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Explicit Equations for ACF in Autoregressive Processes 
In the Presence of Heteroscedasticity Disturbances 

 
Samir Safi 

The Islamic University of Gaza, 
Gaza 

 
 
The autocorrelation function, ACF, is an important guide to the properties of a time series. Explicit 
equations are derived for ACF in the presence of heteroscedasticity disturbances in pth order 
autoregressive, AR(p), processes. Two cases are presented: (1) when the disturbance term follows the 
general covariance matrix, Σ , and (2) when the diagonal elements of Σ  are not all identical but 

i, j 0 i jσ = ∀ ≠ . 

 
Key words: Heteroscedasticity, homoscedasticity, autocorrelation, autoregressive, covariance, 

disturbance, time series. 
 
 

Introduction 
When disturbance terms are identically 
distributed, it implies that they have the same 
variance for all observations: this is known as 
homoscedasticity. If they are not, it causes 
serious problems for estimates and must be 
corrected in order to obtain reliable estimates. A 
sequence, or a vector, of random variables is 
heteroscedastic if the random variables have 
different variances. Heteroscedastic means 
differing variance and is derived from the Greek 
hetero, meaning different, and skedasis, 
meaning dispersion. The word heteroscedasticity 
indicates a time-varying variance and is a 
deviation from the identically distributed 
assumption because the variances are not the 
same for each value. 

Heteroscedasticity occurs when 
observations are based on average data and in a 
number of random coefficient models. It has two 
forms, conditional and unconditional. 
Conditional heteroscedasticity identifies non-
constant volatility when future periods of high 
and low volatility cannot be identified. 
 Unconditional heteroscedasticity is 
when  future periods of  high  and  low volatility 
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can be identified. For example, periods of low 
and high volatility for the prices of stocks and 
bonds cannot be predicted over any period of 
time, and therefore would be described as 
conditional heteroscedasticity. By contrast, 
unconditional heteroscedasticity can be used 
discussing variables that have identifiable 
seasonal variability, such as electricity usage. 

The consequences of heteroscedasticity 
are problematic in general, and it is well known 
that the consequences of heteroscedasticity for 
ordinary least squares (OLS) estimation are very 
serious. Although parameter estimates remain 
unbiased, they are no longer efficient, meaning 
they are no longer best linear unbiased 
estimators (BLUE) among the class of all the 
linear unbiased estimators. The standard errors 
typically computed for the least squares 
estimators are no longer appropriate, hence, 
confidence intervals and hypothesis tests that 
use these standard errors are invalid. Because 
the estimated error’s variance-covariance is not 
efficient, it invalidates the t-statistic, sometimes 
making insignificant variables appear to be 
statistically significant. Heteroscedasticity 
causes the OLS estimates of the standard error to 
be biased, leading to unreliable hypothesis 
testing. The most serious implication of 
heteroscedasticity is a misleading inference 
when the standard tests are used such as t and F 
tests. 
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The disturbance term in time series data 
is modeled under an assumption of constant 
variance and the assumption of heteroscedastic 
disturbances has traditionally been considered in 
the context of cross-sectional data. With time 
series data the disturbance term is modeled with 
some kind of stochastic process, and most of the 
conventional stochastic processes assume 
homoscedasticity (Judge, et al., 1985). The 
econometrician Robert Engle won the 2003 
Nobel Memorial Prize for Economics for his 
studies on regression analysis in the presence of 
heteroscedasticity, which led to his formulation 
of the AutoRegressive Conditional 
Heteroscedasticity (ARCH) modeling technique. 
 
Background 

Heteroscedasticity is a problem often 
faced by statisticians and econometricians. A 
wealth of literature related to estimating and 
testing heteroscedasticity exists, see for 
example, Wallentin and Agren (2002), Kalirajan 
(1989), Evans and King (1988) and Farebrother 
(1987). 

Safi (2009) derived explicit equations 
for ACF in the presence of heteroscedasticity 
disturbances in first-order autoregressive, AR(1), 
process. He showed two cases: (1) when the 
disturbance follows the general covariance 
matrix, Σ , and (2) when the diagonal elements 
of Σ are not all identical but i, j 0 i jσ = ∀ ≠ , 

that is, ( )11 22 ttdiag , , ,Σ = σ σ σ . This article 

extends the Safi (2009) results for the general 
autoregressive, AR(p), process. 

Praetz (2008) discussed the effect of 
auto-correlated disturbances when they are not 
modeled on statistics used in drawing inferences 
in the multiple linear regression model. He 

derived biases for the F and 2R  statistics and 
evaluated them numerically. He discussed the 
reflections for empirical research on the causes, 
detection and treatment of autocorrelation. 

Bera, et al. (2005) investigated 
conditional and unconditional 
heteroscedasticities as well as normality in the 
market model. They showed that conditional 
heteroscedasticity is more widespread than 
unconditional heteroscedasticity, suggesting the 
necessity of model refinements that take 

conditional heteroscedasticity into account. They 
provided an alternative estimation of betas of 
individual securities and portfolios based on the 
autoregressive conditional heteroscedastic 
(ARCH) model introduced by Engle. The 
efficiency of the market model coefficients is 
markedly improved across all firms in the 
sample through the ARCH technique. Demos 
(2000) derived expressions for the 
autocovariance of the observed series and the 
squared errors as a function of the parameters, 
something which facilitates the comparison of 
the observed properties of the data with the 
theoretical properties of the models, and 
consequently may play an important part in 
model identification. 

Studies of many econometric time series 
models for financial markets reveal that it is 
unreasonable to assume that conditional variance 
of the disturbance term is constant as it for many 
stochastic processes. Two exceptions are the 
heteroscedastic stochastic processes proposed by 
Engle (1982) and Cragg (1982). Engle (1982), 
showed that, for many economic models, it is 
unreasonable to assume that the conditional 

forecast variance ( )t t 1var y | y −  is constant, and 

that is more realistic to assume that 

( )t t 1var y | y −  depends on t 1y − . 

Bumb, and Kelejian (1983) studied the 
auto-correlated and heteroscedastic disturbances 
in linear regression analysis. They discussed 
various procedures to test for the possibility that 
the disturbance terms of a linear regression 
model are auto-correlated in a first order process 
with a constant autoregressive coefficient. 
 
Autocorrelation Function (ACF) 

The autocorrelation function (ACF), is 
an important guide to the properties of a time 
series. It measures the correlation between 
observations at different distances apart. This 
behavior is a powerful tool to identify a 
preliminary time series model. The ACF 
provides a better understanding of correlation 
structure of the data and, within the Box Jenkins 
framework, a rough idea of the order of the 
components to be used in any autoregressive 
model. The estimate of ACF may suggest which 
of the many possible stationary time series 
models is a suitable candidate for representing 
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the dependence in the data, Brockwell and Davis 
(2002). The forms of the explicit equations 
depend on the autoregressive coefficients. 
 
General Heteroscedastic Autocorrelation 
Function (GHACF) 

Autoregressive processes are regressions 
on themselves. In other words, in autoregressive 
processes, the current value of the process tZ is 

expressed as a finite linear combination of the p 
most recent past values of itself plus an 
innovation term te  which incorporates 

everything new in the series at time t that is not 
explained by past values. Thus, for every t, it is 
assumed that te  is independent of t 1 t 2Z , Z ,− − . 

If the values of a process at equally spaced times 
t, t-1, t-2,…, denoted by t t 1 t 2Z , Z , Z ,− − , then 

t 1 t 1 2 t 2 p t p tZ Z Z Z e− − −= φ + φ + + φ +  is called 

a pth order autoregressive process, abbreviated 
AR(p). 

The pth order autoregressive model may 
be written in terms of backward shift operator B 
as: 
 

( ) ( )p
1 p t t t1 B B Z B Z e .− φ − − φ = φ =

 
(1) 

 
A special notation used to simplify the 

representation of lag values, with j
t t jB Z Z −= . 

tZ  is the time series under investigation and te  

is the white noise series normally distributed 

with mean zero and variance 2
eσ . For the 

general AR(p) process, ( )1
t tZ B e−= φ , results 

in 

( ) ( )( ) ( )1 2 pB 1 G B 1 G B 1 G Bφ = − − −  

 

where 1 1
1 pG , ,G− −  are the roots of ( )B 0φ = , 

and expanding ( )1 B−φ  in partial fractions 

yields 
 

( )
p

1 i
t t t

i 1 i

K
Z B e e .

1 G B
−

=

= φ =
−  

 

(See for example Box, et al., 1994.) Thus, if 

( ) ( )1B B−ψ = φ  is to be a convergent series for 

B 1≤ , then the weights 
p

j
j i i

i 1

K G
=

ψ =  must be 

absolutely summable so that the AR(p) will 

represent a stationary process, iG 1<  for 

i 1, 2, , p=  . Equivalently, the roots of 

( )B 0φ =  must lie outside the unit circle. From 

the relation ( ) ( )B B 1φ ψ =  it follows that the 

weights jψ  for the AR(p) process satisfy the 

difference equation: 
 

j 1 j 1 2 j 2 p j p , j 0− − −ψ = φ ψ + φ ψ + + φ ψ >  

(2) 
 
with 0 1ψ = and j 0ψ =  for j 0< , from which 

the weights jψ  can easily be computed 

recursively in terms of the iφ . 

The AR(p) autoregressive process 

( )1
t tZ B e−= φ  may be written as: 

 

t j t j
j 0

Z e , t 0, 1, 2, .
∞

−
=

= ψ = ± ±      (3) 

 
It is assumed that the disturbance term has mean 
zero, E (e) = 0, and the covariance matrix 

( )i jCov e ,e = Σ  where: 

 

11 12 1t

21 22 2t

t1 t2 tt

.

σ σ σ 
 σ σ σ Σ =
 
 σ σ σ 




   


             (4) 

 
Definition 1 

The covariance between tZ  and t kZ + , 

separated by k intervals of time (which under the 
stationary assumption must be the same for all t) 
is called the autocovariance function at lag k 
(ACVF) and is defined by 
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( ) ( )( )k t t k t t kCov Z ,Z E Z Z ,+ +γ = = − μ − μ  
(5) 

 
assuming that tZ  has zero mean. A nonzero 

mean can be introduced by replacing tZ  by 

tZ −μ  throughout the equations. 

 
Definition 2 

The autocorrelation function at lag k, 
that is the correlation between tZ  and t kZ + , is 

defined by 

k
k

0

γρ =
γ

                             (6) 

 

where 2
0 Zγ = σ  is the same at time t+k as at time 

t. 
 
Lemma 1 

Consider the general AR(p) process, 

t j t j
j 0

Z e
∞

−
=

= ψ , with E (et) = 0, and 

( )i jCov e ,e = Σ , where Σ  is given in (4). The 

autocovariance function at lag k is given by 
 

t k 1 t 1

k i j t i, t k j
j 0 i 0

.
− − −

− − −
= =

γ = ψ ψ σ              (7) 

 
Proof 

Using (3), 
 

t 1 t k 1

t t k i t i j t k j
i 0 j 0

t k 1 t 1

i j t i t k j
j 0 i 0

Z Z e e

e e .

− − −

− − − −
= =

− − −

− − −
= =

  = ψ ψ  
  

= ψ ψ

 

 
 

 
and using (5), the ACVF at lag k is 
 

( )

( )

k t t k

t k 1 t 1

i j t i t k j
j 0 i 0

t k 1 t 1

i j t i t k j
j 0 i 0

t k 1 t 1

i j t i t k j
j 0 i 0

E Z Z

E e e

E e e

.

−

− − −

− − −
= =

− − −

− − −
= =

− − −

− − −
= =

γ =

 
= ψ ψ 

 

= ψ ψ

= ψ ψ σ σ

 

 

 

 

 
Theorem 1: Deriving the GHACF at Lag k when 

i, j 0σ ≠  for all i j≠  In an AR(p) Process 

Consider the general AR(p) process 

t j t j
j 0

Z e
∞

−
=

= ψ , jψ  is given in (2), with E(et) = 

0, and ( )i jCov e ,e = Σ , where Σ  is given in 

(4), with i, j 0 i jσ ≠ ∀ ≠ , then the GHACF at 

lag k is given by: 
 

t k 1 t 1

j i t i, t j k
j 0 i 0

k t 1 t 1

j i t j, t i
j 0 i 0

.

− − −

− − −
= =

− −

− −
= =

ψ ψ σ
ρ =

ψ ψ σ

 


          (8) 

 
Proof 

Using (7), the ACVF at lag 0 is 
 

2

0 t , t 1 t , t 1 2 t , t 2 3 t , t 3 t 1 t ,1

2

1 t 1, t 1 t 1, t 1 1 2 t 1, t 2 1 t 1 t 1,1

2

2 t 2, t 2 1 t 2, t 1 2 t 2, t 2 2 t 1 t 2,1

t 1 1, t t 1 1 1, t 1 t 1 2 1, t 2 t 1 t 2 1,2 t

0

− − − −

− − − − − − −

− − − − − − −

− − − − − − −

ψ σ + ψ σ + ψ σ + ψ σ + + ψ σ +

ψ σ + ψ σ + ψ ψ σ + + ψ ψ σ +

ψ σ + ψ ψ σ + ψ σ + + ψ ψ σ +

ψ σ + ψ ψ σ + ψ ψ σ + + ψ ψ σ + ψ

γ =









 2

1 1,1.− σ
(9) 

 
Collecting terms, the ACVF at lag 0, that is, the 
variance of the process is: 
 

t 1 t 1

0 j i t j, t i
j 0 i 0

.
− −

− −
= =

γ = ψ ψ σ           (10) 
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Using (7), the ACVF at lag 1 is 
 

t , t 1 1 t , t 2 2 t , t 3 3 t , t 4 t 2 t ,1

2

1 t 1, t 1 1 t 1, t 2 1 2 t 1, t 3 1 t 2 t 1,1

2

2 t 2, t 1 2 1 t 2, t 2 2 t 2, t 3 2 t 2 t 2,1

t 1 1, t 1 t 1 1 1, t 2 t 1 2 1, t 3 t 1 t 2 1

1

− − − − −

− − − − − − − −

− − − − − − − −

− − − − − − − −

σ + ψ σ + ψ σ + ψ σ + + ψ σ +

ψ σ + ψ σ + ψ ψ σ + + ψ ψ σ +

ψ σ + ψ ψ σ + ψ σ + + ψ ψ σ +

ψ σ + ψ ψ σ + ψ ψ σ + + ψ ψ σ

γ =







 ,1.

(11) 
 
Collecting terms, the ACVF at lag 1 is 
 

t 2 t 1

1 j i t i,t j 1
j 0 i 0

− −

− − −
= =

γ = ψ ψ σ           (12) 

 
similarly, the ACVF at lag k is 
 

t k 1 t 1

k j i t i, t j k
j 0 i 0

.
− − −

− − −
= =

γ = ψ ψ σ          (13) 

 
Dividing (13) by (10), results in (8), which 
completes the proof. 
 
Corollary 1: GHACF at Lag k for an AR(1) 
Process 

Consider an AR(1) process 

t j t j
j 0

Z e
∞

−
=

= ψ , j j 1−ψ = φψ  with E (et) = 0, and 

( )i jCov e ,e = Σ , where Σ  is given in (4), with 

i, j 0 i jσ ≠ ∀ ≠ . The GHACF at lag k is given 

by 
t k 1 t 1

j i
t i, t j k

j 0 i 0
k t 1 t 1

j i
t j, t i

j 0 i 0

.

− − −
+

− − −
= =

− −
+

− −
= =

φ σ
ρ =

φ σ

 


         (14) 

 
Proof 

For an AR(1) process , because 

j j 1−ψ = φψ , it follows that j
jψ = φ , for j 0≥ . 

From equations (10) and (13),  

t 1 t 1
j i

0 t j,t i
j 0 i 0

− −
+

− −
= =

γ = φ σ  

and 
t k 1 t 1

j i
k t i,t j k

j 0 i 0

− − −
+

− − −
= =

γ = φ σ   

 
are obtained, thus completing the proof. 
 
Heteroscedastic Autocorrelation Function 
(HACF) 

Heteroscedasticity exists if the diagonal 
elements of Σ  in (4) are not all identical and the 
disturbance term is free from autocorrelation, 
meaning, the disturbances are pairwise 
uncorrelated. This assumption is likely to be 
realistic one when using cross-sectional data. In 
this case Σ  can be written as a diagonal matrix 
with the ith diagonal element given by iiσ . 

Assume E(et) = 0, and ( )i jCov e ,e = Σ , where 

( )11 22 ttdiag , , ,Σ = σ σ σ . Thus, 

 

11

22

tt

0 0

0 0
.

0 0

σ 
 σ Σ =
 
 σ 




   


            (15) 

 
Theorem 2: HACF, at Lag k when i, j 0σ =  for 

all i j≠ , i.e. ( )11 22 ttdiag , , ,Σ = σ σ σ  In an 

AR(p) Process 
Consider the general AR(p) process 

t j t j
j 0

Z e
∞

−
=

= ψ , jψ  as given in (2), with E (et) = 

0 and ( )i jCov e ,e = Σ , with i, j 0 i jσ = ∀ ≠ , 

that is, ( )11 22 ttdiag , , ,Σ = σ σ σ as given in 

(15). The HACF at lag k is then given by 
 

t 1

i i k t i, t i
i k

k t 1
2
i t i, t i

i 0

.

−

− − −
=

−

− −
=

ψ ψ σ
ρ =

ψ σ




                (16) 
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Proof 
Using (9) with i, j 0 i jσ = ∀ ≠ , the 

ACVF at lag 0 is 
 

2 2 2 2 2

0 t ,t 1 t 1,t 1 2 t 2,t 2 3 t 3,t 3 t 1 1,1

0

− − − − − − −ψ σ + ψ σ + ψ σ + ψ σ + + ψ σ

γ =


 

and the ACVF at lag 0, that is, the variance of 
the general AR(p) process is 
 

t 1
2

0 i t i, t i
i 0

.
−

− −
=

γ = ψ σ                   (17) 

 
Using (11) with i, j 0 i jσ = ∀ ≠ , the ACVF at 

lag 1 is 
 

1

1 t 1, t 1 2 1 t 2, t 2 t 1 t 2 1,1− − − − − −

γ =
ψ σ + ψ ψ σ + + ψ ψ σ

 

 
so that the ACVF at lag 1 is 
 

t 1

1 i i 1 t i, t i
i 1

.
−

− − −
=

γ = ψ ψ σ              (18) 

 
Similarly, the ACVF at lag k is 
 

t 1

k i i k t i, t i
i k

.
−

− − −
=

γ = ψ ψ σ               (19) 

 
Dividing (19) by (17), results in (16), which 
completes the proof. 
 
Corollary 2: HACF at Lag k for an AR(1) 
Process 

Consider an AR(1) process, 

t j t j
j 0

Z e
∞

−
=

= ψ , j j 1−ψ = φψ , with E (et) = 0, 

and ( )i jCov e ,e = Σ , with i, j 0 i jσ = ∀ ≠ , that 

is, ( )11 22 ttdiag , , ,Σ = σ σ σ as given in (15). 

Then the HACF at lag k is given by 
 

t 1
2i k

t i, t i
i k

k t 1
2i

t i, t i
i 0

.

−
−

− −
=

−

− −
=

φ σ
ρ =

φ σ




               (20) 

 
Proof 

For an AR(1) process , because 

j j 1−ψ = φψ , it follows that j
jψ = φ , for j 0≥ . 

From equations (17) and (19), 
t 1

2i
0 t i,t i

i 0

−

− −
=

γ = φ σ  and 
t 1

2i k
k t i,t i

i k

−
−

− −
=

γ = φ σ  are 

obtained and the proof is complete. 
 
Special Case 

Homoscedasticity exists if the diagonal 
elements of Σ  in (4) are all identical and the 
disturbance term, e, is free from autocorrelation, 
that is, ij 0 i jσ = ∀ ≠ . In this case, the 

disturbance term is a sequence of independent, 
identically distributed random variables. 
 
Corollary 3.3: ACF at Lag k for an AR(1) 
Process Using Theorem (3.2) 

Consider an AR(1) process, 

t j t j
j 0

Z e
∞

−
=

= ψ , j j 1−ψ = φψ , with E (et) = 0, 

i, j 0 i jσ = ∀ ≠ , and ( ) 2
tVar e t= σ ∀ . For an 

AR(1), j
jψ = φ  for j 0≥ , taking t → ∞  in 

equations (17) through (19), results in  
 

2
2 2i

0 2
i 0 1

∞

=

σγ = σ φ =
− φ , 

 
2

2 2i 1
1 2

i 1 1

∞
−

=

σγ = σ φ =φ
− φ , 

and 
2

2 2i k k
k 2

i k 1

∞
−

=

σγ = σ φ =φ
− φ , 

 
respectively. The ACF at lag k is then given by 

k
k , k 0ρ = φ ≥ , which is the well-known ACF 

for an AR(1) process. 
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Conclusion 
This study investigated an important statistical 
problem concerning the autocorrelation function 
(ACF) in the presence of heteroscedasticity 
disturbances in pth order autoregressive (AR(p)) 
processes. Explicit equations were derived for 
ACF when the disturbance follows the general 
covariance matrix, Σ , and when the diagonal 
elements of Σ  are not all identical but 

ij 0 i jσ = ∀ ≠ , i.e., ( )11 22 ttdiag , , ,Σ = σ σ σ . 

Future research is needed to extend the explicit 
equations derived in this article for ACF in the 
presence of heteroscedasticity disturbances in 
the general form of the moving average models 
with order q, MA(q). 
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