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Indeterminacy of Factor Score Estimates 
In Slightly Misspecified Confirmatory Factor Models 

 
André Beauducel 
University of Bonn, 

Bonn, Germany 
 

 
Two methods to calculate a measure for the quality of factor score estimates have been proposed. These 
methods were compared by means of a simulation study. The method based on a covariance matrix 
reproduced from a model leads to smaller effects of sampling error. 
 
Key words: Confirmatory factor analysis, structural equation modeling, indeterminacy, factor score 

estimates. 
 
 

Introduction 
Factor score estimates are computed when 
individual scores representing the factors of a 
model are interesting. This can be the case in 
personnel selection or in educational settings 
where individuals are to be compared with 
respect to their scores. Thus, although latent 
variables might be of interest in factor analysis 
and structural equation modeling, some 
applications are still based on the concrete 
scores of individuals; it is for this reason that 
factor score estimates are of interest for applied 
researchers. It should be noted that although 
factor score estimates are termed estimates, they 
are not estimates in the usual sense because 
there are no true values that may be 
approximated by the estimates (Schönemann & 
Steiger, 1976).  

The term factor score estimates denotes 
the aim to construct scores that represent the 
unknown factors in an optimal way. It follows 
from this reasoning that it is necessary to 
evaluate the quality of the factor score estimates 
(Gorsuch, 1983). There are two well-known  
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indices that allow for an evaluation of factor 
score indeterminacy: The multiple correlation ρ 
or the squared multiple correlation ρ² of the 
factor with the measured variables and the 
minimum correlation between two sets of factor 
score estimates of the same solution, 2ρ² − 1 
(Grice, 2001; Green, 1976; Guttman, 1955; 
Schönemann, 1971). Additional interesting 
possibilities for the evaluation of different factor 
score estimates with respect to their determinacy 
can be found in Krijnen (2006).  

Although the computation of factor 
score estimates is also possible for confirmatory 
factor analysis (CFA) and specific methods have 
been developed for this purpose (Beauducel & 
Rabe, 2009), most applications and discussions 
of factor score indeterminacy occur in the 
context of exploratory factor analysis. 
Beauducel and Rabe (2009) present a new type 
of factor score estimate representing specific 
aspects of a CFA model (e.g., parts of a loading 
matrix), whereas this present study investigates 
two different methods to calculate factor score 
indeterminacy. 

A difference between exploratory factor 
analysis and CFA is that in CFA the loadings of 
the variables and the correlations between 
factors can be specified according to theoretical 
assumptions. When the model assumptions are 
correct, fit indices would indicate that the model 
fits the data. However, small amounts of model-
misspecification do not lead to model rejection 
according to many general rules (Barrett, 2007; 
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Fan & Sivo, 2007; Beauducel & Wittmann, 
2005; Marsh, Hau & Wen, 2004; Hu & Bentler, 
1999). As a consequence, model parameters can 
be over- and/or under-estimated not only 
because of sampling error, but also because of a 
difference between the model parameters and 
the population parameters.  

There is a discussion on the size of 
difference between model and data that might be 
regarded as acceptable (Marsh, et al., 2004; 
Barrett, 2007), but a small difference between 
the covariance matrix implied by the model and 
the empirical covariance matrix is accepted by 
many researchers in structural equation 
modeling. A difference between model and data 
could also occur in exploratory factor analysis, 
but the only way to obtain model 
misspecification in this context is over- or 
under-extraction of factors. Nevertheless, this 
article focuses on factor score indeterminacy as 
it is calculated from CFA with correctly and 
misspecified model parameters, because 
indeterminacy has rarely been evaluated in this 
context. A simulation study was performed in 
order to investigate the effects of sampling error 
and model misspecification on factor score 
indeterminacy. 
 
The Calculation of ρ or ρ² 

It should be noted that there are two 
different ways to calculate indeterminacy, often 
referred to as ρ, the correlation between the 
variables and the factor (Grice, 2001). In order 
to present the calculation of ρ or ρ², the common 
factor model is described first. The common 
factor model assumes that the observations are 
generated by 
 

X = ΛF + E,                         (1) 
 
where X is the random vector of observations of 
order p, F the random vector with factor scores 
of order q, E the unobservable random error 
vector of order p, and Λ the factor pattern matrix 
of order p by q. The observations X, the factor 
scores F, and the error vectors E are assumed to 
have an expectation zero (ε[X] = 0, ε[F] = 0, 
ε[E] = 0). The covariance between the factor 
scores and the error scores is assumed to be zero 
(Cov[F, E] = 0). The standard deviation of F is 

one, the expectation of the covariance of the 
observed variables is Σ (ε[XX´] = Σ). The 
covariance matrix Σ can be decomposed by 
 

Σ = ΛΦΛ´ + Ψ2,                    (2) 
 
where Φ represents the q by q factor correlation 
matrix and Ψ2 the p by p covariance matrix 
between the observed variables X and the error 
scores E (Cov[X, E]= Ψ2) and Ψ2 also 
represents the covariance matrix of the error 
scores E (Cov[E, E]= Ψ2). Ψ2 is generally 
assumed to be a diagonal matrix and it will be 
assumed herein that it contains only positive 
values. In order to investigate CFA modelling as 
it often occurs in empirical research, it was, 
however, decided also to allow for some non-
diagonal elements of Ψ2. 

The factor score indeterminacy ρ, the 
multiple correlation of the variables with the 
factor can be described on the basis of 
Thurstone’s (1935) regression score estimate, 
which is the best linear factor score estimate 
(Krijnen, Wansbeek & Ten Berge, 1996). The 
covariances of the factors with the best linear 
factor score estimates are given by 
 

)Σdiag()diag( ΛΦ1−= ´´ FXFF
^

.    (3) 

 
It follows from equation 1 that it is possible to 
insert ΦΛ´ for FX´ into equation 3. Moreover, it 
is possible to standardize the covariances of the 
factors with the best linear factor score estimates 
in order to obtain the correlations. This yields 
 

´

´ ´

´

^
F F
ΦΛ Σ Φ

Φ

− − −

−

=

=

1 1 1/ 2

1 1/ 2

diag( )

diag( ΛΦ)diag( Λ Σ ΛΦ)

diag( Λ Σ ΛΦ)
 

(4) 
 
so that the diagonal elements in the left hand 
side of equation 4 contain the correlations of the 
best linear factor score estimates with the 
factors. Standardizing F is not necessary, 
because it has by definition a standard deviation 
of one. Because the best linear factor score 
estimate is the best linear combination of the 
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measured variables in order to estimate the 
factor, the correlations in equation 4 also 
represent the multiple correlations of the 
measured variables with the factors. 

When a factor model has a perfect fit, Σ, 
the expectation of the covariance matrix of 
observed variables, which is calculated as the 
covariance matrix reproduced from the model 
parameters, and S, the empirical covariance 
matrix of the observed variables, are equal. 
Nevertheless, in the context of CFA, small 
differences between S and Σ regularly occur. 
This is always the case when the Root Mean 
Square Residual (RMR) is greater than zero, 
because this index describes the difference 
between these two covariance matrices. When a 
relevant difference between S and Σ occurs, one 
has to choose between these two covariance 
matrices for the calculation of factor score 
indeterminacy. The choice is to calculate 
indeterminacy according to equation 4 or to use 
the empirical covariance matrix S as in 
 

21 /´´ ΛΦ)diag()diag( 1−= SFF
^

ΦΛ .    (5) 

 
The calculation of factor score 

indeterminacy by means of the sample 
covariance matrix S has been presented by 
Heermann (1963), Gorsuch (1983) and Grice 
(2001). The calculation of indeterminacy by 
means of the reproduced covariance matrix, 
which is based on the estimated population 
parameters of the model, is presented in Mulaik 
and McDonald (1978) and in McDonald (1981). 
Because both ways to calculate indeterminacy 
are referred to in the literature and no discussion 
of the possible differences is currently available, 
this study compares the two ways to calculate 
indeterminacy on the basis of a simulation study. 
The comparison of the coefficients of 
indeterminacy is especially relevant to CFA, 
where small amounts of model misspecification 
are sometimes accepted (Hu & Bentler, 1999). 
As in other studies (Grice, 2001), the results for 
the squared validity coefficients (ρ²) were 
presented in the following, because ρ² can be 
interpreted as the common variance between the 
factor and the corresponding factor score 
estimate. 

Methodology 
The aim of the simulation study was to compare 
the two above-mentioned coefficients of 
indeterminacy (equations 4 and 5) with respect 
to model misspecification and effects of 
sampling error. Therefore, the two versions of ρ² 
were first compared for the population CFA 
models and then for the corresponding CFA 
models based on samples derived from the 
population. 
 
Generation of Population CFA Models 

Population models based on 2, 4 and 8 
factors, moderate (0.40/0.60) and large 
(0.60/0.80) salient loadings, with orthogonal and 
oblique factors (with interfactor correlations of 
0.30) were investigated. The population models 
were chosen in order to represent CFA models 
as they are often found in applied research. This 
explains why 2-, 4- and 8-factor models were 
investigated, as well as the size of the loadings 
and the moderate size of the interfactor 
correlations for the oblique models. In order to 
perform CFA modeling like in empirical 
research, it is necessary to investigate not only 
correctly specified models but also models with 
small amounts of model-misspecification. A 
common type of model-misspecification is the 
omission of correlated residuals (correlated error 
terms of observed variables). This type of 
model-misspecification is interesting in the 
present context, because it could be expected to 
have an impact on the loading size and thereby 
on the coefficients of indeterminacy. 

In the first step, the parameters of the 
correctly specified population models including 
correlated residuals were fixed to their intended 
values, then the corresponding population 
covariance matrices were reproduced from the 
model parameters (according to equation 2). For 
simplicity, the size of the model parameters was 
chosen in a way that ensures that the reproduced 
covariance matrices were correlation matrices. 
Finally, the population covariance matrices were 
used for CFA modeling in order to estimate the 
misspecified model parameters. The CFA 
modeling was performed with Mplus 3.11 by 
means of maximum likelihood estimation. The 
salient loadings were freely estimated, the non-
salient loadings were fixed to zero, the variances 
of the factors were fixed to one and the 
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correlations of all residuals were fixed to zero in 
the misspecified models (the variance of the 
residuals was freely estimated). For the 
orthogonal models the correlations between the 
factors were fixed to zero, for the oblique 
models they were freely estimated. 

Table 1 contains the correctly specified 
and the misspecified population loadings for the 
0.40/0.60 (moderate loadings) condition and for 
the 0.60/0.80 (large loadings) condition for the 
orthogonal two-factor models based on the 
population covariance matrices including 
correlated residuals (the correlations between the 
residuals are presented at the bottom of Table 1). 

Table 2 contains the corresponding 
parameters for the oblique models. The 
misspecified models would be accepted 
according to conventional cut-off criteria for fit 
indices (e.g., Hu & Bentler, 1999). It was 
intended to generate small and generally 
accepted amounts of model-misspecification, so 
that even the misspecified models investigated 
here represent models as they might be 
published in empirical research. Nevertheless, 
the omission of the correlated residuals leads to 
small errors with respect to the loading size both 
in the orthogonal and in the oblique model (see 
Tables 1 and 2). The population parameters for 
the orthogonal and oblique four- and eight-factor 
models would be identical to the corresponding 
parameters presented in Table 1 and 2 so that 
they are not presented. 

Another type of model misspecification 
with an impact on the loading size and thereby 
on the coefficients of indeterminacy occurs 
when equality constraints are imposed on 
loadings that are unequal in the population. In 
order to base the results of the present 
simulation study on more than one type of 
model misspecification, misspecifications 
resulting from equality constraints on the 
loadings were also investigated. Again, the 
parameters of the correctly specified models 
were fixed in the first step and then the 
corresponding population covariance matrices 
were calculated from the model parameters. 
Finally, these population covariance matrices 
were used for CFA modeling with misspecified 
parameters. Again, the model parameters were 
chosen in a way to ensure that the reproduced 
covariance matrices were correlation matrices. 

The misspecified models were again estimated 
by means of maximum likelihood estimation. 

The variances of the factors were 
constrained to be one, the non-salient loadings 
were fixed to zero, the unconstrained salient 
loadings were freely estimated, and the 
covariance matrix of the error terms was 
constrained to be diagonal (there were no 
correlated residuals in these models, but the 
variances of the residuals were freely estimated). 
For the orthogonal models the correlations 
between the factors were fixed to zero, for the 
oblique models they were freely estimated. The 
misspecification for the two-factor model was 
introduced by means of equality constraints for 
each of the smaller loadings of the variables v1-
v4 on the first factor with each of the larger 
loadings v13-v16 on the second factor. For the 
four- and eight-factor models, similar equality 
constraints were imposed on the loadings of 
each pair of factors. 

Table 3 contains the correctly specified 
and the misspecified population loadings for the 
0.40/0.60 (moderate loadings) condition and for 
the 0.60/0.80 (large loadings) condition for the 
orthogonal two-factor models. The equality of 
loadings resulting from the equality constraints 
was not perfect in the completely standardized 
solutions (it was perfect in the unstandardized 
solutions). Not surprisingly, the fit of the 
correctly specified population models was 
perfect, but even the misspecified models fit the 
data very well (see Table 3). The misspecified 
population model would not be rejected 
according to conventional fit criteria (Hu & 
Bentler, 1999). The population loadings were 
the same for the four- and eight-factor models 
and are therefore not presented. 

The population loadings for the 
correctly specified and the misspecified oblique 
two-factor models are presented in Table 4. As 
before, the model misspecification was 
introduced by means of equality constraints on 
loadings that were not equal in the population 
(see Table 4). Again an evaluation of the model 
fit of the misspecified models would not lead to 
model rejection for conventional criteria (Hu & 
Bentler, 1999). 
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Table 1: Population Loadings for the Orthogonal Two-Factor Models 
(Completely Standardized Solution) 

 

 Moderate Loadings Large Loadings 

 
Without Model 

Misspecification a 
With Model 

Misspecification b 
Without Model 

Misspecification a 
With Model 

Misspecification c 

 F1 F2 F1 F2 F1 F2 F1 F2 

x1 .400 - .414 - .600 - .607 - 

x2 .400 - .414 - .600 - .607 - 

x3 .400 - .392 - .600 - .596 - 

x4 .400 - .392 - .600 - .596 - 

x5 .600 - .584 - .800 - .793 - 

x6 .600 - .584 - .800 - .793 - 

x7 .600 - .637 - .800 - .816 - 

x8 .600 - .637 - .800 - .816 - 

x9 - .400 - .414 - .600 - .607 

x10 - .400 - .414 - .600 - .607 

x11 - .400 - .392 - .600 - .596 

x12 - .400 - .392 - .600 - .596 

x13 - .600 - .584 - .800 - .793 

x14 - .600 - .584 - .800 - .793 

x15 - .600 - .637 - .800 - .816 

x16 - .600 - .637 - .800 - .816 

Correlated Residuals 

x1 with x2 .126  .000  .096  .000  

x7 with x8 .096  .000  .054  .000  

x9 with x10  .126  .000  .096  .000 

x15 with x16  .096  .000  .054  .000 

Notes: a The model fit for the population model without misspecification is perfect by definition: χ²(100) = 
0.00; b The χ²-test for the misspecified model with moderate loadings is non-significant even for the largest 
sample size used in the simulation study (N=750): χ²(104) = 50.93; Comparative Fit Index = 0.99; Root Mean 
Square Error of Approximation = 0.026; Standardized Root Mean Square Residual = 0.012. c The χ²-test for 
the misspecified model with large loadings is non-significant even for the largest sample size used in the 
simulation study (N=750): χ²(104)= 51.18; Comparative Fit Index = 0.99; Root Mean Square Error of 
Approximation = 0.026; Standardized Root Mean Square Residual = 0.012. 
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Table 2: Population Loadings for the Oblique Two-Factor Models 
(Completely Standardized Solution) 

 

 Moderate Loadings Large Loadings 

 
Without Model 

Misspecification a 
With Model 

Misspecification b 
Without Model 

Misspecification a 
With Model 

Misspecification c 

 F1 F2 F1 F2 F1 F2 F1 F2 

x1 .400 - .414 - .600 - .607 - 

x2 .400 - .414 - .600 - .607 - 

x3 .400 - .392 - .600 - .596 - 

x4 .400 - .392 - .600 - .596 - 

x5 .600 - .585 - .800 - .793 - 

x6 .600 - .585 - .800 - .793 - 

x7 .600 - .636 - .800 - .815 - 

x8 .600 - .636 - .800 - .815 - 

x9 - .400 - .414 - .600 - .607 

x10 - .400 - .414 - .600 - .607 

x11 - .400 - .392 - .600 - .596 

x12 - .400 - .392 - .600 - .596 

x13 - .600 - .585 - .800 - .793 

x14 - .600 - .585 - .800 - .793 

x15 - .600 - .636 - .800 - .815 

x16 - .600 - .636 - .800 - .815 

Interfactor-
Correlation 

.300 .289 .300 .297 

Correlated Residuals 

x1 with x2 .126  .000  .096  .000  

x7 with x8 .096  .000  .054  .000  

x9 with x10  .126  .000  .096  .000 

x15 with x16  .096  .000  .054  .000 

Notes: a The model fit for the population model without misspecification is perfect by definition: χ²(99) = 
0.00; b The χ²-test for the misspecified model with moderate loadings is non-significant even for the largest 
sample size used in the simulation study (N=750): χ²(103) = 51.40; Comparative Fit Index = 0.97; Root Mean 
Square Error of Approximation = 0.026; Standardized Root Mean Square Residual = 0.017. c The χ²-test for 
the misspecified model with large loadings is non-significant even for the largest sample size used in the 
simulation study (N=750): χ²(103)= 51.35; Comparative Fit Index = 0.99; Root Mean Square Error of 
Approximation = 0.026; Standardized Root Mean Square Residual = 0.012. 
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Table 3: Population Loadings for the Orthogonal Two-Factor Models 
(Completely Standardized Solution) 

 

 Moderate Loadings Large Loadings 

 
Without Model 

Misspecification a 
With Model 

Misspecification b 
Without Model 

Misspecification a 
With Model 

Misspecification c 

 F1 F2 F1 F2 F1 F2 F1 F2 

x1 .400 - .491 - .60 - .668 - 

x2 .400 - .491 - .60 - .668 - 

x3 .400 - .491 - .60 - .668 - 

x4 .400 - .491 - .60 - .668 - 

x5 .600 - .622 - .80 - .826 - 

x6 .600 - .622 - .80 - .826 - 

x7 .600 - .622 - .80 - .826 - 

x8 .600 - .622 - .80 - .826 - 

x9 - .400 - .384 - .60 - .569 

x10 - .400 - .384 - .60 - .569 

x11 - .400 - .384 - .60 - .569 

x12 - .400 - .384 - .60 - .569 

x13 - .600 - .535 - .80 - .765 

x14 - .600 - .535 - .80 - .765 

x15 - .600 - .535 - .80 - .765 

x16 - .600 - .535 - .80 - .765 

Notes: a The model fit for the population model without misspecification is perfect by definition: χ²(104) = 
0.00; b The χ²-test for the misspecified model without sampling error and moderate loadings is non-significant 
even for the largest sample size used in the simulation study (N=750): χ²(108) = 40.13; Comparative Fit 
Index = 1.00; Root Mean Square Error of Approximation = 0.000; Standardized Root Mean Square Residual 
= 0.051. c The χ²-test for the misspecified model without sampling error and large loadings is non-significant 
even for the largest sample size used in the simulation study (N=750): χ²(108) = 38.37; Comparative Fit 
Index = 1.00; Root Mean Square Error of Approximation = 0.000; Standardized Root Mean Square Residual 
= 0.085. The loadings resulting from an equality constraint are given in bold face. The values in brackets at 
the bottom of the Table are the differences between ρ² based on the unbiased loadings and the corresponding 
ρ² based on the biased loadings from the misspecified model. 
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Table 4: Population Loadings for the Oblique Two-Factor Models 
(Completely Standardized Solution) 

 

 Moderate Loadings Large Loadings 

 
Without Model 

Misspecification a 
With Model 

Misspecification b 
Without Model 

Misspecification a 
With Model 

Misspecification c 

 F1 F2 F1 F2 F1 F2 F1 F2 

x1 .400 - .491 - .60 - .668 - 

x2 .400 - .491 - .60 - .668 - 

x3 .400 - .491 - .60 - .668 - 

x4 .400 - .491 - .60 - .668 - 

x5 .600 - .620 - .80 - .825 - 

x6 .600 - .620 - .80 - .825 - 

x7 .600 - .620 - .80 - .825 - 

x8 .600 - .620 - .80 - .825 - 

x9 - .400 - .385 - .60 - .570 

x10 - .400 - .385 - .60 - .570 

x11 - .400 - .385 - .60 - .570 

x12 - .400 - .385 - .60 - .570 

x13 - .600 - .534 - .80 - .765 

x14 - .600 - .534 - .80 - .765 

x15 - .600 - .534 - .80 - .765 

x16 - .600 - .534 - .80 - .765 

Interfactor-
Correlation 

.300 .295 .300 .293 

Notes: a The model fit for the population model without misspecification is perfect by definition: χ²(103) = 
0.00; b The χ²-test for the misspecified model without sampling error and moderate loadings is non-significant 
even for the largest sample size used in the simulation study (N=750): χ²(107) = 41.53; Comparative Fit 
Index = 1.00; Root Mean Square Error of Approximation = .000; Standardized Root Mean Square Residual = 
0.050. c The χ²-test for the misspecified model without sampling error and large loadings is non-significant 
even for the largest sample size used in the simulation study (N=750): χ²(107) = 40.66; Comparative Fit 
Index = 1.00; Root Mean Square Error of Approximation = 0.000; Standardized Root Mean Square Residual 
= 0.084. The loadings resulting from an equality constraint are given in bold face. The values in brackets at 
the bottom of the Table are the differences between ρ² based on the unbiased loadings and the corresponding 
ρ² based on the biased loadings from the misspecified model. 
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Generation of Populations of Cases 
In order to generate populations of cases 

corresponding to the population correlation 
matrices implied by the correctly specified 
population models, four population data sets of 
variables each containing normally distributed, 
z-standardized random numbers for 375,000 
cases were computed and aggregated with SPSS 
Version 14.  

The first set of 375,000 cases was 
computed for the orthogonal models with 
correlated residuals and the second set was 
computed for the oblique models with correlated 
residuals. The third set was computed for the 
orthogonal models without correlated residuals 
and the fourth set for the oblique models without 
correlated residuals. In all population data sets, 
the random variables were orthogonalized by 
means of principal component analysis with 
subsequent Varimax-rotation before aggregation 
in order to exclude that even small sampling 
errors might affect the population parameters.  

Eight orthogonal variables were fixed as 
orthogonal population factor scores fi for the 
orthogonal models, 64 orthogonal variables were 
fixed as residual or error variances ej and 16 
variables were fixed as common variables ck 
representing the correlated residuals. From these 
orthogonal random variables eight correlated 
variables per factor were generated. The 
generation of the variables x1 and x2 for the 
orthogonal models with moderate factor 
loadings can be described by means of 
 

xj = .400.5 fi  + .600.5(.85ej + .15ck), 
for i = 1; j = 1, 2, k = 1.              (6) 

 
As observed from equation 6, variables x1 and x2 
share the common variable c1 and therefore have 
correlated residuals (the error term is in 
brackets). Moreover, the weights in equation 6 
correspond to the square-root of the (moderate) 
factor loadings presented in Table 1. Thus, the 
population loadings presented in Table 1 are the 
(squared) weights for the aggregation of the 
population factor scores in order to compute the 
population variables. The corresponding weights 
of the population residuals were computed from 
the communalities (h²) by means of w = (1 − 
h²)0.5; because each variable xj has only one non-
zero population loading on one factor fi, the 

weight for fi in equation 6 represents h, the 
square-root of the communality. Accordingly, 
the weight w for the residual in equation 6 was 
calculated as w = (1 – (0.400.5)2)0.5 = 0.600.5. The 
generation of the variables x3 and x4 without 
correlated residuals can be described by means 
of 

xj = 0.400.5 fi  + 0.600.5ej, 
for i = 1; j = 3, 4.                    (7) 

 
The equation for the generation of the variables 
x5 and x6 is 
 

xj = 0.600.5 fi  + 0.400.5ej, 
for i = 1; j = 5, 6;                    (8) 

 
and the equation for the variables x7 and x8 is 
 

xj = 0.600.5 fi  + 0.400.5(.85ej + .15ck), 
for i = 1; j = 7, 8, k = 2.            (9) 

 
Equations 6-9 describe the generation of the 
eight variables loading on the first factor (see 
Table 1). The equations for the remaining 
variables loading on factors 2-8 contain the same 
weights (and different subscripts) and are 
therefore not presented here. By this procedure 
64 variables with moderate loadings on eight 
factors were generated. The equations describing 
the generation of variables with large loadings 
on orthogonal factors and variables with 
correlated residuals are 
 

xj = 0.600.5 fi  + 0.400.5(0.85ej + 0.15ck), 
for i = 1; j = 1, 2, k = 1,           (10) 

 
xj = 0.600.5 fi  + 0.400.5ej, 

for i = 1; j = 3, 4,                 (11) 
 

xj = 0.800.5 fi  + 0.200.5ej, 
for i = 1; j = 5, 6,                 (12) 

and 
xj = 0.800.5 fi  + 0.200.5(0.85ej + 0.15ck), 

for i = 1; j = 7, 8, k = 2.         (13) 
 
For the oblique models correlated factor scores 
were computed by means of aggregation of 
orthogonal random variables. The computation 
of the eight oblique population factor scores oi 
from the z-standardized random variables zi and 
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a z-standardized common random variable v can 
be described as 
 

oi = 0.300.5 v + 0.700.5 zi,      for i = 1 to 8. 
(14) 

 
Eight oblique population factor scores 

were computed as a basis for the oblique two-, 
four- and eight-factor models. It follows from 
equation 14 that the interfactor-correlations were 
0.30 in the population, according to the weight 
of the common variable v (see Beauducel & 
Wittmann, 2005 for more details on the 
aggregation of random variables). The oblique 
factor scores oi were inserted instead of the 
orthogonal factor scores fi into equations 6-9 in 
order to generate the variables for the oblique 
factor models with moderate loadings and 
correlated residuals and in equations 10-13 in 
order to generate the variables for the oblique 
models with large loadings and correlated 
residuals.  

The two-factor models were based on o1 
and o2, the four-factor models on o1-o4, and the 
eight factor models on o1-o8. For the orthogonal 
models without correlated residuals, the 64 
variables were generated only on the basis of fi 
and ei, without the common terms ck, so that the 
equations for the models contained only the 
weights as in equations 7, 8, 11 and 12 (see 
Table 3, for the corresponding loadings). For the 
oblique models without correlated residuals the 
equations were based on the random variables oi 
and ei and they had also the same weights as 
equations 7, 8, 11 and 12 (see Table 4, for the 
corresponding loadings). 

Subsamples of variables were analyzed 
for the two- and four-factor models. The two-
factor models were based on the variables x1-x16 
(see Table 1), the four-factor models were based 
on the variables x1-x32 and the eight-factor 
models were based on the 64 variables. The two 
types of models and their corresponding 
misspecifications (omitted correlations between 
residuals, specification of equal loadings) were 
analyzed separately, in order to allow for a 
separate interpretation of the results.  

For the analysis of the correctly and 
misspecified models based on population data 
with correlated residuals, the results from the 
population data sets 1 and 2 were combined in 

order to allow for a combined analysis of 
orthogonal and oblique models. The conditions 
for this analysis were computation method of 
indeterminacy (according to equations 4 and 5), 
orthogonality (orthogonal versus oblique), 
number of factors (2, 4 and 8 factors), loading 
size (moderate versus large loadings), and 
number of cases or sample size (250, 500 and 
750 cases).  

For each of these 36 conditions 500 
samples were analyzed by means of CFA so that 
the first simulation study was based on 18,000 
samples. For each sample one CFA with correct 
model specification and one CFA with incorrect 
model specification was performed. For analysis 
of the correctly and misspecified models based 
on population data without correlated residuals, 
the population data sets 3 and 4 were combined 
in order to allow for a combined analysis of 
orthogonal and oblique models. The conditions 
(computation method, orthogonality, number of 
factors, loading size and number of cases) were 
exactly as in the analysis of the models with 
correlated residuals. 

For the correctly specified models, the 
difference between the population ρ² of the 
correctly specified models and the samples ρ² of 
the corresponding correctly specified models 
(same number of factors, same loading size, etc.) 
was calculated and averaged across factors.  

For the misspecified models, the 
difference between the population ρ² of the 
misspecified models and the samples ρ² of the 
corresponding misspecified models (same 
number of factors, same loading size, etc.) was 
calculated and averaged across factors. The ρ²-
differences were calculated for both computation 
methods (see equation 4 and 5) and entered into 
repeated measures ANOVA. 

In order to limit the results to those that 
are interesting in the present context, only main-
effects and interactions involving the factor 
Computation-method are reported. Due to the 
very large sample size (6,000 cases) all reported 
effects were significant at p < 0.001 and only 
effects with large effect sizes (partial η² > 0.20) 
are reported. The effect sizes of the within-
subjects effects were based on Greenhouse-
Geisser corrected univariate effects. 
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Results 
Table 5 contains the mean coefficients of 
indeterminacy for the different population 
models. The coefficients of indeterminacy were 
averaged for the factors with odd and even 
numbers, because the model misspecification 
based on equality constraints imposed on the 
loading pattern had different effects on factors 
with odd and even numbers. The coefficients of 
indeterminacy were different for the correctly 
and the misspecified population models (see 
Table 5). 

For the population models based on 
correlated residuals the coefficients of 
indeterminacy were larger for all misspecified 
models than for the correctly specified models. 
For these models, the effect of misspecification 
on ρ² was identical for factors with odd and even 
numbers. For the models without correlated 
residuals, the effects of model-misspecification 
on ρ² were different for factors with odd and 
even numbers: For factors with odd numbers ρ² 
was larger than in the correctly specified models 
and  for  factors  with  even  numbers  ρ²  was 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

smaller than in the correctly specified models. 
Overall, the population models show some 
variation of ρ², which might be regarded as a 
basis for an investigation of ρ² in the samples. 

The differences between the population 
ρ² and the corresponding samples ρ² for the 
models based on correlated residuals were 
entered into a repeated measures ANOVA with 
Computation method (two levels, based on 
equations 4 and 5), Misspecification (correctly 
specified versus misspecified) and Number of 
factors (three levels) as within-subjects factors 
and Number of cases (three levels), Loading-size 
(two levels), and Obliqueness (orthogonal versus 
oblique) as between subjects factors. 
Misspecification was considered as within-
subjects factor, because the same data sets were 
used for the correctly specified models and for 
the misspecified models. It was decided to 
consider Number of factors as within-subjects 
factor, because the four-factor models include 
the two factors of the two-factor models and the 
eight-factor models include the four factors of 
the four-factors  model.  A  large  main  effect 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Mean population ρ² for the Two Different Calculation Methods 
 

According To Equation 4 According To Equation 5 

Model Type Loading Size Specification Odd Factors Even Factors Odd Factors Even Factors 

With 
Correlated 
Residuals 

.40 

Correctly 
Specified 

.738 .738 .751 .751 

Misspecified .761 .761 .761 .761 

.60 

Correctly 
Specified 

.897 .897 .903 .903 

Misspecified .906 .906 .906 .906 

Without 
Correlated 
Residuals 

.40 

Correctly 
Specified 

.751 .751 .751 .751 

Misspecified .791 .697 .904 .623 

.60 

Correctly 
Specified 

.903 .903 .903 .903 

Misspecified .922 .883 1.011 .823 

Notes: The column odd factors contains the mean ρ² for the factors with odd numbers, the column even factors 
contains the mean ρ² for the factors with even numbers. 
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occurred for Computation method (η²= 0.94). 
The mean ρ²-difference was 0.081 (SD= 0.068) 
when based on equation 4 and 0.171 (SD= 
0.094) when based on equation 5. Thus, the 
mean difference between ρ² in the population 
and in the samples was about twice as large 
when it was based on equation 5. This indicates 
that the empirical covariance matrix (used in 
equation 5) introduces a substantial amount of 
sampling error into ρ².  

A large effect size occurred for the 
interaction between computation method and 
number of factors (η²= 0.94). This interaction is 
mainly due to a larger increase of the ρ²-
difference with number of factors when ρ² is 
computed according to equation 5 (see Figure 
1a). Another large effect size occurs for the 
interaction of computation method and number 
of cases (η²= 0.81). This interaction is mainly 
due to a larger increase of the ρ²-difference with 
Number of cases when ρ² is computed according 
to equation 5 (see Figure 1b). Moreover, a large 
three-way interaction computation method x  
number of factors x number of cases occurred  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(η²= 0.83). This three-way-interaction occurs 
because the size of the two-way interaction 
computation method x Number of factors is 
larger for the small samples (250 cases) than for 
the large samples (750 cases). In fact, the mean 
difference between the ρ²-differences for the two 
computation methods is only 0.018 for the two-
factor models based on 750 cases and it is 0.304 
for the eight-factor models based on 250 cases.  

Finally, the interaction of computation 
method with Obliqueness is of relevant size (η²= 
0.43). The difference between the computation 
methods is smaller for the orthogonal models 
than for the oblique models. Although there is a 
substantial main effect for misspecification (η²= 
0.47), the size of the interaction between 
computation method and misspecification is 
moderate (η²= 0.16) and the interaction is 
extremely small in terms of mean differences: 
The difference between the ρ²-differences for 
the two computation methods is 0.092 for the 
correctly specified models and it is 0.089 for the 
misspecified models; thus, misspecification had 
no relevant effect on the difference between the 
computation methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: ρ²-Differences for the Two Computation Methods Based on the Data Sets with Correlated Residuals: 
a) for 2-, 4-, and 8-factor models; b) for 250, 500, and 750 cases 
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The differences between the population 
ρ² and the corresponding samples ρ² based on 
the models without correlated residuals were 
entered into a repeated measures ANOVA with 
the same factors as the ρ²-differences for the 
models based on correlated residuals. Again, a 
large main effect occurred for computation 
method (η² = 0.97), indicating that the mean ρ²-
difference between population and sample ρ² 
was considerably smaller when ρ² was computed 
according to equation 4.  

The mean ρ²-difference was only 0.01 
(SD = 0.01) when ρ² was computed according to 
equation 4 and it was 0.14 (SD = 0.09) when ρ² 
was computed according to equation 5. A 
substantial interaction of computation method 
with number of factors occurred (η² = 0.97). An 
inspection of this interaction reveals that the 
computation methods had similar ρ²-differences 
for the two-factor models, but that the 
computation method based on equation 5 
yielded much larger ρ²-differences in the eight-
factor models (see Figure 2a). Another 
substantial interaction occurred for computation 
method and number of cases (η²= 0.77), 
indicating that the ρ²-differences increased more 
with decreasing sample size when ρ² was 
computed according to equation 5 (see Figure 
2b). 

The effect size of the three-way 
interaction Computation method x Number of 
factors x Number of cases was also substantial 
(η²= 0.83). This relation of Number of factors 
and Number of cases with the Computation 
method can be described by the following result: 
The mean ρ²-differences were rather similar for 
both Computation methods when based on the 
two-factor models with 750 cases (their 
difference was 0.033). The mean differences 
were, however, very different for the 
computation methods when based on the eight-
factor models with 250 cases (their difference 
was 0.333). The ρ²-differences based on 
equation 5 were larger than the ρ²-differences 
based on equation 4 when the size of the 
loadings was larger (Computation method x 
Loading-size; η² = 0.59). The ρ²-differences 
based on equation 5 were also larger than the ρ²-
differences based on equation 4 for orthogonal 

models than for oblique models (Computation 
method x Obliqueness; η² = 0.92). The effect of 
model misspecification on the ρ²-differences for 
the two methods was, however, moderate (η² = 
0.17). For the correctly specified models the 
difference between the computation methods 
was slightly larger (0.125) than for the 
misspecified models (0.122). 
 

Conclusion 
This study compared two calculation methods of 
the indeterminacy coefficient ρ² (or ρ) that 
allows for the evaluation of factor score 
estimates. Thereby it should be investigated 
which method should be preferred when a CFA 
model is slightly misspecified, as is often the 
case. Therefore, the two calculation methods for 
indeterminacy were compared in correctly and 
misspecified CFA models.  

Correctly specified and misspecified 
models based on data sets with correlated 
residuals as well as on data sets without 
correlated residuals were investigated. For the 
models based on data sets with correlated 
residuals, the correlated residuals were not 
specified in order to generate misspecified 
models in addition to the correctly specified 
models. For the models based on data sets 
without correlated residuals misspecified models 
were generated by means of equality constraints 
imposed on unequal loadings.  

Two computation methods for 
coefficients of indeterminacy were investigated: 
The first method is based on the correlations or 
covariances of the observed variables 
reproduced from the model (equation 4), the 
second method (equation 5) is based on the 
empirical correlations or covariances of the 
observed variables. Because both the 
computation of ρ² by means of the reproduced 
covariance matrix (McDonald, 1974; Mulaik & 
McDonald, 1978) and the computation of ρ² by 
means of the sample covariance matrix 
(Gorsuch, 1983; Grice, 2001; Heermann, 1963) 
have been proposed, an investigation of the 
differences between these methods was regarded 
as important. Moreover, in case of model 
misspecification, it is clear that the covariance 
matrix reproduced from the model (Σ) contains 
some error. The errors due to model  
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misspecification are not present in the empirical 
covariance matrix (S), so that the computation 
based on S might have been expected to work 
well for misspecified models. Therefore, the two 
computation methods were investigated both in 
correctly as well as in misspecified models. 
However, the model misspecifications were 
moderate in order to represent models that might 
be accepted according to conventional fit criteria 
(Hu & Bentler, 1999). The reason for the 
investigation of models with small amounts of 
misspecification was that this allows some 
insight into the effects of model misspecification 
on ρ² that might occur in empirical research with 
a given amount of accepted misfit. Sample size 
(250, 500, 750 cases), number of factors (2, 4, 8 
factors), obliqueness (orthogonal versus 
correlated factors), and size of salient loadings 
(0.40/0.60 versus 0.60/0.80) were manipulated 
in the simulation study. The main limitations of 
the present simulation study are that only two 
types of model misspecification were explored 
and that the effects of severe model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 misspecification were not investigated. 
Nevertheless, the results of the simulation study 
shed some light on the effects of sampling error 
on ρ² for different types of correctly and 
misspecified CFA models. 

The difference between ρ² computed 
from the population and the samples was 
substantially smaller when ρ² was computed 
according to equation 4 (as can be seen from the 
main effect of Computation method). This result 
can be interpreted as a larger effect of sampling 
error on ρ² when computed according to 
equation 5, as might be expected from using the 
sample covariance matrix S in equation 5 instead 
of the population covariance matrix Σ. 

The interpretation that the use of S for 
the computation of ρ² introduces some sampling 
error into the coefficient is also supported by the 
interaction of computation method with sample 
size, indicating that the difference between the 
population ρ² and the sample ρ² was larger for 
smaller sample sizes, especially when ρ² was 

Figure 2: ρ²-Differences for the Two Computation Methods Based on the Data Sets Without Correlated Residuals: 
a) for 2-, 4-, and 8-factor models; b) for 250, 500, and 750 cases 
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computed according to equation 5 (based on S). 
Even in the misspecified models, when Σ suffers 
from the misspecification, due to its being 
reproduced from the (misspecified) model 
parameters, the mean differences between the 
populations ρ² and the samples ρ² was smaller 
when ρ² was computed on the basis of Σ 
(equation 4).  

Although the model misspecifications 
used in the present study were not very large, it 
is still possible that advantages of using S for the 
computation of ρ² (equation 5) might occur for 
extreme amounts of model misspecification. On 
the other hand, it seems rather unlikely that 
severely misspecified models would generally 
be accepted according to fit indexes and it might 
be regarded as problematic to base the results of 
a simulation study on models that should not 
occur in empirical research. The results of the 
present study are therefore taken as support for a 
computation of ρ² by means of the reproduced 
correlation or covariance matrix (equation 4). 
Moreover, it was found for the population 
models that effects of misspecification can result 
in serious over-estimation of ρ², so that the 
validity of factor score predictors might be over-
estimated, just because the respective models 
were incorrectly specified.  

Nevertheless, the effect of sampling 
error and model misspecification on ρ² found in 
this study should not discourage researchers to 
report indeterminacy coefficients when factor 
score estimates are computed from CFA models. 
It is necessary to report indeterminacy 
coefficients – otherwise the validity of the factor 
score estimates remains unknown. Of course, 
indeterminacy coefficients might be even more 
biased than reported here when a model is more 
seriously misspecified; the case of extreme 
misspecification was not investigated in this 
study because factor score estimates should not 
at all be computed for seriously misspecified 
CFA models, thus the question of the validity of 
such scores is irrelevant. 
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