
Wayne State University

Wayne State University Dissertations

1-1-2011

Autonomic management of virtualized resources in
cloud computing
Jia Rao
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Rao, Jia, "Autonomic management of virtualized resources in cloud computing" (2011). Wayne State University Dissertations. Paper
358.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/358?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTONOMIC MANAGEMENT OF VIRTUALIZED RESOURCES IN
CLOUD COMPUTING

by

JIA RAO

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

MAJOR: COMPUTER
ENGINEERING

Approved by:

Advisor Date

ACKNOWLEDGEMENTS

The study for PhD in the past 5 years is intense and full of challenges. I could not

have achieved anything without help from many people. I am grateful to my advi-

sor, Dr. Cheng-Zhong Xu, for his invaluable guidance, support, and encouragement

throughout this work. I would also like to thank Dr. Gang George Yin, Dr. Leyi

Wang, and Dr. Song Jiang for being my committee members and their suggestions

to improve this work I am thankful to my friends, Xiangping Bu, Jiayu Gong, Zhen

Kong, Kun Wang, Yudi Wei, Yuehai Xu and Xuechen Zhang for their friendship and

help.

Finally, I would like to thank my parents for their understanding and unconditional

support for my study. I want to give special thanks to my wife, Yao Li, for her love,

understanding and support during happy and hard days.

ii

TABLE OF CONTENTS

Acknowledgements . ii

List of Figures . viii

List of Tables . x

Chapter 1 Introduction . 1

1.1 Motivation and Background . 2

1.2 Challenges in Automatic Cloud Resource Management 4

1.2.1 Application-centric Performance Management 4

1.2.2 Complex Resource to Performance Relationship 5

1.2.3 Process Delays in Resource Allocation. 7

1.2.4 Issues in Large Scale Cloud Management. 7

1.3 Problem Definition and Objectives 8

1.4 Contributions . 9

1.5 Dissertation Organization . 11

Chapter 2 Related Work . 13

2.1 Capacity Identification . 13

2.2 Autonomic Management in Traditional Systems 15

2.3 Automated Cloud Resource Management 16

2.3.1 Single Resource Management 17

2.3.2 Multiple Resources Management 18

2.4 Reinforcement Learning in Autonomic Control 18

iii

Chapter 3 Online Web Systems Capacity Identification 20

3.1 Introduction . 20

3.2 Limitations of A Single Response Time Metric 23

3.2.1 Dynamics of a Multi-tier Website 23

3.2.2 Website Capacity Identification 24

3.3 Lower Level System Performance Metrics 26

3.3.1 Revisit of the Concept of Capacity 27

3.3.2 Definition of Performance Synopsis 30

3.4 Two-Level Coordinated Website Capacity Identification 32

3.4.1 Website Capacity Identification Framework 33

3.4.2 Coordinated Two-level Predictor 35

3.4.3 Training and Prediction . 36

3.4.4 An Example . 39

3.5 Evaluation Methodology . 39

3.5.1 TPC-W and Workload Selection 39

3.5.2 Training and testing sets . 40

3.5.3 Evaluation Metrics . 42

3.5.4 Experiment Settings . 42

3.6 Experimental Results . 44

3.6.1 Effectiveness of Productivity Index 44

3.6.2 Individual Prediction Accuracy 45

3.6.3 Coordinated Prediction Accuracy 48

3.6.4 Runtime Overhead . 51

3.7 Application of Capacity Prediction in Online Admission Control . . . 51

3.8 Summary . 53

iv

Chapter 4 Model-free Control of A Single Resource 54

4.1 Introduction . 54

4.2 Motivating Examples . 56

4.3 The DynaQoS Framework . 58

4.3.1 Design of DynaQoS . 59

4.3.2 The Self-tuning Fuzzy Controller 60

4.3.3 Scheduling multiple objectives 67

4.3.4 Realizing service differentiation 68

4.4 System Implementation . 69

4.4.1 Cloud applications . 69

4.4.2 Testbed . 70

4.4.3 Implementation of DynaQoS 71

4.5 Experimental Results . 72

4.5.1 Comparing STFC to other popular control methods 72

4.5.2 Scheduling multiple objectives 75

4.5.3 Service differentiation . 76

4.6 Summary . 78

Chapter 5 Concurrent Control of Multiple Resources 82

5.1 Introduction . 82

5.2 Motivating Examples . 83

5.2.1 The Xen Virtual Machine Monitor 84

5.2.2 Balanced Configurations . 85

5.2.3 Delayed Effects . 87

5.3 Reinforcement Learning for VM Auto-configuration 89

v

5.3.1 Reinforcement Learning and Its Applicability to VM Auto-

configuration . 89

5.3.2 Formulation of VM Configuration as a RL Task 90

5.3.3 Solutions to the RL Task . 93

5.4 The Design and Implementation of VCONF 93

5.4.1 Overview . 94

5.4.2 Adaptability and Scalability 95

5.4.3 Model Initialization and Adaptation 96

5.5 Experimental Results . 98

5.5.1 Methodology . 98

5.5.2 Experiment Settings . 99

5.5.3 Applicability of RL-based VM Autoconfiguration 100

5.5.4 RL-based System-wide Performance Optimization 103

5.5.5 Model-based RL in VM Auto-configuration 106

5.6 Summary . 109

Chapter 6 Resource Management in Virtual Clusters 111

6.1 Introduction . 111

6.2 Motivating Examples . 113

6.2.1 Complications in Multiple Resource Allocation 114

6.2.2 Cluster-wide Correlation . 118

6.3 The Design of iBalloon . 119

6.3.1 Overview . 119

6.3.2 Key Designs . 121

6.4 Implementation . 127

6.5 Experiment Design . 129

vi

6.5.1 Methodology . 129

6.5.2 Testbed Configurations . 130

6.6 Experimental Results . 131

6.6.1 Evaluation of the Reward Metric 131

6.6.2 Exploitations vs. Explorations 132

6.6.3 Single Application Capacity Management 134

6.6.4 Coordination in Multiple Applications 138

6.6.5 Scalability and Overhead Analysis 139

6.7 Summary . 143

Chapter 7 Conclusions and Future Work 144

7.1 Conclusions . 144

7.2 Future Directions . 146

References . 149

Abstract . 159

Autobiographical Statement . 162

vii

LIST OF FIGURES

Figure 3.1 Performance of a website in different TPC-W traffic mixes. . . . 24

Figure 3.2 Response times in transient spike 27

Figure 3.3 The two-level coordinated prediction framework. 34

Figure 3.4 The structure of the two-level predictor. 37

Figure 3.5 Effectiveness of PI in reflecting high-level performance. 44

Figure 3.6 Bayesian Network structure for hardware counter metrics. 48

Figure 3.7 Coordinated prediction accuracy under different workloads. . . . 50

Figure 3.8 Impact of design parameters on accuracy. 50

Figure 3.9 The effectiveness of admission control using different metrics. . . 53

Figure 4.1 Different resource-performance relationship due to dynamic capacity. 59

Figure 4.2 The structure of the DynaQoS framework. 61

Figure 4.3 The structure of the STFC. 62

Figure 4.4 Design of the fuzzy control rules. 65

Figure 4.5 Performance comparison of STFC, Kalman filer, Adaptive-PI and

ARMA. 79

Figure 4.6 Performance comparison of STFC and other controllers in relative

deviation. 80

Figure 4.7 Simultaneous control of performance and power. 80

Figure 4.8 Service differentiation with different methods. 81

Figure 5.1 Balance configurations is desirable for system-wide performance. 86

Figure 5.2 Delayed effect in memory reconfiguration. 87

Figure 5.3 Delayed effect in VCPU reconfiguration. 88

Figure 5.4 The organization of VCONF. 94

viii

Figure 5.5 The design of experiments. 99

Figure 5.6 TPC-C performance in different settings. 101

Figure 5.7 VCONF performance with TPC-W application. 102

Figure 5.8 VCONF performance with two TPC-W instances. 103

Figure 5.9 Performance of trial-and-error. 105

Figure 5.10 Performance deviation during re-configuration. 107

Figure 5.11 Performance of VCONF with heterogeneous applications. 108

Figure 6.1 Performance of TPC-W under different CPU allocation modes. . 117

Figure 6.2 The architecture and working flow of iBalloon. 119

Figure 6.3 CMAC-based Q table. 124

Figure 6.4 Application yield with different decay rates. 132

Figure 6.5 Reward with different traffic levels. 133

Figure 6.6 Application performance with different exploration rates. 133

Figure 6.7 Response time under various reconfiguration strategies. 134

Figure 6.8 Resources allocations changing with workload. 137

Figure 6.9 User-perceived performance under iBalloon. 138

Figure 6.10 Performance of multiple applications due to iBalloon. 140

Figure 6.11 Performance due to various reconfiguration approaches on a clus-

ter of 128 correlated VMs. 141

Figure 6.12 Runtime overhead of iBalloon. 142

ix

LIST OF TABLES

Table 3.1 Request composition in TPC-W. 25

Table 3.2 Different low-level performance under different workloads. 29

Table 3.3 Collected hardware counter metrics. 43

Table 3.4 Prediction accuracy of individual synopsis tested by Browsing mix. 45

Table 3.5 Prediction accuracy of individual synopsis tested by Ordering mix. 46

Table 3.6 Execution time for each machine learning algorithm. 47

Table 3.7 Runtime overhead in collection of low-level metrics. 51

Table 4.1 Application-level performance difference due to dynamic CPU ca-

pacities. 57

Table 5.1 Workload settings. 108

Table 6.1 Configuration dependencies of multi-tier VMs. 119

Table 6.2 Performance improvement due to initial policy learned from dif-

ferent applications and cloud platforms. 136

x

1

Chapter 1

Introduction

The last five years have witnessed a rapid growth of cloud computing in business,

governmental and educational IT deployment. Hosting services in a cloud gradually

supersedes traditional IT products in both small and large companies. It enables small

businesses to have on-demand access to resources that would not likely be available

if they needed to build the infrastructure themselves; it allows large companies to

provide easy and fast application deployment and adaptation to end users, improving

hardware utilization in existing infrastructures. The success of cloud services depends

critically on the effective management of virtualized resources. In this dissertation

work, we aim to design and implement a cloud resource management mechanism

that manages underlying complexity, automates resource provisioning and controls

client-perceived quality of service (QoS).

In this chapter, we introduce the motivation and background of this dissertation

work, discuss the major challenges and present an overview of our solution.

2

1.1 Motivation and Background

Cloud computing usually refers to anything that involves delivering hosted services

over the Internet. The services are made available in a pay-as-you-go manner to

general public [6]. One important cloud offering is to deliver computer Infrastructure-

as-a-Service (IaaS). In this type of cloud, raw hardware infrastructure, such as CPU,

memory, storage and network, is provided to cloud users as an on-demand virtual

server or virtual machine (VM). With the illusion of infinite computing resources

available on demand, software developers can start with small scale systems and

expand hardware resources when application needs increase. It eliminates the up-

front commitment by cloud users for over-provisioned hardware resources, which is

usually planned for peak application demands.

Aside from client-side reduced total cost of ownership (TCO), a key benefit of

IaaS for cloud providers is the increased resource utilization in data centers. Cloud

providers can consolidate traditional web applications into fewer physical servers as-

suming that the peak loads of individual applications have few overlaps with each

other. To achieve elasticity at cloud user side and improve resource utilization at

cloud provider side, hardware resources need to be multiplexed and shared between

different users. This calls for an effective management of virtualized resources that

1) guarantees the Service Level Agreement (SLA) of individual cloud applications in

the presence of time-varying application demands and cloud dynamics; 2) improves

hardware resource utilization in data centers; 3) works in a real-time manner and

provides fine-grained resource control.

Before delving into more details, we define the terms used in this dissertation

work:

• Cloud User is the one who pays for the use of computing resources from the

3

public clouds on a short-term basis. If cloud users use the leased resources to

host services to others, such as an e-commerce website to shoppers, they are

also application service providers. To distinguish the users of the hosted services

and the users of the IaaS cloud, we term them as Application Users and Cloud

Users, respectively.

• Cloud Provider refers to the company that provides cloud-based platform, in-

frastructure and application services to other organizations and/or individuals,

usually with a utility-based payment model. In this dissertation work, we limit

the cloud provider to a IaaS cloud.

• Cloud SLA should specify the levels of service of the cloud infrastructure,

such as availability and performance. Leading cloud providers like Amazon

Elastic Compute Cloud (EC2) only define availability objectives for “uptime”

but no explicit guarantees on performance, such as the reservation on a specific

resource, isolations between users and variations in the resource supply, in the

SLA.

• Cloud Application’s SLA refers to the service contract between the cloud

application provider (i.e. cloud user) and the application users (e.g. online

shoppers). Like the SLAs provided by traditional IT organizations, a cloud ap-

plication’s SLA also defines service level objectives (SLO) regarding application-

specific performance metrics. For example, an e-commerce application may de-

fine performance targets for maximum allowable response time and minimum

throughput.

In this dissertation work, we focus on the resource management scheme that guar-

antees individual cloud applications’ SLA and treat the cloud infrastructure as a

4

black-box. If not otherwise specified, SLA refers to a cloud application’s SLA in the

remaining of the work.

1.2 Challenges in Automatic Cloud Resource Man-

agement

In this section, we first discuss the challenges in managing the performance of

different applications in a shared cloud environment. After that, we discuss the

issues need to be addressed in large scale dynamic cloud systems.

1.2.1 Application-centric Performance Management

For the majority of applications deployed on physical hardware, the industry prac-

tice was to infer their performance by looking at resource utilizations. As new ap-

plications emerge, such as multi-tier websites and web 2.0 applications, it becomes

non-trivial to link hardware utilizations to application-level performance. Due to the

diversity of applications, it is unlikely appropriate to set a uniform utilization thresh-

old as an indicator of abnormal performance. In a shared hosting environment, in

particular a cloud infrastructure, it is desirable to perform application-centric man-

agement for individual applications. One challenge is how to manage applications

with different performance targets in a unified scale. For example, administrators

often need to compare the performance of different applications in order to prioritize

applications having larger degradation with more resource allocations. Another chal-

lenge is how to combine an application’s multiple SLOs into a unified performance

index.

5

1.2.2 Complex Resource to Performance Relationship

In a cloud, application performance depends on the application’s ability to simul-

taneously access multiple type of resources [51]. Accurate resource to performance

models are critical to the design of an automatic resource management. However, the

workload and cloud dynamics make the determination of a system model challenging.

Time-varying application resource requirement. The intensity and mix

of hosted cloud applications can vary considerably over time resulting in changing

demands of multiple resources. There are several difficulties in deriving an resource

to performance mapping. First, there are inherent non-linear relationship between

resource and performance in busy applications making modeling difficult. Second, the

interplay of multiple resources, such as CPU, memory and disk further complicates

the modeling. Finally, some application demands depend heavily on the inputs, which

themselves can not be trivially characterized. For example, an application’s memory

and disk bandwidth requirements depend on its working set size and I/O request

size, both of which can not be easily estimated without intrusive application or guest

operating system instrumentation.

Performance interference between co-resident applications. Although

server virtualization provides security isolation, fault isolation and environment iso-

lation, it does not guarantee performance isolation between co-resident applications.

The interferences may come from centralized virtual machine scheduling. For ex-

ample, in popular virtualization platforms such as Xen [87] and VMware [76], the

processing of privileged instructions, memory writes and I/O requests requires the

cooperation of the centralized virtualization layer (i.e. the hypervisor). Thus, the

performance of one application may be adversely affected by other applications that

aggressively deprive the hypervisor resources. Contentions on shared hardware re-

6

sources can also cause significant performance variation and degradation to co-running

applications. For example, the authors in [96] observed performance degradations as

large as 60% in applications sharing the last-level cache (LLC). The performance

dependencies on other applications again complicates the resource to performance

modeling.

Uncertainties in cloud resources. Although appearing as an infinite and

unified resource pool in the front-end, cloud resources are provided by the background

multiplexing and virtualization of heterogeneous hardware resources. With identical

nominal resource configurations, the actual resources that are available to hosted

applications may vary over time and depend on the type of hardware resources behind

the cloud. The authors in [22, 78] observed distinct application performance, up to a

ratio of 4 on Amazon EC2 VM instances from different service regions.

Commercial virtualization products such as VMware ESX hypervisor try to ad-

dress resource heterogeneity by allocating resources in terms of some well-recognized

metrics. For example, CPU resources are measured by frequency (i.e. MHz) and disk

I/O is measured by bandwidth (i.e. MByte per second). However, these metrics can

not address all the performance variation due to resource heterogeneity. Processors

in new generations may have better pipeline design and larger on-chip cache but are

with a lower frequency. Even with the same processor, scheduling can also cause

significant performance variations on modern multi-core architectures with hetero-

geneous cores and hardware hyperthreading. Cloud users may experience different

virtual disk performance due to disk technologies like Zone-Bit-Recording (ZBR) that

cause different data transfer rates in cloud storage.

7

1.2.3 Process Delays in Resource Allocation.

Process delay is the time between allocating resources and accurate measuring

the effect of the resource allocation on application QoS. In fine-grained cloud man-

agement, VM resource allocation relies on precise operations that set resources to

desired values assuming the observation of instant reconfiguration effect or process

delays would affect the effectiveness of the management. By setting the management

interval to 30 seconds, the authors in [57] observed that under sustained resource

demands, a VM needs minutes to get its performance stabilize after memory recon-

figuration. Similar delayed effect can also be observed in CPU reconfiguration [56],

partially due to the backlog of requests in prior intervals. The difficulty in evaluat-

ing the immediate output of resource allocations makes the modeling of application

performance even harder.

1.2.4 Issues in Large Scale Cloud Management.

In a cloud, hosted applications such as multi-tier websites and parallel computing

programs may run on a group of VMs that span multiple physical hosts. These VMs

form a resource pool. The resource management of these applications requires that

the resource pool should obtain sufficient resources and these resources are properly

distributed to each VM. These multi-VM applications usually involve synchronous

multi-stage execution in which one stage is blocked until the completion of previous

stages. As a result, the performance of the application needs the coordination of all

the physical machines that host the virtual cluster. Due to initial placement and

load balancing, the actual deployment of these VMs can show an arbitrary topology

on physical nodes. As the numbers of physical hosts and VMs increase, the cloud

infrastructure is divided into several sub-clusters, each of which is responsible for the

8

resource allocation of one application. These sub-clusters may or may not overlap

with each other and the topology can change over time. In such a large scale cloud

environment, no centralized management is practical.

1.3 Problem Definition and Objectives

In this dissertation, we aim to design, implement and evaluate a resource manage-

ment mechanism that delivers stable and adaptive control over cloud resources. In

the face of dynamic application demands, the management scheme should leverage

cloud elasticity, transparently “adding” or “removing” virtualized resources at fine

grain to match the workloads. Resource allocations are in response to the observa-

tion of changes in application-level metrics. These metrics include but not limited to

performance metrics (e.g. response time and throughput), expenditure metrics (e.g.

dollars per hour) and energy consumption metrics (e.g. Joule per hour).

Overall, there are two main requirements in the design of automatic resource

management: transparency and assurance. Transparency requires the management

to perform automated resource adjustments during the life time of cloud applications

without cloud users’ intervention. Transparency implies that the resource manage-

ment should be able to translate application SLOs to resource requirements. It also

requires the management to be adaptive to workload and cloud dynamics. Assurance

refers to the guarantee of SLOs in the presence of background management opera-

tions. It requires that the management should be responsive to SLO violations and

be stable during oscillations.

As stated in Section 1.2, the design of automatic resource management should ad-

dress the following challenges: (1) It should define a metric that synthesizes multiple

application-level metrics and measures a VM’s capacity. (2) It should be able to deal

9

with multiple resources. (3) It should employ model-free approaches to handle com-

plex resource to performance relationship. (4) It should be able to provide accurate

resource allocation in the presence of process delays. (5) It should scale well assuming

no information on actual VM deployment.

1.4 Contributions

To build an automatic cloud resource management system, we have studied the

measurement of the capacity of web systems, model-free control of a single virtualized

resource, simultaneous control of multiple virtualized resources for system-wide opti-

mization and cluster-wide cloud resource allocation in a large scale. The contribution

of this dissertation are as following.

Online web system capacity identification. The first contribution of this

dissertation is that we develop a deep understanding in the capacity of online web

systems. The understanding of web system capacity is crucial to capacity planning,

configuration and QoS-aware resource management. Unlike conventional stress test-

ing approaches measuring server capacity offline using a single performance metric,

we propose to use a metric of productivity index (PI), which is defined as the ratio

of yield to cost, to measure the system processing capability online. PI is a generic

concept that can be applied to different levels to monitor system progress in order

to identify if more capacity is needed. We applied the concept of PI to the prob-

lem of overload prevention in multi-tier websites. The overload predictor built on

the PI metric shows more accurate and responsive overload prevention compared to

conventional approaches. The results were published in [59].

Model-free control of virtualized resources. Due to the complex resource to

performance relationship in a cloud environment, it is hard to build a mathematical

10

system model that can be used in classical feedback control. Our first attempt to

address the issue of the lack of accurate server model is to use a model-free control

approach. We extend out previous work on self-tuning fuzzy controller (STFC) for

the QoS assurance in physical web servers to the problem of resource allocation in a

dynamic cloud environment. By introducing extra layers of output amplification and

flexible fuzzy rule selection, the proposed STFC outperform other popular controllers

in CPU resource allocation. We also present the design of DynaQoS, an adaptive and

multi-purpose QoS provisioning framework based on STFC. This work was published

in [58].

Concurrent control of multiple resources for system-wide optimization.

In this work, we further improve the automatic resource management in three aspects.

First, we extend the automated resource allocation to manage multiple resources.

Second, in addition to guaranteeing cloud users’ SLA, we also optimize the system-

wide performance of the hosting server. Finally, to avoid the performance degradation

and oscillation caused by the resource reconfigurations, we optimize the process of

reconfiguration operations. We present VCONF, a reinforcement learning-based auto-

configuration agent for physical nodes. Reinforcement learning is in nature a model-

free and adaptive method and fits well in the system-wide resource allocation. To deal

with multiple resources and improve the scalability and adaptability of the learning

approach, we propose a model-based reinforcement learning algorithm that makes

efficient use of collected system information. The work was presented in [57].

Cluster-wide cloud resource management. In this work, we present a dis-

tributed reinforcement learning approach to the cluster-wide cloud resource manage-

ment. We decompose the cluster-wide resource allocation problem into sub-problems

concerning individual VM resource configurations. The cluster-wide allocation is

optimized if individual VMs meet their SLA with a high resource utilization. For

11

scalability, we develop an efficient reinforcement learning approach with continuous

state space. For adaptability, we use VM low-level runtime statistics to accommodate

workload dynamics. Prototyped in a iBalloon system, the distributed learning ap-

proach successfully manages 128 VMs on a 16-node closely correlated cluster. More

details can be found in [56].

1.5 Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2 gives an overview on existing approaches on capacity management.

We start with the resource management in physical systems and then discuss the

virtualized resource management in cloud systems.

In Chapter 3, we study the measurement of the capacity of online web systems.

We first show that offline measurement of server capacity with a single metric lacks ac-

curacy and responsiveness especially in multi-tier websites. We define a productivity

index to monitor system progress, based on which a two-layer coordinated predictor

is proposed to infer overload problems and identify the resource bottleneck. We eval-

uate the effectiveness of the approach in terms of prediction accuracy on a multi-tier

E-commerce benchmark and show how accurate capacity prediction can help online

admission control.

In Chapter 4, we present a model-free approach to control the CPU allocation

in a virtual cluster. We first give motivating examples showing that it is difficult to

determine a system model in a dynamic cloud environment. After that, we present the

design of the self-tuning fuzzy controller and a two-layer QoS provisioning framework

that supports multi-objective and service differentiation. We compare the proposed

model-free control approach to three other popular controllers and show that STFC

12

has better control performance.

In Chapter 5, we extend the single resource allocation to multiple resources on a

physical node. We first show that complex interplay between multiple resources can

affect system-wide performance, and then demonstrate how process delay in resource

allocation makes fine-grained resource allocation difficult. To address the issues, we

propose a model-based reinforcement learning approach, namely VCONF and elab-

orate its implementation details. Finally, experiments with multiple heterogeneous

applications show VCONF’s effectiveness in optimizing system-wide with acceptable

performance degradation.

In Chapter 6, we present iBalloon, a cluster-wide cloud resource management

system based on distributed reinforcement learning. We first review the challenges

in cluster-wide resource management and give details on the design of iBalloon. We

discuss the state space definition, feedback signal and a highly efficient adaptive

learning engine. In the evaluation, we study the sensitivity of learning parameters,

effectiveness of the learning engine, scalability and overhead.

Chapter 7 concludes this dissertation with summaries of our approaches and di-

rections for future work.

13

Chapter 2

Related Work

2.1 Capacity Identification

Server capacity determination is crucial to the problem of resource planning, con-

figuration, and QoS-aware resource management. Early work on server capacity mea-

surement [8] focused on how to generate synthetic workload to stress test the server

capacity. Studies in [18] defined a set of benchmarks for stress testing the basic capac-

ities of streaming servers. Unlike their offline measurement approaches, our approach

focuses on online measuring the capability of servers for the purpose of request-specific

QoS-aware resource management.

Server capacity measurement is necessary for admission control and QoS-aware

resource management. An admission controller should know when to turn away ex-

cessive requests, and the overload control mechanism should be invoked whenever

the server capacity is reached. Most of the past work employed a single rule of

thumb to measure server capacity based on application level metrics such as length

of the web server request queue [62], incoming traffic density [15, 16], and request re-

sponse time [84, 34, 25]. In [84], the authors employed a SEDA structure for response

14

time-based admission control. The architecture has no mechanism for capacity mea-

surement. Instead, it used the target response time to a conservative value so as to

simplify the design of their admission controller. In [34], half of the most restrictive

request response time guarantee was used as the threshold for controlling the incom-

ing request rate. In [25], a measurement-based admission control approach was based

on the execution time of requests. However, they assumed a non-preemptive shortest

job first scheduling policy in the database server. As a result, the requests would

have predictable processing time, independent of the server load condition. It makes

it possible to estimate system utilization by monitoring admitted requests. Most of

application servers are run in a processor sharing policy. In such servers, the process-

ing time of a request is affected by other requests in concurrent execution. Even with

a time-based server capacity estimate, request response time can no longer be used

as a reference to calculate server utilization.

There were other QoS-aware resource management work that measured server ca-

pacity based on OS level metrics, such as server CPU utilization [23, 17], or hardware

performance counter metrics [26]. However, in multi-tier servers, bottleneck resources

may shift from tier to tier due to the dynamics of workload and it is difficult to set

threshold values for capacity estimation. Our approach uses a combination of these

metrics and does not require specifically setting the threshold values for each metric.

Our work in capacity identification is closely related to [19, 90, 20, 24] in that

we use similar statistical models to capture underlying server characteristics. Duan

and Batu proposed to use synopses in forecasting future event based on historic

data [24]. Cohen et al. proposed to use TAN in computer systems [19] and Zhang

et al. [90] improved the model accuracy by maintaining an ensembles of models,

In [20], Cohen, et al. suggested to use the model to generate system signatures for

the purpose of performance problem diagnosis. Our approach is different from theirs

15

in the following aspects. First, we aim at real-time server capacity measurement,

while theirs targeted at recursive problem identification. Second, they developed

correlation for busy servers rather than overloaded systems. After determining the

maximum concurrent level, they set steady state workload at 50-60% of the maximum

level. Most importantly, we use multiple synopses for multi-tiers. The prediction

results from the synopses are combined together to identify server capacity as well

as the bottleneck tier. Wildstrom et al. also employed a similar idea using system

level metrics for high level decision making [86]. However, their goal was to maximize

throughput by reconfiguring hardware under different traffics rather than overload

prevention. We used a hardware metrics based derived index to monitor system

health instead of simply using OS metrics for workload identification.

2.2 Autonomic Management in Traditional Sys-

tems

Early work in autonomic computing [1] aimed to develop computer systems of self-

management to overcome the rapidly growing complexity of system management.

Recent work often focuses on the design and implementation of self-healing, self-

optimization and self-configuration systems.

Self-healing systems automatically discover and correct faults. In [21, 91], Cohen,

et al. suggested to use a machine learning model to generate system signatures for

the purpose of performance problem diagnosis. They correlated system low-level met-

rics to high-level performance states. By monitoring sensor readings, the statistical

approach was able to narrow down possible faults. In [59], we defined a performance

index to measure the system health based on hardware performance counters. A

16

bayesian network model was assumed to automatically map hardware events to sys-

tem overload state. Studies in [11] reduced downtime of J2EE applications by rapidly

and automatically recovering from transient and intermittent software failures, with-

out requiring application modifications.

Self-optimization systems automatically monitor and control resources to ensure

optimal performance with respect to defined requirements. Control theory has re-

cently been applied in computer systems for performance optimization. Similar self-

tuning adaptive controller were designed in [38, 40] for multi-tier web sites and storage

systems. There are other efforts towards automatically allocating resources in a fine

grain to individual requests using fuzzy control [80, 44].

Self-configuration systems automatically adapt software parameters, hardware re-

sources for the purpose of correct function or better performance. In [66], AutoBash

leveraged causal tracking support in Linux to automate tedious parts of fixing a

mis-configuration. Chronus in [85] used checkpoint and rollback for configuration

management to diagnose kernel bugs.

2.3 Automated Cloud Resource Management

Cloud computing allows cost-efficient server consolidation to increase system uti-

lization and reduce cost. Resource management of virtualized servers is an important

and challenging task, especially when dealing with fluctuating workloads and perfor-

mance interference. Recent work demonstrated the feasibility of statistical analysis,

control theory and reinforcement learning to automatic virtual server resource allo-

cation to some extent.

17

2.3.1 Single Resource Management

Early work [52, 65] focused on the tuning of the CPU resource only. Padala, et

al. employed a proportional controller to allocate CPU shares to VM-based multi-tier

applications [52]. This approach assumes non-work-conserving CPU mode and no

interferece between co-hosted VMs, which can lead to resource under-provisioning.

Recent work [37] enhanced traditional control theory with Kalman filters for stability

and adaptability. But the work remains under the assumption of CPU allocation.

The authors in [65] applied domain knowledge guided regression analysis for CPU

allocation in database servers. The method is hardly applicable to other applications

in which domain knowledge is not available.

The allocation of memory is more challenging. The work in [31] dynamically con-

trolled the VM’s memory allocation based on memory utilization. Their approach

is application specific, in which the Apache web server optimizes its memory usage

by freeing unused httpd processes. For other applications like MySQL database,

the program tends to cache data aggressively. The calculation of the memory uti-

lization for VMs hosting these applications is much more difficult. Xen employs

Self-Ballooning [46] to do dynamic memory allocation. It estimates the VM’s mem-

ory requirement based on OS-reported metric: Commited_AS. It is effective expanding

a VM under memory pressures, but not being able to shrink the memory appropri-

ately. More accurate estimation of the actively used memory (i.e. the working set

size) can be obtained by either monitoring the disk I/O [35] or tracking the memory

miss curves [92]. However, these event-driven updates of memory information can

not promptly shrink the memory size during memory idleness.

18

2.3.2 Multiple Resources Management

Automatic allocation of multiple resources [51] or for multiple objectives [42] poses

challenges in the design of the management scheme. Complicated relationship be-

tween resource and performance and often contradicted objectives prevent many work

from being automatic but heuristic. Padala, et al. applied an auto-regressive-moving-

average (ARMA) model with success to represent the allocation to application per-

formance relationship. They used a MIMO controller to automatically allocate CPU

share and I/O bandwidth to multiple VMs. However, the ARMA model may not

be effective under steady workload because the recursive least square (RLS) method

is effective only when there is enough steepness between two consecutive measure-

ments. The authors also rely on the assumption that drastic variations in workloads

that cause significant changes in the model parameters are rare, which limits the ap-

plicability of this approach to wider range of platforms. Most importantly, the cost

function which directs the resource allocations does not emphersize on the release of

unused resources. In another words, the proposed approach can not properly shrink

the VM if needed.

2.4 Reinforcement Learning in Autonomic Con-

trol

Different from the above approaches in designing a self-managed system, RL offers

tremendous potential benefits in autonomic computing. Recently, RL has been suc-

cessfully applied to automatic application parameter tuning [10, 14], optimal server

allocation [68] and self-optimizing memory controller design [33]. Autonomous re-

source management in cloud systems introduces unique requirements and challenges

19

in RL-based automation, due to dynamic resource demand, changing topology and

frequent VM interference. More importantly, user-perceived quality of service should

also be guaranteed. The RL-based methods should be scalable and highly adaptive.

We attempted to apply RL in host-wide VM resource management [57]. We addressed

the scalability and adaptability issues using model-based RL. However, the complex-

ity of training and maintaining the models for the systems under different scenarios

becomes prohibitively expensive when the number of VMs increases. In contrast, we

fundamentally change the way resource allocation was perceived in iBalloon [56]. In a

distributed learning process, iBalloon demonstrated a scalability up to 128 correlated

VMs on 16 nodes under work-conserving mode.

20

Chapter 3

Online Web Systems Capacity

Identification

3.1 Introduction

Understanding of server capacity is crucial to server capacity planning, configu-

ration and QoS-aware resource management. It is known that a server can be run in

one of the three states: underloaded, saturated, and overloaded. When the server is

underloaded, its throughput grows with the increase of input traffic rate until a satu-

ration point is reached. The saturated throughput may not stay unchanged when the

input rate continues to increase. It may drop sharply due to resource contention and

algorithmic overhead for load management [29]. Knowledge about the server capacity

could help measurement-based admission controller in the front-end to regulate the

input traffic rate so as to prevent the server from running in an overloaded state.

Moreover, for input traffic of multi-class requests, server capacity information can

also be used by a back-end scheduler to calculate the portion of the capacity to be

allocated to each class for service differentiation and QoS provisioning [25, 81, 88].

21

An industry standard approach to server capacity measurement is offline stress-

testing using benchmarks [18]. It views the server as a blackbox and observes the

change of server performance in terms of application-level metrics like response time

and throughput with the increase of input load. It approximates server capacity to

be the saturated throughput or the system throughput when the observed response

time starts to rise abruptly. These offline profiling approaches are limited to systems

with static resource configuration. They cannot be applied to today’s highly reliable

and available servers that are capable of dynamic resource configuration through

techniques like hot-swapping and dynamic frequency/voltage scaling [93].

Application-level performance metrics like response time and throughput are good

intuitive measures. However, they have limitations in accuracy and timeliness when

they are used for fine-grained QoS-aware resource management. It is known that re-

quests of an e-commerce transaction have very different processing times and the times

also tend to change with server load condition. As a result, request-specific response

time becomes an ill-defined performance measure in stress-testing of server capacity.

There were studies on the use of mean response time to characterize the server load

change in statistics. Welsh and Culler showed that 90th-95th percentile response time

represented the shape of response time curve more accurately, in comparison with av-

erage or maximum time [84]. However, setting a request-specific response time value

for admission control remains non-trivial. In [47], Mogul presented a case that a mis-

configuration of the response time threshold could possibly cause the system to enter

a live-lock state. In practice, the threshold is often set conservatively. For example,

Blanquer et al. [34] set a threshold to a half of the target response time of the most

restrictive requests for the admission controller to regulate the incoming traffic rate.

Such a conservative estimation of the server capacity by setting a low threshold value

is equivalent to resource over-provisioning.

22

Besides the limitation in accuracy, server processing capability measured in application-

level response time may not be a timely measure for fine-grained resource manage-

ment. The observed response time of past requests may mislead the front-end admis-

sion controller to wrong decisions because of the presence of long deadtime of requests

in a multi-tier website. That is, there is a non-negligible delay from the time a request

is admitted to the time its response is observed. Processing tasks of the request could

be queueing blocked in many places, particularly when a system is heavily loaded.

In a multi-tier website, processing of a request often involves multiple system

components in different tiers. Saturation of the system in the processing of one type

of requests may not necessarily mean it cannot handle other requests. Bottleneck may

also shift dynamically. Response-time based server capacity measurement provides

little insight into constrained resources.

These motivated us to develop an online capacity measurement approach, based

on low-level system running statistics. Modern processors are all equipped with a set

of performance monitoring registers to record detailed hardware-level system informa-

tion during the execution time of each application. The information includes a large

group of parameters like instruction mix, rate of execution, memory access behaviors

and branch prediction accuracy [63]. Together, they define a system internal running

state and reflect aggregated effects of the requests in concurrent execution. Questions

are how to define a small group of relevant parameters to characterize the system load

condition accurately, how to map them onto a high level system overload/underload

status, and more importantly how to identify bottleneck resource when the system

becomes overloaded.

In this chapter, we present effective and efficient solutions to these questions.

Specifically, we develop models involving a small set of hardware performance counter

metrics to characterize the system state of each server. We further develop a two-

23

tier coordinated real-time classification approach to infer system overload/underload

state and identify resource bottleneck. We evaluated the approach in a two-tier Tom-

cast/MySQL website using TPC-W benchmark. Experimental results demonstrated

its effectiveness and efficiency.

3.2 Limitations of A Single Response Time Metric

Response time is an application-level intuitive metric for understanding server ca-

pacity and user-experienced service quality. However, it is insufficient for the design

of request-specific admission control and fine-grained QoS-aware resource manage-

ment, particularly in multi-tier websites. In this section, we give a brief overview of

the dynamics of websites and show limitations of the metric.

3.2.1 Dynamics of a Multi-tier Website

In its simplest form, a website consists of a web server in the front-end, a database

server in the back-end, and an application server in the middle to implement the ap-

plication logic. A configuration example is a Tomcat servlet engine [75] for combined

web and application servers and a MySQL [48] for the database server.

Processing of transactional requests often goes through four phases: web protocol

parsing, application servlet execution, database connection establishment, and SQL

query processing. They are synchronous in the sense that one phase is not finished

without the completion of the subsequent phases.

Servers often deploy a multi-threaded processing model to process multiple re-

quests simultaneously. In Tomcat, concurrency is set by a group of system configura-

tion parameters regarding of the maximum number of threads to be run in parallel.

Requests will be queueing blocked, if there are no available threads. Requests in

24

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

110

Number of Clients

W
eb

 in
te

ra
ct

io
ns

 p
er

 s
en

co
nd

TPC−W throughput curve

Browsing mix
Shopping mix
Ordering mix

(a) Throughput

TPC-W response time curve

Number of Clients

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 200 300 600 700 800 9001000

90
th

 p
er

ce
nt

ile
 re

sp
on

se
 ti

m
e

(s
)

0

10

20

30

40 Browsing mix
Shopping mix
Ordering mix

(b) Response time

Figure 3.1: Performance of a website in different TPC-W traffic mixes.

processing could also be blocked, waiting for connections to the database server.

In the database server, SQL queries generated by different servlets are not nec-

essarily executed in the same order as they arrive. Because they are executed as a

batch of interleaved queries, requests in processing may be even been blocked inside

the database server.

3.2.2 Website Capacity Identification

In general, a transaction processing system has a saturation point (upper bound)

of the throughput the system could produce, as its load increases. After the “upper

bound” is reached, the system throughput will either drop because of thrashing or

maintain at a saturation level, but with decreased service quality [29]. In order to

fully utilize the system resource, admission control must be applied before the system

reaches this saturation bound.

We conducted experiments in a typical Tomcat/MySQL website setting, using

TPC-W benchmark [72]; Please see Section 5 for details of the test-bed and TPC-

W benchmark. TPC-W defines three input traffic mixes: browsing, shopping and

25

ordering, with different request profiles. Table Table 3.1 summarizes the profile of

each mix.

Table 3.1: Request composition in TPC-W.
Browsing Shopping Ordering

Browsing request 95% 80% 50%
Ordering request 5% 20% 50%

Figure Figure 3.1(a) shows the throughput curve of these three mixes, in terms of

web interactions per second (WIPS), as the number of concurrent clients increases.

It is expected that the website would have different processing capacities in different

input traffic mixes. With an input of ordering mix, the system throughput drops

sharply after it goes beyond the system capacity. In contrast, the throughput stabi-

lizes for the browsing and shopping mixes. This is because browsing related requests

tend to put more pressure on the back-end database server, while ordering requests

more likely cause CPU overload on the front-end application server. The figure also

demonstrates that the bottleneck tend to shift with the change of input patterns.

Figure Figure 3.1(b) shows the 90th percentile response time under different input

traffic patterns and different load conditions. The figure shows that for inputs in a

browsing mix, the response time increases sharply when the input load goes beyond

the system capacity, although the throughput remains unchanged.

Measurement-based admission control needs an online system performance metric

to represent the current system load condition. Request response time is a widely used

intuitive system load indicator and the metric is easy to monitor online. However,

response time-based approach has limitations:

1. It is hard to find “good” thresholds that differentiate “underload” and “over-

load” system states, because different requests have a large variety of response

26

times and their execution times varies in different load conditions.

2. Response time of a request can not be measured until the request is completed.

It reflects the system status in past time windows, rather than the system’s

current load condition. Figure Figure 3.2 shows the change of response time in

an experiment, in which we injected load spikes at time of 1800th and 5400th

second. From the microscopic view of the plot, we can see that the spike at the

5400th second can not be detected in 10 seconds based on response time.

3. Request processing involves many resources in different tiers. The response time

metric provides little insight into the bottleneck tier or constrained resources.

Since different types of requests put pressure on different tiers of the system,

it is possible that, under heavy load, the system’s resource bottleneck shifts

from one tier to another when the input traffic pattern changes. Using request

response time as a system load indicator masks the underlying system load

dynamics, and hinders the efficiency of admission control.

Response time measures the system processing capacity based on application-

level observation. An alternative is to measure the capacity in lower level system

performance metrics.

3.3 Lower Level System Performance Metrics

A system provides a rich set of performance metrics in both hardware and Oper-

ating System (OS) levels. Their statistics represent the internal performance states at

run-time. Each internal state contributes to a high-level “underload” or “overload”

state. Identifying the system state using lower level performance metrics poses three

challenges: (1) What metrics should be used to characterize the high level perfor-

27

0 1500 3000 4500 6000 7500 9000 10500 12000
10

−6

10
−4

10
−2

10
0

10
2

10
4

time(s)

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e

tim
e(

s)

5380 5400 5420
0

0.5

1

1.5

2

spike
x=5400

delay
x=5410

Figure 3.2: Response times in transient spike

mance state; (2) How to infer high level performance states such as “underload” and

“overload” from the statistics of the metrics; (3) How to identify the bottleneck tier

in a multi-tier website, based on the runtime statistics of each tier. We will discuss

the first two challenges in this section and leave the third in Section 4.

3.3.1 Revisit of the Concept of Capacity

System capacity often refers to the maximum amount of work that can be com-

pleted during a certain period of time. We refer to the amount of completed work as

yield and the amount of resource consumed during the time as cost. An overloaded

system means that its cost keeps increasing but with stagnated or compromised yield.

We define a metric of productivity index (PI) as the ratio of yield to cost and use it

to measure the system processing capability:

PI =
Y ield

Cost
.

This is a generic concept and yield and cost can be defined at different system

28

abstractions or under different workload scenarios. By defining yield to be the number

of requests and cost as the wall time, PI becomes equivalent to application-level

throughput. Today’s modern processors are all equipped a number of Hardware

Performance Counters (HPC) that provide a rich source of statistical information

on application execution. This information includes but not limited to memory bus

access pattern, cache reference and pipeline execution information. By defining yield

as instructions-per-cycle and cost the stalled CPU cycles or cache miss rate, the PI

metric reflects the instruction-level productivity.

The concept of productivity can also be defined at OS level. We argue that OS

level metrics like CPU utilization may not be a good metric for system performance.

The following example shows that CPU utilization fails to reflect application level

performance. Consider the following two code segments on a 2.0GHz Pentium 4

machine with 512 KB L2 cache and 512 MB memory.

#define NUM_ITERS 10000

double matrix[65536*8];

int stride=8;

void Sequential(void) {

for(line = 0; line < 65536*8; line += stride)

for(offset = 0; offset < stride; offset++)

for(i = 0; i < NUM_ITERS; i++) {

temp += matrix[line+offset];

}

void Stride(void) {

for(i = 0; i < NUM_ITERS; i++)

for(offset = 0; offset < stride; offset++)

for(line = 0; line < 65536*8; line += stride)

temp += matrix[line+offset];

}

Sequential() accesses consecutive memory locations while Stride() visits memory

29

Table 3.2: Different low-level performance under different workloads.
Workload IPC L2 (%) CPU% User% Time (s)

Sequential 0.31 0.03 100% 99.7% 41.4
Stride 0.13 0.92 100% 99.5% 230.5

in strides. Table Table 3.2 shows the execution time for each segment and the statistics

reported by OS metrics (CPU% and User%) and hardware counters level metrics

(IPC (Instruction Per Cycle) and L2 cache miss rate). The OS metrics shows no

performance difference between the two programs. In comparison, hardware-level

metrics, IPC and L2 miss rate, reflect application-level performance more accurately.

More studies about the selection and effectiveness of hardware-level PI will be given in

Section 6. In the following, we use hardware-level PI to measure the system capacity.

For online identification, the single PI metric is not enough to identify system

state because any change of PI can be either due to the system capacity or the input

load change. For example, a decrease in the incoming workload can lead to a smaller

value of PI. But a decrease in PI with sustained or increasing workload can only be

due to a system overload. During offline classification, we keep increasing client traffic

and label the system state as “underload” until PI begins to drop, from which we

label the system state as “overload”. During the above process, we take snapshots

of hardware counter metrics and develop an online model to correlate them to each

high-level system state in a machine learning approach. The model makes it possible

for online prediction of system state, for a given set of hardware statistics.

In the following, we give the details of the modeling and learning approach.

30

3.3.2 Definition of Performance Synopsis

We define a performance synopsis data structure to represent the correlation be-

tween a set of lower-level performance metrics and their corresponding high-level

system states. Formally, let U = {A1, ..., An} be a set of attribute variables, in which

Ai can be any individual hardware counter performance metric such as number of

L2 cache misses. Adding a class variable C into U , we have U∗ = {A1, ..., An, C}.

The class variable can be any type of system state. In capacity identification, it is a

binary variable, taking value of 1 (“overload”) or 0 (“underload”). Each attribute Ai

can be instantiated by assigning a measured value ai during each sampling interval.

Instantiating all variables in U∗ results in an instance u∗.

For a training set D = {u∗1, ..., u∗N} with N instances, we build a synopsis to

capture the relationship between the group of attributes A1, . . . , An and class C. We

denote it by SY N({A1, ..., An}, C).

Attribute Selection

A system often contains a large number of low-level performance metrics that

can be measured online. For example, Linux provides over 100 OS-level metrics; Intel

CPU contains hardware performance counters for more than 20 parameters. Including

too many attributes in a synopsis could be time complexity prohibitive.

Furthermore, irrelevant attributes in a synopsis may even cause a loss of prediction

accuracy. It is desirable to select most relevant attributes in the training set to reduce

computing complexity and avoid noises. We apply the concept of information gain

in information theory to evaluate the relevance between each attribute and the class

variable. Information gain is the reduction of entropy about the classification of a

test class based on the observation of a particular attribute. For an attribute Ai, its

31

information gain in any class of C can be calculated as follows:

G(C,Ai) = H(C)−H(C|Ai)

= −
∑
c∈C

Prob(c) log2 Prob(c) +∑
a∈Ai

∑
c∈C

Prob(a, c) log2 Prob(c|a),

where H(C) is the entropy of class variable and H(C|Ai) is the conditional entropy

of class variable given the attribute variable Ai. Attribute selection is an iterative

process, in which the most relevant attribute is added to the attribute set each time

only if its addition improves synopsis accuracy. The overall accuracy of a synopsis is

evaluated by a 10-fold cross validation method [41].

Construction of Synopsis and Prediction

A synopsis builder is essentially a machine learning algorithm that generates a

synopsis from a training set. In the following, we first present the overview of four

representative algorithms that are to be used for synopsis construction. Impact of

the algorithms on the prediction accuracy will be discussed in Section 3.6.2.

Linear regression (LR): Linear regression is a regression method that mod-

els the linear relationship between a dependent variable C, independent variables

A1, ..., An, and a random term ε. To build the LR model is to estimated the coeffi-

cients of each Ai and ε that best fit in the training set D.

Naive bayes (Naive): Bayesian network is a powerful tool to represent joint

probability distributions over a set of random variables. It is often made up of two

components: a directed acyclic graph Bs and a set of conditional probability tables

32

Bp. Naive bayes is one of the most effective bayesian classifiers. It makes a strong

independence assumption: all attributes Ai are conditionally independent given the

value of class C.

Tree augmented naive bayes (TAN): Unlike Naive bayes, TAN allows the

generated Bs to represent correlations between attributes A1, ..., An [27]. The cor-

relations between attributes are captured by imposing a tree structure on the naive

Bayesian structure.

Support vector machine (SVM): SVM performs classification by constructing

an n−1 dimensional hyperplane that optimally separates the data into two categories.

Different from other classifiers, SVM is able to find out the maximum separation

between the two classes.

For a synopsis trained from a set D, we consider a set of testing instances p∗,

each with a similar structure with the instances in D. For each instance p∗, the

same training algorithm of the synopsis is re-applied to generate a prediction C ′ with

respect to the class variable C of the instance. We represent the prediction algorithm

as function Predict(). That is, C ′ = Predict(SY N, p∗). If C ′ = C, the prediction is

correct, otherwise incorrect.

3.4 Two-Level Coordinated Website Capacity Iden-

tification

The preceding section shows the modeling and learning processes to correlate

lower-level performance metrics to high level system state in a single server. In a

multi-tier website, each server has a PI reference for “underload” and “overload”

states. Because the bottleneck may shift between tiers, there are two challenges in

33

the website capacity identification: (1) which PI reference should be used to identify

the entire system state offline; (2) which synopsis should be used to predict system

state online? We give an overview of the two issues and a solution to the first issue

in Section 4.1. The rest of this section is about our coordinated learning approach to

the second challenge.

3.4.1 Website Capacity Identification Framework

It is expected that the metrics from a bottleneck tier have the strongest correlation

to high-level performance. We select the corresponding PI reference as a measure of

the website capacity. We define a correlation index Corr(PI, r), in a way similar to

[63], between the PI and high level performance metric r (e.g. throughput) over a

time period t:

Corr(PI, r) =
Cov(PI, r)

σPI · σr
=

∑q
j=1(PIj − PI)(rj − r)

q · σPI · σr

where q is the number of (PI, r) pairs sampled during the time t. The correlation

index between PI and r is calculated using their means PI, r and standard deviations

σPI , σr in the q samples. The PI with the largest Corr(PI,r) value will be selected as

the measure of the entire system capacity.

Internet traffic contains different types of requests (e.g. browsing and ordering)

and their mix may change with time. Variations of the request composition would

affect the performance of a multi-tier website and may even lead to bottleneck shift

between tiers. Recall that synopses on each tier are constructed based on specific

traffic patterns. Intuitively, a synopsis due to a specific workload is unlikely to be

accurate for traffic whose bottleneck lies in another tier. We build synopses on each

tier for representative workloads. The workload selection will be discussed in Section

34

Traffic
specific
synopsis

Coordinated Predictor

Tier 1 Tier K

Tier 1 server run-time
statistics

Tier K server run-time
statistics

Prediction
Prediction Prediction

Prediction

Final prediction

Traffic
specific
synopsis

Traffic
specific
synopsis

Traffic
specific
synopsis

dependencies dependencies dependencies

…...

Figure 3.3: The two-level coordinated prediction framework.

5.

For a given set of runtime statistics under a traffic pattern, each workload-specific

synopsis will be used to make a prediction. To make a global system state prediction,

we propose a two-level coordinated learning scheme which dynamically selects the

best synopsis for the given traffic pattern. Following are the details of the scheme.

The capacity measurement framework employs a two-level hierarchical architec-

ture, a group of performance synopses in the bottom and a coordinated predictor at

the top. Figure Figure 3.3 shows the structure. The two-level coordinated prediction

architecture takes runtime statistics on each tier machine as inputs. Based on these

inputs, individual synopses generate their predictions in regard to system high-level

states. Final state prediction will be made in the coordinated predictor by combining

these individual predictions.

Although a synopsis is specific to tiers and traffic patterns, the relationship be-

35

tween low level metrics and system state defined by the synopsis remains valid in

the presence of workload changes, as long as the bottleneck remains in the same

tier. When the workload changes make the bottleneck shifting to another tier, a

new synopsis should be selected. The coordinated predictor selects the best synopses

dynamically by studying the spatial (synopsis-wise) and temporal patterns among

predictions of individual synopses.

Note that a synopsis with less accuracy with regard to certain workloads does not

mean that it provides no information for the global system state. Given a workload,

predictions from synopses have spatial patterns. For example, synopses might make

consistent predictions for certain workloads although the predictions are not correct.

Many performance problems manifest not as a single major shift in system behavior

but rather as a series of subtle changes. In addition to spatial prediction patterns,

temporal patterns among consecutive predictions are also observed in the coordinated

predictor.

3.4.2 Coordinated Two-level Predictor

The coordinated predictor is designed as a two-level predictor to capture spatial

and temporal patterns in synopses predictions. The coordinated predictor is similar

in structure to a branch predictor in superscalar processors [89]. Figure Figure 3.4

shows the structure of the two-level predictor.

The first level is a Global Pattern Table (GPT) which represents synopsis-wise

patterns. Each entry in GPT is a Global Pattern Vector (GPV). A GPV is an

m-bit vector (m is the number of synopses), and each bit Ri represents the pre-

diction result of corresponding synopsis during a sampling interval τ . That is,

Ri = Predict(SY Ni, p
∗
τ). The GPT enumerates all the possible patterns of GPV,

36

thus it has 2m entries.

The second level are Local History Tables (LHTs) that record the last h prediction

results of the specific pattern in GPT. For each of these 2m patterns, there is a

corresponding LHT in the second level which contains the occurrences of different

temporal patterns. Each entry of a LHT is referred to as Local History Bits (LHB),

denoted by Hc. It is used for making the coordinated prediction. The coordinated

prediction is C ′′ = λ(Hc), where λ is the prediction decision function. The length

of LHB determines the size of the LHT table. For example, if LHB contains v bits,

which records the last v prediction results (h = v), the corresponding LHT has 2v

entries.

Along with the two-level predictor for the system state prediction, we also include

a simple bottleneck predictor in the coordinated predictor. The bottleneck predictor

is implemented by adding an extra Bottleneck Pattern Table (BPT) to the second

level. Each entry in the BPT is a Bottleneck Vector (BV) which is indexed by GPV,

as well. The bottleneck prediction is B′ = λb(bK , ..., b1), where λb is the bottleneck

decision function.

3.4.3 Training and Prediction

To exploit the spatial and temporal prediction patterns, the coordinated predictor

needs to be trained. The training process is to determine the values of LHB Hc in

each LHT. Initially, all Hc are set to 0. The values of Hc are learned from all the

instances from which each individual synopsis is built. The training process includes

the following steps:

1. Given an instance u∗i , generate predictions from each synopsis. Combining

these predictions forms a GPV. Then the GPV, denoted as a binary sequence

37

0 ……

……

……

……

0
0 1

1
1 1

0

Global Pattern Table
(GPT)

0R......
1mR −

Local History Tables
(LHTs)

00 … 00
00 … 01

11 … 10
11 … 11

Index

0H
1H

vH
1vH −

K 1

…

…

Bottleneck Pattern Table
(BPT)

Index

Figure 3.4: The structure of the two-level predictor.

of < Rm−1...R0 >, is used to find the corresponding LHT.

2. In the LHT, the local history bits Hc is indexed by last h prediction history.

Update the value of the corresponding Hc for each instance u∗i as follows: If

the value of the class variable in u∗i equals to 1, increase Hc by 1, otherwise

decrement by 1.

The training of the bottleneck predictor is similar except that instead of learning

Hc values, the values for each bK , ..., b1 should be trained. For bottleneck identi-

fication, we manually augment a training instance u∗i with information about the

bottleneck tier. For example, if the class variable in instance u∗i has a value of 1

and tier i is the bottleneck for current workload, update bi as bi = bi + 1, otherwise

bi = bi − 1.

38

The coordinated predictor is used to make online global system state predictions

as well as bottleneck tier predictions. The bottleneck predictor is only invoked when

the system state prediction is 1. For system state prediction, the predictor finds

the corresponding Hc according to the current value of GPV. During each sampling

interval, the coordinated prediction is made using the prediction decision function

C ′′ = λ(Hc), where

λ(Hc) =

1 if Hc > δ;

φ(Hc) if −δ ≤ Hc ≤ δ;

0 if Hc < −δ,

where δ is a threshold for Hc which describes the confidence in Hc making a prediction.

A large δ prevents the predictor from making a prediction unless current spatial

and temporal prediction patterns occur a large number of times in previous workloads.

Setting δ to a small value relaxes the restriction. For any δ > 0 there exists an interval

[−δ, δ], in which the predictor is not sure what prediction to make.

We develop two heuristic schemes to select a prediction: an optimistic scheme

and a pessimistic scheme. These two schemes are different in function φ(Hc). The

optimistic scheme always makes a prediction of 0 (underload) when Hc ∈ [−δ, δ],

while the pessimistic always predicts as 1 (overload).

For the bottleneck predictor, whenever the state predictor predicts as 1, it out-

puts bottleneck information. The bottleneck decision function is λb(bK , ..., b1) =

arg max
i

(bi). That is to choose the tier having the largest value in its corresponding

bit in bK , ..., b1 as the bottleneck.

39

3.4.4 An Example

We use an example to illustrate the two-level predictor. Suppose the website has

two tiers: application (AP) and database (DB) tiers, and it takes two different types

of input: browsing (B) and ordering (O). There are altogether four (m = 4) synopses:

AP-O, AP-B, DB-O and DB-B in the GPT, representing synopses for different in-

puts on different tiers. An coded GPV like (0101) means the predictions of the four

synopses are “underload”, “overload”, “underload”, and “overload”, respectively. As-

sume that LHB records the last three overall system state predictions (i.e., h=3), and

they are “underload”, “overload”, “overload”, respectively. The corresponding entry

Hc in (0101)-indexed LHT is in the address of 110. Suppose the threshold δ is initially

set to 5. For any Hc larger than δ, the predictor will forecast an “overload” state.

3.5 Evaluation Methodology

To evaluate the two-level coordinated website capacity measurement, we built a

test-bed of multi-tier e-commerce website according to the classic TPC-W benchmark.

In our test-bed, the multi-tier website consists of two tiers: front-end application

server and back-end database server. Representative workloads conforming TPC-W

specifications were thrown to the test-bed. During execution, hardware counter level

runtime statistics were collected. For comparison, OS level metrics were also reported.

3.5.1 TPC-W and Workload Selection

TPC-W is a transactional web e-commerce benchmark. Its specification defines 14

different types of requests for an online bookstore service. In our test-bed, we deployed

the free Java implementation of TPC-W benchmark from Rice University [61]. TPC-

40

W defines three traffic mixes: Browsing, Ordering and Shopping, as shown in Table

Table 3.1. It classifies web interactions as either Browse or Order depending on

whether they involve browsing and searching on the site or whether they play an

explicit role in the ordering process.

The primary TPC-W performance metric WIPS is based on the shopping mix,

which is the most common workload in an e-commerce website. TPC-W also consid-

ers the extreme cases in which the workload is either mostly composed of browsing

requests or ordering requests. Experimented with our test-bed, browsing mix is found

to put more pressure on database than on application server. For ordering mix, front-

end becomes the bottleneck.

We assume that the incoming traffic to a multi-tier website ranges within the

above two extreme workloads: Browsing and Ordering. As the characteristic of the

workload changes, the bottleneck tier can be either the back-end or the front-end and

bottleneck shifting exists. Thus we selected the browsing and ordering mix as the

representative workloads for training synopses and the coordinated predictor. The

workloads are generated using the Remote Browser Emulator (RBE) shipped with

the Rice TPC-W implementation. We modified the RBE to generate the workload

needed in training and testing sets. The number of concurrent clients is controlled

by the number of Emulated Browsers (EBs).

3.5.2 Training and testing sets

In real scenarios, internet traffic can be either steady or bursty. To generate real-

istic workloads, we compose the workload generating the training runtime statistics

as two parts:

1. Ramp-up workload. In ramp-up workloads, we gradually increased concur-

41

rent client sessions. Because the multi-tier website can serve different numbers

of concurrent browsing clients and ordering clients, we increased the workload

in different rates. For browsing mix, we started with 20 concurrent clients and

incremented 20 clients every 10 minutes up to a limit of 600 concurrent ses-

sions. For ordering mix, we started with 50 clients and added 50 more clients

each time until a total of 1500 sessions. For each browsing and ordering mix,

we ran the experiments for five hours.

2. Spike workload. Spike workload refers to occasional extreme traffic burst. We

set the baseline traffic to 80 concurrent shopping clients for both browsing and

ordering spikes. Every 30 minutes, we threw a spike workload to the baseline

and kept the spike for 10 minutes. Each browsing spike contains 200 browsing

clients and each ordering spike has 800 ordering clients. Each experiment also

lasted for five hours.

We collected the hardware counter level and OS level runtime statistics on each

tier every second. The average statistics over a 30 second interval combined with its

corresponding high-level state formed an instance in a training set. The training sets

were used to build synopses and tune the coordinated predictor.

Note that although all synopses were trained from the two extreme browsing and

ordering mixes, we will show the coordinated predicator works well for traffic of un-

known mixes as well. We designed the testing sets as four parts: browsing mix,

ordering mix, interleaved mix, and unknown workload mix. The interleaved mix

refers to a workload that continues to switch between browsing mix and ordering

mix. For the unknown mix, we change the transition probability in RBE to generate

workload different from either browsing or ordering mix.

42

3.5.3 Evaluation Metrics

The key measure of the effectiveness of coordinated predictor is its prediction

accuracy in testing sets. Absolute prediction accuracy is the ratio of the number of

correctly classified instances over the total number of instances. It depends on the

ratio of each class. Instead, we use the Balanced Accuracy (BA) as the metric to

evaluate the prediction accuracy. Formally, BA can be defined as:

BA =
Prob(C ′′ = 0|C = 0) + Prob(C ′′ = 1|C = 1)

2
,

where C is the actual value of the class and C ′′ is the predicted value. Measured

by BA, a good predictor should perform well in both classes, independent of the

composition of testing sets. To evaluate the prediction accuracy of the two-level

predictor, we designed the testing sets mentioned above. We injected approximately

40% to 50% overload instances in each testing set. Thus, any naive method is bounded

by a prediction accuracy of 60% at most.

3.5.4 Experiment Settings

We followed the organization of dynamic websites in [5] to build our test-bed ex-

cept that only one client machine was used to emulate the concurrent clients. The

client machine featured a dual AMD 2.10 GHz CPU configuration and 2GB memory.

We ensure that the client machine is not the bottleneck by comparing the one client

machine experiment with a multiple clients setting. In both settings, the client ma-

chine(s) were lightly loaded and the TPC-W performance differences are within 1%.

The front-end application server and the back-end database server were configured

with Pentium 4 2.0 GHz CPU, 512 MB RAM and Pentium D 2.80 GHz CPU, 1 GB

43

Table 3.3: Collected hardware counter metrics.
Performance counter event Description

X87 FP RETIRED retired uops
X87 FP UOP x87 floating point uops
L2 REFERENCE L2 cache access
L2 MISS L2 cache miss
CPU STALL CPU stalled cycles on any resource
INS RETIRED retired instructions
ITLB REFERENCE translation lookaside buffer access
ITLB MISS translation lookaside buffer miss
RETIRED MISPRED BRANCH retired mispredicted branch

RAM respectively. The CPUs in the servers are based on Intel NetBurst architecture

and without Hyperthreading technology. All the devices were interconnected by a

fast Ethernet network.

The machines ran Fedora Core 6 Linux with kernel 2.6.18. We used Apache Tom-

cat version 5.5.20 as the application server. For the database server, MySQL standard

version 5.0.27 was used. We used Sysstat version 7.0.3 to collect 64 OS level metrics.

Hardware counter level metrics were recorded by a kernel patch PerfCtr [54]. There

are software packages, such as OProfile[50], PAPI [53], and PerfSuite[55], which can

be used to monitor hardware counter level runtime metrics. Because of their overhead

concerns, we wrote a lightweight tool to read hardware counter metrics in all physi-

cal CPUs using the global mode in PerfCtr. Although the global mode in Perfctr

only updates performance counter values at regular intervals which may not be accu-

rate enough for small code regions, server programs always run for a long time and

management operations are invoked in the granularity of several seconds or minutes.

Event counter maintenance in hardware requires no runtime overhead [63] and we

limited our tool to minimum functionalities that just initialize and read hardware

counters to reduce runtime overheads.

There are 18 performance counter registers in Intel Pentium 4 CPU. Due to

44

0 3000 6000 9000 12000 15000 18000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time(s)

N
or

m
al

iz
ed

 fa
ct

or

Productivity Index
Throughput

9000 9600 11200 11800
0.5

1

1.5

2

(a) Ordering mix

0 3000 6000 9000 12000 15000 18000
0

2

4

6

8

10

12

14

16

18

20

time(s)

N
or

m
al

iz
ed

 fa
ct

or

Productivity Index
Throughput

9000 9600 11200
0

5

10

(b) Browsing mix

Figure 3.5: Effectiveness of PI in reflecting high-level performance.

hardware restrictions only 9 registers can be used simultaneously. The performance

counter metrics collected in our experiments are listed in Table Table 3.3.

The machine learning algorithms used in our experiments were adapted from

WEKA [83] data mining software.

3.6 Experimental Results

3.6.1 Effectiveness of Productivity Index

The first experiment was conducted to show the effectiveness of productivity index

in reflecting system high-level performance. We took Ordering and Browsing work-

loads as input and drove the test-bed into an overloaded state. We selected yield and

cost metrics according to the correlation measure Corr. For an ordering mix input,

the front-end server turned out to be the bottleneck and the PI defined as IPC over

L2 cache miss rate had the most correlation with the high level performance. For a

browsing mix input, database IPC and stalled CPU cycle metrics were selected as

yield and cost, respectively.

45

Table 3.4: Prediction accuracy of individual synopsis tested by Browsing mix.
Specific Synopsis OS Level HPC Level

Workload Tier LR Naive SVM TAN LR Naive SVM TAN

Ordering
APP 0.585 0.500 0.505 0.545 0.570 0.500 0.502 0.505
DB 0.473 0.500 0.465 0.587 0.439 0.453 0.493 0.646

Browsing
APP 0.635 0.621 0.505 0.603 0.529 0.557 0.540 0.515
DB 0.604 0.612 0.667 0.635 0.859 0.935 0.957 0.965

Figure Figure 3.5 shows the effectiveness of PI as an indicator of high-level through-

put. In order to display PI and throughput curves in a similar scale, we normalized

each of their values to their geometric means in different sampling intervals.

Figure Figure 3.5 suggests that for both workloads, the PI and throughput metrics

are in high agreement with each other. From the microscopic views, we can see

that whenever there is a drop in PI, the corresponding throughput would decrease.

Moreover, during some intervals, as pointed out by dotted arrows in the figure, the PI

is more responsive than the throughput metric. PI also provides useful information

about system-wide performance problems. For example, for the ordering mix input,

our test-bed was overloaded due to the application server bottleneck. A drop in

PI value suggests decreased IPC and increased L2 cache miss rate. The degraded

performance may due to wasted work during context switching when there were too

many threads in access to L2 cache in a time multiplexing way.

3.6.2 Individual Prediction Accuracy

The second experiment was designed to demonstrate the prediction accuracy of

individual synopsis. A high synopsis accuracy means that the low-level metrics se-

lected are sufficient in representing system internal states and the machine learning

algorithm used is capable of correlating low-level metrics to a high-level state.

We tested the prediction accuracy for different level of metrics (e.g. OS level

46

Table 3.5: Prediction accuracy of individual synopsis tested by Ordering mix.
Specific Synopsis OS Level HPC Level

Workload Tier LR Naive SVM TAN LR Naive SVM TAN

Ordering
APP 0.842 0.928 0.965 0.935 0.805 0.883 0.921 0.952
DB 0.689 0.932 0.776 0.665 0.746 0.791 0.844 0.840

Browsing
APP 0.583 0.585 0.593 0.547 0.662 0.588 0.588 0.588
DB 0.545 0.514 0.512 0.572 0.635 0.659 0.662 0.694

and hardware counter level) and using different machine learning algorithms. Table

Table 3.4 and Table Table 3.5 summarize the accuracy results. We make several

observations from the results:

1. For each testing workload, only the synopsis from the bottleneck tier and built

from a similar workload pattern would produce a high prediction accuracy. For

example, the synopsis built from a browsing mix on the database server had

an accuracy of 0.965 in Table Table 3.4 due to TAN algorithm. But, even with

the same learning algorithm, other synopses led to low accuracy. For example,

when tested by browsing mix the synopsis built from ordering mix on application

server resulted in an accuracy as low as 0.5. By examining the prediction results,

we found that this synopsis generated prediction 0 (underload) most of the time.

2. Overall, hardware counter level metrics produced a higher accuracy than OS

level metrics. For an ordering mix input, they achieved an accuracy of 0.952

and 0.935, respectively. But for a browsing mix input, the accuracy of OS level

metrics dropped down to 0.635. Note that we can not claim hardware level

metrics always perform better than OS level metrics. It depends on the workload

characteristics. For some workload (ordering mix) both of them are accurate,

but hardware level metrics perform significantly better than OS level metrics in

some others (browsing mix). The reason is that hardware level metrics provide

47

Table 3.6: Execution time for each machine learning algorithm.
LR Naive SVM TAN

Execution time (ms) 90 10 1710 50

more detailed performance information. However, OS level metrics should be

considered for I/O intensive workloads because hardware level metrics provide

little information on I/O events.

3. Among the machine learning algorithms, SVM and TAN gained highest accu-

racy in most of the test cases. Linear regression performed worst because it can

only capture linear correlations. Naive bayes performed not as well as TAN . It

is because of its strong assumption on the independence of low level parameters.

Table Table 3.6 lists the execution time required to build a synopsis and make

a single prediction using different machine learning algorithms. Although SVM has

good prediction accuracy, it is computational prohibitive in online performance mon-

itoring. Considering the accuracy and runtime overhead, TAN becomes the best

choice for synopsis construction.

In addition to prediction accuracy, TAN also provides insights on bottleneck re-

sources. Figure Figure 3.6 shows the TAN structure for the application server synop-

sis built from ordering workload. Recall that for the ordering mix the front-end CPU

is the bottleneck and server overload is due to excessive concurrent requests. From

the Bayesian network in Figure Figure 3.6, we can see that hardware counter met-

rics such as ITLB REFERENCE, L2 MISS and ITLB MISS were highly correlated

to high-level overload state.

48

Capacity

ITLB_REF
ERENCE

L2_MISS

L2_REFER
ENCE

CPU_STAL
L

ITLB_MISS

RETIRED_
MISPRED_
BRANCH

Overload

80.6%

96.1%

83.1%

95.1%

80.1% 54.4%

Figure 3.6: Bayesian Network structure for hardware counter metrics.

3.6.3 Coordinated Prediction Accuracy

The third experiment was to demonstrate the overload prediction accuracy and

bottleneck identification accuracy of coordinated predictor under different workloads.

We used TAN learning algorithm in each synopsis and set the length of history bits

to 3. We assumed optimistic scheme with a threshold δ = 5.

Figure Figure 3.7 presents the results based on both OS level and hardware counter

level metrics. For overload prediction in Figure Figure 3.7(a), similar to individual

synopsis accuracy, OS level metrics led to poor accuracy in a browsing mix input.

Hardware counter metrics resulted in consistently high prediction accuracy over all

the workloads. For a priori known traffic (e.g. ordering mix), the prediction accuracy

can be up to 90%. For interleaved workload, which consists of either browsing or

ordering mix during any interval, the coordinated predictor still has an accuracy over

49

85%. The predictor is robust to workload changes and can maintain high accuracy

even in the presence of bottleneck shifting.

It is expected that coordinated predictor would not be able to outperform the best

individual synopsis for current workload. Based on spatial and temporal patterns in

individual synopses, the predictor actually masks inaccurate synopses and selects the

best synopsis for a workload. But for unknown workload, individual synopsis will

have a degraded accuracy due to the limitation of supervised learning. Thus, the

resulted coordinated accuracy decreased to approximately 80% in unknown workload

input, which should be still acceptable.

For the bottleneck identification in Figure Figure 3.7(b), the hardware counter

level metrics also show consistently good accuracy. It is interesting that the bottleneck

prediction accuracy has a similar trend as overload prediction in Figure Figure 3.7(a).

This may be due to the similar way the bottleneck identifier exploits the patterns in

individual bottleneck prediction.

Recall that the results in Figure Figure 3.7 were obtained under an assumption

of optimistic scheme and a 3-bit history. In the following, we evaluated the impact

of these two factors. Figure Figure 3.8(a) shows that the schemes had little impact

on the coordinated accuracy and there is no single scheme that performs consistently

better than the other one. A possible reason is that the spatial and temporal patterns

are obvious, the cases that the predictor is not sure are rare.

The length of the history bits controls how many steps the coordinated predictor

looks back before making a prediction. Results in Figure Figure 3.8(b) suggest there

would be an increased accuracy when history bits be used. In most cases, a single

history bit would improve the accuracy by approximately 10%. However, any further

history information would lead to only a marginal improvement or even accuracy loss.

50

Workload

Ordering Browsing Interleaved Unknown

B
al

an
ce

d
A

cc
ur

ac
y

0

20

40

60

80

100

120

OS Level Metric
HPC Level Metric

(a) Overload prediction

Workload

Ordering Browsing Interleaved Unknown
B

al
an

ce
d

A
cc

ur
ac

y
0

20

40

60

80

100

120

OS Level Metric
HPC Level Metric

(b) Bottleneck prediction

Figure 3.7: Coordinated prediction accuracy under different workloads.

Workload

Ordering Browsing Interleaved Unknown

B
al

an
ce

d
A

cc
ur

ac
y

0

20

40

60

80

100

120

Optimistic
Pessimistic

(a) Impact of schemes

Workload

Ordering Browsing Interleaved Unknown

B
al

an
ce

d
A

cc
ur

ac
y

0

20

40

60

80

100

120

140

h=0
h=1
h=2
h=3
h=4
h=5

(b) Impact of the length of history bits

Figure 3.8: Impact of design parameters on accuracy.

51

Table 3.7: Runtime overhead in collection of low-level metrics.
Throughput loss Latency increment

OS 2.64% 3.74%

hardware counter 0.49% 0.34%

3.6.4 Runtime Overhead

The last experiment was to investigate the runtime overhead of the predictor. The

cost for prediction in different machine learning algorithms was shown in Table Ta-

ble 3.6. Table Table 3.7 lists the runtime overhead for OS and hardware counter

level metrics collection. We normalized the throughput and request latency with re-

spect to the values without metrics collection. The experiments takes an average of 5

executions and each execution lasted 30 minutes. The results show a much lower over-

head for the hardware counter metrics collection. The throughput loss and latency

increment are within 1% for hardware counter metrics collection.

3.7 Application of Capacity Prediction in Online

Admission Control

One application of multi-tier website capacity prediction is to guide an admission

controller to reject excessive client requests when the incoming traffic exceeds the

website capacity. Accurate predictions of the system capacity is crucial to the effec-

tiveness of the admission control. We implemented the two-level capacity predictor

in a standalone HTTP proxy residing on a separate machine. The proxy, on which

admission controls can be applied, simply relayed the client requests to the front end

of the multi-tier website. The proxy collected different levels of performance metrics

in a specified interval (a 10-second interval in the remaining experiments), based on

52

which the two-level predictor makes capacity predictions.

With online admission control, we verified that application level metrics like re-

sponse time are not reliable for system capacity identification. Figure Figure 3.9(a)

plots the throughput of the multi-tier website under a transient spike due to different

admission control mechanisms. The baseline traffic was 400 ordering clients. At the

150th second, a 600 ordering client spike was generated by another client machine.

Figure Figure 3.9(a) compares the hardware performance counter-based admission

control with the response time-based one. To isolate the effect of admission control

from the traffic variation, we simply instructed the proxy to reject the requests from

the IP address generating the spike if an overload is detected. In this way, the accu-

racy of the capacity prediction became the sole factor that affected the effectiveness

of the admission control.

In Figure Figure 3.9(a), we can see that hardware level metrics-based admission

control can detect the overload immediately after the arrival of the spike and was

able to maintain the throughput at a high level. In contrast, response time-based

admission control failed to respond to the overload condition before the spike invaded

the system. As a result, the website entered a churn state with up to 70% throughput

loss and the overload remained for some time even after the spike’s leave.

Figure Figure 3.9(b) and Figure Figure 3.9(c) compare the HPC level metrics-

based admission control with the OS level metrics-based control under different traffic

mixes. Instead of throwing transient spike to the website, we gradually increased the

client traffic to overload the website in a step of 50 ordering clients and 10 browsing

clients every 30 second. We implemented a simple adaptive rejection rate control

based on the following heuristics: increase the rejection rate by 10% if the last system

state (in the last 10-second interval) is ”overload”; restore to the initial rejection rate

if the last state is ”underload”. The initial rejection rates were set to 15% and 10%

53

0 50 100 150 200 250 300 350 400 450
10

30

50

70

90

110

130

Time (s)

Th
ro

ug
hp

ut
 (r

eq
/s

)

Response time-based AC
HPC-based AC

begin of spike

end of spike

(a) Transient spike

0 100 200 300 400 500 600
0

10

30

50

70

90

110

130

150

Time (s)

Th
ro

ug
hp

ut
 (r

eq
/s

)

HPC-based AC
OS-based AD

(b) Ordering mix

0 50 100 150 200 250 300 250 400 450
0

5

10

15

20

25

Time (s)

Th
ro

ug
hp

ut
 (r

eq
/s

)

HPC-based AC
OS-based AC

(c) Browsing mix

Figure 3.9: The effectiveness of admission control using different metrics.

for ordering and browsing mixes respectively.

As discussed in Section 3.6.2, OS level metrics are accurate in determining the

system capacity under the ordering mix. In Figure Figure 3.9(b), we see similar

admission control effects using HPC and OS level metrics: both effectively rejected

excessive requests and stably maintained throughput. In contrast, as shown in Fig-

ure Figure 3.9(c), OS level metrics failed to identify system overload as accurately as

HPC level metrics under browsing mix, which results in large fluctuations in OS-based

admission control.

3.8 Summary

In this chapter, we proposed a two-level coordinated machine learning approach

to measuring the multi-tier website capacity based on hardware performance coun-

ters. We developed performance synopses to correlate low-level hardware counter

metrics with high level system states of each tier. A coordinated predictor was then

used to infer system-wide overload/underload state and identify resource bottleneck.

Experiments results demonstrate the effectiveness of our approach at less than 0.5%

overhead even in the presence of workload changes and bottleneck shifting.

54

Chapter 4

Model-free Control of A Single

Resource

4.1 Introduction

Regulatory control is a promising method for resource allocation, in which a feed-

back controller enforces service-level objectives while minimizing the resources re-

quired. More importantly, if properly designed, this type of control can provide

predictable performance with theoretical stability guarantees. In general, a feedback

controller applies the control input to a target system in order to regulate the mea-

sured output to the value of a desired output [30].

There are many control approaches that have been applied with success to re-

source allocation in physical servers; see [2, 45, 60, 38, 40] for examples. Recent

studies have focused on the application of control approaches for the allocation of

virtualized resources in clouds [43, 79, 37, 52, 51]. The cloud adds new challenges

to the QoS-oriented resource allocation, in addition to workload dynamics. Different

from physical servers, a virtual server may see a varying capacity in the cloud. The

55

dynamics in the capacity can be due to the uncertainties in resource scheduling, op-

portunistic use of additional market-based resources(e.g. Amazon spot instances [4])

or even the rogue behavior of malicious users [94].

Many existing work used indirect metrics such as workload arrival rate [43, 79]

and CPU utilization [37, 52], instead of response time as the measured output. These

work relied on the assumption that there are always static relationships between

the metrics and response time. The relationships are usually determined either by

industry practice or offline testing. Although easier to control, the use of indirect

metrics may not be effective in a dynamic cloud environment. In Section 4.2, we

show that when the CPU utilization is 80%, the response times of an E-Commerce

benchmark can have as large as 150% variations with different capacities. Therefore,

with dynamic capacity, resource utilization is not readily translated to application-

level performance and models obtained under one capacity setting are likely to be

inaccurate for other settings. In practice, response time is a good measure of client-

perceived QoS. However, response times behave nonlinearly with respect to resource

allocations and are highly dependent on the characteristics of workload, as well as

server capacity. This nonlinearity poses challenges to design a stable and accurate

controller.

To address the issue of the lack of an accurate server model, the work in [37, 51]

applied adaptive control approaches based on model approximation. However, these

approaches pose limitations on how fast the workload and the system behavior can

change [95]. In [82], we developed a two-layer self-tuning fuzzy control (STFC) ap-

proach for QoS assurance in web servers with respect to response time. In this chapter,

we extend the STFC approach to resource allocation in virtualized environments by

introducing an extra self-tuning output amplification and flexible rule selection mech-

anism. In comparison with other popular controllers, STFC shows better adaptability

56

and stability. Based on the STFC, we further design a two-layer QoS provisioning

framework, DynaQoS, that supports adaptive multi-objective resource allocation and

service differentiation.

4.2 Motivating Examples

To build a resource controller realizing a high-level objective, a mathematical

model that captures the relationship between the allocated resource and the high-

level metric is necessary. Given the model, any deviation of the high-level metric from

the desired value can be corrected by applying adjustment in the resource allocation.

However, the determination of the system model in a dynamic cloud environment is

not trivial. Workload and cloud dynamics can possibly render prior system models

invalid and result in poor control performance.

In [6], the authors showed that time-sharing of CPU resources in multiple VMs

can provide much more predictable performance than I/O sharing. With advances

in multi-core technologies, modern processors are able to embed a number of CPU

cores on a single socket. To achieve thread-level parallelism with lower energy cost,

heterogeneous CPU architecture and on-chip hardware hyperthreading has gained

popularity in modern CPU design. Despite their benefits, they pose significant chal-

lenges in VM resource management. “Big” cores are more powerful than “small” cores

and hardware threads have distinct performance dependent on whether their sibling

threads are executing or not. Current Virtual Machine Monitors such as VMware and

Xen, do not consider the underlying architectural differences in VM CPU schedul-

ing. Cloud users may observe different CPU capacities when scheduled with “big” or

“small” cores; or with hardware threads from busy or idle cores.

Consider a virtual cluster consisting of 4 VMs executing a mapreduce job to

57

Table 4.1: Application-level performance difference due to dynamic CPU capacities.

CPU PIN CPU UNPIN

Bayes classification 668.5s 918.3s

classify approximately 20000 documents into 20 different newsgroups on on a DELL

server with 12 CPU cores. Each physical core has two hardware threads which can be

scheduled simultaneously. The default CPU scheduling in the Xen hypervisor, referred

to CPU UNPIN, allows the two threads from the same core to be scheduled together.

In comparison, we experimented with another scheduling scheme, CPU PIN, which

ensures that no hardware threads from the same core are scheduled at the same time.

It guarantees that each scheduled hardware thread gets the full processing capacity

on a core. The experimental results in Table Table 4.1 show that the CPU PIN

scheduling reduced the execution time by as large as 37% (reduced from 918.3 second

to 668.5 second). This reveals a significant variation of CPU capacity under the same

nominal resource allocation.

Besides the uncertainties underlying cloud systems, the dynamics in VMs’ capacity

can also come from market-based accesses to additional compute capacity. Amazon

Elastic Compute Cloud (EC2) provides Spot Instances [4] as a complementation to

On-demand Instances and Reserved Instances. Different from the other two, Spot

Instances make use of unused Amazon EC2 capacity and are charged a much lower

spot price. Cloud users bid on spare capacity and run Spot Instances as long as their

bids exceed the spot price. Spot price changes with the supply and demand and the

instances whose owner’s bids are below current spot price will be terminated. If hosted

applications are resilient to nondeterministic capacity additions and removals, mixing

reserved capacity (i.e. on-demand or reserved instances) with transient capacity (i.e.

spot instances) will be a cost-effective way for time-varying workload and limited

58

budget.

However, the nondeterminism in compute capacity poses significant challenges in

modeling resource to application performance. Figure Figure 4.1 plots the application

performance of TPC-W against the resource utilization (i.e. CPU utilization) under

different capacities. We threw 500 shopping clients to the TPC-W virtual cluster

and created different levels of capacities by adding or removing VMs from the virtual

cluster. For example, a total number of 4 VMs, each with one core, is equavilant

to a capacity of 4-core. As shown in Figure Figure 4.1, the relationship between

application performance and the CPU utilization changes with capacity. When the

CPU utilization is 80%, both response time (Figure Figure 4.1(a)) and throughput

(Figure Figure 4.1(b)) show as large as 150% variations with different capacities.

With dynamic capacity, resource utilization is not readily translated to application

performance. System models obtained under one capacity setting are likely to be

inaccurate for other settings. Without an accurate system identification, control-

based resource allocation suffers poor performance.

In summary, the discussed challenges motivated us to develop a model-free and

self-tuning resource control method that deals with complex resource to performance

relationship and dynamic capacity. We propose a novel fuzzy control-based frame-

work, namely DynaQoS, for the management of VM capacity.

4.3 The DynaQoS Framework

In this section, we present the design of DynaQoS, a prototype of the fuzzy control-

based VM resource allocation.

59

 400

 800

 1200

 1600

 2000

 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

CPU utilization (percent)

1-core
2-core
3-core
4-core

(a) Response time

 0

 50

 100

 150

 200

 250

 60 70 80 90 100

T
hr

ou
gh

pu
t (

re
q\

s)

CPU utilization (percent)

1-core
2-core
3-core
4-core

(b) Throughput

Figure 4.1: Different resource-performance relationship due to dynamic capacity.

4.3.1 Design of DynaQoS

As shown in Figure Figure 4.2, DynaQoS is composed of two layers of controllers.

The first layer is a group of self-tuning fuzzy controllers (STFC) that control individ-

ual objectives. During each control interval, a STFC queries the corresponding QoS

profile manager for the reference value of the controlled metric. A QoS monitor peri-

odically reports the achieved value of the metric. The metrics to be controlled can be

conventional application-level performance metrics such as response time or through-

put; or any user-defined high-level metrics, we show an example of such metrics in

Section 4.5. In a cloud environment, more interesting control can be the control of

leasing expenses (based on variable resource prices) towards a target of leasing bud-

get, or the control of VM level power consumption below a per VM budget [39]. The

STFC takes the difference between the reference value and the achieved one as well

as the change of the error as its input and outputs a resource request to the second

layer gain scheduler.

When there are multiple control objectives, the second layer gain scheduler ag-

gregates the resource requests from individual STFCs and forms a unified one to be

submitted to the cloud resource management API. The aggregation of individual re-

60

quests is based on the weights (gain) of each STFC in the determination of the final

request. The gains are dynamically adjusted according to the control error of STFCs.

Service differentiation is necessary if multiple service classes exist and the aggregated

resource demand is beyond the available capacity. We define multi-level objectives in

the QoS profile manager for each service class. If resource contention is detected and

it can not be resolved for a certain number of control intervals, the class with lowest

priority modifies its control objective to the next level.

4.3.2 The Self-tuning Fuzzy Controller

Due to workload and cloud dynamics, the relationship between allocated capacity

and received service quality exhibits considerable nonlinearities. The relationship

can often be linearized at fixed operating points. It is well known that the linear

approximation of a nonlinear system is accurate only within the neighborhood of

the operating point. Abrupt changes in workload traffics and the nondeterminism

in VM capacity can possibly make the simple linearization inappropriate. Instead of

modeling the system in mathematical equations, fuzzy control employs the control

rules of conditional linguistic statements on the relationship of allocated resource

and the high-level objectives [36]. The fuzzy control rules are able to embed human

expert’s experiences and the rule base is easily updated by adding new knowledge.

There are works that applied fuzzy control to QoS guarantees in web server [82] and

computer networks [13] with success.

Figure Figure 4.3 illustrates the structure of the Self-tuning Fuzzy Controller. It

consists of three components, namely the fuzzy logic controller, the scaling-factor

controller and the output amplifier. The resource allocated in control interval k + 1,

denoted by u(k + 1), is adjusted according to its error e(k) (i.e., the normalized

61

STFC

STFC

... Gain
Schedule

Cloud Resource
Management

Add/remove
capacity

QoS Profile QoS Monitor

Capacity
request

C
ontrol

reference

C
on

tr
ol

er

ro
r

Figure 4.2: The structure of the DynaQoS framework.

difference between the reference value and the achieved one) and change of error

∆e(k) in previous control interval k using a set of control rules embeded in the fuzzy

logic controller. e(k) and ∆e(k) are calculated using the reference value r(k) and the

observed value y(k). For the stability of the control system, we define the normalized

error e(k) in a range of [−1, 1]:

e(k) =

r(k)−y(k)

r(k)
0 ≤ y(k) ≤ 2r(k);

−1 y(k) > 2r(k).

Based on these, the controller calculates resource adjustment ∆u(k) for next con-

trol interval. The calculated resource adjustment is then fed into the next layer gain

scheduler.

The fuzzy logic controller contains four building blocks. The actual fuzzy logic is

implemented as a set of If-Then rules about quantified control knowledge about how to

adjust the allocation according to e(k) and ∆e(k). The fuzzification interface converts

controller inputs into certainties in numeric values of the input membership functions.

The inference mechanism activates the rule-base and applies fuzzy rules according

to the fuzzified inputs and generates the fuzzy conclusions for the defuzzification

interface. The defuzzification interface converts fuzzy conclusions into the change of

allocation in numeric value.

62

Inference
mechanism

Rule-base

Fuzzy logic controller

D
ef

uz
zi

fic
at

io
n

Fu
zz

ifi
ca

tio
n

Scaling-factor controller

Output
amplifier

to next layer
gain schedule

∑ Ke

α

u(k)

αKΔu

Δu(k)

KΔe

From QoS
monitor

y(k)

r(k)

From QoS
profile

e(k)

Δe(k)

Figure 4.3: The structure of the STFC.

The STFC is built on the static fuzzy logic controller by adding the self-tuning

scaling factors and the output amplifier. There are three scaling factors: input factors

Ke and K∆e, output factor α and output amplifier K∆u. The change of input scaling

factors changes the connection of input values to suitable rules, The change of output

scaling factor and the amplifier together adjust the amplitude of the control input.

The actual inputs of the fuzzy logic controller are |Ke|e(k) and |K∆e|∆e(k). Thus,

the resource allocated to the VM during management interval k + 1 is

u(k + 1) = u(k) + α|K∆u|∆u(k) =

∫
αK∆u∆u(k)dk.

Design of the rule base

The design objective is to translate human expert’s knowledge into a set of control

rules to control the resource allocation without a model of the dynamic cloud envi-

ronment. In the fuzzy logic controller, the control rules are defined using linguistic

variables. For brevity, linguistic variables “e(k)”, “∆e(k)”, and “∆u(k)” are used

to describe e(k), ∆e(k), and ∆u(k), respectively. The linguistic variables assume

linguistic values NL(negative large), NM (negative medium), NS (negative small),

ZE (zero), PS (positive small), PM (positive medium), and PL (positive large).

63

Figure Figure 4.4(a) gives an simple illustration of typical control effect. In this

figure, we identify five zones with different characteristics. Zone 1 and 3 are charac-

terized with opposite signs of e(k) and ∆e(k), in which the error is self-correcting and

the achieved value is moving toward the reference value. Thus, ∆u(k) needs to be set

either to speed up or to slow down current trend. Zone 2 and 4 are characterized with

the same signs of e(k) and ∆e(k), in which the error is not self-correcting and the

achieved value is moving away from the reference value. Therefore, ∆u(k) should be

set to reverse current trend. Zone 5 is characterized with rather small magnitudes of

e(k) and ∆e(k). Therefore, the system is at a steady state and ∆u(k) should be set

to maintain current state and correct small deviations from the reference value.The

resulted control rules are summarized in Figure Figure 4.4(b). For example, when

“e(k)” and “∆e(k)” are NL and PS, “∆u(k)” is set to PM .

Fuzzification, inference and defuzzification

We take the same design for the membership function and inference mechanism

from our previous work; see [82] for details.

At the heart of a fuzzy controller are the membership functions that quantify

the certainty (between 0 and 1) that an input fall in the corresponding ranges. We

select the “triangle” membership function, which is the most widely used in practice.

We set the width and height of the “triangle” membership function to be 2/3 and 1

respectively. See our previous work [82] for design details of the membership function.

The fuzzification component translates the inputs into corresponding certainty in

numeric values of the membership functions. Let µm(e(k)) denote the certainty of

e(k) of the mth membership function, and µn(∆e(k)) the certainty of ∆e(k) of the

nth membership function.

The inference mechanism is to determine which rules should be activated and what

64

are conclusions. Let µ(m,n) denote the certainty of rule(m,n). The and operation

in the premise is calculated via minimum:

µ(m,n) = min{µm(e(k)), µn(∆e(k))}.

Based on the outputs of the inference mechanism, the defuzzification component

calculates the fuzzy controller output, which is a combination of multiple control

rules, using “center average” method. Let b(m,n) denote the center of membership

function of the consequent of rule(m,n). In this case, it is where the membership

function reaches its peak. The fuzzy control output is

∆u(k) =

∑
m,n b(m,n) · µ(m,n)∑

m,n µ(m,n)
.

Design of the self-tuning controller

The fuzzy logic controller only defines the basic control rules according to the

inputs of e(k) and ∆e(k). It outputs the sign and magnitude of the allocation adjust-

ment ∆u(k). With cloud dynamics, there could be a lot of fluctuations in the control

effect. To achieve accurate, responsive and stable control, the following practical

issues should be addressed:

1. When there are abrupt workload or capacity changes, the control should be

responsive enough to correct the resource discrepency within a small number of

steps.

2. When there are considerable fluctuations in the control effect, it may be due to

two reasons. The fluctuations may come from the inaccuracies of the controller

that incurs control overshooting; or it may be due to the process delay [64] of

resource allocation. A process delay is the time between the change of resource

65

R
es
p
on

se
ti
m
e

Sampling period

reference response time

5

2 3

41

Reference value

O
bs

er
ve

d
va

lu
e

Sampling period

(a) The control effect

PS

PMPL

ZE

NS

NM

NL

“∆e(k)”“∆u(k)”

“e(k)”
PL

PL

PL

PL

PL

PL

PL

PL
PL

PL

PM

PM

PM

PM

PM
PM

PL

NL

NM

NS

ZEPS

PS

PS

PS

PS

PS
PS

ZE

ZE

ZE

ZE

ZE

ZE
ZE

NS

NS

NS

NS

NS

NS

NM

NM

NM

NM

NM

NL

NL

NL NL

NL

NL

NL

NL

NL

NL
1

3

4

2

5

(b) The rule table

Figure 4.4: Design of the fuzzy control rules.

allocation and the actual adjustment effect can be observed in application per-

formance. Both problems can be alleviated by decreasing the control magnitude

or prolonging the control interval to stabilize the control effect.

To address the above issues, we design the self-tuning controller to have adaptive

output magnitude and flexible control rules. The self-tuning features are realized

by dynamically changing the input, output scaling factors and the output amplifier.

The output scaling facotr α and the output amplifier K∆u(k) together determine the

magnitude of the allocation adjustment. In our previous work [82], we used another

level of fuzzy controller to adjust the output scaling factor α. However, the output

∆u(k) of the fuzzy logic controller is within the range of [−1, 1]. The change of α has

limited effect on the magnitude of the control output. To overcome abrupt workload

and capacity changes, the magnitude needs to be changed dynamically based on

current conditions. We preserve the adaptive controller of α as in [82] and add a

66

self-tuning output amplifier. The amplifier implements heuristic control knowledge

as follows:

K∆u(k) = | c
2
· e(k)|,

where c is the current allocation for a specific resource. For example, c can be the cap

value of the CPU allocation in a Xen platform. The amplifier follows a heuristic rule

that the maximum resource adjustment should not exceed half of current capacity for

stability and should be proportional to the control error for adaptability. Note that

the direction of the adjustment is still determined by the fuzzy logic.

To address the problem of process delay and control inaccuracies, fuzzy control

rules also need to be tuned based on current conditions. Recall that the actual inputs

of the fuzzy logic are Kee(k) and K∆e∆e(k), Ke and K∆e together determine which

membership functions or control rules are to be activated. As shown in Figure Fig-

ure 4.4(b), small values of Ke and K∆e activate rules in the center of the rule table,

such as the rules in Zone 5; large values are likely to trigger rules like PL and NL.

Observations in the control of real plants suggest that it is often desirable to decrease

the control magnitude during fluctuations. Thus, we define Ke and K∆e as:

Ke(k + 1) = (1− γ)Ke(k) + γe(k),

K∆e(k + 1) = (1− γ)K∆e(k)− γ∆e(k),

where γ is a discount factor that gives more weight on the observance of recent e(k)

and ∆e(k) while still taking history experiences into consideration. We empirically

set γ to 0.8 in the experiments. In Figure Figure 4.4(a), we can see that, during

fluctuations the trajectory of control is likely to follow Zone 1 → Zone 2 → Zone 3

→ Zone 4. If the pattern is repeated many times, fluctuations exist and e(k) shows

67

as a series of positive and negative values. Gradually, Ke would converge to a small

value close to zero, which triggers rules with small or zero magnitude. When the

control effect stabilized, if the achieved control deviates from the reference value, Ke

will quickly restore to a larger value accumulating e(k) with same signs. The self-

tuning scheme works similarly for ∆e(k) except that ∆e(k) has the same sign during

fluctuations and a subtraction is used to compensate consecutive ∆e(k). The self-

tuning of the control rules also helps mitigate process delays by generating a sequence

of small or zero actuations for more stable control.

4.3.3 Scheduling multiple objectives

There exist many control problems in which the consideration of multiple ob-

jectives is required, and these objectives may conflict with each other. In cloud

computing, a cloud user may want to keep the application level response time and

throughput in certain ranges that satisfy SLA objectives. However, the user may be

simultaneously required to maintain the power consumption of his or her applications

to be below a specified bound. The Gain schedule component in the DynaQoS frame-

work implements a weighted scheduling algorithm that synthesizes the outputs from

individual STFCs with different objectives. The resulted output is the final resource

adjustment request submitted to the cloud resource management. Given individual

STFC’s outputs ∆u1(k), . . . ,∆un(k) and the corresponding errors e1(k), . . . , en(k) as

inputs, the synthesized adjustment ∆u(k) is defined as

∆u(k) =
n∑
i=1

∆ui(k) · wi,

where wi = |ei(k)|∑n
j=1 |ej(k)| .

We assume that there always exists a control solution for the multiple-objective

68

control problem. The gain scheduling algorithm depends on the careful selection of

the reference values by the cloud user. If a control solution exists, the algorithm

applies dynamic weights to individual STFCs based on their control errors. In the

extreme case, the multiple-objective control degrades to a single-objective control, if

one objective is satisfied generating near zero control errors.

4.3.4 Realizing service differentiation

Service differentiation is desirable when the aggregated resource demand of multi-

ple service classes is beyond the limit of allocated resources. Although cloud systems

allow prompt allocation of resources in response to the increase in client traffic, there

are still cases that the total demand can temporally exceeds available capacity. First,

the cloud user who owns the cloud application may run out of budget preventing

him adding more capacity during a spike load. Second, applications running on the

market-based cloud resources may see capacity fluctuations due to the supply and

demand of the dynamic capacity. For example, Amazon EC2 users may choose to

host applications on a cluster of VMs containing both reserved and spot instances.

The spot instances will be terminated if the spot prices exceed the users’ bids re-

sulting in a reduction in the total capacity. Finally, complications in cloud resource

scheduling and performance interference also contribute to the variation of capacity.

For example, results in Section 4.2 show approximately 40% variations in applica-

tion performance due to scheduling dynamics; the authors in [94] also demonstrated

possible CPU cycle stealing between cloud users.

To provide QoS guarantees, we consider the service differentiation to be initiated

by individual service classes. When resource contentions are detected, the service

class with a lower priority would adapt its SLO (e.g. a response time target) to

69

a lower level. By setting different control objectives, the premium class will receive

more resources than the basic class while the basic class avoids starvation maintaining

a degraded level of service. We enforce strict priorities between classes. That is the

class with a higher priority adapts to a lower level only when the lower priority classes

have reached their minimum service levels. To detect resource contentions, DynaQoS

follows a simple heuristic rules tracking the statistics of the control performance. If

DynaQoS sees a predefined number of serious SLO violations (i.e. ∆e(k) < 0 and

|∆e(k)| > ε) for a certain level of class and the resource adjustment did not correct

the control errors (i.e. ∆u(k) > 0), classes with lower priorities would start to adapt

to a lower level. Classes at different ranks have the tolerance of different numbers

of violations, which ensures that clients with lower priorities will always degrade

before the high priority clients. For example, the premium class may only tolerate 10

consecutive violations while the basic class can bear up to 30. When the capacity is

limited, the basic class would release the resource first.

4.4 System Implementation

4.4.1 Cloud applications

We selected the TPC-W [73] benchmark as the hosted cloud application for the

evaluation of DynaQoS. TPC-W is an E-Commerce benchmark that models after an

online book store, which is CPU-intensive and has the database tier as the bottle-

neck. We employed a three-tier cluster implementation of TPC-W, which consists of

an Apache web server (version 1.3.11) and a group of Tomcat (version 5.5.20) appli-

cation and MySQL (version 5.0.45) database servers. We put the Apache and all the

Tomcat servers into one VM forming a unified front-end, and replicated the MySQL

70

server into a number of DB VMs, one MySQL per VM. The DB virtual server farm

was further divided into several virtual clusters, each of which was dedicated to a

service class. The apache web server accepts and classifies client requests into differ-

ent classes. It assigns requests from different classes to different DB virtual clusters.

We modified the Apache web server to exam the content of the requests and assign

different port numbers to different classes. Based on the port number, Apache mod-

ule mod jk redirects the requests to corresponding tomcat workload balancers which

are responsible for individual virtual clusters. The tomcat balancers dispatch the re-

quests within the virtual cluster in a round-robin manner. There may be consistency

issues if the requests from a same client session write to different DB VMs. In this

chapter, we focus on the evaluation of DynaQoS in resource allocations and leave the

issues to future work. To avoid consistency problems, we used read primary browsing

mix in TPC-W as the client workload.

We empirically determined that the DB tier was the bottleneck tier under the

browsing workload and focused on the CPU allocation to the DB clusters. There

are two ways to change the allocation to a DB virtual cluster. One is to change the

number of DB VMs in a cluster and the tomcat balancer handles the join and leave

of cluster members. Another approach is to have a fixed number of DB VMs and

change the CPU allocations to individual VMs. To evaluate DynaQoS in fine-grained

resource allocation, we took the second approach.

4.4.2 Testbed

Our testbed consists of a virtual server, client and NFS servers. The physical

machines for virtual hosting were two DELL servers with two Intel Xeon X5650 CPUs

and 32 GB memory. Each CPU has 6 cores with hyperthreading enabled resulting a

71

total capacity of 24 logical CPUs. The front-end and back-end DB VMs were hosted

on separate machines. We configured the front-end VM with 8 core and 4 GB memory.

The DB VMs, each with 4 core and 2 GB memory, resided on the other machine. We

used a number of client machines each with 8 cores and 8 GB memory to generate

workload for the TPC-W. The NFS server used a RAID5 partition to serve the VM

disk images. We used Xen version 4.0 as our virtualization environment. dom0 and

guest VMs were running Linux kernel 2.6.32 and 2.6.18, respectively. All the severs

were connected by Gigabit Ethernet network.

4.4.3 Implementation of DynaQoS

QoS monitor. We consider the client-perceived response time as the measure

of application-level performance. We modified the TPC-W’s workload generator to

maintain a log of finished requests. A small utility program parses the log to calculate

the average response time for every control interval.

QoS profile manager. Each service class works with a QoS profile manager to

determine the control objective. The control objectives are specified in terms of a set

of desired response times with different levels. For service differentiation, the profile

manager also sets the number of SLO violations that can be tolerated by a class

before a target adaptation is initiated. For the service differentiation experiment in

Section 4.5.3, we considered two classes: Premium and Basic. They both have three

levels of SLO, {1s, 5s, 10s}, and with adaptation thresholds: 10 and 30 violations,

respectively.

Self-tuning fuzzy controller. STFC has been implemented as a set user-level dae-

mons in the virtual host (i.e. dom0 in a Xen environment). It takes the measured

application-level performance (from QoS monitor) and the performance objective

72

(QoS profile manager) as input and outputs the resource adjustment to Xen’s man-

agement interface. If multiple control objectives exist, two or more STFCs form a

unified request. The control interval is set to 30 seconds for all the experiments.

CPU resource allocation. CPU resources are allocated to each DB VM via Xen

Credit Scheduler in terms of cap values. A cap value represents the upper limit of

CPU time can be consumed by a VM in percentage. For a virtual cluster with 4 VMs

and each with 4 cores, the CPU allocation can be in the range of [1, 1600]. The CPU

time is allocated to individual virtual clusters. We assume good load balancing by

the Tomcat balancer, thus distribute CPU cap values uniformly within the cluster.

All VMs are given the same weight during allocation.

4.5 Experimental Results

4.5.1 Comparing STFC to other popular control methods

Experiments are designed to study the efficacy of DynaQoS in the determination

of proper CPU allocations under both static and dynamic workloads. We have also

implemented three popular controllers within the DynaQoS framework:

Kalman filer [37] is a data processing method that uses a series of measurement

with noises to produce values closer to the true values of the measurement. It is used

in [37] to track the utilization of CPU and allocate CPU resources correspondingly

to maintain the utilization to a specific value.

Adaptive proportional integral (PI) [52] directly tracks the error of the measured

response time and the target and adjusts the CPU allocation to minimize the error.

The gains of the proportional and integral parts are set to | c
2
· e(k)|, similarly as the

STFC, to allow adaptive control.

73

Auto-regressive-moving-average (ARMA) [51] builds a local linear relationship be-

tween the allocated CPU resource and the response time with recently collected sam-

ples. If response time deviates from the target value, the controller computes the

allocation that corrects the error based on the obtained model. The controller is

configured to use a second-order ARMA model with a window size of 20.

To measure the performance of DynaQoS, we define a metric, relative deviation

R(e), based on root-mean square error:

R(e) =

√∑n
k=1 e(k)2/n

r(k)
.

The smaller the R(e), the more the achieved response time concentrates near the

target value and better the controller’s performance. To compare the performance of

different controllers, we take the performance of STFC as a baseline and define the

performance difference between STFC and other controller as:

PerfDiff =
R(e)other −R(e)STFC

R(e)STFC
.

Response times behave nonlinearly with respect to resource allocations especially

when the system is in a busy state. We selected the set point of all the controllers to

be 1 second except that we followed the controller in [37] and set the Kalman filter’s

set point to be 90% CPU utilization, which translates to approximately the 1-second

response time under the capacity of 16 cores. In this experiment, we only considered

one service class with one virtual cluster. The virtual cluster had 4 DB VMs each

with 4 VCPUs and its initial capacity was set to 6 cores (a cap of 600).

Figure Figure 4.5(a) plots the response times of different control methods with

static TPC-W workload. The workload was set to 200 browsing clients, each with a

74

mean think time of 1 second. From Figure Figure 4.5(a), we observe that, all the con-

trol methods except ARMA can bring the response time close to the 1-second target,

but with different deviations. ARMA requires a local model to predict the proper

CPU allocation, thus whenever a deviation from the target is detected it needs several

control intervals to build a new model. Figure 4.5.1 draws the performance difference

of other controllers relative to STFC. STFC outperformed all other controllers by at

least 16% with adaptive-PI as the closest competitor.

We are also interested in the adaptability of the controllers under dynamic work-

load. We instrumented the workload generators of TPC-W to change client traffic

levels at run-time. The workload generator reads dynamic traffic levels from a trace

file, which models after the real Internet traffic pattern [69]. Figure Figure 4.5(b)

plots the response times in a 90-minute period in which the number of clients was

changed every 30 intervals. We started with 100 clients and set the client numbers

at the 60th, 90th, 120th and 150th interval to be 200, 300, 200 and 100, respectively.

From Figure Figure 4.5(b), we observe that, ARMA performed worst among the con-

trollers with a large number of SLO violations. Kalman filter was not responsive to

the workload change and failed to bring the response time back to the 1-second tar-

get before the workload changed again. Both of STFC and adaptive-PI successfully

maintained the response times around the target. Figure Figure 4.5(b) also suggests

that STFC is more responsive to the workload change with an average settling time

of 3 intervals. In contrast, adaptive-PI had an average settling time of 6 intervals.

Figure 4.5.1 reveals that STFC outperformed adaptive-PI by 37% in terms of relative

deviation. It is expected that Kalman filter and ARMA incurred large deviations.

To better understand the performance of the controllers under dynamic workload,

we also plot the actual CPU allocations (i.e. cap values) in Figure Figure 4.5(c).

It shows that Kalman filter is not responsive to the workload change and ARMA

75

is too sensitive to the dynamics. We believe that these two methods can be tuned

to fit the system better. However, controllers based on local model approximation

impose limitation on how fast workloads can change. Both STFC and adaptive-PI

do not assume any models of the underlying system, and were able to adjust the

CPU allocations properly. In Figure Figure 4.5(c), we find that, STFC maintains

more stable CPU allocations during the period between the workload changes (e.g.

between 60th and 90th intervals). This explains the more stable control performance

of STFC in Figure 4.5.1 and is due to the flexible control rule selection in STFC.

4.5.2 Scheduling multiple objectives

In the previous experiment, we set the control objective precisely at 1-second

response time. In many problems, relaxing the “point” control objectives to some

suboptimal “regions” is also acceptable. This observation makes the simultaneous

control of multiple objectives feasible and of practical importance. DynaQoS ap-

plies gain scheduling to balance the trade-off between conflicting objectives. In this

experiment, we study the simultaneous control of conflicting objectives, application

performance and power within the DynaQoS framework.

We assume that individual cloud users are allocated a power budget to limit the

power consumption of their applications. There are existing work performed VM-level

power measurement with success [39] and we believe that VM-level power budgeting

is desirable in future data centers. In this experiment, we tested with only one cloud

user and consider the system-wide power as the VM’s consumption. The system-wide

power consumption is measured with a WattsUp Pro power meter. The meter records

the power consumption every second and we calculate the average power value for

each control interval (i.e. 30 second). The more the CPU resources the smaller the

76

response times but the larger the power consumption. The set points were set to 1

second and 250 watt for the response time and power budget, respectively.

Figure Figure 4.7 plots the response time and power consumption during the

control. Before the 30th interval, the cloud application contributed most to the

power consumption and there existed a balance point that generating acceptable

performance for both objectives. DynaQoS successfully identified the balance point

and stabilize the response time and power consumption at approximately 800ms and

190w, respectively. Starting the 30th interval, we launched background jobs in the

host consuming considerable power. In this way, we emulate the circumstances in

which some other jobs belonging to the same cloud user eat a lot of power and the

user needs to limit the power usage by the cloud application. From the figure, we

can see that the combined power consumption immediately exceeded and budget

and DynaQoS was able to contain the consumption within the budget by reducing

the CPU allocation to the cloud application. When the response time or the power

deviated from the target, DynaQoS give more weight to the corresponding STFC.

With current settings of the objectives, DynaQoS was able to brought both response

time and power close to their targets with stable performance. Once the background

jobs ended, DynaQoS returned back to the (800ms, 190w) balance point.

4.5.3 Service differentiation

In this section, we investigate the effectiveness of DynaQoS in providing differ-

entiated services to two client classes, Premium and Basic. DynaQoS applies target

adaptation if resource contention is detected. We compare the target adaptation of

DynaQoS to a strict differentiation policy (STRICT), that is to guarantee the CPU

allocation of the premium class and provide best-effort service to the basic class. To

77

prevent resource starvation of the basic class, we reserve 2-core’s capacity to the basic

class’s virtual cluster. We configured the two classes each with a cluster of 4 DB VMs.

Each cluster had 16 VCPUs and can use up to 16 physical CPU resources in theory.

The client concurrency levels were set to 200 browsing clients for both classes and

resulted in an aggregate CPU demand of approximately 20 CPUs. The server host-

ing the virtual clusters has a capability of 24 CPUs, thus no service differentiation

is needed if the virtual clusters can use the CPU resource freely. We emulated the

change in the CPU capacity by restricting the 32 VCPUs of the clusters to the first

12 physical CPUs at the 20th interval. This effectively reduced CPU capacity to 12

CPUs. As discussed in Section 4.2, the capacity change due to scheduling dynamics

is possible in current cloud platforms. More importantly, the change in the actual

CPU capacity may not be reflected in the nominal CPU allocations.

In Figure 4.5.3, we compare DynaQoS’s target adaptation with the STRICT pol-

icy. We implemented two variations of the STRICT policy, one with the knowledge

of the exact value of the new capacity (STRICT w/ info), one without (STRICT w/o

info). As shown in Figure 4.5.3, DynaQoS was able to detect the resource contention

at the 32th interval because the premium class had seen 10 serious violations in the

response time. It triggered the basic class’s target adaptation to the next level, 5

second. The performance of both classes stabilized at the 50th interval. The pre-

mium class succeeded to maintain the 1-second target and the basic class achieved

a response time close to its new target. After we increased the capacity at the 60th

interval, DynaQoS took 10 intervals to detect the change and reset the target of the

basic class back to 1 second. In contrast, STRICT w/o info policy failed to detect

the capacity change and did not enforce service differentiation.

In Figure 4.5.3, we also observe that, with the new capacity information (i.e.

12 CPU), STRICT w/ info was able to guarantee the performance of the premium

78

class. But the basic class suffered a 10-second response time compared to 5-second

in DynaQoS. An examination of the actual CPU allocation during the contention

period revealed that the basic class achieved a 5-second level performance because

it obtained more CPU resources than in the STRICT w/ info policy. During the

contention, DynaQoS kept increase the allocation of both classes until the targets

were met. The aggregated CPU allocation in terms of cap values can be beyond

the actual capacity (12 CPU). It is equivalent to a work-conserving mode but with

bounded allocation to the basic class for the purpose of differentiation. Different

from DynaQoS, STRICT w/ info enforces that the total allocation is not beyond 12

CPU and the basic class only got an allocation of 2 CPU or whatever was left by the

premium class. The non-work-conserving mode in STRICT w/ info policy wasted

some CPU time which can otherwise be used by the basic class.

4.6 Summary

In this chapter, we have proposed a response time-based fuzzy control approach

for the allocation of virtualized resources. We develop a self-tuning fuzzy controller

with adaptive output amplification and flexible rule selection. Based on the fuzzy

controller, we further design a two-layer QoS provisioning framework, DynaQoS, that

supports adaptive multi-objective resource allocation and service differentiation. Ex-

periments on a Xen-based cloud testbed and an E-Commerce benchmark show that

the fuzzy controller outperformed three popular controllers for CPU resource allo-

cation. DynaQoS also demonstrated its effectiveness in the simultaneous control of

performance and power and service differentiation.

79

 0
 500

 1000
 1500
 2000
 2500

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

STFC

 0
 500

 1000
 1500
 2000
 2500

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150R
es

po
ns

e
tim

e
(m

s)

ARMA

 0
 500

 1000
 1500
 2000
 2500

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150R
es

po
ns

e
tim

e
(m

s)

Adaptive PI

 0
 500

 1000
 1500
 2000
 2500

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150R
es

po
ns

e
tim

e
(m

s)

Kalman filter

(a) Static workload

 0
 1000
 2000
 3000
 4000
 5000

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

STFC

 0
 1000
 2000
 3000
 4000
 5000

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180R
es

po
ns

e
tim

e
(m

s)

ARMA

 0
 1000
 2000
 3000
 4000
 5000

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180R
es

po
ns

e
tim

e
(m

s)

Adaptive PI

 0
 1000
 2000
 3000
 4000
 5000

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180R
es

po
ns

e
tim

e
(m

s)

Kalman filter

(b) Dynamic workload

 0

 400

 800

 1200

 1600

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

C
P

U
 a

llo
ca

tio
n

Time interval (30s)

STFC

 0

 400

 800

 1200

 1600

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

C
P

U
 a

llo
ca

tio
n

ARMA

 0

 400

 800

 1200

 1600

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

C
P

U
 a

llo
ca

tio
n

Adaptive PI

 0

 400

 800

 1200

 1600

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

C
P

U
 a

llo
ca

tio
n

Kalman filter

(c) Resource allocation

Figure 4.5: Performance comparison of STFC, Kalman filer, Adaptive-PI and ARMA.

80

 10

 100

 1000

Static Dynamic

P
er

D
iff

 (
%

)
Adaptive PI

Kalman filter
ARMA

Figure 4.6: Performance comparison of STFC and other controllers in relative devi-
ation.

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90

P
ow

er
 (

w
at

t)

Time interval (30s)

Power
Budget

 500

 1000

 1500

 2000

 2500

R
es

po
ns

e
tim

e
(m

s) Response time
SLO

Figure 4.7: Simultaneous control of performance and power.

81

 1000

 10000

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

5000

Premium
Basic

(a) Target adaptation

 1000

 10000

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

5000

2000

Premium
Basic

(b) STRICT without capacity information

 1000

 10000

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

5000

Premium
Basic

(c) STRICT with capacity information

Figure 4.8: Service differentiation with different methods.

82

Chapter 5

Concurrent Control of Multiple

Resources

5.1 Introduction

Modern virtualization platforms provide a rich set of configurable resource param-

eters for fine-grained runtime control. Due to time-varying resource demand of typical

server applications, it is usually necessary to re-allocate resources to hosted VMs for

overall performance. In server consolidation with heterogeneous applications, it is not

easy to figure out the besting settings for VMs with distinct resource requirements.

Server virtualization has a key request for performance isolation. In practice,

applications sharing the physical server still have chance to interfere with each other.

In [49, 28], the authors showed that bad behaviors of one application in a VM could

adversely affect the others’ in Xen [9] VMs. The problem is not specific to Xen; it can

also be observed on other virtualization platforms due to the presence of centralized

virtual machine scheduling. Therefore, to optimize system-wide performance, it is

desirable to have balanced resource configuration in co-resident VMs preventing rogue

83

VMs that affect others. Furthermore, there is usually a time gap between resource

allocations and their effects on application performance can be observed. We call it

a process delay or delayed effect.

An automated resource management should optimize system-wide performance

with balanced VM configurations, even in the systems those are highly dynamic and

hard to model. It should also be able to deal with delayed effects. Reinforcement

learning (RL) is a process of learning by interactions with dynamic environment,

which generates the optimal control policy for a given set of states. It requires no

domain knowledge of the controlled system and is able to offset delayed effects by

optimizing a long-term goal. RL approaches to the design of computer systems in-

volve several important issues. The application of RL methods is non-trivial due

to the exponentially increased state space when systems scale up. In online system

management, interaction-based RL policy generation suffers from slow adaptation to

new policies.

In this chapter, we propose a RL-based virtual machine auto-configuration agent,

namely VCONF. The central design of VCONF is the use of model-based RL al-

gorithms for scalability and adaptability. We define the reward signal based on

summarized performance of each VM. By maximizing the long run reward, VCONF

automatically directs each virtual machine configuration to a good (if not optimal)

one.

5.2 Motivating Examples

In this section, we first briefly review the Xen virtual machine monitor (VMM) and

then give some motivating examples showing that why balanced VM configurations

are desirable and how delayed effets affect resource allocations.

84

5.2.1 The Xen Virtual Machine Monitor

A VMM is the lowest level software abstraction running on the actual hardware.

It provides isolation between guest OSes and manages access to hardware resources.

Xen [9] is a high performance resource-managed VMM. It consists of two components:

a hypervisor and a driver domain.

The hypervisor provides the guest OS, also called a guest domain in Xen, the

illusion of occupying the actual hardware devices. The hypervisor performs functions

such as CPU scheduling, memory mapping and I/O handling for guest domains. The

driver domain (dom0) is a privileged VM which manages other guest VMs and ex-

ecutes resource allocation policies. Dom0 hosts unmodified device drivers for VMs;

it also has direct access to actual hardware. Xen provides a control interface in the

driver domain to manage the available resources to each VM. The following config-

urable parameters have salient impacts on VM performance.

1. CPU time. The Xen VMM uses a credit scheduler to schedule CPU on do-

mains. Each VM is assigned a credit number which statistically determines the

portion of processor time allocated to each VM.

2. Virtual CPUs. This parameter determines how many physical CPUs can be

used by a VM. The number of virtual CPUs together with the scheduler credit

determine the total CPU resource allocated to a VM.

3. Physical memory. This parameter controls the amount of memory can be

used by a VM. If not set appropriately, the application within the VM may need

to communicate with disk frequently, which degrades user-level performance

considerably.

85

5.2.2 Balanced Configurations

In Xen’s implementation, privileged instructions and memory writes are trapped

and validated by the hypervisor; I/O interrupts are handled by the VMM and data

is transfered to VMs in cooperation with dom0. The involvement of the centralized

virtualization layer in guest program execution can also be found in other platforms,

such as VMware [76] and Hyper-V [32]. Thus, any bad behavior of one VM may

adversely affect the performance of other VMs by depriving the hypervisor and driver

domain resources. In [28], the authors showed that for I/O intensive applications,

by setting a fixed CPU share, the credit scheduler does not account for the work

done for individual VMs in the driver domain. Taking memory and virtual CPU into

consideration, the involvement of dom0 and hypervisor in VM execution aggravates

the uncertainties in resource to performance mapping. For example, allocating more

resource to one VM may result in performance degradation due to the other VMs’

impediment caused by resource deallocation.

For example, on a host machine with two quad-core Intel Xeon CPUs and 8

GB memory, we created three VMs running representative server applications: E-

Commerce (TPC-W [73]), online transaction processing (TPC-C [74]) and web server

benchmark (SPECweb [71]). Details of the testbed and benchmark settings can be

found in Section 5.5. Figure Figure 5.1(a) shows the impact of resource configuration

on application performance. The throughput for each application is normalized to a

reference value resulted from running the application on the host exclusively. The

balanced configuration in the form of (time, vcpu, mem) were set to (256, 2, 512M)

in TPC-W, (256, 1, 1.5G) in TPC-C, and (512, 2, 512M) in SPECweb. The settings

optimized the overall performance for all the applications. Config-1 moves 1GB mem-

ory from TPC-C to SPECweb; Config-2 reduces the virtual CPU of TPC-W from 2

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

balanced config-1 config-2 config-3

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

TPC-W
TPC-C

SPECweb

(a) Due to configuration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

base workload workload-1 workload-2 workload-3

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

TPC-W
TPC-C

SPECweb

(b) Due to workload dynamics

Figure 5.1: Balance configurations is desirable for system-wide performance.

to 1; Config-3 moves 256 credits from SPECweb to TPC-C. Figure Figure 5.1(a)

suggests that VM performance is sensitive to the process of resource allocation. In

certain times, unexpected degraded performance is observed in a VM with even more

resources. For example, in Config-1, with more memory the SPECweb VM had an

unexpected worse performance. The reason is due to the increased competition for

I/O bandwidth from the TPC-C VM which was de-allocated 1GB memory.

Figure Figure 5.1(b) plots the performance with fixed VM configurations while

changing the load level in each application. The workload selections are defined

in Table Table 5.1. By reducing the incoming workload to TPC-W, TPC-C and

SPECweb, we got three workloads ordered from left to right in the figure. Intuitively,

reduced traffic should result in better performance due to alleviated resource con-

tention. However, the assertion does not hold in Figure Figure 5.1(b). In workload-1,

reduced workload in TPC-W alleviated the CPU competition with SPECweb VM.

However, with more chance to get scheduled, the SPECweb VM reduced the I/O

bandwidth available to TPC-C which ended up with a performance loss. Although

overall resource demand decrements, unbalanced VM configurations can still possibly

lead to significant performance loss.

87

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
es

po
ne

s
T

im
e

(s
)

Number of Iterations

1.5G --> 1.0G
0.5G --> 1.0G

Figure 5.2: Delayed effect in memory reconfiguration.

5.2.3 Delayed Effects

VM capacity management relies on precise operations that set resources to desired

values assuming the observation of the instant reconfiguration effect. Delayed effects

are observed in both memory and CPU allocations. I/O data is transferred to and

from each domain via Xen and the driver domain, using shared-memory. The hyper-

visor and driver domain may cache data to expedite VM I/O accesses. VMs with

fewer memory may have more data cached by the VMM and driver domain. Thus

the way of configuring a VM to its target memory size can potentially affect VMs’

performance. Increasing or decreasing to the target memory size can have distinct

effects. Due to the caching effects, the influence of a previous configuration may last

several configuration steps. Figure Figure 5.2 shows the delayed effect in memory

allocation. The target memory size for TPC-C benchmark was set to 1GB, but from

initial settings of 1.5GB and 0.5GB. The memory size was adjusted (at the 20th

minute) after the initial configuration produced stable response times. The effect of

the adjustment lasted for several minutes before the response time stabilized again.

Similar phenomenon can also be observed in CPU allocation. We did tests measur-

ing the dead time between a change in VCPU and the time the performance stabilizes.

A single TPC-W DB tier was tested by changing its VCPU. Figure Figure 5.3 plots

the application-level performance over time. Starting from 4 VCPUs, the VM was

88

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 5 10 15 20 25 30 35 40
10

100

1000

10000

T
hr

ou
gh

pu
t (

re
q/

s)

R
es

po
ns

e
tim

e
(m

s)

Time (mins)

Throughput
Response time

Figure 5.3: Delayed effect in VCPU reconfiguration.

removed one VCPU every 5 minutes until one was left at the time of the 15th minute.

Then the VCPU was added back one by one. At the 20th minute, the number of

VCPUs increased from 1 to 2. We observed a delay time of more than 5 minutes

before the response time stabilized at the time of the 25th minute. The reason for

the delay was due to the resource contention caused by the backlogged requests when

there were more CPU available. The VM took a few minutes to digest the congested

requests.

The complicated resource to performance relationship and possible delayed con-

sequences of previous allocation decisions pose challenges to on-the-fly VM resource

management. In server consolidation, the resource allocation may need to be changed

due to workload dynamics. The system-wide performance (performance summarized

over all hosting applications) should be optimized. This motivated us to design a VM

configuration agent to automate the management process. The self-optimizing agent

should be able to dynamically alter the VM settings to a better one in consideration

of performance interference between VMs and the delayed effects. Reinforcement

learning gives a possible solution to the problem.

89

5.3 Reinforcement Learning for VM Auto-configuration

5.3.1 Reinforcement Learning and Its Applicability to VM

Auto-configuration

Reinforcement learning is concerned with how an agent ought to take actions in

a dynamic environment so as to maximize long term rewards defined on a high level

goal [67]. The RL offers two advantages [68]. First, it does not require a model of

either the system in consideration or the environment dynamics. Second, RL is able

to capture the delayed effect in a decision-making task.

The outcome of RL is a policy that maps the current state of the agent to the best

action it could take. The “goodness” of an action in a state is measured by a value

function which estimates the future accumulated rewards by taking this action. The

RL-enabled agent performs trial-and-error interactions with the environment, each

of which returns an instantaneous reward. The reward information is propagated

backward temporally in repeated interactions, eventually leading to an approximation

of the value function. The optimal policy is essentially choosing the action that

maximizes the value function in each state. The interactions consist of exploitations

and explorations. Exploitation is to follow the optimal policy; in contrast exploration

is the selection of random actions to capture the change of the environment so as to

enable the refinement of existing policy.

The VM configuration task fits within the agent environment framework. Consider

the agent as a controller residing in dom0. The states are VM resource allocations;

possible changes to the allocations form the set of actions. The environment comprises

the dynamics underlying the virtualized platform. Each time the controller adjusts

the VM configurations, it receives performance feedback from individual VMs. After

90

sufficient interactions, the controller obtains good estimations of the “goodness” of

the allocation decisions given current VM configurations. Starting from an arbitrary

initial setting, the controller is able to lead the VMs to optimal configurations by

following the optimal policy. Through explorations, the controller can modify its

resource allocation policy according to the dynamics of VM traffics.

A RL problem is usually modeled as a Markov Decision Process (MDP). Formally,

for a set of environment states S and a set of actions A, the MDP is defined by the

transition probability Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a) and an immediate

reward function R = E[rt+1|st = s, at = a, st+1 = s′]. At each step t, the agent

perceives its current state st ∈ S and the available action set A(st). By taking action

at ∈ A(st), the agent transits to the next state st+1 and receives an immediate reward

rt+1 from the environment. The value function of taking action a in state s can be

defined as:

Q(s, a) = E{
∞∑
k=0

γkrt+k+1|st = s, at = a},

where 0 ≤ γ < 1 is a discount factor helping Q(s, a)’s convergence.

5.3.2 Formulation of VM Configuration as a RL Task

The VM configuration task is naturally formulated as a continuing discounted

MDP. The goal is to optimize the overall VM(s) performance. We define the reward

function based on individual VM’s application level performance. The state spaces are

the hardware configuration of VMs which are fully observable in the driver domain.

Actions are the combination of the change to the configurable parameters. The

configuration task is formulated as following:

The reward function. The long-term cumulative reward is the optimization

target of RL. In the VM configuration task, the desired configurations are the ones

91

which optimize system-wide performance. The immediate rewards are the summa-

rized VM(s) performance feedbacks on the resulted new configuration. The perfor-

mance of individual VM is measured by a score which is the ratio of current through-

put (thrpt) to a reference throughput plus possible penalties when response time

(resp) based SLAs (Service Level Agreement) are violated:

score =
thrpt

ref thrpt
− penalty.

penalty =

 0 if resp ≤ SLA;

resp
SLA

if resp > SLA.

The reference throughput (ref thrpt) values are the maximum achievable applica-

tion performance under SLA constraints in current hardware settings. We obtained

the reference for one application by dedicating the physical host and giving more

than enough resources to the corresponding VM. A low score indicates either lack of

resource or interference between VMs, both of which should be avoided in making allo-

cation decisions. Then, the immediate reward is the summarized scores over all VMs.

As suggested by virtualization benchmarks [12, 77] for summarized performance, we

define the reward as:

reward =

n
√∏n

i=1wi ∗ scorei if for all scorei > 0;

−1 otherwise,

where wi is the weight for the ith VM, 1 ≤ i ≤ n. We strictly refuse the configurations

of negative scores (i.e. violation of SLA) by assigning a reward of −1. In the case of

soft SLA thresholds, the reward function can be revised correspondingly to tolerate

transient SLA violations.

92

The state space. In the VM configuration task, the state space is defined to

be the set of possible VM configurations. In the driver domain, VM configurations

are fully observable. States defined on the configurations are deterministic in that

Pa(s, s
′) = 1, which simplifies the RL problem. We define the RL state as the global

resource allocations:

(mem1, time1, vcpu1, · · · ,memn, timen, vcpun).

where memi, timei and vcpui are the ith VM’s memory size, scheduler credit and

virtual CPU number, respectively. Since the hardware resources available to VMs

are limited, constraints exist. The value of mem should not exceed the total size of

memory that can be allocated to VMs. In addition, vcpu should be a positive integer,

not exceeding the number of physical CPUs and the scheduler credit be positive, too.

The actions. For each of the three configurable parameters, possible operations

can be either increase, decrease or nop. The actions for the RL task are defined as

the combinations of the operations on each parameter. For parameters like time and

mem that are continuous, we quantify them by defining change steps. Memory is

reconfigured in unit of 256MB; scheduler credit changes in a step of 256 credits and

virtual CPU number is incremented or decremented by one at a time.

An action is invalid if by taking the action, the target state violates state con-

straints. Another restriction for taking action is that only one parameter is considered

at a time and only one-step reconfiguration is allowed. It follows the natural trail-

and-error method that searches the configuration state space exhaustively. More

importantly, resource adjustment in small steps smooths the configuration process.

93

5.3.3 Solutions to the RL Task

The solution to a RL task is an optimal policy that maximizes the cumulative re-

wards at each state. It is equivalent to finding an estimation of Q(s, a) which approx-

imates its actual value. The experience-based solution is based on the theory that the

average of the sample Q(s, a) values collected approximates the actual value of Q(s, a)

given sufficiently large number of samples. A sample is in the form of (st, at, rt+1).

The basic RL algorithms in experience-based solution are called temporal-difference

(TD) methods, which update Q(s, a) at each time a sample is collected:

Q(st, at) = Q(st, at) + α ∗ [rt+1 + γ ∗Q(st+1, at+1)−Q(st, at)],

where α is the learning rate and γ is the discount factor. The Q values are usually

stored in a look-up table and updated by writing new values to the corresponding

entries in the table. In the VM configuration task, the RL-based agent issues recon-

figuration actions following an ε-greedy policy. With a small probability ε, the agent

picks a random action, and follows the best policy it has found for most of the time.

Starting from any initial policy, the agent gradually refines the policy based on the

feedback perceived at each step.

5.4 The Design and Implementation of VCONF

In this section, we introduce VCONF, a RL-based VM auto-configuration agent.

Including multiple VMs in the RL problem poses challenges to the adaptability and

scalability of VCONF. We address the challenges by employing model-based RL meth-

ods with two layers of approximation.

94

Xen

VM VM

a1
1

a2
23

a3
4

a4 b1b2b3b4

5678

V
in

G
N

D

V
ref

B
1

B
8

S
ign

EN
B A/D Converter

a1
1

a2
23

a3
4

a4 b1b2b3b4

5678

V
in

G
N

D

V
ref

B
1

B
8

S
ign

EN
B A/D Converter

reward
reward C

onfiguration

Hardware

MEMVCPUSCHED
Valid actions

Figure 5.4: The organization of VCONF.

5.4.1 Overview

VCONF is designed as a standalone daemon residing in the driver domain. It takes

advantage of the control interface provided by dom0 to control the configuration of

individual VMs. Figure Figure 5.4 illustrates the organization of VCONF and the Xen

virtualization environment. VCONF manages the VM configurations by monitoring

performance feedbacks from each VM. Reconfiguration actions take place periodically

based on a predefined time interval. VCONF queries the driver domain for current

state and computes valid actions. Following the policy generated by the RL algorithm,

VCONF selects an action and sends it to dom0 for VMs reconfiguration. At the end

of each step, VCONF collects the performance feedbacks in each VM and calculates

the immediate reward. The new sample of the immediate reward is processed by the

RL algorithm and VCONF updates the configuration policy accordingly. VCONF

implements a basic look-up table based Q function for small systems. In a larger

system, VCONF employs model-based RL algorithm for adaptability and scalability.

95

5.4.2 Adaptability and Scalability

Adaptability is the ability of RL algorithms to revise the existing policy in response

to the change of the environment. To adapt current policy to a new one, the RL agent

needs to perform a certain amount of exploration actions, which are believed to be

suboptimal actions leading to bad rewards. In production systems, the explorations

can be prohibitively expensive due to bad client experiences. The RL algorithm

usually requires a long time for new samples collection before a new policy can be

derived. This is not acceptable for online policy generation tasks like VM auto-

configuration.

Scalability issues refer to the problem that the number of Q values grows expo-

nentially with the state variables. In a look-up table-based Q implementation, the

values are stored separately without interactions. The convergence of the optimal

policy depends critically on the assumption that each table entry be visited at least

once. In practice, even if the storage and computation complexity for a large Q table

are not a concern, the time required to collect sample rewards to populate the Q table

is prohibitively long.

Instead of updating each Q(s, a) value directly from the immediate reward recently

collected, VCONF employs environment models to generate simulated experiences for

value function estimation. The environment models are essentially data structures

that capture the relationship between current configuration, action and the observed

reward. The model can be trained from previous collected samples in the form of

(st, at, rt+1) using supervised learning. Once trained, a model is able to predict the r

values for unseen state-action pairs.

The use of environment models offers two advantages for RL tasks: First, model-

based RL is more data efficient [7]. With limited samples, the model is able to shed

96

insight on unobserved rewards. Especially in online policy adaptation, the model

is updated every time with new collected samples. The modified model generates

simulated experiences to update the value function, and hence expedites policy adap-

tation. Second, the immediate reward models can be reused in a similar environment.

The environmental dynamics in VM configuration task are the time-varying resource

demands in each VM. Different models can be learned for different combination of

demands in VMs. We call such a combination a workload. In online adaptation,

once VCONF identifies the resource demand is similar to a previous workload, the

corresponding model is re-used. Instead of starting from scratch, the reuse of pre-

vious models is equivalent to starting from guided domain knowledge, which again

improves online performance.

In model-based RL, the scalability problem is alleviated by the model’s ability

in coping with relatively scarcity of data in large scale problems. The conventional

table-based Q values can be updated using the batch of experiences generated by

the environment model. However, the table-based Q representation requires a full

population using the rewards simulated by the model. This is problematic when the

RL problem scales up. In VCONF, we use another layer of approximation for the

value function, which helps to reduce the time in updating the value function in each

configuration step.

5.4.3 Model Initialization and Adaptation

We selected standard multi-layer feed-forward back propagation neural network

(NN) with sigmoid activations and linear output to represent the environment model.

The selection was due to NN’s ability to generalise from linear to non-linear relation-

ship between the environment and the real-valued immediate reward. More impor-

97

Algorithm 1 The VCONF online algorithm
1: Initialize Qappx to trained function approximator.
2: Initialize t← 0, at ← nop.
3: repeat
4: st ← get current state()
5: re configure(at)
6: rt+1 ← observe reward()
7: at+1 ← get next action(st, Qappx)
8: worload← identify workload()
9: Rmodel ← select model(workload)

10: update Rmodel(st, at, rt+1, Rmodel)
11: update Qappx(Rmodel, Qappx)
12: t← t+ 1
13: until VCONF is terminated

tantly, it is easy to control the structure and complexity of the network by changing

the number of hidden layers and the number of neurons in each layer. This flexi-

bility facilitates the integration of supervised learning algorithms with RL for better

convergence. The performance of model-based RL algorithms depends on the accu-

racy of the environment model in generating simulated samples. Thus, the training

samples used to train the model should be representative. We generated the training

samples for the model by enumerating important configurations. In the implemen-

tation of Q function, an NN-based function approximator replaces the tabular form.

The NN function approximator takes the state-action pairs as input and outputs the

approximated Q value. It directs the selection of reconfiguration actions based on the

ε-greedy policy.

Algorithm 1 shows the VCONF online algorithm. VCONF is designed to run

forever until being stopped. At each configuration interval, VCONF records the

previous state and observes the actual immediate reward obtained. Next action is

selected by ε-greedy policy according to output of function approximator Q. VCONF

identifies the workload by examining system-level metrics during last interval. The

function select workload is implemented in a way similar to the one in [59] using

98

Algorithm 2 Update the Q approximator
1: Initialize Qappx to the current function approximator.
2: repeat
3: sse← 0
4: for n iterations do
5: (st, at, rt)← generate sample(Rmodel)
6: target← rt + γ ∗Qappx(st+1, at+1)
7: error ← target−Qappx(st, at)
8: sse← 0.9 ∗ sse+ 0.1 ∗ error ∗ error
9: train Qappx(st, at) towards target

10: end for
11: until converge(sse)

supervised learning except that the output is the predicted workload type. The new

sample (st, at, rt+1) then updates the selected environmental model. The Q function

approximator is batch-updated as in Algorithm 2.

5.5 Experimental Results

5.5.1 Methodology

We designed a set of experiments to show the effectiveness of the RL-enabled

VCONF in VM auto-configuration. Figure Figure 5.5 lists four different VM settings.

The experiments are divided into two parts. In the first part, VCONF was evaluated

in controlled environments in which the number of applications and resources were

limited to a small set. The multi-tier TPC-W benchmark was selected as the applica-

tion. As in Figure Figure 5.5(a), its reference performance was obtained by running

TPC-W application server and database server on two separate physical servers exclu-

sively. Figure Figure 5.5(b) shows a single instance of TPC-W with two tiers. Since

TPC-W is primary CPU-intensive, the memory parameter was fixed in this controlled

environment. By adjusting CPU resources allocated to each tier, VCONF is to max-

99

TPCW
APP

TPCW
DB

TPCW
APP

TPCW
DB

TPCW
APP1

TPCW
DB1

TPCW
APP2

TPCW
DB2

TPCW
APP

TPCW
DB

TPCC

SPEC
web

Figure 5.5: The design of experiments.

imize TPC-W’s throughput. The experiment in Figure Figure 5.5(c) augmented the

single application problem by adding another instance of TPC-W. VCONF needs to

optimize system-wide performance finding balanced CPU allocation schemes for com-

peting applications. In the second part, restrictions on the number of applications and

resources in consideration were relaxed. As in Figure Figure 5.5(d), three applications

with heterogeneous resource demands were consolidated in the host. The memory pa-

rameter needs to be considered. In the scaled-up problem, the state-action space is

considerably larger than the controlled experiments. VCONF’s implementation of

model-based RL algorithm was evaluated and compared with basic RL methods.

5.5.2 Experiment Settings

The machines used in the experiments consist of virtual servers, client and com-

pute machines. The physical machines for virtual hosting are Dell PowerEdge1950

with two quad-core Intel Xeon CPU and 8GB memory. In the controlled experiment,

all VMs were pinned to the first four cores. We separated the RL related computation

to a compute node in order to avoid possible VM performance interference. All the

client and compute nodes were the same model Dell machines and were connected by

100

Gigabyte Ethernet network.

We used Xen version 3.1 as our virtualization environment. Both dom0 and the

guest VMs were running CentOS Linux 5.0 with kernel 2.6.18. The VMs mounted

their file-based disk images through a NFS server. For the benchmark applications,

MySQL, Tomcat and Apache were used for database, application and web servers.

The VM configuration actions were issued through dom0’s privileged control interface

xm.

We selected the TPC-W [73], TPC-C [74] and SPECweb [71] benchmarks as the

workloads running within the VMs. They are typical server applications in today’s

data centers which are the targets of virtualization technology.

5.5.3 Applicability of RL-based VM Autoconfiguration

First, we studied the applicability of RL algorithms in the VM configuration task.

In [65], the authors assumed independence of configuration parameters. With this

assumption, VM configuration task can be easily solved by greedy search in each

resource dimension. They showed database query costs drop linearly with more CPU

shares. The cost is independent with the memory size allocated to the VM. Thus,

greedy search together with linear regression are sufficient to find the optimal con-

figuration without visiting every possible configurations. However, the independence

assumption does not always hold. Due to the involvement of dom0 in VM execution,

applications hungry for memory can be affected by CPU-intensive applications. Fig-

ure Figure 5.6 plots the performance of TPC-C under different CPU settings: equal,

more and less. The VM competing for resource is an instance of TPC-W. “equal”,

“more” and “less” indicate 50%, 80% and 20% CPU allocations for TPC-C, respec-

tively. The figure suggests a strong correlation between memory and CPU in deter-

101

 200

 400

 600

 800

 1000

 1200

 1400

 1600

512 1024 1536 2048

T
hr

ou
gh

pu
t (

re
q/

s)

Memory size (MB)

CPU equal
CPU more
CPU less

Figure 5.6: TPC-C performance in different settings.

mining application performance. That is, regression based greedy search approach

needs to search the entire configuration space.

The RL algorithm does not assume any model of the system in consideration.

It derives policies from interactions and continues to refine the policy with newly

collected experiences. We validated the effectiveness of RL methods in VM auto-

configuration starting from a simple problem. As showed in Figure Figure 5.5(b),

a two-tier TPC-W application was hosted by the virtual server. We assume the

application throughput as the optimization target. Requests execution in TPC-W

involves processing on both tiers. Thus, the resulted performance is affected by

the processing capacity on both tiers. TPC-W defines three different traffic mixes:

shopping, browsing and ordering mix. Different traffic mixes put processing pressure

on distinct tiers. Thus, it is not easy to determine the CPU assignment to each tier

for balanced configuration. Moreover, due to dynamic CPU demands from different

traffic mixes, existing CPU allocation needs to be frequently revised.

To limit the problem size, we restricted each tier to have up to 3 virtual CPUs.

Only three scheduler credit assignments were selected: equal share, tomcat tier with

80% share and Database tier with 80% share. The resulted state space contains 27

102

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 5 10 15 20 25 30 35 40 45 50 55 60

T
hr

ou
gh

pu
t (

re
q/

s)

Time (mins)

Adaptive Policy
Static Policy

Figure 5.7: VCONF performance with TPC-W application.

configurations. VCONF was deployed with a table-based Q function which was ini-

tialized to all zeros. We used the Sarsa(0) algorithm with α = 0.1, γ = 0.9, ε = 0.1

to drive the configuration agent, the configuration interval was set to 60 seconds. If

otherwise specified, the same RL parameters and interval were used in the remaining

experiments. The agent exits until the Q function converges. An optimal configu-

ration policy can then be derived from the Q table. The RL learning process was

repeated for above three workloads resulting in three policies.

Figure Figure 5.7 shows the online performance of VCONF with adaptive and

static policies. The plots are the achieved throughput in TPC-W. During the testing,

workloads were dynamically switched in the order of ordering, shopping and brows-

ing mix every 20 minutes. VCONF with adaptive policies continuous monitored the

system level performance metrics and identified workload changes. The policies were

switched accordingly as recommended by VCONF. Configured with a static initializa-

tion policy, VCONF revised the initial policy only based on online interactions. The

figure suggests that both RL agents were able to automatically drive an inappropriate

configuration to a better setting in a small number of steps. The TPC-W throughput

was brought up and maintained at a high level. The adaptive agent achieved the opti-

mal performance, which is the best possible result for the RL approach. The one with

the static policy also showed the effectiveness of RL, but with limited adaptability to

103

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

T
hr

ou
gh

pu
t (

re
q/

s)

Time (mins)

TPCW1
TPCW2

Figure 5.8: VCONF performance with two TPC-W instances.

a new policy when traffic changed.

5.5.4 RL-based System-wide Performance Optimization

In this experiment, we add one more TPC-W application to the problem. The

goal of the RL agent is to maximize the cumulative reward which is defined as the

summarized performance scores over both TPC-W instances. Adding more applica-

tions complicates the VM configuration problem. As the state space grows, the time

required for the RL agent to obtain an optimal policy in online interaction becomes

prohibitively long. For example, in the case of two TPC-W instances with two ap-

plication server VMs and two database VMs, the state space increases to around 400

states if the state is defined similarly as in the first experiment. It would take the

agent more than 400 minutes to visit every state. The convergence of the Q function

usually requires multiple visits to each entry and the RL agent following the ε−greedy

policy may not update different entries each time. Thus, the resulted time required

for online RL learning is unacceptable. One possible solution is to pre-define a policy

that guides the RL agent in online learning. Upon an acceptable good policy is de-

rived from online guided interactions, the RL agent is handed over to the generated

policy.

We designed the initial policy to be as simple as visiting different configurations at

104

each step. As more states are visited, the RL agent performs sweeps of batch updates

to the Q table using the collected rewards. In this experiment, the pre-defined policy

terminates when all configurations have been visited. Due to the presence of delayed

effects, different sequences of visiting may receive different rewards. Theoretically,

the Q function approximates its actual value only if the agent perceives the effect

of all the state-action pairs. Thus, the generated policy still needs online refinement

before the optimal policy is achieved. In practice, near optimal policy often satisfies

users’ requirement.

The RL-based VM resource management is to optimize both applications in op-

eration. Because VMs with identical resource demands can be configured to have

the same resource allocation. To test VCONF, the hosted TPC-W applications ran

different traffic mixes. Randomly selecting two traffic mixes as the input traffic to the

VMs forms three different resource demands for the whole system. The optimization

goal for the RL agent is to maximize system wide throughput for both applications.

Figure Figure 5.8 shows the change of their throughput during RL online learning.

The incoming workload changes every 30 minutes. We randomly selected a time pe-

riod with three different workloads and evaluated VCONF’s ability in system wide

performance optimization. For TPC-W1, the traffic mix changes were: ordering, or-

dering and shopping. To form different resource demands, TPC-W2 ran shopping,

browsing and browsing mixes correspondingly. From the figure, we can see that both

applications suffered performance degradation when the workload changed at the 30th

and 60th time points. This is partially due to unbalanced VM configuration caused

by traffic dynamics. On the other hand, the RL agent was able to correct unbalanced

configurations within a few steps. For example, TPC-W1’s throughput dropped to

2000 during the second workload change. The RL agent brought the performance

back and maintained the throughput around 7000 within 7 steps. Note that the pol-

105

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

T
hr

ou
gh

pu
t (

re
q/

s)

Number of Iterations

TPCW1:browsing
TPCW2:shopping

Figure 5.9: Performance of trial-and-error.

icy employed by the RL agent is not guaranteed to be an optimal policy because of

the agent’s limited interactions with the environment. There is no guarantee that the

throughputs for both applications were maximized.

From the 60th time point, the two VMs ran browsing and shopping mixes re-

spectively. The resource contention and performance interference between the two

VMs are more pronounced under this workload. We examined the effectiveness of

RL-based approach by comparing the performance of the derived RL policy with a

general trial-and-error method. The method fixes the value of one parameter and

tries different settings for another parameter. Figure Figure 5.9 plots performance

of the trial-and-error method. The trend line in the figure is the linear regression

of the performance in both VMs. The figure suggests that, on average the VMs

running browsing and shopping mix can achieve a maximum throughput of 4500 and

6500 concurrent requests. Compared with the trial-and-error, the RL-based approach

brought the throughput of both applications to around 5000 and 7000 respectively.

More importantly, the RL approach automatically directed the resource allocation

towards target configurations without any human intervention.

We define the difference between the system throughput under current configu-

ration and the throughput achieved in the target configuration as the performance

deviation. Figure Figure 5.10 plots the performance deviation in each configuration

106

step with a 95% confidence interval. The figure suggests that starting from arbi-

trary configurations, the RL agent should be able to continuously improve the system

throughput at each configuration step. On average, the system wide throughput

would stabilize within 7 configuration steps.

5.5.5 Model-based RL in VM Auto-configuration

In previous experiments, we showed the effectiveness of RL in small scale problems.

VCONF was able to find the optimal configuration for a single application. In the

multiple-application problem, a policy generated by RL using previous collected traces

achieved good results in optimizing system wide performance. Statistical results

showed that the RL approach would continuously improve the configuration step by

step and reach the target configuration within a small number of iterations. However,

as the VM configuration problem scales up, the state space grows dramatically.

Standard RL approaches depends critically on the experiences with the environ-

ment to generate policies. Unfortunately, the number of experiences needed for an

optimal RL policy grows with the state space. The pre-defined policy used to collect

experiences is likely to converge to sub-optimal policies due to the relatively data

scarcity in the huge state space. Model-based RL provides a solution to the problem

by providing a generalization over the collected experiences. By training a model

that captures the relationship between state-action pairs and the rewards collected,

the RL agent is able to simulate experiences for unseen state-action pairs. Then,

the simulated experiences are used to update the Q values. The performance of the

model-based RL approach relies on the accuracy of the trained model. Policies for

experience collection should be carefully designed in order to record representative

sample data.

107

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6 7 8 9 10 11 12 13R
el

at
iv

e
di

ffe
re

nc
e

to
 ta

rg
et

Number of Iterations

Mean difference

Figure 5.10: Performance deviation during re-configuration.

In the last experiment, we scaled the previous controlled VM configuration prob-

lem in two dimensions. We consolidated three benchmarks, TPC-W, TPC-C and

SPECweb, with heterogeneous resource profiles in the virtual server. TPC-W is

primary CPU-intensive while TPC-C requires a large amount of disk I/Os. The ex-

ecution of requests in SPECweb involves processor and network I/O for dynamic

content generation and static image serving. The VM resources in consideration were

the virtual CPU number, scheduler credit and memory size. We defined different

workloads with varying resource demands and tabularized them in Table Table 5.1.

All VMs were initially set to an identical configuration: 1.5GB memory, 4 virtual

CPUs and a credit of 256. We designed the policy for experience collection as a

traversal in a pre-defined resource configuration set. The set contains representative

combinations of the allocations uniformly scattered in the state space. The NN models

were trained with a learning rate of 0.0001 and a momentum of 0.1. Four models were

trained for different workloads. A second layer NN generalization was used as the

Q function approximator and its learning process is listed in Algorithm 2. The time

required to train a NN model from an arbitrary neural network is approximately 10

minutes. When updated incrementally, the training time reduces to around 1 minute.

108

Table 5.1: Workload settings.

TPC-W TPC-C SPECweb

workload-0 600 browsing clients 50 warehouses, 10 terminals 800 banking clients
workload-1 600 ordering clients 50 warehouses, 10 terminals 800 banking clients
workload-2 600 browsing clients 50 warehouses, 1 terminal 800 banking clients
workload-3 600 browsing clients 50 warehouses, 10 terminals 200 banking clients

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ne

s
tim

e
(m

s)

Number of Iterations

TPC-W Model-Based RL
Basic RL

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

R
es

po
ns

e
tim

e
(m

s) TPC-C Model-Based RL
Basic RL

 0

 500

 1000

 1500

 2000

 2500

 3000

R
es

po
ns

e
tim

e
(m

s) SPECweb Model-Based RL
Basic RL

(a) Response Time

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

re
q/

s)

Number of iterations

TPC-W

Model-Based RL
Basic RL

Max

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

T
hr

ou
gh

pu
t (

re
q/

s)

TPC-C
Model-Based RL

Basic RL
Max

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

T
hr

ou
gh

pu
t (

re
q/

s)

SPECweb
Model-Based RL

Basic RL
Max

(b) Throughput

Figure 5.11: Performance of VCONF with heterogeneous applications.

In order to fit the updates of the NN model and the Q approximator between each

interval, we limited the update of the NN model and the Q approximator to 50

iterations and 100 sweeps respectively, which resulted in a 50-second compute time.

We compared model-based RL approach with the basic table-base RL algorithm. To

be fair comparison, the basic RL’s Q tables for different workloads were initialized by

the NN-based Q approximators. During online learning, VCONF identifies workload

changes and recommends corresponding models and Q tables to model-based RL

agent and basic RL agent. Both the model-based RL agent and the basic RL agent

were started with the same VM initial configuration.

109

We randomly selected a time period with four different workloads. Figure Fig-

ure 5.11 shows the performance of VCONF with respect to response time and through-

put. The “Max” plot is the reference throughput for each application. The reference

value was obtained when each application ran alone on the virtual server with suffi-

cient resources. Due to VM interferences and possible inappropriate configurations,

the throughput for each application is less than the reference value. Model-based RL

approach outperforms basic RL in that it achieved a higher throughput and lower

response time during online learning. The model-based RL was able to adapt to

workload changes well. It improved the application throughput by 20%-100% over

the basic RL approach in different applications. In addition, model-based approach

was more stable sticking with the “best” configuration during the same workload.

The basic RL agent wagered between several configurations some of which incurs

considerable performance penalty.

The advantage of model-based RL approach over basic RL is due to the model’s

ability generalizing the environmental changes. In another word, the model-based

approach is more data efficient [7] that a change in the environment can spread to

other state-action pairs because they are co-related within the model. The basic

RL approach stores Q values separately without interactions, then an environmental

change can only influence the agent’s decision when the affected Q value entry is

visited next time.

5.6 Summary

In this work, we present VCONF, a RL-based agent for virtual machine auto-

configuration. VCONF automates the VM reconfiguration process by generating

policies learned from iterations with the environment. Experiments on Xen VMs

110

with typical server applications showed VCONF’s optimality in controlled problems

and good adaptability and scalability in a cloud computing testbed. In the presence

of workload dynamics, VCONF was able to adapt to a good configuration within

7 steps and showed 20% to 100% throughput improvement over basic RL methods.

Although, there is no optimality guarantee for the derived configurations, VCONF

was able to direct arbitrary initial configuration to a better one without performance

penalties in any of the VMs.

111

Chapter 6

Resource Management in Virtual

Clusters

6.1 Introduction

Exporting infrastructure as a service gives cloud users the flexibility to select VM

operating systems (OS) and the hosted applications. But this poses new challenges

to underlaying VM management as well. Because public IaaS providers assume no

knowledge of the hosted applications, VM clusters of different users may overlap on

physical servers. The overall VM deployment can show an dependent topology with

respect to resources on physical hosts. The bottleneck of multi-tier applications can

shift between tiers either due to workload dynamics or mis-configurations on one

tier. Mis-configured VMs can possibly become rogue ones affecting others. In the

worst case, all nodes in the cloud may be correlated and mistakes in the capacity

management of one VM may spread onto the entire cloud.

Our work in Chapter 5 demonstrates the efficacy of reinforcement learning (RL)-

based resource allocation in a static cloud environment that VMs are deployed on one

112

physical machine. Based on state space defined on co-running VM configurations,

we optimize system-wide VM performance on one machine under different workload

combinations. Although effectively managing configurations of VMs with distinct re-

source demands, the approach in Chapter 5 assumes a static environment and relies

on workload specific environment models to map VM configurations to system-wide

performance index. This approach can not be easily extended to a dynamic cloud

environment, in which VMs are hosted on a cluster of physical machines. First, it

becomes prohibitively expensive to maintain models for different workload combina-

tions as the number of VMs increases. Second, possible VM join/leave or migration

makes the optimization of cluster-wide performance difficult. Finally, the state space

defined on VM configurations is not robust to workload dynamics.

In this chapter, we address the issues and present a distributed learning approach

for cloud management. We decompose the cluster-wide cloud management problem

into sub-problems concerning individual VM resource allocations and consider cluster-

wide performance to be optimized if individual VMs meet their SLAs with a high

resource utilization. To handle workload dynamics, we extend the state definition

in Chapter 5 from VM configurations to VM running status and address the issues

due to the use of continuous running status as the state space. More specifically, our

contributions are as follows:

(1) Distributed learning mechanism. We treat VM resource allocation as a

distributed learning task. Instead of cloud resource providers, cloud users manage

individual VM capacity and submit resource requests based on application demands.

The host agent evaluates the aggregated requests on one machine and gives feedback

to individual VMs. Based on the feedbacks, each VM learns its capacity management

policy accordingly. The distributed approach is scalable because the complexity of

the management is not affected by the number of VMs and we rely on implicit coor-

113

dination between VMs belonging to the same virtual cluster.

(2) Self-adaptive capacity management We develop an efficient reinforcement

learning approach for the management of individual VM capacity. The learning agent

operates on a VM’s running status which is defined on the utilization of multiple

resources. We employ a Cerebellar Model Articulation Controller-based Q table for

continuous state representation. The resulted RL approach is robust to workload

changes because state on low-level statistics accommodate workload dynamics to a

certain extent.

(3) Resource efficiency metric. We explicit optimize resource efficiency by

introducing a metric to measure a VM’s capacity settings. The metric synthesizes

application performance and resource utilization. When employed as feedbacks , it

effectively punishes decisions that violate applications’ SLA and gives users incentives

to release unused resources.

(4) Design and implementation of iBalloon. Our prototype implementation

of the distributed learning mechanism, namely iBalloon, demonstrated its effective-

ness in a Xen-based cloud testbed. iBalloon was able to find near optimal configura-

tions for a total number of 128 VMs on a 16-node closely correlated cluster with no

more than 5% of performance overhead . We note that, there were reports in litera-

ture about the automatic configuration of multiple VMs in a cluster of machines. This

is the first work that scales the auto-configuration of VMs to a cluster of correlated

nodes under work-conserving mode.

6.2 Motivating Examples

In this section, we first review the complications of CPU, memory and I/O re-

source allocations in a cloud. These complications motivated us to develop a resource

114

management scheme that works directly on the actual resource usage instead of nom-

inal allocations. Second, we give an example showing that virtual cluster applications

such as multi-tier websites can possibly create dependencies across nodes in a cluster,

which makes the optimization of resource allocation in a cluster difficult.

6.2.1 Complications in Multiple Resource Allocation

In cloud computing, application performance depends on the application’s abil-

ity to simultaneously access multiple types of resources. In this work, we consider

CPU, memory and I/O bandwidth as the building blocks of a VM’s capacity. An

accurate resource to performance model is crucial to the design of automatic capacity

management. However, the workload and cloud dynamics make the determination

of the system model challenging. Our discussions are based on Xen virtualization

platforms, but they are applicable to other virtualization platforms like VMware and

VirtualBox. In the Xen based platform, the driver domain (dom0) is a privileged VM

residing in the host OS. It manages other guest VMs (domU) and performs the resource

allocations. In the rest of this chapter, we use dom0 and the host interchangeably.

VMs always refer to the guest VMs or domUs.

CPU

The CPU(s) can be time-shared by multiple VMs in fine-grain. For example,

the Credit Scheduler, which is the default CPU scheduler in Xen, can perform the

CPU allocation in a granularity of 30 ms. On boot, each resident VM is assigned a

certain number of virtual CPU (VCPU), and the number can be changed on-the-fly.

Although the number of VCPUs does not determine the actual allocation of CPU

cycles, it decides the maximum concurrency and CPU time the VM can achieve. In

115

general, CPU scheduling works in a work-conserving (WC) or non-work-conserving

(NWC) mode.

It is convenient to obtain the VMs’ CPU utilization. The usage can be reported

by dom0 using xentop or by the VM’s OS (e.g. the top command in linux). However,

it is easily to determine how CPU resources are allocated to VMs. In general, there

are three ways of CPU allocation:

1. Under WC mode, set VMs’ VCPU to the number of available physical CPU

and change the CPU allocations by altering VMs priorities (or weight in Xen).

2. Under WC mode, change CPU allocation by altering the VCPU number. It is

equal to setting an upper limit of CPU allocation to the VCPU number. Within

the limit, a VM can use CPU for free.

3. Under NWC mode, same as the first method, except that the allocations are

specified as cap values. All the cap values add up to the total available CPU

resource.

To determine the best CPU mode in cloud management, we compared the above three

methods on a host machine with two quad-core Intel Xeon CPUs. Two instances of

TPC-W database (DB) tier were consolidated on the host. For more details about

the TPC-W application, please refer to Section 6.5. The DB tier is primary CPU-

intensive and the VMs were limited to use the first four cores only. We make sure

that the aggregated CPU demand is beyond the total capacity of four cores.

Figure Figure 6.1 draws the aggregated throughput and average response time of

two TPC-W instances, under different CPU allocation modes. WC-4VCPU refers to

the first method with equal weight of the two VMs. Although the aggregated CPU

demand is beyond four cores, each VM actually needs a little more than two cores. It

116

is equivalent to work-conserving with “over-provisioning” of CPU to individual VMs.

WC-2VCPU is similar except that there is a 2-VCPU upper limit for each VM. In

NWC-capped, we set the VMs to have 4 VCPU and each of the VM was capped to

half of the CPU time. For example, in the case of four cores, a cap of 400 means no

limit while 200 refers to half of the capacity.

In the figure, we can see that WC-2VCPU provided the best performance in

terms of both throughput and response time. Plausible reasons for the compromised

performance in the other two modes can be attributed to possible wasted CPU time.

CPU contentions in WC-4VCPU may lower the CPU efficiency in serving requests.

In principle, NWC-capped should deliver similar performance as WC-2VCPU. In

practice, the results due to WC-2VCPU turned out to be better than those of NWC-

capped.

Under NWC mode, there is usually a simple (and often linear) relationship be-

tween CPU resource and application performance. In [51], the authors showed an

auto-regressive-moving-average model can represent this relationship well. However,

in WC mode, the actual allocated CPU time to a VM is determined by the total

CPU demand on the host, which makes the modeling harder. We take the challenges

to consider WC mode in the VMs capacity management because it provides better

performance and avoids possible waste of CPU resource.

Memory

Unlike CPU, memory is usually shared by dividing the physical address space into

non-overlapping regions, each of which is used dedicatedly by one VM. Although it

is possible for a VM to give up unused memory through self-ballooning [46], during

each management interval we consider the allocated memory be used exclusively by

one VM. The objective of the cloud memory management is to dynamically balancing

117

 1400

 1600

 1800

 2000

 2200

 2400

Throughput Response time
 0

 200

 400

 600

 800

 1000

T
hr

ou
gh

pu
t (

re
q/

s)

R
es

po
ns

e
tim

e
(m

s)

WC-4VCPU
WC-2VCPU

NWC-capped

Figure 6.1: Performance of TPC-W under different CPU allocation modes.

“unused” memory from idle VMs to the busy ones. Identification of “unused” memory

pages or calculation of the memory utilization of a running VM is not trivial. Different

from free pages, “unused” pages refer to those that once touched but not actively being

accessed by the system. It can be calculated as the total memory minus the system

working set.

System working set size (WSS) can be estimated either by monitoring the disk I/O

and major page faults [35], or using miss ratio curve [92]. But these methods are only

sensitive to memory pressure and are able to increase VM memory size accordingly.

Any decrease of memory usage can not be quickly detected. As a result, the memory

of a VM may not be shrunk promptly.

In concept, the relationship between VM memory size and application-level per-

formance is simple. That is, the performance drops dramatically when the memory

size is smaller than the application’s WSS. The open cloud environment adds one

more uncertainty to VM memory management. Modern OSes usually design their

write-back policies based on system wide memory statistics. For example, in Linux,

by default the write-back is triggered when 10% of the total memory is dirty. A

change of VM memory size may trigger background write-backs affecting application

performance considerably although the new memory size is well above the WSS.

118

I/O Bandwidth

All the I/O requests from VMs are serviced by the host’s I/O system. If the host’s

I/O scheduler is selected properly, e.g. the CFQ scheduler in Linux, VMs can have

differentiated I/O services. Setting a VM to a higher priority leads to higher I/O

bandwidth or lower latency. The achieved I/O performance depends heavily on the

sequentiality of the co-hosted I/O streams as well as their request sizes. Thus, the

I/O usage, e.g. the achieved I/O bandwidth reported by command like iostat, does

not directly connect to application performance.

There are two key impediments in mapping the memory or I/O resources to ap-

plication performance. First, it is difficult to accurately measure the utilization of the

resources. Second, the actual resource allocation (e.g. achieved I/O bandwidth) is

determined by the characteristics of the applications as well as the co-running VMs.

6.2.2 Cluster-wide Correlation

In a public cloud, multi-tier applications spanning multiple physical hosts require

all tiers to be configured appropriately. In most multi-tier applications, request pro-

cessing involves several stages at different tiers. These stages are usually synchronous

in the sense that one stage is blocked until the completion of other stages on other

tiers. Thus, the change of the capacity of one tier may affect the resource require-

ment on other tiers. In Table Table 6.1, we list the resource usage on the front-end

application tier of TPC-W as the CPU capacity of the back-end tier changed. APP

MEM refers to the minimum memory size that prevents the application server from

doing significant swapping I/Os; APP CPU% denotes the measured CPU utilization.

The table suggests that, as the capacity of the back-end tier increases, the demand

for memory and CPU in the front tier decreases considerably. An explanation is that

119

Table 6.1: Configuration dependencies of multi-tier VMs.

DB VCPU 1VCPU 2VCPU 3VCPU 4VCPU

APP MEM 790MB 600MB 320MB 290MB
APP CPU% 61% 47% 15% 10%

Decision-maker

VM

Host-agent

App-agent

1

2
3

4

5

6

7

8

9

10

Figure 6.2: The architecture and working flow of iBalloon.

without prompt completion of requests at the back-end tier, the front tier needs to

spend resources for unfinished requests. Therefore, any mistake in one VM’s capacity

management may spread to other hosts. In the worst case, all nodes in cloud could

be correlated by multi-tier applications.

6.3 The Design of iBalloon

6.3.1 Overview

We design iBalloon as a distributed management framework, in which individ-

ual VMs initialize the capacity management. iBalloon provides the hosted VMs

with capacity directions as well as evaluative feedbacks. Once a VM is registered,

iBalloon maintains its application profile and history records that can be analyzed

for future capacity management. For better portability and scalability, we decouple

the functionality of iBalloon into three components: Host-agent, App-agent and

120

Decision-maker.

Figure Figure 6.2 illustrates the architecture of iBalloon as well as its interactions

with a VM. Host-agent, one per physical machine, is responsible for allocating the

host’s hardware resource to VMs and gives feedback. App-agent maintains appli-

cation SLA profiles and reports run-time application performance. Decision-maker

hosts a learning agent for each VM for automatic capacity management. We make

two assumptions on the self-adaptive VM capacity management. First, capacity de-

cisions are made based on VM running status. Second, a VM relies on the feedback

signals, which evaluates previous capacity management decisions, to revise the policy

currently employed by its learning agent.

The assumptions together define the VM capacity management task as an au-

tonomous learning process in an interactive environment. The framework is general

in the sense that various learning algorithms can be incorporated. Although the

efficacy or the efficiency of the capacity management may be compromised, the com-

plexity of the management task does not grow exponentially with the number of VMs

or the number of resources. After a VM submits its SLA profile to App-agent and

registers with Host-agent and Decision-maker, iBalloon works as follows: (each

step corresponds to a numbered interaction in Figure Figure 6.2)

¬ The VM reports its running status.

 Decision-maker replies with a capacity suggestion.

® The VM submits the corresponding resource request to Host-agent.

¯ Host-agent synchronously collect all VMs’ requests, reconfigures VM resources

and sleeps for a management interval.

° Host-agent queries App-agent for the VM’s application-level performance.

121

± App-agent reports application-level performance.

² Based on the application performance, Host-agent calculates the feedback accord-

ingly.

³ Host-agent sends the feedback to the VM.

´ The VM wraps the information about this interaction and reports it to Decision-maker.

µ Decision-maker updates the capacity management policy for this VM accordingly.

iBalloon considers the VM capacity to be multidimensional, including CPU, mem-

ory and I/O bandwidth. This is one of the earliest works that consider these three

types of resources together. A VM’s capacity can be changed by altering the VCPU

number, memory size and I/O bandwidth. The management operation to one VM

is defined as the combination of three meta operations on each resource: increase,

decrease and nop.

6.3.2 Key Designs

VM Running Status

VM running status has a direct impact on management decisions. A running sta-

tus should provide insights into the resource usage of the VM, from which constrained

or over-provisioned resource can be inferred. We define the VM running status as a

vector of four tuples.

(ucpu, uio, umem, uswap),

where ucpu, uio, umem, uswap denote the utilization of CPU, I/O, memory and disk

swap, respectively. As discussed above, memory utilization can not be trivially de-

termined. We turn to guest OS reported metric to calculate umem(See Section 6.4 for

122

details). Since disk swapping activities are closely related to memory usage, adding

uswap to the running status provides insights into memory idleness and pressure.

Feedback Signal

The feedback signal ought to explicitly punish resource allocations that lead to

degraded application performance, and meanwhile encouraging a free-up of unused

capacity. It also acts as an arbiter when resource are contented. We define a real-

valued reward as the feedback. Whenever there is a conflict in the aggregated resource

demand, e.g. the available memory becomes less than the total requested memory,

iBalloon set the reward to −1 (penalty) for the VMs that require an increase in the

resource and a reward of 0 (neural) to other VMs. In this way, some of the conflicted

VMs may back-off leading to contention relaxation. Note that, although conflicted

VMs may give up previous requests, Decision-maker will suggest a second best plan,

which may be the best solution to the resource contention.

When there is no conflict on resources, the reward directly reflects application

performance and resource efficiency. We define the reward as a ratio of yield to cost:

reward =
yield

cost
,

where yield = Y (x1, x2, . . . , xm) =
∑m

i=1 y(xi)

m
,

y(xi) =

1 if xi satisfies its SLA;

e
−p∗(|xi−x

′
i

x
′
i

|)
− 1 otherwise,

and cost = 1 +
∑n

i=1(1−uki)
1
k

n
. Note that the metric yield is a summarized gain over

m performance metrics x1, x2, · · · , xm. The utility function y(xi) decays when metric

123

xi violates its performance objective x
′
i in SLA. cost is calculated as the summarized

utility based on n utilization status u1, u2, · · · , un. Both the utility functions decay

under the control of the decay factors of p and k, respectively. We consider through-

put and response time as the performance metrics and ucpu, uio, umem, uswap as the

utilization metrics. The reward punishes any capacity setting that violates the SLA

and gives incentives to high resource efficiency.

Self-adaptive Learning Engine

At the heart of iBalloon is a self-adaptive learning agent responsible for each VM’s

capacity management. Reinforcement learning is concerned with how an agent ought

to take actions in a dynamic environment so as to maximize a long term reward [67].

It fits naturally within iBalloon’s feedback driven, interactive framework. RL offers

opportunities for highly autonomous and adaptive capacity management in cloud

dynamics. It assumes no priori knowledge about the VM’s running environment. It

is able to capture the delayed effect of reconfigurations to a large extent.

A RL problem is usually modeled as a Markov Decision Process (MDP). Formally,

for a set of environment states S and a set of actions A, the MDP is defined by the

transition probability Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a) and an immediate

reward function R = E[rt+1|st = s, at = a, st+1 = s′]. At each step t, the agent

perceives its current state st ∈ S and the available action set A(st). By taking action

at ∈ A(st), the agent transits to the next state st+1 and receives an immediate reward

rt+1 from the environment. The value function of taking action a in state s can be

defined as:

Q(s, a) = E{
∞∑
k=0

γkrt+k+1|st = s, at = a},

where 0 ≤ γ < 1 is a discount factor helping Q(s, a)’s convergence. The optimal

124

),,,(swapmemiocpu uuuu

∑
),(asQ

Memory table

Figure 6.3: CMAC-based Q table.

policy is as simple as: always select the action a that maximizes the value function

Q(s, a) at state s. Finding the optimal policy is equivalent to obtain an estimation of

Q(s, a) which approximates its actual value. The estimate of Q(s, a) can be updated

each time an interaction (st, at, rt+1) is finished:

Q(st, at) = Q(st, at) + α ∗ [rt+1 + γ ∗Q(st+1, at+1)−Q(st, at)],

where α is the learning rate. The interactions consist of exploitations and explo-

rations. Exploitation is to follow the policy obtained so far; in contrast, exploration

is the selection of random actions to capture the change of environment so as to refine

the existing policy. We follow the ε-greedy policy to design the RL agent. With a

small probability ε, the agent picks up a random action, and follows the best policy

it has found for the rest of the time.

In VM capacity management, the state s corresponds to the VM’s running status

and action a is the management operation. For example, the action a can show in the

125

form of (nop, increase, decrease), which indicates an increase in the VM’s memory

size and a decrease in I/O bandwidth. Actions in continuous space remains an open

research problem in the RL field, we limit the RL agent to discrete actions. The

actions are discretized by setting steps on each resource instead. VCPU is incremented

or decremented by one at a time and memory is reconfigured in a step of 256MB. I/O

bandwidth is changed by a step of 0.5MB.

The requirement of autonomy in VM capacity management poses two key ques-

tions on the design of the RL engine. First, how to overcome the scalability and

adaptability problems in RL? Second, how would the multiple RL agents, each of

which represents a VM, coordinate and optimize system-wide performance? We an-

swer the questions by designing the VM capacity management agent as a distributed

RL agent with a highly efficient representation of the Q table. Unlike, multi-agent

RL, in which each agent needs to maintain other competing agents’ information, dis-

tributed RL does not have explicit coordination scheme. Instead, it relies on the

feedback signals for coordination. For example, when resources are contented, neg-

ative feedbacks help resolve the contention. VMs belonging to the same application

receive the same feedback, which coordinates resource allocations in the virtual clus-

ter. An immediate benefit of distributed learning is that the complexity of the learning

problem does not grow exponentially with the number of VMs.

The VM running status is naturally defined in a multi-dimensional continuous

space. Although we limit the actions to be discrete operations, the state itself can

render the Q value function intractable. Due to its critical impact on the learning

performance, there are many studies on the Q function representation [67, 68]. We

carefully reviewed these works and decided to borrow the design in the Cerebellar

Model Articulation Controller (CMAC) [3] to represent the Q function. It maintains

multiple coarse-grained Q tables or so-called tiles, each of which is shifted by a random

126

offset with respect to each other. With CMAC, we can achieve higher resolution in

the Q table with less cost. For example, if each status input (an element in the

status vector) is discretized to five intervals (a resolution of 20%), 32 tiles will give a

resolution less than 1% (20%/32). The total size of the Q tables is reduced to 32 ∗ 54

compared to the size of 1004 if plain look-up table is used. In CMAC, the actual Q

table is stored in a one-dimensional memory table and each cell in the table stores

a weight value. Figure Figure 6.3 illustrates the architecture of a one-dimensional

CMAC. The VM running status listed in Figure Figure 6.3 is only for illustration

purpose. The state needs to work with a four-dimensional CMAC. Given a state

s, CMAC uses a hash function, which takes a pair of state and action as input, to

generate indexes for the (s, a) pair. CMAC uses the indexes to access the memory

cells and calculates Q(s, a) as the sum of the weights in these cells.

One advantage of CMAC is its efficiency in handling limited data. Similar VM

states will generate CMAC indexes with a large overlap. Thus, updates to one state

can generalize to the others, leading to accelerated RL learning process. One update of

the CMAC-based Q table only needs 6.5 milliseconds in our testbed, in comparison

with the 50-second update time in a multi-layer neural network [57]. Once a VM

finishes an iteration, it submits the four-tuple (st, at, st+1, rt) to Decision-maker.

Then the corresponding RL agent updates the VM’s Q table using Algorithm 3. In

the algorithm, we further enhanced the CMAC-based Q table with fast adaptation

when SLA violated. We set the learning rate α to 1 whenever receives a negative

penalty. This ensures that “bad” news travels faster than good news allowing the

learning agent quickly response to the performance violation.

127

Algorithm 3 Update the CMAC-based Q value function
1: Input st, at, st+1, rt;
2: Initialize δ = 0;
3: I[at][0] = get index(st);

4: Q(st, at) =
∑j≤num tilings

j=1 Q[I[at][j]];
5: at+1 = get next action(st+1);
6: I[at+1][0] = get index(st+1);

7: Q(st+1, at+1) =
∑j≤num tilings

j=1 Q[I[at+1][j]];
8: δ = rt −Q(st, at + γ ∗Q(st+1, at+1));
9: for i = 0; i < num tilings; i+ + do

10: /*If SLA violated, enable fast adaptation*/
11: if rt < 0 then
12: θ[I[at][i]]+ = (1.0/num tilings) ∗ δ;
13: else
14: θ[I[at][i]]+ = (α/num tilings) ∗ δ;
15: end if
16: end for

6.4 Implementation

iBalloon has been implemented as a set of user-level daemons in guest and host

OSes. The communication between the host and guest VMs is carried out through

an inter-domain channel. In our Xen-based testbed, we used Xenstore for the host

and guest information exchange. Xenstore is a centralized configuration database

that is accessible by all domains on the same host. The domains who are involved in

the communication place ”watches” on a group of pre-defined keys in the database.

Whenever sender initializes a communication by writing to the key, the receiver is

notified and possibly trigging a callback function. Upon a new VM joining a host,

Host-agent, one per machine, creates a new key under the VM’s path in Xenstore.

Host-agent launches a worker thread for the VM and the worker ”watches” any

change of the key. Whenever a VM submits a resource request via the key, the

worker thread retrieves the request details and activates the corresponding handler

in dom0 to handle the request. The VM receives the feedback from Host-agent in a

128

similar way.

We implemented resource allocation in dom0 in a synchronous way. VMs send out

resource requests in a fixed interval (30 second in our experiments) and Host-agent

waits for all the VMs before satisfying any request. It is often desirable to allow users

to submit requests with different management intervals for flexibility and reliability in

resource allocation. We leave the extension of iBalloon to asynchronous resource al-

location in the future work. After VMs and Host-agent agree on the resource alloca-

tions, Host-agent modifies individual VMs’ configurations accordingly. We changed

the memory size of the VM by writing the new size to the domain’s memory/target

key in Xenstore. VCPU number was altered by turning on/off individual CPUs via

key cpu/CPUID/availability. For I/O bandwidth control, we used command lsof

to correlate VMs’ virtual disks to processes and change the corresponding processes’

bandwidth allocation via the Linux device-mapper driver dm-ioband [70].

App-agent, one per host, maintains the hosted application SLA profiles. In our

experiments, it periodically queries participant machines through standard socket

communication and reports application performance, such as throughput and re-

sponse time, to Host-agent. In a more practical scenario, the application perfor-

mance should be reported by a third-party application monitoring tool instead of the

clients. iBalloon can be easily modified to integrate such tools. We implemented

the Decision-maker as a process residing in each guest OS. The learning process

is local to individual VMs and incurs computation and storage overhead. The dis-

tributed implementation of Decision-maker ensures that the scalability of iBalloon

is not limited by the number of VMs. Quantitative comparison of the distributed

implementation and a centralized approach will be presented in Section 6.6.5.

We use xentop utility to report VM CPU utilization. xentop is instrumented to

redirect the utilization of each VM to separate log files in the tmpfs folder /dev/shm

129

every second. A small utility program parses the logs and calculates the average CPU

utilization for every management interval. The disk I/O utilization is calculated as a

ratio of achieved bandwidth to allocated bandwidth. The achieved the bandwidth can

be obtained by monitoring the disk activities in /proc/PID/io. PID is the process

number of a VM’s virtual disk in dom0. The swap rate can also be collected in a

similar way. We consider memory utilization to be the guest OS metric Active over

memory size. The Active metric in /proc/meminfo is a coarse estimate of actively

used memory size. However, it is lazily updated by guest kernel especially during

memory idle periods. We combine the guest reported metric and swap rate for a better

estimate of memory usage. With explorations from the learning engine, iBalloon has

a better chance to reclaim idle memory without causing significant swapping.

6.5 Experiment Design

6.5.1 Methodology

To evaluate the efficacy of iBalloon, we attempt to answer the following questions:

(1) How well does iBalloon perform in the case of single VM capacity management?

Can the learned policy be re-used to control a similar application or on a different

platform? (Section 6.6.3) (2) When there is resource contention, can iBalloon properly

distribute the constrained resource and optimize overall system performance? (Sec-

tion 6.6.4) (3) How is iBalloon’s scalability and overhead? (Section 6.6.5) We selected

three representative server workloads as the hosted applications. TPC-W [72] is an

E-Commerce benchmark that models after an online book store, which is primary

CPU-intensive. It consists of two tiers, i.e. the front-end application (APP) tier and

the back-end database (DB) tier. SPECweb [71] is a web server benchmark suite that

130

delivers dynamic web contents. It is a CPU and network-intensive server application.

TPC-C [72] is an online transaction processing benchmark that contains lightweight

disk reads and sporadic heavy writes. Its performance is sensitive to memory size

and I/O bandwidth.

To create dynamic variations in resource demand, we instrumented the workload

generators of TPC-W and TPC-C to change client traffic level at run-time. The

workload generator reads the traffic level from a trace file, which models after the

real Internet traffic pattern [69]. We scaled down the Internet traces to match the

capacity of our platform.

6.5.2 Testbed Configurations

Two clusters of nodes were used for the experiments. The first cluster (CIC100)

is a shared research environment, which consists of a total number of 22 DELL and

SUN machines. Each machine in CIC100 is equipped with 8 CPU cores and 8GB

memory. The CPU and memory configurations limit the number of VMs that can

be consolidated on each machine. Thus, we use CIC100 as a resource constrained

cloud testbed to verify iBalloon’s effectiveness for small scale capacity management.

Once iBalloon gains enough experiences to make decisions, we applied the learned

policies to manage a large number of VMs. CIC200 is a cluster of 16 DELL machines

dedicated to the cloud management project. Each node features a configuration of

12 CPU cores (with hyperthreading enabled) and 32 GB memory. In the scale-out

testing, we deployed 64 TPC-W instances, i.e. a total number of 128 VMs on CIC200.

To generate sufficient client traffic to these VMs, all the nodes in CIC100 were used

to run client generators, with 3 copies running on each node.

We used Xen version 4.0 as our virtualization environment. dom0 and guest VMs

131

were running Linux kernel 2.6.32 and 2.6.18, respectively. To enable on-the-fly re-

configuration of CPU and memory, all the VMs were para-virtualized. The VM disk

images were stored locally on a second hard drive on each host. We created the

dm-ioband device mapper on the partition containing the images to control the disk

bandwidth. For the benchmark applications, MySQL, Tomcat and Apache were used

for database, application and web servers.

6.6 Experimental Results

6.6.1 Evaluation of the Reward Metric

The reward metric synthesizes multi-dimensional application performance and

resource utilizations. We are interested in how the reward signal guides the capacity

management. The decay rates p and k reflect how important it is for an application

to meet the performance objectives in its SLA and how aggressive the user increase

resource utilization even at the risk of overload.

We decided to guarantee user satisfaction and assume risk neutral users, and set

p = 10 and k = 1. Figure Figure 6.5 shows how the reward reflect the status of VM

capacity. In this experiment, we varied the client traffic to occasionally exceed the

VM’s capacity. reward is calculated from the DB tier of a TPC-W instance, with a

fixed configuration of 3 VCPU, 2GB memory and 2 MB/s disk bandwidth. As shown

in Figure Figure 6.5, when the load is light, performance objectives are met. During

this period, yield is set to 1 and cost dominates the change of reward. As traffic

increases, resource utilization goes up incurring smaller cost. Similarly, reward drops

when traffic goes down because of the increase of the cost factor. In contrast, when the

VM becomes overloaded with SLA violations, the factor of yield dominates reward

132

 0
 0.5

 1
 1.5

 2 0
 0.2

 0.4
 0.6

 0.8
 1

-1

-0.8

-0.6

-0.4

-0.2

 0

Yield

r=10

r=2

Response time

Throughput

Yield

Figure 6.4: Application yield with different decay rates.

by imposing a large penalty. In conclusion, reward effectively punishes performance

violations and gives users incentives to release unused resources.

6.6.2 Exploitations vs. Explorations

Reinforcement learning is a direct adaptive optimal control approach which relies

on the interactions with the environment. Therefore, the performance of the learning

algorithm depends critically on how the interactions are defined. Explorations are

often considered as sub-optimal actions that lead to degraded performance. However,

without enough explorations, the RL agent tends to be trapped in local optimal

policies, failing to adapt to the change of the environment. On the other hand, too

much exploration would certainly result in unacceptable application performance.

Before iBalloon is actually deployed, we need to determine the value of exploration

rate, that best fits our platform.

In this experiment, we dedicated a physical host to one application and initialized

the VM’s Q table to all zeros. We varied the exploration rate of the learning algorithm

and draw the application performance of TPC-W in Figure Figure 6.6. The bars

represent the average of 5 one-hour runs with the same exploration rate and variations.

133

-0.2
0

0.2
0.4
0.6
0.8

1

 0 25 50 75 100 125 150 175 200

R
ew

ar
d

Time interval (30s)

Reward
 100

 200

 300

 400

 500

 600

N
um

be
r

of
 c

lie
nt

s Traffic level
Capacity

Figure 6.5: Reward with different traffic levels.

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 0.01 0.1 0.2 0.5 1.0
 0

 500

 1000

 1500

 2000

 2500

 3000

R
es

po
ns

e
tim

e
(m

s)

T
hr

ou
gh

pu
t (

re
q/

s)

Exploration rate

Response time
Throughput

Figure 6.6: Application performance with different exploration rates.

From the figure, we can see that the response time of TPC-W is convex with respect

to the exploration rate with ε = 0.1 being the optimal. The same exploration rate also

gives the best throughput as well as the smallest variations. Experiments with TPC-

C suggested a similar exploration rate. We also empirically determined the learning

rate and discount factor. For the rest of this chapter, we set the RL parameters to

the following values: ε = 0.1, α = 0.1, γ = 0.9.

134

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time (ms)

Over-provisioning
Static

iBalloon w/ init
iBalloon w/o init

(a) TPC-W

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time (sec)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time (sec)

Over-provisioning
Static

iBalloon w/ init
iBalloon w/o init

(b) TPC-C

Figure 6.7: Response time under various reconfiguration strategies.

6.6.3 Single Application Capacity Management

In its simplest form, iBalloon manages a single VM or application’s capacity. In

this subsection, we study its effectiveness in managing different types of applications

with distinct resource demands. The RL-based auto-configuration can suffer from

initial poor performance due to explorations with the environment. To have a better

understanding of the performance of RL-based capacity management, we tested two

variations of iBalloon, one with an initialization of the management policy and one

without. We denote them as iBalloon w/ init and iBalloon w/o init, respectively. The

initial policy was obtained by running the application workload for 10 hours, during

which iBalloon interacted with the environment with only exploration actions.

Figure Figure 6.7(a) and Figure Figure 6.7(b) plot the performance of iBalloon

and its variations in a 5-hour run of the TPC-W and TPC-C workloads. Note that

during each experiment, the host was dedicated to TPC-W or TPC-C, thus no re-

source contention existed. In this simple setting, we can obtain the upper bound and

lower bound of iBalloon’s performance. The upper bound is due to resource over-

provisioning, which allocates more than enough resource for the applications. The

135

lower bound performance was derived from a VM template whose capacity is not

changed during the test. We refer it as static. We configured the VM template with

1 VCPU and 512 MB memory in the experiment. If not otherwise specified, we used

the same template for all VM default configuration in the remaining of this chapter.

From Figure Figure 6.7(a), we can see that, iBalloon achieved close performance

compared with over-provisioning. iBalloon w/o init managed to keep almost 90%

of the request below the SLA response time threshold except that a few percent

of requests had wild response times. It suggests that, although started with poor

policies, iBalloon was able to quickly adapt to good policies and maintained the

performance at a stable level. We attribute the good performance to the highly

efficient representation of the Q table. The CMAC-enhanced Q table was able to

generalize to the continuous state space with a limited number of interactions. Not

surprisingly, static’s poor result again calls for appropriate VM capacity management.

As shown in Figure Figure 6.7(b), iBalloon w/ init showed almost optimal perfor-

mance for TPC-C workload too. But without policy initialization, iBalloon can only

prevent around 80% of the requests from SLA violations; more than 15% requests

would have response times larger than 30 seconds. This barely acceptable perfor-

mance stresses the importance of a good policy in more complicated environments.

Unlike CPU, memory sometimes shows unpredictable impact on performance. The

dead time due to the factor of memory is much longer than CPU (10 minutes com-

pared to 5 minutes in our experiments). In this case, iBalloon needs a longer time

to obtain a good policy. Fortunately, the derived policy, which is embedded in the Q

table, can be possibly re-used to manage similar applications.

Table Table 6.2 lists the application improvement if the learned management

policies are applied to a different application or to a different platform. The im-

provement is calculated against the performance of iBalloon without an initial policy.

136

Table 6.2: Performance improvement due to initial policy learned from different ap-
plications and cloud platforms.

Throughput Response time

Trained in TPC-W
Tested in SPECweb 40% 80%

Trained in CIC100
Tested in CIC200 20% 30%

SPECweb [71] is a web server benchmark suite that contains representative web work-

loads. The E-Commerce workload in SPECweb is similar to TPC-W (CPU-intensive)

except that its performance is also sensitive to memory size. Results in Table Ta-

ble 6.2 suggest that the Q-table learned for TPC-W also worked for SPECweb. An

examination of iBalloon’s log revealed that the learned policy was able to successfully

match CPU allocation to incoming traffic. A policy learned on cluster CIC100 can

also give more than 20% performance improvement to the same TPC-W application

on cluster CIC200. Given the fact that the nodes in CIC100 and CIC200 have more

than 30% difference on CPU speed and disk bandwidth, we conclude that iBalloon

policies are applicable to heterogeneous platforms across cloud systems.

The reward signal provides strong incentives to give up unnecessary resources. In

Figure Figure 6.8, we plot the configuration of VCPU, memory and I/O bandwidth

of TPC-W, SPECweb and TPC-C as client workload varied. Recall that we do not

have an accurate estimation of memory utilization. We rely on the Active metric in

meminfo and the swap rate to infer memory idleness. The Apache web server used

in SPECweb periodically free unused httpd process thus memory usage information

in meminfo is more accurate. As shown in Figure Figure 6.8, with a 10-hour trained

policy, iBalloon was able to expand and shrink CPU and I/O bandwidth resources

as workload varied. As for memory, iBalloon was able to quickly respond to memory

137

1
1.5

2
2.5

 0 10 20 30 40 50 60 70

I/O
 b

an
dw

id
th

(M
B

/s
)

Time interval (30s)

TPC-C
Traffic level

Resource level

0.5
1

1.5
2

M
em

or
y

si
ze

 (
G

B
)

SPECWeb

1
2
3
4V

C
P

U

TPC-W

Figure 6.8: Resources allocations changing with workload.

pressure; it can release part of the unused memory although not completely. The

agreement in shapes of each resource verifies the accuracy of the reward metric.

We note that the above results only show the performance of iBalloon statisti-

cally. In practice, service providers concern more about user-perceived performance,

because in production systems, mistakes made by autonomous capacity management

can be prohibitively expensive. To test iBalloon’s ability of determining the appro-

priate capacity online, we ran the workload generators at full speed and reduced the

VM’s capacity every 15 management intervals. Figure 6.6.3 plots the client-perceived

results in TPC-W and TPC-C. In both experiments, iBalloon was configured with

initial policies. Each point in the figures represents the average of a 30-second man-

agement interval. As shown in Figure Figure 6.9(a), iBalloon is able to promptly

detect the mis-configurations and reconfigure the VM to appropriate capacity. On

average, throughput and response time can be recovered within 7 management in-

tervals. Similar results can also be observed in Figure Figure 6.9(b) except that

138

 1000

 1500

 2000

 2500

 3000

 3500

 15 30 45 60 75

T
hr

ou
gh

pu
t (

re
q/

s)

TPC-W
Reference

 10

 100

 1000

 10000

 15 30 45 60 75R
es

po
ns

e
tim

e
(m

s)

Time intervals (30 sec)

TPC-W
SLA

(a) TPC-W

 0
 200
 400
 600
 800

 1000
 1200

0 15 30 45 60 75 90 105

T
hr

ou
gh

pu
t (

re
q/

s)

TPC-C
Reference

 0.01

 0.1

 1

 10

 100

 1000

0 15 30 45 60 75 90 105R
es

po
ns

e
tim

e
(s

ec
)

Time intervals (30 sec)

TPC-C
SLA

(b) TPC-C

Figure 6.9: User-perceived performance under iBalloon.

client-perceived response times have larger fluctuations in TPC-C workload.

6.6.4 Coordination in Multiple Applications

iBalloon is designed as a distributed management framework that handles multiple

applications simultaneously. The VMs rely on the feedback signals to form their

capacity management policy. Different from the case of a single application, in which

the feedback signal only depends on the resource allocated to the hosting VM, in

multiple application hosting, the feedback signals also reflect possible performance

interferences between VMs.

We designed experiments to study iBalloon’s performance in coordinating multiple

applications. Same as above, iBalloon was configured to manage only the DB tiers

of TPC-W workload. All the DB VMs were homogeneously hosted in one physical

host while the APP VMs were over-provisioned on another node. The baseline VM

capacity strategy is to statically assign 4VCPU and 1GB memory to all the DB

VMs, which is considered to be over-provisioning for one VM. iBalloon starts with

139

a VM template, which has 1VCPU and 512MB memory. Figure Figure 6.10 draws

the performance of iBalloon normalized to the baseline capacity strategy in a 5-hour

test. The workload to each TPC-W instances varied dynamically, but the aggregated

resource demand is beyond the capacity of the machine that hosts the DB VMs.

Figure Figure 6.10 shows that, as the number of the DB VMs increases, iBalloon

gradually beats the baseline in both throughput and response time.

An examination of the iBalloon logs revealed that iBalloon suggested a smaller

number of VCPUs for the DB VMs, which possibly alleviated the contention for CPU.

The baseline strategy encouraged resource contention and resulted in wasted work.

In summary, iBalloon, driven by the feedback, successfully coordinated competing

VMs to use the resource more efficiently.

6.6.5 Scalability and Overhead Analysis

We scaled iBalloon out to the large dedicated CIC200 cluster and deployed 64

TPC-W instances, each with two tiers, on the cluster. We randomly deployed the

128 VM on the 16 nodes, assuming no topology information. To avoid possible

hotspot and load unbalancing, each node hosted 8 VMs, 4 APP and 4 DB tiers.

We implemented Decision-maker as distributed decision agents. The deployment

is challenging to autonomous capacity management for two reasons. First, iBalloon

ought to coordinate VMs on different hosts, each of which runs its own resource

allocation policy. The dependent relationships makes it harder to orchestrate all the

VMs. Second, consolidating APP (network-intensive) tiers with DB (CPU-intensive)

tiers onto the same host poses challenges in finding the balanced configuration.

Figure Figure 6.11 plots the average performance of 64 TPC-W instances for a

10-hour test. In addition to iBalloon, we also experimented with four other strategies.

140

 0

 0.5

 1

 1.5

 2

2 3 4 5 6

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of VM instances

Response time
Throughput

Figure 6.10: Performance of multiple applications due to iBalloon.

The optimal strategy was obtained by tweaking the cluster manually. It turned out

that the setting: DB VM with 3VCPU,1GB memory and APP VM with 1VCPU,

1GB memory delivered the best performance. work-conserving scheme is similar to

the baseline in last subsection; it sets all VMs with fixed 4VCPU and 1GB mem-

ory. Adaptive proportional integral (PI) method [52] directly tracks the error of the

measured response time and the SLO and adjusts resource allocations to minimize

the error. Auto-regressive-moving-average (ARMA) method [51] builds a local linear

relationship between allocated resources and response time with recently collected

samples, from which the resource reconfiguration is calculated. The performance is

normalized to optimal. For throughput, higher is better; for response time, lower is

better.

From the figure, iBalloon achieved close throughput as optimal while incurred 20%

degradation on request latency. This is understandable because any change in a VM’s

capacity, especially memory reconfigurations, bring in unstable periods. iBalloon

outperformed work-conserving scheme by more than 20% in throughput. Although

work-conserving had compromised throughput, it achieved similar response time as

141

 0.5

 1

 1.5

 2

 2.5

Throughput Response time

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce Optimal

iBalloon
Work-conserving

Adaptive-PI
ARMA

Figure 6.11: Performance due to various reconfiguration approaches on a cluster of
128 correlated VMs.

optimal because it did not perform any reconfigurations. adaptive-PI and ARMA

achieved similar throughput as iBalloon but with more than 100% degradations on

response time. These control methods which are based either on system identification

or local linearization can suffer poor performance under both workload and cloud

dynamics. We conclude that iBalloon scales to 128 VMs on a correlated cluster with

near-optimal application performance. In the next, we perform tests to narrow down

the overhead incurred on request latency.

In previous experiments, iBalloon incurred non-negligible cost in response time.

The cost was due to the real overhead of iBalloon as well as the performance degra-

dation caused by the reconfiguration. To study the overhead incurred by iBalloon,

we repeated the experiment as in Section Figure 6.11 except that iBalloon oper-

ated on the VMs with optimal configurations and reconfigurations were disabled in

Host-agent. In this setting, the overhead only comes from the interactions between

VMs and iBalloon. Figure Figure 6.12 shows the overhead of iBalloon with two differ-

ent implementations of Decision-maker, namely the centralized and the distributed

implementations. In the centralized approach, a designated server performs RL algo-

142

 0

 10

 20

 30

 40

 50

R
es

po
ns

e
T

im
e

(%
)

Centralized
Distributed

Hierarchical

 0

 5

 10

 15

2 4 6 8 10 12 14 16 18 20 22 24 48 128

T
hr

ou
gh

pu
t (

%
)

Number of VMs

Centralized
Distributed

Figure 6.12: Runtime overhead of iBalloon.

rithms for all the VMs. Again, the overhead is normalized to the performance in the

optimal scheme.

Figure Figure 6.12 suggests that the centralized decision server becomes the bot-

tleneck with as much as 50% overhead on request latency and 20% on throughput as

the number of VMs increases. In contrast, the distributed approach, which computes

capacity decisions on local VMs, incurred less than 5% overhead on both response

time and throughput. To further confirm the limiting factor of centralized decision

server, we split the centralized decision work onto two separate machines(denoted as

Hierarchical) in the case of 128 VMs. As shown in Figure Figure 6.12, the overhead

on request latency reduces by more than a half. Additional experiments revealed that

computing the capacity management decisions locally in VMs requires no more than

3% CPU resources for Q computation and approximately 18MB of memory for Q

table storage. The resource overhead is insignificant compared to the capacity of the

VM template (1VCPU, 512MB). These results conclude that iBalloon adds no more

than 5% overhead to the application performance with a manageable resource cost.

143

6.7 Summary

In this work, we present iBalloon, a generic framework that allows self-adaptive

virtual machine resource provisioning. The heart of iBalloon is the distributed rein-

forcement learning agents that coordinate in dynamic environment. Our prototype

implementation of iBalloon, which uses a highly efficient reinforcement learning al-

gorithm as the learning, was able to find the near optimal configurations for a total

number of 128 VMs on a closely correlated cluster with no more than 5% overhead

on application throughput and response time.

144

Chapter 7

Conclusions and Future Work

This dissertation aims to build an automatic cloud resource management system.

In this chapter, we summarize the approaches presented in this dissertation and give

the directions for future work.

7.1 Conclusions

Although cloud computing has gained sufficient popularity recently, there are

still some key impediments to large scale enterprise adoption. Cloud management is

one of the top challenges. We consider the resource management problem in cloud

computing as a capacity management problem for individual hosted applications.

Understanding server capacity is crucial to system capacity planning and QoS-

aware resource management. Different from traditional web hosting, capacity plan-

ning for applications in a cloud should take place on a continuous basis during the life

time of the application. To guarantee application SLA and achieve efficient resource

usage, cloud capacity management requires accurate and precise capacity measure-

ment. We study the measurement of capacity for a complex scenario, multi-tier

145

websites with dynamic workloads. Traditional application-level metrics are limited

in measurement accuracy and timeliness. We propose a derived PI metrics based on

low-level statistics to monitor the system progress in order to determine when more

capacity is needed. We build a coordinated capacity predictor based on snapshots

taken from low-level metrics. Results on a multi-tier E-commerce benchmark show

accurate and responsive measurement of system capacity.

Although offering cloud users the illusion of an infinite on-demand resource pool,

cloud providers do not guarantee consistent performance over time and to users in

different regions. Considerable performance variations have been observed from lead-

ing cloud providers due to background resource scheduling and multiplexing. This

poses challenges on automated resource management linking application performance

to resource configurations. We demonstrate that under cloud dynamics, it is difficult

to determine a static relationship between resource and performance. To address

this problem, we propose a model-independent fuzzy control based approach for CPU

allocation. For adaptive and stable control performance, we embed the controller

with self-tuning output amplification and flexible rule selection. Finally, we build a

QoS provisioning framework that supports multi-objective QoS control and service

differentiation. Experiments on a virtual cluster with two service classes show the

effectiveness of our approach in performance and power control.

Capacity management in cloud involves the management of multiple virtualized

resources. Model-free feedback control approaches can not be easily extended to

multi-dimensional resource allocation due to complex interplay between resources.

The control approach can also be affected by process delays in resource reconfigu-

ration. We consider the capacity management as a decision-making problem and

employ reinforcement learning to optimize the process. The optimization depends on

the trial-and-error interactions with the cloud system. In order to improve the ini-

146

tial management performance, we propose a model-based RL algorithm. The neural

network based environment model, which is learned from previous management his-

tory, generates simulated resource allocations for the RL agent. Experiment results

on heterogeneous applications show that our approach makes efficient use of limited

interactions and find near optimal resource configurations within 7 steps.

The existence of virtual cluster applications and their arbitrary and changing

deployment on the physical nodes poses challenges in capacity management. Cen-

tralized approach can not scale as the number of VMs increases. We decompose the

capacity management of hosted applications into sub-problems concerning individ-

ual VMs. We propose a distributed learning mechanism which treats each VM as a

highly autonomous agent. The heart of the approach is a RL algorithm with efficient

representation of experiences. We design the RL state space on VM running status

to accommodate workload dynamics and define the reward signal based on the PI

metric. We prototype the mechanism and test with a real system. Our approach

show good scalability and performance on a closely correlated cluster with 128 VMs.

7.2 Future Directions

There are several issues and new directions along the line of this dissertation. In

this dissertation work, we consider the resource management problem as a vertical

resource allocation problem, in which resources are added or removed in a single VM.

Another way to manage the capacity of hosted applications is horizontal scaling. For

certain type of applications such as MapReduce and high performance applications,

it may be beneficial to use horizontal scaling due to the presence of application-level

task scheduling. This type of task scheduling accommodates node join and leave, and

work especially well on cluster of homogeneous nodes. Horizontal scaling allocates

147

resources in a relatively coarse granularity, usually in terms of virtual machines. The

lead time in horizontal scaling is several minutes compared to sub-second in vertical

resource allocation. There are interesting problems need investigation in horizontal

scaling. First, how to design policies for horizontal resource allocation that minimize

application-level performance degradation considering the high cost in allocation.

Second, leading cloud providers like Amazon EC2 charge cloud usage on a hourly and

per VM basis. How to balance the trade-off between performance and rental cost for

a specific application deserves further study.

There is another cloud resource management operation we did not consider in

this dissertation, that is VM migration. Although in Chapter 6, we decompose the

resource allocation problem into a per VM level which facilitates the integration of

migration operations into the management. There are still some important issues

and challenges specific to VM migration. First, migrations come with cost, usually

in terms of application downtime. The cost associate with a migration is dependent

on the characteristics of the migrated VM and the application within it. The first

interesting problem pertain to the selection of migration candidate that minimizes the

application downtime and possibly the impact to other co-running VMs. Second, the

selection of the migration destination affects the resource management in the cluster.

Migrating to lightly loaded nodes improves load balancing; migrating to a fewer num-

ber of busy nodes can possibly reduce the energy consumption by turning off unused

nodes. Finally, as the number of physical nodes increases, the optimal selection of the

migration target will cause significant overhead and is sometimes impossible. How

to make reasonably good migration decisions with only local information warrants

future research effort.

We consider the cloud as a black-box and design application-oriented resource

management mechanism to offset the cloud dynamics. The study of cloud SLAs

148

itself introduces a broad range of interesting problems. Leading cloud providers like

Amazon EC2 only includes availability objectives in its cloud SLA. No performance

guarantees are specified. Due to background hardware scheduling and multiplexing,

it is difficult to guarantee consistent experiences to cloud users, especially when the

cloud infrastructure contains heterogeneous hardware. Even within a single machine,

it is still non-trivial to provide consistent performance. With the advances in CPU

architecture, such as heterogeneous cores, non-uniform memory access (NUMA) and

simultaneous hardware threading (SMT), there are many more sources of performance

variation. Two possible directions are: (1) architecture and user-aware scheduling of

virtualized resources that guarantees fairness among users. (2) By accepting the

performance variation due to background scheduling, we perform better accounting

of resource usage and provide cost-proportional computing to cloud users.

149

REFERENCES

[1] http://www.research.ibm.com/autonomic.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for web

server end-systems: A control-theoretical approach. IEEE Trans. Parallel Dis-

trib. Syst., 13, January 2002.

[3] J. S. Albus. A New Approach to Manipulator Control: the Cerebellar Model

Articulation Controller (CMAC). Journal of Dynamic Systems, Measurement,

and Control, 1975.

[4] Amazon Spot Instances. http://aws.amazon.com/ec2/spot-instances.

[5] C. Amza, E. Cecchet, A. Chanda, A. L. Cox, S. Elnikety, R. Gil, J. Marguerite,

K. Rajamani, and W. Zwaenepoel. Specification and implementation of dynamic

web site benchmarks. In Proc. of WWC, 2002.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the

clouds: A berkeley view of cloud computing. Technical report, EECS Depart-

ment, University of California, Berkeley, Feb 2009.

[7] C. G. Atkeson and J. C. Santamar’ia. A comparison of direct and model-based

reinforcement learning. In In International Conference on Robotics and Automa-

tion, 1997.

[8] G. Banga and P. Druschel. Measuring the capacity of a web server. In Proc. of

USITS, 1997.

150

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP, 2003.

[10] X. Bu, J. Rao, and C.-Z. Xu. A reinforcement learning approach to online web

systems auto-configuration. In ICDCS, 2009.

[11] G. Candea, E. Kiciman, S. Kawamoto, and A. Fox. Autonomous recovery in

componentized internet applications. Cluster Computing, 2006.

[12] J. P. Cassaza, M. Greenfield, and K. shi. Redefining server performance charac-

terization for virtualization benchmarking. In Intel technology Journal, 2006.

[13] C.-L. Chen. Ieee 802.11e edca qos provisioning with dynamic fuzzy control and

cross-layer interface. In ICCCN, 2007.

[14] H. Chen, G. Jiang, H. Zhang, and K. Yoshihira. Boosting the performance of

computing systems through adaptive configuration tuning. In SAC, 2009.

[15] H. Chen and P. Mohapatra. Session-based overload control in qos-aware web

servers. In Proc. of INFOCOM, 2002.

[16] X. Chen, P. Mohapatra, and H. Chen. An admission control scheme for pre-

dictable server response time for web accesses. In Proc. of WWW, 2001.

[17] L. Cherkasova and P. Phaal. Session based admission control: a mechanism

for improving the performance of an overloaded web server. Technical Report

HPL-98-119, HP Labs, 1998.

[18] L. Cherkasova and L. Staley. Measuring the capacity of a streaming media server

in a utility data center environment. In Proc. of ACM Multimedia, 2002.

151

[19] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons. Correlating

instrumentation data to system states: A building block for automated diagnosis

and control. In Proc. of OSDI, 2004.

[20] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox. Capturing,

indexing, clustering, and retrieving system history. In Proc. of SOSP, 2005.

[21] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox. Capturing,

indexing, clustering, and retrieving system history. In SOSP, 2005.

[22] J. Dejun, G. Pierre, and C.-H. Chi. EC2 performance analysis for resource pro-

visioning of service-oriented applications. In Proceedings of the 3rd Workshop on

Non-Functional Properties and SLA Management in Service-Oriented Comput-

ing, 2009.

[23] Y. Diao, N. Gandhi, J. L. H. S. Parekh, and D. M. Tilbury. Using mimo feedback

control to enforce policies for interrelated metrics with application to the apache

web server. In Proc. of NOMS, 2002.

[24] S. Duan and S. Babu. Processing forecasting queries. In Proc. of VLDB, 2007.

[25] S. Elnikety, E. M. Nahum, J. M. Tracey, and W. Zwaenepoel. A method for

transparent admission control and request scheduling in e-commerce web sites.

In Proc. of WWW, 2004.

[26] R. J. Fowler, A. L. Cox, S. Elnikety, and W. Zwaenepoel. Using performance

reflection in systems software. In Proc. of HotOS, 2003.

[27] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Ma-

chine Learning, 29(2-3), 1997.

152

[28] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing performance

isolation across virtual machines in xen. In Middleware, 2006.

[29] H.-U. Heiss and R. Wagner. Adaptive load control in transaction processing

systems. In Proc. of VLDB. Morgan Kaufmann, 1991.

[30] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of

Computing Systems. John Wiley & Sons, 2004.

[31] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory overbooking and dynamic

control of xen virtual machines in consolidated environments. In IM, 2009.

[32] Hyper-V server. http://www.microsoft.com/servers/hyper-v-server.

[33] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-optimizing memory

controllers: A reinforcement learning approach. In ISCA, 2008.

[34] J.M.Blanquer, A.Batchelli, K.Schauser, and R.Wolsk. Quorum: Flexible quality

of service for internet services. In G. M. Lohman, A. Sernadas, and R. Camps,

editors, Proc. of NSDI), 2005.

[35] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger: monitor-

ing the buffer cache in a virtual machine environment. In ASPLOS, 2006.

[36] C.-H. Jung, C.-S. Ham, and K.-I. Lee. A real-time self-tuning fuzzy controller

through scaling factor adjustment for the steam generator of npp. Fuzzy Sets

Syst., 74, 1995.

[37] E. Kalyvianaki, T. Charalambous, and S. Hand. Self-adaptive and self-configured

cpu resource provisioning for virtualized servers using kalman filters. In ICAC,

2009.

153

[38] A. Kamra, V. Misra, and E. M. Nahum. Yaksha: a self-tuning controller for

managing the performance of 3-tiered web sites. In IWQoS, 2004.

[39] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya. Virtual machine

power metering and provisioning. In SOCC, 2010.

[40] M. Karlsson, C. T. Karamanolis, and X. Zhu. Triage: performance isolation and

differentiation for storage systems. In IWQoS, 2004.

[41] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In Proc. of IJCAI, 1995.

[42] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan. vmanage:

loosely coupled platform and virtualization management in data centers. In

ICAC, 2009.

[43] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. Power and

performance management of virtualized computing environments via lookahead

control. In ICAC, 2008.

[44] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein, and S. S. Parekh. Online

response time optimization of apache web server. In IWQoS, 2003.

[45] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback control

approach for guaranteeing relative delays in web servers. In RTAS, 2001.

[46] D. Magenheimer. Memory overcommit...without the commitment. Technical

report, Xen Summit, June 2009.

[47] J. C. Mogul. Emergent(mis) behavior vs. complex software systems. In ACM

SIGOPS Operating System Review, 2006.

154

[48] MySql. http://www.mysql.com.

[49] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling i/o in virtual machine monitors.

In VEE, 2008.

[50] OProfile. http://oprofile.sourceforge.net/.

[51] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and

A. Merchant. Automated control of multiple virtualized resources. In EuroSys,

2009.

[52] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,

and K. Salem. Adaptive control of virtualized resources in utility computing

environments. In EuroSys, 2007.

[53] PAPI. http://icl.cs.utk.edu/papi.

[54] PerfCtr. http://user.it.uu.se/ mikpe/linux/perfctr.

[55] PerfSuite. http://perfsuite.ncsa.uiuc.edu.

[56] J. Rao, X. Bu, C.-Z. Xu, and K. Wang. A distributed self-learning approach for

elastic provisioning of virtualized cloud resources. In MASCOTS, 2011.

[57] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. VCONF: a reinforcement learning

approach to virtual machines auto-configuration. In ICAC, 2009.

[58] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu. Dynaqos: Model-free self-tuning fuzzy

control of virtualized resources for qos provisioning. In IWQoS, 2011.

[59] J. Rao and C.-Z. Xu. Online measurement the capacity of multi-tier websites

using hardware performance counters. In ICDCS, 2008.

155

[60] P. P. Renu, P. Pradhan, R. Tewari, S. Sahu, A. Ch, and P. Shenoy. An

observation-based approach towards self-managing web servers. In IWQoS, 2002.

[61] Rice University Computer Science Department.

http://www.cs.rice.edu/CS/Systems/DynaServer.

[62] V. T. R.Iyer and K. Kant. Overload control mechanisms for web servers. In

Proceeding of Workshop on Performance and QoS of Next Generation Networks,

2000.

[63] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X. Zhang. Hardware

counter driven on-the-fly request signatures. In Proc. of ASPLOS, 2008.

[64] F. G. Shinskey. Process Control Systems: Application, Design, and Tuning.

McGraw-Hill, 1996.

[65] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Ka-

math. Automatic virtual machine configuration for database workloads. In

SIGMOD Conference, 2008.

[66] Y.-Y. Su, M. Attariyan, and J. Flinn. Autobash: improving configuration man-

agement with operating system causality analysis. In SOSP, 2007.

[67] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.

[68] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. On the use of hybrid

reinforcement learning for autonomic resource allocation. Cluster Computing,

2007.

[69] The ClarkNet Internet traffic trace. http://ita.ee.lbl.gov/html/contrib/ClarkNet-

HTTP.html.

156

[70] The dm-ioband bandwidth controller. http://sourceforge.net/apps/trac/ioband/wiki/dm-

ioband.

[71] The SPECweb benchmark. http://www.spec.org/web2005.

[72] The Transaction Processing Council (TPC). http://www.tpc.org/tpcw.

[73] The Transaction Processing Council (TPC). http://www.tpc.org/tpcw.

[74] The Transaction Processing Council (TPC). http://www.tpc.org/tpcc.

[75] Tomcat. http://tomcat.apache.org/.

[76] VMware. http://www.vmware.com.

[77] VMware VMmark. http://www.vmware.com/products/vmmark.

[78] E. Walker. Bechmarking Amazon EC2 for high-performance scientific computing.

;LOGIN:, the USENIX Magazine, 2008.

[79] R. Wang, D. M. Kusic, and N. Kandasamy. A distributed control framework

for performance management of virtualized computing environments. In ICAC,

2010.

[80] J. Wei and C.-Z. Xu. A self-tuning fuzzy control approach for end-to-end qos

guarantees in web servers. In IWQoS, 2005.

[81] J. Wei and C.-Z. Xu. eqos: Provisioning of client-perceived end-to-end qos guar-

antees in web servers. IEEE Trans. Computers, 55(12), 2006.

[82] J. Wei and C.-Z. Xu. eqos: Provisioning of client-perceived end-to-end qos guar-

antees in web servers. IEEE Transaction on Computer, 55, 2006.

[83] WEKA. http://www.cs.waikato.ac.nz/ml/weka.

157

[84] M. Welsh and D. E. Culler. Adaptive overload control for busy internet servers.

In Proc. of USITS, 2003.

[85] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debugging as search:

Finding the needle in the haystack. In OSDI, 2004.

[86] J. Wildstrom, P. Stone, E. Witchel, and M. Dahlin. Machine learning for on-line

hardware reconfiguration. In Proc. of IJCAI, 2007.

[87] Xen. http://www.xen.org/.

[88] C.-Z. Xu. Scalable and Secure Internet Services and Architecture. Chapman and

Hall/CRC Press, 2005.

[89] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive

branch prediction. In Proc. of ISCA, 1992.

[90] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox. Ensembles of models

for automated diagnosis of system performance problems. In Proc. of DSN, 2005.

[91] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox. Ensembles of models

for automated diagnosis of system performance problems. In DSN, 2005.

[92] W. Zhao and Z. Wang. Dynamic memory balancing for virtual machines. In

VEE, 2009.

[93] X. Zhong and C.-Z. Xu. Energy-aware modeling and scheduling for dynamic

voltage scaling with statistical real-time guarantee. IEEE Trans. on Computers,

56(3), 2007.

[94] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram. Scheduler vulnerabilities and

attacks in cloud computing. arXiv:1103.0759v1 [cs.DC], Mar 2011.

158

[95] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and K. Shin.

What does control theory bring to systems research? SIGOPS Oper. Syst. Rev.,

43, 2009.

[96] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource con-

tention in multicore processors via scheduling. In ASPLOS’10, 2010.

159

ABSTRACT

AUTONOMIC MANAGEMENT OF VIRTUALIZED RESOURCES IN
CLOUD COMPUTING

by

JIA RAO

December 2011

Advisor:

Major:

Degree:

Dr. Cheng-Zhong Xu

Computer Engineering

Doctor of Philosophy

he last five years have witnessed a rapid growth of cloud computing in business,

governmental and educational IT deployment. The success of cloud services depends

critically on the effective management of virtualized resources. A key requirement

of cloud management is the ability to dynamically match resource allocations to

actual demands, To this end, we aim to design and implement a cloud resource

management mechanism that manages underlying complexity, automates resource

provisioning and controls client-perceived quality of service (QoS) while still achieving

resource efficiency.

The design of an automatic resource management centers on two questions: when

to adjust resource allocations and how much to adjust. In a cloud, applications have

different definitions on capacity and cloud dynamics makes it difficult to determine a

static resource to performance relationship. In this dissertation, we have proposed a

generic metric that measures application capacity, designed model-independent and

adaptive approaches to manage resources and built a cloud management system scal-

able to a cluster of machines.

To understand web system capacity, we propose to use a metric of productivity

160

index (PI), which is defined as the ratio of yield to cost, to measure the system

processing capability online. PI is a generic concept that can be applied to different

levels to monitor system progress in order to identify if more capacity is needed. We

applied the concept of PI to the problem of overload prevention in multi-tier websites.

The overload predictor built on the PI metric shows more accurate and responsive

overload prevention compared to conventional approaches.

To address the issue of the lack of accurate server model, we propose a model-

independent fuzzy control based approach for CPU allocation. For adaptive and

stable control performance, we embed the controller with self-tuning output ampli-

fication and flexible rule selection. Finally, we build a QoS provisioning framework

that supports multi-objective QoS control and service differentiation. Experiments

on a virtual cluster with two service classes show the effectiveness of our approach in

both performance and power control.

To address the problems of complex interplay between resources and process de-

lays in fine-grained multi-resource allocation, we consider capacity management as

a decision-making problem and employ reinforcement learning (RL) to optimize the

process. The optimization depends on the trial-and-error interactions with the cloud

system. In order to improve the initial management performance, we propose a

model-based RL algorithm. The neural network based environment model, which is

learned from previous management history, generates simulated resource allocations

for the RL agent. Experiment results on heterogeneous applications show that our

approach makes efficient use of limited interactions and find near optimal resource

configurations within 7 steps.

Finally, we present a distributed reinforcement learning approach to the cluster-

wide cloud resource management. We decompose the cluster-wide resource allocation

problem into sub-problems concerning individual VM resource configurations. The

161

cluster-wide allocation is optimized if individual VMs meet their SLA with a high

resource utilization. For scalability, we develop an efficient reinforcement learning

approach with continuous state space. For adaptability, we use VM low-level runtime

statistics to accommodate workload dynamics. Prototyped in a iBalloon system, the

distributed learning approach successfully manages 128 VMs on a 16-node closely

correlated cluster.

162

AUTOBIOGRAPHICAL STATEMENT

JIA RAO

Jia Rao is a graduate student of Department of Electrical and Computer Engi-

neering at Wayne State University. He received his B.S. and M.S. degrees in computer

science and technology from Wuhan University, China in 2004 and 2006, respectively.

His research interests include cloud computing, virtualization, resource manage-

ment, mobile computing, machine learning, reinforcement learning, CPU and I/O

scheduling in virtualized systems. He has published 1 journal paper, in IEEE Trans-

actions on Parallel and Distributed Systems, and 8 papers in proceedings of leading

international conferences. He is also a receipient of the Summer Dissertation Fellow-

ship (2011).

He has taught undergraduate courses for four years at Wayne State University.

He has also received outstanding evaluations each semester from his students.

	Wayne State University
	1-1-2011
	Autonomic management of virtualized resources in cloud computing
	Jia Rao
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	Chapter Introduction
	Motivation and Background
	Challenges in Automatic Cloud Resource Management
	Application-centric Performance Management
	Complex Resource to Performance Relationship
	Process Delays in Resource Allocation.
	Issues in Large Scale Cloud Management.

	Problem Definition and Objectives
	Contributions
	Dissertation Organization

	Chapter Related Work
	Capacity Identification
	Autonomic Management in Traditional Systems
	Automated Cloud Resource Management
	Single Resource Management
	Multiple Resources Management

	Reinforcement Learning in Autonomic Control

	Chapter Online Web Systems Capacity Identification
	Introduction
	Limitations of A Single Response Time Metric
	Dynamics of a Multi-tier Website
	Website Capacity Identification

	Lower Level System Performance Metrics
	Revisit of the Concept of Capacity
	Definition of Performance Synopsis

	Two-Level Coordinated Website Capacity Identification
	Website Capacity Identification Framework
	Coordinated Two-level Predictor
	Training and Prediction
	An Example

	Evaluation Methodology
	TPC-W and Workload Selection
	Training and testing sets
	Evaluation Metrics
	Experiment Settings

	Experimental Results
	Effectiveness of Productivity Index
	Individual Prediction Accuracy
	Coordinated Prediction Accuracy
	Runtime Overhead

	Application of Capacity Prediction in Online Admission Control
	Summary

	Chapter Model-free Control of A Single Resource
	Introduction
	Motivating Examples
	The DynaQoS Framework
	Design of DynaQoS
	The Self-tuning Fuzzy Controller
	Scheduling multiple objectives
	Realizing service differentiation

	System Implementation
	Cloud applications
	Testbed
	Implementation of DynaQoS

	Experimental Results
	Comparing STFC to other popular control methods
	Scheduling multiple objectives
	Service differentiation

	Summary

	Chapter Concurrent Control of Multiple Resources
	Introduction
	Motivating Examples
	The Xen Virtual Machine Monitor
	Balanced Configurations
	Delayed Effects

	Reinforcement Learning for VM Auto-configuration
	Reinforcement Learning and Its Applicability to VM Auto-configuration
	Formulation of VM Configuration as a RL Task
	Solutions to the RL Task

	The Design and Implementation of VCONF
	Overview
	Adaptability and Scalability
	Model Initialization and Adaptation

	Experimental Results
	Methodology
	Experiment Settings
	Applicability of RL-based VM Autoconfiguration
	RL-based System-wide Performance Optimization
	Model-based RL in VM Auto-configuration

	Summary

	Chapter Resource Management in Virtual Clusters
	Introduction
	Motivating Examples
	Complications in Multiple Resource Allocation
	Cluster-wide Correlation

	The Design of iBalloon
	Overview
	Key Designs

	Implementation
	Experiment Design
	Methodology
	Testbed Configurations

	Experimental Results
	Evaluation of the Reward Metric
	Exploitations vs. Explorations
	Single Application Capacity Management
	Coordination in Multiple Applications
	Scalability and Overhead Analysis

	Summary

	Chapter Conclusions and Future Work
	Conclusions
	Future Directions

	References
	Abstract
	Autobiographical Statement

