the data of the process or the product follow a certain 

profile at each time interval. The main idea for profile monitoring is to model the 

quality profile (i.e., simple linear, polynomial or nonlinear, etc) and then monitor 

the fitted profiles over time to check if these profiles have been changed due to 

assignable causes. Corrective action is needed if process or product parameters 

are changed.  

Over the last decade, several profiling techniques have been developed 

and examined in terms of their effectiveness in detecting deviations in process 

parameters when the quality might be explained by a simple, multiple linear 

models or much more sophisticated models such as nonlinear regressions 

models.  

In fact, the use of profile monitoring techniques in statistical control 

applications (SPC) studies has been extended to include both phases I and II. In 

phase I, practitioners are mainly interested in analyzing a historical data to 

examine the statistical stability of process parameters and estimate their nominal 
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values. In phase II, on-line data is used to detect any anticipated changes in the 

nominal values estimated in phase I. 

1.2 Measuring the Performance of Profile Monitoring Techniques 

As mentioned above and under profile monitoring framework, Phase II 

methods focus in reducing the effort of detecting changes in parameters of 

quality model. The performance of these techniques is usually measured and 

evaluated by using the parameters of the run-length distribution.  

Figure 1 depicts how average run-length (ARL) might be estimated by 

using the probability that the statistic of the current profile falls outside the control 

limits. Figure 2 shows the situation where special causes has shifted the process 

parameter from &
 to &1 

 

Fig. 1 Probability of falling out of control limits under &
  

Then, 

	�� = 1(                                                                                                                                            (1) 



3 
 

 

 

Fig.2 Probability of falling out of control limits under &=&1 

In this situation (&
 → &�), the  ARL can be estimated as follows: 

	�� = 1(,-. + (.-. =  1(1 − β)01                                                                                                 (2) 

where β is the probability of falling between the control limits when the process 

runs at  &� . 

1.3 Examples in Profile Monitoring 

This section demonstrate some of profile monitoring examples used to 

examine the effectiveness of some of profiling techniques in detecting any 

changes in quality models.  

Mestek et al. (1994) considered the photometric determination of Fe3+ 

with sulfosalicylic acid and examined the stability of the calibration curves. Stover 

and Brill (1998) considered the linear calibration of the multilevel ion 

chromatography and showed how to determine the response stability and the 

most proper calibration frequency. Kang and Albin (2000) presented another two 



4 
 

 

different examples. One of these is an illustrative example where the relationship 

between the amount of dissolved sweetener aspartame and the level of 

temperature is better to be explained by a non-linear model. In the other one, 

they used a simple linear model to describe the semiconductor manufacturing 

process.  

When it comes to the polynomial profiles, Montgomery (2005) used a 

second-order polynomial profile to describe the relationship between the 

automobile engine speed and the torque produced by an engine. The problem of 

violating homogeneity in data-rich environment is considered by Wang et al. 

(2005); charting schemes based on the quantile-quantile (Q-Q) plot in addition to 

profiling techniques are suggested to decrease the speed of detection. An 

example form a mobile phone assembly is used and tested. Another use of 

polynomial profiles in an industry can be found in Amiri et al. (2009). 

Researchers intersecting in finding more examples and comprehensive reviews 

of profile monitoring should read Woodall et al. (2004) and Woodall (2007).  

1.4 Prior Related Work in Profile Monitoring 

1.4.1 Use of simple linear regression: The results of the literature survey have 

shown that the majority of the previous work considered the simple linear profile 

framework gave a considerable attention to phase II analysis. 

A. Phase I Approaches: Mestek et al. (1994) suggested the use of a Hotelling 

�� control scheme to examine the linear calibration curves in the photometric 

determination of Fe3+ with sulfosalicylic acid. Stover and Brill (1998) proposed 
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and examined two Phase I methods for determining instrument response 

stability. The first approach is a Hotelling’s ��  control chart. The second is a 

univariate chart based on the first principal component analysis (PCA) 

corresponding to the vector of estimators. These two methods were applied to 

multilevel ion chromatography. Kang and Albin (2000) used the Hotelling- �� 

charting techniques for monitoring process parameters changes when the quality 

is described by a simple linear relationship. This method is similar to �� method 

suggested by Stover and Brill (1998), but Kang and Albin (2000) used different 

estimators for the variance covariance matrix. Mahmoud and Woodall (2004) 

suggested and tested a phase I method using global F-test to monitor the model 

parameters in conjunction with a univariate control chart for monitoring changes 

in standard deviation (�). In their work, they examined the effectiveness of the F-

test technique by comparing its statistical performance with several of existing 

profiling methods. Again, Mahmoud et al. (2007) developed another phase I 

method called change point approach based on the segmented regression 

technique for checking the stability of the model parameters.  

B. Phase II Approaches: Kang and Albin (2000) suggested two phase II 

methods for monitoring simple linear profiles. The first method is a multivariate 

Hotelling �� chart based on successive vectors of the estimators of the intercept 

and slope. In the second method, they considered used an exponential weighted 

moving average control chart. They suggested the use of 234	 to monitor the 

average deviation and � control chart to monitor variation of the deviation. This 
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method is referred to as 234	/� method. Kim et al. (2003) suggested a new 

Phase II method recommended coding the �-values to remove the correlation 

between regression estimators and then they used two separate 234	 control 

charts for monitoring these estimators. For monitoring a process standard 

deviation, they recommended the use of the 234	 control charts developed by 

Crowder and Hamilton (1992). A phase II comparative study between the 

Croarkin and Varner (1982) control chart (National Institute of Standard 

Technology (67��) method) and the combined approach (843 method) 

proposed by Kim et al. (2003) was performed by Gupta et al. (2006). In this work, 

they replaced the three 234	 control charts of 843 method by three univariate 

control charts. The 67�� method is described in the 67��/�24	�29: e-

Handbook of Statistical Methods, which is available online at 

http://www.itl.nist.gov/div898/handbook/. Noorossana and Amiri (2007) 

investigated the effectiveness of using a combination of MCUSUM proposed by 

Healy (1987) and ;� control chart for monitoring the regression parameters of 

simple linear profiles. Zou et al. (2006) suggested a Phase II technique, based on 

likelihood ratio statistic, to monitor simple linear quality profiles.  Seyed, et al. 

(2007) proposed a control chart based on the generalized linear test to monitor 

parameters of the linear profiles and an R- control chart to monitor the variance; 

they refer to this combination as <��/� chart. Zou et al. (2007-b) considered the 

case when the process parameters are unknown or Phase I samples are not 

large enough for proper estimation of simple linear function parameters; this 
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approach is referred to as a self starting approach. Mahmoud et al. (2009) 

proposed and investigated the statistical performance of simple linear 

approaches when only two observations are used. In this study, they proposed 

an 234	 control chart based on average squared deviations with two 234	 

control charts to monitor changes in the regression parameters of the simple 

linear quality profiles. The performance of  ��, 234	/� and 234	3 methods 

under drift shift is investigated by Saghaei et al. (2009-a). The speed of detecting 

changes in regression parameters of simple linear profiles was also investigated 

by using a cumulative sum statistic; the results were presented in Saghaei et al. 

(2009-b). An approach using a single chart integrating likelihood ratio statistic 

with the 234	 chart for monitoring linear profiles was developed by Zhang J. et 

al. (2009). For further performance improvement, they added the variable 

sampling interval (=�7) feature to the suggested technique. A new approach 

proposed by Zhu and Lin (2010) to monitor changes in the slope of the simple 

linear functions.  

Another recent contribution by Noorossana et al. (2010) explored the 

performance of three control chart schemes when several correlated 

characteristics might be modeled as a set of linear functions of one independent 

variable. They referred to this situation as multivariate simple linear profiles 

structure. Li and Wang (2010) used an exponentially weighted moving average 

control chart using variable sampling intervals for monitoring simple linear 
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profiles (=�7 − 234	3). In their study, the performance of this strategy is 

invetigated by using a real set of data. 

1.4.2 Effect of violating normality and correlation assumptions: One of the 

essentials assumptions in the monitoring of the simple linear profiles is that the 

error is independent and identically normally distributed. Some other authors 

have showed interest in studying the impact of violating this basic assumption. 

For example, Noorossana et al. (2004) studied the effect of violating normality 

assumption of the error terms on the performance of 234	/� method.  

Auto-correlated errors are usually within profile monitoring. Noorossana et 

al. (2007) explored the effect of ignoring autocorrelation of the error terms within 

profiles. Jensen et al. (2008) considered the correlation structure between linear 

profiles and investigated the effectives of a new technique accounting this issue. 

The results of studying the effect of the first order autocorrelation between linear 

profiles can be found in Noorossana et al. (2008).  

Soleimani et al. (2009) presented an analytical study to investigate how 

the speed of catching changes in the regression parameters of simple linear 

profiles is influenced by within profiles autocorrelation. Qiu and Wang (2010) 

investigated the situation when nonparametric profiles are correlated. 

1.4.3 Other profile modeling approaches: Sometimes, the process quality is 

better to be described by more sophisticated models such as polynomial, or 

multiple linear profiles rather than the simple linear profiles. In this section some 

of these models are presented. 
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A. Polynomial and multiple regressions: Zou et al. (2007-a) proposed a 

technique that integrates the multivariate exponentially weighted moving average 

control chart (MEWMA) with the GLR test based on nonparametric regression. 

Three different phase I methods for monitoring polynomial profiles were 

examined by Kazemzadeh et al. (2008-a); they also provided an approach based 

on likelihood ratio test to identify the shift location. Kazemzadeh et al. (2008-b) 

studied the performance of some profiling methods for detecting outliers in phase 

I of polynomial profiles. Kusiak et al. (2008) developed three curves, one by the 

least squares method and the other by maximum likelihood estimation method. 

They used the least square (parametric) model and non-parametric models for 

on-line monitoring of the power curve. Mahmoud (2008) introduced a phase I 

approach for monitoring multiple linear regression profiles. Kazemzadeh et al. 

(2009-b) considered the second-order polynomial profiles and introduced a new 

technique based on the idea of transforming the polynomial model to the 

orthogonal form. Then, the three regression parameters will be independent and 

one can use three individual 234	 control charts to monitor them in conjunction 

with another 234	 chart for monitoring the residuals (EWMA4 method). 

Kazemzadeh et al. (2007) and (2009-a) considered polynomial profiles, and the 

autocorrelation between profiles is modeled as a first order-autoregressive. 

Zhang H. et al. (2009) developed a method that deals with the profiles as vectors 

in high-dimension space. He applied a ;�  charting technique to explore and 

identify the outliers.  
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B. Parametric nonlinear regression models: Ding et al. (2006) presented a 

phase I technique for monitoring nonlinear quality functions (profiles). The 

suggested policy consists of two components: 1- Data-reduction component; 2- 

Data-separation technique. Williams et al. (2007-a) suggested and investigated 

the use of the �� chart for monitoring the coefficients of nonlinear regression 

models. The results of investigating the effect of correlation on nonlinear quality 

profiles using nonlinear mixed models can be found in Jensen and Birch (2007). 

Again, Williams et al. (2007-b) used the nonlinear regression method of Williams 

et al. (2007-a) to monitor dose-response quality profiles; in their study, they 

utilized a four-parameter logistic regression model to represent these profiles. 

Moguerza et al. (2007) explored and examined the monitoring of the fitted curves 

instead of monitoring the parameters. 

C. Use of wavelets: Here we introduce the Wavelets as another method to be 

used for present quality profiles when simple models mentioned before are not 

enough to represent the pattern of the profile. Several authors, considered the 

use of the Wavelets to introduce methods for monitoring variability and changes 

in process quality. For instance, Reis and Saraiva (2006) utilized wavelets based 

technique to represent the surface of a paper. In their work Zhou et al. (2006) 

investigated a Monitoring System for Cycle-based Waveform Signals. Another 

contribution introduced by Jeong et al. (2006); they considered the uses of 

wavelet for complicated functional data. Chicken et al. (2009) developed and 
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tested a semi parametric wavelet method for monitoring changes in nonlinear 

quality functions.   
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CHAPTER 2 ADAPTIVE SAMPLING SIZES (VSS) AND ADAPTIVE 

SAMPLING INTERVALS �� SCHEMES 

Most of the traditional statistical process control applications describe the 

quality by the probability distribution of a univariate quality characteristic or by the 

multivariate probability distribution of a set of quality features. Sometimes, the 

quality of a process is better to be explained by a functional relationship between 

a quality response variable and one or more independent variables. Literatures 

usually refer to this type of monitoring techniques by profiling techniques. 

Literature survey has shown that several Phase II charting techniques 

have been developed, and their ability to detect changes in simple linear and 

polynomial profiles is examined. Phase II charting methods assume that the 

values of quality function parameters such as intercept, slope and variance 

parameters are known or estimated in phase I.  

2.1 Multivariate approach (�� method) 

This method has been extensively used when the quality is described by 

multivariate distribution of a set of quality characteristics. Kang and Albin (2000) 

suggested and examined the use of this method when the quality function is 

described by a simple linear relationship. Some literatures refer to this method as 

a Multivariate Approach.  

This approach assumes that the process outgoing quality variable A is a 

random variable, and it has a simple linear functional relationship with process 

input �; that is 



13 
 

 

 BCD = 	
 + 	�EC +  εCD                                                                                                                  (3)  

 where 	
 and 	� are the nominal values of process parameters, intercept and 

slope, and FCD  ~ 6(0, ��) .  

The multivariate method is based on the use of vectors of the estimators 

of intercept and slope to monitor the deviations in the linear quality profile. The 

process starts by collecting a set of observations of size � and then calculates 

the Hotelling’s statistic as follows: 

�D� =  HID − JKLMN�HID − JK                                                                                                      (4) 

where  J = (	
, 	�)L is the vector of the target values of the intercept and the 

slope, and  ID = HO
D  , O�DKL
 is the vector of the estimated values of the process 

parameters. The variance–covariance matrix (M) is as follows :  

M =  P �
� �
���
�� ��� Q                                                                                                                            (5) 

The joint probability density function of ID~6(J,Σ) is: 

RHIDK = 1S(2T)� det (Σ) XEY P− 12 (HID − JKL MN� HID − JKQ                                          (6) 

Kang and Albin (2000) used the least square method (LSM) to estimate 

the unknown values of the regression parameters such that O
D =  AZ − O�DE[ 
and  O�D = �\](D) �\\N�. The variances of these parameters can be estimated by 

using �
� = (���N� + E[��� �\\N�) and ��� = �� �\\N�  .  
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However, the covariance of O
D and O�D  is calculated using  �
�� =
−��E[ �\\N�.  At the state of the statistical control, no assignable cause is present, 

the Hotelling statistics behaves as a central ;^,_�  distribution with ν =2 degrees of 

freedom (see Kang and Albin (2000)). Based on that the following control limit is 

used: 

`a =  ;�,_�                                                                                                                                            (7)  

The following are the decision rules used to judge about the process 

stability. 

1. If  0 ≤  �D�  <  9�; the process is under control, continue 

2. If  �D�  ≥  9� ; the process is out-of-control; corrective action is required. 

Example 2.1 

In this example, we assume that the relationship between the response 

and the explanatory variable is described by BCD = 4 + 3EC +  εCD ; where εCD  is 

normally distributed with mean=µ and variance=��. 

The design parameters are as follows: 

1- The sample Size (�)= 4 

2- The values of � = { 1 2 3 4} 
3- The false alarm rate (1/() =200, then the control limits (CL)=10.60 

Table 1 and Figure 3 show the result of running 10 phase II profiles using 

the Hotelling  �� chart.   
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Table 1 The results of running ten profiles using  �� chart (Example 2.1)  h A�D A�D AiD AjD Ok O� �� Decision 

1 7.18 10.10 11.61 15.60 4.43 2.68 0.191 In-Control

2 6.72 9.60 13.06 15.49 3.77 2.98 0.063 In-Control

3 8.59 9.50 12.87 15.32 5.68 2.36 2.845 In-Control

4 6.59 10.17 12.52 14.98 4.19 2.75 0.050 In-Control

5 6.52 8.98 14.86 15.85 3.08 3.39 0.849 In-Control

6 8.54 9.66 12.38 14.36 6.20 2.02 4.848 In-Control

7 6.85 9.95 11.71 17.54 3.06 3.38 0.888 In-Control

8 5.98 11.86 12.85 15.95 3.93 3.09 0.007 In-Control

9 5.36 8.06 13.92 13.95 2.41 3.16 2.759 In-Control

10 9.89 8.34 15.02 14.62 6.75 2.09 7.686 In-Control

 

Fig. 3 Graphical presentation of Hotelling �� chart in Example 2.1 
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2.2 Performance Measures of �� Method 

It is worthy to mention that, two types of performance measures are 

usually used for examining the statistical effectiveness of charting techniques. 

These two types are: 

1-  The initial-state performance measures: This type assumes that shift 

occurs at the beginning of the monitoring stage.  

2- The steady state performance measures: This type assumes that the 

shift in the process parameters will appear at a future.  

In fact, the average number of samples collected until the off-target signal 

detected (ARL) is the most common measure to assess the statistical 

performance of a Phase II �� method.  In the case when more than one sampling 

interval are used (VSI), the expected value of the time from the beginning of the 

monitoring stage until the chart signals (ATS) is the recommended performance 

measure. 

	�� = 1l(�� > 9�) = 1(                                                                                                              (8) 

	�� = 	�� ∗ �OpYaq�r 7� XstOa                                                                                           (9) 

Usually, when a new profiling technique is developed, its statistical 

performance and effectiveness is evaluated by comparing its performance with 

its counterparts or some of the existing methods. This process requires matching 

the performance measures of the compared methods at the state of the statistical 
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control, no changes in the model parameters, and then investigating and 

comparing their performance at the off-target conditions. In this research, the 

same procedure will be used to evaluate the performance of any proposed 

scheme. Additionally, when the quality of a product or a process is described by 

the multivariate probability distribution of quality characteristics, literature review 

shows that the charting techniques using variable design settings during the 

online monitoring stage have been widely and extensively utilized to enhance the 

statistical efficiency of many of the charting techniques. One of the objectives of 

this research is integrating the three known adaptive scenarios; VSS, VSI and 

VSSI with the multivariate approach ( T� method), proposed by Kang and Albin 

(2000), and evaluating its statistical ability in monitoring changes in regression 

parameters of simple linear quality profiles. 

2.3 Variable Sampling Size Scheme (VSS-��) 

  This VSS-T� scheme uses two sampling sizes, such that �� < ��, and one 

warning limit (WL). The mechanism of the suggested scheme is described by 

Figure 4. Here, it is important to recommend that the first sample is taken using 

the large size (��); such step might helpful in detecting and capturing changes 

due to improper initial process setting. In practical situation, one more thing I 

would like to be considered here is that the warning limit is selected such that we 

do not lose the advantage of enlarging the sample size when there is an 

indication of process change. The following example is used to explain the 

mechanism of the suggested scheme. 
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Example 2.2  

This example uses the same regression model described in example 2.1. The 

design parameters are: 

1- The sampling sizes (��, ��)= 3 and 5 

2- The warning limit = 7.85  and the control limit = 10.60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The mechanism of adaptive sampling sizes approach 
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Table 2 The mechanism of adaptive sampling sizes Hotelling �� chart (Example 2.2) 

Profile Number (h) �� Decision  

1 5.32 In-Control, use �� 

2 4.43 In-Control, use �� 

3 7.92 In-Control, use �� 

4 6.32 In-Control, use �� 

5 8.98 In-Control, use �� 

6 5.76 In-Control, use �� 

7 4.59 In-Control, use �� 

8 9.41 In-Control, use �� 

9 10.87 Out-of-Control 

 

Fig. 5 Graphical presentation of adaptive sampling size Hotelling �� chart  

The ARL as a performance measure of the suggested approach will be 

estimated and compared with the traditional �� control chart using fixed design 
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control average run length. In order to compare the adaptive and the traditional 

schemes under the same conditions, we select the warning limit such that �
 =
�� Y� + ��Y�; where Y� and Y� are the area under the warning limit and the area 

between the warning limit and the control limit, respectively.  

2.3.1 Extending the ARL approximation: Here I will briefly describe how the 

Markov Chain Principles have been used by several authors such as Aparisi 

(1996), and Aparisi and Haro (2001), to evaluate the performance of adaptive �� 

control chart and then I show how this method might be extended to the profile 

monitoring framework.  

In their work, they defined three states and suggested the transition 

probability matrix described by 10: 

1. State 1 represents 0 ≤ �D� < 3� 

2. State 2 represents 3� < �D� < 9� 

3. State 3 represents �D� ≥ 9� (absorbing state) 

lw.. = xY��� Y��� Y�i�Y��� Y��� Y�i�0 0 1 y                                                                                                           (10) 

where YCD�  is the probability of moving from state i to state j; see Figure 6. Second, 

they used the following ARL approximation; note that the symbols might be 

different: 

	��� = l
′(7 − l�)N�1                                                                                                              (11) 



 

 

where l
 ′ = (l�, l�)     � Pz
z

identity matrix, l� is the 

state. 

 

Fig. 6

Kang and Albin (2000)
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is the lw.. matrix without the probabilities of the absorbing 

 

Fig. 6 The probability transition diagram 
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2.3.2 VSS-�� scheme with no specified range of explanatory variable: In this 

part of the study the VSS-�� scheme is investigated and compared with the 

traditional chart when the independent variable values are not bounded by a 

certain range and it takes values from 1 to n. For instance, if n=5, then X={ 1 2 3 

4 5}. Here the two types of shift in regression parameters, intercept and slope, 

will be considered. In the situation where the deviation in the intercept is the only 

shift of interest, Tables 3, 4, 5 and 6 show the ARL values the adaptive and the 

fixed schemes at four different values of �
. The next four tables illustrate that the 

adaptive scheme performs better than the traditional one over all the levels of 

changes. 

Table 3 VSS-�� versus FSR-�� when intercept shifts from 	
 → 	
 � �
, 	����
=200 
n0=5 and unspecified range of � values 

No. 
Sampling 

Sizes 

Shift in Intercept,  

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 (5,5) 152.45 82.76 41.38 21.21 11.54 6.75 4.92 

2 (4,6) 152.14 80.96 38.72 18.79 9.78 5.62 4.12 

3 (3,7) 151.71 78.61 35.67 16.40 8.28 4.76 3.54 

Table 4 VSS-�� versus FSR-�� when intercept shifts from 	
 → 	
 � �
, 	����
=200, 
n0=6 and unspecified range of � values 

No. 
Sampling 

Sizes 

Shift in Intercept,  

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 (6,6) 145.18 72.61 34.01 16.68 8.85 5.14 3.76 

2 (5,7) 144.84 70.93 31.81 14.86 7.63 4.41 3.27 

3 (4,8) 144.39 68.84 29.38 13.11 6.60 3.86 2.92 

4 (3,9) 143.83 66.43 26.92 11.55 5.78 3.45 2.67 



23 
 

 

Table 5 VSS-�� versus FSR-�� when intercept shifts from 	
 → 	
 � �
, 	����
=200, 
n0=7 and unspecified range of � values 

No. 
Sampling 

Sizes 

Shift in Intercept,  

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 (7,7) 138.46 64.29 28.48 13.48 7.04 4.09 3.02 

2 (6,8) 138.10 62.73 26.64 12.09 6.17 3.61 2.71 

3 (5,9) 137.65 60.86 24.67 10.77 5.44 3.24 2.49 

4 (4,10) 137.08 58.75 22.70 9.60 4.85 2.96 2.33 

Table 6 VSS-�� versus FSR-�� when intercept shifts from 	
 → 	
 � �
, 	����
=200, 
n0=8 and unspecified range of � values 

No. 
Sampling 

Sizes 

Shift in Intercept,  

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 (8,8) 132.23 57.37 24.22 11.15 5.76 3.37 2.51 

2 (7,9) 131.87 55.93 22.67 10.06 5.13 3.04 2.32 

3 (6,10) 131.40 54.25 21.05 9.04 4.60 2.79 2.17 

4 (5,11) 130.84 52.38 19.44 8.14 4.17 2.60 2.07 

For more understanding of the performance of the VSS-�� control chart, 

the next section is dedicated for studying the effect of the distance between the 

sampling sizes when the process is under a shift in the intercept only.  

Table 7 The ARL versus (�� − ��) when intercept shifts by �
, �
=5, and unspecified 

range of �   

No. Sampling Sizes Distance (�� − ��) =0.45, �=0 

1 (5,5) 0 41.38 

2 (4,6) 2 38.72 

3 (3,7) 4 35.67 
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Fig. 7 The ARL values of VS-�� versus the distance between the sampling 
sizes when intercept shifts from 	
 → 	
 � �
 and  �
=5 

 

Table 8 The ARL versus (�� − ��) when intercept shifts by �
, �
=6, and unspecified 

range of �  

No. Sampling Sizes Distance (�� − ��) =0.45, �=0 

1 (6,6) 0 34.01 

2 (5,7) 2 31.81 

3 (4,8) 4 29.38 

4 (3,9) 6 26.92 

 

Fig. 8 The ARL values of VS-�� versus the distance between the sampling 
sizes when intercept shifts from 	
 → 	
 � �
 and  �
=6 
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Table 9 The ARL versus (�� − ��) when intercept shifts by �
, �
=7, and unspecified 

range of �  

No. Sampling Sizes Distance (�� − ��) =0.45, �=0 

1 (7,7) 0 28.48 

2 (6,8) 2 26.64 

3 (5,9) 4 24.67 

4 (4,10) 6 22.70 

 

Fig. 9 The ARL values of VS-�� versus the distance between the sampling 
sizes when intercept shifts from 	
 → 	
 � �
 and  �
=7 

 

Table 10 The ARL versus (�� − ��) when intercept shifts by �
, �
=8, and unspecified 

range of �  

No. Sampling Sizes Distance (�� − ��) =0.45, �=0 

1 (8,8) 0 24.22 

2 (7,9) 2 22.67 

3 (6,10) 4 21.05 

4 (5,11) 6 19.44 
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Fig. 10 The ARL values of VS-�� versus the distance between the sampling 
sizes when intercept shifts from 	
 → 	
 � �
 and  �
=8 

 

It can be seen from Figures 7, 8, 9 and 10 that the performance of the 

adaptive scheme improves as the difference between the two sampling sizes 

increases.  

However, if the slope shifts from   	
 → 	
 � ��
 then { is described as 

follows: 

{ � (�E[)�� � ���\\                                                                                                                    (14) 

It can be easily noticed that the value of the non-centrality parameter, 

described by 14, is affected not only by the sample size but also the average and 

the sum of squares of the explanatory variable.  

Based on that, improving the performance of the VSS-�� control chart 

requires considering the effect of location of the independent variable; this 

suggestion will be considered in chapter 3.  
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In most of the application of the profile monitoring, the values of the X are 

usually distributed over a certain range. In the next section we will examine the 

VSS-��  when these values are equally spaced over a range from 1 to 6.  

2.3.3 VSS-�� scheme with specified range of explanatory variable: In this 

part of the study the VSS-�� scheme will be compared with the traditional chart 

when the independent variable values are bounded and two points are set at the 

edges. For instance, if n=5 and the range is from 1 to 6, then the set of � values 

is equal to {1 2.25 3.5 4.75 6}.  

From Equation 12, it can be easily conclude that, if the intercept changes 

from 	
 → 	
 � �
, then the new value of { is 

{ � ��                                                                                                                                           (15) 

 Equation 15 shows that the location of the independent variable has no 

effect on the value of the non-centrality parameter then the results will not differ 

from the results of the case when the values of X are unbounded (See tables 3-

6).  

Table 11 VSS-�� versus FSR-�� when slope shifts from 	� → 	� � ��
, 	����
=200, 
n0=5 and specified range of � values 

No. 
Sampling 

Sizes 

Shift in slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 (5,5) 168.28 110.03 64.91 37.66 22.31 13.71 10.14 

2 (4,6) 168.14 108.98 62.82 35.20 20.04 11.90 8.66 

3 (3,7) 167.87 107.47 60.15 32.37 17.72 10.23 7.39 
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Table 12 VSS-�� versus FSR-�� when slope shifts from 	� → 	� � ��
, 	����
=200, 
n0=6 and specified range of � values 

No. 
Sampling 

Sizes 

Shift in slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 (6,6) 163.36 100.68 56.19 31.22 17.92 10.78 7.91 

2 (5,7) 163.22 99.66 54.32 29.17 16.16 9.46 6.87 

3 (4,8) 163.00 98.30 52.06 26.92 14.41 8.27 5.98 

4 (3,9) 162.67 96.61 49.51 24.64 12.81 7.27 5.27 

Table 13 VSS-�� versus FSR-�� when slope shifts from 	� → 	� � ��
, 	����
=200, 
n0=7 and specified range of � values 

No. 
Sampling 

Sizes 

Shift in slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 (7,7) 158.65 92.51 49.14 26.30 14.71 8.72 6.37 

2 (6,8) 158.50 91.51 47.46 24.58 13.32 7.73 5.62 

3 (5,9) 158.29 90.25 45.50 22.76 11.98 6.86 4.99 

4 (4,10) 158.01 88.74 43.36 20.93 10.75 6.12 4.48 

Table 14 VSS-�� versus FSR-�� when slope shifts from 	� → 	� � ��
, 	����
=200, 
n0=8 and specified range of � values 

No. 
Sampling 

Sizes 

Shift in slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 (8,8) 154.15 85.33 43.36 22.48 12.31 7.22 5.27 

2 (7,9) 153.99 84.36 41.85 21.02 11.20 6.47 4.72 

3 (6,10) 153.78 83.17 40.13 19.51 10.15 5.81 4.26 

4 (5,11) 153.52 81.78 38.28 18.02 9.19 5.26 3.88 

The results in Tables 11-14 show the ARL comparisons of the two 

sampling scheme when the slope shifts from its nominal value  	� to 	� � ��
. In 

this study four different sampling sizes are used and the in-control ARL is set 
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equal to 200. The values of � are equally spaced between 1 and 6. Like the case 

when the intercept shifts from the nominal values, the adaptive scheme performs 

better than the FSR-�� one at all levels of shift in slope. 

2.3.4 Optimizing the Design of the Adaptive Scheme (VSS-��): Finding the 

optimal settings of the adaptive approach might be formulated as an optimization 

problem and solved by using one of the optimization techniques, such as the 

Genetic Approach. The following is the mathematical model: 

Min 	�� (�, %, 3�, ��, ��)                                                                                                        (16) 

Subject to: 

�
 � �� Y� � ��Y�                                                                                                                       (17) 

�� d �
 d ��                                                                                                                                 (18) 

0 d 3� d 9�                                                                                                                               (19) 

2 c � � d ��                                                                                                                                  (20) 

��, �� � I� 

Table 15 illustrates the estimated value of the ARLs at  �
 � 5 for different 

adaptive strategies when the deviation occurs in intercept by amount of  � . 

When we look at the results in Table 19 we easily conclude that, for any shift 

there are a set of adaptive sampling sizes strategies outperforming the control 

chart using fixed settings during the online monitoring of a simple quality profiles.  
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Table 15 ARLs comparison when intercept shifts from 	
 to 	
 � � (in-control 

ARL=200, �
 � 5) 

Plan �� �� 
λ 

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

Fixed 5 5 152.45 82.76 41.38 21.21 11.54 6.75 4.92 

Adaptive 

4 8 151.65 78.48 35.18 15.74 7.74 4.41 3.29 

3 8 151.32 76.86 33.47 14.75 7.29 4.22 3.19 

2 7 151.45 77.77 34.92 16.00 8.11 4.69 3.50 

3 6 151.92 80.32 38.10 18.41 9.60 5.53 4.06 

 

Similarly, Table 16 shows the ARLs value for the set of adaptive strategies 

under the shift in the slope (� ≠0). For each possible value of shift size there are 

a number of possible adaptive strategies that performs better than their 

traditional fixed counterpart (FRS-��).  

Table 16 ARLs comparison when slope shifts from 	� to 	� � �� (in-control ARL=200, �
 � 5) 

Based on Eq. 14 and when the process is under a shift in the slope the 

ARL value of the adaptive approach might be significantly improved if the 

investigator neglected the condition of equally spacing the X values.  Table 17 

and 18 shows a comparison between three adaptive sampling plans using the 

Plan �� ��    
� 

   
0.03 0.06 0.09 0.12 0.15 0.18 0.20 

Fixed 5 5 168.28 110.03 64.91 37.66 22.31 13.71 10.14 

 4 8 167.89 107.51 59.99 31.91 17.13 9.68 6.91 

Adaptive 3 8 167.66 106.35 58.21 30.34 16.10 9.10 6.54 

 2 7 172.44 117.40 70.47 40.47 23.33 13.91 10.13 

 3 6 167.97 108.47 62.16 34.63 19.67 11.67 8.51 
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same sampling sizes, but they have different value of X. Table 18 illustrate the 

difference in ARL values when we run these two sampling plans at different 

values of shift in the slope.  

Table 17 ARLs comparison when slope shifts from 	� to 	� � �� (in-control ARL=200, �
 � 5, �� � 4 and �� � 6 

Table 18 ARLs comparison when slope shifts from 	� to 	� � �� (in-control ARL=200, �
 � 5, �� � 4 and �� � 6 

2.4 Variable Sampling Interval Scheme (VSI- ��) 

In this section a �� chart changing the sampling intervals during the 

monitoring of simple linear profiles is examined, see Figure 11. Here we refer to 

this scheme as (VSI-��).  

Type �� �� 
Sample 1 Sample 2 E� E� Ei Ej E� E� Ei Ej E� E� 

Equally 

spaced 
4 6 1 2.67 4.33 6 1 2 3 4 5 6 

Unequally 

Spaced 
4 6 1 3.45 3.87 6 1 2.30 3.60 5.51 5.76 6 

4 6 1 2.75 5.39 6 1 3.21 4.90 5.34 5.90 6 

Type    
� 

   
0.03 0.06 0.09 0.12 0.15 0.18 0.20 

Equally 

spaced 

168.04 108.79 62.65 35.09 19.98 11.86 8.64 

Unequally 

Spaced 

162.76 97.96 51.86 26.85 14.40 8.28 5.99 

158.44 90.36 45.47 22.67 11.90 6.81 4.96 
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Fig. 11 The mechanism of adaptive sampling intervals approach (VSI-��) 

2.4.1 Extending the ATS approximation: In this section we extend the ATS 

approximation used by Aparisi (1996), and Aparisi and Haro (2001), to the profile 

monitoring frame work and use it to evaluate the performance of the VSI-�� 

control chart. The time matrix is added to the ARL approximation shown in 11. 
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	��� � Pl( ;|� d 3�)l( ;|� d 9�) , l(3� d ;|� d 9�)l( ;|� d 9�) Q x~1 00 1�
− }l(0 c ;|�({) d 3�) l(3� d ;|�({) d 9�)l(0 c ;|�({) d 3�) l(3� d ;|�({) d 9�)�N�� ~ � ��             (21) 

2.4.2 Evaluating the performance of VSI-��Scheme: When the process is 

under a shift in the intercept, different FSR-�� control charts are tested versus 

the adaptive scheme (VSI-��). The results of this comparative study are 

presented in Tables 19-22. Note that all the control schemes using variable 

sampling intervals ( �,  �) are symmetric around the fixed sampling interval ( 
).  

Table 19 ATS comparison when intercept shifts from 	
 → 	
 � �
, n0=5, CL=10.60 and 	����
=150 

No. 
Sampling 

Interval 

Shift in intercept,   

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 0.75 114.34 62.07 31.04 15.91 8.65 5.06 3.69 

2 (0.5,1) 113.13 59.32 28.20 13.67 7.08 4.02 2.91 

3 (0.25,1.25) 111.92 56.57 25.36 11.43 5.51 2.98 2.14 

Table 20 ATS comparison when intercept shifts from 	
 → 	
 � �
, n0=5, CL=10.60 and 	����
=200 

No. 
Sampling 

Interval 

Shift in intercept,   

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 1 152.45 82.76 41.38 21.21 11.54 6.75 4.92 

2 (0.75,1.25) 151.24 80.01 38.55 18.97 9.97 5.71 4.15 

3 (0.5,1.5) 150.03 77.26 35.71 16.73 8.39 4.66 3.37 

4 (0.25,1.75) 148.82 74.51 32.87 14.49 6.82 3.62 2.59 
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Table 21 ATS comparison when intercept shifts from 	
 → 	
 � �
, n0=5, CL=10.60 and 	����
=300 

No. 
Sampling 

Interval 

Shift in intercept,   

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 1.5 228.67 124.14 62.07 31.81 17.31 10.12 7.39 

2 (1.25,1.75) 227.47 121.39 59.24 29.57 15.74 9.08 6.61 

3 (1,2) 226.26 118.64 56.40 27.33 14.16 8.04 5.83 

4 (0.75,2.25) 225.05 115.89 53.56 25.09 12.59 7.00 5.05 

Table 22 ATS comparison when intercept shifts from 	
 → 	
 � �
, n0=5, CL=10.60 and 	����
=400 

No. 
Sampling 

Interval 

Shift in intercept,   

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 2 304.90 165.52 82.76 42.41 23.08 13.50 9.85 

2 (1.75,2.25) 303.69 162.77 79.93 40.17 21.50 12.46 9.07 

3 (1.50,2.50) 302.48 160.02 77.09 37.93 19.93 11.41 8.29 

4 (1.25,2.75) 301.27 157.27 74.25 35.69 18.36 10.37 7.51 

As it was expected, if the user decreases the sampling interval whenever 

the there is an indication of changes in the intercept of the simple linear quality 

function, then detection time will be decreased.  

Now, the case when the slope has shifted by the amount of  ��
 will be 

considered and the performance of the adaptive scheme is subjected to the test 

against the traditional scheme. The design parameters of the compared schemes 

are set such that they have the same ATS at the in-control state. Tables 23-26 

illustrate the advantage of the adaptive sampling interval scheme over the 

traditional chart in detecting changes in the slope of the simple linear profiles. 
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Table 23 ATS comparison when slope shifts from  	� → 	� � ��
, n0=5, CL=10.60 and 	����
=150 

No. 
Sampling 

Interval 

Shift in slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 0.75 126.21 82.53 48.68 28.25 16.73 10.28 7.61 

2 (0.5,1) 125.46 80.25 45.76 25.47 14.44 8.52 6.17 

3 (0.25,1.25) 124.71 77.98 42.85 22.70 12.15 6.76 4.73 

Table 24 ATS comparison when slope shifts from  	� → 	� � ��
 n0=5, CL=10.60 and 	����
=200 

No. 
Sampling 

Interval 

Shift in slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 1 168.28 110.03 64.91 37.66 22.31 13.71 10.14 

2 (0.75,1.25) 167.53 107.76 61.99 34.89 20.02 11.95 8.71 

3 (0.5,1.5) 166.78 105.49 59.07 32.11 17.72 10.19 7.27 

4 (0.25,1.75) 166.03 103.22 56.16 29.34 15.43 8.43 5.83 

Table 25 ATS comparison when slope shifts from  	� → 	� � ��
, n0=5, CL=10.60 and 	����
=300 

No. 
Sampling 

Interval 

Shift in slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 1.5 252.41 165.05 97.36 56.49 33.47 20.56 15.21 

2 (1.25,1.75) 251.67 162.78 94.44 53.72 31.17 18.80 13.78 

3 (1,2) 250.92 160.51 91.52 50.94 28.88 17.04 12.34 

4 (0.75,2.25) 250.17 158.23 88.61 48.17 26.59 15.28 10.90 

Table 26 ATS comparison when slope shifts from  	� → 	� � ��
, n0=5, CL=10.60 and 	����
=400 

No. 
Sampling 

Interval 

Shift in slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 2 336.55 220.07 129.81 75.33 44.63 27.41 20.29

2 (1.75,2.25) 335.80 217.79 126.89 72.55 42.33 25.65 18.85

3 (1.50,2.50) 335.06 215.52 123.98 69.77 40.04 23.90 17.41

4 (1.25,2.75) 334.31 213.25 121.06 67.00 37.74 22.14 15.97
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Table 27 studies the effect of the distance between the sampling intervals 

on the power of the VSI-�� control chart. Table 27 and Figures 12 and 13 show 

that, the power of the VSI-�� scheme increases as the distance between the 

sampling intervals increases.  

Table 27 Studying the effect of distance between sampling intervals, n0=5, CL=10.60 

and 	����
=200  

No. Sampling Intervals Distance ( � −  �)  =0.45, �=0 �=0.12, =0 

1 (1,1) 0 41.38 37.66 

2 (0.75,1.25) 0.5 38.55 34.89 

3 (0.5,1.5) 1 35.71 32.11 

4 (0.25,1.75) 1.5 32.87 29.34 

 

However, so far all the variable sampling intervals used here are 

symmetric around the fixed interval. 

Like the case of the VSS- ��, here we introduce an optimization model to 

be solved using the Genetic Approach to find the optimal settings of the VSI- ��. 

Min 	�� (�, %, 3�, ��, ��)                                                                                                        (22) 

Subject to: 

 
 �  � Y� �  �Y�                                                                                                                         (23) 

 � d  
 d  �                                                                                                                                   (24) 

0 d 3� d 9�                                                                                                                               (25) 

 �,  � > 0 
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Fig. 12 The ATS versus the distance between the sampling intervals ( 
=0.45, �=0) 

 

 

Fig. 13 The ATS versus the distance between the sampling intervals 
(�=0.12, =0) 

 
The statistical performance of the set of the optimized adaptive plans, 

reported in Table 28, shows that the VSI-�� is capable to beat the traditional 

scheme at all levels of changes in the intercept of simple linear regression model. 

Similarly, the same adaptive strategies are examined when the process is under 

a shift in the slope (� ≠0), see Table 29.  
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Table 28 ATSs comparison when intercept shifts from 	
 to 	
 � � (in-control 
ATS=400, �
 � 5) 

Plan  �  � 
λ 

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

Fixed 2 2 304.90 165.52 82.76 42.41 23.08 13.50 9.85 

Adaptive 

0.32 2.30 301.73 156.75 72.88 33.90 16.53 8.76 6.11 

0.25 2.15 303.36 159.99 76.14 36.41 18.24 9.83 6.87 

0.29 2.20 302.73 158.73 74.86 35.41 17.55 9.39 6.55 

 

Table 29 ATSs comparison when slope shifts from 	� to 	� � �� (in-control ATS=400, �
 � 5) 

The results illustrated in Table 29 show the advantage of the adaptive 

scheme over the traditional �� control chart at all levels of shift. Note that these 

adaptive strategies are optimized in terms of the ATS. As we previously 

mentioned, when the process is under a shift in the slope, the power of the �� 

control chart is effected by the location of the independent variable.  

The following two Tables examine the effect of the location of X on the 

statistical performance of the VSI-��  profiling scheme under the two different 

scenarios of changes in the regression parameters. In this study we will examine 

one VSI-�� control chart under three different sets of X.  

Plan  �  �    
� 

   
0.03 0.06 0.09 0.12 0.15 0.18 0.20 

Fixed 2 2 336.55 220.07 129.81 75.33 44.63 27.41 20.29 

 0.32 2.30 334.94 213.17 120.20 65.54 35.96 20.29 14.18 

Adaptive 0.25 2.15 336.07 215.92 123.60 68.72 38.54 22.22 15.72 

 0.29 2.20 335.63 214.85 122.27 67.47 37.52 21.44 15.10 
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Table 30 ATS comparison when slope shifts from 	� to 	� � �� (in-control ATS=400, �
 � 5,  � � 0.32 and  � � 2.30 

 

Table 31 ATSs comparison when slope shifts from 	� to 	� � �� (in-control ATS=400, �
 � 5,  � � 0.32 and  � � 2.30 

 

The significant improvement achieved by reallocating the X values clearly 

shows the effect of the position of the independent variable on the power of the 

VSI-�� scheme. Such recommendation should be considered in the optimization 

model described by 22-25. For increasing the applicability level, each adaptive 

plan presented in Table 31 has two points assigned at the edges of the range of 

the explanatory variable.  

 

 

 

 

 

Type 
X-Values E� E� Ei Ej E� 

Equally 

spaced 1 2.25 3.5 4.75 6 

Unequally 

Spaced 

1 2.30 3.60 5.51 6 

1 3.21 4.90 5.34 6 

Type    
� 

   
0.03 0.06 0.09 0.12 0.15 0.18 0.20 

Equally 

spaced 334.94 213.17 120.20 65.54 35.96 20.29 14.18 

Unequally 

Spaced 

328.49 200.84 108.79 57.31 30.59 16.93 11.76 

318.41 182.97 93.35 46.77 24.02 12.99 8.98 
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CHAPTER 3 VARIABLE SAMPLING INTERVAL AND SAMPLING SIZES 

SCHEME (VSSI- ��) FOR MONITORING SIMPLE LINEAR PROFILES 

As a result of the comprehensive comparison conducted in chapter 2, we 

suggest integrating both of the schemes to capture changes in intercept and 

slope of the simple linear function. This chart will be referred to as a VSSI-�� 

control chart.  

As in the situation where the quality is described by the probability 

distribution, the VSSI-�� scheme uses two sample sizes (��, ��), two time 

intervals ( �,  �) and one warning limit (3�).  

The mechanism of this scheme is shown in Eq. 26 and Figure 14; see 

Aparisi and Haro (2001). 

(���k�C.� D ,  ��k�C.� D) � � 
      (��,  �), qR  0 c �DN�� d 3�                                                 (��,  �), qR  3� d �DN�� d 9�                                                      (26)� 

However, to investigate the effectiveness of this chart, its performance 

should be matched with its counterparts at the state of the statistical control and 

then we calculate these measures at the off-target state. Note that the sampling 

sizes and intervals of the adaptive scheme should be selected such that: 

�� c  �
 c ��                                                                                                                               (27) 

 � c   
  c  �                                                                                                                                (28) 
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where  �
 ,  k are the fixed sampling size and sampling interval of the traditional 

�� control chart. 

 

 

 

 

 

 

 

 

 

Fig. 14 The mechanism of VSSI-�� scheme 

3.1 Extending the ATS Approximation for VSSI-�� 

However, since we extend these approximations to the VSSI-��, the ATS 

approximation can be written as follows: 

Take the first  (  1,  �2)  

The process is announced 

out-of-control 

3� d �DN�� d 9� 

  �DN�� c 3� 
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	��� � Pl( ;|� d 3�)l( ;|� d 9�) , l(3� d ;|� d 9�)l( ;|� d 9�) Q x~1 00 1�

− }l(0 c ;|�({�) d 3�) l(3� d ;|�({�) d 9�)l(0 c ;|�({�) d 3�) l(3� d ;|�({�) d 9�)�N�� ~ � ��          (29) 

where {� and {� are the non-centrality parameters of the two sampling intervals, 

and � is the degree of freedom (� � 2).  

If the sampling interval is fixed, then {� � {� . Here we develop a 

mathematical model to determine the optimal design parameters of the VSSI-

�� chart such that the both compared schemes have the same 	����
, that is: 

Min 	�� (�, %, 3�, ��, ��,  �,  �)                                                                                              (30) 

Subject to: 

�
 � �� Y� � ��Y�                                                                                                                       (31) 

 
 �  � Y� �  �Y�                                                                                                                         (32) 

�� c �
 c ��                                                                                                                                (33) 

 � c  
 c  �                                                                                                                                   (34) 

0 d 3� d 9�                                                                                                                                (35) 

��, �� � I� 

where δ is the amount of deviation from the target values of the model 

parameters 
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The procedure to solve the above model might be described as follows: 

1- Find two values for the sampling sizes 

2- Solve Eq. 31 and find the values of Y�and Y� 

3- Find a value for  � or  �; consider Eq. 34 

4- Sub in Eq. 32 and determine the other value ( � or  �) 

3.2 Setting the Parameters of the Optimization Technique  

The genetic approach (GA) is a well-known stochastic optimization 

technique utilized for optimizing design settings of many charting methods (e.g. 

�Z  and Hotelling ��) (see He et al. (2002), Chen (2004), He and Grigoryan 

(2005), Chen and Hsieh (2007), and Chou et al (2008). In this research, the 

genetic algorithm is used to find the optimal design parameters of VSSI-

��scheme that minimizes ATS.  

In order to get a better quality of the genetic approach output influenced 

by the magnitude of its inputs, two Taguchi experiments are conducted to find the 

optimal settings of the GA inputs. These levels were determined and presented 

in Table 32, which were the same for the shift in the slope and intercept. These 

experiments were conducted with  �
 �6. 

Table 32 Optimal Settings of GA parameters 

Shift in Population 

size 

Mutation 

rate 

Crossover 

probability 

λ,β 100 0.1 0.5 
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3.3 Measuring the Performance of VSSI- �� Control Chart 

In order to evaluate the performance of the VSSI-�� scheme in catching changes 

in the parameters of a simple linear profile, we compare its power with the FSR-

�� chart for �
 � 6 and   
 �1.  

In this comparison, the values of the explanatory variable X are assigned 

at equal distance from 1 to 6. To increase the level of applicability we located two 

points at the edges of this range. Note that the ATS values for the FSR-�� 

scheme can easily be calculated by making 3� � J9�,   �
 �  �� �  ��  and  
 �
  � �   �.  

The ATS values at the in-control state are set to approximately 200. The 

comparison is done by introducing three adaptive sample sizes and sampling 

intervals plans and evaluating these plans at the two expected types of shifts in 

coefficients of a simple linear model.  

Table 33 and Figure 15 illustrate the ATSs comparison between a 

traditional sampling plan and a set of adaptive strategies developed by solving 

the optimization model at  �
 �6 and   
 �1. The comparative study shows that, 

at all levels of change in intercept, the adaptive strategies outperform the fixed 

sampling settings.  

Here the approach followed to solve the optimization model considers the 

sampling efforts and generates a set of particular adaptive strategies that 

minimize the objective function (4q� 	��) and maintain the sampling rate as low 

as possible.  
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Table 33 ATS comparison of VSSI- �� and FSR-�� when intercept shifts from 	
 → 	
 ��
 

No. 
Sampling 

Intervals 

Sampling 

Sizes 
WL 

Shift in intercept,   

0.15 0.30 0.45 0.60 0.75 0.90 1.0 

1 1 6 No 145.18 72.61 34.01 16.68 8.85 5.14 3.76 

2 (0.25,1.80) (5,7) 1.3383 140.97 61.39 22.89 8.61 3.73 2.07 1.61 

3 (0.15,1.94) (4,8) 1.3605 140.17 58.86 20.45 7.16 3.04 1.77 1.45 

4 (0.05,1.98) (3,9) 1.3678 139.03 56.03 18.11 5.98 2.57 1.61 1.37 

The results of comparing the two schemes when the slope deviates by the 

amount of � are presented in Table 34 and Figure 16. As it can be seen the 

adaptive strategies show better ability in detecting the off-target conditions. 

Another finding is that, the adaptive approach VSSI-�� is more powerful in 

detecting changes in the slope than the intercept. However, it is quite expected 

that, like traditional multivariate charting applications, adaptive sampling sizes 

and sampling intervals schemes perform better than the traditional �� control 

charts, especially for small to moderate changes in the parameters of simple 

linear profiles. All the adaptive plans are optimized using the model presented in 

36-41. 

Table 34 ATS comparison of VSSI- �� and FSR-�� when slope shifts from 	� → 	� ���
  

No. 
Sampling 

Intervals 

Sampling 

Sizes 
WL 

Shift in Slope, �  

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

1 1 6 No 163.36 100.68 56.19 31.22 17.92 10.78 7.91 

2 (0.25,1.80) (5,7) 1.3383 161.33 91.64 44.43 20.46 9.56 4.83 3.28 

3 (0.15,1.94) (4,8) 1.3605 160.88 89.86 41.90 18.26 8.08 3.96 2.71 

4 (0.05,1.98) (3,9) 1.3678 160.03 87.54 39.05 16.08 6.79 3.30 2.30 
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Fig. 15 ATS comparison of VSSI- �� and FSR-�� when intercept shifts from 	
 → 	
 ��
  

 

Fig. 16 ATS comparison of VSSI- �� and FSR-�� when slope shifts from 	� → 	� � ��
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As an illustrative example, we evaluate the performance of the VSSI-�� 

control chart using a set of adaptive plans representing some of the results of 

solving the optimization model previously introduced in this chapter. 

The ATS values of the traditional scheme are calculated by making 

�
 � �� � �� ,  
 �  � �  � and 0 c 3� c 9�; see Table 35. 

Table 35 ATSs values of FSR-�� when intercept shifts from 	
 → 	
 � �
, and   

ATSδ=0=200 

�� ��  �  � 
 

0.3 0.6 0.9 1.2 1.5 

5 5 1.0000 1.000 

82.76 21.21 6.75 2.90 1.67 

� 

0.03 0.06 0.09 0.12 0.15 

168.28 110.03 64.91 37.66 22.31 

 

 

 

Table 36 ATSs comparison when intercept shifts from 	
 → 	
 � �
, n0=5, t0=1, and   

ATSδ=0=200 

Scheme 

Type 
�� ��  �  � 

 

0.3 0.9 1.5 

VSSI 

2 6 0.0521 3.962 67.05 2.02 1.07 

3 6 0.0517 2.9854 68.01 2.07 1.06 

2 8 0.0687 1.9572 65.55 1.97 1.15 

3 8 0.0705 1.6412 67.67 2.04 1.11 

4 8 0.0735 1.326 71.34 2.32 1.10 

2 10 0.0949 1.5585 63.86 2.03 1.23 

3 10 0.0844 1.3798 66.62 2.05 1.16 

4 10 0.087 1.1942 71.23 2.32 1.14 
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Table 37  ATSs comparison when intercept shifts from 	� → 	� � ��, n0=5, t0=1, and 

ATSδ=0=200 

Scheme 

Type 
�� ��  �  � 

� 

0.03 0.09 0.15 

VSSI 

2 6 0.0521 3.962 163.95 48.21 10.15 

3 6 0.0517 2.9854 164.40 49.32 10.63 

2 8 0.0687 1.9572 164.29 46.28 8.92 

3 8 0.0705 1.6412 165.17 48.67 9.82 

4 8 0.0735 1.326 166.21 52.45 11.67 

2 10 0.0949 1.5585 164.47 44.40 8.02 

3 10 0.0844 1.3798 165.51 47.43 8.99 

4 10 0.087 1.1942 166.65 52.15 11.11 

The ATS comparisons presented in Tables 36 and 37 show that the VSSI- 

�� is able to outperform the FSR- �� scheme whenever the optimal settings of 

the adaptive scheme are determined and used.  

3.4 The Effect of Location of X-Values  

When the slope of a simple linear model deviates from  	� → 	� � �� , the 

non-centrality parameter takes the value described in Eq. 14.   

However, here I will test the hypothesis that the performance of the 

adaptive scheme (VSSI-��) can be much improved if the values of the 

explanatory variable are assigned such that the non-centrality parameter is 

maximized. Table 38 shows the design settings of two adaptive plans selected 

for a comparison. Here the values of the independent variable are set such that 

{�� d {�� d {�i ; where {�D and {�D  are the non-centrality parameter values of the h�� 

strategy. Note that {��={��={�i. 
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As one may have noticed from Table 39 that, when the process is under a 

shift in the slope, the performance of the VSSI-�� is affected by the location of 

the independent variable and this power might be significantly enhanced if we 

considered the location of the X values in the optimization problem described by 

30-35.  

Table 38 The design setting of two adaptive plans to study the effect of location of X-
values, n1= {1.00, 6.00}  

Strategy WL  �  � 
The second sample, n2 

x1 x2 x3 x4 x5 x6 

Plan 1 0.5555 0.0521 3.962 1.00 2.00 3.00 4.00 5.00 6.00 

Plan 2 0.5555 0.0521 3.962 1.00 3.00 3.33 4.09 5.96 6.00 

Table 39 Studying the effect of location of X-values, 	����
=200, n0=6, and t0=1 

Strategy 
� 

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

Plan 1 163.95 97.02 48.21 22.22 10.15 4.91 3.24 

Plan 2 158.34 86.59 39.32 16.69 7.21 3.48 2.38 

3.5 Evaluating the Adaptive Schemes under Uncertainty of Process’s Shift 

Literature review shows that most of the existing profiling techniques have been 

examined under the assumption that the process changes is a step or a drift 

shift. In section, the statistical performance of the three adaptive �� schemes, 

discussed in chapter 2 and 3, are evaluated under the assumption that shift in 
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the process takes a random value one profile to another according to some 

probability distributions.  

Table 40 and 41 shows the results of comparing the three adaptive 

schemes versus the FSR-�� when the two expected types of shift behave as an 

exponentially distributed random variable ( ≅ 2EY(��) , � ≅ 2EYH��K) 

Table 44 shows that the VSSI-�� scheme detects changes in 	
 faster 

than the other schemes. The results indicate that the difference in performance 

between the FSR-�� and the VSSI-�� is slightly significant.  

Table 40 ATS comparison when the change in the intercept behaves as a random 

variable, n0=5, n1=3, n2=6, t0=1 and ATSδ=0=200 

Scheme 

Name 
 �  � 

�� 

0.15 0.30 0.45 0.60 0.75 0.9 1.0 

FSR-�� 1 1 152.59 
 113.89 
 89.44 
 74.94 
 64.20 
 55.79 
 51.08 
 

VSS-�� 1 1 152.46 
 112.68 
 88.54 
 73.64 
 62.81 
 54.80 
 49.71 
 

VSI-�� 0.5 1.5 151.33 110.49 86.93 71.86 61.64 52.36 48.50 

VSSI-�� 0.0521 2.9391 148.30 107.21 81.95 67.51 57.44 48.90 45.80 

 

Table 41 ATS comparison when the change in the slope behaves as a random variable, 

n0=5, n1=3, n2=6, t0=1 and ATSδ=0=200 

Scheme 

Name 
 �  � 

�� 

0.03 0.06 0.09 0.12 0.15 0.18 0.20 

FSR-�� 1 1 164.42 
 128.29 
 105.17 
 88.50 
 75.69 
 67.24 
 62.11 
 

VSS-�� 1 1 163.85 
 127.35 
 102.97 
 86.26 
 74.74 
 64.60 
 60.33 
 

VSI-�� 0.5 1.5 162.68 125.90 102.86 84.79 72.38 63.67 60.02 

VSSI-�� 0.052 2.939 159.95 121.64 96.85 79.94 68.82 60.35 55.79 
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As one may have noticed, the results in Table 45 shows the ability of the  

VSSI-�� scheme to be the appropriate chart to be selected for catching changes 

in the slope of a simple linear quality profiles when the value of this shift changes 

as an exponentially random. 

3.6 The effect of location on the performance of EWMA4 Method.  

There have been several control charts methods developed to monitor 

polynomial profiles. In this section, we consider the case of second-order 

polynomial regression models (k=2) as another type of models used for 

characterizing the relationship between response and one explanatory variable. 

More specifically, we seek for improving the statistical performance of an existing 

profiling method which is referred to as EWMA4.  

3.6.1 Orthogonal polynomial method (EWMA4) : This section briefly 

introduces the EWMA4 method proposed by Kazemzadeh et al. (2009). This 

method is mainly based on the use of orthogonal polynomial regression to 

monitor changes in the process parameters.  

As it is expected, this method assumes that the process quality response 

A is a random variable, and the polynomial function is the best fit of its 

relationship with the explanatory variable �; that is   

BCD � 	
 � 	�EC � 	�EC� +….+	�EC� � εCD ;     q � 1,2,3, … … , �      h � 1,2,3, …         (36) 

where 	
, 	�, 	�, … . , 	�  are the target values and FCD  ~ 6(0, ��).  

The transformed model is as follows: 
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BCD �  
l
(EC) �  �l�(EC) �  �l�(EC) + … + �l�(EC) � εCD                                           (37) 

where the value  k is the coefficient of the ¡��  order orthogonal polynomial 

(lk(EC))  

Kazemzadeh et al. (2009) suggested and used Eq. 38 to calculate the 

least square estimators of  
,  �, … ,  � . In their paper, they mentioned that the 

three least square estimators are independently normally distributed such that  

2H ¢.DK �  . and =OsH ¢.DK � �� ∑ l.�(¤C�� EC)⁄ ; where h is the profile number., and a 
is the order orthogonal polynomial; where a � 1,2,3, … … , ¦.  

 ¢.D �   ∑ l.(EC)BCD¤C��∑ l.�(EC)¤C��   ;            a � 0,1,2, … , ¦      h � 1,2,3, …                                           (38) 

Kazemzadeh et al. (2009) used three individual 234	 control charts to 

monitor changes in these parameters. The 234	 statistics and the control limits 

are calculated as follows: 

234	.(h) � & ¢.D � (1 − &)234	.(h − 1)                                                                       (39) 

9�. �  . ± 8.¨ & ��(2 − &) ∑ l.�(EC)¤C��    ;  h � 1,2,3, …     a � 0,1,2, … , ¦                           (40) 

The smoothing constant, 0 d & c 1, and the multiplier, ¦. > 0, are set such 

that a certain ARL©�
   is achieved.   
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Another one-sided 234	 control chart is suggested to monitor the 

process variability; for further information, refer to Kazemzadeh et al. (2009). The 

234	� statistic and the control limit are as follows:   

234	�(h) � 4OEª&H4�2D − 1K � (1 − &)234	�(h − 1), 0«                                    (41) 

J9�� � 8�¨& =OsH4�2DK(2 − &)            h � 1,2,3, … … …                                                              (42) 

Kazemzadeh et al. (2009) reported that the change in the coefficients of 

the original form leads to larger change in the coefficients of the orthogonal 

polynomial form. Based on this fact, we suggest an improvement approach that 

optimizes the location of the independent variable; this optimization will maximize 

the amount of shift of the orthogonal model once the original parameter shifts. 

The result of that is a reduction in the average run length (ARL). The following 

section defines the model and the basic principles of this approach.  

3.6.2 Model description: Let us assume that our response variable Y is 

described by a second order polynomial regression as follow: 

BCD � 	
 � 	�EC � 	�EC� � εCD ;           q � 1,2,3, … … , �      h � 1,2,3, …                        (43) 

We use 	¬ = (	
, 	�,  	�)L to describe the regression coefficients vector and  	 = 

(O
, O�,  O�)L  when we point to the Least Square Estimators vector. For a fixed 

design  � �  (E�, E�, … , E¤), the least square estimators vector (unbiased 
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estimator of 	¬)  has a multivariate normal distribution with mean 	¬ and 

covariance matrix ��(�L�)N�). Then 

	 ~ 6(	¬, ��(�L�)N�))                                                                                                               (44) 

where � is the design matrix and it is only represented by (8 � 1) vectors 

of  r¬D(EC); h � 0,1, . . , 8. For the second order linear polynomial profiles  rD(EC) are 

as follows: 

 rk(EC) � 1 

 r�(EC) � EC 
 r�(EC) � EC� 

Then, the design matrix (�) can be written as: 

� � ®1 E� E��⋮ ⋮ ⋮1 E¤ E¤�
°                                                                                                                       (45) 

The least squares vector 	 can be calculated using 

	 � (�L�)N��LB                                                                                                                        (46) 

where B � (B�, B�, … B¤)L is the vector of observed sample. The expectation of 	 
can be calculated as follow; see Korostelev (2010): 

±0²	³ � ±0´(�L�)N��LBµ=´(�L�)N��Lµ� ±0²	¬³ � 	¬                                                   (47)  
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 Now, we need to look at the vector of the difference between least square 

estimators 	 and the coefficient of regression 	¬;  
²	 − 	¬ ³~6(0, ��(�L�)N�))                                                                                                    (48) 

  We can rewrite this vector as follows: 

®O
 − 	
O� − 	�O� − 	�
 ° ~6(0, ��(�L�)N�))                                                                                               (49) 

The marginal distribution of O. is  6~(	., ���..) ; where 0 c  a c ¦. 

3.6.3 Analyzing of orthogonal polynomial model: The EWMA4 method 

transforms the original model to orthogonal one having independent regression 

coefficients and then uses three separate EWMA control charts in addition to 

another EWMA chart to monitor the process variability. In their paper, 

Kazemzadeh et al. (2009) presented the relationship between the orthogonal 

polynomials and the regression coefficients of the original model as follows:  

 
 � 	
 �  E[	� � ¶E[� � P�� − 112 Q ·�¸ 	�                                                                             (50) 

 � � ·�  (	� � 2	�E[)                                                                                                                 (51) 

 � � 	�·��                                                                                                                                      (52) 
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The three scenarios of changes considered here are:  

¹ℎqR  (·) � »	
 � � , � � % � 0	� � �� ,  � % � 0	� � %� ,  � � � 0�                                                                        (53) 

If we insert the three scenarios of the shift into equations 50-52, a new 

form of the relationship between the original and the orthogonal parameter can 

be formatted. Table 46 summarizes this relationship  

Table 42 Changes in original polynomial versus orthogonal polynomial models 

Original  Shift 
Change in Orthogonal Coefficients  
  �  � 	
 � � No change No change 

	� �� E[�� 
·���  No change 

	� %� %� PE[� � P�� − 112 Q ·�Q 
·� 2E[%� 

·�%��  

The most important finding can be observed from Table 42 is that, the 

amount of changes in regression coefficients in orthogonal polynomial model are 

affected by some properties of the explanatory variable such as  E[ , n and ·. 

Based on that, the amount of changes in the orthogonal model can be controlled 

by changing the values (locations) of the explanatory variable. Finding the 

optimal location of the X values might be formulated as an optimization problem 

and solved using one of the stochastic optimization techniques such as, the 

genetic approach. The following section is dedicated to describe the procedure of 

the improvement approach.  
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Here the MATLAB software is utilized to run the Genetic Approach. Again 

two Taguchi experiments were run to find the optimal inputs of the GA; which 

were the same settings in Table 36. The model is described as follows: 

4q� 	��                                                                                                                                         (54)  

Subject to: 

E¤ c ¼¼                                                                                                                                          (55) E� e aa                                                                                                                                             (56) 

E ∈ I�¤                                                            
where  aa and ¼¼ are the lower and upper limits of the practical range of X. The 

sample size might be considered as another constraint (8 � 1 d � c � ); where � 

is the number of locations. The left side (8 � 1) is adjustable, and it depends on 

8 and how the 4�2D is estimated. 

3.6.4 Evaluating the power of the suggested approach: This section is 

dedicated to examine the ability of the suggested approach in enhancing the 

performance of EWMA4 technique. The four EWMA charts were designed such 

that the in-control ARL is equal to 200.  Table 47 shows the settings of the design 

parameters of the EWMA4 method. Several techniques have been developed to 

find the orthogonal polynomial when the independent variable is unequally 

spaced; see Kendall (1959), Robson (1959), and Grandage (1958). This 

research uses the Robson’s method. The recommendations reported in an 

analytical and comparative research in using the polynomial orthogonal curves in 

Dental Healthcare Industry developed by Toby et al (2002), is the main reason 
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behind the use of Robson’s method; see Appendix A. In order to better show the 

effect of independent variable location, a simulation study with 40,000 runs was 

conducted to estimate ARL values under different shifts in  	� and 	�. Table 43 

and 44 show the settings and the ARL values of two types of strategies, 

respectively. The first type is designed with equally spaced of �-values and the 

second is sampling plans optimized in terms of the location of  �. Here the 

following polynomial model is used: 

BCD � 4 � 3EC � 2EC� +εCD ;     q � 1,2,3, … … , �      h � 1,2,3, …                                        (57) 

where 	
 � 4, 	� � 3,  and 	� � 2 are the coefficient of regressions,  FCD ~ 6(0, ��) 

, and � � 1. When n=5 and the � values are equally distributed from 1 to 5, the 

orthogonal model might be described as follows: 

BCD � 34.99l
(EC) � 15.0l�(EC) � 2l�(EC) � εCD ;    q � 1,2,3, … , �   h � 1,2,3,          (58) 

Table 44 and Figure 17 illustrate that, under the shift in the second 

parameter from  	� to  	� � βσ  and at all levels of shifts considered in this 

comparison, the optimized plan outperforms the regular one. As it is shown in the 

reduction row (ARL-regular – ARL-optimized), optimizing the location of � will 

lead to a significant reduction in sampling time and costs.  This simulation study 

will be repeated in the case that the third parameter has shifted from 	� to  

	� � %σ  . The results are shown in Table 45 and graphically presented in Figure 

18. Compared to regular plans, the optimized plans perform perfectly at all levels 

of shift in  	�. 
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Table 43 Orthogonal polynomials of regular and optimized plans 

Plan Type    q    
  �  � 
  1 2 3 4 5 

Regular 

l
(EC) 1 1 1 1 1 

34.99 15 2 l�(EC) -2 -1 0 1 2 l�(EC) 2 -1 -2 -1 2 

          

Optimized 

l
(EC) 1 1 1 1 1 

26.20 1.66 0.157 l�(EC) -13 -8 7 7 7 

l�(EC) 9 -12 1 1 1 

 

Table 44 ARL comparisons between regular and optimized plans under three levels of 
shift in second parameter from 	� to  	� � βσ and n=5 

Plan Type 
Shift in 	� 

0.02 0.05 0.08 

Regular 168.71 79.9 37.27 

Optimized 156.09 61.35 25.30 

Reduction %   7.48 23.32 32.21 

 

Table 45 ARL comparisons between regular and optimized plans under three levels of 
shift in second parameter from 	� to  	� � %σ and n=5 

Plan Type 
Shift in 	� 

0.004 0.02 0.035 

Regular 177.32 36.49    12.51 

Optimized-1 157.76 18.36     7.00 

Reduction %   11.03 49.68 44.04 
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Fig. 17 ARL comparisons between regular and optimized plans under shift in second 
parameter from 	� to  	� � βσ and n=5 

The difficulty might face the user is the calculations needed to find the 

orthogonal polynomials when � values are unequally spaced. This difficulty 

increases if � values are not integer. In Appendix A, we described the Robson’s 

method as one of the options available for the user.  

 
Fig. 18 ARL comparisons between regular and optimized plans under shift in second 

parameter from 	� to  	� � %σ and n=5 
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One of the advantages of the Robson’s method is the simplicity of coding 

on the computer. In the case that the � values are equally spaced, some of linear 

regression references such as Montgomery (2005) can be helpful. His book 

considers the orthogonal transformation and provided the orthogonal polynomials 

for a set of equally spaced �-values. So far, the effect of location optimization is 

examined using a simulation study and results are compared with non-optimized 

strategies in terms of average run length criterion. As we have seen, the results 

reveal the potentials of optimizing the location of X-values in improving the 

performance of EWMA4 method. Such methodology can be utilized to reduce the 

cost and effort of sampling and minimize the time that a process stays off-target. 

The following is another example of using the proposed approach. In this 

illustrative example, the sample is set equal to 10. An illustrative example of the 

regular EWMA4 method using a sample size of 10 can be found in Kazemzadeh 

et al. (2009). 

Example 3.1 

The following model is used 

BCD � 3 � 2EC � 1EC� +εCD ;     q � 1,2,3, … … , �      h � 1,2,3, …                                        (59) 

Table 46 and 47 show the design parameters and orthogonal polynomials 

of the regular plan used in this example, respectively. These values can be found 

in Kazemzadeh et al. (2009) and some of references considering regression 

topic.  
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The results of the simulation study are listed in Tables 48 and 49. As one 

may have noticed that the optimized plans work better than the regular plan. 

Here we emphasize the importance of determining the optimal parameters of the 

GA in powerfully enhancing the performance of the EWMA4 method.    

Table 46 The design parameters of EWMA4 method (in-control ARL=200 and n=5) 

Parameter Chart Value 

Smoothing factor (θ) All 0.2 

The multiplier (8.) 234	. 3.14 

The multiplier (8�) 234	� 3.594 

Table 47 Orthogonal polynomial and coefficients values of a regular plan when n=10 

 q 
 1 2 3 4 5 6 7 8 9 10 l
(EC) 1 1 1 1 1 1 1 1 1 1 l�(EC) -9 -7 -5 -3 -1 1 3 5 7 9 l�(EC) 6 2 -1  -3 -4 -4 -3 -1 2 6 

Table 48 ARL comparisons between regular and optimized plans under shift in second 
parameter from 	� to  	� + βσ, and n=10 

Shift 
ARL Independent Variable 

Reg. Opt. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

0.01 144.82 118.41 2.00 3.00 7.00 7.00 7.00 9.00 10.0 10.0 10.0 10.0 

  
124.92 2.00 3.00 6.00 7.00 7.00 7.00 9.00 10.0 10.0 10.0 

0.05 13.43 6.201 7.00 8.00 8.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 

  
8.154 1.00 6.00 7.00 7.00 8.00 8.00 9.00 10.0 10.0 10.0 

0.09 5.281 2.791 7.00 8.00 9.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

  
2.862 7.00 7.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 10.0 
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Table 49 ARL comparisons between regular and optimized plans under shift in third 
parameter from 	� to  	� + %σ, and n=10 

Shift 
ARL Independent Variable 

Reg. Opt. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

0.001 160.2 126.11 2.00 3.00 7.00 7.00 7.00 9.00 10.0 10.0 10.0 10.0 

  
131.43 1.00 2.00 3.00 7.00 7.00 9.00 10.0 10.0 10.0 10.0 

0.005 21.76 6.991 7.00 8.00 8.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 

  
10.51 1.00 6.00 7.00 7.00 8.00 8.00 9.00 10.0 10.0 10.0 

0.009 7.792 2.942 7.00 8.00 9.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

  
3.190 7.00 7.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 10.0 

Table 45 and 46 reveal that the optimized strategies outperform the 

regular plan at all types and suggested values of shift in the second and the third 

regression parameters. Generally, the simulation studies conducted in this 

section reveal the potentials of enhancing the performance of EWMA4 method by 

re-allocating the values of the explanatory variable. The suggested methodology 

can be effectively utilized to minimize the cost of sampling and then the time that 

a process stays on the off-target state. 

3.7 Recommendations for Future Research 

Under the linear quality profiles, we introduce three areas for future 

research and investigation. 

I. Variable sampling size and control limits �� control chart for monitoring 

simple linear profiles: Here we suggest extending the VSSC idea from the case 

when the quality is described by the probability distribution to the of simple linear 

quality profiles case; see Chen and Hsieh (2007). 
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II. VSSI-EWMA/R and VSSI-EWMA3 method for monitoring simple linear 

profiles: Based on the results of adding the adaptive feature named VSSI, we 

recommend using the same feature with the EWMA/R method proposed by Kang 

and Albin (2000), and EWMA3 method proposed by  Kim et al. (2003); see 

Appendix B.  

III. Adaptive EWMA4 method: This suggestion is motivated by the significant 

improvement have been made in the power of the multivariate method introduced 

in chapter 1. There is a chance to integrate the three adaptive schemes, VSS, 

VSI and VSSI, with the EWMA4 and examine its performance versus the regular 

EWM4 method. 

IV. EWMA4 using three observations per a set of data: Mahmoud (2010) 

proposed the use of two observations per sample to monitor simple linear 

profiles. He used an EWMA control chart based on the average squared 

deviation from the line of in-control state in conjunction with two EWMA control 

charts to monitor process parameters. In this section, we suggest extending this 

idea such that three observations per sample will be used to monitor the 

quadratic polynomial quality functions. Researcher might evaluate tall the 

charting techniques proposed by Mahmoud (2010).   

V. Monitoring polynomial profiles under uncertainty in process’s shift: Here 

we suggest evaluating the existing polynomial profiling techniques such as, �� 

method, Multivariate EWMA and EWMA4 methods under different pattern of 

shift. The following are examples of shift types: 
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1- Drift Shift (Linear) 

2- Random shift with known probability distribution 
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APPENDIX A 

A-1 Robson’s method (Robson (1959) 

In fact, the orthogonal polynomials for a set of equally spaced explanatory 

variable (X) are usually available in references covering the regression topic.  

When it comes to unequally spaced �-values, a specific technique is required. 

Robson (1959) considered this case and provided a simple method to calculate 

the values of these orthogonal polynomials. An illustrative example can be found 

in Robson (1959). To calculate the function l.(EC), he suggested the following: 

l.(EC) = 1̀
. ®EC. − Á l�(EC) Á EC.l�(EC)¤

C��
.N�
��
 °                                                                       (	 − 1) 

where `. represents the normalizing factor (constant) and can be calculated as 

follows: 

`. = �Á ®EC. − Á l�(EC) Á EC.l�(EC)¤
C��

.N�
��
 °�¤

C�� Â
�� , a = 0,1,2, … … , ¦                                 (	 − 2)  
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APPENDIX B 

B-1 Residuals Method (EWMA/R)  

Kang and Albin (2000) proposed the use of the exponentially weighted 

moving average chart (EWMA ) to monitor the average deviation from the in-

control line.  Additionally, they conjunctionally used an � chart with this 234	 

chart to control the variability about the regression line. The 234	 chart uses 

the following statistic: 

ÃD =  &X[D + (1 − &)ÃDN�                                                                                                       (  − 1) 
where & is the smoothing parameter (0 < & < 1).  

The control limits for 234	 chart are  

9�Ä = ±��S& (2 − &)N��N�                                                                                              (B − 2) 

where � is a constant to be selected to have a certain 	�� at in-control state. For 

� chart, Kang and Albin (2000) suggested the use of �D = pOECHXCDK −  pq�CHXCDK; 

where q = 1,2, … �. The control limits for the range chart are: 

9�Æ =  �(·� ± �·i)                                                                                                              (B − 3)                             

where ·� and ·i are constants that depend on the sample size. Further 

information about this method can be found in their paper. 

B-2 Exponentially Weighted Moving Average Method (EWMA3) 

Kim et al. (2003) suggested and used this method to monitor changes in 

simple linear quality profiles. The 234	3 method suggests transforming �-
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values to have zero average so that the regression parameters will be 

independent of each other. After that, they suggested the use of three separate 

234	 control charts for monitoring the slope, the intercept and the variance. 

The new linear model after coding �-values is  BCD =  
 +  �EC∗ +  FCD  , where q =
1,2, … , �,  
 = 	
 + 	�E[,  � = 	�, and EC∗ = (EC − E[).  

The 234	3 method uses the following statistics and control limits for 

monitoring the intercept and slope.  

234	Ç¤���-���(h) = &È
D + (1 − &)234	Ç(h − 1)                                                  (  − 4) 

234	É.k��(h) = &È�D + (1 − &)234	É(h − 1)                                                         (  − 5) 

where & is the smoothing parameter (0 < &≤ 1), 234	Ç¤���-���(0)= 
 and 

234	É.k��(0)= �. For control limits calculations, the following were proposed     
9�Ç¤���-��� =   
 ± �Ç�S & (2 − θ)N�nN�                                                                     (  − 6) 

9�É.k�� =   � ± �É�Ê & (2 − θ)N�SÍÍN�                                                                        (  − 7) 

The third chart is 234	 chart based on the 234	 chart of Crowder et al. 

(1992). The statistic and the control limit of this chart (234	�) are: 

234	�(h) = 4OEª&H4�2D − 1K  + (1 − &)234	�(h − 1), 0«                            (  − 8) 

9� = 8�¨& =OsH4�2DK(2 − &)     ;       h = 1,2,3, …                                                                    (  − 9) 



69 
 

 

where 234	�(0)= ln(�
�).   If the reader is interested on this method, I 

recommend reading the original paper (Kim et al. (2003)). 
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This research aims to introduce a number of contributions for enhancing 

the statistical performance of some of Phase II linear and polynomial profile 

monitoring techniques.  

For linear profiles the idea of variable sampling sizes (VSS), variable 

sampling intervals (VSI) and variable sampling sizes and sampling intervals 

(VSSI) have been extended from multivariate control charts to the profile 

monitoring framework to enhance the power of the traditional Hotelling �� chart 

in detecting shifts in linear quality models. Finding the optimal settings of the 

proposed schemes has been formulated as an optimization problem solved by 

using a Genetic Approach (GA). Here the average time to signal (ATS) and the 

average run length (ARL) are regarded as the objective functions, and ATS and 

ARL approximations, based on Markov Chain Principals, are extended and 

modified to capture the special structure of the profile monitoring. The 

performances of the proposed control schemes are compared with their fixed 
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sampling counterparts for different step-shift and random-shift levels. The 

extensive comparison studies reveal the potentials of the proposed schemes in 

enhancing the performance of �� control chart when a process yields a simple 

linear profile. 

For polynomial profiles, where the linear regression model is not sufficient, 

the relationship between the parameters of the original and orthogonal 

polynomial quality profiles is considered and utilized to enhance the power of the 

orthogonal polynomial method (EWMA4). The problem of finding the optimal set 

of values of the explanatory variable minimizing the average run length is 

described by a mathematical model and solved using the Genetic Approach. In 

the case that the shift in the second or the third parameter is the only shift of 

interest, the simulation results show a significant reduction in the mean of the run 

length distribution of the orthogonal polynomial method.  
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