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CHAPTER I. INTRODUCTION 

 

Reduction in functional renal mass 

 

Renal function is critical to life as the kidneys are responsible for filtering wastes, toxins and 

fluids from the blood stream. The ability of the organ to function is a result of the collective 

effort of a number of different types of kidney cells. As shown in Figures 1-1 and 1-2, the outer 

section of the kidney is called the renal cortex and the inner section is called the medulla. The 

kidneys are covered by a layer called the capsule. The nephron, the primary structural unit of the 

kidneys, is comprised of specialized epithelial cells, including those of the glomerulus, proximal 

tubule, the loop of Henle, distal tubules, and collecting duct, each with its own distinctive 

morphology, physiology and biochemistry. Kidney cells display a higher susceptibility to several 

toxicants due to physiological and biochemical reasons (Lash and Cummings, 2010). 

Physiological factors include the fact that the kidneys receive 25% of the cardiac output, which 

ensures that high levels of toxicants are delivered to renal cells. The kidneys also have a 

tremendous ability to concentrate solutes, which results in high concentrations of toxicants in the 

medullary lumen and interstitium. Biochemical factors include the presence of several 

biotransformation enzymes that catalyze the formation of toxic metabolites and reactive 

intermediates such as cytochrome P450 monooxygenases, glutathione S-transferases and flavin-

containing monooxygenases. In addition, the high metabolic rate and workload of renal cells also 

increases their sensitivity to toxicants. 
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It is well known that reductions in functional renal mass occur in humans during aging and 

severe kidney damage from diseases, injuries, infections and congenital conditions and after 

nephrectomy. Nephrectomy, or surgical removal of a kidney or a section of a kidney, is 

performed for treatment of unilateral, secondary renal cancer, infections and for kidney 

transplantation. The incidence of reductions in renal mass is increasing in the U.S. and represents 

a significant challenge to public healthcare. The number of patients treated with dialysis or 

kidney transplantation was projected to increase from 340,000 in 1999 to 651,000 in 2010 

(Holcomb, 2005). Reduction of renal mass due to nephrectomy results in increases in the size 

(hypertrophy) and function of the remnant kidney cells, most prominently in the proximal tubular 

(PT) region (Meyer et al., 1996), and this multistep adaptive process is called compensatory 

renal hypertrophy. 

 

Studies have shown that surgical removal of one kidney in experimental animals and patients 

was performed in the nineteenth century and led to the observation that the remaining kidney 

subsequently undergoes compensatory renal growth (Nowinski, 1969). In adult animals, 80% of 

compensatory renal growth following uninephrectomy is reportedly due to hypertrophy, an 

increase in cell size predominantly of proximal tubules, whereas 15-30% of growth can be 

ascribed to hyperplasia, an increase in cell number (Johnson and Vera, 1966; Johnson, 1969). 
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Figure 1-1. Kidney Structure. 

From Campbell and Reece (2005). 
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Figure 1-2. From blood filtrate to urine: A closer look. 

From Campbell and Reece (2005). 
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Compensatory renal hypertrophy: Cellular and molecular events underlying compensatory 

renal hypertrophy 

Although the phenomenon of compensatory renal hypertrophy is well known and despite 

extensive research over the past century, the mechanism of this process still remains unclear. 

After the removal of one kidney, the remaining kidney exhibits a hyperfiltration state and 

changes in glomerular hemodynamics that activate a series of growth events leading to 

compensatory growth of the remaining kidney (Wesson, 1989; Fine and Norman, 1992). This 

compensatory hypertrophy response is mediated by vasoactive molecules, cytokines, growth 

factors and increases in glomerular capillary pressure and flow (Holcomb, 2005; Meyer et al., 

1996; Fine, 1986; Shirley and Walter, 1991). 

 

The cellular characteristics of hypertrophy include increases in cellular volume, area and surface 

density of the basolateral (BLM) and brush-border plasma membranes (BBM), increases in 

cellular synthesis and content of glutathione (L-γ-glutamyl-L-cysteinyl-glycine, GSH) (Zalups 

and Lash, 1990), and mitochondrial proliferation within renal PT cells (Johnson and Amendola, 

1969). Physiological changes consist of increased glomerular filtration rate (GFR), renal blood 

flow (RBF) and water and electrolyte transport (Shirley and Walter, 1991; Wolf and Neilson, 

1991; Zalups and Henderson, 1992). Biochemical changes include increases in renal protein 

content (Coe and Korty, 1967; Halliburton and Thomson, 1967), rates of renal protein synthesis 

(Johnson and Vera Roman, 1966) and RNA synthesis (Johnson and Vera Roman, 1966; 

Ouellette, 1983) and increased mitochondrial metabolism in proximal and distal tubules (Harris 

et al., 1988; Nath et al., 1990; Shapiro et al., 1994). 
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Additionally, activities of most renal enzymes increase in the hypertrophied kidney. For 

example, increased activity of enzymes that are involved in excretion of solutes, such as the 

(Na
+
+K

+
)-stimulated ATPase (Mujais and Kurtzman, 1986; Scherzer et al., 1985) and enzymes 

that contribute to cell growth, such as ornithine decarboxylase (Brandt et al., 1972; Humphreys 

et al., 1988), guanylate cyclase, protein kinase C, enzymes of the pentose phosphate pathway 

(Schlondorff and Weber, 1976; Caramelo et al., 1988; Steer et al., 1982), choline kinase and 

choline phosphotransferase (Toback et al., 1974; Hise et al., 1984), are observed. 

 

The sequential production of different growth factors is also required to achieve coordinated 

growth of kidney cells after growth has been triggered by some unidentified kidney-specific 

signal. There is also strong evidence that a large number of factors promote kidney growth in 

cultured PT cells, including insulin, insulin-like growth factor (IGF-1), epidermal growth factor 

(EGF), hepatocyte growth factor (HGF), platelet-derived growth factor, prostaglandin E2, and 

hormones including hydrocortisone, thyroxine, arginine vasopressin and angiotensin (Fine, 1986; 

Caramelo et al., 1988; Igawa et al., 1991). Moreover, recent studies suggest that transforming 

growth factor-  (TGF- ) is one of the most important factors causing tubular cell hypertrophy 

(Franch et al., 1995; Fujita et al., 2004; Wolf et al., 1993; Sinuani et al., 2006). TGF-  induces 

hypertrophy of tubular cells through a cell cycle-dependent mechanism that involves entry of 

cells into the G1 phase, initiating G1-related events, and arresting cell cycle progression prior to 

the G1/S restriction point (Franch et al., 1995, 1997; Nagahara et al., 1999). 

 

The toxicological implications of compensatory renal growth are higher susceptibility to 

nephrotoxicants such as inorganic mercury, analgesics and cadmium metallothionein (Henry et 
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al., 1983; Houser and Berndt, 1986; Lash and Zalups, 1992; Lash et al., 1999, 2006; Molland, 

1976; Zalups, 1997; Zalups and Diamond, 1987; Zalups et al., 1992). Furthermore, previous 

studies from our lab showed that cellular GSH content was significantly higher in renal 

homogenates (whole kidney, cortex and outer stripe of the outer medulla) from 

uninephrectomized (NPX) rats, suggesting that increased GSH content is an adaptive response to 

enhanced oxidative stress (Zalups and Lash, 1990). 

 

It has been further shown that there are many factors that influence the compensatory renal 

growth response. For example, feeding a protein-rich diet increased kidney weight in NPX rats 

(Hostetter et al., 1986), administration of androgens increased kidney weight in mice and rats 

(Schlondorff et al., 1977; Blantz et al., 1988), and a greater growth response after 

uninephrectomy was observed in young rats as compared to older rats (Barrows et al., 1962). 

Conversely, starvation, protein depletion and endocrine abnormalities retard growth (Hayslet, 

1979). 

 

Compensatory renal hypertrophy, mitochondria, nephrotoxicity and clinical complications 

The mitochondria are the primary organelle for production of ATP. Reducing equivalents from 

malate and glycerol phosphate are transported from the cytoplasm into mitochondria by the 

NADH shuttle system. Pyruvate, which is a product of glycolysis, enters mitochondria and is 

metabolized by the citric acid cycle to produce NADH and FADH2. NADH and FADH2 further 

go through the electron-transport chain located on the inner mitochondrial membrane to 

synthesize ATP. The electron-transport chain consists of four enzyme complexes, denoted as 

complexes I, II, III and IV. Complex I is the NADH:ubiquinone oxidoreductase. Complex II is 
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the succinate:ubiquinone oxidoreductase. Complex III is the ubiquinol:cytochrome c 

oxidoreductase, which is a ubisemiquinone radical-generating Q cycle and can be a site at which 

1% to 2% of total oxygen consumption leaks to generate superoxide anion (O2
.-
). Complex IV is 

the cytochrome c oxidase.   

 

Under normal conditions, mitochondrial reactive oxygen species (ROS) produced in the course 

of metabolism are contained by the natural antioxidant system that protects cells from ROS-

mediated modifications. The main mitochondrial antioxidants are GSH, manganese superoxide 

dismutase and thioredoxin systems. The antioxidant capacity of mitochondria is limited 

compared to the cytoplasm and mitochondria depend on GSH transporters for their GSH supply. 

The various antioxidants play a crucial role in protection from oxidative stress, which can be 

caused by an increase in ROS or an impaired antioxidant defense system. Under various 

abnormal conditions, the rate of ROS production may exceed the natural antioxidant capacity, 

leading to oxidative stress. The primary ROS produced in the course of mitochondrial oxygen 

metabolism is superoxide anion, which is a highly reactive and cytotoxic ROS. 

 

Mitochondria are not only the main organelle that produces superoxide anion but are also the 

main targets of ROS, leading to mitochondrial dysfunction. It has been shown that compensatory 

renal hypertrophy results in increased energy demands on PT cells. To accommodate these 

energy demands, there are increased rates of mitochondrial electron transport, which produces a 

hypermetabolic state (Harris et al., 1988; Shapiro et al., 1994) that can lead to mitochondrial 

dysfunction. In addition, our previous studies also showed in isolated mitochondria from 

hypertrophied PT cells that although intramitochondrial GSH contents and activity are increased, 
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these mitochondria exhibit an enhanced basal oxidative stress and greater sensitivity to 

mitochondrial toxicants (Lash et al., 2001a). There is increasing evidence that in experimental 

animals, compensatory renal hypertrophy increases risk for later toxicological complications due 

to increased renal oxidative stress. For example, uninephrectomy and compensatory renal 

hypertrophy result in markedly altered susceptibility to injury from a broad variety of 

nephrotoxicants, including heavy metals, analgesics, and antibiotics (Zalups et al., 1992; Lash 

and Zalups, 1992; Lash et al., 1999, 2006; Molland, 1976; Zalups, 1997; Zalups and Diamond, 

1987). 

 

There is also strong evidence in experimental animals that significant reduction in renal mass 

leads to proteinuria, systemic and glomerular hypertension, glomerular hyperfiltration and 

progressive renal damage (Hostetter et al., 2001; Remuzzi et al., 2006; Santos et al., 2006). 

Studies also suggest this glomerular hypertension and glomerular hyperfiltration lead to 

pathogenesis of proteinuria and progressive glomerulosclerosis (Hostetter et al., 2001). Ever 

since the recognition of hyperfiltration injury in animals undergoing renal ablation, there has 

been concern over the extended outcome after kidney donation. There is also strong clinical 

evidence that suggests short and long-term medical risks of human renal donor nephrectomy for 

transplantation purposes. The human clinical studies that investigated the quality of life of renal 

donors found early and late health complications such as hypertension, microalbumiuria, 

hematuria and proteinuria (Azar et al., 2007; Berber et al., 2008). 
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Function and importance of thiol redox status in renal function in proximal tubules 

Due to high rates of aerobic metabolism in the proximal tubules and high exposure to a broad 

and diverse range of chemicals and drugs, the kidneys are highly dependent on adequate supply 

of the thiol-disulfide redox protectant GSH to maintain proper function. Besides the GSH 

system, there are other renal protective systems, including thioredoxin and low-molecular-weight 

thiols such as N-acetyl-L-cysteine (NAC) (Lash, 2010). Several signaling pathways also function 

in nephroprotection, such as the epidermal growth factor (EGF), mitogen activated protein kinase 

(MAPK), protein kinase B (PKB/Akt), protein kinase C (PKC), heat shock proteins (HSPs), and 

nuclear factor kappa-B (NF-ĸB) pathways; these act through modulation of redox status or by 

altering cellular pH (Lash, 2010). Small amino acids, such as glycine, are also nephroprotective. 

 

GSH is the most abundant non-protein thiol (SH) in mammalian cells. As shown in Figure 1-3, 

GSH is a tripeptide composed of the amino acids L-glutamate, L-cysteine and glycine. 

Glutathione can exist in two major forms: the antioxidant „reduced glutathione‟ tripeptide is 

called glutathione and abbreviated GSH; the oxidized form is a sulfur-sulfur linked compound 

known as glutathione disulfide or GSSG (Kidd, 1997). The GSH/GSSG ratio may be a sensitive 

indicator of oxidative stress. The high electron-donating capacity of GSH due to its sulfhydryl (-

SH) group combined with its high intracellular concentration endow GSH with great reducing 

power, which is used to regulate a complex thiol-exchange system (Franco, 2007). Glutathione is 

present inside cells mainly in its reduced GSH form. Intracellular GSH status appears to be a 

sensitive indicator of the overall health of the cell and of its ability to resist toxic challenges. 

 



11 

 

 

 

 

As shown in Figure 1-4, the primary, critical processes involving GSH are peroxide reduction, 

electrophile conjugation, glutathionylation and action as a coenzyme in detoxification, 

metabolism and hormone biosynthesis. GSH is considered the most important antioxidant in the 

human body. GSH recycles other antioxidants, such as vitamins A, C and E, keeping them in an 

active state longer and helping to prevent oxidative stress and inflammation. GSH is often called 

„the master antioxidant.‟ GSH acts as a main detoxifier by binding to toxins such as heavy 

metals, solvents and pesticides, allowing them to be excreted in urine or bile. GSH strengthens 

the immune system by boosting production of T cells that fight viral and bacterial infections. 

Elevated GSH levels help the body to produce more white blood cells. White blood cells are the 

most important cells for maintaining sterility of body fluids by serving as garbage collectors for 

the body. In other words, healthy growth and activity of white blood cells depend on availability 

of GSH. It is widely accepted that GSH also acts as a mediator of many other physiological 

reactions, including cellular signaling, metabolism of xenobiotics, thiol-disulfide exchange 

reactions, and as an important reservoir of cysteine (Franco, 2007). 
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Figure 1-3. Glutathione (GSH) structure. 

The L-glutamyl and L-cysteinyl residues are linked through the -carboxyl group of L-glutamate, 

making the isopeptide bond resistant to most proteases. The tripeptide thiol glutathione (GSH) 

has facile electron-donating capacity, linked to its sulfhydryl (–SH) group. 
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Figure 1-4. Functions of glutathione (GSH). 

The basic types of functions for GSH in cytoprotection are mentioned. 

Abbreviations: E, electrophile; GLRX, glutaredoxin; GPX, GSH peroxidase; GRD, glutathione 

disulfide reductase; GS–R, GSH conjugate; GSSG, glutathione disulfide; PRX, peroxiredoxin; 

ROH, lipid alcohol; ROOH, lipid peroxide. 

From Lash (2010). 
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As shown in Figure 1-5, GSH is synthesized in the cytoplasm by two ATP-dependent reactions, 

the glutamate-cysteine ligase (GCL) [also called γ-glutamyl cysteine synthetase (γ-GCS)] and 

GSH synthetase (GS). In the first reaction, L-cysteine and L-glutamate are combined by -

glutamyl cysteinyl synthetase. In the second reaction, GSH synthetase combines -glutamyl-

cysteine with glycine to generate GSH. Reduced glutathione (GSH) is oxidized to glutathione 

disulfide (GSSG) in a reaction catalyzed by glutathione peroxidase and GSSG is reduced to 

regenerate GSH by glutathione reductase, which uses NADPH as a hydrogen donor. GSH 

degradation is mediated by either a hydrolysis or transpeptidation reaction catalyzed by -

glutamyltransferase (GGT), followed by hydrolysis catalyzed by dipeptidase (DP) activity. The 

major difference between synthesis and degradation is that whereas degradation occurs 

extracellularly, as both GGT and DP face the external side of the BBM and GGT is selectively 

localized on the BBM, GSH synthesis occurs in the cytoplasm as GCL and GS are found 

exclusively in the cytoplasm. 

 

The highest concentration of GSH is found in the liver, which is the principal organ involved in 

the detoxification and elimination of toxic materials. As shown in Figure 1-6, the process by 

which GSH circulates throughout the body, which involves transport across plasma membranes 

and translocation between tissues, is called „Interorgan metabolism‟ (Anderson et al., 1980; 

Griffith and Meister, 1979a; Lash et al., 1988; McIntyre and Curthoys, 1980). Hepatic GSH is 

transported out of the liver by transport across either the sinusoidal or canalicular plasma 

membranes to plasma and bile, respectively (Ballatori and Dutczak, 1994; Kaplowitz et al., 



15 

 

 

 

 

1985). Biliary GSH is degraded to constituent amino acids in either the bile or small intestine 

and the enterohepatic circulation returns these amino acids to the liver for resynthesis of GSH. 
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Figure 1-5. Glutathione Synthesis. 
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Figure 1-6. Interorgan transport and metabolism of GSH. 

This scheme summarizes the pathways for transport, translocation between tissues and 

metabolism of GSH and its metabolites involving the liver, kidneys, small intestine, bile and 

plasma. 

Abbreviations: BBM, brush-border membrane; BLM, basolateral membrane; CM, canalicular 

membrane; SM, sinusoidal membrane. 

From: Lash (2010). 
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Plasma GSH is extracted by the kidneys by either glomerular filtration or basolateral uptake. 

Even though liver is the primary source of GSH, the kidneys (predominantly PT cells) are the 

major site for metabolism of GSH in the body. The kidneys play a central role in the overall 

disposition of GSH in the body. Whereas the liver exhibits low activities of GSH uptake and 

GGT for degradation of GSH, the kidneys play the major role in uptake and efflux of GSH, 

synthesis of GSH from precursors, degradation of GSH and uptake of constituent amino acids 

(Lash et al., 1988). The kidneys extract approximately 80% of the plasma GSH pool during a 

single pass of the blood through the renal circulation (Griffith and Meister, 1979a; Haberle et al., 

1979). As shown in Figure 1-7, 50% of the GSH extracted occurs by a basolateral route whereas 

30% of the extraction occurs by glomerular filtration. 

 

Pathways of glutathione transport in renal proximal tubule 

 

Plasma membrane GSH transport systems: Basolateral membrane (BLM) and brush 

border membrane (BBM) transport 

 

Basolateral plasma membrane transport: Renal PT cells obtain GSH from both extracellular 

spaces by transport across the BLM and intracellular synthesis from precursor amino acids. 

 

GSH uptake across the BLM of renal PT cells comprises two transport processes, a Na
+
-coupled 

and a Na
+
-ion independent pathway. Current data suggest the potential involvement of three 

carriers in the transport of GSH across the BLM of renal PT cells, the organic anion transporter 1 

(Oat1; Slc22a6), organic anion transporter 3 (Oat3; Slc22a8), and the sodium-dicarboxylate 
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carrier 3 (NaC3; Slc13a3; formerly known as sodium-dicarboxylate transporter 2 or SDCT-2). 

As described in Figure 1-8, Oat1 and Oat3 function in the uptake of GSH in exchange for 2-

oxoglutarate (2-OG
2-

) and NaC3 functions in the co-transport of GSH with at least two Na
+
 ions. 

Both Oat1 and Oat3 are broad-substrate specific organic anion transporters that are highly 

expressed on the renal BLM. The functions of Oat1 and Oat3 account for the sodium-

independent uptake of GSH (Lash and Jones, 1983, 1984; Lash et al., 2007) and that of NaC3 

accounts for the sodium-coupled uptake of GSH across the renal BLM. The (Na
+
+K

+
)-stimulated 

ATPase provides the Na
+
 ion gradient for transporters such as NaC3, thereby helping to provide 

the driving force for uptake of GSH and other organic anions. Two multidrug resistance proteins, 

Mrp5 (Abcc5) and Mrp6 (Abcc6), function in the ATP-dependent efflux of organic anions. In 

addition to organic anion transporters, there are also organic cation transporters, such as Oct2 

(Slc22a3) and Oct3 (Slc22a3) present on the BLM. Both Oct2 and Oct3 are uniporters for uptake 

of organic cations (OC
+
). 

 

Brush border plasma membrane transport: As shown in Figure 1-8, unlike BLM GSH transport, 

the BBM process is not mediated by coupling to transport of any ion such as protons or Na
+
 ions 

and is predominantly efflux of intracellular GSH into the tubular lumen rather than uptake of 

extracellular GSH into the cell. At the outer surface of the BBM, GSH is rapidly degraded to its 

constituent amino acids such as cysteine, which is the rate-limiting component. Cysteine is taken 

up by carriers on the BBM and is used for protein or GSH synthesis. 

 

Although no direct evidence for a role for any specific carrier in the efflux of GSH across the 

BBM has been demonstrated, the proposed carriers as mediators of GSH efflux are the organic  
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Figure 1-7. Pathways for GSH transport and metabolism in renal proximal tubular cells. 

Abbreviations: Cys, cysteine; DIC, dicarboxylate carrier; GCS, g-glutamylcysteine synthetase; 

GSH, glutathione; GS, GSH synthetase; Oat1/3, organic anion transporters 1 and 3; DIC, 

dicarboxylate carrier; OGC, oxoglutarate carrier. 
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Figure 1-8. Schematic summary of renal plasma membrane transporters. 

Major transporters for the uptake or efflux of OA
–
 or OC

+
 on the BLM and BBM of PT cells are 

illustrated. There are also the (Na
+
+K

+
)-ATPase on the BLM and NHE on the BBM, which 

provide ion or co-substrate gradients. 

Abbreviations: BLM, basolateral membrane; BBM, brush-border membrane; Oat, organic anion 

transporter; Mrp, multidrug resistance protein; Oct, organic cation transporter; Oat-k1/k2, kidney 

specific organic anion transporter; NHE, sodium-hydrogen exchanger; GS
–
, Thiolate anion of 

glutathione; OA
–
, organic anion; OC

+
, organic cation; 2-OG

2–
, 2-oxoglutarate; NaC3, sodium-

coupled carboxylate transporter; Oatp1, organic anion transporting polypeptide 1. 
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anion transporting polypeptide 1 (Oatp1; Slco1a1) and two isoforms of the ATP-dependent 

multidrug resistance proteins, Mrp2 (Abcc2) and Mrp4 (Abcc4). As described in Figure 1-8, 

Oatp1, which is highly expressed on the BBM of the rat proximal tubule, has been shown in 

other systems to mediate the efflux of GSH (Li et al., 1998; Mittur et al., 2002) and both Mrp2 

and Mrp4 have been demonstrated to transport GSH (Evers et al., 2000; Gotoh et al., 2000; Lou 

et al., 2003; Paulusma et al., 1999; Rebbeor et al., 2002 Rius et al., 2003). The BBM also 

expresses three major carriers that function in the secretion of organic cations (OC
+
): Octn1 

(Slc22a4), Octn2 (Slc22a5) and P-glycoprotein [P-gp]. Octn1 is an electroneutral exchanger of 

OC
+
 with protons. Octn2 can function in either the facilitated efflux of OC

+
 or as a Na

+
 

ion/carnitine uptake cotransporter. 

 

Significance of BLM and BBM GSH transport: Based on pharmacological and toxicological 

studies, there are several potential functions for GSH transport across renal plasma membranes. 

Previous studies provided in vivo evidence for renal tissue GSH uptake by orally administered 

GSH (Aw et al., 1991; Flagg et al., 1994; Hagen et al., 1990). In addition, in vitro studies with 

isolated renal PT cells showed that exogenous GSH increases intracellular GSH levels by BLM 

transport and protected against various oxidants (Hagen et al., 1988; Lash and Tokarz, 1990; 

Lash et al., 1996), suggesting significance of BLM GSH uptake in nephroprotection against 

toxicants. 

 

Even though there is some uncertainty in the literature regarding the precise physiological 

function of GSH uptake across the renal BLM, the critical physiological importance of GSH 

efflux across the renal BBM has been long appreciated (Lash, 2005, 2009). The BBM GSH 
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transport process is critical for turnover of whole body GSH as efflux of GSH into the lumen 

mediates delivery of GSH to the active site of GGT on the surface of the BBM. The transport of 

GSH across the BBM occurs with favorable driving forces including an outwardly-directly GSH 

electrochemical gradient and high GGT activity on the BBM. Furthermore, previous studies 

showed that inhibition of renal GGT activity in mice causes glutathionuria, suggesting the 

importance of BBM efflux and GGT activity in GSH turnover (Griffith and Meister, 1979b). 

 

Mitochondrial GSH status, transporters, and mechanisms of renal mitochondrial GSH 

transport 

There are two main cellular pools of GSH, one in the cytoplasm and the other in mitochondria 

(Franco, 2007). The pH of cytoplasm is approximately 7.0 and that of the mitochondrial matrix is 

approximately 7.8. Hence, the GSH pools are likely to each have a net charge of between -1 and 

-2. As shown in Figure 1-9, GSH is synthesized in the cytoplasm and the predominant, if not 

exclusive, location of enzymes catalyzing synthesis of GSH is the cytoplasm, suggesting that the 

transport of GSH from the cytoplasm to mitochondria must occur to supply mitochondria with 

GSH. We have shown previously that renal concentrations of GSH increase significantly after 

uninephrectomy (Zalups and Lash, 1990). Because mitochondria lack enzymes for the synthesis 

of GSH, what may cause an increase in mitochondrial GSH in PT cells from NPX rats? We 

attempted to answer this question in two ways: First, by measuring rates of synthesis of GSH in 

the cytoplasm and second, by measuring rates of transport of GSH from cytoplasm into 

mitochondria. Our data showed that GCS activity was significantly higher in PT cells from NPX 

rats than in PT cells from SHAM-operated (or control) rats (Lash and Zalups, 1994). These data 

suggest that compensatory renal growth causes increases in the intracellular concentration of 
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GSH by inducing synthesis from its precursors by GCS, which is the rate-limiting enzyme 

involved in GSH biosynthesis. After the synthesis of GSH in cytoplasm, GSH is then transported 

across the mitochondrial inner membrane into the matrix. 

 

Mitochondria possess a membrane potential with the matrix space negative relative to the 

cytoplasm and GSH is a negatively charged molecule at physiological pH. These facts suggest 

that GSH must be transported actively or in exchange for another anion by mitochondrial anion 

carriers. There are eight known anion carriers present in the mitochondrial inner membrane that 

could play a role in the uptake of GSH from the cytoplasm (Table 1-1). These carriers are highly 

active in cells such as those of the renal proximal tubule because of high rates of mitochondrial 

respiration, active transport and gluconeogenesis (Lash, 2006). These mitochondrial carriers are 

electroneutral in the sense that they mediate exchange of anions so that there is no net transfer of 

charge across the inner mitochondrial membrane. Substrate specificity and energy dependence 

studies in isolated rat kidney mitochondria (McKernan et al., 1991; Chen and Lash, 1998) 

showed that two electroneutral anion exchange carriers, the dicarboxylate carrier (DIC, 

Slc25a10) and 2-oxoglutarate carrier (OGC, Slc25a11) mediate most of the GSH uptake into 

mitochondria. The function of each of these carriers is electroneutral, catalyzing the exchange of 

anions across the inner membrane without any net transfer of charge. Furthermore, at least 80% 

of GSH transport across the inner membrane of kidney mitochondria is due to the function of the 

DIC and OGC (Chen and Lash, 1998, Chen et al., 2000). The function of these carriers in 

transport of citric acid cycle intermediates suggests further that mitochondrial GSH status is 

regulated by mitochondrial energetics. 
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Figure 1-9. Mitochondrial GSH content and transport. 

DIC, Dicarboxylate carrier; GS
–
, thiolate anion of glutathione; 2-OG

2–
, 2-oxoglutarate; OGC, 

oxoglutarate carrier; Pi
2-

, inorganic phosphate. 
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Table 1-1. Mitochondrial anion transporters. 

From Lash (2006). 
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A generalized scheme illustrating the functions of the DIC and OGC in GSH transport and their 

relationship to both the citric acid and GSH redox cycles is shown in Figure 1-9. These two 

carriers mediate the electroneutral exchange of GSH (in the form of GS
2–

) with inorganic 

phosphate and 2-OG, respectively. As both carriers are also involved in the transport of citric 

acid cycle intermediates, amino acids and gluconeogenesis precursors (Klingenberg 1979; 

Palmieri, 2004; Palmieri et al., 1996), this indicates that mitochondrial GSH status is influenced 

by mitochondrial energy status. Both the DIC and OGC belong to a superfamily of mitochondrial 

inner membrane transporters with similar three-dimensional structures as predicted by the 

TMpred program. According to data from the TMpred program, the members of this superfamily 

have three trans-membrane domains (TMDs). Each TMD is composed of two hydrophobic 

stretches that span the membrane as α-helices, each separated by hydrophilic loops. Both the N- 

and C-terminals are in the cytoplasm. Both DIC and OGC are similar in size, with the DIC 

containing 286 or 287 amino acids with a molecular weight of ~31 kDa and the OGC containing 

314 to 322 amino acids with a molecular weight of 34-37 kDa, depending on species. 

 

Significance of mitochondrial GSH transport in protection from oxidative stress 

Mitochondria maintain redox balance and serve as the primary intracellular sites of generation of 

reactive oxygen species (ROS). The redox status of mitochondrial GSH is known to be critical 

for proper mitochondrial function. Alterations in GSH concentration and redox status are 

associated with oxidative stress induced by peroxides and other oxidants in mitochondria from 

kidney, liver, brain, tumor cells and activation of signaling pathways. In addition, previous 

studies have shown that decreased concentration of mitochondrial GSH is associated with acute 

toxicity (Lash and Anders, 1987) and apoptosis (Chen et al., 2001) in renal mitochondria and 
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renal PT cells and depletion of the mitochondrial pool of GSH leads to several types of chemical-

induced toxicity such as oxidative stress (Shan et al., 1993; Fernandez-Checa et al., 1993). Thus, 

maintenance of adequate concentrations of GSH within the mitochondrial matrix is essential for 

regulation and proper function of many critical processes. 

 

To explore the physiological and toxicological importance of mitochondrial GSH transport in a 

well-defined renal cellular model system, the influence of modulation of mitochondrial GSH 

status on cellular function and susceptibility to toxicants was studied in NRK-52E cells, an 

immortalized cell line derived from normal rat kidney (Lash et al., 2002a). Our previous studies 

showed that two mitochondrial carriers, the DIC and OGC, are responsible for at least 80% of 

total transport of cytoplasmic GSH across the renal mitochondrial membrane (Chen and Lash, 

1998; Chen et al., 2000). To further explore the role of these two carriers in GSH transport, 

NRK-52E cells were transfected with cDNA for rat DIC, OGC and a double-cysteine mutant of 

the OGC (Xu et al., 2006; Lash et al., 2002b). Overexpression of the DIC or OGC resulted in 

5.5-fold and 6.1-fold increases in rates of mitochondrial GSH transport, respectively, as 

compared to wild-type cells. In contrast, cells overexpressing the mutant OGC exhibited a 

marked reduction in GSH transport as compared to wild-type cells. 

 

To investigate the toxicological consequences of alterations in mitochondrial GSH transport, 

NRK-52E cells were transfected with either nothing (WT) or cDNAs for the rDIC, rOGC or 

rOGC-Mutant (Xu et al., 2006; Lash et al., 2002b). NRK-52E cells were incubated with either of 

two mitochondrial toxicants, 10 µM tert-butyl hydroperoxide (tBH) and 50 µM S-(1,2-

dichlorovinyl)-L-cysteine (DCVC), to determine the fraction of cells undergoing apoptosis. 
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Although both tBH and DCVC exhibit distinct mechanisms of action, both can cause lipid 

peroxidation, GSH oxidation in mitochondria and apoptosis under appropriate conditions (Lash 

et al., 2001a). The results showed that NRK-52E-DIC or NRK-52E-OGC cells exhibited 

resistance to cell injury whereas NRK-52E-OGC-M cells exhibited similar sensitivity to tBH or 

DCVC as the NRK-52E-WT cells. These results suggest that higher GSH transport activity by 

overexpression of DIC and OGC markedly protected against apoptosis induced by either DCVC 

or tBH, indicating the significance of mitochondrial GSH transport in determining susceptibility 

to cytotoxic chemicals. 

 

Goals of present study 

Compensatory renal hypertrophy caused by a reduction in functional renal mass is associated 

with a series of physiological, morphological and biochemical changes that also have 

toxicological implications. As mentioned above, human clinical data also suggest health 

complications due to reduced renal mass caused by renal donor nephrectomy. One of the 

simplest experimental models for compensatory renal hypertrophy is the uninephrectomy rat 

model (NPX model). In this NPX rat model, the right kidney is removed and compensatory renal 

hypertrophy response is completed within 7-10 days and is maintained for at least 30 days 

thereafter. 

 

Previous studies showed that compensatory renal hypertrophy increases energy demand on PT 

cells by increasing oxygen consumption and glucose production, leading to a hypermetabolic 

state (Harris et al., 1988) that is associated with alterations in renal function and mitochondrial 

status. Furthermore, previous studies showed that increased renal GSH content (Zalups and Lash, 
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1990) and higher susceptibility to nephrotoxicants (Lash et al., 2006) follow nephrectomy. These 

observations suggest that increased renal GSH content is an adaptive response to an enhanced 

basal oxidative stress that results from compensatory renal hypertrophy and susceptibility to 

oxidant-induced injury increases because the increase in renal GSH content is insufficient to 

maintain redox balance in the hypertrophied kidney cells. Interestingly, in 2002 and 2006 our lab 

also showed that in NRK-52E cells, overexpression of mitochondrial GSH transporters protected 

against nephrotoxicants (Lash et al., 2002b; Xu et al., 2006). These data suggested a possibility 

that this approach can be used to protect hypertrophied kidney cells by further increasing renal 

mitochondrial GSH content. Based on all these previous studies, we hypothesize that 

compensatory renal hypertrophy after uninephrectomy alters renal function in vivo and 

mitochondrial status. Further, we hypothesize that modulation of mitochondrial redox status 

alters susceptibility to nephrotoxicants and oxidative stress in hypertrophied kidney cells. To 

study these hypotheses, three specific aims of this study were conducted: 

 

Aim 1. Determine the effect of compensatory renal hypertrophy on renal function including 

physiological parameters and renal plasma membrane transporters. 

 

Aim 2. Determine the effect of compensatory renal hypertrophy on mitochondrial status 

including mitochondrial redox status, function, energetics, oxidative stress, size, number and 

membrane potential. 
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Aim 3. Manipulation of mitochondrial glutathione (GSH) by overexpression of mitochondrial 

GSH carriers, DIC and OGC, to provide sustained increases in mitochondrial GSH content and 

reduce susceptibility to nephrotoxicants in hypertrophied kidney cells. 

 

Studies in Aim 1 and Aim 2 were conducted in vivo, in vitro and ex vivo to study renal function 

and mitochondrial status. Studies in Aim 3 were done ex vivo using a primary cell culture model 

with molecular approaches to study the effect of mitochondrial redox status on susceptibility of 

PT cells to nephrotoxicants. In the nephron, glomerular and proximal tubular epithelium are the 

most prominent sites that exhibit the various morphological, biochemical and functional changes 

seen after uninephrectomy and compensatory renal growth. Our studies focus on the PT cells 

because these cells play a major role in metabolite absorption and secretion and drug 

metabolism. As a result, these PT cells are also a major target cells for drug-induced 

nephrotoxicity and are most prominently affected in acute renal failure. Even though there are 

numerous parameters of toxicity, changes in mitochondrial energetics and redox status appear to 

be prominent components of the compensatory renal hypertrophy response. Hence, we primarily 

focused on mitochondrial function and redox status. 

 

Overall, our proposed research plan provides integrated approaches with in vivo, in vitro and ex 

vivo models to further study renal function and mitochondrial energetics status, including redox 

status and oxidative stress, and the influence of mitochondrial GSH on susceptibility to 

chemically induced cytotoxicity. The significance of the present study lies in the occurrence of 

reduction in functional kidney mass due to numerous diseases, surgery, aging and substantial 

evidence that compensatory renal hypertrophy also increases the risks for development of health 
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complications, renal insufficiency or renal failure from other diseases or environmental 

exposures. 
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CHAPTER II. MATERIALS AND METHODS 

 

Animals 

Surgical Procedures. Male Sprague-Dawley rats (150-175g) were used in the present study. 

Animals that underwent surgical nephrectomy (removal of right kidney) were allowed a 

minimum 10-day recovery period prior to experiments (Zalups and Lash, 1990). Right-side 

nephrectomized rats were purchased from Harlan (Indianapolis, IN). The procedure they used is 

as follows: Each rat was anesthetized with sodium pentobarbital (50 mg/kg i.p.) before surgery. 

Unilateral nephrectomy was performed by making a 2.5-cm flank incision on the right side of the 

body with a No. 11 scalpel blade, beginning at erector spinae muscles and continuing along the 

angle of the 12
th
 rib. The incision was made through the skin and underlying fascia. The 

abdominal muscles were then incised along the same plane as the skin was cut to expose the 

retroperitoneal region where the right kidney is situated. With blunt dissection, the right kidney 

was exteriorized from the animal and the renal blood vessels and ureter were ligated with sterile 

2.0 silk suture. The right kidney was then excised distal to the ligature. The abdominal muscles 

were sewn together with 4.0 sterile silk suture and the opposite ends of the incised skin and 

fascia were brought together with sterile 9-mm would clips. Control rats were surgically naïve, 

because previous studies showed that sham surgery has no apparent effect on the compensatory 

growth response (Zalups and Lash, 1990; Zalups, 1997; Lash et al., 1999). Control and NPX rats 

were age-matched for all studies. 
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Uninephrectomized Rat Model  

In the uninephrectomized rat (NPX) model, the right kidney is removed and the compensatory 

hypertrophy response is completed within 7-10 days after surgery (Zalups and Diamond, 1987; 

Meyer et al., 1996). The experiments are done between day 10 and 30.  

 

II-1 RENAL FUNCTION AND MITOCHONDRIAL STATUS 

Chemicals 

Cis-parinaric acid was purchased from Molecular Probes (Eugene, OR). Rotenone, tert-butyl 

hydroperoxide (tBH), hemin and 1-methyl-2-phenylindole were purchased from Sigma-Aldrich 

(St. Louis, MO). All other chemicals were of the highest purity available and were purchased 

from commercial sources. 

 

Methods 

 

In vivo assessment of renal physiological parameters 

Rats were kept in metabolic cages and urine samples were collected every 24 h for one week. 

Basic parameters of renal function, including urine volume (U-Vol), urinary protein (U-Pr), 

urinary-glutathione (U-GSH) and urinary glutathione disulfide (U-GSSG), urinary and serum 

creatinine (U-Cr, S-Cr), urinary albumin (U-Alb), urinary N-acetyl- -D-glucosaminidase (U-

NAG) and urinary -glutamyltransferase (U-GGT) were measured. 
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U-Pr (BCA protein assay kit from Pierce, Milwaukee, WI, U.S.A.), U-Cr and S-Cr 

(Quantichrom
TM

 creatinine kit from BioAssay Systems, Hayward, CA, U.S.A.), U-Alb (Nephrat 

ii kit from Exocell, Philadelphia, PA, U.S.A.), U-GSH and U-GSSG (GSH-Glo® kit from 

Promega, Madison, WI, U.S.A.), and U-NAG (NAG assay kit from Diazyme, Poway, CA, 

U.S.A.) were measured using commercial kits. U-GGT was measured by a spectrophotometric 

assay (Orlowski and Meister, 1963). 

 

Determination of protein expression of renal plasma membrane organic anion transporters 

by Western blot analysis 

Crude plasma membrane fractions were isolated according to the method of Scalera et al. (1981) 

using a sucrose-triethanolamine (0.25 mM sucrose, 10 mM triethanolamine/HCl, pH 7.6, 0.1 mM 

phenylmethylsulfonyl fluoride) buffer. Protein expression of organic anion transporters was 

determined in isolated plasma membranes from kidney cortex derived from control and NPX rats 

using commercially prepared antibodies. Polyclonal antibodies to organic anion transporter 1 and 

3 (Oat1 and Oat3; Slc22a6 and Slc22a8, respectively) were purchased from Alpha Diagnostic 

International (San Antonio, TX, U.S.A.). Monoclonal antibodies against multidrug resistance-

associated protein 2 and 5 (Mrp2 and Mrp5; Abcc2 and Abcc5, respectively) were purchased 

from Abcam (Cambridge, MA, U.S.A.). Monoclonal antibody against Na
+
K

+
ATPase 1 subunit 

was purchased from Affinity Bioreagents, Inc. (Golden, CO, U.S.A.). Secondary antibodies 

(anti-rat, anti-rabbit, and anti-mouse) were purchased from Jackson ImmunoResearch (West 

Grove, PA, U.S.A.). Polyclonal anti-actin antibody was purchased from Cell Signaling 

Technology (Danvers, MA, U.S.A.) for use as a control for loading of total cellular protein. 
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Determination of protein expression of renal mitochondrial GSH transporters and redox 

status proteins by Western blot analysis 

Suspensions of isolated mitochondria were prepared from renal cortex from control and NPX 

rats by differential centrifugation as follows: Rat kidneys were decapsulated and the medulla 

removed. Kidneys were then placed in 15 ml of ice-cold buffer (225 mM sucrose, 10 mM 

potassium phosphate, pH 7.4, 5 mM MgCl2, 20 mM KCl, 20 mM triethanolamine, pH 7.4, 0.1 

mM phenylmethylsulfonyl fluoride, and 2 mM EGTA), homogenized, and centrifuged in 50 ml 

polycarbonate centrifuge tubes at 600 x g (2250 rpm) for 10 min in a Sorvall SS34 rotor in a 

Sorvall RC2B centrifuge. Supernatant was decanted and saved. The pellets containing tissue 

fragments and mitochondria were washed with 30 ml of buffer and the resuspended material 

centrifuged at 600 x g for 10 min. The supernatant fractions were combined and centrifuged at 

15,000 x g for 5 min. The resultant pellet was resuspended in 2 ml of buffer without EGTA. 

Protein expression of mitochondrial GSH transporters and redox enzymes were determined in 

isolated mitochondria with commercially prepared antibodies. Specific proteins were visualized 

by Enhanced Chemiluminescence (Pierce; Rockford, IL, U.S.A.). Monoclonal antibodies against 

the 2-oxoglutarate carrier (OGC; Slc25a11) and prohibitin and polyclonal antibodies against the 

dicarboxylate carrier (DIC; Slc25a10), superoxide dismutase 2 (Sod2) and the voltage-dependent 

anion channel (VDAC or porin) were purchased from Abcam (Cambridge, MA, U.S.A.). 

Polyclonal antibody against thioredoxin 2 (Trx2) was purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA, U.S.A.). Expression of VDAC or prohibitin was used as mitochondrial loading 

controls. 
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Analysis of gene expression by real-time PCR 

Total RNA from the renal cortex was isolated using Trizol® (Invitrogen; Carlsbad, CA, U.S.A.). 

First-strand cDNA was made from the isolated total RNA using a multiscribe reverse 

transcriptase with random hexamers from Applied Biosystems (Foster City, CA, U.S.A.). 

TaqMan Gene Assay kits containing primer/probe sets for Oat1 (GenBank accession no. 

NM_017224), Oat3 (GenBank accession no. NM_031332), DIC (GenBank accession no. 

NM_133418), OGC (GenBank accession no. NM_022398), and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH; loading control; GenBank accession no. NM_017008.3) were 

purchased from Applied Biosystems. All reactions were performed in triplicate. The relative 

amounts of mRNA were calculated by using the comparative CT method. 

 

Determination of mitochondrial GSH status 

A fluorometric method (Hissin and Hilf, 1976) was used for determination of GSH and GSSG in 

mitochondrial suspensions. GSH content was measured by the fluorescent product formed on 

reaction with o-phthalaldehyde (OPT) with excitation at 350 nm and emission at 420 nm. GSSG 

content was measured after treatment with N-ethylmaleimide, followed by reduction with 

dithiothreitol and measurement of the fluorescent product formed with OPT. 

 

Enzyme assays and protein determination 

Activities of several GSH- and energy metabolism-related enzymes were measured in cytoplasm 

and/or mitochondria from renal cortical homogenates from control and NPX rats. 
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GSSG reductase assay: 

GSSG reductase (GRD) activity was measured as NADPH oxidation by monitoring the decrease 

in absorbance at 340 nm (ε = 6,220 M
-1

cm
-1

) as described by Bellomo et al. (1987). 

 

GSH peroxidase assay: 

GSH peroxidase (GPX) activity was measured with 25 mM H2O2 as substrate and was equated to 

NADPH oxidation as detected by the decrease in absorbance at 340 nm (ε = 6,220 M
-1

cm
-1

) 

according to Lawrence and Burk (1976). 

 

GSH S-transferase assay: 

GSH S-transferase (GST) activity was measured with 1-chloro-2,4-dinitrobenzene as substrate 

and quantitation of S-2,4-dinitrophenyl-GSH formation by the increase in absorbance at 340 nm 

(ε = 9,600 M
-1

cm
-1

) as described by Habig et al. (1974). 

 

Glutamate dehydrogenase assay: 

Glutamate dehydrogenase (GDH) activity was measured spectrophotometrically by coupling 2-

oxoglutarate reduction to NADH oxidation as described by Schmidt and Schmidt (1983). The 

oxidation of NADH was coupled to the reduction of 2-oxoglutarate to glutamate according to the 

following reaction: 

2-oxoglutarate + NADH + NH4  glutamate + NAD
+
 + H2O 

The activity was quantified by determining the consequent decrease in absorbance at 340 nm 

using an extinction coefficient of 6,220 M
-1

cm
-1

 for NADH. 



39 

 

 

 

 

 

Malic dehydrogenase assay: 

Malic dehydrogenase (MDH) activity was measured as described by Ochoa (1955). The 

oxidation of NADH was coupled to the reduction of oxaloacetate to malate according to the 

following reaction: 

Oxaloacetate + NADH + H
+
   L-Malate + NAD

+ 

The activity was determined by monitoring the decrease in absorbance at 340 nm (ε = 6,220 M
-

1
cm

-1
). 

 

Succinate: cytochrome c oxidoreductase assay: 

Succinate: cytochrome c oxidoreductase (SDH) activity was measured as described by Fleischer 

and Fleischer (1967). The oxidation of succinate to fumarate was coupled to reduction of 

ferricytochrome c to ferrocytochrome c according to the following reaction: 

Succinate + 2- ferricytochrome c  fumarate + 2-ferrocytochrome c 

The activity was quantified by determining the increase in absorbance at 550.5 nm using an 

extinction coefficient of 18,500 M
-1

cm
-1

 for reduced cytochrome c. 

 

Protein Determination:  

Protein content of samples was determined by the bicinchoninic acid (BCA) protein assay 

method using bovine serum albumin as a standard (Bradford, 1976). 
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Mitochondrial oxygen consumption 

Oxygen consumption was measured in suspensions of isolated renal cortical mitochondria from 

control and NPX rats with a Gilson 5/6H Oxygraph in a thermostated, air-tight, 1.6 ml chamber 

at 25˚C (Lash et al., 2001a). State 3 rates of oxygen consumption were measured by the addition 

of 0.3 mM ADP and respiratory substrate (3.3 mM succinate in the presence of 5 μM rotenone) 

for coupling site II to the chamber containing 0.5 ml of mitochondrial sample and 1 ml 

mitochondrial buffer. State 4 rates of oxygen consumption were measured after depletion of 

ADP. Respiratory control ratio (RCR = State 3/State 4) was then calculated. 

 

Mitochondrial Proteomics 

Two mitochondrial samples of renal cortical homogenates from control and NPX rat group were 

used. An aliquot (100 µg) of each mitochondrial extract was reduced with DTT, alkylated with 

iodoacetamide and digested with trypsin overnight at 37˚C. Each of the samples was labeled with 

a unique isobaric iTRAQ tag (Applied Biosystems): Control-114 (tag), NPX-115 (tag). The 

samples were combined and purified by strong cation exchange chromatography using the SCX 

Methods Development Kit (Applied Biosystems). Each sample was dried and resuspended in 

water (2 cycles), then dried and resuspended in 2% acetonitrile, 0.1% TFA. 

 

Peptides were separated by reverse phase chromatography (Magic C18 column, Michrom). 

Peptides were ionized with the ADVANCE ion source (Michrom) and introduced into a LTQ-

XL mass spectrometer (Thermo Fisher Scientific). Abundant species were fragmented in Pulsed-

Q Dissociation mode (PQD). 5 LC/MS/MS runs were performed, 3 short and 2 long, on the same 
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sample. Data analyses were performed twice using SEQUEST, X!Tandem and Mascot search 

engines. A rat protein database (IPI ver 3.47) was used for the analysis. 

 

Relative quantitation:  

115/114: average signal intensity (NPX) / average signal intensity (Control) 

 

The proteomics work was done at the Proteomics Core Facility of the Institute of Environmental 

Health Sciences at Wayne State University, School of Medicine. 

 

Assessment of basal and toxicant-induced mitochondrial oxidative stress 

 

Lipid peroxidation by malondialdehyde assay 

One method for assessment of lipid peroxidation was measurement of malondialdehyde (MDA) 

formation using 1-methyl-2-phenylindole (Gérard-Monnier et al., 1998). Mitochondrial 

suspensions (200 μl) were treated with tBH (500 μM) or buffer for 1 h at 37˚C and then 

hydrolyzed using 0.1 M HCl and incubated for 60 min at 60˚C. An aliquot (200 μl) of the 

resulting supernatant was then incubated with 650 μl 1-methyl-2-phenylindole and 150 μl 37% 

HCl. After incubating the mixture for 30 min at 45˚C, absorbance at 586 nm was determined. 

 

Lipid peroxidation by cis-parinaric acid fluorescence assay 

Cis-parinaric acid is considered a very sensitive marker for the initial stages of lipid peroxidation 

(Tribble et al., 1994). Isolated mitochondria (1 mg protein/ml) were incubated on ice with 6.4 

μM cis-parinaric acid for 15 min. After pelleting mitochondria (11,200 g x 5 min) and discarding 
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the supernatant, mitochondria were resuspended (0.5 mg protein/ml) in mitochondrial buffer. For 

anaerobic conditions, mitochondria were resuspended in mitochondrial buffer (prepared with 

nitrogen sparging) and treated with 5 μM hemin (Fe
2+

). Samples were then added to a 24-well 

plate and incubated at room temperature for 10 min before treatment with tBH or buffer. Lipid 

peroxidation was measured as the loss of cis-parinaric acid fluorescence (excitation 324 nm, 

emission 413 nm) over time using a fluorescence plate reader (Tribble et al., 1994; Murphy et al., 

2003). 

 

Mitochondrial aconitase activity 

Aconitase activity was assayed by following formation of NADPH at 340 nm at 25˚C, as 

described by Han et al. (2003). The reaction mixture contained 30 mM Tris-HCl, pH 7.4, 30 mM 

sodium citrate, 0.6 mM MnCl2, 0.2 mM NADP
+
, 1 U/ml isocitrate dehydrogenase and 0.1 mg of 

mitochondrial protein. 

 

Analysis of oxidative stress markers by Western blot analysis 

Proteins modified with 3-nitrotyrosine (3-NT) or 4-hydroxy-2-nonenal (HNE) were also assessed 

as markers of oxidative alterations in renal mitochondria. Monoclonal antibody to 3-NT was 

purchased from Abcam (Cambridge, MA, U.S.A.). Polyclonal antibody to HNE was purchased 

from Calbiochem (La Jolla, CA, U.S.A.). 
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Effect of toxicant (tBH) on mitochondrial protein expression during compensatory renal 

hypertrophy  

Mitochondrial samples from control and NPX groups were treated with 10 µM tBH for 1h at 

37
o
C. Each of the samples was labeled with a unique isobaric iTRAQ tag (Applied Biosystems): 

Control-116 (tag), NPX-117 (tag). The samples were processed as described previously in the 

mitochondrial proteomics section.  

 

Relative quantitation: 

117/115: average signal intensity (NPX-tBH) / average signal intensity (NPX) 

116/114: average signal intensity (Control-tBH) / average signal intensity (Control) 

117/116: average signal intensity (NPX-tBH) / average signal intensity (Control-tBH) 

 

Data analysis 

Data for enzyme assays were normalized to the content of cellular protein. All measurements 

were performed at least 3 to 5 times. Results are expressed as means ± SEM unless specified. 

Densitometry of bands on Western blots were performed using GelEval 1.22 software for Mac 

OS X. When two or more parameters were varied and compared (e.g., tBH treatment vs. buffer 

in control and NPX rats), significant differences among means for data were first assessed by a 

one-way analysis of variance. When significant “F values” were obtained, the Fisher‟s protected 

least significance t test was performed to determine which means were significantly different 

from one another, with two-tail probabilities < 0.05 considered significant. Otherwise, Student‟s 

t-test was performed to determine which means were significantly different from one another, 

using a two-tail probability of P < 0.05 as the criteria for significance. 
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II-2 STUDIES IN PROXIMAL TUBULAR CELL PRIMARY CULTURES 

 

Chemicals 

Percoll, collagenase (type I; EC 3.4.24.3), type I collagen, bovine serum albumin (fraction V), 

penicillin G, streptomycin, amphotericin B, insulin (from bovine pancreas), human transferrin, 

sodium selenite, hydrocortisone, epidermal growth factor (EGF; from mouse submaxillary 

glands), and 3,3‟,5-triiodo-DL-thyronine (T3) were purchased from Sigma Chemical Co. (St. 

Louis, MO). Dulbecco‟s modified Eagle‟s medium/Ham‟s F-12 (DMEM/F-12, 50/50, 1X) was 

purchased from Mediatech Inc. (Herndon, VA). Polystyrene tissue culture dishes were purchased 

from Corning Inc. (Corning, NY). Polypropylene micromesh (210 µm pore size) was purchased 

from SpectraPor Inc. (Rancho Dominguez, CA). 

 

Culture of rat proximal tubular cells 

Isolated renal cortical cells were obtained by collagenase perfusion (Jones et al., 1979). A day 

before perfusion, all the glassware and surgical tools were sterilized in an autoclave. On the day 

of perfusion, Hank‟s concentrate (5X) containing 137 mM NaCl, 5.4 mM KCl, 0.81 mM 

MgSO4.7H2O, 0.42 mM Na2HPO4, 0.44 mM KH2PO4 and 25 mM NaHCO3 was used to make 

Hank‟s I (25 mM Hepes, 0.5 mM EGTA and 2% (w/v) BSA) and Hank‟s II (4 mM CaCl2 and 

0.15% (w/v) collagenase) buffers. Krebs-Henseleit Concentrate #1 (2X) containing 118 mM 

NaCl, 4.8 mM KCl, 0.96 mM KH2PO4, 1.2 mM MgSO4.7H2O, 25 mM NaHCO3 and 2.55 mM 

CaCl2.2H2O was used to make KHB-1 buffer. Krebs-Henseleit Concentrate #2 (10X) containing 
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118 mM NaCl, 4.8 mM KCl, 0.96 mM KH2PO4, 1.2 mM MgSO4.7H2O and 25 mM NaHCO3 

and 25 mM Hepes was used to make KHB-II buffer. All buffers were bubbled with 95% O2/5% 

CO2 for 30 min and adjusted to pH 7.40. 

 

Rats were anaesthetized with an intraperitoneal injection of sodium pentobarbital (50 mg/kg 

body weight) and injected with 0.3 ml heparin into the tail vein. After sterilizing abdominal walls 

with 70% (v/v) ethanol, the peritoneal cavity was opened by a midventral incision and the aorta 

was freed below and above the renal arteries. One ligature with 4-O silk was placed below the 

renal arteries and a second one was placed right below the liver. To avoid leakage of the 

perfusion fluid, mesenteric arteries (coeliac and superior) are ligated. A small incision is made in 

the aorta above the lower ligature and a 19-gauge conical probe cannula is inserted and closed 

with a clamp and a ligature. The perfusion of kidneys is started in situ using Hank‟s I buffer 

maintained at 37
˚
C. Once kidneys become pale, Hank‟s I buffer is replaced by Hank‟s II buffer 

maintained at 37˚C. After a few minutes of perfusion, the kidneys are excised from the posterior 

abdominal wall and transferred to beaker containing Hank‟s II buffer. 

 

After circulating the buffer for 20 min at a flow rate of 5 ml/min, the kidneys are dispersed with 

a pair of forceps into KHB-1 buffer containing 25 mM Hepes and 2% (w/v) BSA. The digested 

renal mixtures were filtered through a 210 m polypropylene micromesh from SpectraPor Inc. 

(Rancho Dominguez, CA), and then the filtrates were centrifuged for 2 min at 50 rpm at room 

temperature. The pellets were resuspended in KHB-II buffer and 5 ml of cortical cells were 
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layered on 35 ml of Percoll solution in 50-ml polycarbonate centrifuge tubes. After centrifuging 

both tubes at 4
˚
C for 30 min at 12,900 rpm in a SS34 rotor in a Sorvall RC2B centrifuge, the 

upper layers of cells, which are PT cells, were taken out. The PT cells were diluted with 

DMEM/F-12 (50/50, 1X) media supplemented with 5 µg/ml insulin, 100 ng/ml Hydrocortisone, 

100 ng/ml EGF, 5 µg/ml transferrin, 30 nM sodium selenite, 7.5 pg/ml triidothyronine, 100x 

antibiotics (penicillin, streptomycin and amphotericin B). The cells were seeded onto collagen-

coated, 35-mm polystyrene tissue culture dishes at a density of 2 to 4 x 10
6
 cells/ml. Media were 

changed the next day and every other day thereafter. On day 4 of culture, the cells were 

processed. 

 

MitoTracker
TM

 orange staining 

On day 4 of primary culture, the PT cells were stained with MitoTracker
TM

 orange (50 nM) for 

30 min. The cells were viewed with a Zeiss LSM-510 META NLO Laser Scanning Confocal 

Microscope at 554 nm excitation and 576 nm emission using 630x magnification. Three images 

of each group were quantitated by using Metamorph 7.1.7.0 Offline (Molecular Devices, 

Sunnyvale, CA) with measurement of integrated intensity of the entire image. Average intensity 

(intensity/µm) of three confocal images from each group was then calculated. 
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JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzyimidazolyl-carbocyanine iodide) 

staining 

On day 4 of primary culture, PT cells were stained with JC-1 (5 µg/ml) for 30 min. The cells 

were analyzed with a LSM-510 META NLO Laser Scanning Confocal Microscope using an 

overlay of images in red (488 nm excitation, 590 nm emission, polarization) and green (488 nm 

excitation, 525 nm emission, depolarization) using 630x magnification. Three images of each 

group were quantitated by using Metamorph 7.1.7.0 Offline (Molecular Devices, Sunnyvale, 

CA) with measurement of integrated intensity of the entire image. Average intensity 

(intensity/µm) of three confocal images from each group was then calculated. 

 

Confocal Microscopy 

The confocal work was done at the Microscopy, Imaging and Cytometry Resources Core at 

Wayne State University, School of Medicine (Detroit, MI). 

 

DNA fluorescence assay 

DNA was purified from renal mitochondria from control and NPX rats using the SV genomic 

DNA purification system (Promega, Madison WI). Mitochondrial DNA was measured by a DNA 

fluorescence assay (Sorger and Germinario, 1983). Relative fluorescence of the DNA-DAPI 

complex was measured with a SpectraMax M2 plate reader set to 360 nm excitation and 450 nm 

emission. A concentrated DAPI stock solution (1 mg/ml in water) was wrapped in foil and stored 
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at 0-4˚C. A DAPI working solution (2.5 µg/ml) was prepared by bringing 1 ml of DAPI stock 

solution (1 mg/ml) to 400 ml with assay buffer (18 mM Na2SO4 in 50 mM Hepes, pH 7.0). 

 

Standards were prepared containing 0.25-2.5 µg DNA/ml, 200 µg BSA/ml and 10 µl/ml of 1 M 

NaOH in 0.2% Triton X-100. Aliquots of standards and mitochondrial samples were added to 

disposable glass tubes and 2.5 ml of DAPI reagent (0.4 volumes of DAPI working solution (2.5 

µg/ml), 3.6 volumes of assay buffer, 6 volumes of water) was added to each tube. After 90 min 

of incubation at room temperature, relative fluorescence was measured. 

 

Mitochondrial protein assay 

Protein content of renal mitochondrial samples was determined by the bicinchoninic acid (BCA) 

protein assay method using bovine serum albumin as a standard (Pierce Rockford, IL). 

 

Transfection 

DIC cDNA that was cloned into pcDNA 3.1/V5-His-TOPO vector (Lash et al., 2002b) and 

cDNA encoding OGC that was cloned into pcDNA 3.1/V5-His-TOPO vector (Xu et al., 2006) 

were purified using Maxiprep (Promega, Madison WI). 
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On day 3 of primary culture, cells were transfected with purified DIC and OGC plasmids with 

final concentration of 800 ng plasmid DNA/well of Dulbecco‟s modified Eagle‟s medium using 

Lipofectamine
TM

 and PLUS
TM

 reagents (Invitrogen; Carlsbad, CA, U.S.A.). 

 

Gene expression by real-time PCR 

Total RNA was isolated on day 6 of cell culture (72 h post-DIC transfection) from cell culture of 

rat PT cells using Trizol
®
 (Invitrogen; Carlsbad, CA, U.S.A.). First-strand cDNA was made from 

the isolated total RNA using a multiscribe reverse transcriptase with random hexamers from 

Applied Biosystems (Foster City, CA, U.S.A.). Taq Man gene assay kits containing primer/probe 

sets for DIC (GenBank accession no. NM 133418), OGC (GenBank accession no. NM 022398) 

and glyceraldehyde 3-phosphate dehydrogenase (GAPDH, GenBank accession no. NM 

017008.3) were purchased from Applied Biosystems. The fold change of genes was calculated 

by the 2
∆CT 

formula where 2 is used assuming a doubling in every cycle. 

 

Assay for assessment of cytotoxicity 

Necrotic cell death was measured in PT cells by measurement of lactate dehydrogenase (LDH) 

release. On day 6, suspensions of PT cells were treated with either antimycin A (1 µM, 10 µM), 

tBH (100 µM, 200 µM) or MVK (100 µM, 200 µM) for 4 h with or without an overnight 

preincubation with 5 mM GSH. After 4 h, aliquots were removed and LDH activity was 

measured. LDH activities in supernatant and cells were measured spectrophotometrically as 
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NADH oxidation at 340 nm after addition of 3 mg/ml pyruvate and 3 mg/ml NADH. Percentage 

of LDH release was calculated using the formula: 

% LDH release = [LDH activity in media/(LDH activity in media + LDH activity in cells)] x 

100% 

 

Data analysis 

Results are expressed as means ± SE values of measurements from the indicated number of cell 

preparations. Significant differences among selected mean values were calculated using 

Student‟s t-test with P values ≤ 0.05 as the criteria for significance.  
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CHAPTER III.  RENAL FUNCTION 

 

Renal physiological parameters in vivo 

 

Results 

Examination of basic parameters of renal function indicates that there are some discernable 

changes in rats post-nephrectomy compared to age-matched control rats (Table 3-1). After 

uninephrectomy and a 10-day period to allow for completion of the acute phase of compensatory 

growth, the remaining kidney weighs significantly more than a single kidney from control rats. 

NPX animals had markedly higher urine volume, indicating an increase in renal function to 

compensate for the loss of a kidney. However, we also observed increases in total urinary protein 

(U-Pr), urinary albumin (UAlb), serum creatinine (S-Cr), urinary N-acetyl- -D-glucosaminidase 

(U-NAG), urinary -glutamyltransferase (U-GGT) and urinary glutathione disulfide (U-GSSG), 

but lower urinary creatinine (U-Cr) over a 24-h period and lower creatinine clearance (CCr), 

indicating significant impairment of renal function. 
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Table 3-1. Physiological parameters of renal function in vivo.  

Parameters were measured in uninephrectomized (NPX) rats at 10 days post-surgery and in age-

matched control rats. Results are means ± SEM of measurements from the indicated number of 

rats from each group. 

 

Parameter (units; n) Control NPX 

Kidney Weight (g; 10) 0.95 ± 0.04 1.51 ± 0.06* 

U-Vol (ml; 6)          3.08 ± 0.47 8.43 ± 1.63* 

U-Pr (mg/24 h; 6)   11.1 ± 1.5 34.9 ± 3.2* 

S-Cr (mg/dl; 3) 0.09 ± 0.04 0.24 ± 0.06* 

U-Cr (mg/dl; 3) 168 ± 7 93.6 ± 11.2* 

U-Cr (mg/24 h; 3) 7.63 ± 0.48 5.43 ± 0.30* 

CCr (ml/min; 3) 6.67 ± 0.80 2.00 ± 0.54* 

U-Alb (mg/24 h; 3) 150 ± 10 860 ± 110* 

U-GSSG (nmol/24 h; 6) 1.53 ± 0.73 9.51 ± 0.32* 

U-NAG (U/24 h; 9) 0.07 ± 0.01 0.14 ± 0.03* 

U-GGT (mU/24 h; 6) 197 ± 9 327 ± 30* 

 

Abbreviations: U-Vol, urinary volume; U-Pr, urinary protein; S-Cr, serum creatinine; U-Cr, 

urinary creatinine; CCr, creatinine clearance; U-Alb, urinary albumin; U-GSSG, urinary 
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glutathione disulfide; U-NAG, urinary N-acetyl- -D-glucosaminidase; U-GGT, urinary -

glutamyltransferase. *Significantly different (P<0.05) from the corresponding value in control 

rats. 

 

 



54 

 

 

 

 

Discussion 

The major underlying hypothesis to explain the physiological and pathological changes that 

occur in remnant renal tissue as a consequence of compensatory renal hypertrophy begins with 

the increased need for renal function requiring increased mitochondrial electron transport to 

generate ATP (Meyer et al., 1996; Harris et al., 1988; Nath et al., 1990; Shapiro et al., 1994). As 

a consequence of this increase in mitochondrial function, more reactive oxygen species are 

generated, which in turn leads to a higher level of renal oxidative stress, further leading to 

increased susceptibility of renal PT cells from NPX rats to nephrotoxicants. 

 

The present study not only confirmed the increase in kidney weight and urine production that 

accompany the compensatory response of the remnant kidney after uninephrectomy, but also 

provided evidence at the in vivo level that this compensation is associated with some degree of 

renal damage. Several markers, which are all considered diagnostic for renal function, were 

uniformly altered in a manner consistent with mild renal injury. Evidence for renal injury at the 

level of the PT cell was also observed by the increases in U-NAG and U-GGT. We also observed 

a 6.2-fold increase in U-GSSG, which may indicate some amount of oxidative damage in the 

kidneys. Compared to normal conditions in which creatinine is filtered and proteins usually do 

not cross the glomerular membrane, compensatory renal hypertrophy decreases creatinine 

clearance but increases protein secretion. Previous studies have shown that proteinuria is also 

correlated with intrinsic renal toxicity and contributes to progression of renal damage (Bertani et 

al., 1986). The compensatory renal hypertrophy also decreases the ability to conserve ions, 

bicarbonate and water, leading to increases in urine volume. This suggests increased renal 

function to compensate for the reduction in nephron mass. 
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Our data are also consistent with previous animal studies that suggested that glomerular 

hypertension and glomerular hyperfiltration lead to pathogenesis of proteinuria and progressive 

glomerulosclerosis (Hostetler et al., 2001). Overall, our data also suggest some clinical 

implications such as proteinuria, microalbuminuria and hypertension, which is consistent with 

data from human clinical studies that are investigating the quality of life of renal transplant 

donors (Berber et al., 2008; Tellioglu et al., 2008; Azar et al., 2007). 
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Protein and gene expression analysis of renal plasma membrane organic anion 

transporters. 

 

Results 

Based on previous observations of increases in intracellular GSH concentrations and GSH 

transport activity after compensatory renal hypertrophy (Zalups and Lash, 1990; Lash et al., 

2001b), we hypothesized that these increases were due, at least in part, to increases in gene 

and/or protein expression of carriers involved in GSH transport across renal plasma membranes. 

To test this, we determined mRNA and protein expression of four renal plasma membrane 

transporters that are known or thought to be involved in GSH transport. Real-time PCR analysis 

of Oat1 and Oat3 mRNA expression (Table 3-2) revealed no differences between control and 

NPX rats. In contrast, Western blot analyses of Oat1 and Oat3 protein levels showed nearly 2-

fold increases in protein expression for both carriers in kidneys of NPX rats as compared to those 

of control rats (Figure 3-1). 

 

Additionally, expression of two Mrp carriers that can transport GSH were examined. Whereas 

protein expression of Mrp2, which is localized to the BBM, was increased by approximately 

30% in NPX rat kidneys as compared to that in control rat kidneys, expression of Mrp5, which is 

localized to the BLM, was unchanged. Inasmuch as both Oat1 and Oat3 are believed to mediate 

uptake of GSH into the renal PT cell whereas both Mrp2 and Mrp5 mediate efflux from the cell, 

the larger increase in Oat1/3 compared to that for Mrp2 are consistent with higher intracellular 

accumulation of GSH. We also examined protein expression of the (Na
+
 + K

+
)-ATPase, which 
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provides the major driving force for many secondary active transport carriers; its expression was 

also found to be significantly higher (1.4-fold) in kidneys of NPX rats as well. 
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Figure 3-1. Effect of compensatory renal growth on protein expression of renal plasma 

membrane organic anion transporters and the (Na
+
 + K

+
)-stimulated ATPase.  

Protein expression of Oat1, Oat3, Mrp2, Mrp5 and the (Na
+
 + K

+
)-stimulated ATPase were 

determined by Western blot analysis as described in Section 2. -Actin protein was used as a 

loading control. Blots were scanned and quantified by densitometry using GelEval 1.22 software. 

Data represent means ± SEM of measurements from renal homogenates from three control and 

three NPX rats. *Significantly different (P < 0.05) from corresponding control sample. 
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Table 3-2. Real-time quantitative PCR analysis of Oat1, Oat3 mRNA expression in renal 

cortex of control and NPX rats. 

Primers were designed with the aid of Oligo 6.76 and the cDNA sequences published in 

GenBank
TM

. Primer and labeled probe sets were from Applied Biosystems. An optimum cDNA 

concentration of 30–300 ng DNA/well was determined for each gene. All CT values are based on 

the measurements of total RNA samples from kidney cortex of both control and NPX rats and 

are means ± SEM. GAPDH CT values were used for correction: For Oat1 and Oat3 samples, 

GAPDH CT values = 30.3 ± 0.2 for control rats and 30.4 ± 0.3 for NPX rats. Relative gene 

expression values were calculated by the formula: 2
-∆CT (NPX)

 / 2
-∆CT (Control)

, ∆CT value is the 

difference between the CT value for the gene of interest and that of GAPDH.     

   

 

 

 

Gene  Control 

CT mean ± SE 

NPX 

CT mean ± SE 

Relative Expression 

(NPX / Control) 

Oat 1 (Slc22a6) 31.4 ± 0.3 32.0 ± 0.8 0.75 

Oat 3 (Slc22a8) 32.4 ± 0.1 32.8 ± 0.5 0.86 
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Discussion 

A longstanding observation is that compensatory renal hypertrophy is associated with a 

significant increase in total cellular GSH content compared to that in kidneys from control rats, 

particularly in the PT region of the nephron (Zalups and Lash, 1990). We previously showed that 

compensatory renal hypertrophy is associated with higher activity of -glutamylcysteine 

synthetase (GCS) (Lash and Zalups, 1992, 1994; Lash et al., 2001b). While higher GCS activity 

could certainly be one mechanism for the increase in the cytoplasmic pool of GSH, increased 

transport across the BLM of plasma or renal periplasma GSH is also another potential 

mechanism. Thus, increase in the activity and/or expression of the plasma membrane carrier 

proteins that are responsible for GSH transport into the PT cell may also help explain some of 

the data. 

 

Despite the lack of a clear understanding of the physiological role(s) for uptake of GSH into the 

renal PT cell, several candidate carrier proteins have been identified (Lash, 2005, 2009; Lash et 

al., 2007). These include Oat1, Oat3, and the sodium-dicarboxylate 3 (NaC3; Slc13a3) carriers 

on the renal BLM. Additionally, both Mrp2 and Mrp5 can mediate efflux of GSH out of the renal 

PT cell across the BBM and BLM, respectively. The present study demonstrated significantly 

higher protein expression (~ 2-fold increases) for both Oat1 and Oat3 in renal homogenates from 

NPX rats. Whereas no difference was observed between Mrp5 expression in renal homogenates 

from control and NPX rats, Mrp2 protein expression was modestly (~ 50%) higher in renal tissue 

from NPX rats. Thus, although there is higher efflux by Mrp2, the increases in uptake by Oat1 

and Oat3 would seem to predominate, thereby leading to higher intracellular accumulation of 
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GSH. These results are consistent with our previous finding of higher activity of both Oat1 and 

Oat3 in renal BLM vesicles from NPX rats as compared to those from control rats (Lash et al., 

2005). 

 

Expression of these Oat carriers at the mRNA level was also determined by real-time PCR. 

Despite our expectation that mRNA levels of the Oat carriers would be higher in kidneys of NPX 

rats, we found no differences between kidneys of the two groups of rats. This indicates that the 

changes in the plasma membrane carriers that occur as a consequence of compensatory renal 

growth are post-transcriptional and/or post-translational, and probably involve a combination of 

effects, including increased mRNA translation, increased protein stability, and/or decreased 

protein degradation. 
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CHAPTER IV.  MITOCHONDRIAL STATUS 

Mitochondrial redox status 

 

Results 

To determine whether or not compensatory renal hypertrophy causes alterations in renal 

mitochondrial redox status, we first measured mitochondrial GSH (reduced glutathione) and 

GSSG (glutathione disulfide) levels in renal mitochondria from both control and NPX rats. 

Modest, but significant increases were observed in concentrations of both GSH and GSSG in 

renal mitochondria from NPX rats as compared to those from control rats (Table 4-1). 

 

Inasmuch as GSH status in renal mitochondria is determined primarily, if not entirely, by the 

function of two inner membrane carrier proteins, the DIC and OGC (Chen and Lash, 1998; Chen 

et al., 2000), we next determined gene and protein expression of these carriers. Because previous 

work (Lash et al., 2001a) showed markedly higher rates of GSH uptake by renal mitochondria 

from NPX rats as compared to those from control rats, we expected to see increases in 

expression of these carrier proteins. Despite this expectation, neither mRNA (Table 4-2) nor 

protein (Figure 4-1) expression of either the DIC or OGC were elevated in renal mitochondria 

from NPX rats as compared to those in renal mitochondria from control rats. Besides the GSH 

system, redox status in mitochondria is also regulated by two other enzymes, superoxide 

dismutase 2 (Sod2) and thioredoxin 2 (Trx2). Measurements of protein expression of Sod2 and 

Trx2 (Figure 4-2), however, showed no significant differences between renal mitochondria of 

control and NPX rats. 
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Table 4-1. GSH and GSSG concentrations in renal mitochondria from control and NPX 

rats. 

Mitochondrial GSH and GSSG levels were measured in suspensions of isolated mitochondria 

from rat renal cortex from control and NPX rats using a fluorometric method. Results are 

nmol/mg protein and are means ± SEM of measurements from three rats from each group. 

 

 

Parameter  Control NPX 

GSH 1.67 ± 0.08 1.97 ± 0.05* 

GSSG 0.90 ± 0.04 1.05 ± 0.02* 

 

* Significantly different (P<0.05) from the corresponding value in control rats. 
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Figure 4-1. Effect of compensatory renal growth on protein expression of renal 

mitochondrial GSH transporters.  

Mitochondrial samples were isolated from rat kidney cortex of control (CON) and 

uninephrectomized (NPX) rats and subjected to immunoblotting with anti-DIC, -OGC and -

VDAC. The VDAC protein served as a mitochondrial loading control. Note that the OGC protein 

was detected as both monomers (Mr = 32.5 kDa) and a dimer (Mr = 65 kDa). Blots were scanned 

and quantified by densitometry using GelEval 1.22 software. Data represent means ± SEM of 

measurements from renal mitochondrial samples from three CON and three NPX rats. No 

significant differences were detected between corresponding CON and NPX samples. 
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Table 4-2. Real-time quantitative PCR analysis of DIC and OGC mRNA expression in 

renal cortex of control and NPX rats. 

Primers were designed with the aid of Oligo 6.76 and the cDNA sequences published in 

GenBank
TM

. Primer and labeled probe sets were from Applied Biosystems. An optimum cDNA 

concentration of 30–300 ng DNA/well was determined for each gene. All CT values are based on 

the measurements of total RNA samples from kidney cortex of both control and NPX rats and 

are means ± SEM. GAPDH CT values were used for correction: For DIC and OGC samples, 

GAPDH CT values = 30.3 ± 0.2 for control rats and 30.4 ± 0.3 for NPX rats. Relative gene 

expression values were calculated by the formula: 2
-∆CT (NPX)

 / 2
-∆CT (Control)

, ∆CT value is the 

difference between the CT value for the gene of interest and that of GAPDH.     

 

Gene  Control 

CT mean ± SE 

NPX 

CT mean ± SE 

Relative Expression 

(NPX / Control) 

DIC (Slc22a10) 32.9 ± 0.2 33.4 ± 0.4 0.78 

OGC (Slc22a11) 33.6 ± 0.3 33.9 ± 0.1 0.89 
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Figure 4-2. Effect of compensatory renal growth on protein expression of renal 

mitochondrial Sod2 and Trx2.  

Mitochondrial samples were isolated from rat kidney cortex of control (CON) and 

uninephrectomized (NPX) rats and subjected to immunoblotting with anti-Sod2, anti-Trx2, and 

anti-prohibitin. The prohibitin protein served as a mitochondrial loading control. Blots were 

scanned and quantified by densitometry using GelEval 1.22 software. Data represent means ± 

SEM of measurements from renal mitochondrial samples from three CON and three NPX rats. 

No significant differences were detected between corresponding CON and NPX samples. 
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Discussion 

Although most of the GSH detected when one measures total cellular content resides in the 

cytoplasm, changes in the status of GSH in the mitochondrial pool would also be expected to 

occur. Such changes in mitochondrial GSH content have important impacts on mitochondrial 

function, cellular energetics, and ultimately cell viability (Lash et al., 1998). The present study 

demonstrated a significantly higher level of GSH specifically in renal mitochondria from NPX 

rats as compared to those from control rats. Because GSH synthesis in the renal PT cell only 

occurs in the cytoplasm (McKernan et al., 1991), transport of GSH across the mitochondrial 

inner membrane would appear to be the sole source of GSH for the mitochondrial matrix. In the 

renal cortex and PT cell, the DIC and OGC are the two carriers we identified as being 

responsible for this transport process (Chen and Lash, 1998; Chen et al., 2000). The functional 

importance of this renal mitochondrial GSH pool has been demonstrated in studies in which 

genetic manipulation of DIC or OGC expression markedly altered redox status and susceptibility 

to oxidants and other nephrotoxicants (Lash et al., 2002a 2002b; Xu et al., 2006). 

 

Besides showing an increase in mitochondrial GSH content, we previously found markedly 

increased rates of GSH uptake into renal mitochondria (Lash et al., 2001a). While this suggested 

to us that expression of the DIC and/or the OGC might be up-regulated in compensatory renal 

hypertrophy, measurements of both mRNA and protein expression for the two mitochondrial 

carriers showed no differences between control and NPX rats. To understand, then, what is 

responsible for the increased content of GSH in renal mitochondria from NPX rats, one has to 

consider the functions of the DIC and OGC in dicarboxylate transport and the observations that 

activities of several mitochondrial dehydrogenases and succinate-dependent respiration were 
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significantly higher in renal mitochondria from NPX rats. The increased mitochondrial uptake of 

GSH in compensatory renal hypertrophy, therefore, is likely due to kinetic or mass action effects 

resulting from the hypermetabolic state. In other words, the higher supply of dicarboxylate 

substrate for the two carriers drives the uptake of GSH into the mitochondria. 
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Impact of compensatory hypertrophy on functional characteristics of renal mitochondria 

 

Enzyme results  

Activities of several enzymes that are indicative of cellular energetics and redox status were 

measured in preparations of mitochondria and cytoplasm from renal cortex of control and NPX 

rats (Table 4-3). With the exception of small decreases in mitochondrial GPX and cytoplasmic 

GST in kidneys of NPX rats, there were no significant differences in activities of GSH-

dependent detoxification enzymes between control and NPX rat kidneys. In contrast, activities of 

malic dehydrogenase, glutamate dehydrogenase and succinate: cytochrome c oxidoreductase 

were significantly higher in renal mitochondria from NPX rats as compared to those from control 

rats. These increases in key enzymes of mitochondrial intermediary metabolism without 

corresponding changes in mitochondrial GSH-dependent enzymes are consistent with there being 

changes in mitochondrial redox status in kidneys of NPX rats. 
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Table 4-3. Effect of compensatory renal hypertrophy on GSH-dependent and 

mitochondrial enzymes. 

Enzyme activities were measured in cytoplasm or mitochondria isolated from kidney(s) of 

uninephrectomized (NPX) rats at 10 days post-surgery and age-matched control rats. Results are 

expressed as mU/mg protein and are means ± SEM of measurements from six rats from each 

group. 

Enzyme Control 

mU/mg protein 

NPX 

mU/mg protein 

GSSG Reductase        

Mitochondria          16.5 ± 1.8 19.9 ± 0.9 

Cytoplasm   21.1 ± 0.8 19.6 ± 0.8 

GSH peroxidase   

Mitochondria          12.6 ± 0.5 9.69 ± 0.06* 

Cytoplasm   11.7 ± 0.9 10.9 ± 0.8 

GSH S-transferase   

Mitochondria          4.91 ± 0.97 2.71 ± 0.31* 

Cytoplasm   34.1 ± 0.7 25.6 ± 0.2* 

Malic dehydrogenase   

Mitochondria          27.1 ± 1.7 38.3 ± 1.4* 

Glutamate dehydrogenase   

Mitochondria          57.7 ± 4.2 77.5 ± 6.1* 
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Succinate: cytochrome c oxidoreductase   

Mitochondria          28.7 ± 1.1 56.7 ± 4.2* 

      

 

*Significantly different (P < 0.05) from the corresponding value in control rats. 
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Respiration results 

Succinate-stimulated (complex II) state 3 respiration was also higher in renal mitochondria from 

NPX rats than in those from control rats (Table 4-4). Similarly, the RCR value, which gives an 

indication of how well oxygen consumption is coupled to ADP phosphorylation, was 

significantly elevated with succinate (complex II) as respiratory substrate in renal mitochondria 

from NPX rats relative to that in renal mitochondria from control rats. This significant 

acceleration of mitochondrial respiratory activity after compensatory renal cellular hypertrophy 

is consistent with the increased activities of mitochondrial dehydrogenases noted above and the 

general hypothesis that renal mitochondria from NPX rats are in a hypermetabolic state. 
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Table 4-4. Effects of compensatory renal hypertrophy on mitochondrial respiration. 

Mitochondrial succinate-dependent State 3 and State 4 respiration were measured in suspensions 

of isolated mitochondria from kidney(s) of control and NPX rats. Rates of oxygen consumption 

were determined in an Oxygraph with a Clark-type electrode using 3.3 mM succinate as 

respiratory substrate in the presence of 5 µM rotenone. Results are means ± SEM of 

measurements from six separate mitochondrial preparations from each group. 

RCR= respiratory control ratio = State 3 rate / State 4 rate. 

 

Parameter  Control NPX 

State 4 (nmol O2/min per mg protein) 18.6 ± 1.4 19.7 ± 1.0 

State 3 (nmol O2/min per mg protein) 27.0 ± 2.8 41.7 ± 1.5* 

RCR 1.88 ± 0.02 3.16 ± 0.10* 

 

 

*Significantly different (P<0.05) from the corresponding value in mitochondria from control 

rats. 
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Proteomics results 

To further explore mitochondrial energetics data (enzyme activities and respiration), a 

proteomics analysis of mitochondria from control and NPX rats was conducted to obtain an 

overview of mitochondrial protein levels. Using the SEQUEST and X!Tandem search engines, a 

total of 117 proteins were identified with ≥ 99% probability. Using the Mascot search engine, a 

total of 72 proteins were identified with ≥ 95% probability, of which 25 proteins were 

quantitated. For each protein, relative quantitation was calculated. As shown in Table 4-5, all the 

numbers in bold print signify a 1.5-fold or higher difference.  

 

In order to facilitate interpretation of mitochondrial proteomics data, we divided mitochondrial 

proteins into different categories and defined proteins belonging to the respective categories. The 

energy production category involves proteins that are involved in ATP synthesis and many 

metabolic pathways such as the tricarboxylic acid cycle, electron transport chain, amino acid, 

fatty acid, ketone body and drug metabolism. The apoptosis category is composed of proteins 

known to play a role in mitochondrial stress response. The data show an increase in expression 

of proteins that are involved in ATP synthesis, stress response, tricarboxylic acid (citric acid) 

cycle, respiratory electron transport chain and various metabolic pathways including amino acid, 

fatty acid and ketone body metabolism in the NPX group, further suggesting that a 

hypermetabolic state exists after uninephrectomy and compensatory renal growth. 
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Table 4-5. Mitochondrial Proteomics. 

All the numbers in bold print signify a 1.5 fold or higher difference.  

Relative quantitation: average signal intensity (NPX) / average signal intensity (Control) 

 

Accession  NPX/Con 

 ATP Synthesis, Transport and Metabolic Processes  

P10719 ATP synthase subunit beta 1.2 

Q98QB6 ATP synthase subunit beta 2 (ATP synthase F1 sector subunit beta 2)  1.5 

P15999 ATP synthase subunit alpha 1.5 

P05141 ADP/ATP translocase 2 (ADP,ATP carrier protein 2) 0.8 

 Stress Response Proteins  

Q64433 10 kDa heat shock protein (Hsp10)  1.4 

P63038 Heat shock protein 60 (HSP-60)  1.7 

 Tricarboxylic acid cycle (Citrate Cycle)  

P56574 Isocitrate dehydrogenase [NADP], (Oxalosuccinate decarboxylase) 1.6 

Q9ER34 Aconitate hydratase, (Aconitase)  2.5 

 Respiratory Electron Transport Chain  

Q52V09 Cytochrome c  1.4 

P13803 Electron transfer flavoprotein subunit alpha 1.0 
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Q66HF1  NADH-ubiquinone oxidoreductase 75 kDa subunit 1.9 

 Amino Acid and Fatty Acid Metabolic Pathways   

P50442 Glycine amidinotransferase, (Transamidinase) 1.9 

Q64565 Alanine-glyoxylate aminotransferase 2, (Beta-alanine-pyruvate 

aminotransferase) 

2.1 

Q02253 Methylmalonate-semialdehyde dehydrogenase  (Malonate-

semialdehyde dehydrogenase) 

1.3 

P08503 Medium-chain specific acyl-CoA dehydrogenase 2.6 

Q64428 Trifunctional enzyme subunit alpha, (3-hydroxyacyl-CoA 

dehydrogenase) 

0.7 

P26443 Glutamate dehydrogenase 1 1.9 

 Ketone Metabolism  

Q9D0K2 Succinyl-CoA:3-ketoacid-coenzyme A transferase 1, (3-oxoacid 

CoA-transferase 1)  

1.5 

 Drug Metabolism   

Q64573 Kidney microsomal carboxylesterase (Liver carboxylesterase 3)  1.5 

 Anion Transport (Transmembrane Transport)  

Q9Z2L0 Voltage-dependent anion-selective channel protein 1 (VDAC-1)  1.1 

 Amino acid Transport  
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Q64319 Neutral and basic amino acid transport protein rBAT (B(0,+)-type 

amino acid transport protein)  

1.0 

 Oxidoreductase Activity  

Q6AYT0 Quinone oxidoreductase (Zeta-crystallin)  1.2 

Q07523 Hydroxyacid oxidase 2  1.0 

Q68FT3 Probable oxidoreductase C10orf33 homolog  1.9 

Q9DBF1 Aldehyde dehydrogenase family 7 member A1 (Antiquitin-1)  0.9 
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Discussion 

The basic concept of the hypermetabolic state that is suggested to exist in compensatory renal 

hypertrophy is that the remnant renal tissue must work harder to try and make up for the lost 

function. The principal means to accomplish this is through increased generation of ATP by the 

mitochondria, which is tightly regulated in the kidneys according to the need for metabolic 

energy (Soltoff, 1986). In the present study, evidence for increased rates of mitochondrial 

metabolism were the significant increases in activities of malic, glutamate, and succinate 

dehydrogenases and State 3 rates of succinate-dependent respiration. We also observed 

significantly higher protein expression of the (Na
+
+K

+
)-ATPase in kidneys from NPX rats, 

which agrees with our previous observation of higher enzymatic activity in renal PT cells from 

NPX rats (Lash et al., 2001b). Because this protein is one of the primary consumers of ATP in 

the renal PT cell (Soltoff, 1986), its higher expression and activity in kidneys from NPX rats as 

compared to those from control rats provide further support for the conclusion that compensatory 

renal hypertrophy generates a hypermetabolic state in the remnant renal cell due to increased 

energy demands. 

 

In this study, we applied proteomics for relative quantification of mitochondrial proteins and 

analyzed the main pathways of mitochondrial activity for energy metabolism and stress response. 

Consistent with mitochondrial enzyme and respiration data, mitochondrial proteomics data also 

suggest the existence of a hypermetabolic state and stress in mitochondria from hypertrophied 

kidney. As mitochondrial proteins are central to various metabolic activities, disturbance of 

mitochondrial proteins is also often associated with a variety of diseases or various pathological 

states such as respiratory chain defects, fatty acid oxidation deficiencies and neurodegenerative 
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disease (Chan, 2006; Janssen et al., 2004; Gregersen et al, 2004; Kwong et al., 2006). This 

assessment of mitochondrial proteins provides specific, mechanistic information about molecular 

changes that influence cellular metabolism in mitochondria from both hypertrophied and normal 

kidney. 

 

Overall, our enzyme, respiration and proteomics data suggested a hypermetabolic state in 

hypertrophied kidney. As mitochondria are the major organelles to produce superoxide anion in 

cells, increased mitochondrial respiration and mitochondrial function also suggests potential 

increase in reactive oxygen species (ROS) formation, which in turn possibly lead to a higher 

basal state of oxidant stress as compared to mitochondria from normal rat kidneys. In addition, 

the upregulation of mitochondrial proteins that are involved in metabolic pathways and apoptosis 

might be a way for cells to cope with potential basal oxidative stress during compensatory renal 

hypertrophy. 
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Assessment of basal and toxicant-induced oxidative stress in renal mitochondria 

 

Results 

The hypermetabolic state of renal mitochondria from NPX rats, and the evidence of renal 

dysfunction, suggest that a higher state of oxidative stress exists that may contribute to higher 

susceptibility to chemically induced injury. To compare basal and toxicant induced oxidative 

stress between renal mitochondria from control and NPX rats, we analyzed lipid peroxidation by 

using two assays (one assay based on MDA formation and one based on degradation of cis-

parinaric acid) and measured aconitase activity as a marker for mitochondrial oxidative stress. 

We also examined two types of protein adducts as oxidative stress markers, 3-NT (3-

nitrotyrosine) and HNE (4-hydroxy-2-nonenal). 

 

The results of the MDA assay show that there is no significant difference in renal mitochondrial 

lipid peroxidation between control and NPX rats under either basal conditions or when 

mitochondria are challenged by exposure to tBH (Figure 4-3A). The naturally occurring 

polyunsaturated fatty acid cis-parinaric acid is used in eukaryotic cells as a very sensitive marker 

for the initial stages of lipid peroxidation (Tribble et al., 1994). When double bonds of cis-

parinaric acid are broken in lipid peroxidation reactions, decay in fluorescence is used to 

indirectly monitor the degree of membrane lipid peroxidation. Under anaerobic conditions (N2 + 

Fe
2+

), there was no significant difference in either basal or tBH-induced mitochondrial lipid 

peroxidation between control and NPX rats (Figure 4-3B). 
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Because mitochondrial aconitase activity is a sensitive indicator of redox homeostasis and its 

activity is uniquely sensitive to various physiological and pathological conditions (James et al., 

2002), it is frequently viewed as a marker of oxidative stress in biological systems. The 

underlying mechanism is believed to be the facile inactivation of its iron–sulfur prosthetic group 

by toxicants such as peroxides (Han et al., 2003; James et al., 2002; Gardner et al., 1994). As 

shown in Figure 4-3C, renal aconitase activity was significantly lower in mitochondria from 

NPX rats relative to control rats even without any exogenous toxicant, suggesting that renal 

compensatory hypertrophy does cause an increase in underlying mitochondrial oxidative stress. 

The progressive oxidative stress in animals with renal insufficiency can lead to oxidation of 

proteins, carbohydrates, nucleic acids, lipids and accumulation of harmful byproducts in various 

tissues (Himmelfarb et al., 2002; Vaziri, 2004). As a further assessment of mitochondrial redox 

status, we analyzed protein adducts of two oxidative stress markers, 3-NT and HNE, by Western 

blot analysis in renal mitochondria. No differences were observed in blots for 3-NT modified 

proteins (data not shown). However, assessment of HNE-adducted proteins showed significantly 

higher staining in renal mitochondria from NPX rats, with the most prominent staining at 45 kDa 

and 52 kDa (Figure 4-3D). 

 

To analyze the effect of toxicant (tBH) on mitochondrial protein levels, we performed proteomic 

analyses on mitochondrial samples from control and NPX groups. Using the Mascot search 

engine, a total of 72 proteins were identified with ≥ 95% probability, of which 25 proteins were 

quantitated. For each protein, relative quantitation was calculated. As shown in Table 4-6, all the 

numbers in bold print signify a 1.5-fold or higher difference and a 0.5-fold or lower difference.  
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The comparison of NPX-tBH/Control-tBH protein expression cannot clearly suggest if changes 

are due to the effects of nephrectomy or toxicant-treatment. To further explore these data, we 

also analyzed the protein fold change using NPX-tBH/NPX and Control-tBH/Control 

comparisons. The data show that tBH treatment caused a significant decrease in expression of 

proteins in mitochondria from both control (Control-tBH/Control) and NPX (NPX-tBH/NPX) 

groups. This lower protein expression may be a result of cellular toxicity due to too high a 

concentration of or exposure time to tBH. In addition, tBH treatment had similar effects on 

mitochondrial proteins from both control and NPX groups that are involved in the citric acid 

cycle, electron transport chain, amino acid, fatty acid, ketone and drug metabolism. 
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Figure 4-3. Assessment of effects of compensatory renal growth on basal and toxicant-

induced oxidative stress in renal mitochondria. 

A. Basal and tBH-induced lipid peroxidation in renal mitochondria from CON and NPX rats was 

measured using malondialdehyde (MDA) formation, as determined with 1-methyl-2-

phenylindole. Renal mitochondrial samples from CON and NPX rats were incubated with buffer 

or 500 µM tBH for 1h. Results are means ± SEM of three separate samples from each group. 

*Significantly different (P < 0.05) from the corresponding untreated samples. 

B. Basal and tert-butyl hydroperoxide (tBH)-induced lipid peroxidation in renal mitochondria 

from control (CON) and uninephrectomized (NPX) rats was measured using fluorescent cis-

parinaric acid. Renal mitochondrial samples were incubated with 6.4 mM cis-parinaric acid + 5 

mM hemin and treated with either 200 µM or 500 µM tBH. Results are means ± SEM of three 

separate samples from each group. *Significantly different (P < 0.05) from the corresponding 

untreated samples. 

C. Mitochondrial aconitase activity in renal mitochondria from CON and NPX rats was 

measured as NADPH formation at A340. Results are means ± SEM of three separate samples 

from each group. *Significantly different (P < 0.05) from the value in mitochondria from CON 

rats. 

D. Adducts of 4-hydroxy-2-nonenal (HNE) with mitochondrial proteins were determined by 

Western blot analysis. VDAC protein was used as a mitochondrial loading control. Blots were 

quantified by densitometry using GelEval 1.22 software. Data are presented as means ± SEM of 

three separate samples from each group. *Significantly different (P < 0.05) compared to 

corresponding sample from CON rats. 
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Table 4-6. Effect of toxicant (tBH) on mitochondrial protein expression during compensatory renal hypertrophy. 

All the numbers in bold print signify a 1.5-fold or higher difference and a 0.5-fold or lower difference.  

Relative quantitation:  average signal intensity (NPX-tBH) / average signal intensity (NPX) 

    average signal intensity (Control-tBH) / average signal intensity (Control) 

 average signal intensity (NPX-tBH) / average signal intensity (Control-tBH) 

    

Accession  NPX-tBH/ 

NPX 

Control-tBH/ 

Control 

 

NPX-tBH/ 

Control-tBH 

 ATP Synthesis, Transport and Metabolic 

Processes 

   

P10719  ATP synthase subunit beta 
0.9 0.6 1.5  

Q98QB6 ATP synthase subunit beta 2 (ATP synthase F1 

sector subunit beta 2)  

1.2 0.5 

 

3.2 

 

8
8
 



 
 

 

 

P15999 ATP synthase subunit alpha 
0.8 0.8 1.3 

P05141 ADP/ATP translocase 2 (ADP,ATP carrier 

protein 2) 

0.7 0.4 1.4 

 Stress Response Proteins    

Q64433 10 kDa heat shock protein (Hsp10)  
0.7 0.4 2.4 

P63038 Heat shock protein 60 (HSP-60)  
0.9 0.5 1.6 

 Tricarboxylic acid cycle (Citrate Cycle)    

P56574 Isocitrate dehydrogenase [NADP], 

(Oxalosuccinate decarboxylase) 

0.7 0.6 

 

1.2 

 

Q9ER34 Aconitate hydratase, (Aconitase)  
0.6 0.7 1.1 

 Respiratory Electron Transport Chain    

Q52V09 Cytochrome c  
0.5 0.3 2.3 

Q66HF1  NADH-ubiquinone oxidoreductase 75 kDa 

subunit 

0.2 0.1 0.4 

8
9
 



 
 

 

 

 Amino Acid and Fatty Acid Metabolic 

Pathways  

   

P50442 Glycine amidinotransferase, (Transamidinase) 
1.1 1.2 1.4 

Q64565 Alanine-glyoxylate aminotransferase 2, (Beta-

alanine-pyruvate aminotransferase) 

0.5 

 

0.6 

 

1.1 

 

Q02253 Methylmalonate-semialdehyde dehydrogenase  

(Malonate-semialdehyde dehydrogenase) 

0.7 

 

0.5 

 

1.8 

 

P08503 Medium-chain specific acyl-CoA 

dehydrogenase 

0.7 1.5 1.2 

Q64428 Trifunctional enzyme subunit alpha, (3-

hydroxyacyl-CoA dehydrogenase) 

0.5 

 

0.5 

 

1.0 

 

P26443 Glutamate dehydrogenase 1 
0.5 0.6 1.4 

P00507 Aspartate aminotransferase, mitochondrial 

precursor  (Transaminase A) 

3.6 4.8 

 

0.6 

 

9
0
 



 
 

 

 

 Ketone Metabolism    

Q9D0K2 Succinyl-CoA:3-ketoacid-coenzyme A 

transferase 1, (3-oxoacid CoA-transferase 1)  

0.5 

 

0.6 

 

0.9 

 

 Drug Metabolism     

Q64573 Kidney microsomal carboxylesterase (Liver 

carboxylesterase 3)  

0.3 0.4 

 

1.5 

 

 Anion Transport (Transmembrane 

Transport) 

   

Q9Z2L0 Voltage-dependent anion-selective channel 

protein 1 (VDAC-1)  

1.2 0.6 

 

1.9 

 

 Amino acid Transport    

Q64319 Neutral and basic amino acid transport protein 

rBAT (B(0,+)-type amino acid transport 

protein)  

0.6 

 

0.5 

 

1.2 

 

9
1
 



 
 

 

 

 Oxidoreductase Activity    

Q6AYT0 Quinone oxidoreductase (Zeta-crystallin)  
0.8 0.9 1.1 

Q07523 Hydroxyacid oxidase 2  
0.6 0.5 1.3 

Q68FT3 Probable oxidoreductase C10orf33 homolog  
0.3 1.0 0.7 

Q9DBF1 Aldehyde dehydrogenase family 7 member A1 

(Antiquitin-1)  

1.7 0.6 

 

4.6 

 

 

9
2
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Discussion 

Inasmuch as the mitochondria are the principal intracellular sites of oxygen consumption and 

increased rates of electron transport are believed to be associated with increased release of 

reactive oxygen species, we hypothesized that the consequence of these changes in 

mitochondrial function is an enhancement of basal oxidant stress (Lash et al., 2001a). The 

current studies pursued this further by assessing both basal and toxicant-stimulated lipid 

peroxidation using two well-established assays, formation of MDA and degradation of cis-

parinaric acid. We also measured activity of mitochondrial aconitase, which, as noted above, is 

considered a highly sensitive indicator of oxidative stress due to the facile oxidation of its Fe-S 

cluster leading to inactivation (Han et al., 2003; James et al., 2002; Gardner et al., 1994). 

 

Neither assessment of lipid peroxidation showed a significant difference between control and 

NPX kidneys, either in the absence or presence of toxicant. Expression of two important redox 

proteins in renal mitochondria, SOD2 and Trx2, were also unchanged after compensatory renal 

hypertrophy. An important consideration in evaluating such data, however, is the manner by 

which the measurements are normalized. In the present work, enzyme activities and levels of 

metabolites were normalized to total protein content, which was the only normalization 

parameter available and is the one that is most commonly used. Part of the compensatory 

hypertrophy response, however, is an increase in protein per cell (Meyer et al., 1996; Fine, 1986; 

Shirley and Walter, 1991; Wolf and Neilson, 1991). We previously illustrated the impact of this 

by normalizing activities in renal PT cell primary cultures derived from either control or NPX 

rats to both protein and DNA content (Lash et al., 2001b). Whereas the amount of total protein 
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per cell increases as a consequence of compensatory renal hypertrophy, the amount of DNA per 

cell does not change owing to the absence of a significant hyperplasia after a reduction in renal 

mass. Thus, lack of a difference between samples from control and NPX rats when normalized to 

protein equates to an increase, although one that is proportional to protein. 

 

In contrast to the lipid peroxidation data, the mitochondrial aconitase activity data showed 

significant redox imbalance, suggesting an increase in mitochondrial oxidative stress in NPX 

kidney. To further support the conclusion that there is a degree of redox imbalance in renal 

mitochondria of NPX rats, we observed a significant increase in the amount of HNE-modified 

protein. The increase in Western blot density was 1.7-fold and was predominantly detected in 

two protein bands of molecular weight 52 kDa and 45 kDa. Although the identity of these 

modified proteins is currently unknown, their detection and the extent of the difference between 

renal mitochondria from control and NPX rats, suggest they may be important in determining the 

compensatory hypertrophy phenotype. Potential nitration of mitochondrial proteins was also 

assessed, but no difference between renal mitochondria from control and NPX rats was found, 

suggesting that increases in reactive nitrogen species were not a component of the compensatory 

hypertrophy phenotype. 

 

The relative quantitation of proteins from mitochondrial pathways enabled the detection of 

toxicant-induced changes in mitochondria from hypertrophied kidney, suggesting alterations in 

susceptibility to mitochondrial toxicants. Overall, the proteomic analysis identified a number of 
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toxicant-induced changes during compensatory renal hypertrophy that could be involved in 

mediating mitochondrial toxicant-induced oxidative stress. Further exploration of these changes 

may provide insight into whether or not mitochondrial toxicant-induced stress response in 

hypertrophied kidney is due to cell death or any other mechanism. From our data, it is not clear if 

the similar effect of the toxicant, tBH, on mitochondrial proteins from both control and NPX 

groups is due to use of too high a concentration of tBH or too long an exposure. It would be 

interesting to treat the mitochondria with multiple concentrations of toxicants in multiple 

mitochondrial samples from control and NPX groups. 
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Effect of compensatory renal hypertrophy on mitochondrial size, number and membrane 

potential 

 

Results 

Effect of compensatory renal hypertrophy on mitochondrial size and number in renal PT 

cells 

Based on contradictory data from previous studies (Cuppage et al., 1973; Hwang et al., 1990), 

our goal was to study basic properties of renal mitochondria after compensatory renal 

hypertrophy due to uninephrectomy. To label mitochondria, PT cells were incubated with 

MitoTracker
TM

 probes, which passively pass across plasma membranes and accumulate in 

metabolically active mitochondria. Our data showed a significant increase in mitochondrial 

staining with MitoTracker
TM

 dye in NPX rats, suggesting a possibility of either an increase in 

mitochondrial number (proliferation) or size (hypertrophy). To further explore these data, 

mitochondrial DNA and mitochondrial protein were measured. As shown in Figure 4-5 and 

Figure 4-6, the data indicate no significant difference in mitochondrial DNA but significant 

increases in mitochondrial protein contents in the NPX group, suggesting renal mitochondrial 

hypertrophy in the NPX group. 
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Renal PT cells from NPX rats have higher basal mitochondrial membrane potential than 

those from control rats 

To analyze mitochondrial membrane potential, PT cells were incubated with JC-1 (Figure 4-4). 

JC-1 is a cationic dye that exhibits membrane potential-dependent accumulation in mitochondria, 

indicated by shifting its fluorescence emission from green (~525 nm) to red (~590 nm). Polarized 

mitochondria are indicated by punctate red staining. The graphs represent average quantitation of 

three images and show a marked increase in JC-1 red punctate staining and no significant 

difference in JC-1 green staining. Overall, these data demonstrate an increase in JC-1 red 

punctate staining in kidneys of NPX rats, which is higher than the increase in MitoTracker
TM

 

staining, suggesting a hyperpolarized state in the kidneys of NPX rats. 
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Figure 4-4. MitoTracker
TM

 staining. 

PT cells were grown on 35 mm dishes for 4 days and incubated with MitoTracker
TM

 (50 nM) for 

30 min. MitoTracker
TM

 staining in PT cells from Control and NPX rats was measured using a 

Zeiss LSM 510 confocal microscope. 

A) Images of MitoTracker
TM

 staining were measured by confocal microscopy at 554 nm 

excitation and 576 nm emission. Magnification = 630x. 

B) The graph represents average quantitation of three images. The integrated intensity of the 

entire image was done using Metamorph 7.1.7.0 Offline. *Significantly different (P < 0.05) from 

control cells. 
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Figure 4-5. Mitochondrial DNA. 

Mitochondrial DNA was measured by DNA fluorescence assay. DAPI fluorescence was 

measured at 360 nm excitation and 450 nm emission. Results are means ± SEM of three separate 

samples from each group. 
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Figure 4-6. Mitochondrial protein. 

Mitochondrial protein contents were measured by the BCA protein assay. *Significantly 

different (P < 0.05). Data are presented as means ± SEM of three separate samples from each 

group. 
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Figure 4-7. Measurement of mitochondrial membrane potential in PT cells from control 

and NPX rats. 

PT cells were incubated with JC-1 (5 µg/ml) for 30 min. JC-1 fluorescence was measured by 

confocal microscopy using an overlay of red (488 nm excitation, 590 nm emission) and green 

(488 nm excitation, 525 nm emission) on a Zeiss LSM 510 confocal microscope. 

A) JC-1 aggregate is indicated by red punctate staining (left panel). JC-1 monomer is indicated 

by green staining (middle panel). The overlay of both images is indicated by yellow color, which 

indicates co-localization of red and green (right panel). Magnification = 630x 

B) The graphs represent average quantitation of three images. The integrated intensity of the 

entire image was measured by using Metamorph 7.1.7.0 Offline. *Significantly different (P < 

0.05) from control cells. 
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Discussion 

In contrast to previous studies that suggested the existence of both renal mitochondrial 

proliferation and hypertrophy (Johnson and Amendola, 1969; Cuppage et al., 1973), Hwang‟s 

group (Hwang et al., 1990) concluded only mitochondrial hypertrophy of a fixed number of 

mitochondria in compensatory renal hypertrophy of renal PT cells. On the basis of these previous 

studies, which have suggested renal mitochondrial proliferation and hypertrophy, we analyzed 

properties of renal mitochondria after compensatory renal hypertrophy due to uninephrectomy. 

In the present study, we demonstrated the occurrence of renal mitochondrial hypertrophy 

following reduction in renal mass that was presumably to satisfy the greater need for energy 

metabolism (Benipal and Lash, 2011). This is consistent with data from the studies of Hwang 

and colleagues (Hwang et al., 1990). 

 

The elevation in basal mitochondrial membrane potential suggested the existence of a 

hyperpolarized state, which is consistent with our previous data of higher rates of state 3 

respiration in isolated renal mitochondria from NPX rats (Benipal and Lash, 2011). These data 

suggest that increased rates of electron flow and hyperpolarization by increased mitochondrial 

respiration further lead to increased reactive oxygen species formation, which potentially causes 

a significant degree of redox imbalance and basal oxidative stress in renal mitochondria, as 

suggested by our recent studies (Benipal and Lash, 2011), and increased susceptibility of PT 

cells from NPX rats to nephrotoxicants (Lash et al., 2006). 
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CHAPTER V.  MODULATION OF MITOCHONDRIAL REDOX STATUS IN PT 

CELLS TO REDUCE THE RISK OF SUSCEPTIBILTY TO NEPHROTOXICANTS. 

 

Influence of overexpression of the DIC on susceptibility to chemically induced toxicity by 

mitochondrial toxicants 

 

Results 

The overexpression of the DIC was confirmed by analyzing gene expression. As shown in Table 

5-1, overexpression of DIC plasmids leads to a 7,806-fold increase in DIC gene expression. 

Acute cytotoxicity was assessed by measuring lactate dehydrogenase (LDH) release in renal PT 

cells from NPX rats. After transfection with the DIC plasmid, the PT cells were treated with 

either AA (1 µM, 10 µM), tBH (100 µM, 200 µM) or MVK (100 µM, 200 µM) without or with 

an overnight supplementation with 5 mM GSH. With endogenous GSH, overexpression of DIC 

did not cause any significant change in LDH release induced by AA (Figure 5-1A). However, 

after supplementation of PT cells with GSH, overexpression of DIC caused protection against the 

mitochondrial specific toxicant AA (Figure 5-1B). Furthermore, overexpression of DIC did not 

cause any protection against tBH or MVK with endogenous or supplemented GSH in PT cells 

from NPX rats (Figure 5-1A and Figure 5-1B). 
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Table 5-1. Analysis of DIC gene overexpression by RT-PCR in renal proximal tubular cells 

from NPX rats. 

Primers for the DIC were designed with the aid of Oligo 6.76 and the cDNA sequences 

published in GenBank 
TM

. An optimum cDNA concentration of 30–300 ng DNA/well was 

determined for each gene. All CT values are based on triplicate measurements from total RNA 

from 3 renal PT cell preparations from NPX rats and are means ± SEM. GAPDH CT values were 

used for correction: For control and DIC-transfected samples, GAPDH CT values = 27.8 ± 0.2 

for control and 31.7 ± 0.5 for DIC-transfected. Relative gene expression values were calculated 

by the formula: 2
-∆CT (DIC-transfected)

 / 2
-∆CT (Control)

, ∆CT value is the difference between the CT value 

for the gene of interest and that of GAPDH. 

 

 

Control 

CT mean ± SE 

DIC-transfected 

CT mean ± SE 

Relative Expression 

(DIC-transfected / Control) 

30.3 ± 0.1 21.3 ± 0.2 7,806 
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Figure 5-1. Effect of overexpression of the DIC on sensitivity to chemical-induced toxicity. 

A. Experiments were performed on day 6 of cell culture (72 h post-DIC transfection). 

Suspensions of PT cells isolated from NPX rats were treated with the indicated concentrations of 

AA, MVK or tBH for 4 h. After 4 h, aliquots were removed and LDH activity was measured. 

Values represent means ± SEM. Data shown here are the average of three experiments.  

B. Experiments were performed on day 6 of cell culture (72 h post-DIC transfection). 

Suspensions of PT cells isolated from NPX rats were incubated with 5 mM GSH overnight prior 

to treatment with the indicated concentrations of AA, MVK or tBH for 4 h. After 4 h, aliquots 

were removed and LDH activity was measured. Values represent means ± SEM. Data shown 

here are the average of three experiments. *Significantly different (P < 0.05). 
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Figure 5-1A. 
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Figure 5-1B. 
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Influence of overexpression of the OGC on susceptibility to chemically induced toxicity by 

mitochondrial toxicants 

 

Results 

Overexpression of the OGC was confirmed by analyzing gene expression. As shown in Table 5-

2, overexpression of OGC plasmids lead to a 5,007-fold increase in OGC gene expression. Acute 

cytotoxicity was assessed by measuring LDH release in PT cells from NPX rats. After 

transfection with the OGC plasmid, the PT cells were treated with either AA (1 µM, 10 µM), 

tBH (100 µM, 200 µM) or MVK (100 µM, 200 µM) without or with an overnight 

supplementation with 5 mM GSH. With endogenous GSH, overexpression of OGC did not cause 

any significant change in LDH release induced by AA (Figure 5-2A). However, after 

supplementation of PT cells with GSH, overexpression of OGC caused protection against the 

mitochondrial specific toxicant AA (Figure 5-2B). Furthermore, overexpression of OGC did not 

cause any protection against tBH or MVK with either endogenous or supplemented GSH 

(Figure 5-2A and Figure 5-2B) in PT cells from NPX rats. 

 

Overall, these results suggest higher GSH transport activity by overexpression of DIC and OGC 

in renal PT cells of hypertrophied kidney markedly protected against toxicity and oxidative stress 

induced by the mitochondrial selective toxicant AA, indicating the significance of mitochondrial 

GSH transport in determining susceptibility to cytotoxic chemicals. 
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Table 5-2. Analysis of OGC gene overexpression by RT-PCR in renal proximal tubule cells 

of NPX rats. 

Primers for the OGC were designed with the aid of Oligo 6.76 and the cDNA sequences 

published in GenBank 
TM

. An optimum cDNA concentration of 30 to 300 ng DNA/well was 

determined for each gene. All CT values are based on triplicate measurements from total RNA 

from 3 renal PT cell preparations from NPX rats and are means ± SEM. GAPDH CT values were 

used for correction: For control and OGC-transfected samples, GAPDH CT values = 27.8 ± 0.1 

for control and 28.3 ± 0.2 for OGC-transfected. Relative gene expression values were calculated 

by the formula: 2
-∆CT (OGC-transfected)

 / 2
-∆CT (Control)

, ∆CT value is the difference between the CT 

value for the gene of interest and that of GAPDH. 

 

 

 

 

 

 

 

 

 

 

 

Control 

CT mean ± SE 

OGC-transfected 

CT mean ± SE 

Relative Expression 

(OGC-transfected / Control) 

31.8 ± 0.3 20.0 ± 0.5 5,007 
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Figure 5-2. Effect of overexpression of the OGC on sensitivity to chemical-induced toxicity. 

A. Experiments were performed on day 6 of cell culture (72 h post-OGC transfection). 

Suspensions of PT cells isolated from NPX rats were treated with the indicated concentrations of 

AA, MVK or tBH for 4 h. After 4 h, aliquots were removed and LDH activity was measured. 

Values represent means ± SEM. Data shown here are the average of three experiments.  

B. Experiments were performed on day 6 of cell culture (72 h post-OGC transfection). 

Suspensions of PT cells isolated from NPX rats were incubated with 5mM GSH overnight prior 

to treatment with the indicated concentrations of AA, MVK or tBH for 4 h. After 4 h, aliquots 

were removed and LDH activity was measured. Values represent means ± SEM. Data shown 

here are the average of three experiments. *Significantly different (P < 0.05). 
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Figure 5-2A. 



114 

 

 

 

 

c.

. 

b. 

a.

. 

Figure 5-2B. 
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Discussion 

Our previous reports showed a significant degree of redox imbalance and basal oxidative stress 

in renal mitochondria (Benipal and Lash, 2011) and an increased susceptibility of PT cells from 

NPX rats to nephrotoxicants (Lash et al., 2006). Furthermore, our lab also showed in NRK-52E 

cells that overexpression of mitochondrial GSH transporters protected against nephrotoxicants 

(Lash et al., 2002b; Xu et al., 2006). Taken together, these observations suggested that a 

threshold level of mitochondrial GSH is needed to counteract oxidative stress and susceptibility 

to toxicants in PT cells. Thus, we hypothesized that further increases in mitochondrial GSH 

levels in PT cells by overexpression of DIC and/or OGC will improve mitochondrial energetics 

and redox status and lower susceptibility to mitochondrial toxicants. 

 

In this study, our approach was to increase GSH content in a subcellular organelle, mitochondria, 

by altering expression of the DIC and OGC to effect desired changes in mitochondrial GSH 

status. To investigate the toxicological consequences of altering mitochondrial GSH transport, 

we incubated renal PT cells from NPX rats with three mechanistically distinct mitochondrial 

toxicants, AA, tBH, and MVK. All three toxicants are unique in their mechanisms as shown in 

Figure 5-3. AA is a specific mitochondrial inhibitor that decreases mitochondrial electron 

transport chain activity and mitochondrial membrane potential leading to increases in reactive 

oxygen species. tBH is an oxidant that causes lipid peroxidation and GSH oxidation whereas 

MVK is an alkylating agent that causes GSH depletion by formation of GSH adducts. 

 

Interestingly, assessment of cytotoxicity by LDH release demonstrated that overexpression of 

either of the mitochondrial GSH carriers, the DIC and OGC, only protected against AA. This 
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extensive protection against AA by overexpression of mitochondrial GSH transporters can be 

explained by a direct effect of AA on the mitochondrial electron transport chain. In other words, 

out of all three toxicants, AA specifically inhibits mitochondria and consequently, increased 

mitochondrial GSH by overexpression of GSH transporters decreases the oxidative stress 

induced by AA. Thus, consistent with our previous data in NRK-52E cells (Lash et al., 2002b; 

Xu et al., 2006), our present data also demonstrated that manipulation of mitochondria by 

overexpression of mitochondrial GSH carriers, DIC and OGC, reduced the risk of susceptibility 

to nephrotoxicants in hypertrophied kidney cells. 

 

Overall, our data represent a significant analysis of the influence of modulation of renal 

mitochondrial GSH transport on the influence of compensatory renal hypertrophy on 

susceptibility of renal PT cells to mitochondrial toxicants. Furthermore, it would be interesting to 

extend this study by analyzing the effect of overexpression of the mitochondrial GSH 

transporters, DIC and OGC, on oxidative stress, proliferation and cellular GSH status. The 

ultimate goal of this study is to improve renal redox status after reduction in kidney mass by 

increasing mitochondrial GSH. This is then intended to reduce the risk of susceptibility to 

nephrotoxicants as reported by our previous studies (Lash et al., 2006; Lash et al., 2002b; Xu et 

al., 2006). Besides compensatory renal hypertrophy after reduction in kidney mass, GSH 

dysregulation is also associated with a number of toxic and pathological states. For example, 

lower cellular GSH levels are associated with diabetes, neurodegeneration and cardiovascular 

diseases (Ballatori et al., 2009) and depletion or oxidation of mitochondrial GSH is associated 

with cirrhosis, diabetic nephropathy and alcoholic liver disease (Fernandez-Checa et al., 1993; 

Krahenbuhl et al., 1992; Santos et al., 2003; Mastrocola et al., 2005). Towards this end, our 
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approach of improving cellular and subcellular (mitochondrial) GSH status might be applicable 

to not only compensatory renal hypertrophy but also to diseases that are associated with GSH 

dysregulation. 
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Figure 5-3. Mitochondrial toxicants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B) tert-butyl hydroperoxide 

A) Antimycin A 

C) Methyl vinyl ketone 
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CHAPTER VI.  SUMMARY AND CONCLUSIONS 

The primary goal of this dissertation was to further characterize renal function and mitochondrial 

status during compensatory renal hypertrophy caused by uninephrectomy and to further expand 

on our previous studies of modulating renal mitochondrial redox status. We hypothesize that 

compensatory renal hypertrophy after uninephrectomy alters renal function and mitochondrial 

status and modulation of mitochondrial redox status alters susceptibility to nephrotoxicants in 

hypertrophied kidney cells. To study compensatory renal hypertrophy, we used the 

uninephrectomy rat model as this model has been reasonably well characterized as to the 

physiological and morphological changes that occur. 

 

The analysis of renal physiological parameters suggested that the compensatory response of the 

remaining kidney after uninephrectomy is associated with modest impairment of renal function 

as assessed by blood and urinary parameters. The previous observations suggested that 

compensatory renal hypertrophy is associated with a significant increase in GSH content by 

higher activity of -glutamylcysteine synthetase (GCS). To further explore another potential 

mechanism for the increase in the cytoplasmic pool of GSH, we analyzed the expression of 

several plasma membrane carrier proteins that are responsible for GSH transport into PT cells to 

determine whether or not there is increased transport of GSH across the BLM. Our results 

showed significantly higher protein expression of Oat1 and Oat3, which play a role in GSH 

uptake, and higher protein expression of the (Na
+
+K

+
)-stimulated ATPase, which provides the 

Na
+
 ion gradient for secondary active transporters that ultimately help mediate the uptake of 
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GSH. Overall, these results suggested that higher intracellular accumulation of GSH is due to 

higher activity of GCS and increased GSH transport across the BLM. 

 

After analyzing renal plasma membrane GSH transporters, the next goal was to see whether or 

not compensatory renal hypertrophy caused alterations in renal mitochondrial redox status, 

including GSH and the redox enzymes superoxide dismutase (Sod2) and thioredoxin2 (Trx2). 

The analysis of renal mitochondrial glutathione status showed modest but significant increases in 

both GSH and GSSG in renal mitochondria from NPX rats as compared to control rats. We next 

determined gene and protein expression of two inner mitochondrial carrier proteins, the DIC and 

OGC, which partially determine renal mitochondrial GSH status. In contrast to our expectations, 

neither gene nor protein expression of the DIC or OGC were increased and there were no 

changes in protein expression of the mitochondrial redox enzymes Sod2 and Trx2 after 

uninephrectomy. Hence, we concluded that the increase in mitochondrial GSH concentrations is 

due to mass action or changes in the kinetics of the mitochondrial GSH transporters, DIC and 

OGC, caused by a hypermetabolic state. 

 

To analyze the impact of compensatory renal hypertrophy on functional characteristics of renal 

mitochondria, we analyzed activities of mitochondrial enzymes that are indicative of cellular 

energetics and redox status. To further explore mitochondrial energetics, we also looked at 

mitochondrial respiration and proteomics. All the results provided evidence for a hypermetabolic 

state in the NPX group signified by increases in activities of energetics enzymes, state 3 rates of 
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respiration and expression of proteins that are involved in various metabolic pathways. Overall, 

these observations suggest that to accommodate the increased energy demand caused by 

compensatory renal hypertrophy, there are increased rates of mitochondrial electron transport 

chain leading to the hypermetabolic state that can also lead to mitochondrial dysfunction due to 

increased ROS formation. 

 

The evidence for renal dysfunction and a hypermetabolic state of renal mitochondria from NPX 

rats suggested that a higher state of mitochondrial oxidative stress exists that may also contribute 

to higher susceptibility to chemically induced renal injury. Hence, our next goal was to compare 

basal and toxicant-induced renal mitochondrial oxidative stress between control and NPX rats. 

We analyzed both basal and toxicant-stimulated lipid peroxidation and aconitase activity, which 

is a highly sensitive indicator of oxidative stress in biological systems. The assessment of basal 

and toxicant-induced lipid peroxidation data showed no significant difference between control 

and NPX kidneys. However, aconitase activity data suggested redox imbalance leading to 

increased mitochondrial oxidative stress, which is further supported by significant increases in 

the amount of HNE-adducted proteins in renal mitochondria from NPX rats. 

 

Based on previous observations that were contradictory and suggested both renal mitochondrial 

proliferation and hypertrophy on the one hand and only mitochondrial hypertrophy on the other 

hand, our goal was to further explore the effect of compensatory renal hypertrophy on 

mitochondrial size and number in renal PT cells. We showed that mitochondrial hypertrophy of 
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renal PT cells follows reduction in renal mass to satisfy the need for energy metabolism during 

compensatory renal hypertrophy. Furthermore, elevation in basal membrane potential as shown 

by JC-1 staining suggested a hyperpolarized state in mitochondria from the NPX group. This 

suggested that hyperpolarization caused by increased mitochondrial respiration further leads to 

basal mitochondrial oxidative stress and increased susceptibility of PT cells to nephrotoxicants in 

the NPX group. 

 

Finally, to test our hypothesis that increasing renal mitochondrial GSH reduces the risk of 

susceptibility to nephrotoxicants in hypertrophied kidney cells, we overexpressed two 

mitochondrial GSH carriers, the DIC and OGC, in PT cells from the NPX group. The basic idea 

was that overexpression of mitochondrial GSH transporters would decrease susceptibility to 

nephrotoxicants by increasing mitochondrial GSH levels caused by increased expression and 

transport activity of GSH transporters, the DIC and OGC. The assessment of cytotoxicity 

showed that after supplementation of PT cells with GSH, overexpression of mitochondrial GSH 

transporters protected against the mitochondrial specific toxicant antimycin A. These data 

supported our hypothesis that higher mitochondrial GSH transport activity by overexpression of 

the DIC and OGC in hypertrophied kidney cells markedly protected against toxicity, supporting 

the significance of mitochondrial GSH transport in determining susceptibility to toxicants. 

 

In summary, we showed that in hypertrophied kidney there are alterations in physiological 

parameters suggesting modest renal dysfunction, higher expression of renal organic anion 
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transporters suggesting higher transport of GSH and higher transport of xenobiotics leading to an 

increase in susceptibility to nephrotoxicants, and alterations in hypertrophied mitochondria 

suggesting redox imbalance and increased basal oxidative stress. As shown in Figure 6-1, we 

conclude that in hypertrophied mitochondria, a hypermetabolic state caused by increases in citric 

acid cycle and electron transport chain activities lead to a hyperpolarized state and superoxide 

production, which further causes mitochondrial oxidative stress. Furthermore, the increase in 

mitochondrial GSH concentrations is due to mass action or a kinetic effect on mitochondrial 

GSH transporters. In addition, our data also provide evidence that manipulation of mitochondrial 

GSH transport modulates response to nephrotoxicants, supporting the toxicological significance 

of the mitochondrial GSH transport process in compensatory renal hypertrophy. 

 

 



124 

 

 

 

 

Figure 6-1. Summary scheme. 

Abbreviations: DIC, dicarboxylate carrier; ROS, reactive oxygen species; O2
-
, superoxide anion; 

OGC, oxoglutarate carrier; 2-OG
2–

, 2-oxoglutarate; Pi
2-

, inorganic phosphate; TCA, tricarboxylic 

acid cycle.   
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CHAPTER VII. OVERALL SIGNIFICANCE AND FUTURE DIRECTIONS 

 

Reduction in renal mass and function afflicts millions of people worldwide as a consequence of 

several renal and non-renal diseases, infections, aging and surgery due to nephrectomy. 

Uninephrectomy, or surgical removal of one kidney, is performed for treatment in critical cases 

of renal diseases, injuries and for the purpose of kidney transplantation. Due to increasing 

incidence of reductions in kidney mass, high medical expenditures represent a significant 

challenge to public health care in the U.S. Although the remaining functional renal mass 

compensates for the loss of renal function, reduced kidney mass due to nephrectomy is a 

pathophysiologic process that is associated with alterations in renal hemodynamics, physiology 

and biochemistry. 

 

Numerous human clinical and experimental animal studies have provided evidence that 

reduction in renal mass leads to proteinuria, hypertension, hyperfiltration, glomerulosclerosis and 

toxicological implications such as increased nephrotoxicity from many drugs. In this study using 

a uninephrectomized rat model, we showed that compensatory renal hypertrophy due to 

reduction in renal mass is associated with modest renal dysfunction, alterations in renal 

mitochondrial glutathione and energetics status and mitochondrial oxidative stress. Furthermore, 

we also expanded our previous studies of modulating renal mitochondrial redox status and 

showed that an increase in renal mitochondrial GSH status reduces the risk of susceptibility to 

cytotoxic chemicals. Thus, we have taken several comprehensive and diversified approaches to 

study the role of mitochondrial energetics and redox status in the compensatory renal 
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hypertrophy response including in vivo, ex vivo (isolated renal mitochondria), and in vitro (in 

primary cultures of PT cells). 

 

Our particular focus on mitochondrial status is significant because alterations in mitochondrial 

function have been associated with numerous diverse pathologies. Changes in mitochondrial 

redox status likely underlie the regulation of mitochondrial and cellular energetics and cellular 

responses to many chemical exposures and pathological disease states. Mitochondrial GSH status 

is a critical determinant of cellular energetics and function and plays a critical role in 

determining susceptibility of cells to various toxicants. The ability to manipulate mitochondrial 

GSH status can provide a tool with which to probe mitochondrial function and modulate cellular 

injury upon exposure to various forms of mitochondrial toxicants. In this study, we used such an 

approach to alter one of the major GSH compartmentalization mechanisms in renal proximal 

tubules of the uninephrectomized rat model to produce protection from nephrotoxicants. Hence, 

further understanding of the regulation of mitochondrial GSH status and modulation of GSH 

levels in renal mitochondria hold promise for the development of new therapeutic approaches for 

many kidney diseases and chemically induced toxicities. 

 

The manipulation of mitochondrial GSH can also be used as a therapeutic target, not only for 

compensatory renal hypertrophy or in renal donors, but also for a number of diseases and 

pathological states that are associated with the depletion or oxidation of the mitochondrial GSH 

pool. For example, chronic ethanol ingestion and alcoholic liver disease are associated with 

decreased liver mitochondrial GSH content (Garcia-Ruiz et al., 1994, 1995; Fernandez-Checa et 

al., 1987, 1991, 1993, 2002), which also leads to an increase in susceptibility to toxicants (Zhao 
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and Slattery 2002; Zhao et al., 2002). Furthermore, cirrhosis and other forms of biliary 

obstruction have been associated with mitochondrial dysfunction caused by depletion of the 

matrix GSH pool (Krahenbuhl et al., 1992, 1995) and Type 2 diabetes has also been linked with 

depletion and oxidation of mitochondrial GSH in rat brain, heart and kidney (Santos et al., 2003; 

Mastrocola et al., 2005; Rosca et al., 2005), suggesting the importance of regulation of 

mitochondrial GSH. Clearly, it becomes apparent that it is important to design 

pharmacologically-based strategies aimed at specific targets in transport and catabolism of GSH 

as a potential therapeutic treatment against human kidney diseases, chemically induced toxicities 

and health complications in renal donors. Thus, reducing complications after nephrectomy will 

also directly increase the quality of life for a renal donor. 

 

Overall, the observations in this study enabled us to more completely define the phenotype for 

compensatory renal hypertrophy both in vivo and in an ex vivo model using primary culture of 

PT cells. This in turn also helped us to understand the biochemistry and toxicology of 

compensatory renal hypertrophy and provided a basis to reduce the risk of mitochondrial 

dysfunction and susceptibility to toxicants due to reduction in functional renal mass. With the 

basic knowledge acquired in this study, further studies of the protective effects of enhancing 

mitochondrial redox status and reversing deleterious properties of hypertrophied PT cells might 

provide a basis for novel therapeutic approaches to counteract the increased potential for renal 

insufficiency due to reduced functional renal mass. 

 

Future studies need to further explore the effect of overexpression of mitochondrial GSH 

transporters on oxidative stress, proliferation and cellular GSH status. Furthermore, it would be 
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interesting to examine a more comprehensive range of transporter expression and activity by also 

decreasing the expression and activity of the two mitochondrial GSH transporters, the DIC and 

OGC. 
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A reduction in functional renal mass occurs in humans during aging and severe kidney 

damage from diseases, injuries, infections and congenital conditions and after nephrectomy. 

Nephrectomy, or surgical removal of a kidney or a section of a kidney, is performed for 

treatment of unilateral secondary renal cancer, infections and for kidney transplantation. As a 

result, the remaining renal tissue undergoes compensatory growth due primarily to hypertrophy, 

in which both the size and functional capacity of the remaining kidney are increased. Renal 

compensatory hypertrophy is associated with a series of physiological, morphological and 

biochemical changes that also have toxicological implications. 

Previous studies have shown that compensatory renal cellular hypertrophy after 

uninephrectomy resulted in a hypermetabolic state, increased glutathione (GSH) content, but 

higher renal oxidative stress. These changes are also associated with increased susceptibility of 

renal proximal tubule cells to several drugs and environmental chemicals. Furthermore, our lab 
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also showed that overexpression of mitochondrial GSH transporters, the dicarboxylate (DIC, 

Slc25a10) and 2-oxoglutarate (OGC, Slc25a11) carriers, in NRK-52E cells, which are derived 

from normal rat kidney proximal tubules, exhibited increased mitochondrial GSH uptake, 

contents of GSH and protection from chemically induced apoptosis from exposure to 

nephrotoxicants. 

Based on these previous observations, we hypothesized that compensatory renal 

hypertrophy after uninephrectomy alters renal function in vivo and mitochondrial status and 

modulation of mitochondrial redox status alters susceptibility to nephrotoxicants in the remnant 

kidney. In this study, we used a uninephrectomized (NPX) rat model to induce compensatory 

renal growth. Our results show alterations in renal physiological parameters consistent with 

modest renal injury, altered renal cellular energetics, upregulation of certain renal plasma 

membrane transporters, including some that have been observed to transport GSH, and evidence 

of increased oxidative stress in mitochondria from the remnant kidney of NPX rats. Our present 

results provide further evidence that compensatory renal hypertrophy is associated with 

mitochondrial hypertrophy and hyperpolarization and manipulation of mitochondrial GSH 

transporters in PT cells of hypertrophied kidney alters susceptibility to chemically induced 

injury. These studies provide additional insight into the molecular changes that occur in 

compensatory renal hypertrophy and should help in the development of novel therapeutic 

approaches for patients with reduced renal mass. 
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