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A sequential Monte Carlo (SMC) algorithm prediction approach is developed based on joint probability 
distribution in hidden Markov Models (HMM). SMC methods, a general class of Monte Carlo methods, 
are typically used for sampling from sequences of distributions and simple examples of these algorithms 
are found extensively throughout the tracking and signal processing literature. Recent developments 
indicate that these techniques have much more general applicability and can be applied very effectively to 
statistical inference problems. Due to the problem involved in estimating the parameter of HMM, the 
HMM is represented in a state space model and the sequential Monte Carlo (SMC) method is used. 
Predictions are made using the SMC method in HMM and the corresponding on-line algorithm is 
developed. Daily stock price data from the banking sector of the Nigerian Stock Exchange (NSE) (price 
index between the years 1 January 2005 to 31 December 2008) are analyzed; experimental results reveal 
that the method proposed is effective. 
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Introduction 
State space, or hidden Markov models (HMM), 
are convenient means to statistically model a 
process that varies over time. The state space 
model (Doucet& Johansen, 2008) of a hidden 
Markov model is represented by the following 
two equations: 
 
the state equation,  
 

)¦(~)(¦ 111 −−− = ttttt xxfxXX          (1) 

 
and the observation equation, 
 

)¦(~)(¦ ttttt xygxXY = .             (2) 
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The state variables tx  and observations 

ty  may be continuous-valued, discrete-valued 

or a combination of the two, )¦( 1−tt xxf , which 

indicates the probability density associated with 
moving from 1−tx  to tx , and )¦( tt xyg  are the 

state (transition) and observation densities. 
Practically, the x’s are the unseen true signals in 
signal processing (Liu & Chen 1995), the actual 
words in speech recognition (Rabiner 1989), the 
target features in a multitarget tracking problem 
(Avitzour 1995; Gordon, et al 1993; Gordon, et 
al 1995), the image characteristics in computer 
vision (Isard& Blake 1996), the gene indicator 
in a DNA sequence analysis (Churchill 1989), or 
the underlying volatility in an economical time 
series (Pitt &Shephard 1997). Hidden Markov 
Models represent the applications of dynamic 
state space model in DNA and protein sequence 
analysis (Krogh, et al 1994; Liu, et al 1997). 

Using the functions provided by C++ to 
expand an on-line algorithm for predicting a 
hidden Markov model, this articleutilizes 
Johansen (2009) SMCTC: Sequential Monte 
Carlo in C++. Further supports were derived 
from results on predicted and actual data of 
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monthly national air passengers in America 
(Zhang, et al., 2007). Cheng, et al. (2003) 
applied SMC methodology to the problems of 
optimal filtering and smoothing in hidden 
Markov models and SMC have also stirred great 
interest in the engineering and statistical 
literature (see Doucet, et al., 2000, for a 
summary). SMC methods have been applied for 
resolving a marginal Maximum Likelihood 
problem (Johansen, 2008) and Gordon, et al. 
(1993) applied SMC to optimal filtering. Herein 
the SMC method is developed for prediction of 
state by estimating the probability t 1 t 1p(x y ).− −¦  

 
Hidden Markov Models (HMM) 

Initially introduced and studied as far 
back as 1957 and into the early 1970’s, HMM 
statistical methods have enjoyed more recent 
popularity.An HMM is a bivariate discrete-time 
process { } 0, ≥kkk YX  where { } 0≥kkX is a 

homogeneous Markov chain that is not directly 
observed, it can only be observed through 
{ } 0≥kkY  that produces the observation. { } 0≥kkY , 

which is a sequence of independent random 
variables such that the conditional distribution of 

kY  only depends on kX . The underlying Markov 

chain { } 0≥kkX  is called the state. In general, the 

random variables kX  and kY  can be of any 

dimension and of any domain, such as discrete, 
real or complex. K elements of kX  and kY  for 

Kk ,,2,1 = are collected to construct the 

vectors kX  and kY , respectively. Due to the 

Markov assumption, the probability of the 
current true state given the immediately previous 
one is conditionally independent of the other 
earlier states: 
 

k k 1 k 2 0 k k 1p(x x ,x , , x ) p(x x ).− − −=¦ ¦  

 
Similarly, the measurement at thekth time step is 
dependent only upon the current state, thus it is 
conditionally independent of all other states 
given the current state: 
 

k k k 1 0 k kp(y x ,x , , x ) p(y x ).− =¦ ¦  

 

Using these assumptions the probability 
distribution over all states of the HMM can be 
written simply as: 
 

0 k 1 k

K

1 1 1 k k 1 k k
k 2

p(x , , x , y , , y )

p(x )p(y x ) p(x x )p(y x )−
=

=

∏

 

    ¦ ¦ ¦
 

 
which is reflected graphically as: 
 

 
 
Given )¦( 11 −− kk yxp , )¦( kk yxp  can be found 

using the following prediction and update steps: 
 
Prediction 
 

 −−−−− = 11:1111:1 )¦()¦()¦( dxYXpXXpYXp kkkkkk

 
Update 
 

kkkkk

kkkk
kk dxYXpXYp

YXpXYp
YXp

)¦()¦(

)¦()¦(
)¦(

1:1

1:1
:1

−

−


=  

 
In this case numerical integration is used, which 
becomes computationally complex when the 
number of states of kx are large: one particular 

Monte Carlo based approach to solve this for the 
HMM is the Sequential Monte Carlo Method 
(SMC). 
 
Sequential Monte Carlo Methods (SMC) 

Since their pioneering contribution in 
1993 (Gordon, et al., 1993), SMC have become 
a well-known class of numerical methods for the 
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solution of optimal estimation problems in non-
linear non-Gaussian scenarios.The main idea of 
the SMC method is to represent the posterior 
density function )¦( 1:01:0 −− kk yxp  at time 1−k  

by samples and associated weights, 

{ }Niwx i
k

i
k ,,1, )(

1:0
)(

1:0 =−− and to compute 

estimates based on these samples and 
weights.As the number of samples becomes very 
large, this Monte Carlo characterization 
develops into an equivalent representation to the 
functional description of the posterior 
probability density function (Sanjeev, et al., 
2002). 

If { }Niwx i
k

i
k ,,1, )(

1:0
)(

1:0 =−− are samples 

and associated weights approximating the 
density function, then )¦( 1:01:0 −− kk yxp , 

{ }N

i
i
kx

1

)(
1:0 =−  is a set of particles with associated 

weights { }N

i
i
kw

1

)(
1:0 =−  with 1

)(

1:1

=
−=

 i

kNi
w , and the 

density function are approximated by: 
 

)()¦( )(
11

1

)(
11:01:0

i
kk

N

i

i
kkk xxwyxp −−

=
−−− −≈ δ  

 
where )(xδ signifies the Dirac delta role, ky  

becomes available when a new observation 
arrives, and the density function )¦( kk yxp  is 

obtained recursively in two stages: 
 

1. Drawing samples ),(~ 1−kk
i
k xxpx  

 
and 
 
2. Updating the weight with the principle of 

importance sampling. (For details on SMC, 
see Doucel, et al., 2000; Sanjeev, 2002). 

 
The particles are proliferated over time 

by Monte Carlo simulation to obtain new 
particles and weights (usually as new 
information are received), hence forming a 
series of PDF approximations over time. The 
reason that it works can be understood from the 
theory of (recursive) importance sampling. 
 

Methodology 
Procedural Functions 

Consider a particular algorithm for the 
SMC, known also as the Sampling Importance 
Resampling (SIR) (Gordon, 1993; Carpenter, et 
al., 1999; Johansen, 2009). The algorithm can be 
summarized as follows: The algorithm is 
initiated by setting 1=k , for which 

)()¦( 1 kkk xpxxp =−  is defined. 

 
Prediction for Step k: 

Draw N  samples from the distribution 

( ) i
i

kkk sxxp ∀= −−
)(
11¦  to form the particles 

{ } Ni
i

k
i

k ws :1
)()( ~,ˆ = . The weight is 


=

i

i
k

i
ki

k w
ww

)(

)(
)(

ˆ

ˆ~  

where )(ˆ i
kw  is calculated from the conditional 

PDF ( ))(ˆ¦ i
kkk sxyp = , given observation kY . 

 
Resample for Step k: 

Resample the random measure 

{ } Ni
i

k
i

k ws :1
)()( ~,ˆ =  obtained in the prediction 

procedure to obtain
Ni

i
k N

s
:1

)( 1
,

=







 which has 

uniform weights. 
 

The importance of the prediction step is 
clear by establishing the following results.Using 
a importance function )¦( kk yxq  satisfying the 

property 
 

( )ikkkkk Yxxqyxxq ,¦),¦( 11 −− = , 

 

{ } Ni
i

k
i

k ws :1
)()( ~,ˆ =  is the random measure for 

estimating )¦( kk yxp , where [ ]k
i

i sss ˆ,,ˆˆ )(
1 =  

is the trajectoryfor particle i  and where 

( ))()( ˆˆ~ i
kk

i
k sww =  is the normalized weights of 

particle i  at time k  which can be calculated 
recursively. 

Let ( ))()( ˆˆˆ i
kk

i
k sww = , according to the 

argument at the thk  step, the density function 
estimate for )¦( kk yxp  is 
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=

−=
N

i

i
kk

i
kkk sxwyxp

1

)()( )ˆ(~)¦ˆ( δ . 

 
After the density function )¦(ˆ kk yxp  has been 

estimated, the observation prediction kŷ  with 

some samples with associated weights can be 
made. Accordingly, )¦ˆ( 1−kk yyp  are 

approximated by a new set of samples 

{ } Ni
i

kk wy :1
)(
1

1 ,ˆ =−  and the observation prediction 

equation is: 
 


=

−=
N

i

i
kk

i
kkk yywyyp

1

)()( )(~)¦ˆ(ˆ δ . 

 
Data Description 

The above method is applied to the data 
sets of daily stock prices in the banking sector of 
the Nigerian Stock Exchange for price indices 
between the years 1 January 2005 to 31 
December 2008 (see 
www.cashcraft.com/pricemovement.asp and 
Figure 1). Three hidden states are studied: bull,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

bear and even. These hiddenstates along with the 
observable sequences of large rise, small rise, no 
change, large drop and small drop were used to 
develop the hidden Markov model.The sequence 
of observation is obtained by subtracting the 
prior price from the current price, the percentage 
change then gives the classification of the 
sequence of observation, where tP  is the price 

of an asset at time t , and the daily price 
relative/log returnis calculated 
as 1/log −= ttt ppr . 

Stock prices regularly alter in stock 
markets as observed in the price index on 
Tuesday, 5 February 2006; it fell by more than 
100% (see Figure 2). No infallible system exists 
that indicates the precise movement of stock 
price. Instead, stock price is subjective to the 
influence of various factors, such as company 
fundamentals, external factors, and market 
behavior. These decide the state of the market 
which may be in bull or bear state. It grows 
along time through different market states, 
which are hidden states. The state of the market 
can be a Markovian process and is modeled in 
HMM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Daily Stock Prices in the Banking Sector of the Nigerian Stock Exchange 
(Price Index between the Years 1 January 2005 to 31 December 2008) 
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Results 
Using the functions provided by C++, this study 
develops an on-line algorithm of predicting 
hidden Markov model (Johansen, 2009). The on-
line prediction using SMC begins with states 
producing signals that follow the normal 
distribution.The numbers of hidden states in the 
Markov chain are defined as bull (state 1), even 
(state 2) and bear (state 3). Figure2 shows the 
predicted and actual daily stock prices and Table 
1 shows predicted representational prices of the 
NSE and predicted errors. 

The stock price is modeled in HMM and 
prediction is made based on available 
observations.Due to the strong statistical 
foundation of the HMM and SMC methods, the 
model can predict similar patterns proficiently 
(see Figure 2). Table 1 shows that the mean 
absolute percentage error (MAPE) is 0.068, 
hence, the predictive exactness is high. 
 

Conclusion 
An online sequential Monte Carlo method is 
used to predict ahidden Markov model. A C++ 
(Sequential Monte Carlo in C++) template class  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

library (Johansen, 2009) enabled the 
development of an online, sequential Monte 
Carlo for prediction. HMM and SMC method 
were introduced and the density function with a 
set of random samples with associated weights 
was approximated.Lastly, the data sets of daily 
stock prices in the banking sector of the 
Nigerian Stock Exchange were analyzed and 
experimental results revealed that the online 
algorithm is effective. 
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