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CHAPTER I: INTRODUCTION 

 

In just-in-time (JIT) manufacturing environments, on-time delivery is one of the 

key performance measures for dispatching and routing of freight vehicles. Both the 

travel time delay and its variability impact the efficiency of JIT logistics operations, 

that are becoming more and more common in many industries, and in particular, the 

automotive industry. In this dissertation, we first propose a framework for dynamic 

routing of a single vehicle on a stochastic time dependent transportation network 

using real-time congestion information from Intelligent Transportation Systems (ITS). 

Then, we consider milk-run deliveries with multiple pickup and delivery destinations 

subject to time windows using real-time congestion information. Finally, we extend 

our dynamic routing model to account for arc interactions on the network and 

investigate its benefits. 

Recurrent and non-recurrent congestion are the two primary reasons for travel 

time delay and variability, and their impact on urban transportation networks is 

growing in recent decades. Hence, our routing methods explicitly account for both 

recurrent and non-recurrent congestion in the network. In our modeling framework, 

we develop alternative delay models for both congestion types based on historical 

data (e.g., velocity, volume, and parameters for incident events) and then integrate 

these models with the forward-looking routing models. The dynamic nature of our 

routing decisions exploits the real-time information available from various ITS 

sources, such as loop sensors.  
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The forward-looking traffic dynamic models for individual arcs are based on 

congestion states and state transitions driven by time-dependent Markov chains. We 

propose effective methods for estimation of the parameters of these Markov chains. 

Based on vehicle location, time of day, and current and projected network congestion 

states, we generate dynamic routing policies using stochastic dynamic programming 

formulations. 

We have tested the models and algorithms in the networks of Southeast-

Michigan and Los Angeles, CA freeways and highways using historical traffic data 

from the Michigan ITS Center, Traffic.com, and Caltrans PEMS. 

1. Motivation 

Just-in-time supply chains require reliable deliveries. Hence, JIT supply chains 

with frequent deliveries in urban areas have to constantly cope with the delivery time 

unreliability, which, in most part, is caused by traffic congestion. An important 

characteristic of road networks in many urban-areas is the stochastic and time 

dependent travel times. The sources of uncertainty are multiple. One of the most 

significant factors is the high volume of traffic due to commuting. This form of traffic 

congestion is called recurrent congestion as it occurs during certain time periods and 

days. One of the most common coping strategies for recurrent congestion is building 

‘buffer time’ into the trip, i.e. starting the trip earlier.  However, building ‘buffer time’ 

may increase driver and equipment idle time or, sometimes, the buffer may not be 

enough.   
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Incidents, such as accidents, vehicle breakdowns, bad weather conditions, 

work zones, lane closures, special events, etc. are other important disturbances to 

traffic networks. These disturbances are collectively referred as non-recurrent 

congestion (or incidents) as the frequency of this kind of congestion is unpredictable. 

Non-recurrent congestion is a significant part of the total congestion, as described in 

the Traffic congestion and reliability report [1]. Changing the route of the trip in 

response to an incident is common response by most drivers. However, re-routing 

around the congested road segments, without an accurate analysis and the use of 

the real-time information, can cause to travel out-of-the-way and potentially result in 

more expensive routing outcome in terms of duration or the length of the trip. 

There are several ways to improve the traffic operations and hence reduce the 

transportation times associated with deliveries. Options include developing new 

infrastructure or expanding existing infrastructure, deploying advanced information 

technologies, and improving operational management systems. It should be noted 

that the option of developing new infrastructures, if not infeasible, is significantly more 

costly. On the other hand, the exploitation of advanced technologies such as the use 

of information technologies can reduce the level of uncertainty to a manageable level 

such that the dynamic routing becomes a viable alternative. Accordingly, the dynamic 

routing allows vehicles use less congested road alternatives and thereby reduce the 

load on the network chokepoints. ITS infrastructure is now available in most urban 

areas and provides real-time traffic data and traffic monitoring systems are beginning 

provide real-time information regarding incidents. In-vehicle communication 
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technologies enable to communicate with vehicles en-route to re-route with real-time 

information. 

The goal of this dissertation is to develop dynamic routing models integrated 

with congestion delay estimation models that can be easily implemented using 

available computer and information technologies. With the aid of these technologies, 

our models will help drivers avoid both recurrent and non-recurrent congestion by 

dynamically routing the vehicle from an origin to several destinations in traffic 

networks within given time windows. 

2. Research Setting 

Our most general model is a non-stationary stochastic time dependent 

traveling salesman problem with time windows (STD-TSP-TW). The Traveling 

Salesman Problem (TSP) is concerned with finding optimal trip (e.g. with the least 

travel time, distance, or other performance measure) in which the vehicle starts from 

the depot, visits every customer in a given set, and returns to the depot. If the travel 

time between two customers or between a customer and the depot depends on not 

only the distance/travel time between the customers, but also the time of day of 

departure then it is called time-dependent TSP (TD-TSP). The service time at each 

customer may also depend on the time of day. If the travel times and/or service times 

are also random values then this lead to another variant of TSP namely, stochastic 

TD-TSP (STD-TSP). Finally, each of the customers may also have imposed time 

window constraints on delivery time. In literature this is called STD-TSP with time 

windows (STD-TSP-TW). Hence, in the STD-TSP-TW, a vehicle is initially located at 
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the depot, and must serve a number of geographically dispersed customers in a 

network where travel times are stochastic and time dependent and each customer 

must be served within a specified time window. The objective is to find the optimum 

route with minimum total cost of travel and service time in networks with random arc 

travel times. The randomness of travel times on arcs may be because of several 

reasons. The recurrent and/or non-recurrent congestion are the two prime reasons 

[1] and hence we develop delay estimation models for both of these congestion 

types. In addition, we assume that there might be interaction among network arcs. 

For instance, an incident on an arc may affect its upstream arcs because of vehicle 

queue spillback. 

3. Research Scope 

The forward-looking traffic dynamic models for individual arcs are based on 

congestion states and state transitions driven by time-dependent Markov chains. 

Namely, the state of the next time period depends on only the state of the previous 

time period. Then our problem may be modeled based on Markov decision process 

(MDP). We assume state set of the MDP is based on the position of the vehicle, the 

time of the day and the (recurrent and non-recurrent) congestion states of the arcs.  

We propose effective methods for estimation of the parameters of these Markov 

chains. Based on vehicle location, time of day, and current and projected network 

congestion states, we generate dynamic routing policies using stochastic dynamic 

programming formulations. 
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We assume recurrent (peak-time) congestion states are based on the average 

speed of the vehicles, time of the day, and a cut-off speed. The congestion state 

classes (i.e.: congested, uncongested, etc.) of the roads may be determined with 

historic traffic data from ITS center based on Gaussian Mixture Model (GMM). Since, 

not all of the network information affects an optimal decision, we assume the arc set 

of a state such that only the arcs those are close the vehicle affects the decision. We 

also assume that the traffic data for some of the arcs may be unavailable. 

Non-recurrent (incident induced) congestion model for a vehicle routing 

problem has to address incident-induced arc travel time delay and incident clearance 

time. To address these we assume incident-induced arc travel time delay may be 

estimated with a stochastic queuing model where the incident duration is stochastic. 

The time passes until the clearance of incident scene and restoring of the road 

capacity to normal operation capacity is usually defined as the incident duration. An 

incident has typically four stages (report/detect response, clearance, and recovery) 

and the incident duration refers the total of first three stages of the incident. To model 

incident duration we assume every incident eventually will be cleared and the 

likelihood of ending increases as more time passes (hazard rate property).  

We also assume stochastic dependency among arcs. Although arcs in most 

traffic networks are statistically dependent (arc-wise and time-wise), there are only a 

few studies on modeling dependency between arcs. 
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4. Objectives and Contributions 

 The objective of our study is to develop methods for routing vehicles in 

stochastic road network environments representative of real-world conditions. The 

specific objective is developing dynamic routing algorithms for stochastic time-

dependent shortest path problem and stochastic time-dependent TSP with time-

windows in networks where vehicles may encounter recurrent and/or non-recurrent 

congestion during the trip. The prerequisites for this objective are: 

 Ability to project future recurrent congestion states based on historical and ITS 

data 

 Ability to anticipate future evolution of non-recurrent congestion throughout the 

network while accounting for stochastic dependency and interactions between 

arcs  

 Ability to account the traffic interactions among network arcs on our routing 

policy. 

In the literature some aspects of this problem have been studied at some level 

but there does not exist any study that takes into account all aspects of our dynamic 

routing problem. Our contributions may be listed as:  

1) Methods for accurate and efficient representation of recurrent congestion, in 

particular, identification of multiple congestion states and their transition patterns.  

2) Extension of modeling recurrent congestion and estimation of transition 

probabilities methods to the case where there is arc interactions among arcs. 
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3) Integrated modeling and treatment of recurrent and non-recurrent 

congestion for vehicle routing and demonstrating the need and value of such 

integration.  

4) An integrated methodology for identifying the traveling salesman problem 

(TSP) tours in stochastic time dependent (STD) networks where the stochastic path 

travel times between pairs of pickup and delivery sites are estimated through optimal 

dynamic routing.  

5) An approach for dynamic routing between pairs of sites in STD networks 

using the real-time congestion information available from ITS sensor networks.  

6) Transportation cost and delivery service level improvement based on 

optimal dynamic routing between sites and demonstrating this fact with using real 

network traffic data. 

Summarizing, the original contributions of this dissertation can be quantified in 

terms of the following technical publications: 

4.1 Publications 

 A.R. Guner, A. Murat, R.B. Chinnam: Dynamic Routing Under Recurrent and 

Non-Recurrent Congestion Using Real-time ITS Information. Computers & 

Operations Research, Article in Press, 39(2), 2012.  [2] 

 A.R. Guner, R.B. Chinnam, and A. Murat: Dynamic Routing Using Real-time 

ITS Information. Proceedings of Third International Workshop on Intelligent 

Vehicle Controls & Intelligent Transportation Systems. Milan, Italy, July 2009. 

[3] 
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 A.R. Guner, A. Murat, R.B. Chinnam: Dynamic Routing in Stochastic Time-

Dependent Networks for Milk-run tours with time windows. (Under Review, 

Transportation Research Part E, 2010) 

 A.R. Guner, R.B. Chinnam, A. Murat: Dynamic Routing in Stochastic Time-

Dependent Networks under Arc Interactions. (To be submitted to IEEE 

Transactions on ITS, 2011) 

5. Organization of the Dissertation 

The dissertation is organized as follows. In Chapter 2 we propose a stochastic 

dynamic programming formulation for dynamic routing of vehicles in non-stationary 

stochastic networks subject to both recurrent and non-recurrent congestion. We also 

propose alternative models to estimate incident induced delays that can be 

integrated with dynamic routing algorithms. We consider dynamic routing under milk-

run tours with time windows in congested transportation networks in Chapter 3. The 

proposed method integrates TSP with dynamic routing to find a static yet robust 

recurring tour of a given set of sites (i.e., DC and suppliers) while dynamically routing 

the vehicle between site visits. Chapter 4 proposes methods for minimizing expected 

travel time from an origin to a destination in a stochastic time-dependent network with 

arc interactions to improve delivery efficiency. 

Since 2nd, 3rd, and 4th chapters are stand-alone manuscripts submitted (to be 

submitted) to journals, some of the sub-sections might be repeated. 
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CHAPTER II: DYNAMIC ROUTING UNDER RECURRENT AND NON-RECURRENT 

CONGESTION USING REAL-TIME ITS INFORMATION*  

 

Abstract   ̶ In just-in-time (JIT) manufacturing environments, on-time delivery is 

a key performance measure for dispatching and routing of freight vehicles. Growing 

travel time delays and variability, attributable to increasing congestion in 

transportation networks, are greatly impacting the efficiency of JIT logistics 

operations. Recurrent and non-recurrent congestion are the two primary reasons for 

delivery delay and variability. Over 50% of all travel time delays are attributable to 

non-recurrent congestion sources such as incidents. Despite its importance, state-of-

the-art dynamic routing algorithms assume away the effect of these incidents on 

travel time. In this study, we propose a stochastic dynamic programming formulation 

for dynamic routing of vehicles in non-stationary stochastic networks subject to both 

recurrent and non-recurrent congestion. We also propose alternative models to 

                                                       

* This chapter resulted in the following publications: 

- A.R. Guner, A. Murat, R.B. Chinnam: Dynamic Routing Under Recurrent and Non-
Recurrent Congestion Using Real-time ITS Information. Computers & Operations 
Research, Article in Press, 2009 

- A.R. Guner, R.B. Chinnam, and A. Murat: Dynamic Routing Using Real-time ITS 
Information. Proceedings of Third International Workshop on Intelligent Vehicle 
Controls & Intelligent Transportation Systems. Milan, Italy, July 2009 
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estimate incident induced delays that can be integrated with dynamic routing 

algorithms. Proposed dynamic routing models exploit real-time traffic information 

regarding speeds and incidents from Intelligent Transportation System (ITS) sources 

to improve delivery performance. Results are very promising when the algorithms are 

tested in a simulated network of Southeast-Michigan freeways using historical data 

from the MITS Center and Traffic.com. 

Keywords  ̶  JIT logistics, transportation, congestion, incidents, dynamic 

routing, ITS 

1. Introduction 

Supply chains that rely on just-in-time (JIT) production and distribution require 

timely and reliable freight pick-ups and deliveries from the freight carriers in all stages 

of the supply chain. The requirements have even spread to the supply chains’ service 

sectors with the adoption of cross docking, merge-in-transit, and e-fulfillment, 

especially in developed countries with keen concern in process improvement [4]. For 

example, in Osaka and Kobe, Japan, as early as 1997, 52% (by weight) of cargo 

deliveries and 45% of cargo pickups had designated time windows or specified arrival 

times [5]. These requirements have now become the norm in the US as well. For 

example, many automotive final assembly plants in Southeast Michigan receive 

nearly 80% of all assembly parts on a JIT basis (involving 5-6 deliveries/day for each 

part with no more than three hours of inventory at the plant). However, road 

transportation networks are experiencing ever growing congestion, which greatly 

hinders all travel and certainly the freight delivery performance. The cost of this 
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is labeled ‘non-recurrent’ congestion in that its location and severity is unpredictable. 

The Texas Transportation Institute [1] reports that over 50% of all travel time delays 

are attributable to the non-recurrent congestion. Despite its importance, current state-

of-the-art dynamic routing algorithms assume away the effect of these incidents on 

travel time. 

The standard approach to deal with congestion is to build additional ‘buffer 

time’ into the trip (i.e., starting the trip earlier so as to end the trip on time), as 

illustrated in Fig. 1. Intelligent Traffic Systems (ITS), run by state agencies (e.g., the 

Michigan Intelligent Transportation Systems (MITS) Center in Southeast Michigan) 

and/or the private sector (e.g., Traffic.com operating in many states), are providing 

real-time traffic data (e.g., lane speeds and volumes) in many urban areas. These 

traffic monitoring systems are also beginning to provide real-time information 

regarding traffic incidents and their severity. In-vehicle communication technologies, 

such as satellite navigation systems, are also enabling drivers access to this 

information en-route. In this paper, we precisely consider JIT pickup/delivery service, 

and propose a dynamic vehicle routing model that exploits real-time ITS information 

to avoid both recurrent and non-recurrent congestion. We limit the scope to routing a 

vehicle from an origin point (say depot or warehouse) to a destination point.  

Our problem setting is the non-stationary stochastic shortest path problem with 

both recurrent and non-recurrent congestion. We propose a dynamic vehicle routing 

model based on a Markov decision process (MDP) formulation. Stochastic dynamic 

programming is employed to derive the routing ‘policy’, as the static ‘paths’ are 

provably suboptimal for this problem. The MDP ‘states’ cover vehicle location, time of 
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day, and network congestion state(s). Recurrent network congestion states and their 

transitions are estimated from the ITS historical data. The proposed framework 

employs Gaussian mixture model based clustering to identify the number of states 

and their transition rates, by time of day, for each arc of the traffic network. To 

prevent exponential growth of the state space, we also recommend limiting the 

network monitoring to a reasonable vicinity of the vehicle. As for non-recurrent 

congestion attributable to incidents, we estimate the incident-induced arc travel time 

delay using a stochastic queuing model.  

Our contribution is two-fold: 1) Methods for accurate and efficient 

representation of recurrent congestion, in particular, identification of multiple 

congestion states and their transition patterns. 2) Integrated modeling and treatment 

of recurrent and non-recurrent congestion for vehicle routing and demonstrating the 

need and value of such integration.  

The rest of the paper is organized as follows. Survey of relevant literature is 

given in section 2. Modeling recurrent and non-recurrent congestion is presented in 

section 3. Section 4 proposes a dynamic vehicle routing model under recurrent and 

non-recurrent congestion using real-time data. Section 5 presents the results of a 

real-world experimental study. Finally, section 6 offers some concluding remarks and 

proposes avenues for future research.  

2. Literature Survey 

In the classical deterministic shortest path (SP) problem, the cost of traversing 

an arc is deterministic and independent on the arrival time to the arc. The stochastic 
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SP problem (S-SP) is a direct extension of this deterministic counterpart where the 

arc costs follow a known probability distribution. In S-SP, there are multiple potential 

objectives, and the two most common ones are the minimization of the total expected 

cost and maximization of the probability of being lowest cost [8]. To find the path with 

minimum total expected cost, Frank [9] suggested replacing arc costs with their 

expected values and subsequently solving as a deterministic SP. Loui [10] showed 

that this approach could lead to sub-optimal paths and proposed using utility 

functions instead of the expected arc costs. Eiger  et al. [11] showed that Dijkstra’s 

algorithm [12] can be used when the utility functions are linear or exponential. 

Stochastic SP problems are referred as stochastic time-dependent shortest 

path problems (STD-SP) when arc costs are time-dependent. Hall [13] first studied 

the STD-SP problems and showed that the optimal solution has to be an ‘adaptive 

decision policy’ (ADP) rather than a single path. In an ADP, the node to visit next 

depends on both the node and the time of arrival at that node, and therefore the 

standard SP algorithms cannot be used. Hall [13] employed the dynamic 

programming (DP) approach to derive the optimal policy. Bertsekas and Tsitsiklis [14] 

proved the existence of optimal policies for STD-SP. Later, Fu  and Rilett [15] 

modified the method of Hall [13] for problems where arc costs as continuous random 

variables. They showed the computational intractability of the problem based on the 

mean-variance relationship between the travel time of a given path and the dynamic 

and stochastic travel times of the individual arcs. They also proposed a heuristic in 

recognition of this intractability. Bander and White [16] modeled a heuristic search 

algorithm AO* for  the problem and demonstrated significant computational 
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advantages over DP, when there exists known strong lower bounds on the total 

expected travel cost between any node and the destination node. Fu [17] discussed 

real-time vehicle routing based on the estimation of immediate arc travel times and 

proposed a label-correcting algorithm as a treatment to the recursive relations in DP. 

Waller and Ziliaskopoulos [18] suggested polynomial algorithms to find optimal 

policies for stochastic shortest path problems with one-step arc and limited temporal 

dependencies. Gao and Chabini [19] designed an ADP algorithm and proposed 

efficient approximations to time and arc dependent stochastic networks. An 

alternative routing solution to the ADP is a single path satisfying an optimality 

criterion. For identifying paths with the least expected travel (LET) time, Miller-Hooks 

and Mahmassani [20] proposed a modified label-correcting algorithm. Miller-Hooks 

and Mahmassani [21] extends [20] by proposing algorithms that find the expected 

lower bound of LET paths and exact solutions by using hyperpaths. 

All of the studies on STD-SP assume deterministic temporal dependence of 

arc costs, with the exception of Waller and Ziliaskopoulos [18] and Gao and Chabini 

[19]. In most urban transportation networks, however, the change in the cost of 

traversing an arc over-time is stochastic and there are very few studies addressing 

this issue.  Most of these studies model this stochastic temporal dependence through 

Markov chain modeling and propose using the real-time information available through 

ITS systems for observing Markov states. In addition, all of these studies assume that 

recourse actions are possible such that the vehicle's path can be re-adjusted based 

on newly acquired congestion information. Accordingly, they identify optimal ADPs. 

Polychronopoulos and Tsitsiklis [22] is the first study to consider stochastic temporal 
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dependence of arc costs and to suggest using online information en route. They 

considered an acyclic network where the cost of outgoing arcs of a node is a function 

of the environment state of that node and the state changes according to a 

Markovian process. They assumed that the arc’s state is learned only when the 

vehicle arrives at the source node and the state of nodes are independent. They also 

proposed a DP procedure to solve the problem. Polychronopoulos and Tsitsiklis [23] 

consider a problem when recourse is possible in a network with dependent 

undirected arcs and the arc costs are time independent. They proposed a DP 

algorithm to solve the problem and discussed some non-optimal but easily 

computable heuristics. Azaron and Kianfar [24] extended [22] by evolving the states 

of current node as well as its forward nodes with independent continuous-time semi-

Markov processes for ship routing problem in a stochastic but time invariant network. 

Kim  et al. [25] studied a similar problem as in [22] except that the information of all 

arcs are available real-time. They proposed a DP formulation where the state space 

includes states of all arcs, time, and the current node. They stated that the state 

space of the proposed formulation becomes quite large making the problem 

intractable. They reported substantial cost savings from a computational study based 

on the Southeast-Michigan’s road network. To address the intractable state-space 

issue, Kim  et al. [26] proposed state space reduction methods. A limitation of Kim et 

al. [26], is the modeling and partitioning of travel speeds for the determination of arc 

congestion states. They assume that the joint distribution of velocities from any two 

consecutive periods follows a single unimodal Gaussian distribution, which cannot 

adequately represent arc travel velocities for arcs that routinely experience multiple 
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congestion states. Moreover, they also employ a fixed velocity threshold (50 mph) for 

all arcs and for all times in partitioning the Gaussian distribution for estimation of 

state-transition probabilities (i.e., transitions between congested and uncongested 

states). As a result, the value of real-time information is compromised rendering the 

loss of performance of the dynamic routing policy. Our proposed approach addresses 

all of these limitations. 

Non-recurrent Incidents and Incident Clearance 

All of the shortest-path studies reviewed above consider stochastic arc costs 

that are mostly attributable to recurrent congestion. However, as stated earlier, over 

50% of all traffic congestion is attributable to non-recurrent incidents and has to be 

accounted for dynamic routing. Incident-induced delay time estimation models are 

widely studied in the transportation literature. These models can be categorized into 

three groups based on their approaches: shockwave theory [27-29], queuing theory 

[30-35], and statistical (regression) models [36-38]. All of these modeling approaches 

have certain requirements such as loop-sensor data or assumptions regarding 

traffic/vehicle behavior. For instance, the shockwave theory based models require 

extensive loop sensor data for accurate positioning and progression of shockwave. 

Both queuing and shockwave theory based models require assumptions about the 

vehicle arrival process. Regression models, as empirical methods, cannot handle 

missing data without compromising on accuracy. 

In all these three modeling methods, the delay due to incident is a function of 

incident duration. Thus, the correct estimation of incident duration is fundamental and 

there are various distributions suggested. Gaver [39] derived probability distributions 
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of delay under flow stopping. Truck-involved incident duration is studied by Golob et 

al. [40] and employs lognormal distribution. Analysis of variance is examined by 

Giuliano [41] and a truncated regression model to estimate incident duration is 

proposed by Khattak et al. [42] for incident durations in Chicago area. Gamma and 

exponential distributions are also suggested as good representations of incident 

duration distribution [43]. Since the likelihood of ending an incident is related to how 

long it has lasted, hazard-based models are also suggested extensively. An overview 

of duration models applications is presented by Hensher and Mannering [44]. Nam 

and Mannering [45] applied hazard-based duration models to model distribution of 

detect/report, respond and clear durations of incidents. Using the empirical data of 

two years from the state of Washington, they showed that detect/report and respond 

times are Weibull distributed and the clearance duration is log-logistic distributed.  

Modeling incident delay in conjunction with vehicle routing is in its nascence. 

Ferris and Ruszczynski [46] present a problem in which arcs with incidents fail and 

become permanently unavailable. They model the problem as an infinite-horizon 

Markov decision process. Thomas and White [47] consider the incident clearance 

process and adopt the models in Kim et al. [25] for routing under non-recurrent 

congestion. They model the incident delay using a multiplicative model and the 

incident clearance time as a non-stationary Markov chain, with transition probabilities 

following a Weibull distribution with an increasing instantaneous clearance rate. To 

model incident-induced delay, they multiply the incident arc’s cost by a constant and 

time-invariant scalar. However, they do not account for recurrent congestion and 

assume arc costs are time-invariant and deterministic. In our approach, we address 
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these limitations by joint consideration of recurrent and non-recurrent congestion as 

well as more appropriate representation of incident-induced delay and clearance.   

3. Modeling Recurrent and Non-recurrent Congestion 

3.1. Recurrent Congestion Modeling 

Let the graph  ,G N A
 
denote the road network where N  is the set of nodes 

(intersections) and  A N N  is the set of directed arcs between nodes. For every 

node pair, ',n n N , there exists an arc  , ' a n n A , if and only if, there is a road 

that permits traffic flow from node n  to 'n . Given an origin-destination (OD) node 

pair, the trip planner’s problem is to decide which arc to choose at each decision 

node such that the expected total trip travel time is minimized. We denote the origin 

and destination nodes with 0n  and dn , respectively. We formulate this problem as a 

finite horizon Markov decision process (MDP), where the travel time on each arc 

follows a non-stationary stochastic process.  

An arc,  , ' a n n A
 
is labeled as observed if its real-time traffic data (e.g., 

velocity) is available through the traffic information system. An observed arc’s traffic 

congestion can be in 1r    different states at time t . These states represent arc’s 

congestion level and are associated with the real-time traffic velocity on the arc. We 

begin with discussing how to determine an arc’s congestion state given the real-time 

velocity information and defer the discussion on estimation of the congestion state 

parameters to Section 5.  Let  1i
ac t  

and  i
ac t  

for i=1,2,...,r+1 denote the cut-off 

velocities used to determine the state of arc a given the velocity at time t  on arc a , 
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 av t . We further define  i
as t  as the ith traffic congestion state of arc a  at time t , i.e.

 

   1 1as t   and      Congested at level rr
as t r  . For instance, if there are two congestion 

levels (e.g., r+1=2), then there will be one congested state and the other will be 

uncongested state, i.e.,      0 Uncongested 0as t    and      1 Congested 1as t   . Congestion 

state,  i
as t

 
of the arc a  at time t  can then be determined as: 

         1, if i i
a a a as t i c t v t c t    (1) 

We assume the congestion state of an arc evolves according to a non-

stationary Markov chain and the travel time is normally distributed at each state. In a 

network with all arcs observed,  S t
 
denotes the traffic congestion state vector for 

the entire network, i.e.,         1 2 | |, ,..., AS t s t s t s t  at time t . For presentation clarity, 

we will suppress ( t) in the notation whenever time reference is obvious from the 

expression. Let the state realization of  S t  be denoted by ( )s t . 

It is assumed that arc traffic congestion states are independent from each 

other and have the single-stage Markovian property. In order to estimate the state 

transitions for each arc, two consecutive periods’ velocities are modeled jointly. 

Accordingly, the time-dependent single-period state transition probability from state 

 ai s t
 
to state  1aj s t   is denoted with     1 | ( )ij

a a aP s t j s t i t    . The 

transition probability for arc a , ( )ij
a t , is estimated from the joint velocity distribution 

as follows: 

  
           

     

1 1

1

< 1 1 1

<

i i j j
a a a a a aij

a i i
a a a

c t V t c t c t V t c t
t

c t V t c t


 



      



 (2) 
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Let  , 1aT t t  denote the matrix of state transition probabilities from time t  to 

time 1t , then we have    , 1 ij
a a ij

T t t t     . We further assume that arc a’s 

congestion state is independent of other arcs’ states, i.e. 

             '1 | 1 , 1 | ij
a a a a a aP s t s t s t P s t s t t      for 'a A  .  Note that the single-

stage Markovian assumption is not restrictive for our approach as we could extend 

our methods to the multi-stage case by expanding the state space [48]. Let network 

be in state  S t  
at time t  and we want to find the probability of the network state 

 S t , where   is a positive integer number. Given the independence assumption 

of arcs’ congestion states, this can be formulated as follows: 

       
1

| ( ) | ( )
A

a a
a

P S t S t P s t s t 


    (3) 

Then the congestion state transition probability matrix for each arc in   

periods can be found by the Kolmogorov’s equation [49]:
 

        , 1 ...ij ij ij
a a a aij ij ij

T t t t t t                      (4) 

With the normal distribution assumption of velocities, the time to travel on an 

arc can be modeled as a non-stationary normal distribution. We further assume that 

the arc’s travel time depends on the congestion state of the arc at the time of 

departure (equivalent to the arrival time whenever there is no waiting). It can be 

determined according to the corresponding normal distribution: 

       2, , ~ , , , , ,a a at a s N t a s t a s    (5) 
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where  , , at a s  is the travel time on arc a at time t with congestion state  as t

;   , , at a s  and  , , at a s v  are the mean and standard deviation of the travel time on 

arc a  at time t  with congestion state  as t . For the clarity of notation, we hereafter 

suppress the arc label from the parameter space wherever it is obvious, i.e. 

 , , at a s will be referred as  ,a t s . 

We assume that objective of dynamic routing is to minimize the expected 

travel time based on the real-time information. The nodes (intersections) of the 

network represent decision points where a routing decision can be made. Since our 

algorithm is also applicable for a network with incidents, in the next section we 

present our incident modeling approach, and then integrate the recurrent congestion 

and incident models. 

3.2 Incident Modeling 

In this section, we develop incident models which measure the incident 

clearance time and the delay experienced as a result of incident. In section 4, we 

integrate recurrent congestion and incident models with the dynamic routing model. 

3.2.1 Estimating Incident Duration 

The incident duration is defined as the total of detection/reporting, response, 

and clearance times. Due to the nature of most incident response mechanisms, the 

longer the incident has not been cleared, the more likely that it will be cleared in the 

next period. For example, the probability of an incident being cleared in the 15th 

minute, given that it has lasted 14 minutes, is greater than the probability of it being 



24 

 

cleared in the 14th minute given that it has lasted 13 minutes. This is because it is 

more likely that someone has already reported the incident and an incident response 

team is either on the way or has already responded. Let t be the time to clear the 

incident. Then, we have the increasing hazard rate property, e.g., λ(t+1)> λ(t), where 

λ(t)=f(t)/(1-F(t))
 
is the hazard rate of incident clearance in duration t, and f(t) and F(t) 

are the density and cumulative density functions of the clearance duration, 

respectively. We choose the Weibull distribution with increasing hazard rate to model 

the incident clearance duration.  

Whenever there is an incident on an arc in the network, we assume that its 

starting time ( 0
inct ), current status (i.e. cleared/not cleared), expected duration (μ), and 

standard deviation (σ) are available through ITS’s incident management and incident 

database systems. Hence, we can estimate the parameters of the Weibull distribution 

(φ(a,b)) of the incident clearance duration [49]. Furthermore, if an incident occurs en 

route, we may simply re-optimize the routing policy by assuming that the new origin 

node is the node that the driver is at or arrives next.  

3.2.2 Estimating Incident-Induced Delay 

Our incident delay model is based on [31]. Here incident-induced delay 

function,    , is based on the incident duration φ, road non-incident capacity 

denoted with c (vehicle per hour, or vph in short), road capacity during the incident  

denoted with ρ(vph) and arrival rate of vehicles to the incident arc denoted with 

q(vph). Given these parameters for an incident started at 0
inct , the vehicle arriving to 

the incident arc at time (t) experiences the following expected incident-induced delay: 
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     12 1 3 2. m

c
E D D P P d

c

     
 

 (6) 

where  2

1
12 .

D

D
D x x dx  ,  0

1 inc

c
D t t

c q

 
   

,  0
2 inc

q
D t t


 

  
 

, 

 0
m inc

q
d t t




 
  
 

,
  2

1 0
.

D
P x x dx  ,  

2
2 .

D
P x x dx


  , and

  3 1 21P P P   .  

In order to track the amount of time that each arc has spent in the incident 

state, we define an incident duration vector defined over all the arcs,  I t , i.e. 

        1 2 | |, , ..., AI t i t i t i t . Note that if an arc a is not an incident arc, then  ai t =0, 

otherwise    0
a inci t t t a 

 
and  0 ai t  , where  0

inct a  is the incident onset time 

on arc a . For presentation clarity, we will hereafter omit the arc reference from the 

incident onset time, i.e.  0 0
inc inct t a , whenever incident arc reference is obvious.  

The incident delay model is an additive model, in that,   
 
represents the 

delay time by which the arc travel time under same conditions (congestion state and 

the time) will be increased by a duration amounting to the incident induced delay. 

Specifically, given the arc travel time without the incident,  , , 0a t s i  , and the 

incident parameters, , , , ,c q i  , we can express the arc travel time with incident as: 

      0, , , , 0 , , , ,a a a inct s i t s i c q i t t          (7) 

We make the following assumptions for the incident delay function: 

Assumption 1. Incident delay is only experienced on the incident arc (no 

propagation of the incident delay effect in the remainder of the network). 
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Assumption 2. Incident delay function is additive which amplifies the incumbent arc 

travel time.  

Assumption 3. Incident delay function,    , is such that the total delay associated 

by deciding to wait at a node (e.g., waiting time plus the incident delay), is not less 

than the case without waiting. 

In practice, the incident effect propagates in the network in the form of a 

shockwave after a certain duration following the incident. Since our goal is to 

investigate the impact of incidents on the travel time, we choose to focus on the most 

important ingredient, namely the incident-induced delay on the incident arc. Hence, 

Assumption 1 is acceptable under certain scenarios. One scenario is where the 

incident duration is not long enough that vehicles divert to alternative arcs or the 

capacity of alternative arcs is sufficiently large to accommodate the diversion without 

any change in their congestion state. The additive model assumption (Assumption 2) 

is appropriate since the travel time delay of a particular incident depends on both the 

incident characteristics and the incumbent travel time on the arc.  Assumption 3 is 

consistent with our network and travel time assumptions where we assume that 

waiting at a node (or on an arc) is not permitted and/or does not provide travel time 

savings (first-in-first-out property). The following lemma provides a requirement for 

the incident model parameters such that the Assumption 3 holds. 

Lemma 1. The incident-induced delay parameters (c,q), satisfying the 

following condition for the minimal waiting time of   (smallest discrete time interval), 

ensures that waiting at the incident node does not reduce the expected travel time. 
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    , ,a k a k

q
t s t s

c
        (8) 

Proof. Proof of this lemma is provided in appendix. 

4. Dynamic Routing Model with Recurrent and Non-Recurrent Congestion 

We assume that the objective of our dynamic routing model is to minimize the 

expected travel time based on real-time information where the trip originates at node 

0n  and concludes at node dn . Let's assume that there is a feasible path between 

 0, dn n  where a path  0 1,.., ,..,  k Kp n n n
 
is defined as sequence of nodes such that 

1( , ) k k ka n n A , 0,.., 1 k K  and K  is the number of nodes on the path. We define 

set 1( , ) k k ka n n A  as the current arcs set of node kn , and denoted with  kCrAS n . 

That is,    1: ( , )  k k k k kCrAS n a a n n A  is the set of arcs emanating from node kn . 

Each node on a path is a decision stage (or epoch) at which a routing decision 

(which node to select next) is to be made. Let kn N  be the location of kth decision 

stage, kt is the time at kth decision stage where  1,...,kt T , 1 KT t . Note that we are 

discretizing the planning horizon. We next define our look ahead policy for projecting 

the congestion states in the network. While optimal dynamic routing policy requires 

real-time consideration and projection of the traffic states of the complete network, 

this approach makes the state space prohibitively large. In fact, there is little value in 

projecting the congestion states well ahead of the current location. This is because 

the projected information is not different than the long run average steady state 

probabilities of the arc congestion states. Hence, an efficient but practical approach 
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would tradeoff the degree of look ahead (e.g., number of arcs to monitor) with the 

resulting projection accuracy and routing performance. This has been very well 

illustrated in Kim et al. [26]. Thus we limit our look ahead to finite number of arcs that 

can vary by the vehicle location on the network. The selection of the arcs to monitor 

would depend on factors such as arc lengths, value of real-time information, and 

arcs’ congestion state transition characteristics. For ease of presentation and without 

loss of generality, we choose to monitor only two arcs ahead of the vehicle location 

and model the rest of the arcs’ congestion states through their steady state 

probabilities. Accordingly, we define the following two sets for all arcs in the network. 

 kScAS a , the successor arc set of arc ka ,
    1 1 1 2: ( , )     k k k k kScAS a a a n n A  , i.e., 

the set of outgoing arcs from the destination node ( 1kn ) of arc ka .  kPScAS a , the 

post-successor arc set of arc ka ,    2 2 2 3: ( , )     k k k k kPScAS a a a n n A  i.e., the set 

of outgoing arcs from the destination node ( 2kn ) of arc 1ka .  

Since the total trip travel time is an additive function of the individual arc travel 

times on the path plus a penalty function measuring earliness/tardiness of arrival time 

to the final destination, the dynamic route selection problem can be modeled as a 

dynamic programming model. The state of the system at k th decision stage is 

denoted by  
1 2 ,, , ,

k kk k kka an t s I
  . This state vector is composed of the state of the 

vehicle and network and thus characterized by the current node ( kn ), the current 

node arrival time ( kt ), and 
1 2 , k k ka as  the congestion state of arcs 1 2 k ka a  where 

  1 1:   kk ka a ScAS a
 
and   2 2:   kk ka a PScAS a , and incident durations ( kI ) of 
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the network at stage k , i.e.  k kI I t . The action space for the state 

 
1 2 ,, , ,

k kk k kka an t s I
   is the set of current arcs of node kn , denoted with  kCrAS n . 

At every decision stage, the trip planner evaluates the alternative arcs from 

 kCrAS n  
based on the remaining expected travel time. The expected travel time at 

a given node with the selection of an outgoing arc is the expected arc travel time on 

the arc chosen and the expected travel time of the next node. Let  0 1 1, ,...,     K  

be the policy of the trip and is composed of policies for each of the K-1 decision 

stages. For a given state  
1 2 ,, , ,

k kk k k kka an t s I
   , the policy   k k  is a 

deterministic Markov policy which chooses the outgoing arc from node kn , i.e., 

      k k ka CrAS n . Therefore the expected travel cost for a given policy vector 

 0 1 1, ,...,     K  is as follows: 

       
2

0 0 0 0 0 1 1
0

, , , , ,
k

K

K K k k k k k
k

F n t S I E g g


 


 


 
     

 
  (9) 

where  0 0 0 0, , ,n t S I  is the starting state of the system.  k  is the random travel 

time at decision stage k, i.e.,         , , , , , , ,k k k k a k a kt s t i t c q i      
 

and 

 , , , , 0 0c q i    , i.e. the incident delay of an arc without incident. ( , )a k kg   is 

cost of travel on arc    k k ka CrAS n    at stage k , i.e., if travel cost is a function 

( ) of the travel time, then    ( , , )k k k k kg       . Then the minimum expected 
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travel time can be found by minimizing  0 0 0 0, , ,F n t S I  over the policy vector

 0 1 1, ,...,     K as follows: 

  
 

 
0 1 1

*
0 0

, ,...,
min

K

F F
    

    (10) 

The corresponding optimal policy is then 
 

 
0 1 1

*
0

, ,...,
arg min

K

F
   




  . Hence, the 

Bellman’s cost-to-go equation for the dynamic programming model can be expressed 

as follows [48]: 

       * *
1min ( , , )

k k
k k k k k kF E g F

 
         (11) 

For a given policy       k k k ka CrAS n , we can re-express the cost-to-go 

function by writing the expectation in the following explicit form: 

 

          

         

, 11

, 1 12

1 1

2

1

1 1 1 1

1

1

, ,

,

| | , , , |

|

k a kk

a k kk

k k

k

k k k k k k k k k k
s

k k k k k k
s I

k k

k

a a

a

F a P a g a P s t s t

P s t P I t I t F



 


 

 





   






    




 


 

 
 (12) 

where  | , , ,k k k k kP n t S I  is the probability of travelling arc ka  in k  periods. 

  
2 11, k kkaP s t  is the long run probability of arc  2 2:   kk ka a PScAS a  being in state 

2 1,k kas
   

in stage 1k . This probability can be calculated from the historical state 

frequency of a given arc and time. 

 We use backward dynamic programming algorithm to solve for  *
k kF  , 

1, 2,.., 0  k K K . In the backward induction, we initialize the final decision epoch 
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such that,  1 1 1,    K K Kn t  , 1Kn  is destination node, and  1 1 0  K KF
 
if 1 Kt T . 

Accordingly, a penalty cost is accrued whenever there is delivery tardiness, e.g., 

1 Kt T . 

5 Experimental Studies 

This section demonstrates the performance of the proposed algorithm on a 

network from South-East Michigan with real-time traffic data from the Michigan 

Intelligent Transportation Systems (MITS) Center. MITS center is the hub of ITS 

technology applications at the Michigan Department of Transportation (MDOT) and 

oversees a traffic monitoring system composed of 180 freeway miles instrumented 

with 180 Closed Circuit TV Cameras, Dynamic Message Signs, and 2260 Inductive 

Loops. The methods also utilize real-time and archived data from Traffic.com, a 

private company that provides traffic information services in several states and also 

operates additional sensors and traffic monitoring devices in Michigan. Traffic.com 

also provides information regarding incidents causing non-recurrent congestion (e.g., 

incident location, type, severity, and times of incident occurrence and clearance). We 

implemented all our algorithms and methods in Matlab R2010b and executed on a 

machine (with Intel Core 2 2.13 GHz speed processor and 2 GB RAM) running 

Microsoft Windows 7 32-bit operating system. 

Our experimental study is outlined as follows: Section 5.1 introduces two road 

networks from South-East Michigan used for demonstrating the performance of the 

proposed algorithms along with a description of their general traffic conditions. 

Section 5.2 describes the process and the results from modeling of recurrent 
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congestion for the networks. Section 5.3 reports savings from employing the 

proposed dynamic routing model under recurrent congestion for a network with 

multiple OD pairs. Section 5.4 presents the experimental setup that involves an 

incident and reports results and savings from employing the proposed dynamic 

routing model under both recurrent and non-recurrent congestion. Section 5.5 

discusses the computational performance of the proposed approach and presents 

implementation recommendations under different congestion scenarios. 

5.1 Sample Networks and Traffic Data  

This section introduces the road networks from South-East Michigan used for 

demonstrating the performance of the proposed algorithms along with a description 

of their general traffic conditions. As illustrated in Fig. 2, the sample network covers 

South-East Michigan freeways and highways in and around the Detroit metropolitan 

area. The network has 30 nodes and a total of 98 arcs with 43 observed arcs (with 

real-time ITS information from MITS Center) and 55 unobserved arcs. Real-time 

traffic data for the observed arcs is collected from MDOT Center for 23 weekdays 

from January 21, 2008 to February 20, 2008 for the full 24 hours of each day at a 

resolution of an observation every minute. The raw traffic speed data from MITS 

Center is cleaned with a series of procedures from Texas Transportation Institute and 

Cambridge Systematics [7] to improve quality and reduce data errors. 
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these same arcs are shown in Fig. 4, clearly revealing the non-stationary nature of 

traffic.  

Table 1 : Information regarding sub-network nodes and arcs. 

   FROM TO 

Arc ID Freeway 
Length 
(miles) 

Node # 
Description 
(Exit #) 

Node # 
Description
(Exit #) 

1 I-94 1.32 5 216 26 215 
2 M-8 1.75 4 56A (I-75) 30 7C (M-10) 
3 I-75 3.13 4 56A 5 53B 
4 I-75 2.81 5 53B 6 50 
5 M-10 3.26 30 7C 26 4B 
6 M-10 1.42 26 4B 6 2A 

 

 

Fig. 3.  Raw traffic speeds for arcs on sub-network (mph) at different times of the day. 
(Data: Weekday traffic from January 21 to February 20. Each color represents a 
distinct day of 23 days.) 
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Fig. 4.  Traffic mean speeds (mph) and standard deviations by time of the day for 
arcs on sub-network. (15 minute time interval resolution) 

5.2 Recurrent Congestion Modeling 

The proposed dynamic routing algorithm calls for identification of different 
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times by time of day. Given the traffic speed data from MITS Center, we employed 
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recurrent-congestion states for each arc by time of day. In particular, we employed 

the greedy learning GMM clustering method of Verbeek [50] for its computational 

efficiency and performance. To estimate the number of congestion states, traffic 
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t t t t μ Σ ), where i 

0 4am 8am 12pm 4pm 8pm
40

50

60

70

Arc 1

M
e

a
n

0 4am 8am 12pm 4pm 8pm
0

5

10

15

S
td

. D
e

v.

0 4am 8am 12pm 4pm 8pm
40

50

60

70

Arc 2

M
e

a
n

0 4am 8am 12pm 4pm 8pm
0

5

10

15

S
td

. D
e

v.

0 4am 8am 12pm 4pm 8pm
40

50

60

70

Arc 3

M
e

a
n

0 4am 8am 12pm 4pm 8pm
0

5

10

15

S
td

. D
e

v.

0 4am 8am 12pm 4pm 8pm
40

50

60

70

Arc 4

M
e

a
n

0 4am 8am 12pm 4pm 8pm
0

5

10

15

S
td

. D
e

v.

0 4am 8am 12pm 4pm 8pm
40

50

60

70

Arc 5

M
e

a
n

0 4am 8am 12pm 4pm 8pm
0

5

10

15

S
td

. D
e

v.
 

 

0 4am 8am 12pm 4pm 8pm
40

50

60

70

Arc 6

M
e

a
n

 

 

0 4am 8am 12pm 4pm 8pm
0

5

10

15

S
td

. D
e

v.

Mean speed (mph) Standard Deviation



36 

 

denotes the ith cluster. The Gaussian distribution assumption has been employed by 

others in the literature (see Kim et al. [25]). The clusters are ordered by their means 

and the densities of their projections onto the two axes are employed to identify the 

congestion state speed intervals, as illustrated in Fig. 5.  Formally, the cut-off speed 

between congestion state-pair ( , 1)i i   for arc a  at time t is denoted by ( )i
ac t  and is 

calculated as follows:  1( ) , : ( ) ( )
t t

i
a i ic t x x f x f x 

 
where ( )f   is the projected 

probability density function for state i. Unlike most clustering methods, the GMM 

clustering procedure employed does not call for specification of number of clusters 

(i.e., congestion states) in advance and can determine the optimal number of clusters 

based on the maximum likelihood and model complexity measures. However, we did 

limit the number of clusters to two, considered quite adequate for modeling recurrent-

congestion, and to limit estimation errors attributable to data sparsity.  

As expected, the GMM procedure generally yielded mostly two states, even 

without the constraint, as in Fig. 5 (resulting in states denoted ‘congested’ and 

‘uncongested’ states with 1
1c (8:30)= 64.9 mph), and rarely a single state during 

periods of low traffic (as in Fig. 6). Following these observations, we have adopted 

two congestion states in representing arc congestion dynamics. Note that this does 

not compromise from the accuracy of congestion modeling, rather provides uniformity 

in the algorithmic data structures across all arcs in the network. 
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Fig. 5.  (a) Joint plots of traffic speeds in consecutive periods for modeling state-
transitions at 8:30 am, for arc 1; (b) Cluster joint distributions of speed at 8:30am 
generated by GMM; (c) Partitioned traffic states based on projections.  

 

Fig. 6. (a) Joint plots of traffic speeds in consecutive periods for modeling state-
transitions at 10:00 am, for arc 1; (b) Single cluster joint distribution of speed at 
10:00am generated by GMM; (c) Partitioned traffic states based on projections. 
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congested to congested or uncongested to uncongested) are more likely during peak 

demand time periods, which increase the value of the congestion state information, 

and is the case in practice. 

 

Fig. 7.  Recurrent congestion state-transition probabilities for arcs on sub-network. α: 
congested to congested transition; β: uncongested to uncongested transition 
probability (plotted with 15 minute time interval resolution). 
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Fig. 8.  Sub-network arc travel time means in minutes (plotted with 15 minute time 
interval resolution). 
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Fig. 9.  Sub-network arc travel time standard deviations in minutes (plotted with 15 
minute time interval resolution). 

5.3 Results from Modeling Recurrent Congestion 

This section highlights the potential savings from explicit modeling of recurrent 

congestion during dynamic vehicle routing. First, we discuss the results for routing on 

the sub-network. As stated earlier, we consider node 4 as the origin node and node 6 
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would be most robust, for it dominates other paths most of the day under all network 

states. Hence, we identify path 1 as the baseline path and show the savings from 

using the proposed dynamic routing algorithm with regard to baseline path. Since we 

limit the traffic state look ahead to only successor and post-successor arcs, there are 

5 arc states to be considered at the starting node of the trip. This implies that there 

are 25=32 starting network traffic state combinations. We simulated the trip 10,000 

times for each of these starting network traffic state combinations throughout the day 

for 15 minute interval starting times (yielding (2460)/15=96 trip start times). Fig. 10a 

plots the mean baseline path travel times over 10,000 simulation runs for every 

combination of the sub-network traffic state (all 32 of them) and Fig. 10b plots the 

mean travel times for the dynamic policy.  

 

Fig. 10. Mean travel times for all state combinations of the sub-network (each color 
represents a different state combination): (a) Baseline path. (b) Dynamic vehicle 
routing policy. 

Fig. 11a plots the corresponding percentage savings from employing the 

dynamic vehicle routing policy over the baseline path for each network traffic state 

combination and Fig. 11b shows the average savings (averaged across all network 

traffic states, treating them equally likely). It is clear that savings are higher and 

rather significant during peak traffic times and lower when there is not much 

congestion, as can be expected.  
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Fig. 11. Savings from employing dynamic vehicle routing policy over baseline path: 
(a) Savings for each of the 32 network state combinations. (b) Average savings 
across all state combinations. 

Besides the sub-network (Fig. 2b), as listed in Table 2, we have also identified 

5 other origin and destination (OD) pairs in Southeast Michigan road network (Fig. 

2a) to investigate the potential savings from using real-time traffic information under a 

dynamic routing policy. Unlike the sub-network, these OD pairs have both observed 

and unobserved arcs and each OD pair has several alternative paths from origin 

node to destination node. 

Table 2: Origin-Destination pairs selected from South-East Michigan road network. 

 ORIGIN DESTINATION 

OD Pair Node # 
Description 
(Intersection of) 

Node # 
Description 
(Intersection of) 

1 2 I-75 & US-24 21 I-275 & I-94 
2 12 I-96 & I-696 25 I-96 & I-94 
3 19 M-5 & US-24 27 I-696 & I-94 
4 23 I-94 & M-39 13 I-96 & I-275 
5 3 I-75 & I-696 15 I-96 & M-39 

 

Once again, we identify the baseline path for each OD pair (as explained for 

the case of routing on the sub-network) and show percentage savings in mean travel 
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and Fig. 13 shows the average savings (averaged across all network traffic states, 

treating them equally likely). The savings are consistent with results from the sub-

network, somewhat validating the sub-network results, with higher savings once 

again during peak traffic times. 

 

Fig. 12. Savings of dynamic policy over baseline path during the day for all starting 
states of given OD pairs (with 15 minute time interval resolution).  
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Fig. 13.  Average savings of dynamic policy over baseline path during the day for all 
starting states of given OD pairs (with 15 minute time interval resolution). 

5.4 Impact of Modeling Incidents 
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incident on either arc 3, or 4, or 6 with duration mean of 10 minutes and standard 

deviation of 5 minutes, following a Weibull distribution (scale parameter of 11.3 and a 

shape parameter of 2.1). We assume that all the arcs of the sub-network have a 

capacity of 1800 vehicles per hour (vph) under normal conditions and that the 

incident reduces their capacity to 1080 vph. Also, we assume in-flow traffic arrival 

rate for each arc to be 1500 vph during these operation times. We have also 

validated the assumption of no node waiting for incident arcs using the condition 

derived in Lemma 1.  

The percentage savings from the explicit modeling of non-recurrent congesting 

along with recurrent congestion during dynamic vehicle routing are illustrated in Fig. 

14. The results are very compelling and pertain to three different scenarios. In the 

first scenario, the incident occurs 10 minutes before vehicle’s departure from the 

starting node. In the second and third scenarios, the incident occurs 20 minutes and 

30 minutes before vehicle’s departure from the starting node, respectively. For 

example, if the vehicle departs the origin node at 6:30am, incident is simulated to 

occur at 6:20am or 6:10am or 6:00am, and incident has not yet been cleared in all 

three cases. 
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Fig. 14.  Savings realized by dynamic routing based on modeling both recurrent and 
non-recurrent congestion compared to the dynamic routing with only recurrent 
congestion modeling: a: 6:00, b: 7:30, c: 9:00, d: 16:00, e: 17:30, and f: 19:00. 
Incident is either on arc 3, or 4, or 6. Trip starts (a) 10 minutes (b) 20 minutes (c) 30 
minutes after incident has occurred. 

The savings for the first scenario are presented in Fig. 14a. Since arc 3 is 

close to the origin node, the effect of incident is generally high which leads to greater 

savings. Arc 4 is a downstream arc (i.e., it is not connected to the origin node), thus 

the incident is partially cleared by the time the vehicle reaches there. Subsequently, 

the impact of the incident on arc travel time and the savings are lesser. Arc 6 is also 

a downstream arc but the dynamic policy (without taking into account the non-

recurrent congestion) sometimes chooses this arc, thus there are savings associated 

with explicit modeling of non-recurrent congestion. Due to space constraints, we are 

not presenting results from incidents on other arcs. The results for other arcs vary for 

similar reasons. The results for the second scenario (e.g., 20 mins into the incident) 

are presented in Fig. 14b. The savings for this scenario are less than the first 

scenario since the incident has partially or fully cleared by the time the vehicle 

reaches the incident arcs. Otherwise, we generally see consistency in savings with 

the first scenario. Fig. 14c presents the results for the third scenario and savings for 

a b c d e f
0

10

20

30

40

Travel starting times

S
a

vi
n

g
s 

(%
)

(a) 10 mins into incident

 

 

a b c d e f
0

10

20

30

40
(b) 20 mins into incident

 

 

a b c d e f
0

10

20

30

40

Travel starting times

(c) 30 mins into incident

 

 

Arc 3 Arc 4 Arc 6



47 

 

this scenario are mostly less than the other scenarios since the incident is more likely 

to be fully cleared by the time the vehicle reaches the incident arcs. To illustrate the 

results better, we also report the path distributions for the case where incident took 

place on arc 4 (because of space limits, we are not showing the other results). Fig. 

15a reports the path distribution of the dynamic policy in the absence of explicit 

modeling of non-recurrent congestion due to the incident that took place 10 minutes 

before trip start time. Fig. 15b, c, and d report path distributions under explicit 

modeling of incidents and the resulting non-recurrent congestion, with trip start times 

of 10, 20, and 30 minutes into the incident, respectively. Since the incident is on path 

1, there is no routing on path 1 for the case when trip starts just 10 minutes after the 

incident occurred (Fig. 15b). As time passes, since the probability of incident 

clearance and no delay regime increases, dynamic routing policy starts to select this 

path as well (Fig. 15d and d). 

 

Fig. 15.  Path distribution from dynamic routing under an incident on arc 4 for 
different trip start times: a: 6:00, b: 7:30, c: 9:00, d: 16:00, e: 17:30, f: 19:00. (a) 
Results without modeling incident and trip starts 10 minutes into incident. (b), (c), and 
(d) report path distributions under explicit modeling of incidents, with trip start times of 
10, 20, and 30 minutes into the incident, respectively. 
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5.5 Computational Performance 

A key ingredient of practical routing algorithms is their computational 

efficiency. This is especially important for routing under real-time traffic information 

where using the latest information provides better routing performance. We use 

backward dynamic programming algorithm to identify the optimal dynamic policy for 

the MDP presented in Section 4. The computational performance of the backward 

recursion suffers from the curse of dimensionality which is determined by the size of 

the network (e.g. number of nodes and links) as well as the cardinality of other state 

space dimensions. Since we consider JIT pickup/delivery service for a limited set of 

origin and destination nodes (e.g. plants and depots), we identify the optimal routing 

policies offline (e.g. on a regular basis such as every month). These policies are 

identified and stored for all state combinations at the origin nodes (e.g., different start 

times and congestion states) while accounting for only the recurring congestion. 

Hence, the computational complexity of dynamic routing under recurrent congestion 

is simply the burden of querying the optimal policy table, which is negligible with 

efficient data structures and fast and reliable communications data link. 

In the case of non-recurrent congestion, the number of possible state 

combinations increases significantly since the state space includes the incident link 

location, time elapsed since the onset of the incident, and other characteristics of the 

incident. A priori consideration of all possible incident scenarios is thus not practical 

and the optimal policy needs to be recalculated in real-time as the incident 

information becomes available. When the incident occurs long before the trip start 

time, then the computational complexity of calculating optimal policy is not important 
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as the impact of incident will dissipate through clearence. The computational 

perfomance is a concern if the incident occurs just before the trip start or en-route to 

the destination. In such cases, we cope with the computational complexity by using a 

sub-network ܩᇱ ൌ ሺܰᇱ, ܩ ᇱሻ which is smaller than the entire road networkܣ ൌ ሺܰ,  ሻܣ

where ܰᇱ ⊆ ܰ and ܣᇱ ⊆  The rationale behind using a restricted network is that not .ܣ

all nodes and links are important and their exclusion from the network is not crucial 

for the optimal policy. While some nodes and links are not at all included in the 

optimal policy for either being congested or too distant, some links that are a part of 

the policy might hardly be selected. Hence, a restricted network which includes 

majority of the links that are in the optimal policy could provide a near optimal 

dynamic routing policy. In order to identify the restricted network, we employ the k-

shortest path approach presented in Martins and Pascoal (2003) which is an 

improved version of the algorithm introduced in Yen (1971). Since this approach is 

based on deterministic and static link travel times, we modify the method by using 

mean link travel times at the link arrival times. The restricted network consists of all 

links and nodes present in any of the k-shortest paths identified. The choice of k is 

important since larger k values increase the chance of finding the optimum dynamic 

policy, but at same time, will require greater computational effort.  
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dynamic policy (Fig. 16). This is because some nodes and links are more preferable 

(dominant) at all congestion states and trip start times than other links and nodes.  

Table 3: CPU times for calculating optimal policy for OD pairs 1,2,3, and 4 in Table 2 
for k=1,2,10 and 25. Table also reports the number of nodes and arcs that are part of 
 .݇ for different ′ܩ

 

Figure 17 further illustrates that the path distribution of the optimal dynamic 

routing policy remains steady above a certain k which depends on the OD and trip 

start time. For instance, the path distributions for OD pairs 2, 3, and 4 with k=25 

shortest paths are almost identical with k=5 or k=10. In the case of OD pair 1, while 

the path distributions differ by less than 5%, the differences in the expected trip times 

for k=10 and k=25 are statistically insignificant. Therefore, when there is an incident 

just before the trip start or en-route, the proposed dynamic routing can be used to 

obtain a policy using a restricted network obtained through k-shortest paths specific 

to the particular OD pair and start time. The choice of k depends on the available 

computational time to support the real-time routing (e.g. k=10 for OD pair 3 and k=25 

for OD pairs 1,2, and 4) and can be determined offline for each OD pair and trip start 

time combination.  

# k SP N' A' Mean Min Max N' A' Mean Min Max N' A' Mean Min Max N' A' Mean Min Max

1 10 9 0.4 0.3 1.4 5 4 0.3 0.1 1.3 4 3 0.1 0.0 1.1 5 4 0.2 0.1 1.0

5 14 17 0.5 0.4 0.7 13 16 0.8 0.6 1.3 11 14 0.4 0.2 0.9 9 12 0.2 0.1 0.4

10 18 24 0.8 0.5 2.9 15 23 1.3 0.9 2.0 15 21 1.5 0.8 4.0 13 20 0.5 0.4 0.9

25 21 32 8.5 3.9 37.5 18 31 2.5 1.7 4.1 18 32 160.6 58.6 447.7 22 39 4.6 2.9 9.7

OD 1

CPU Time (sec)G' G'

OD 2

CPU Time (sec) G'
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data driven methods for accurate modeling and estimation of recurrent congestion 

states and their state transitions. A Markov decision process (MDP) formulation that 

generates a routing “policy” to select the best node to go next based on a “state” 

(vehicle location, time of day, and network congestion state) is proposed to solve the 

problem. While optimality is only guaranteed if we employ the full state of the 

transportation network to derive the policy, we recommend a limited look ahead 

approach to prevent exponential growth of the state space. The proposed model also 

estimates incident-induced arc travel time delay using a stochastic queuing model 

and uses that information for dynamic re-routing (rather than anticipate these low 

probability incidents).  

ITS data from South-East Michigan road network, collected in collaboration 

with Michigan Intelligent Transportation System Center, is used to illustrate the 

performance of the proposed models. Our experiments clearly illustrate the superior 

performance of the SDP derived dynamic routing policies when they accurately 

account for recurrent congestion (i.e., they differentiate between congested and 

uncongested traffic states) and non-recurrent congestion attributed to incidents. 

Experiments show that as the uncertainty (standard deviation) in the travel time 

information increases, the dynamic routing policy that takes real-time traffic 

information into account becomes increasingly superior to static path planning 

methods. The savings however depend on the network states as well as the time of 

day. The savings are higher during peak times and lower when traffic tends to be 

static (especially at nights). Experiments also show that explicit treatment of non-

recurrent congestion stemming from incidents can yield significant savings. 
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Further research will focus on developing dynamic routing algorithms for 

supporting ‘milk-runs’ where a vehicle departs from an origin to serve several 

destinations in a network with one or more of the following settings: 1) stochastic 

time-dependent network where vehicles may encounter recurrent and/or non-

recurrent congestion during the trip, 2) vehicle must pickup/deliver within specific 

time-windows at customer locations, 3) stochastic dependencies and interactions 

between arcs' congestion states, and 4) anticipate and respond to the behavior of the 

rest of the traffic to the real-time ITS information.  
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CHAPTER III: DYNAMIC ROUTING IN STOCHASTIC TIME-DEPENDENT 

NETWORKS FOR MILK-RUN TOURS WITH TIME WINDOWS UNDER ITS*  

 

Abstract ̶ We consider dynamic vehicle routing under milk-run tours with time 

windows in congested transportation networks for just-in-time (JIT) production. The 

arc travel times are considered stochastic and time-dependent. The problem 

integrates TSP with dynamic routing to find a static yet robust recurring tour of a 

given set of sites (i.e., DC and suppliers) while dynamically routing the vehicle 

between site visits. The static tour is motivated by the fact that tours cannot be 

changed on a regular basis (e.g., daily or even weekly) for milk-run pickup and 

delivery in routine JIT production. We allow network arcs to experience recurrent 

congestion, leading to stochastic and time-dependent travel times and requiring 

dynamic routing decisions. While the tour cannot be changed, we dynamically route 

the vehicle between pair of sites using real-time traffic information (e.g. speeds) from 

Intelligent Transportation System (ITS) sources to improve delivery performance. 

Traffic dynamics for individual arcs are modeled with congestion states and state 

transitions based on time-dependent Markov chains. Based on vehicle location, time 

of day, and current and projected network congestion states, we generate dynamic 

                                                       

* This chapter resulted in the following publication: 
A.R. Guner, A. Murat, R.B. Chinnam: Dynamic Routing in Stochastic Time-
Dependent Networks for Milk-Run Tours with Time Windows Under ITS. 
(Transportation Research Part E, Under Review, 2010) 
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routing policies for every pair of sites using a stochastic dynamic programming 

formulation. The dynamic routing policies are then simulated to find travel time 

distributions for each pair of sites. These time-dependent stochastic travel time 

distributions are used to build the robust recurring tour using an efficient stochastic 

forward dynamic programming formulation. Results are very promising when the 

algorithms are tested in a simulated network of Southeast-Michigan freeways using 

historical traffic data from the Michigan ITS Center and Traffic.com. 

Keywords ̶ Milk-run, transportation, congestion, dynamic routing, ITS, TSP 

with hard time windows 

1. Introduction 

Just-in-time (JIT) production requires frequent small-batch pickups and 

deliveries subject to fixed time windows. Since the shipments are usually less than 

truck load, the freight carrier planners develop milk-run tours (e.g., a visiting 

sequence of pickup and delivery sites). In a milk-run tour, for example, the vehicle 

departs from a distribution center (DC), picks up goods from several supplier sites, 

and returns to the DC for delivery. In planning milk-run tours, managers also consider 

heijunka (production smoothing or workload leveling) and muda (waste) philosophies 

of JIT production. Whereas the former can be achieved by equally spacing the 

delivery time windows over the suppliers’ operating hours, the latter can be achieved 

by visiting the supplier sites at an optimal frequency, balancing transportation and 

inventory costs. The recurrent and non-recurrent congestion on road networks 

increase the travel time variability thus rendering it difficult to make delivery and 
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pickup visits within the established time windows, which can be as narrow as 15 to 30 

minutes [51, 52]. For carriers, as congestion worsens the costs related to travel time 

(e.g. labor and overtime costs) may outweigh other operating costs ( e.g. vehicle 

miles traveled) [53]. 

For example, a survey in California found that 85% of trucking companies miss 

their time window schedules due to road network congestion. Furthermore, 78% of 

the managers surveyed stated that the time-window schedules for pickup and 

deliveries force their drivers to operate under congested road network conditions [54]. 

Some industries allow early or tardy delivery and/or pickups with a penalty (soft time 

windows). However, there are many practical settings (e.g., JIT production) with hard 

time windows where vehicles may pick up or deliver only during fixed times without 

exception [55]. 

In this paper, we address the problem of planning milk-run tours for JIT 

production subject to hard time windows in congested road networks. We model the 

milk-run tours as a Traveling Salesman Problem (TSP) with hard time windows. The 

road network congestion is represented through random network arc travel times and 

time-dependent congestion states.  

The classical TSP is concerned with finding the least cost tour that visits each 

site exactly once given the set of sites. The travel between any pair of sites is a path 

which can be static (e.g., a fixed sequence of arcs) or can be determined through a 

dynamic policy. The cost of travel between pairs of sites can be measured in time, 

distance or a function of both, be deterministic or probabilistic, and be time-

dependent or independent. In our problem setting, we consider a TSP with hard time 
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windows under stochastic time-dependent (STD) arc travel times. All of the preceding 

TSP literature assumes that the path travel cost between pairs of sites is either 

deterministic or stochastic with a known probability distribution. In our network 

setting, the path travel times are both stochastic and time-dependent. We determine 

the distributions of these path travel times through optimal dynamic routing on 

network arcs using the real-time traffic information (e.g., speed data) available from 

the Intelligent Transportation System (ITS) sensor network.† In optimal dynamic 

routing between pairs of sites, we consider only the recurrent congestion (e.g., rush 

hour) and exclude the non-recurrent (e.g., traffic incidents and inclement weather). 

This is necessary since the milk-run TSP tours are established for longer periods 

where the recurrent congestion is more dominant. We model the recurrent 

congestion by defining congestion states of arcs based on historical ITS traffic data 

using Gaussian Mixture Model (GMM) based clustering [50]. The changes in arc 

congestion states represent the traffic dynamics and are modeled as Markov 

processes. Accordingly, the optimal dynamic routing problem is then cast as a 

Markov decision process (MDP) where the states space consists of the position of 

the vehicle, the time of the day, and the current and projected congestion states of 

arcs with limited look ahead (examining the state of the full network is 
                                                       

† According to Research and Innovative Technology Administration (RITA) of 
U.S. Department of Transportation (US DOT), “Intelligent transportation systems 
(ITS) encompass a broad range of wireless and wire line communications-based 
information and electronics technologies. When integrated into the transportation 
system's infrastructure, and in vehicles themselves, these technologies relieve 
congestion, improve safety and enhance productivity.” ITS technology and coverage 
is expanding quickly in the U.S. and is widely used in many developed and 
developing nations around the world. For more information about U.S. ITS, see: 
http://www.its.dot.gov. 
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computationally prohibitive and even unnecessary, see [26]). We identify the paths’ 

optimal dynamic routing policies (DRP) by solving a stochastic dynamic programming 

formulation for each pair of sites.  

By simulating the optimal DRPs, we estimate the travel time distributions 

between every pair of sites. We then use these distributions to determine the optimal 

TSP tour by solving a stochastic dynamic programming formulation for TSP. Since 

the travel times are STD, we employ the convolution approach in Chang et al. [4] to 

estimate the distribution of site arrival times for pickup and delivery. Whereas the 

routes between pairs of sites are dynamic, the TSP tour is static. This is because, in 

JIT production systems, the tours for pickups and deliveries support such objectives 

as production smoothing and workload leveling and remain fixed for extended 

periods (e.g., months). The optimal TSP tour can be obtained by minimizing the 

mean criteria combination (e.g., travel time, mileage, and truck utilization) or a mean-

variance objective which also accounts for the variability of criteria. Although our 

methodology could have accommodated a wide range of these objectives, we 

selected a mean-variance objective based on the trip time which accounts for the 

transportation cost and service level (i.e., on-time performance) trade-offs in JIT 

production systems. We defined the most robust TSP tour as the tour with minimum 

trip time mean-variance objective. 

The contribution of this study is three-fold. First, we developed an integrated 

methodology for identifying the TSP tours of sites in STD networks where the 

stochastic path travel times between pairs of pickup and delivery sites are estimated 

through optimal dynamic routing. Second, we proposed an approach for dynamic 
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routing between pairs of sites in STD networks using the real-time congestion 

information available from ITS sensor networks. Third, using a real network and data, 

we simulated the results of the proposed integrated approach and demonstrate the 

transportation cost and delivery service level improvement based on optimal dynamic 

routing between sites. 

The rest of the paper is organized as follows. A selective survey of the related 

literature is given in Section 2. In Section 3, the modeling of the stochastic time-

dependent TSP is described. Section 4 presents the experimental results of a case 

study application to show the effectiveness of the proposed approach. Section 5 

concludes the study and suggests directions for future research. 

2. Literature Survey 

In JIT production systems, the pickup and delivery tours are constructed while 

accounting for logistics drivers such as leveling the workload and decreasing 

inventory levels. One approach for determining pickup and delivery tours in JIT 

systems is the common frequency routing (CFR) method, where the suppliers are 

grouped into subsets and each subset of suppliers is served in a single tour [56]. The 

CFR method considers scheduling and routing decisions jointly while accounting for 

transportation and inventory costs. For computational tractability, the CFR method 

assumes fixed routes and identical visit frequency for suppliers in the same subset. 

Another approach is the generalized frequency routing (GFR) where a supplier's visit 

frequency is not required to be the same as other suppliers in the subset [57]. One of 

the goals in scheduling and routing decisions is to achieve production smoothing 
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through uniformly spaced pickup and delivery visits. These “lean” routing studies 

consider a more general problem (e.g., VRP) than the TSP studied in this paper but 

assume that the travel times on the transportation network are deterministic and time-

independent. Accordingly, our focus was on selecting robust tours for a given subset 

of suppliers with uniformly spaced hard time windows. 

The body of literature to which this study is related is the stochastic time-

dependent traveling salesman problem (TSP) with time windows. In the classical 

TSP, given a set of sites and the cost matrix relating pairs of sites, the goal was to 

find the shortest tour starting from the origin site, visiting each site exactly once, and 

returning to the origin site. TSP and its generalization VRP have been studied for 

more than five decades and a wide variety of exact and heuristic algorithms have 

been developed [58-61]. There are many variants of the classical TSP but we 

restricted our review to those studies with time-dependent and stochastic travel 

times. Malandraki and Dial [62] presented a dynamic programming (DP) procedure 

and a “restricted” DP procedure that uses the nearest-neighbor heuristic approach to 

solve the time-dependent TSP (TD-TSP). They modeled the time dependency by 

discrete step functions such that the planning horizon had a number of different time 

zones and the travel times differed only at different time zones. [63] recognized the 

limitation of using such step functions which violates the first-in-first-out (FIFO) 

principle by causing a later departure time leading to an earlier arrival time if steep 

speed increases occur. Accordingly, they emphasized the need to explicitly model 

time-dependent travel times and proposed a model to determine TSP tours in 

compliance with the FIFO principle. 
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Another variant of the classical TSP is the TSP with stochastic travel times 

between sites. This variant is most studied in the more general form of the vehicle 

routing problem [64, 65].  [4, 66] studied the stochastic time-dependent TSP with time 

windows (STD-TSP-TW). [66] solved the TSP through a dynamic programming 

approach applied to a reduced state space. They employed two-state space 

reduction strategies to reduce the computational complexity. Initially they estimated 

the mean and variance of the arrival time of the vehicle at each site based on the first 

(or second) order Taylor approximation. In the first strategy, they defined a service 

level based on the arrival times to sites and eliminated routes that did not satisfy 

those service levels. The other strategy eliminates states based on expected travel 

times. [4] developed a convolution–propagation approach (CPA) to estimate the 

mean and variance of arrival times at sites assuming the arc travel times are normally 

distributed. They proposed a heuristic algorithm that uses the n-path relaxation of 

deterministic TSP in [67] to solve the problem. Although the TSP problem we 

considered is similar to those in [4, 66], the travel time distributions between pairs of 

sites were endogenous in our study. In particular, we integrated the construction of a 

TSP tour among sites with the road network routing between pairs of sites in the TSP 

tour. The dynamic routing between sites accounts for the time-dependent stochastic 

congestion states by using real-time traffic information and by anticipating congestion 

states with limited look ahead. To the best of our knowledge, there is no prior study 

proposing and integrating dynamic routing between sites for the stochastic time-

dependent TSP problem. In addition, whereas [4, 66] identified tour(s) with least 
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expected tour times, we selected tour(s) with minimum mean-variance objective of 

the trip times.  

Dynamic routing and modeling real time information has mostly been studied 

in shortest path problem literature. [23] conducted the first study to consider the 

stochastic temporal dependence of arc costs and suggested using online information 

en route. They defined the environmental state of nodes that is learned only when 

the vehicle arrives at the source node. They considered the state changes according 

to a Markovian process and employed a dynamic programming procedure to 

determine the optimal DRP. [25] studied a similar problem as did [22] except that the 

information of all of the arcs was available in real-time. They proposed a dynamic 

programming (DP) formulation where the state space included the states of all arcs, 

time, and the current node. They noted that the state space of the proposed 

formulation became quite large making the problem intractable. They reported 

substantial cost savings in a computational study based on a Southeast-Michigan 

road network. To address the intractable state-space issue, [26] proposed state 

space reduction methods. A limitation of [25] is the modeling and partitioning of travel 

speeds for the determination of arc congestion states. They assumed that the joint 

distribution of velocities from any two consecutive periods followed a single unimodal 

Gaussian distribution, which did not adequately represent arc travel velocities for arcs 

that routinely experience multiple congestion states. Moreover, they also employed a 

fixed velocity threshold (50 mph) for all arcs and for all times in partitioning the 

Gaussian distribution to estimate state-transition probabilities (i.e., transitions 

between congested and uncongested states). As a result, the value of real-time 
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information was compromised rendering the loss of performance of the DRP. Our 

dynamic routing approach addressed all of these limitations. The detailed steps of 

our model are described in the Section 3.1.  

3. STD-TSP with Dynamic Routing 

The STD-TSP with dynamic routing problem is to find a tour of a given set of 

sites (i.e., DC and supplier) while dynamically routing between sites’ visits on a STD 

network to meet the time windows requirements. It differs from the TSP with 

stochastic travel times in that the travel time distributions are obtained through 

dynamic routing on the road network and thus are dependent on the site departure 

times. We selected the tours based on a robust tour objective. This robust tour 

objective captured the tradeoff between transportation efficiency and on-time delivery 

service level.  

We used a sequential method to select the robust tour. First, we first 

determined the travel time distributions between every pair of sites. Second, we 

found and selected the tour minimizing the mean-variance objective of the trip time. 

The travel time distributions between sites were estimated through the following 

steps (See Section 3.1.): 

 Develop a dynamic routing policy between every pair of sites.  

 Estimate the travel time distribution through simulation for every possible 

departure times. 
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Once the travel time distributions were estimated for every pair of sites at 

different departure times, we then employed a stochastic time-dependent dynamic 

programming (STD-DP) to select the robust tour (Section 3.2.).  

3.1. Dynamic Routing with Real-time Traffic Information  

Let  ,G N A  be a directed graph in which N  is the set of nodes and 

A N N   is the set of directed arcs. The (decision) node n N represents an 

intersection where the driver can decide which arc to select next. A directed arc is 

represented by an ordered pair of nodes  , 'n n A
 
in which n  is called the origin and 

'n  is called the destination of the arc. Given an origin-destination (OD) node pair of 

sites (DC, supplier), the dynamic routing problem is to decide which arc to choose at 

each decision node such that the expected total OD travel time is minimized. We 

denote the origin and destination nodes with 0n  and dn , respectively. We formulate 

this problem as a finite horizon Markov decision process (MDP), where the travel 

time on each arc follows a non-stationary stochastic process. We first describe the 

modeling of recurrent congestion and then present the stochastic dynamic 

programming formulation and solution approach. 

3.1.1. Congestion Modeling 

A directed arc  , 'n n A  is labeled as observed if its real-time traffic data (e.g., 

velocity) is available through the ITS. An observed arc can be in 1r    different 

states that represent the arc’s traffic congestion level at a given time. Let  as t  be the 
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congestion state of arc a  at time period t , i.e.
      Congested at level as t i i   for 

1,2,..., 1 i r   and be determined as follows: 

         1,if i i
a a a as t i c t v t c t    (1) 

where  i
ac t

 
denote the cut-off velocity at level i. For instance, if there are two 

congestion levels (e.g., 1 2r   ), then the states will be i.e.,      Uncongested 0as t    

and      Congested 1as t   .  

We assume that the state of an arc evolves according to a non-stationary 

Markov chain. In a network with all arcs observed,  S t
 
denotes the traffic congestion 

state vector for the entire network, i.e.,         1 2 | |, ,..., AS t s t s t s t  at time t . For 

presentation clarity, we will suppress ( t ) in the notation whenever time reference is 

obvious from the expression. Let the state realization of  S t  be denoted by ( )s t . We 

assume that arc states are independent from each other and have the single-stage 

Markovian property. To estimate the state transitions for each arc, we jointly model 

the velocities of two consecutive periods Accordingly, the time-dependent single-

period state transition probability from state  as t i
 
to state  1as t j   is denoted by 

    1 | ( )ij
a a aP s t j s t i t    . We estimate the transition probability for arc a, ( )ij

a t  

from the joint velocity distribution as follows: 

  
           

     

1 1

1

< 1 1 1

<

i i j j
a a a a a aij

a i i
a a a

c t V t c t c t V t c t
t

c t V t c t


 



      



 (2) 
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where the |e| operator corresponds to the frequency count of event e. Let 

 , 1aTP t t   denote the matrix of state transition probabilities from time t  to time 1t  , 

then, we have    , 1 ij
a a ij

TP t t t     . Note that the single-stage Markovian assumption 

is not restrictive in our approach as we could extend our methods to the multi-stage 

case by expanding the state space [48]. Let the network be in state  S t
 
at time t , 

and we want to find the probability of the network state  S t  , where   is a positive 

integer number. Given the independence assumption of the arcs’ congestion states, 

this can be formulated as follows: 

       
1

| ( ) | ( )
A

a a
a

P S t S t P s t s t 


    (3) 

Then the congestion state transition probability matrix for each arc in   

periods can be found by the Kolmogorov’s equation:  

        , 1 ...ij ij ij
a a a aij ij ij

TP t t t t t                      (4) 

We assume that the distribution of an arc travel time is Gaussian. We further 

assume that the arc travel time depends on the congestion state of the arc at the time 

of departure (equivalent to the arrival time whenever there is no waiting). It can be 

determined according to the corresponding normal distribution:  

       2, , ~ , , , , ,a a at a s N t a s t a s    (5) 

where  , , at a s
 
is the travel time;  , , at a s and  , , at a s are the mean and the 

standard deviation of the travel time on arc a at time t with congestion state  as t . For 
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clarity of notation, we hereafter suppress the arc label from the parameter space 

wherever it is obvious, i.e.  , , at a s
 
will be referred as  ,a t s .

 

3.1.2. DP Formulation for Dynamic Routing    

The objective of the dynamic routing algorithm is to minimize the expected 

travel time based on real-time information such as the path originates at node 0n  and 

ends at node dn . Let us assume that there is a feasible path between  0 , dn n  where 

a path  0 1,.., ,..,k Kp n n n 
 
is defined as the sequence of (decision) nodes such that 

1( , )k k ka n n A  , 0,.., 1k K   and K  is the number of nodes on the path.  

We define set  1,k k ka n n A   as the current arcs set of node kn , denoted with 

 kCrAS n . That is,     1: ,k k k k kCrAS n a a n n A    is the set of arcs emanating from 

node kn . Each node on a path is a decision stage (or epoch) at which a routing 

decision (which node to select next) is to be made. Let kn N  be the location of k th 

decision stage, kt is the time at k th decision stage where  1,...,kt T  1KT t  . T  is an 

arbitrarily large number and is used to limit the planning horizon for modeling 

purposes. Note that we are discretizing the planning horizon.  

While the optimal dynamic routing policy requires real-time consideration and 

projection of the traffic states of the complete network, this approach renders the 

state space prohibitively large. In fact, there is little value in projecting the congestion 

states well ahead of the current location. This is because the projected information is 

not different from the long run average steady state probabilities of the arc 

congestion states. Hence, an efficient but practical approach would trade off the 

degree of look-ahead (e.g., the number of arcs to monitor) with the resulting 
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projection accuracy and routing performance. This has been very well illustrated in 

[26]. Thus, we limit our look-ahead to a finite number of arcs that can vary by the 

vehicle location on the network. The selection of the arcs to monitor would depend on 

factors such as arc lengths, the value of real-time information, and the congestion 

state transition characteristics of the arcs. For ease of presentation and without loss 

of generality, we choose to monitor only two arcs ahead of the vehicle location and 

model the rest of the arcs’ congestion states through their steady state probabilities. 

Accordingly, we define the following two sets for all of the arcs in the network. 

 kScAS a , the successor arc set of arcs ka ,
    1 1 1 2: ( , )k k k k kScAS a a a n n A       , i.e., 

the set of outgoing arcs from the destination node ( 1kn  ) of arc ka .  kPScAS a , the 

post-successor arc set of arc ka ,    2 2 2 3: ( , )k k k k kPScAS a a a n n A       i.e., the set of 

outgoing arcs from the destination nodes ( 2kn  ) of arcs 1ka  . 

Since the total path travel time is an additive function of the individual arc 

travel times on the path plus a penalty function measuring earliness/tardiness of 

arrival time to the destination node, the dynamic route selection problem can be 

modeled as a dynamic programming model. The state  1 2,, ,
k kk k ka an t s
  of the system 

at the k th decision stage is denoted by k . This state vector is composed of the state 

of the vehicle and network and thus is characterized by the current node ( kn ), the 

current node arrival time ( kt ), and 
1 2 ,k k ka as
   , the congestion state of arcs 1 2k ka a   

where   1 1: kk ka a ScAS a  
 
and   2 2: kk ka a PScAS a    at k th decision stage.  

The action space for the state k  is the set of current arcs of node kn , 

 kCrAS n . At every decision stage, the trip planner evaluates the alternative arcs 
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based on the remaining expected travel time. The expected travel time at a given 

node with the selection of an outgoing arc is the summation of expected arc travel 

time on the arc chosen and the expected travel time of the next node. Let 

 
0 0 1 1, ,...,

dn n K   π
 
be the dynamic routing policy (DRP) of the trip that is composed 

of policies for each of the K-1 decision stages. For a given state 

 1 2,, ,
k kk k k ka an t s
   , the policy  k k   is a deterministic Markov policy which 

chooses the outgoing arc from node kn , i.e.,    k k ka CrAS n    . Therefore, the 

expected travel cost for a given policy vector   is as follows: 

       
2

0 1
0

, ,
k

K

k k k k K
k

F E g g


 






 
      

 
  (6) 

where  0 0 0 0, ,n t S   is the starting state of the system. k  is the random travel 

time at decision stage k, i.e.,     , ,k k k k a kt s t    .  ( , , )k k k kg     is cost of travel 

on arc    k k ka CrAS n     at stage k , i.e., if travel cost is a function ( ) of the travel 

time, then    ( , , )k k k k kg       and  1Kg  is terminal cost of earliness/tardiness 

of arrival time to the destination node under state 1K  . Then, the minimum expected 

travel time can be found by minimizing  0F   over the policy vector  as follows: 

  
 

 
0 1 10

*
0 0

, ,...,
min

n n Kd

F F
   

  
π

 (7) 

The corresponding optimal policy is then: 

 
 

 
0

0 1 10

*
0

, ,...,
arg min

d
n n Kd

n n F
   

 
π

π  (8) 
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Hence, the Bellman’s cost-to-go equation for the dynamic programming model 

can be expressed as follows (Bertsekas, 2001): 

       * *
1min ( , , )

k k
k k k k k kF E g F

 
         (9) 

For a given policy  k k  , we can re-express the cost-to-go function by writing 

the expectation in the following explicit form: 
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 (10) 

where  | ,k k kP a   is the probability of travelling arc ka  in k  periods. 

  2 11,k kkaP s t
   is the long run probability of arc  2 2: kk ka a PScAS a    being in state 

2 1,k kas
   

in stage 1k  . This probability can be calculated from the historical frequency 

of a state for a given arc and time. 

 We used the backward dynamic programming algorithm to solve  *
kF  , 

1, 2,..,0k K K   . In the backward induction, we initialize the final decision epoch 

such that,  1 1 1 1, ,K K K Kn t s     , 1Kn   is the destination node, and  1 0KF  
 

if 

1Kt T  . Accordingly, a penalty cost is accrued whenever there is delivery tardiness, 

e.g., 1Kt T  . Note that 1Ks    , since the destination node does not have any 

current and successor arc states, e.g. the travel terminates at the destination node. 
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3.1.3. Estimating Travel Time Distributions between Sites 

Given a pair of sites (DC, supplier), origin j M and destination k M , we 

solve the dynamic programming formulation in preceding section for all feasible 

departure times from j and obtain the optimal routing policy, jkπ , for each departure 

time alternative. Next, for each departure time alternative ( jt ), we sample a 

congestion state ( )js t  for current and successor arcs of j, and simulate the policy 

corresponding to the sample state  , , ( )j jj t s t  . Note that the sampling probabilities 

of the congestion state ( )js t  are based on the steady-state probabilities of the states 

of current and successor arcs of j. Following sufficient sampling for jt , we estimate 

the distribution of the mean travel times obtained by simulating corresponding 

policies for each sampled state  . We then calculate the expectation and variance of 

travel time from j to k at time jt  and respectively denote them with  jk jE t 
   and 

  jk jVar t . Note that, with slight abuse of notation,  jk jt corresponds to the 

random travel time between j and k departing at jt .  

3.2. Dynamic Programming for STD-TSP 

In this section, we describe the stochastic time-dependent dynamic 

programming (STD-DP) approach for selecting a robust tour of a given set of sites 

(i.e., DC and supplier) while dynamically routing between sites’ visits to meet the time 

windows requirements. The time window requirements are strict (e.g., hard time 

windows) and each site has a deterministic service time for loading/unloading. This 

STD-DP approach integrates and builds on the results of earlier studies. Specifically 
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it integrates the stochastic tour search procedure from [62] [66] and the convolution 

idea from [4]. However, the proposed STD-DP approach uses the travel time 

distributions obtained in the preceding section by dynamically routing on the road 

network. Further, the approach selects the most robust tour by trading off the 

expected duration of the tour with its variability as follows: 

     00 , ,0 , ,0TC E T M b Var T M      (11) 

where,   is the TSP tour,  , ,0E T M     and   , ,0Var T M   are the expected 

and variance of the round trip duration departing from site 0 (DC) at time 0t , visiting 

all sites in M  once, and returning back to site 0 (DC); b is a user defined risk-

parameter for balancing the transportation efficiency with on-time delivery 

performance.  

     We first describe the STD-DP approach without the time-windows and 

present its extension to time window case in Section 3.2.1.
 
There are m-1 sites (other 

than the DC, assuming the vehicle at the DC) to be visited, represented by nodes 

1,..., 1m M  . Let  , /{0}C k M
 
be an unordered set of visited sites where k C  is 

the last visited site. Define partial tour   as a tour that starts from the DC, visits all 

sites in  ,C k  only once and ends the tour at site k . Note that there may be more 

than one partial tour corresponding to set  ,C k  and we denote the set of partial tours 

with  ,C k  . For brevity, we do not repeat the membership of partial tours in the 

remainder and assume  , ,C k  implies  ,C k  . Let  , ,T C k be the random 

variable of arrival time at site k taking the partial tour   of set  ,C k  after departing 



74 

 

site 0 at time 0t . Let also  , ,E T C k   and   , ,Var T C k
 be the mean and variance of 

arrival time to site k,  ,T C k  after taking the partial tour  , respectively.  

Step 1. Initialize: For all  , 1C k   where  , { }, /{0}C k k k M  , we initialize
 

   0 0 0, , (0) kE T C k T s E t           and      0 0, , kVar T C k Var t  , where (0)T is the 

arrival time to the site 0 (DC), 0s  is the service (e.g., loading/unloading) time at the 

site 0, and  0 0kE t   is the expected travel time from site 0  to site k  as a function of 

the departure time, 0t . Note that the expectation  0 0kE t    is over the congestion 

states of current and successor arcs of site 0. 

Step 2. Main: For all  , 1C k  , there are partial tours of set  ,C k , where we 

visit k , / {0, }k M j  immediately after j   for all /j C k . The mean and variance 

 , ,T C k  for the partial tour   is calculated through the following convolution 

propagation approach adapted from [4] : 

      , , , ,
j

j

j jk j t
t

E T C k E T C j s E t p               (12) 

 
         

      1

2
22, , , ,

2 , , ,

j j j j

j j j

t tj j
j

t t t jk j t jk j
t t t

jk j z z
t

Var T C k Var T C j p p E t p E t

E t Var T C j

    

   


 
            

   

  


 (13) 

where js  is the deterministic service time at site j ;  jk jt  is the travel time from site 

j  to site k  at the departure time  , ,j jt T C j s  ; 
jtp is the probability of departing at 

time jt  from node j . Note that the expectation  jk jE t 
   is over the congestion 
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states of current and successor arcs of site j. Let  
  
, ,

, ,

j j

j

t E T C j s
t Var T C j

z




    ,  we calculate 
jtp
 

as    1j j jt t tp z z    , where ( )   and ( )   are the density and cumulative 

distribution functions of the standard normal distribution, respectively. Once  , ,T C k  

is calculated for all  , 1C k  , we decrease the number of partial tours under 

investigation by performing the following partial tour elimination test adapted from 

[66]. 

Dominancy test: There may be more than one partial tour for a set  ,C k . Let 

us assume  1, ,C k  and  2, ,C k  are two partial tours of set  ,C k  that cover same 

sites. We eliminate the partial tour  1, ,C k  if  2, ,T C k  dominates  1, ,T C k ,  e.g., 

   2 1, , , ,E T C k E T C k         and      2 1, , , ,Var T C k Var T C k  . 

We note that additional partial tour elimination tests based on time windows 

are described in the next section. After testing all pairs of partial tours, we repeat the 

main step until {0}C M  . 

Step 3. Termination: To complete the tour at the site 0 (DC), we set k=0 and 

perform the main step one last time and obtain the expectation and variance of the 

total tour time  , ,0T C  for all remaining tours   of  ,0C  where C=M. We calculate 

the total tour cost as     00 , ,0 , ,0TC E T C b Var T C      for each of the remaining 

tours. We select the tour with minimum cost as the robust tour solution.  
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3.2.1. STD-TSP with Time Windows 

In the preceding section, we presented STD-DP for solving the STD-TSP 

without time windows. This section extends it to cases with hard time windows. When 

there is a time window requirement at a site, there are three possible arrival 

scenarios to that site with regard to the time window: early, late, and on-time arrival. 

In our model, we allow early arrivals, if earliness is not greater than a pre-specified 

value, by requiring the vehicle to wait until the beginning of time window. In 

comparison, we do not allow late arrivals by eliminating those partial tours with the 

possibility of tardiness greater than a pre-specified probability. 

Let us assume the vehicle arrives at site j  with a random arrival time of 

 , ,T C j   with partial tour   and does not violate any time window requirement. Let 

 ,j je l
 
be the time window at site j , where je  is the earliest time and jl is the latest 

time to start service at site j .  

 Early Arrival: The vehicle arrival is assumed to be early if probability of arriving 

later than je is less than the early arrival probability :   , , jP T C j e   . The 

vehicle can wait only if    , , jT C j e   , where   is maximum allowable 

waiting time at the site; otherwise the vehicle is assumed to be too early and 

the partial tour is then discarded. Note that if a particular vehicle arrival is 

accepted, then, the start time to service is   max , , , jT C j e . 

 Late Arrival: The vehicle arrival is assumed to be late and the partial tour is 

discarded if probability of arriving later than jl is greater than the maximum 

allowable tardiness probability  :   , , jP T C j l   . 
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 On-time Arrival: The vehicle arrival is assumed to be on-time and is accepted if 

both   , , jP T C j e    and   , , jP T C j l   . 

Given these definitions,  , ,E T C j    and   , ,Var T C j  in equation (12) and 

(13) can be calculated with the following formulas: 

     , , max , , , j jE T C j E T C j e s         (14) 

         2 2, , max , , , max , , ,j jVar T C j E T C j e E T C j e          
 (15) 

Note that the maximization operator is due to the waiting upon early arrival. 

For late arrivals, the maximum operator in (14) and (15) does not exist since there is 

no waiting with late arrivals. In both early and late arrival cases, we eliminate those 

partial tours according to the corresponding pre-defined parameters ( , ,  ). Note 

that, different than the stochastic dominance elimination, time window eliminations 

are used in the initialization step and at the termination step if there are also DC time 

windows applicable to the tour completion time. 

3.2.1.1. Determining Time Windows for a Given Tour 

In the preceding section, we described how the STD-DP approach is extended 

for problems with hard-time windows. In most JIT production systems, the time 

window requirements affect different parties differently. For instance, the carriers are 

penalized for late deliveries either by charges associated with contracted service 

levels or by their reduced ranking as a transportation service supplier. In comparison, 

early arrivals correspond to lower utilization of assets and drivers. The suppliers 

(pickup sites), on the other hand, need to stock more safety inventory and allocate 



78 

 

more material handling resources if time windows are relaxed (e.g., width of the 

window is increased). The width of the time windows and their positioning constitute 

two features of most logistics contracts and are often re-adjusted due to changing 

production volumes and routes. The time window setting process differs from industry 

to industry. In JIT environments, it is common that the time windows are set by 

trucking and/or manufacturer companies according to JIT principles and are usually 

accepted by the suppliers as part of the sourcing contract. In such a setting, the 

trucks visit the supplier sites several times per day subject to the tight time windows 

spaced as much evenly as possible within the supplier's operating hours (even 

spacing is generally key to supplier efficiency; reduces finished goods inventory 

levels).  

We now describe a procedure for carriers to position the time windows such 

that the on-time delivery performance is improved. We assume that the width of time 

windows ( w ) is determined beforehand by the supplier and manufacturer and they 

are indifferent to the positioning of the time windows as long as they are uniformly 

distributed during delivery horizon. The procedure uses the result that the site arrival 

times follow Gaussian distribution when the arc travel times are also Gaussian 

(Chang et al., 2010). Therefore, centering the time windows at the expected site 

arrival times maximizes the on-time delivery performance, if, there is no waiting 

allowed at the site for early deliveries. This is indeed the case practiced by carriers 

even if there is some flexibility in early arrival acceptance. Let   be the selected 

ordered tour that starts from DC, visits all sites once, and ends at DC. Further let k  

be the partial tour of   ending at site k. Accordingly,  , ,kT C k is the random variable 
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of arrival time at site k  by following the partial tour k . Let also  , ,kE T C k    
and 

  , ,kVar T C k
 
be the mean and variance of arrival time  , ,kT C k , respectively.  

Procedure for Setting Time Windows: 

For 1,..., 1k m  , Repeat: 

If k=1, 

   0 0 0, , (0)k kE T C k T s t       and      0 0, ,k kVar T C k Var t  where (0)T is 

the arrival time to the site 0 (DC), 0s  is the service time at the site 0, and 

 0 0k t is the random travel time from site 0  to site k  as a function of the 

departure time, 0t . 

Else, 
Assume visiting k  immediately after j  and look up the updated  , ,jE T C j 

   

from the previous step. Calculate  , ,kE T C k    from (11). 

End. 

Set   , , 2k k
we E T C k     and  , , 2k k

wl E T C k    . 

Update  , ,kE T C k     and   , ,kVar T C k  according to equations (14) and (15). 

Return. 

 

The above procedure is an iterative procedure where we visit sites according 

to the tour   and set time windows for each site one at a time. At each site, we 

calculate the expected arrival time to that site based on the time windows set at the 

previously visited sites. We account for the previously set time windows because they 

affect the site arrival time of the subsequent visited sites through the waiting at early 

arrivals. Note that the centered placement of time windows is an assumption. It is 

possible to shift the time windows to the right of the center (expected site arrival time) 

such that the likelihood of late arrivals decreases. Clearly, this modification is 

contingent upon the maximum allowable waiting time imposed for early arrivals. In 
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the case of unrestricted waiting, it can be shown that, by shifting the time window to 

right, one can turn time window constraints into redundant constraints. 

4. Experimental Study 

In this section, we test the proposed methodology on a real case study 

application using the road network from Southeast Michigan, U.S.A. (Fig. 1). We 

consider an automotive JIT production system where an OEM’s DC is replenished by 

milk-run pickup and deliveries from multiple suppliers. The case study road network 

covers major freeways and highways in and around the Detroit metropolitan area. 

The network has 140 nodes and a total of 492 arcs with 140 observed arcs and 352 

unobserved arcs. Real-time traffic data for the observed arcs is collected by the 

Michigan ITS Center and Traffic.com. In this application, we used data from 66 

weekdays of May, June, and July 2009, for the full 24 hours of each day. The raw 

speed data was aggregated at a resolution of 5 minute intervals. For the 

experimentation, we increased the resolution of data to one data-point per minute 

through linear interpolation (see [25]). Since the collected speed data is averaged 

across different vehicle classes (i.e., automobile, trucks) and no data was available 

for individual classes of vehicles, we assumed that the truck being routed could also 

cruise at the collected average speeds. We implemented all of our algorithms and 

methods in Matlab 7 and executed them on a Pentium IV machine (with CPU 1.6 

GHz and 1024 MB RAM) running Microsoft Windows XP operating system. 

Our experimental study is outlined as follows: Section 4.1 describes the 

estimation and modeling process for recurrent congestion and illustrates through a 
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traverse times by time of the day. To better illustrate the modeling of congestion 

states, we present the data and congestion state identification and separation 

procedures for an example arc (7, 8). The speed data for arc (7, 8) for the weekdays 

is illustrated in Fig. 2a. The mean and standard deviations of speed for the arc (7, 8) 

are plotted in (Fig. 2b). From Fig. 2a and Fig. 2b, it can be clearly seen that the traffic 

speeds follow a non-stationary distribution that vary highly with time of the day. 

Given the traffic speed data, we employed the Gaussian Mixture Model (GMM) 

clustering technique to determine the number of recurrent-congestion states for each 

arc by time of the day. In particular, we used the greedy learning GMM clustering 

method of [50] for its computational efficiency and performance. After obtaining the 

state clusters for each time interval t, we first estimate the time-dependent cut-off 

speeds if GMM yields more than one congestion state at t. Next, given cut-off 

speeds, we then estimate the  parameters of the Gaussian distributions for state 

transitions for congestion state i from t to t+1 for all t, i.e., ( , 1 , 1;i i
t t t t μ Σ ). Applying GMM 

for arc (7,8), for instance, recommended two clusters of congestion states for almost 

all time intervals except few. Fig. 3a illustrates the transition rates for arc (7, 8) with a 

15 minute time interval resolution during the day. Note that, we are using two clusters 

for arc (7, 8) in all time intervals for presentation purpose (other than increasing 

computational burden, there are no other consequences). In Fig. 3a, the ߙ௧ denotes 

the probability of state transition from congested state to congested state and ߚ௧ 

denotes the probability of state transition from uncongested state to uncongested 

state. The mean travel time of arc (7, 8) for congested and uncongested traffic states 

is given in Fig. 3b. 
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Fig. 2 For arc (7,8)  (a) raw traffic speeds for  May, June, and July 2009 weekdays (b) 
mean (mph) and standard deviations (mph) of speeds by time of the day with time 
interval resolution of 15 minutes. 

 

Fig. 3 For arc (7, 8) (a) congestion state-transition probabilities: α, congested to 
congested transition; β, uncongested to uncongested transition probability (b) mean 
travel time(min.) for congested and uncongested congestion states. 

4.2. Estimating Travel Time Distributions between Sites 

Using the previous section’s results, e.g., time and congestion state 

dependent distribution of arc travel times and congestion state transition probabilities, 

we employed the dynamic routing algorithm in Section 3.1.2 to determine the 

dynamic routing policy jkπ between every pair of customer sites  ,j k  at different 

departure times. Next, we estimate the travel time distribution between every pair of 

sites. This can be achieved by simulating the optimal dynamic policies in two different 
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ways: using estimated arc travel time distributions as described in Section 3.1.2. or 

using the available historical data for 66 weekdays. We choose to use the historical 

data because of the link interactions and dependencies not captured through the 

estimation of arc travel time distributions.  

In most real transportation networks, the congestion states among the arcs are 

highly correlated. As a result, independent simulation of each arc’s congestion states 

leads to uncorrelated arc states and might cause incorrect travel time distributions. 

To avoid such problems, we simulated the network with historical data one day at a 

time. Specifically, we routed the vehicle from origin site to the destination site; at 

each decision epoch (e.g. node), the historic arc speed data was used to identify the 

congestion state and determine which arc to traverse next. We ran the simulations for 

66 weekdays of May, June, and July 2009 and obtained 66 samples for all pairs of 

sites at different departure times. Although the number of runs was small, we believe 

it captured the dependency of arc congestion states better and accurately predicts 

the routing scenario’s outcome. In addition, due to weather patterns/seasonality, 

traffic dynamics do change over extended periods. Hence, it is generally 

inappropriate to use data from extended periods (e.g., a year) to establish the tours 

and the dynamic routing policies. For these reasons, it might be best to re-optimize 

the tour and the dynamic routing policies at regular intervals (e.g., monthly or 

quarterly). 

4.3. Building STD-TSP Tours 

In this section, we construct the robust STD-TSP tours using the effective 

travel time distribution resulting from dynamic routing between every pair of sites (as 
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explained in section 4.2). To quantify the benefits of using a dynamic routing policy, 

we also identify and select the robust STD-TSP tours with a static routing policy 

between each pair of sites. 

In milk-run tours, the number of tour stops in urban areas is generally equal or 

greater than 5 stops per tour:  approximately 5.6 in Denver [68], 6 in Calgary [69], 

and 6.2 in Amsterdam [70].  Our case study application also conforms to these 

estimates as there are 5 stops (i.e., one DC and four supplier sites). Although there 

are hundreds of suppliers replenishing the same DC, we only consider the subset of 

suppliers that were part of the same TSP tour. The determination of such supplier 

clusters is beyond the scope of this study and is assumed to be performed a priori 

based various factors (e.g., geographical supplier locations, nature of cargo) as in 

CFR. There were no pre-established requirements on the sequence of site visits and 

the truck had enough capacity to visit all sites in a single tour. As in most JIT 

environments, the time windows in this case study were set by trucking and OEM’s 

logistics division and accepted by the suppliers as part of the sourcing contract. 

Therefore, we herein consider the case without time windows and then set the time 

windows for on-time performance in Section 4.4.  

In the STD-TSP of the case study application, we have node 80 as the DC 

(origin site) and nodes 61, 103, 51, and 132 as the supplier sites (Fig. 1). 

Accordingly, there are (5-1)!=24 possible dominated and non-dominated tours. To 

capture the effect of traffic congestion, we consider 48 trip start times evenly spaced 

every half an hour and determine tours for each of them separately (Fig. 4). We 

assume all the sites’ service times are 15 minutes. Since there are 4 sites other than 
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the DC, the total service time is 60 minutes for each trip. To compare the results we 

define STD-TSP tours with following two site-to-site routing policies: 

1. STD-TSP tour with static routing policies (Static policy): In practice, almost all 

commercial logistics software aims to identify TSP tours based on a static path 

between a pair of sites. First, for a given site pair and departure time, all paths 

are identified and then their expected path travel times are calculated 

according to the travel time distributions of paths’ arcs. Next, the path with the 

least expected cost is selected as the static path to be used in the TSP tour. 

Then, for every trip start time, we select a robust TSP tour by solving STD-

TSP using travel time distributions between pairs of sites estimated through 

the static paths.  

2. STD-TSP tour with dynamic routing policies (Dynamic policy): In this policy, 

the paths between pairs of customers are dynamic routing policies (DRP). 

Based on the arc travel time distributions, congestion states and transition 

probabilities, we first generate DRPs between every pair of sites as described 

in Section 3.1. Then, these DRPs are simulated to find the site-to-site travel 

time distributions as described in Section 4.2. Finally, for every trip starting 

time, the robust TSP tour is selected using the DP algorithm for STD-TSP 

based on the simulated travel time distributions between pair of sites. 

In identifying and selecting the robust tour, we set standard deviation 

coefficient in the cost function 1.65b  such that the robust tour’s trip duration is less 

than the mean-variance objective 97.5% of the time. We calculated the mean and 

standard deviations of trip times for all static and dynamic policy tours for evenly 
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spaced 48 trip starting times beginning at 00:00am. The results revealed that 4 out of 

the 24 possible tours dominate the other tours for all 48 trip starting times for both 

static and dynamic policies. These dominant tours are: tour 1: 

80132103516180; tour 2: 80132511036180; tour 3: 

806110351 13280; and tour 4: 80615110313280. Among these 

four tours, tour 1 is the most selected tour by both static (40 times out of 48) and 

dynamic (41 times out of 48) policies. We report tour 1 mean travel time and standard 

deviations in Fig. 4 for every starting time during the day. Note that these results are 

obtained by simulating the tour 1 using the historic data (66 weekdays of May, June, 

and July 2009). 

 

 

Fig. 4 The tour 1’s (a) mean tour travel time (trip time - service times), (b) standard 
deviation for 48 starting times during the day for static and dynamic policies. 

As expected, the savings are higher and rather significant during peak traffic 

times (e.g., around 8:00 and 17:00) and insignificant during uncongested periods. 

These results clearly illustrate the importance of using dynamic routing between pairs 

of sites. To further illustrate the savings, we present the selected robust tours and 
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their mean and standard deviation of travel times identified by the two policies for two 

particular departure times in Table 1. 

Table 1: Tours, tours mean travel times and standard deviations at two departure 
times for the static and dynamic policies. 

Policy Robust Tour Departure Time
Mean Trip Time 

(min.)
Mean Tour Travel 

Time (min.)
Std. Dev. of Tour 

Travel Time (min.)

Static tour 1 7:00 253.8 193.8 13.08

Dynamic tour 1 7:00 224.5 164.5 10.37

Static tour 1 7:30 242.4 182.4 13.27

Dynamic tour 2 7:30 216.1 156.1 10.19

 

4.4. Evaluation of STD-TSP Tours with Time Windows 

In the previous section, we selected the robust tours associated with static and 

dynamic routing policies across 48 starting times. We originally assumed no time 

windows. In this case study application, the determination of the TSP tour and the 

setting of time windows are sequential tasks. Specifically, the carrier first determines 

the tours for transportation efficiency and then the carrier and OEM’s logistics division 

jointly set the spacing of time windows so as to maximize the on-time delivery 

performance. Next, we present and compare the trip duration results of using static 

and dynamic routing policies in a scenario where there are 4 DC replenishment shifts 

in each day and the shift starting times (ST) are   ST  0 : 00;  6 : 00;  12 : 00;  18: 00

We then present the results after setting time windows.  

According to the results in the preceding section, tour 1 is the most selected 

tour by both static and dynamic policies across different trip start times. The other 

robust tours identified are tours 2, 3, and 4 in decreasing order of selection 
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frequency. In Table 2 and Table 3, we provide the mean and standard deviation of 

trip times (tour travel time + service times) of these four dominant tours and their 

associated standard deviations at shift starting times when following static and 

dynamic policies between pair of sites, respectively. These results are obtained by 

simulating the corresponding tours using the historic data (66 weekdays of May, 

June, and July 2009). 

 

 

Table 2: Mean of tour trip times at the beginning of shifts based on static and 
dynamic policies (without time windows).  

Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv.

1 178.7 174.5 2.4% 238.2 212.9 10.6% 207.2 184.4 11.0% 229.1 210.5 8.1%

2 177.2 174.0 1.8% 241.6 219.3 9.2% 207.8 185.7 10.6% 233.5 207.8 11.0%

3 181.2 179.0 1.2% 236.4 220.0 6.9% 209.2 189.6 9.4% 237.9 220.1 7.5%

4 183.6 181.1 1.4% 248.3 224.9 9.4% 205.1 193.5 5.7% 242.6 222.5 8.3%

Policy

T
ou

r

Mean Tour Trip Times

ST 0:00 6:00 12:00 18:00

  

Table 3 : Standard deviations of tour trip times at the beginning of shifts based on 
static and dynamic policies (without time windows).  

Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv.

1 7.8 7.0 10.3% 13.0 10.1 22.8% 10.9 8.4 23.4% 14.1 9.7 31.1%

2 8.3 7.5 9.5% 13.6 11.2 17.8% 12.4 9.8 20.6% 14.3 10.8 25.0%

3 7.8 7.7 1.0% 14.5 11.6 20.3% 11.9 10.5 11.9% 14.3 11.1 22.4%

4 9.8 8.6 12.0% 15.2 12.2 20.3% 12.4 9.6 23.0% 14.8 13.0 12.6%

ST

Standard Deviation of Tour Trip Times

Policy

T
ou

r

12:00 18:000:00 6:00

 

Table 2 results indicate that the mean tour trip time savings associated with 

dynamic routing are most in the two congested start times, namely 6:00 and 18:00, 
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which are close to the urban area peak traffic times. We further note that the savings 

with start time at 12:00 is also as high as the congested periods (i.e., 6:00 and 

18:00). The results in Table 3 for the standard deviation of tour trip times 

demonstrate the savings in variability similar to those in mean trip times. 

The robust tour for each starting time is selected according to the mean-

variance objective using the results in Table 2 and Table 3. These mean-variance 

objectives for the four dominant tours are presented in Table 4 along with that of the 

selected robust tour in the last row. The selected robust tours corresponding to static 

and dynamic policies are highlighted in bold for each start time. The dynamic policy’s 

robust tour achieves the most savings over that of the static policy for trips starting at 

12:00 and the mean-variance objective savings range from 2.6% to 12.0% with an 

average of 9.2%. The mean tour trip time savings based on the robust tours range 

from 1.5% to 11.0% with an average of 8.1% as can be calculated from Table 2. 

These tour trip duration savings correspond to the improvement in transportation 

efficiency. Similarly, the savings in the standard deviation of tour trip times based on 

the robust tours range from 16.5% to 23.7% with an average of 21.6% as can be 

calculated from Table 3. These savings correspond to the improvement in tour trip 

time reliability affecting the on-time delivery performance. 

Table 4 results indicate that tours 1 and 2 are dominant tours for the four start 

times. In the remainder of section, we assume that tour 1 is selected for both static 

and dynamic policies. In fact, tour 1 is indeed the selected robust tour for start times 

6:00 and 12:00 and its performance difference from the selected robust tour is small 

for starting times of 0:00 and 18:00.  
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Table 4 : Mean-variance objectives of tour trip times at the beginning of shifts based 
on static and dynamic policies (without time windows).  

Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv.

1 191.5 186.0 2.9% 259.7 229.5 11.6% 225.3 198.2 12.0% 252.3 226.5 10.2%

2 190.9 186.4 2.4% 264.1 237.8 10.0% 228.2 201.9 11.5% 257.2 225.5 12.3%

3 194.1 191.8 1.2% 260.3 239.1 8.2% 228.8 206.9 9.6% 261.5 238.4 8.8%

4 199.7 195.3 2.2% 273.4 244.9 10.4% 225.6 209.3 7.2% 267.1 243.9 8.7%

190.9 186.0 2.6% 259.7 229.5 11.6% 225.3 198.2 12.0% 252.3 225.5 10.6%Robust Tour

Policy

T
ou

r
  Mean-Variance Tour Trip Time Objectives

ST 0:00 6:00 12:00 18:00

 

Next, we set the time windows according to the procedure described in 

Section 3.2.1.1. Here, we assume the width of the time windows is 30 minutes for all 

supplier sites. Further, we allow unrestricted waiting for early arrivals at all sites. We 

illustrate the time windows through their centers (mean site arrival times) and 

deviations around centers (standard deviation of site arrival times) in Table 5 for the 

selected robust tour 1.  

Table 5 : Simulated mean arrival times (with time windows) to the sites in the 
sequence of tour 1 based on static and dynamic policies. 

Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn.

132 18.7 18.5 26.0 20.3 21.6 19.9 23.8 23.6 1.2 1.0 1.9 1.6 1.7 1.7 1.8 1.8

103 67.3 66.6 87.9 80.7 79.2 74.1 102.7 93.5 3.3 2.8 5.2 4.4 4.7 3.9 6.2 4.8

51 98.7 97.9 131.6 113.9 116.8 108.8 137.9 128.6 4.6 3.8 7.3 6.0 6.4 5.3 9.1 6.3

61 147.0 143.9 197.2 172.5 169.8 154.3 192.2 180.2 6.3 5.5 10.3 8.3 8.7 7.0 11.8 8.0

80 179.2 175.1 240.1 214.2 208.4 185.6 231.8 212.7 7.8 7.0 13.1 10.1 11.0 8.4 14.2 9.8

Si
te

Policy

ST

Mean Site Arrival Times Std. Dev. of Site Arrival Times

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00

 

The mean and standard deviation of return times to DC (node #80) 

corresponds to the mean and standard deviation of the tour 1 trip times. Note that the 

means and standard deviations of DC return times in Table 5 are different than those 
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of tour trip times without time windows reported in Table 2. These differences are due 

to the waiting at the sites upon early arrival. The waiting due to early arrival increases 

(decreases) the mean (standard deviation) of the tour trip time. Table 6 presents 

the service level performance (on-time deliver) of static and dynamic policies for tour 

1 at different start times. These results are based on simulating tour 1 using dynamic 

and static policies between sites subject to the time windows set for each policy in 

Table 5. Table 6 results show that as congestion increases, the dynamic policy taking 

real-time traffic information into account becomes increasingly superior to the static 

policy planning methods. The on-time delivery performance can be increased up to 

8% for a site and up to 4% for a tour (starting at 18:00). We conclude that the 

dynamic policy not only decreases transportation cost (measured by trip time), but 

also increases the delivery service level performance (measured by on-time delivery). 

Table 6 : On-time delivery performances (in percentages) of the policies with time 
windows. 

Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn.

132 100 100 100 100 100 100 100 100

103 100 100 100 100 100 100 100 100

51 100 100 96 100 98 100 95 100

61 98 100 91 98 96 98 91 97

80 97 98 88 94 92 96 86 94

On-time delivery performances (in percentages)

12:00 18:00

Si
te

Policy

ST 0:00 6:00

 

The results in Table 6 are obtained with the assumption that there is 

unrestricted waiting for early arrivals at all sites. Further, the time windows are 

centered on the mean site arrival times depending on whether static or dynamic 

routing policy is used between pairs of sites. As explained in Section 3.2.1.1, one 
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could shift the time windows to the right of the center (expected site arrival time) to 

reduce the late arrival occurrences. However, the effectiveness of this modification 

relies on the maximum allowable waiting time imposed for early arrivals. To 

understand the effect of shifting time windows, we adapted time windows of the static 

policy as the time windows of the dynamic policy. This allows us to retain the 

assumption of unrestricted waiting for early arrivals and compare the on-time delivery 

results of dynamic policy with those in Table 6. The results of on-time delivery with 

dynamic policy using the time windows of the static policy are presented in Table 7. 

With this setting, the on-time delivery performance of the truck following the dynamic 

policy is 100 percent for all starting times and for all sites based on historic data (66 

weekdays of May, June, and July 2009). Clearly, this improvement in on-time 

performance is attained with increased waiting at sites. Table 7 also presents the 

mean waiting times at sites.  

Table 7 : On-time delivery performances (in percentages) and average waiting times 
(in minutes) for dynamic policy when setting time windows of dynamic policy as the 
time windows of static policy in Table 6. 

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00

132 100 100 100 100 0 0 0 0

103 100 100 100 100 0 0.06 0 0

51 100 100 100 100 0 3.49 0.01 0

61 100 100 100 100 0 10.12 2.21 0

80 100 100 100 100 0 11.91 9.55 0

Si
te

ST

On-time delivery performances (in percentages) Waiting times (in minutes)
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5. Conclusions 

In this work, we studied the STD-TSP with dynamic routing problem. It is an 

extension of stochastic TSP and aims to find a robust milk-run tour of a given set of 

sites (i.e., DC and suppliers) while dynamically routing on a stochastic time-

dependent road network between sites’ visits to meet the time windows 

requirements. The solution is comprised of static TSP tour of sites that remains fixed 

for extended periods (e.g., months) and a dynamic routing policy between pairs of 

sites. The static tour is motivated by the fact that tours cannot be changed on a 

regular basis (e.g., daily) for milk-run pickup and delivery in routine JIT production. 

The objective trades off the expected duration of the tour with its variability, capturing 

the tradeoff between transportation efficiency and on-time delivery service level.  

We proposed a sequential solution approach. We first determined the travel 

time distributions between each pair of sites by formulating and solving a stochastic 

dynamic programming formulation for the dynamic routing problem on a stochastic 

time-dependent road network. The dynamic routing model exploits the real-time 

traffic information available from ITS. We proposed effective data driven methods for 

accurate modeling and estimation of recurrent congestion states and their state 

transitions. Whereas we assumed arcs are independent in generating dynamic 

routing policies, we simulated dynamic routing policies using historic data to capture 

the arc dependencies in all our experiments. Using simulation results, we estimated 

the site-to-site travel time distributions. Once the travel time distributions were 

estimated for every pair of sites at different departure times, we employed a 

stochastic time-dependent dynamic programming (STD-DP) to solve the problem and 
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select the robust tour minimizing the mean-variance objective of the trip time. We 

also provided a time window setting procedure to increase on-time delivery 

performance and support workload leveling. 

We tested the proposed methodology on a real case study application using 

the road network from Southeast Michigan. This study corresponded to an 

automotive JIT production system where an OEM’s DC is replenished by milk-run 

pickup and deliveries from multiple suppliers. The study road network covered major 

freeways and highways in and around the Detroit metropolitan area. To quantify the 

benefits of using dynamic policy, we compared the selected robust STD-TSP tours 

with those of the static routing policy between pair of sites. We first experimented 

without time windows for both static and dynamic policies. The results showed that 

the dynamic policy saves 8.1% in trip duration on the average and reduces standard 

deviation of trip duration by 21.6% on the average. After setting the time windows 

according to the expected site arrival times, we showed that the on-time delivery 

performance can be increased up to 8% for a site and up to 4% for a tour by using 

dynamic routing policy. Lastly, we showed that it is possible to further increase the 

on-time performance by setting the time windows of dynamic routing policy according 

to those of the static policy. We concluded that the dynamic policy not only decreases 

transportation cost (measured by trip time), but also increases the delivery service 

level performance (measured by on-time delivery). 

There are several promising extensions of this research. The dynamic routing 

policies are generated by assuming arc independence. While we have partly 

compensated for this by simulating the policies using actual historical data from the 
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ITS network, the policies themselves are not guaranteed to be optimal if there are 

significant arc interactions. Hence, a future study is to account for the link interactions 

in modeling congestion and generating dynamic routing policies. Another future study 

is to integrate the proposed approach within the more general problem of VRP, 

where the supplier-route assignment decisions are made in addition to the routing of 

individual vehicles. 
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CHAPTER IV: DYNAMIC ROUTING IN STOCHASTIC TIME-DEPENDENT 

NETWORKS UNDER ARC INTERACTIONS* 

 

Abstract   ̶ Just-in-time (JIT) production, an increasingly popular option in 

automotive and other industries, requires frequent and on-time pickups and 

deliveries. However, growing travel time delays and variability, attributable to 

increasing congestion in transportation networks, are greatly impacting reliability of 

transportation operations. In this study, our objective is to minimize the expected 

travel time from an origin to a destination in a stochastic time-dependent network with 

interactions between arcs (in terms of traffic flow/congestion conditions) to improve 

delivery efficiency.  

We model the evolution of arc congestion “states” using Markov Chains, 

where state transitions for individual arcs are allowed to be dependent on the traffic 

states of successor arcs. We model the problem as a Markov decision process 

(MDP) and propose a stochastic dynamic programming formulation to solve the 

problem. MDP states are defined based on time of day, the physical state (decision 

point-vehicle location), and the information state (traffic network congestion states 

within the vicinity of the vehicle). The solution is a dynamic routing policy consisting 

                                                       

* This chapter resulted in the following publications: 
- A.R. Guner, R.B. Chinnam, A. Murat: Dynamic Routing in Stochastic Time-
Dependent Networks under Arc Interactions, (To be submitted to IEEE Transactions 
on ITS) 
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of decisions (which arc to take next) for every state. The dynamic nature of our 

routing policy exploits the real-time information available from various ITS (Intelligent 

Transportation Systems) sources. Results are very promising when the algorithms 

are tested in a simulated network of Los Angeles, CA freeways using historical data 

from the Caltrans PEMS. 

Keywords ̶ JIT logistics; dynamic routing; intelligent transportation systems; 

arc interactions; congestion 

1. Introduction 

Growing travel time delays and variability, attributable to increasing congestion 

in transportation networks, are greatly impacting reliability of transportation 

operations. Supply chains that rely on just-in-time (JIT) production and distribution 

require timely and reliable freight pick-ups and deliveries from the freight carriers in 

all stages of the supply chain. For example, many automotive final assembly plants in 

Southeast Michigan of U.S. receive nearly 80% of all assembly parts on a JIT basis 

(involving 5-6 deliveries/day for each part with no more than three hours of inventory 

at the plant). However, the congestion on road networks increases the travel time 

variability, thus, rendering it difficult to make delivery and pickups on-time. Golob and 

Regan [54] report that up to 85% of trucking companies miss their delivery time-

window schedules due to road network congestion in California. In addition, 78% of 

the managers surveyed stated that the time-window schedules for pickup and 

deliveries force their drivers to operate under congested road network conditions. 

Congestion is forcing logistics solution providers to add significant travel time buffers 
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to improve on-time delivery performance, causing idling of vehicles due to overly 

early arrivals. Given the levels of congestion, these travel time buffers can be 

significant. For example, in the Detroit metro area of Southeast Michigan, the buffers 

required for a typical OD pair can exceed 65% of free-flow travel time during peak 

congestion periods of the day to achieve 95% on-time delivery performance[7]. Given 

that automotive plants are heavily relying on JIT deliveries throughout a day, this is 

increasingly forcing the automotive original equipment manufacturers (OEMs) and 

others to carry increased levels of safety inventory to cope with the risk of late 

deliveries. However, these coping strategies (extra buffer of time or inventory) 

increase the costs and inefficiency.  

In this study, our objective is to minimize expected travel time for a vehicle 

from an origin to a destination in a stochastic time-dependent network with correlated 

arc costs (resulting from interaction/dependence of arc traffic conditions of 

downstream arcs) to improve delivery efficiency. The reason for only modeling 

interaction from downstream arcs to upstream arcs is that congestion typically 

propagates backwards. For example, traffic buildup from incidents such as traffic 

accidents on freeways may cause queue spillbacks of several miles on its upstream 

and may affect vicinity streets; an inclement snowstorm may simultaneously affect a 

wide region of a road network, etc. Although these arc traffic interactions are an 

important characteristic of real world road networks, it is not considered in most 

routing studies.  

We assume that an arc’s state transition probability is dependent to the states 

of its adjacent successor arcs and have the single-stage Markovian property. To 
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estimate the state transitions for each arc, we model the arc speeds for every pair of 

consecutive periods conditioned on the states of successor arcs. We employ 

clustering methods to identify the number of states and their transition probabilities. 

The changes in arc congestion states represent the traffic dynamics and are modeled 

as Markov processes. Efficient stochastic dynamic programming algorithms are 

proposed for developing optimal dynamic routing policies that consist of decisions 

(which arc to take next) for every state. The dynamic nature of our routing policy 

exploits the real-time information available from various ITS (Intelligent 

Transportation Systems) sources. The algorithms are tested in a simulated network 

of Los Angeles, CA freeways using historical data from the Caltrans PEMS2. 

The contribution of this article is three-fold: First, we propose methods for 

accurate and efficient representation of recurrent congestion, in particular, 

identification of multiple congestion states and their transition patterns under arc 

interactions. Second, we propose a dynamic routing algorithm for stochastic time-

dependent networks with arc interactions. Third, using data from a real transportation 

network, we test the proposed approach and demonstrate its value in improving 

travel times when compared to two methods from the literature. 

The rest of the paper is organized as follows. Related literature is discussed in 

Section 2. Section 3 discusses the modeling of recurrent congestion under arc 

interactions in stochastic time-dependent networks. Section 4 presents the 

experimental results from a case study application. Section 5 concludes the study 

and proposes directions for future research. 



101 

 

2. Literature Survey 

A variety of stochastic and time-dependent routing problems have been 

studied in the literature, of which many assume that arc (road segment) travel times 

are independent from each other. In contrary, an arc traffic state usually dependent 

to its (at least) nearby arcs. For instance, an incident on an arc or a bottleneck due to 

peak demand may cause congestion to spill on many upstream arcs. Because of the 

stochastic and time dependent features of the problem the optimal solution has to be 

a dynamic routing policy (DRP) rather than a single path [13]. In a DRP, the node to 

visit next depends on both the node and the time of arrival at that node. 

Polychronopoulos  and Tsitsiklis [23] study the shortest path problem with 

“recourse” (The case which a vehicle that starts moving towards the destination along 

a priori path has also recourse options of choosing a new path whenever new 

information is obtained.)  They assume travel time on an arc becomes known and 

fixed upon the arrival of its starting node and they treated correlation of arc travel 

times by a discrete joint distribution. Waller and Ziliaskopoulos [18] studied a 

simplified recourse problem known as recourse with reset [71] problem with limited 

forms of spatial and temporal arc cost dependencies. They assume, given the cost of 

predecessor arcs, no further information is obtained through spatial dependence and 

the travel time distribution of an arc is conditional on the state of the preceding link. 

They define temporal dependency as learning the cost of an arc once the origin node 

of that arc is reached and this cost may change at different time visits. They 

proposed polynomial recourse algorithms for acyclic problems and developed 

complexity bounds for cyclic problems. In this paper, however, temporal dependency 
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is defined in the sense of Hall [13], i.e., the traversal time distribution is conditional on 

time. Fan  et al. [72] address the dynamic routing problem in static and stochastic 

networks with a limited correlation structure which is similar to [18]. They restricted 

arc states to be either congested or uncongested. They assume travel time 

distribution of a downstream arc is conditional on its upstream arcs states and these 

distributions are available. They also show that the label-correcting algorithm in [18] 

can also be derived from the dynamic programming point of view. Boyles [73] studied 

a similar problem to that in [18] in which conditional probabilities of adjacent link 

travel costs are utilized and travelers are assumed to remember only the travel time 

on the last link they traverse. Gao and Chabini [19] studied dynamic routing problem 

on stochastic and time dependent networks. They made different assumptions on 

travel time (e.g. no, partial, and full) information access and studied the effects of 

them on routing. They assume there is complete dependency where all travel times 

on all links at all time periods are correlated. They employed a joint distribution of 

travel time random variables to model this dependency. However, they didn’t give 

any insight on how to get this joint matrix. In Nie and Wu [74], travel time correlations 

are restricted only to successor arcs states. They consider finding a priori paths 

which maximize arrival time reliability.  

All of the above studies used dynamic programming (DP) or algorithms that 

can be derived from DP. However, Sivakumar and Batta  [75] and Sen et. al. [76] 

used nonlinear and integer programming formulations as a solution method since 

they approached modeling of correlation with using covariance matrices. And DP is 

shown generally inapplicable to this kind of models. 
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In this research, travel time correlations are restricted only to adjacent arcs, 

similar to the work of Waller and Ziliaskopoulos [18], Nie and Wu  [74], and Fan et al. 

[72], arc travel time distributions are allowed to vary over time, along the line of Hall 

[13], Fu and Rilett [15], Fu [17] and Miller-Hooks and Mahmassani [77] and dynamic 

programming is employed to find optimal policies. 

3. Modeling Recurrent Congestion with Correlated Arcs 

Let   be a directed graph in which   is the set of nodes and   is the set of 

directed arcs. The (decision) node  represents an intersection where the driver can 

decide which arc to select next. A directed arc is represented by an ordered pair of 

nodes   in which   is called the origin and   is called the destination of the arc. Given 

an origin,  and destination,   (OD) node pair, the dynamic routing problem is to decide 

which arc to choose at each decision node such that the expected total OD travel 

time is minimized. We formulate this problem as a finite horizon Markov decision 

process (MDP), where the travel time on each arc follows a non-stationary stochastic 

process. We first describe the modeling of recurrent congestion and then present the 

stochastic dynamic programming formulation and our solution approach. 

3.1. Congestion Modeling with Arc Interactions 

A directed arc  , 'n n A  is labeled as observed if its real-time traffic data 

(e.g., velocity) is available through the ITS. An observed arc can be in 1r    

different states that represent the arc’s traffic congestion level at a given time. Let 
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 as t  be the congestion state of arc a  at time period t , i.e.
 

     Congested at level as t i i   for 1,2,..., 1 i r   and be determined as follows: 

         1, if i i
a a a as t i c t v t c t    (1) 

where  i
ac t

 
denotes the cut-off velocity at level i  on arc a  at time period t  

and  av t  denotes the velocity on arc a  at time period t . For instance, if there are 

two congestion levels (e.g., 1 2r   ), then the states will be 

     Uncongested 0as t    and      Congested 1as t   . 

We assume that the state of an arc evolves according to a non-stationary 

Markov chain. In a network with all arcs observed,  S t
 

denotes the traffic 

congestion state vector for the entire network, i.e.,         1 2 | |, ,..., AS t s t s t s t  at time 

t . For presentation clarity, we will suppress ( t ) in the notation whenever time 

reference is obvious from the expression. Let the state realization of  S t  be denoted 

by ( )s t . We assume that an arc state and its transition to other states are dependent 

to its immediate successor (downstream) arcs states and state transitions have the 

single-stage Markovian property. We denote the successor arc set of arc a  with 

 ScAS a  or a'  for compact representation where
 

      ' : , ' , ' ', "ScAS a a a n n A a n n A      , i.e., the set of outgoing arcs from the 

destination node ( 'n ) of arc a . To estimate the state transition probability for each 

arc, we jointly model the speeds of two consecutive periods and condition this joint 

model to the successor arcs states. Accordingly, the time-dependent single-period 
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state transition probability from state  as t i
 
to state  1as t j   given successor 

arc set a'  in state   s ta'  is denoted by        ',
'1 | , ( )ij s

a a aP s t j s t i s t t    a
a . We 

estimate the transition probability for arc a, ( )ij
a t  from the joint velocity distribution as 

follows: 

 
       

   

' '

'

'

' ',

'

| 1 |
( )

|

s si j
a aij s

a si
a

V t V t V t V t
t

V t V t


       
a a

a

a

a a

a

 (2) 

where the |e| operator corresponds to the frequency count of event e,  i
aV t  denotes 

the velocity vector on arc a  at time t  in state i  for the sampled days, and '
'
sV a

a  

denotes the velocity vector on arc set 'a  at time t  in state set 'sa  for the sampled 

days.  i
aV t is calculated as follows:        1 <i i i

a a a aV t c t V t c t   where  aV t   denotes 

the velocity vector on arc a  at time t  for the sampled days without conditioning on 

the state. Let  , 1aTP t t   denote the matrix of state transition probabilities from time t  

to time 1t  , then, we have   ',, 1 ( )ij s
a a ij

TP t t t    
a . Note that the single-stage 

Markovian assumption is not restrictive in our approach as we could extend our 

methods to the multi-stage case by expanding the state space [48]. Let the network 

be in state  S t
 
at time t , and we want to find the probability of the network state 

 S t  , where   is a positive integer number. Given the independence assumption 

of the arcs’ congestion states, this can be formulated as follows: 

       '
1

| ( ) | ( ), ( )
A

a a
a

P S t S t P s t s t s t 


   a  (3) 
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Then the congestion state transition probability matrix for each arc in   

periods can be found by the Kolmogorov’s equation:  

        ' ' ', , ,, 1 ...ij s ij s ij s
a a a aij ij ij

TP t t t t t                    
a a a  (4) 

We assume that the distribution of an arc travel time is Gaussian. We further 

assume that the arc travel time depends on the congestion state of the arc at the time 

of departure (equivalent to the arrival time whenever there is no waiting). It can be 

determined according to the corresponding normal distribution:  

       2, , ~ , , , , ,a a at a s N t a s t a s    (5) 

where  , , at a s
 
is the travel time;  , , at a s and  , , at a s are the mean and 

the standard deviation of the travel time on arc a at time t with congestion state  as t . 

For clarity of notation, we hereafter suppress the arc label from the parameter space 

wherever it is obvious, i.e.  , , at a s
 
will be referred as  ,a t s .

 

3.2. DP Formulation for Dynamic Routing    

The objective of the dynamic routing algorithm is to minimize the expected 

travel time based on real-time information such as the path originates at node 0n  and 

ends at node dn . Let us assume that there is a feasible path between  0, dn n  where 

a path  0 1,.., ,..,k Kp n n n 
 
is defined as the sequence of (decision) nodes such that 

1( , )k k ka n n A  , 0,.., 1k K   and K  is the number of nodes on the path.  
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We define set  1,k k ka n n A   as the current arcs set of node kn , denoted 

with  kCrAS n . That is,     1: ,k k k k kCrAS n a a n n A    is the set of arcs emanating 

from node kn . Each node on a path is a decision stage (or epoch) at which a routing 

decision (which node to select next) is to be made. Let kn N  be the location of k th 

decision stage, kt is the time at k th decision stage where  1,...,kt T  1KT t  . T  is an 

arbitrarily large number and is used to limit the planning horizon for modeling 

purposes. Note that we are discretizing the planning horizon.  

While the optimal dynamic routing policy requires real-time consideration and 

projection of the traffic states of the complete network, this approach renders the 

state space prohibitively large. In fact, there is little value in projecting the congestion 

states well ahead of the current location. This is because the projected information is 

not different from the long run average steady state probabilities of the arc 

congestion states. Hence, an efficient but practical approach would trade off the 

degree of look-ahead (e.g., the number of arcs to monitor) with the resulting 

projection accuracy and routing performance. This has been very well illustrated in 

[26]. Thus, we limit our look-ahead to a finite number of arcs that can vary by the 

vehicle location on the network. The selection of the arcs to monitor would depend on 

factors such as arc lengths, the value of real-time information, and the congestion 

state transition characteristics of the arcs. For ease of presentation and without loss 

of generality, we choose to monitor only two arcs ahead of the vehicle location and 

model the rest of the arcs’ congestion states through their steady state probabilities. 

Accordingly, we define the following two sets for all of the arcs in the network. 
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 kScAS a , the successor arc set of arcs ka ,
    1 1 1 2: ( , )k k k k kScAS a a a n n A       , 

i.e., the set of outgoing arcs from the destination node ( 1kn  ) of arc ka .  kPScAS a , 

the post-successor arc set of arc ka ,    2 2 2 3: ( , )k k k k kPScAS a a a n n A       i.e., the 

set of outgoing arcs from the destination nodes ( 2kn  ) of arcs 1ka  . 

Since the total path travel time is an additive function of the individual arc 

travel times on the path plus a penalty function measuring earliness/tardiness of 

arrival time to the destination node, the dynamic route selection problem can be 

modeled as a dynamic programming model. The state  
1 2 ,, ,

k kk k ka an t s
  of the system 

at the k th decision stage is denoted by k . This state vector is composed of the state 

of the vehicle and network and thus is characterized by the current node ( kn ), the 

current node arrival time ( kt ), and 
1 2 ,k k ka as
   , the congestion state of arcs 1 2k ka a   

where   1 1: kk ka a ScAS a  
 
and   2 2: kk ka a PScAS a    at k th decision stage.  

The action space for the state k  is the set of current arcs of node kn , 

 kCrAS n . At every decision stage, the trip planner evaluates the alternative arcs 

based on the remaining expected travel time. The expected travel time at a given 

node with the selection of an outgoing arc is the summation of expected arc travel 

time on the arc chosen and the expected travel time of the next node. Let 

 
0 0 1 1, ,...,

dn n K   π
 
be the dynamic routing policy (DRP) of the trip that is composed 

of policies for each of the K-1 decision stages. For a given state 

 
1 2 ,, ,

k kk k k ka an t s
   , the policy  k k   is a deterministic Markov policy which 
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chooses the outgoing arc from node kn , i.e.,    k k ka CrAS n    . Therefore, the 

expected travel cost for a given policy vector   is as follows: 

       
2

0 1
0

, ,
k

K

k k k k K
k

F E g g


 






 
      

 
  (6) 

where  0 0 0 0, ,n t S   is the starting state of the system. k  is the random 

travel time at decision stage k, i.e.,     , ,k k k k a kt s t    .  ( , , )k k k kg     is cost 

of travel on arc    k k ka CrAS n     at stage k , i.e., if travel cost is a function ( ) 

of the travel time, then    ( , , )k k k k kg       and  1Kg  is terminal cost of 

earliness/tardiness of arrival time to the destination node under state 1K . Then, the 

minimum expected travel time can be found by minimizing  0F   over the policy 

vector  as follows: 

  
 

 
0 1 10

*
0 0

, ,...,
min

n n Kd

F F
   

  
π

 (7) 

The corresponding optimal policy is then: 

 
 

 
0

0 1 10

*
0

, ,...,
arg min

d
n n Kd

n n F
   

 
π

π  (8) 

Hence, the Bellman’s cost-to-go equation for the dynamic programming model 

can be expressed as follows (Bertsekas, 2001): 

       * *
1min ( , , )

k k
k k k k k kF E g F

 
         (9) 

For a given policy  k k  , we can re-express the cost-to-go function by 

writing the expectation in the following explicit form: 
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 
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  

 
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 






    




 


 


(10) 

where  | ,k k kP a   is the probability of travelling arc ka  in k  periods. 

    2 211, ,k kk kk ka aP s t s t
   is the transition probability of arc  2 2: kk ka a PScAS a    to 

state 
2 1,k kas

   
at stage 1k   given it was in state 

1 1,k kas
   

at stage k . This probability 

can be calculated from the historical frequency of a state for a given arc and time. 

 We used the backward dynamic programming algorithm to solve  *
kF  , 

1, 2,..,0k K K   . In the backward induction, we initialize the final decision epoch 

such that,  1 1 1 1, ,K K K Kn t s     , 1Kn   is the destination node, and  1 0KF  
 

if 

1Kt T  . Accordingly, a penalty cost is accrued whenever there is delivery tardiness, 

e.g., 1Kt T  . Note that 1Ks    , since the destination node does not have any 

current and successor arc states, e.g. the travel terminates at the destination node. 

4 Experimental Studies 

In this section, we test the proposed methodology on a real case study 

application using the road network from Los Angeles, California (Fig. 1). Real-time 

traffic data for the observed arcs is collected and archived by Caltrans Performance 

Measurement System (PeMS) and available online at pems.dot.ca.gov. PeMS 

collects data from automatic sensors (mostly loop detectors) that are installed at 

thousands of California freeway locations, across all lanes, including over 3000 
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locations in Los Angeles Metropolitan area [78].We implemented all of our algorithms 

and methods in Matlab R2010a and executed them on a Pentium IV machine (with 

CPU 1.6 GHz and 1024 MB RAM) running Microsoft Windows XP operating system. 

Our experimental study is outlined as follows: Section 4.1 introduces the road 

network used for demonstrating the performance of the proposed algorithms along 

with a description of its general traffic conditions. Section 4.2 describes the 

estimation and modeling process for recurrent congestion with correlated arcs and 

illustrates through some sample arcs of the network. Section 4.3 presents the results 

of the proposed approach and compare them with two other methods. 

4.1 Case Study Network and Traffic Data  

The case study road network covers some major freeways and highways of 

Los Angeles metropolitan area (Fig. 1a). The network has 32 nodes and a total of 78 

arcs with 67 observed arcs and 21 unobserved arcs. In this application, we used data 

from 66 weekdays of June, July and, August 2010 for the full 24 hours of each day. 

The raw speed data was aggregated at a resolution of 5 minute intervals. For the 

experimentation, we increased the resolution of data to one data-point per minute 

through linear interpolation. Since the collected speed data is averaged across 

different vehicle classes (i.e., automobile, trucks), we assumed that the truck being 

routed could also cruise at the collected average speeds. 
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Fig. 2 Traffic speeds of sub-network arcs for June, July and August 2010 weekdays. 
Each color represents a day. 

The speed data of arcs for the weekdays is illustrated in Fig. 2. The mean and 

standard deviations of speed are plotted in Fig. 3.  From Fig. 2 and Fig. 3, it can be 

seen clearly that the traffic speeds follow a stochastic non-stationary distribution that 

vary with the time of the day.  
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Fig. 3 Mean and standard deviations of sub-network arcs speeds (mph) by time of 
the day with time interval resolution of 5 minutes. 

4.2 State Parameters Estimation Procedure 

The proposed dynamic routing algorithm calls for identification of different 

congestion states, estimation of their state transition rates, and estimation of arc 

traverse times for congestion states by time of the day. Given the traffic speed data 

we employed a three-step procedure given below and summarized in Fig. 4 to 

calculate these parameters:   
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Fig. 4   Summary of ‘State Parameters Estimation Procedure’  

Step 1: GMM Clustering 

We estimate the number of congestion states and cut-off speeds for each arc 

by time of the day with the following procedure.  We first cluster traffic speed data for 

every pair of two consecutive time periods. With assuming congestion clusters 

normally distributed, we partition this cluster using a Gaussian mixture model (GMM) 

where each partition models congestion states. In particular, we exploited the 

‘gmdistribution’ function built-in Statistics Toolbox V7.3  of Matlab R2010a [79] for 

partitioning. The product of GMM is bi-variate joint Gaussian distributions. We limited 

the maximum number of clusters to two for the experiments. Thus the cut off speed is 

the mean of the distribution in the case of a one partition and the intersection of two 

distributions probability density function in the case of a two partitions. We describe 

the procedure in detail below.  

Let  av t
 
is the sampled speed data of arc a at time t. We form a cluster of 

traffic speed data from every pair of two consecutive time periods such as t and t+1 

and denote this matrix with  , 1aV t t  . With employing gmdistribution function we 

decide an initial number of clusters (one or two) which minimize Akaike Information 

Step 1: GMM Clustering 
 Find cut off speeds and number of clusters 
Step 2: Post-Processing  
 Smooth number of clusters (Heuristic method) 
 Recalculate cut off speeds with imposing ‘new’ number of clusters (GMM) 
 Smooth cut off speeds (Window averaging) 
Step 3: Estimate State-Transition Probabilities 
 Calculate state transition probabilities with ‘updated’ cut off speeds 
 Smooth state transition probabilities (Window averaging) 
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Criterion (AIC). If the AIC value is minimized when there is one cluster we assign the 

number of clusters as ‘1’ and the cut-off speed as the distribution mean at this time 

point for this arc. If the AIC value is minimized when there is two clusters we first look 

at the Mahalanobis distance to understand if clusters are overlapping or not. If the 

Mahalanobis distance is less than a given value (e.g. 6 ) than we say the clusters are 

overlapping (e.g. bigger cluster surrounds most or all of the smaller cluster data 

points) and conclude that there is one cluster in fact, and we assign the number of 

clusters as ‘1’ and the cut-off speed as the whole distribution mean at this time point 

for this arc. If the Mahalanobis distance is greater than the given value we look at the 

size of each cluster. If the size of smaller cluster is less than a given portion (e.g. 

10% ) of the whole data points than we assume the smaller cluster as outliers and 

conclude that there is one cluster. We assign the number of clusters as ‘1’ and the 

cut-off speed as the whole distribution mean at this time point for this arc.  If the size 

of smaller cluster is greater than the given value, then we assign the number of 

clusters as ‘2’. The cut-off speed between congested (left cluster) and uncongested 

states (right cluster) for arc a  at time t  is denoted by ( )ac t   and is calculated as 

follows: 1 2( ) , : ( ) ( )a t tc t x x f x f x  where ( )f   is the projected probability density 

function for state  1: ,2 :i congested uncongested . 
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Fig. 5 (a) Example joint plots of traffic speeds in consecutive periods for modeling 
state at 8:30 am; (b) Cluster joint distributions of speed at 8:30am generated by 
GMM; (c) Partitioned traffic states based on projections.  

As expected, the GMM procedure yielded two states generally, as in Fig. 5 

(resulting in states denoted ‘congested’ and ‘uncongested’ states with 1c (8:30)= 64.9 

mph), and rarely a single state during periods of low traffic (as in Fig. 6). The number 

of clusters determined by the GMM procedure during the day for a sample arc is 

given in Fig. 8a. 

 

 

Fig. 6 (a) Example joint plots of traffic speeds in consecutive periods for modeling 
state-transitions at 10:00 am; (b) Single cluster joint distribution of speed at 10:00am 
generated by GMM; (c) Partitioned traffic states based on projections. 
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Step 2: Post-Processing 

The second step is the post-processing of the number of clusters and the cut-

off speed to get smoother transition of cut-off speeds during the day.  

The post-processing of the number of clusters (NC) is a heuristic method in which we 

flip some of the number of clusters from 2 to 1 or vice versa so that the number of 

clusters is smoother in time series during the day. We assume the number of clusters 

must be same at least in 3 consecutive time periods. The method first flags the 

number of clusters that doesn’t hold this assumption (i.e. two consecutive one 

clusters in the middle of a series of two clusters). The next step is deciding what 

should be the number of clusters for flagged ones. Regardless of the size of a 

flagged series we flip all flagged ones two its neighbor number of clusters if both 

(before and after the series) neighbors have the same number of clusters. If 

neighbors are not same then we look at the original values of flagged ones and 

select the value that is more than the other value. In a tie we randomly select the final 

value. Fig. 7 illustrates the procedure for two different cases. Fig. 8 gives the number 

of clusters before and after the procedure for arc 1 of the example network. 
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Time … t t+1 t+2 t+3 t+4 t+5 t+6 t+7 … 

Initial NC … 1 1 1 2 2 1 1 1 … 

Flag     f f     

Case Both neighbors are series of 1 convert flagged series to 1 

Final NC … 1 1 1 1 1 1 1 1 … 

  

Time … t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 … 

Initial NC … 1 1 1 2 2 1 2 1 2 2 2 … 

Flag     f f f f f     

Case Neighbors are different; convert flagged series to 2 since it is more. 

Final NC … 1 1 1 2 2 2 2 2 2 2 2 … 

Fig. 7   Illustrative examples for number of cluster (NC) smoothing. 

 

 

Fig. 8 Number of clusters of arc 1 before (a) and after (b) post-processing during the 
day. 

After getting the processed number of clusters we use these to get smoother 

cut-off speeds. To do this we first impose GMM distribution function the “new number 

of clusters”. After getting the cut-off speeds we smooth them through window 

averaging as given in equation (11) where ( )a t is the parameter (e.g ( )ac t ) at time t 
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for arc a. In Fig. 9 we give the number of clusters before and after the window 

averaging. 

 ( ) ( ) 2 1
w

a a
w

t t w 


  
w

w  (11) 

 

Fig. 9 Cutoff speed of arc 1 before (a) and after (b) post-processing during the day. 

Step 3: Estimate State-Transition Probabilities 

In this step we first estimate the transition probabilities for an arc as described 

in section 3 from the joint velocity distribution. Then we do a window averaging as 

given in equation (11) to get more smooth transition probabilities. Smoothed 

transition probabilities for arc 1 is given in Fig. 10, Fig. 11, and Fig. 12 for different 

correlation scenarios. In figures, the ߙ  denotes the probability of state transition from 

congested state to congested state and ߚ	denotes the probability of state transition 

from uncongested state to uncongested state. Note that the state transitions to same 

states (i.e., congested to congested or uncongested to uncongested) are more likely 

during peak demand time periods, which increase the value of the congestion state 

information. 
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Fig. 10 Unconditional (α, β) and conditional (on arc 3 congestion states where C: 
congested and U: uncongested state) congestion state probabilities of arc 1 during 
the day. 

 

Fig. 11 Unconditional (α, β) and conditional (on arc 4 congestion states where C: 
congested and U: uncongested state) congestion state probabilities of arc 1 during 
the day. 
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Fig. 12 Unconditional (α, β) and conditional (on arc 3 and 4 congestion states at the 
same time where C: congested and U: uncongested state) congestion state 
probabilities of arc 1 during the day. 

4.3 Results 

This section highlights the potential savings from explicit modeling of recurrent 

congestion with correlated arcs for dynamic routing policy. We compare the results of 

following three routing policies: 

3. Static routing policy (SRP): In practice, almost all commercial logistics 

software aims to identify a static path from an origin to a destination. We select 

the path with the least expected cost (for most of the time throughout day) as 

the static path for each OD pair.  

4. Dynamic routing policy (DRP): In this policy, we route the vehicle based on 

dynamic routing policy without modeling arc correlations. 

5. Dynamic routing policy with arc corelation (DRP-A): In this policy, we route the 

vehicle based on the policy defined in this paper. 
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Note that both dynamic routing policies does not identify an optimal path, 

rather, identifies the best policy based on the time of the day, location of the vehicle, 

and the traffic state of the network . 

Simulation of the network dynamics can be done in two different ways: 

simulation of arcs using estimated arc parameters (from historical data) 

independently or using the available historical data each day at a simulation run. In 

the former option independent simulation of each arc’s congestion states leads to 

uncorrelated arc states and might cause incorrect simulation of travel times. Also, in 

most real transportation networks, the congestion states among the arcs are highly 

correlated. To avoid such problems, we chose the latter: We ran the simulations for 

66 weekdays of June, July, and August 2010 and obtained travel times from arc 

speeds (with assuming the speed does not change when traversing the arc and 

equals to arrival speed to the arc) at different departure times. Although the number 

of runs was small, we believe it captured the dependency of arc congestion states 

better and accurately predicts the routing scenario’s outcome. 

To compare the results of different policies given above we identified 6 OD 

pairs as follows: OD1: 32 to 7; OD2: 7 to 32; OD3: 8 to 15; OD4: 15 to 8; OD5: 24 to 

30; OD6: 30 to 24.  Fig. 13 plots the median travel times for every half hour between 

6am and 9pm for all policies. Fig. 14 plots the corresponding median percentage 

savings of employing DRP-A over SRP and DRP. It is clear that savings are higher (if 

there is) and rather significant during peak traffic times and lower when there is not 

much congestion, as can be expected. These results clearly illustrate the importance 

of using dynamic routing policy with arc correlation. 
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Fig. 13 Median travel times of 66 experiment days for every half hour between 6am 
and 9pm. DRP-A: Dynamic routing policy with arc correlations. DRP: Dynamic routing 
policy. SRP: Static routing policy.  
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Fig. 14 Savings from DRP-A over DRP and SRP in travel times for 66 experiment 
days for every half hour between 6am and 9pm. DRP-A: Dynamic routing policy with 
arc correlations. DRP: Dynamic routing policy. SRP: Static routing (baseline path) 
policy. 

5 Conclusions 

Routing in transportation networks that involve arc interactions have not been 

well studied in the literature. The case of dynamic routing in a stochastic time-

dependent network with correlated arc travel times is formulated. The proposed 

model effectively exploits real-time traffic information from Intelligent Transportation 

Systems (ITS). With the aid of this information and technologies, our models can help 
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to a destination in road networks. We model the problem as a non-stationary 

stochastic shortest path problem. We propose effective data driven methods for 

accurate modeling and estimation of recurrent congestion states and their state 

transitions. A Markov decision process (MDP) formulation that generates a routing 

“policy” to select the best node to visit next based on a “state” (vehicle location, time 

of day, and network congestion state) is proposed to solve the problem. While 

optimality is only guaranteed if we employ the full state of the transportation network 

to derive the policy, we recommend a limited look-ahead approach to prevent 

exponential growth of the state space. The proposed model also estimates incident-

induced arc travel time delay using a stochastic queuing model and uses that 

information for dynamic re-routing (rather than anticipate these low probability 

incidents).  

ITS data from Los Angeles road network, collected by Caltrans PEMS, is used 

to illustrate the performance of the proposed models. Our experiments clearly 

illustrate the superior performance of the stochastic dynamic programming derived 

dynamic routing policies when they accurately account for recurrent congestion (i.e., 

they differentiate between congested and uncongested traffic states). Experiments 

show that as the uncertainty (standard deviation) in the travel time information 

increases, the dynamic routing policy that takes real-time traffic information into 

account becomes increasingly superior to static path planning methods. As expected, 

savings are higher during peak travel times and lower when traffic tends to be free-

flow.  
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With the growing availability of reliable traffic information to drivers, more 

drivers in the network will be adjusting their paths based on newly acquired 

information. Anticipating and responding to the behavior of the rest of the traffic will 

become critical for effective dynamic routing and is recommended for further 

research. 
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CHAPTER V: CONCLUSIONS & FUTURE RESEARCH 

 

This dissertation proposes practical dynamic routing models that can 

effectively exploit real-time traffic information from Intelligent Transportation Systems 

(ITS) regarding recurrent congestion and non-recurrent congestion stemming from 

incidents (e.g., accidents) in transportation network. With the aid of this information 

and technologies, our models can help drivers avoid or mitigate trip delays by 

dynamically routing the vehicle from an origin to a destination in road networks.  

We first model the problem as a non-stationary stochastic shortest path 

problem with recurrent congestion. We propose effective data driven methods for 

accurate modeling and estimation of recurrent congestion states and their state 

transitions. A Markov decision process (MDP) formulation that generates a routing 

“policy” to select the best node to go next based on a “state” (vehicle location, time of 

day, and network congestion state) is proposed to solve the problem. While optimality 

is only guaranteed if we employ the full state of the transportation network to derive 

the policy, we recommend a limited look-ahead approach to prevent exponential 

growth of the state space.  

While non-recurrent congestion is known to be responsible for a major part of 

network congestion, extant literature mostly ignores this in proposing dynamic routing 

algorithms. We integrate non-recurrent congestion to our initial model. The proposed 

model estimates incident-induced arc travel time delay using a stochastic queuing 
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model and uses that information for dynamic re-routing (rather than anticipate these 

low probability incidents).  

We also proposed an extension of stochastic TSP and aims to find a robust 

milk-run tour of a given set of sites (i.e., DC and suppliers) while dynamically routing 

on a stochastic time-dependent road network between sites’ visits to meet the time 

windows requirements. The solution is comprised of static TSP tour of sites that 

remains fixed for extended periods (e.g., months) and a dynamic routing policy 

between pairs of sites. The static tour is motivated by the fact that tours cannot be 

changed on a regular basis (e.g., daily) for milk-run pickup and delivery in routine JIT 

production. The objective trades off the expected duration of the tour with its 

variability, capturing the tradeoff between transportation efficiency and on-time 

delivery service level.  

We proposed a sequential solution approach to TSP with dynamic routing 

problem. We first determined the travel time distributions between each pair of sites 

by formulating and solving a stochastic dynamic programming formulation for the 

dynamic routing problem on a stochastic time-dependent road network. The dynamic 

routing model exploits the real-time traffic information available from ITS. We 

proposed effective data driven methods for accurate modeling and estimation of 

recurrent congestion states and their state transitions. Whereas we assumed arcs 

are independent in generating dynamic routing policies, we simulated dynamic 

routing policies using historic data to capture the arc dependencies in all our 

experiments. Using simulation results, we estimated the site-to-site travel time 

distributions. Once the travel time distributions were estimated for every pair of sites 
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at different departure times, we employed a stochastic time-dependent dynamic 

programming (STD-DP) to solve the problem and select the robust tour minimizing 

the mean-variance objective of the trip time. We provided a time window setting 

procedure to increase on-time delivery performance and support workload leveling. 

Network problems that include arc interactions have not been well studied in 

the literature. We improved our Markov decision process (MDP) formulation so that 

arc interactions are also captured. We proposed dynamic routing policy to select the 

best node to go next based on “state” (vehicle location, time of day, and network 

congestion state-)and  its transition where arc transition probabilities constructed in 

conjunction with its correlated (e.g. downstream) arcs.  

All our methods are tested with real network ITS data either from South-East 

Michigan road network, collected in collaboration with Michigan Intelligent 

Transportation System Center & Traffic.com or from Los Angeles road network, 

collected by Caltrans PEMS is used to illustrate the performance of the proposed 

models. Our experiments clearly illustrate the superior performance of the SDP 

derived dynamic routing policies when they accurately account for recurrent 

congestion (i.e., they differentiate between congested and uncongested traffic 

states), non-recurrent congestion attributed to incidents, and arc interactions. 

Experiments show that as the uncertainty (standard deviation) in the travel time 

information increases, the dynamic routing policy that takes real-time traffic 

information into account becomes increasingly superior to static path planning 

methods. The savings however depend on the network states as well as the time of 

day. The savings are higher during peak times and lower when traffic tends to be 
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static (especially at nights). Experiments also show that explicit treatment of arc 

interactions and non-recurrent congestion stemming from incidents can yield 

significant savings. 

We also tested our proposed TSP with dynamic routing methodology on a real 

case study application using the road network from Southeast Michigan. This study 

corresponded to an automotive JIT production system where an OEM’s DC is 

replenished by milk-run pickup and deliveries from multiple suppliers. The study road 

network covered major freeways and highways in and around the Detroit 

metropolitan area. To quantify the benefits of using dynamic policy, we compared the 

selected robust STD-TSP tours with those of the static routing policy between pair of 

sites. We first experimented without time windows for both static and dynamic 

policies. The results showed that the dynamic policy saves 8.1% in trip duration on 

the average and reduces standard deviation of trip duration by 21.6% on the 

average. After setting the time windows according to the expected site arrival times, 

we showed that the on-time delivery performance can be increased up to 8% for a 

site and up to 4% for a tour by using dynamic routing policy. Lastly, we showed that it 

is possible to further increase the on-time performance by setting the time windows of 

dynamic routing policy according to those of the static policy. We concluded that the 

dynamic policy not only decreases transportation cost (measured by trip time), but 

also increases the delivery service level performance (measured by on-time delivery). 

There are several promising extensions of this research. With the availability 

of more mobile traffic information, more drivers may adjust their paths based on 

newly acquired information. Anticipating and responding to the behavior of the rest of 
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the traffic incorporated in a dynamic routing framework is recommended for further 

research. 

Another future study is to integrate the proposed approach within the more 

general problem of VRP, where the supplier-route assignment decisions are made in 

addition to the routing of individual vehicles. 
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Appendix 

Lemma 1. The incident-induced delay parameters (c,q), satisfying the 

following condition for the minimal waiting time of   (smallest discrete time interval), 

ensures that waiting at the incident node does not reduce the expected travel time. 

   , ,a k a k

q
t s t s

c
        

Proof. Let a A denote the incident arc with origin and destination nodes 

 1, k kn n . Further, let  0
1 , ,k k a k k inct t t s t t     represent the arrival time to the node 

1kn  after departing from kn at time kt . Then the expected travel time from node kn  to 

the trip destination node ( dn ) under an optimal policy is 

      0 * 0
1, , , , , ,a k k inc k k a k k incE t s i t t F n t t s t t w      , where the second term is the 

cost-to-go from node 1kn  at time 1kt   with congestion state vector w  for future arcs at 

1kt .  Let’s denote the expected travel time from node kn  to the trip destination node (

dn ) at time kt  and kt    with  kD t  and  kD t   , respectively. 

      0 * 0
1, , , , , ,k a k k inc k k a k k incD t t s t t F n t t s t t w     

 

      0 * 0
1, , , , , ,k a k k inc k k a k k incD t t s t t F n t t s t t w               

 

Assumption 3 states that at any node arrival time  kt , waiting at the node 

does not lead to lower destination arrival time than without waiting. We write this 

condition for the minimal waiting time of   unit time (smallest discrete time interval), 
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     E D t E D t     . 

We assume that cost-to-go functions alone satisfy this relationship as we 

assumed that link travel times (in both congestion states)  and state transitions are 

such that waiting at a node does not provide travel time savings in the recurrent 

congestion (e.g., first-in-first-out property). For   waiting time this leads to the 

following relation for every kt : 

     * 0 * 0
1 1, , , , , , , ,k k a k k inc k k a k k incF n t t s t t w F n t t s t t w              

. 

Hence, we have the following relation: 

     0 0, , , ,a k k inc a k k incE t s t t E t s t t         
, 

where, 

       
    

0 0

0

, , , , 0 , , , ,

, , , , , ,

a k k inc a k a k inc

a k a k inc

E t s t t E t s i c q i t t

t s E c q i t t

   

  

     

    
 

and,  ,a kt s  is the mean travel time on arc a at time kt with congestion state 

s. The expression   0, , , ,a k incE c q i t t     can be expressed in two alternative 

closed-form expressions.  In the first case, we assume that the vehicle experiences 

the maximum delay (i.e. fixed-delay regime in Fu  and Rilett [31]), e.g., 

    0 0, , , ,a k inc k inc

q
E c q i t t t t

 



     . 

The other alternative is the variable-delay regime in which the vehicle 

experiences a delay somewhere between the no-delay and the maximum delay [31]. 

    0 0, , , ,a k inc inc k inc

c c q
E c q i t t t t

c c

   
     

. 
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Note that the waiting decision at the incident node is reasonable only in the 

case of incident queue dissipation, i.e. either the incident is cleared but the queue is 

not fully dissipated or the incident is not cleared but the vehicle will exit the link before 

the clearance. This corresponds to the variable-delay regime and we will show that 

this holds true by comparing the conditions derived for each case. We first express 

the no node waiting condition under incident for variable-delay regime as: 

     
         
       

   

0 0

0 0

0 0

, , , ,

, , , , , , , , , ,

, ,

, , .

a k k inc a k k inc

a k a k inc a k a k inc

a k a k k inc k inc

a k a k

E t s t t E t s t t

t s E c q t t t s E c q t t

c q c q
t s t s t t t t

c c
q

t s t s
c

 

     

 

 

        

            

 
          

     

When we take the limit  0 , we have, 
 ,

|
k

a
t t

d t s q

dt c


   . 

In the maximum delay case, the no node waiting condition can be expressed 

as: 

     
         
       

   

0 0

0 0

0 0

, , , ,

, , , , , , , , , ,

, ,

, , .

a k k inc a k k inc

a k a k inc a k a k inc

a k a k k inc k inc

a k a k

E t s t t E t s t t

t s E c q t t t s E c q t t

q q
t s t s t t t t

q
t s t s

 

     

  
 

 


        

            

 
          

     

When we take the limit  0 , we have, 
 ,

|
k

a
t t

d t s q

dt


   . 

Note that since the capacity under incident is less than regular capacity, i.e. 

c  , we have the condition for variable-delay regime more strict than the fixed-
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delay regime, i.e., / /q c q   . Hence, for arbitrary waiting time  , no node waiting 

condition under incident is: 

    
   , , .a k a k

q
t s t s

c
      

   □ 
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ABSTRACT 

DYNAMIC ROUTING ON STOCHASTIC TIME-DEPENDENT NETWORKS  
USING REAL-TIME INFORMATION 

 

by 
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Advisor: Dr. Ratna Babu Chinnam 

Major: Industrial Engineering 

Degree: Doctor of Philosophy 

In just-in-time (JIT) manufacturing environments, on-time delivery is one of the 

key performance measures for dispatching and routing of freight vehicles. Both the 

travel time delay and its variability impact the efficiency of JIT logistics operations, 

that are becoming more and more common in many industries, and in particular, the 

automotive industry. In this dissertation, we first propose a framework for dynamic 

routing of a single vehicle on a stochastic time dependent transportation network 

using real-time information from Intelligent Transportation Systems (ITS). Then, we 

consider milk-run deliveries with several pickup and delivery destinations subject to 

time windows under same network settings. Finally, we extend our dynamic routing 

models to account for arc traffic condition dependencies on the network. 

Recurrent and non-recurrent congestion are the two primary reasons for travel 

time delay and variability, and their impact on urban transportation networks is 

growing in recent decades. Hence, our routing methods explicitly account for both 

recurrent and non-recurrent congestion in the network. In our modeling framework, 

we develop alternative delay models for both congestion types based on historical 
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data (e.g., velocity, volume, and parameters for incident events) and then integrate 

these models with the forward-looking routing models. The dynamic nature of our 

routing decisions exploits the real-time information available from various ITS 

sources, such as loop sensors.  

The forward-looking traffic dynamic models for individual arcs are based on 

congestion states and state transitions driven by time-dependent Markov chains. We 

propose effective methods for estimation of the parameters of these Markov chains. 

Based on vehicle location, time of day, and current and projected network congestion 

states, we generate dynamic routing policies using stochastic dynamic programming 

formulations. 

All algorithms are tested in simulated networks of Southeast-Michigan and Los 

Angeles, CA freeways and highways using historical traffic data from the Michigan 

ITS Center, Traffic.com, and Caltrans PEMS. 
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