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Brief Report 
Higher Order C(t, p, s) Crossover Designs 

 
James F. Reed III 

Christiana Care Hospital System, 
Newark, Delaware 

 
 
A crossover study is a repeated measures design in which each subject is randomly assigned to a sequence 
of treatments, including at least two treatments. The most damning characteristic of a crossover study is 
the potential of a carryover effect of one treatment to the next period. To solve the first-order crossover 
problem characteristic in the classic AB|BA design, the design must be extended. One alternative uses 
additional treatment sequences in two periods; a second option is to add a third period and repeat one of 
the treatments. Assuming a traditional model that specifies a first-order carryover effect, this study 
investigates the following alternative crossover trial designs: (1) two-treatment two-period four-sequence 
design (Balaam, 1968) design, (2) two treatments-three period-four sequence design (Ebbutt, 1984), and 
(3) three treatment-two period-six sequence design (Koch, 1983). Each design has attractive properties 
and, when properly applied, allows both treatment and carryover effects to be estimated. 
 
Key words: Crossover design, Balaam’s crossover design, Ebbutt’s crossover design, Koch crossover 

design. 
 
 

Introduction 
The most damning characteristic of a crossover 
study is the potential for a carryover effect of 
one treatment to the next period. To manage 
this, researchers typically include washout 
periods in study designs. These washout periods 
are thought to be of sufficient length to negate 
any lingering effect of one treatment into the 
next period. In this article, and in most of the 
literature on crossover designs, the persistence 
of a carryover effect is assumed to (1) last for 
only a single period (a first-order carryover 
effect), and (2) a carryover effect is different for 
different treatments. If a carryover effect is 
suspected in any crossover trial, then a term for 
this effect must be included in the model and 
accounted for in subsequent analysis. 

This study assumes a traditional model 
that specifies a first-order carryover effect and 
outlines three higher-order crossover designs:  
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(1) a two-treatment two-period four-sequence 
design (Balaam, 1968), (2) a two treatments-
three period-four sequence design (Ebbutt, 
1984), and (3) a three treatment-two period-six 
sequence (Koch, 1983) design. Each design has 
appealing properties and - when properly 
applied - estimate both treatment and carryover 
effects. 
 
The Traditional Crossover Design Model with 
Continuous Data 

The traditional crossover design with t-
treatments, p-periods, and s-sequences, C(t, p, 
s), assumes that each treatment has a simple 
first-order carryover effect that does not interact 
with the direct effect of the treatment in the 
subsequent period, and that subject effects are 
either fixed or random. Though a variety of 
models are considered in the literature, virtually 
all work in crossover designs uses the same 
underlying statistical model. This model 
assumes the following for the response of patient 
yij: If yij denotes the observed response of 
subject j (j = 1, …, n) in period i (i = 1, …, p), 
then 
 

yij = µ + πi + τd(i,j) + λd(i-1,j) + βj + εij. 
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Where πi is the effect of period i, τd(i,j) is the 
direct effect of treatment D, λd(i-1,j) is the simple 
first-order carryover effect of treatment D, d(i, j) 
is the treatment allocated to patient j in period i, 
and λd(0,j) = 0 for all j. It is assumed that all 
effects are fixed effects. βj is the effect of patient 
j and εij is the error term. The random subject 
effect, βj, and the experimental error, εij, are 
assumed to be mutually independently 
distributed as N (0, σ2

β) and N (0, σ2
ε).  

The primary purpose of a crossover 
design comparing treatments A and B is to 
estimate the treatment contrast τA – τB. The 
period effects (π1 and π2), the first order 
carryover effects (λA and λB) and μ are typically 
regarded as nuisance parameters that are 
desirable to eliminate from any estimate. To 
solve the first-order crossover problem in the 
two-treatment two-period crossover design, one 
possible solution is to extend the design to four 
sequences. Balaam’s C(2, 2, 4) design (Balaam, 
1968), AA|AB|BA|BB, is generally accepted as 
optimal for estimating treatment effects and is 
also more efficient than the classic C(2, 2, 2) 
design (Laska, Meisner & Kushner, 1983). If the 
carryover effect is absent, this design is 
inefficient because many subjects likely will not 
contribute any information to the estimate of 
treatment differences in the two sequences AA 
and BB. Using Balaam’s design, unbiased 
estimates of the treatment differences and 
carryover effects are easily derived (see Table 
1). 

The second design strategy is to extend 
the classic design by adding a third period and 
repeating one of the two treatments. The 
treatment sequences will ensure that the first two 
trial periods constitute a conventional two-
period crossover trial if the third treatment 
period leads to excessive subject drop-outs. 
Ebbutt’s efficient C(2, 3, 4) design, the ABB| 
BAA|ABA|BAB (Ebbutt, 1984) illustrates this 
second strategy. This design, with equal number 
of subjects per sequence, is able to estimate all 
parameters in the traditional model and provide 
an unbiased estimate of the treatment contrast 
(Ebbutt, 1984; Heydat & Stufken, 2003; Liang 
& Carriere, 2010) (see Table 2). The expected 
values for each of the sequences are: E[c1] = E 
[(2y11 − y21 − y31)], E[c2] = E [(2y21 − y22 − y32)], 
E[c3] = E [(2y31 − y32 − y33)], and E[c4] = E 

[(2y41 − y42 − y43)]. The linear contrast of ½(c1 – 
c2 + c3 – c4) forms an unbiased estimate of τA − 
τB. In testing for carryover effect, let ci, i = 5, …, 
8 = E[y1i + y2i - y3i]. The contrast c5 – c6 + c7 – c8 
forms an unbiased estimate of λA − λB. 

Koch’s crossover design comparing two 
treatments A and B to a placebo P, uses six 
sequences AB, BA, AP, BP, PA, and PB (see 
Table 3). These six sequences enable the 
estimation of period effects, treatment effects 
and carryover effects from within-subject 
information. The four hypotheses of interest are: 
(1) τA − τB, (2) τA − τP, (3) τB − τP, and (4) λB – 
λA. The linear contrast (c5 – c6) forms an 
unbiased estimate of τA − τB; the linear contrast 
(c4 – c2) forms an unbiased estimate of τA − τP; 
the linear contrast (c1 – c3) forms an unbiased 
estimate of τB − τP; and the linear contrast (c2 – 
c1) forms an unbiased estimate of λB – λA. 

Koch’s C(3, 2, 6) design has six 
sequences, AB, BA, AC, CA, BC and CB (see 
Table 4). In this design, the hypotheses of 
interest are: (1) τA − τB, (2) τA − τC, (3) τB − τC, 
(4) λA – λB, (5) λA – λC, and (6) λB – λC. The 
linear contrast (c1 – c3) forms an unbiased 
estimate of τB − τC; the linear contrast (c2 – c5) 
forms an unbiased estimate of τA − τC; and the 
linear contrast (c4 – c6) forms an unbiased 
estimate of τB − τA. For the three carryover 
hypotheses the linear contrast (c1’ – c2’) forms an 
unbiased estimate of λA – λB; the linear contrast 
(c3’ – c4’) forms an unbiased estimate of λA – λC; 
and the linear contrast (c5’ – c6’) forms an 
unbiased estimate of λB – λC. 
 

Conclusion 
Optimal crossover designs are statistically 
efficient and require fewer subjects for the same 
number of observations than do non-crossover 
designs. Because variability is typically less 
within a subject than between different subjects, 
there is a corresponding increase in the precision 
of observations. The result: fewer subjects are 
required to detect a treatment difference. For 
example, if Nparallel is the total number of 
subjects required for a two-way parallel trial to 
detect a treatment effect (δ) with 5% 
significance and 80% power, the total number of 
subjects Ncrossover required for a 2 x 2 crossover 
trial to detect the same effect is approximately 
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Ncrossover = (1 − r)Nparallel/2, where r is a 
correlation coefficient among the repeated 
measurements of the primary endpoint. 
The major concern - and subject of countless 
discussions - in a crossover study is the presence 
of a carryover effect. The standard way to avoid 
the carryover effect is to include a rest period 
between successive periods, hoping that the 
carryover effect will wash out. The inclusion of 
a rest period between each pair of successive 
periods increases the total duration of the 
experiment and there is no guarantee that any 
carryover effect will be eliminated. 

To address the potential of first-order 
carryover effects, the classic AB|BA crossover 
design could easily be extended to one of the 
designs outlined herein. In effect, either the 
added sequence(s) or added treatment period 
permits direct estimates of treatment effect and 
examination of any carryover effects. 
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Table 1: Balaam’s Design (AB|BA|AA|BB) 
 

AB|BA Design Period 1 (k = 1) Period 2 (k = 2) 

Sequence AB (i = 1) μ + π1 + τA µ + π2 + τB + λA 

Sequence BA (i = 2) µ + π1 + τB µ + π2 + τA + λB 

Sequence AA (i = 3) μ + π1 + τA µ + π2 + τA + λA 

Sequence BB (i = 4) μ + π1 + τB µ + π2 + τB + λB 

 

Table 1 Notes: 
 

Sequence AB (i = 1): E(yAB,1) = μAB,1 = μ + π1 + τA, E(yAB,2) = μAB,2 = μ + π2 + τB + λA 
Sequence BA (i = 2): E(yBA,1) = μBA,1 = μ + π1 + τB, E(yAB,2) = μBA,2 = μ + π2 + τA + λB 
Sequence AA (i = 3): E(yBA,1) = μAA,1 = μ + π1 + τA, E(yAB,2) = μBA,2 = μ + π2 + τA + λA 
Sequence BB (i = 4): E(yBA,1) = μBA,1 = μ + π1 + τB, E(yAB,2) = μBA,2 = μ + π2 + τB + λB 
 

In sequence AB, contrast c1 has expected value: E [c1] = E[y11 – y21] = (π1 – π2) + (τA – τB) – λA 
In sequence BA, contrast c2 has expected value: E [c2] = E[y21 – y22] = (π1 – π2) – (τA – τB) – λB 
In sequence AA, contrast c3 has expected value: E [c3] = E[y31 – y32] = (π1 – π2) – λA 
In sequence BB, contrast c4 has expected value: E [c4] = E[y41 – y42] = (π1 – π2) – λB 
 

In sequence AB, contrast c5 has expected value: E [c5] = E[y11 + y21] = 2µ + (π1 + π2) + (τA + τB) + λA 
In sequence BA, contrast c6 has expected value: E [c6] = E[y21 + y22] = 2µ + (π1 + π2) + (τA + τB) + λB 
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Table 2: Ebbutt AAB|BAA|ABA|BAB Design 
 

AB|BA Design Period 1 (k = 1) Period 2 (k = 2) Period 3 (k = 3) 

ABB (i = 1) µ + π1 + τA µ + π2 + τB + λA µ + π3 + τB + λB 

BAA (i=2) µ + π1 + τB µ + π2 + τA + λB µ + π3 + τA + λA 

ABA (i = 3) µ + π1 + τA µ + π2 + τB + λA µ + π3 + τA + λB 

BAB (i = 4) µ + π1 + τB µ + π2 + τA + λB µ + π3 + τB + λA 

 
Table 2 Notes: 
 

ABB (i = 1): E(yABB,1) = μ + π1 + τA, E(yABB,2) = μ + π2 + τA + λB, E(yABB,3) = μ + π3 + τA + λB 
BAA (i = 2): E(yBAB,1) = µ + π1 + τB, E(yBAB,2) = µ + π2 + τA + λB, E(yBAB,2) = µ + π3 + τA + λA 
ABA (i = 3): E(yABA,1) = μ + π1 + τA, E(yABA,2) = μ + π2 + τA + λA, E(yABA,3) = μ + π3 + τA + λB 
BAB (i = 4): E(yAAB,1) = μ + π1 + τB, E(yAAB,2) = μ + π2 + τA + λB , E(yAAB,3) = μ + π3 + τB + λA 
 
In sequence ABB, the expected value E[c1]=E[(2y11 − y21 − y31)]={(2π1 − π2 − π3) + 2(τA − τB) − λA − λB} 
In sequence BAA, the expected value E[c2]=E[(2y21 − y22 − y32)]={(2π1 − π2 − π3) + 2(τA − τB) − λA − λB} 
In sequence ABA, the expected value E[c3]=E[(2y31 − y32 − y33)]={(2π1 − π2 − π3) + (τA − τB) − λA − λB } 
In sequence BAB, the expected value E[c4]=E[(2y41 − y42 − y43)]={(2π1 − π2 − π3) − (τA − τB) − λA − λB} 
 
In sequence ABB, the expected value E[c5]=E[(y11 + y21 - y31)]={2µ + (π1 + π2 - π3) + τA + (λA − λB)} 
In sequence BAA, the expected value E[c6]=E[(y21 + y22 − y32)]={2µ + (π1 + π2 - π3) + τB - (λA − λB)} 
In sequence ABA, the expected value E[c7]=E[(y31 + y32 − y33)]={2µ + (π1 + π2 - π3) + τB + (λA − λB)} 
In sequence BAB, the expected value E[c8]=E[(y41 + y42 − y43)]={2µ + (π1 + π2 - π3) + τA – (λA − λB)} 
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Table 3: Koch Design (Treatments A, B and Placebo P) 
 

Sequence Period 1 (k = 1) Period 2 (k = 2) 

AB (i = 1) µ + π1 + τA µ + π2 + τB + λA 

BA (i = 2) µ + π1 + τB µ + π2 + τA + λB 

AP (i = 3) µ + π1 + τA µ + π2 + τP + λA 

BP (i = 4) µ + π1 + τB µ + π2 + τP + λB 

PA (i = 5) µ + π1 + τP µ + π2 + τA + λP 

PB (i = 6) µ + π1 + τP µ + π2 + τB + λP 

 
Table 3 Notes: 

 
Sequence AB (i = 1): E (yAB,1) = µ + π1 + τA, E (yAB,1) = µ + π2 + τB + λA 
Sequence BA (i = 2): E (yAB,1) = µ + π1 + τB, E (yAB,1) = µ + π2 + τA + λB 
Sequence AP (i = 3): E (yAB,1) = µ + π1 + τA, E (yAB,1) = µ + π2 + τP + λA 
Sequence BP (i = 4): E (yAB,1) = µ + π1 + τB, E (yAB,1) = µ + π2 + τP + λB 
Sequence PA (i = 5): E (yAB,1) = µ + π1 + τP, E (yAB,1) = µ + π2 + τA + λP 
Sequence PB (i = 6): E (yAB,1) = µ + π1 + τP, E (yAB,1) = µ + π2 + τB + λP 
 
In sequence AB, contrast c1 has expected value: E[c1] = E[(y11 – y12)] = (π1 – π2) + (τA – τB) – λA 
In sequence BA, contrast c2 has expected value: E[c2] = E[(y21 − y22)] = (π1 – π2) – (τA – τB) – λB 
In sequence AP, contrast c3 has expected value: E[c3] = E[(y31 – y32)] = (π1 – π2) + (τA – τP) – λA 
In sequence BP, contrast c4 has expected value: E[c4] = E[(y41 – y42)] = (π1 – π2) + (τB – τP) – λB 
In sequence PA, contrast c4 has expected value: E[c5] = E[(y51 – y52)] = (π1 – π2) – (τA – τP) – λP 
In sequence PB, contrast c6 has expected value: E[c6] = E[(y61 – y62)] = (π1 – π2) – (τB – τP) – λP 
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Table 4: Koch Design (Three Treatments, Two Periods) 
 

Sequence Period 1 (k = 1) Period 2 (k = 2) 

AB (i = 1) µ + π1 + τA µ + π2 + τB + λA 

BA (i = 2) µ + π1 + τB µ + π2 + τA + λB 

AC (i = 3) µ + π1 + τA µ + π2 + τC + λA 

CA (i = 4) µ + π1 + τC µ + π2 + τA + λC 

BC (i = 5) µ + π1 + τB µ + π2 + τC + λB 

CB (i = 6) µ + π1 + τC µ + π2 + τB + λC 

 
Table 4 Notes: 
 

Sequence AB (i = 1): E(yAB,1) = µ + π1 + τA, E(yAB,2) = µ + π2 + τB + λA 
Sequence BA (i = 2): E(yAB,1) = µ + π1 + τB, E(yAB,2) = µ + π2 + τA + λB 
Sequence AC (i = 3): E(yAB,1) = µ + π1 + τA, E(yAB,2) = µ + π2 + τC + λA 
Sequence CA (i = 4): E(yAB,1) = µ + π1 + τC, E(yAB,2) = µ + π2 + τA + λC 
Sequence BC (i = 5): E(yAB,1) = µ + π1 + τB, E(yAB,2) = µ + π2 + τC + λB 
Sequence CB (i = 6): E(yAB,1) = µ + π1 + τC, E(yAB,2) = µ + π2 + τB + λC 
 
In sequence AB, contrast c1 has expected value: E[c1] = E[(y11 – y12)] = (π1 – π2) + (τA – τB) – λA 
In sequence BA, contrast c2 has expected value: E[c2] = E[(y21 – y21)] = (π1 – π2) – (τA – τB) – λB  
In sequence AC, contrast c3 has expected value: E[c3] = E[(y31 – y21)] = (π1 – π2) + (τA – τC) – λA  
In sequence CA, contrast c4 has expected value: E[c4] = E[(y41 – y21)] = (π1 – π2) – (τA – τC) – λC  
In sequence BC, contrast c5 has expected value: E[c5] = E[(y51 – y21)] = (π1 – π2) + (τB – τC) – λB 
In sequence CB, contrast c6 has expected value: E[c6] = E[(y61 – y21)] = (π1 – π2) – (τB – τC) – λC 
 
In sequence AB, contrast c1’ has expected value: E[c1’] = E[(y11 + y12)] = 2µ + (π1 + π2) + (τA + τB) + λA  
In sequence BA, contrast c2’ has expected value: E[c2’] = E[(y21 + y22)] = 2µ + (π1 + π2) + (τA + τB) + λB  
In sequence AC, contrast c3’ has expected value: E[c3’] = E[(y31 + y32)] = 2µ + (π1 + π2) + (τA + τC) + λA  
In sequence CA, contrast c4’ has expected value: E[c4’] = E[(y41 + y42)] = 2µ + (π1 + π2) + (τA + τC) + λC  
In sequence BC, contrast c5’ has expected value: E[c5’] = E[(y51 + y52)] = 2µ + (π1 + π2) + (τB + τC) + λB 
In sequence CB, contrast c6’ has expected value: E[c6’] = E[(y61 + y62)] = 2µ + (π1 + π2) + (τB + τC) + λC 
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