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CHAPTER 1 Introduction 

1.1 Cyclins are a superfamily of important regulators  

The original Cyclin (Cyclin B) was first identified by Tim Hunt in 1982 by 

radiolabeling spawned sea urchin eggs to study protein production after fertilization [1]. 

The appearing and disappearing of this protein seemed to correspond to cycles of cell 

division [1]. Over the last 30 years, about 30 proteins have been discovered and 

categorized as members of the Cyclin superfamily. Cyclins are regulatory subunits of 

Cyclin-dependent kinases (Cdks). Although many members of the family share 

structural similarity, the one prerequisite feature is the presence of a Cyclin Box domain, 

a multi-helical motif also present in TFIIB and pRb [2]. The Cyclin Box imparts Cdk 

binding and activation [2]. A number of different Cdk proteins have been identified, and 

specific Cyclins form heterodimers with specific Cdks. The Cyclin is the regulatory 

subunit that activates kinase activity and directs substrate specificity, and the Cdk is the 

catalytic kinase subunit. 

A subset of the Cyclins control the cell cycle [3]. Most of the Cyclins that regulate 

the cell cycle oscillate and are controlled by regulated degradation, to ensure that the 

cell cycle moves only in one direction [3]. The cell cycle consists of four stages: G1, 

which involves growth of the cell in preparation for DNA replication; S phase, which is 

replication of the DNA; G2, which involves growth of the cell in preparation for cell 

division; and M phase, the process in which the parent cell divides into two separate 

daughter cells [3]. The cell cycle Cyclin(s) dominating the landscape at a particular 

phase determine which Cdk is active and which proteins are phosphorylated [3].  
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The metazoan cell cycle Cyclins can be divided into four categories, based on 

the activity that they preside over. G1 Cyclins (Cyclin D), which maintain steady levels 

throughout the cell cycle, form complexes with Cdk4 that coordinate the cell cycle with 

extracellular signals and prepare the cell for S phase [4]. G1/S Cyclins (Cyclin E), which 

accumulate in late G1 and decline in S phase, form complexes with Cdk2 that work 

cooperatively with G1 Cyclin complexes to drive the cell cycle to enter S phase [4]. S 

phase Cyclins (Cyclin E and A), which have levels that remain high throughout S phase, 

form complexes with Cdk2 that promote the activities necessary for DNA replication and 

G2 [4]. Finally, M phase Cyclins (Cyclin A and B), which have high levels from late G2 

through M phase, form complexes with Cdk1 that drive the transition from G2 to M 

phase and promote activities necessary for cell division [4]. 

As just stated, many highly studied Cyclins directly regulate the cell cycle, but 

other Cyclins have functions that are not directly related to the canonical cell cycle. 

Cyclin T, K, H, and C, for example, form complexes that have been identified as having 

a regulatory relationship to transcription and RNA Polymerase II function [5-8]. Cyclin F 

regulates Cyclin B nuclear localization [9]. Cyclin L has been implicated in mRNA 

splicing [10, 11]. Cyclin O has been shown to be required for the intrinsic apoptosis 

pathway in lymphoid cells [12]. Cyclin I has been shown to be required for Cdk5 

activation in terminally differentiated kidney podocytes [13]. Also, a few Cyclins, for 

example Cyclin J and Y, are not well characterized. 
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1.2 Cyclin J is a protein of unknown function  

1.2.1 Cyclin J has Cyclin Superfamily properties 

Cyclin J was first identified in experiments that used Drosophila Cdk1 and Cdk2 

as baits in a yeast two-hybrid (Y2H) library screen of a Drosophila embryonic cDNA 

library [14]. Possessing a Cyclin Box domain, Cyclin J is a member of the Cyclin 

superfamily [15]. Cyclin J is conserved among all metazoans [16]. All of the research 

done on Cyclin J to date has been done in Drosophila. Its mRNA and protein are 

present in the early embryo, then disappears, only to reappear in adult females [15, 17]. 

When probing protein extracts with affinity-purified rabbit polyclonal Cyclin J antibodies, 

Cyclin J was seen in unfertilized eggs, in embryos for the first few hours following 

fertilization, and in adult females [17]. 

As mentioned above, Cyclins function as part of a Cyclin/Cdk complex [2, 3]. The 

identity of the Cdk partner is key to its function and pathway placement. To identify the 

Cdk partner for Cyclin J, Kolonin et al. performed co-immunoprecipitation (CoIP) using 

an affinity-purified rabbit polyclonal Cyclin J antibody and lysate from different stages 

and tissues in Drosophila [17]. Probing lysate from unfertilized oocytes and early 

embryos, Cdk2 co-purified with Cyclin J [17]. In the same experiment, Cdk1 weakly co-

purified with Cyclin J, but in lysate from unfertilized eggs only [17]. Again, the primary 

function of a Cyclin is to bind to and activate the kinase activity of a Cdk partner [3]. 

Consistent with this, Cyclin J immunoprecipitates made from unfertilized eggs and 0-4hr 

embryos were able to phosphorylate H1 proteins in an in vitro H1 kinase assay [17]. 

Surprisingly, experiments done by Lehner et al. suggested that the partner for Cyclin J 
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is Cdk1, and not Cdk2 [16]. The Lehner Lab experiments involved transgenic 

Drosophila lines that produced N and C-terminal GFP-Cyclin J fusion proteins. The 

method they used to precipitate and detect Cyclin J involved antibodies that bind to the 

GFP segment. They used Protein A-sepharose beads coated with affinity-purified rabbit 

GFP antibodies that bind to Cyclin J-EGFP and lysate made from whole ovaries. Here, 

Cdk1, and not Cdk2, co-purified with Cyclin J [16]. At present, we do not have a clear 

explanation for the different findings with respect to Cyclin J’s Cdk partner. This 

investigation is designed to help address this question. 

Cyclin J does appear to have Cyclin properties in vivo. Injecting affinity-purified 

rabbit polyclonal Cyclin J antibodies or Cyclin J-specific aptamers into embryos 

disrupted the cell cycle by causing telophase bridges and delayed progression through 

mitosis [17]. Drosophila Cyclin J is also capable of rescuing growth in Cyclin-deficient 

baker’s yeast [15]. 

1.2.2 CycJ-null Drosophila mutants appear normal, but a genetic interaction 

occurs when the piRNA pathway is impaired 

What happens when CycJ is deleted in flies? The Finley lab and the Lehner lab 

used the same method, which was deleting the space between two transposon insertion 

alleles, XPd07385 and RBe01160, that each contain a FLP/FRT recombination site. 

This stretch of chromosome 3L contains armi, CycJ, and CG14971. To achieve single-

null flies, all of the three genes were replaced in different combinations in the form of P 

elements [16, 18]. The Lehner lab determined that singular CycJ-null flies did not have 

diminished viability [16], while our lab observed decreased egg laying and decreased 
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egg hatching [18]. Aside from these differences, both groups concluded that the CycJ-

null flies appeared normal [16, 18]. The singular armi-null mutant phenotype resulted in 

loss of germline cells and production of only 2 or 3 normal-looking egg chambers per 

ovariole [16, 18]. That is less than wild-type ovarioles, which average 3 to 5 [16, 18]. 

armi is a member of the transposon-silencing piRNA pathway [19]. The piRNA 

pathway’s most important job is to protect the germline stem cells from transposon 

activity corrupting protein coding genes and cis elements [20]. It does this by processing 

transposon-complementary 26-31 nucleotide RNAs, called piRNAs, to direct pathway 

members to degrade transposon transcripts and silence their production through 

chromatin remodeling [20]. It was observed that the armi, CycJ double-null phenotype 

was different than the singular CycJ-null or armi-null, with production of 1 or 2 

disorganized, overpopulated egg chambers, followed by the loss of germline cells [18]. 

This variation to the single-null phenotypes is a genetic interaction with the piRNA 

pathway that has been verified by ruling out any involvement with the other excised 

DNA and by reproducing a similar genetic interaction with other piRNA pathway 

members [18]. Based on this data, CycJ appears to be required for processes involved 

with proper egg chamber formation when the piRNA pathway is compromised. 

1.3 Objectives and specific aims 

Aside from the observations and facts discussed above, Cyclin J’s function is 

poorly understood. Major unknowns include knowledge of the molecular pathway in 

which Cyclin J acts, exactly which Cdk is the true partner, the identity of upstream and 

downstream regulators, and how it interacts with the piRNA pathway. A broad tool that 

could start the process of elucidating many of these unknowns is studying Cyclin J’s 
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protein-protein interactions (PPIs). Cyclin J’s PPIs are likely to play important roles in 

each of these unknowns. To date, 36 PPIs have been identified using Drosophila Cyclin 

J as a bait in yeast two-hybrid (Y2H) library screens (Table 1) [21, 22]. One drawback of 

the Y2H assay is that it can detect false-positives [22]. Further testing of PPIs identified 

with this method is needed to increase confidence in the validity, and these 36 PPIs 

have yet to receive this scrutiny. Real in vivo physical interactions tell the story of the 

action of each protein, including Cyclin J. 

 

Table 1. Putative Drosophila Cyclin J protein interactions. Listed are 36 Drosophila proteins that were identified in 

yeast two-hybrid screens. 

This project has one specific aim. It is to identify and test for biologically relevant 

Cyclin J PPIs. I am using approaches that involve two assays to test PPIs. The assays I 

am employing are the yeast two-hybrid assay and co-affinity purification (CoAP). When 

a PPI is detected using two different assays, for example Y2H and CoAP, it is more 

likely to be a true positive [23]. Orthologs of Drosophila Cyclin J’s PPIs will also be 

tested. I am comparing Drosophila, mosquito, and human orthologs of PPIs. A PPI is 

also more likely to be a true positive when the PPI is conserved between more than one 

species.         
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CHAPTER 2 Materials and methods used to identify biologically relevant Cyclin J 

interacting proteins 

2.1 Yeast two-hybrid 

2.1.1 Overview of the yeast-two hybrid system 

The yeast two-hybrid assay (Figure 1) is a molecular biology tool that employs 

fusion protein constructs produced in the nucleus of baker’s yeast cells to identify binary 

PPIs through various reporter strategies [24]. I used a modified LexA system, based on 

the one described in Gyuris et al. [25]. Specifically, two haploid yeast clones that each 

produce a fusion protein to be tested are mated, then grown on media that allows two 

reporter genes to be tested. If the two fusion proteins interact, the reporters activate 

[14]. 
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Figure 1. Yeast two-hybrid assay. The DNA binding (BD) and transcription activating (AD) domains of a transcription 

factor are used to create fusion proteins (BD-X & AD-Y) which activate transcription of reporter genes when they 

interact. 

 

The test begins with creating yeast spots on solid media. The spots are made by 

the overlaying of two drops of the liquid haploid yeast cultures on agar plates of solid, 

rich media, where they will mate, and incubating the plates overnight. The two strains of 

yeast are called RFY309 and RFY231. Y2H-ready RFY309 has two key features. First, 

a bait plasmid, pNLEX(NLS), which has a HIS3 selection marker. This plasmid 

produces an N-terminal fusion protein (BD-X), made up of your protein of choice (X) and 

the LexA DNA-binding moiety (BD), whose production is constitutively induced by the 

ADH1 promoter. It also has a second plasmid, pSH18-34, which contains the LacZ 

reporter. pSH18-34 has a URA3 selection marker and eight LexA operators 
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(LexAopLacZ) that control LacZ production. When LexA binds and recruits an activating 

domain, LacZ transcription is activated. The product enzyme, β-galactosidase, cleaves 

the X-gal substrate, that has been added to the media, into a blue product. Y2H-ready 

RFY231 also has two key features. The prey plasmid, pJZ4, has a TRP1 selection 

marker that expresses AD-Y. AD-Y is an N-terminal fusion protein that involves your 

protein of choice (Y) and B42, an 89-amino acid domain that activates transcription in 

yeast (AD). pJZ4 expresses AD-Y under control of the GAL1 promoter, which is induced 

by galactose and repressed by dextrose. RFY231 also has an integrated DNA construct 

that consists of LexA operators (LexAopLEU2) that control LEU2. When transcription is 

activated, the host yeast cells are viable on leu- media. 

Following overnight growth, the rich media plates with the yeast spots are replica 

plated onto four indicator plates that select for diploid growth. Each reporter (LacZ and 

LEU2) involves a pair of plates. The X-gal indicator plates are uracil-, histidine-, 

tryptophan- (to select for diploid cells) plus the X-gal substrate, with one containing 

galactose, maltose, and raffinose (UHW-grmX) and the other containing dextrose 

(UHW-DX) as carbon sources. The leu- indicator plates are uracil-, histidine-, trypophan-, 

and leucine-, with one containing galactose, maltose, and raffinose (UHWL-grm) and the 

other containing dextrose (UHWL-D) as carbon sources. Again, dextrose represses and 

galactose activates production of AD-Y. 

After 3 days of growth, the spots on the indicator plates are scored based on 

their reporter activity. All reporter activity present on dextrose plates can only be an 

artifact of activation by BD-X itself. Thus, if yeast turns blue on UHW-DX plates and/or 

grows on UHWL-D, the BD-X activation will interfere with the interaction test. On 
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galactose+ media though, the prey is now potentially able to interact with the bait. If the 

BD-X has proven to not be self-activating, this reporter activity or growth is said to be 

galactose-dependent. If the AD-Y successfully pairs with the BD-X, growth on leu- 

plates and/or blue color on X-gal plates are signals for an interaction. The overall score 

is the sum of the scores on LacZ and leu- plates (see Figure 2). G-D scores are 

measured by the total score on the galactose plates minus the total score on the 

dextrose plates. 
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Figure 2. Assessing and calculating yeast two-hybrid reporter scores. Protein interactions are assessed based on the 

reporter activity on the indicator plates (UHW/grmX, UHW/DX, UHWL/grm, & UHWL/D). U=uracil-, H=histidine-, 

W=tryptophan-, L=leucine-, g=galactose carbon source, r=raffinose carbon source, m=maltose carbon source, 

D=dextrose/glucose carbon source, X=addition of the X-gal substrate to the solid media. The LacZ reporter is measured 

by the darkness of the blue color created by the cleavage of X-gal into a blue product by β-galactosidase. Production of 

β-galactosidase is initiated by interaction of BD-X and AD-Y. The stronger the interaction, the darker the color 

produced. The LacZ score (numbered 0-5) = the UHW/grmX score (galactose-associated activation) – UHW/DX 

(background activation). The leucine reporter is measured by the growth of yeast on leucine- solid media. Production of 

leucine is initiated by interaction of BD-X and AD-Y. The stronger the interaction, the greater the growth. The Leu+ 

score (numbered 0-3) = the UHWL/grm score (galactose-associated activation) – UHWL/D (background activation). 
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This framework lends itself to many applications, so Y2H assays range from 

individual pair screenings to high-throughput proteome mapping [21, 22]. Its versatility is 

an asset, but Y2H is subject to the limitations that come with testing PPIs within the 

microenvironment of the yeast nucleus. Besides instances where BDs cause high 

background reporter activation, certain ADs can activate reporters regardless of the BD, 

which may occur when AD-Y contains a prey protein able to interact with many proteins, 

due to the nature of its chemical makeup. PPIs involving these “sticky” proteins are 

comprised of mostly false positives.        

2.1.2 Yeast two-hybrid library screens 

Pre-mating library tests        

I conducted yeast two-hybrid library screens to identify human and mosquito 

Cyclin J interactors using the protocol described in, “Interaction mating methods in two-

hybrid systems,” as detailed below [26]. Before the assay begins, each bait must be 

tested against the library being screened, plus a control library (consisting of just the 

empty AD vector pJZ4 with no cDNA inserts), to determine whether a library screen is 

feasible and how many clones must be tested to achieve significant results. The steps 

are below. 

The first step is to prepare bait/library mixtures. I grew a 30mL culture of the bait 

yeast strain in a 250mL flask in liquid uracil-, histidine-, dextrose yeast media overnight 

shaking at 30˚C. In the morning, I measured the OD600 and took a portion of the culture 

to inoculate another 30mL liquid culture in a 250mL flask, to grow under similar 

conditions until mid to late log phase. An OD600 of 1.0 = 2 x 107 cells/mL. The human 
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bait culture OD600 was 0.980, which equals 1.96 x 107 cells/mL. The mosquito bait 

culture OD600 was 0.975, which equals 1.95 x 107 cells/mL. For each mixture, the bait 

strain must contain double the cells of the library strain to ensure that every library clone 

is able to mate with an available bait yeast clone. The HeLa cDNA library contains 4.0 x 

107 colony forming units (cfu)/100μL. I mixed aliquots of 200μL of HeLa cDNA library 

yeast cells and 8.2mL of human Cyclin J bait yeast culture in 50mL Falcon tubes. For 

each tube, I spun the contents down at 1000 x g at room temperature and poured out 

the supernatant. I twice added 10mL of water and spun down at the same rate to wash 

the cells. Following the second wash and spin down, I resuspended the pellets in 2.5mL 

of liquid yeast extract, peptone, dextrose (YPD) media and 2.5mL of freezing solution, 

made 1 mL aliquots of the mixture in Eppendorf tubes, and froze all but one of the 

aliquots at -80˚C. The control library contains 2.55 x 107 cfu/125μL. I mixed 250μL of 

control library yeast cells and 2.6mL of human Cyclin J bait yeast culture in 50mL 

Falcon tubes. I spun down, washed, resuspended, and froze all but one of the aliquots 

in the same manner as done previously. I prepared the mixture of mosquito Cyclin J and 

the mosquito and control libraries in a similar manner as done with the human Cyclin J 

mixtures. The mosquito cDNA library contains 3.5 x 107 cfu/100μL. I mixed aliquots of 

200μL of mosquito cDNA library yeast cells and 7.2mL of mosquito Cyclin J bait yeast 

culture in 50mL Falcon tubes, spun down, washed, resuspended, and froze all but one 

of the aliquots in the manner I have described. I mixed 250μL of control library yeast 

cells and 2.6mL of mosquito Cyclin J bait yeast culture in 50mL and again performed 

the same steps that ended in freezing all but one of the aliquots. Following the 

procedure described above, I was ready to do the pre-mating library tests. Through this, 
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I also created the frozen mixtures of human and mosquito Cyclin J bait yeast cells, in 

mixtures with the HeLa and mosquito libraries respectively, for the actual screen at the 

ratios necessary for proper mating. 

With the bait/library mixtures prepared and ready, the next step was to test their 

effectiveness in this Y2H format. I used the bait/control library mixtures to grow colonies 

on solid UHWL/grm plates to determine leu+ diploids and UHW/grm plates to determine 

the number of diploids (diploid forming units or dfu) in each aliquot. With this 

information, I could calculate the number of leu+ colonies that arise by transactivation by 

the bait alone per 100μL versus the number of diploids formed per 100μL. This is the 

transactivation potential. A transactivation potential of less than 1 x 10-5 leu+ 

colonies/dfu is ideal for conducting a Y2H library screen. When factoring in the number 

of individual clones contained in the test library, the number of colonies needed to 

saturate the library can be calculated. I used the bait/HeLa and mosquito cDNA library 

mixtures to grow colonies on solid UHWL/grm and UHW/grm plates so that I could 

calculate the number of leu+ colonies produced per 100μL versus the number of diploids 

formed per 100μL. Analysis of this result tells us how much of the bait/HeLa or mosquito 

cDNA library mixture is needed to produce the desired number of leu+ colonies. 

I made 300μL aliquots of bait/control library and bait/HeLa and mosquito cDNA 

library mixtures at 10-4, 10-5, and10-6 concentrations in sterile water and plated 100μL of 

the contents onto 128x86mm yeast peptone dextrose (YPD) plates, in which the haploid 

yeast mate more effectively. I also made 300μL aliquots of bait/control library and 

bait/HeLa and mosquito cDNA library mixtures at undiluted, 10-1, 10-2, and 10-3 

concentrations in sterile water and plated 100μL of the contents onto 128x86mm YPD 
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plates for mating. I incubated all these plates at 30˚C overnight. The next day, I used 

sterile technique with a glass scraper to remove all yeast that grew on each plate into 

50mL Falcon tubes. I washed the yeast in the tubes with 10mL of sterile water, spun 

down the tubes at 1000 x g for 3 minutes, and poured out the supernatants. I then 

added 500μL of liquid UHWL/grm media to all the tubes with 10-4, 10-5, and10-6 

concentations, mixed the contents, and plated them onto 128x86mm petri plates 

containing solid UHWL/grm media. I also poured 500μL of liquid UHW/grm media into 

all the tubes with the undiluted, 10-1, 10-2, and 10-3 concentrations, mixed the contents, 

and plated them onto 128x86mm petri plates containing solid UHW/grm media. I 

incubated all these plates at 30˚C for 3 days. Following that, I counted the colonies 

produced, multiplied the numbers by the dilution factor, and calculated the average 

colonies produced by 100μL for each combination. 

The average number of human Cyclin J bait/control library colonies that grew on 

UHWL/grm plates was 1 per 100μL. The average number of human Cyclin J bait/control 

library colonies that grew on UHW/grm plates was 9.3 x 105 per 100μL. The average 

number of human Cyclin J bait/HeLa cDNA library colonies that grew on UHWL/grm 

plates was 7 per 100μL. The average number of human Cyclin J bait/HeLa cDNA library 

colonies that grew on UHW/grm plates was 2.9 x 106 per 100μL. 

The average number of mosquito Cyclin J bait/control library colonies that grew 

on UHWL/grm plates was 785 per 100μL. The average number of mosquito Cyclin J 

bait/control library colonies that grew on UHW/grm plates was 1.9 x 107 per 100μL. The 

average number of mosquito Cyclin J bait/mosquito cDNA library colonies that grew on 

UHWL/grm plates was 4.6 x 103 per 100μL. The average number of mosquito Cyclin J 
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bait/mosquito cDNA library colonies that grew on UHW/grm plates was 1.4 x 107 per 

100μL. 

The transactivation potential of the human Cyclin J bait is 1.0 x 10-6 leu+ 

colonies/dfu. To screen all of the 1 x 107 individual clones contained within the HeLa 

cDNA library, I needed to plate at least 107 dfu and could expect 10 leu+ colonies to 

form from the bait alone. The human Cyclin J/HeLa cDNA library mixture gave rise to 

2.0 x 10-6 leu+ colonies/dfu. 1 leu+ colony is formed per 100μL. I attempted to produce 

100-150 colonies, I used 1.4mL of the human Cyclin J/HeLa cDNA library mixture to 

perform the screen.     

The transactivation potential of the mosquito Cyclin J bait is 4.2 x 10-5 leu+ 

colonies/dfu. To screen all of the 1 x 107 individual clones contained within the mosquito 

cDNA library, I needed to plate at least 107 dfu and to expect 430 leu+ colonies to form 

just from the bait alone. The mosquito Cyclin J/mosquito cDNA library mixture gave rise 

to 3.3 x 10-4 leu+ colonies/dfu. 815 leu+ colonies are formed per 100μL. I chose to 

attempt to produce 576 colonies, so I used 50μL of the mosquito Cyclin J/mosquito 

cDNA library mixture to perform the screen. 

Mating the bait and library, and selection of positives 

I thawed one aliquot of the human Cyclin J/HeLa cDNA library mixture and 

prepared to plate 1mL, and I also thawed one aliquot of the mosquito Cyclin J/mosquito 

cDNA library, removed 50μL, and added 950μL of sterile water to prepare to plate a 

final volume of 1mL. I plated the two 1mL preparations onto separate 128x86mm YPD 

plates and incubated them at 30˚C overnight. The next day, I used sterile technique with 
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a glass scraper to remove all yeast that grew on the two plates into two 50mL Falcon 

tubes. I washed the yeast in the tubes with 10mL of sterile water, spun down the tubes 

at 1000 x g for 3 minutes, and poured out the supernatants. I then added 3mL of liquid 

UHWL/grm to the tubes, mixed the contents, and plated them onto large 22cmx22cm 

square petri containing solid UHWL/grm media. I incubated the plates at 30˚C for three 

days. I picked 77 yeast colonies from the human Cyclin J/HeLa cDNA library plate, 576 

yeast colonies from the mosquito Cyclin J/mosquito cDNA library plate, and placed the 

colonies into wells of separate 96-well plates with 200μL of liquid UHW/D media to turn 

off production of the AD fusion protein. I incubated the cultures while shaking at 30˚C for 

3 days. I used the Biomek NX-MC robot (Beckman Coulter) to transfer 3μL of each well 

to YPD plates to form circular colony spots and incubated the spots at 30˚C overnight. 

The next day, I replica plated the spots onto the four indicator plates using a sterile 

velvet cloth and incubated them at 30˚C for 3 days. I took photos and scored the 

reporter activity using the G-D method. 

Human Cyclin J / HeLa cDNA library mating 

The human Cyclin J/HeLa cDNA library screen plates resulted in strong growth of 

all spots on the UHWL/D plates, most likely due to activation by the BD alone. The 

combination of that result plus almost no difference in activation of the X-gal reporters 

between the spots on the UHW-Dx and UHW/grmx plates is a scenario where 

interactions between human Cyclin J and HeLa cDNA library may not be able to be 

screened using this format. To rule out errors in performing the mating, I performed a 

second mating. That mating resulted in a similar outcome, so I discontinued the human 

Cyclin J/HeLa cDNA library screen at that point. 
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Mosquito Cyclin J / mosquito cDNA library mating 

Initially, I tested 576 diploid clones that resulted from the mating of mosquito 

Cyclin J and the mosquito cDNA library. Following initial scoring the interactions, I 

chose a wide variety of scores to continue testing, because biologically relevant PPIs 

may or may not be strong interactions in vivo. Also, only choosing to continue testing a 

small subset of reporter scores may result in choosing many of the same clones. A 

broad base of reporter scores insures against that outcome.      

Selecting and preparing clones for re-testing 

I set out to reduce the number of plates being handled from 6 to 4. I wrote a 

program that was used by the Biomek NX-S8 (Beckman Coulter) to transfer 30μL of 

each of the clones from the original liquid cultures to new 96-well plates with fresh liquid 

UHW/D media. 

I re-tested the 378 prospective mosquito Cyclin J interactors by sub-cloning them 

into fresh yeast and mating these yeast with the Cyclin J bait. This process begins with 

colony PCR of the diploids that have been re-arrayed for further testing. To make solid 

cultures to colony PCR, I used the Biomek NX-MC to transfer 3μL of each well to solid 

W/D plates and incubated the spots at 30˚C overnight. Next, I performed a colony PCR 

of each spot to create a reservoir of ORF sequence to use for further study. I used 

GoTaq Polymerase (Promega), the primers BCO1 and BCO2, which amplify the library 

inserts, and a small bit of cells from the colony spots in a 30μL total volume to perform 

the reaction. I tested for the presence of a PCR product by electrophoresing 5μL from 

each reaction on a 0.9% agarose gel. About 70% of reactions appeared successful. 
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In an effort to reduce the potentially high number of duplicate clones, I restriction 

digested each colony PCR reaction and electrophoresed the reactions on 4% agarose 

gels to compare the banding patterns of the digests. Duplicate clones will produce 

identical digested patterns. Each reaction involved Alu I (NEB), buffer 2 (NEB), and an 

aliquot from the colony PCR reaction. Following the analysis of the gels, I concluded 

that no duplicate clones were obvious among the clones contained in the four plates 

being tested. This result was surprising and is unlikely to be a reflection of the true 

composition. I concluded that the restriction digests contained many incomplete digests, 

where the presence of intermediate products confounded the process of analyzing the 

gel for duplicates. With the exorbitant amount of time to produce and analyze the colony 

PCR products and the amount of materials needed to conduct the restriction digest 

tests, I decided to move to the next step without eliminating any clones from contention. 

The next steps involved harnessing the yeast gap repair mechanism to produce 

yeast with newly-made AD plasmids that contain copies of the inserts made from the 

colony PCR of the re-arrayed clones. Gap repair uses the process by which the yeast 

cells repair double-strand breaks by inserting a PCR product into a linearized plasmid 

where each has homologous ends that the yeast machinery uses to join together. I used 

linearized pRF4-5o, an AD plasmid similar to the original AD plasmid used in the 

mosquito cDNA library, and the PCR products, which contained the cDNA library ORF 

DNA and the necessary flanking DNA that is homologous to the ends of the linear 

pRF4-5o. 

Before performing the reaction, I made competent yeast that readily were able to 

execute the gap repair reaction. I grew RFY231 cells in liquid YPD until late log phase, 
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then centrifuged them at 1000 x g at 4˚C for 15 minutes, washed them with sterile 

water, and centrifuged them again under the same conditions. Then, I suspended them 

in TrisHCl/LiAc/EDTA (TLE), DMSO, salmon sperm DNA, and Eco RI and Xho I 

linearized pRF4-5o. Following that, I distributed the cell suspension into 1.5 mL tubes 

and froze them at -80˚C. 

With the competent cells prepared, I began the gap repair procedure. It first 

involved mixing together 5μL of each of the colony PCR reactions, with 10μL of 

competent RFY231 cells, and 30μL of PEG/TrisHCl/LiAc/EDTA (PTLE) in each well of a 

96-well PCR plate at room temperature. Next, I incubated the plate on a heating block 

at 30˚C for 30 minutes and 42˚C for 15 minutes. After allowing it to cool to room 

temperature, I added 70μL of liquid W/D+15% glycerol media to each well. Following 

that step, the reaction was ready to plate onto solid media. I used the Biomek NX-S8 to 

distribute 30μL of each reaction onto a large, 46 partition 22cmx22cm square petri 

containing solid W/D media. With four 96-well plates to process, I performed the above 

steps for each and ended up with 8 of the large partitioned plates with a gap repair 

reaction in each partition. I incubated each of these at 30˚C for approximately 3 days. 

Following that incubation, many of the partitions contained yeast colonies. I used a 

sterile toothpick to transfer a colony from each partition that contained one to a well on 

four new 96-well plates that contained 120μL of liquid W/D+15% glycerol media and 

incubated the plates at 30˚C for 3 days while shaking. 
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Re-testing the Cyclin J interactions 

The yeast in the four 96-well plates contained inserts that were created by colony 

PCR of the inserts from the initial prospective mosquito Cyclin J interactors. The next 

step was to mate these freshly created yeast clones with the mosquito Cyclin J-BD 

yeast to test the reproducibility of the interactions. Following that, I also mated all the 

prospective interactors with several control BDs. Some AD fusion constructs produce 

positive interaction scores with many BDs, likely having more to do with the nature of 

these “sticky” AD proteins rather than any type of biologically relevant PPI. By testing 

these prospective interactors in this manner, the reporter scores that resulted from 

matings with control BDs provided information to help determine which of these clones 

in the four plates were high-confidence interactions. 

I grew a fresh batch of RFY309/pNLEXattR-aaecycj in liquid UH/D media at 30˚C 

while shaking overnight. I aliquoted about 120μL of the culture into each well of a 96-

well PCR plate to aid in the robot work. I used the Biomek NX-MC to distribute 3μL 

drops to make spots of the liquid culture onto 4 solid YPD plates. I also took the 4 PCR 

plates of the newly-made gap repaired-yeast cultures that contained the prospective 

interactors and used the robot to distribute 3μL drops of each culture on top of those 

spots on the YPD plates. I incubated the plates at 30˚C overnight and then replica 

plated each plate onto the 4 indicator plates using a sterile velvet cloth. I incubated the 

indicator plates at 30˚C for 3 days, took photos, and scored the reporter activity. Many 

of the spots from the YPD plates failed to grow on the indicator plates. This indicates 

that the spots did not have diploid yeast. Many of the colony PCR reactions appeared to 

have failed, suggesting that the gap repair reaction would not have been successful 
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either. The empty spots corresponded to these. Of the 384 clones I attempted to 

reproduce through gap repair, 271 were successfully sub-cloned and re-tested. Of those 

271, 239 had positive interaction scores. 

Specificity test 

I also assayed five control BDs with the prospective ADs to best anticipate which 

interactions had the highest confidence. The control BD plasmids were already 

constructed and were members of the lab’s plasmid bank. I obtained samples of 

pRFHM202-cdi5 (Drosophila Cyclin J), pRFHM12-cdc2 (Drosophila Cdk1), pRFHM13-cdc2c 

(Drosophila Cdk2), pRFHM1-Bicoid, and pNLEXattR-aaeCyclin Y, all various forms of N-

terminal DNA-binding fusion proteins. I used the LiAoc yeast transformation protocol to 

transform RFY309 with each of these BD plasmids. Following this, I was ready to test 

the control BDs against the prospective ADs in Y2H assays. I mated the BD and AD 

yeast in the same format as previously described. I cataloged the reporter scores of 

each BD with each AD and used the scores in my analysis of the prospective PPI’s 

confidence.  

2.1.3 Directed yeast two-hybrid assays  

I used the yeast two-hybrid assay to test for interactions involving the human or 

mosquito orthologs of Drosophila Cyclin J interactors. The constructs I used in this 

screen are listed in Figure 3. I used the LiAoc yeast transformation protocol to transform 

RFY309 yeast with the BD vectors and RFY231 yeast with the AD vectors. I transferred 

single yeast colonies from these reactions into wells of 96-well plates with the 

appropriate selective liquid media and incubated them at 30˚C for 3 days while shaking. 
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I performed the matrix screen by using a multichannel pipettor and a 96-well placement 

guide to manually overlay 5μL of liquid cultures to make yeast spots on YPD plates. I 

incubated the plates at 30˚C overnight and then replica plated each plate onto the 4 

indicator plates using a sterile velvet cloth. I incubated the indicator plates at 30˚C for 3 

days, took photos, and scored the reporter activity. 

 

 

Figure 3. Directed yeast two-hybrid assays design. Listed are the constructs used in the directed yeast two-hybrid 

assays. There are 16 BDs, 17 ADs, plus 1 AD only control. Each BD is tested against each AD. 

2.2 Co-affinity purification to test protein interactions  

2.2.1 Overview of the co-affinity purification system 

Co-affinity purification (CoAP) is another common tool of choice in testing PPIs 

(Figure 4). Our lab uses a Cu2+-induced Gal4 expression system to make NTAP-X and 

Myc-Y N-terminal fusion proteins in Drosophila S2 or S2R+ cells. If X and Y interact, 

Myc will CoAP with NTAP. Each culture is co-transfected with plasmids expressing the 
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pair of putative interactors, or one with an empty NTAP vector control, and pMT-Gal4 

(plasmid bank #966). Expression of the NTAP and Myc fusion proteins is controlled by a 

UAS promoter responsive to Gal4, which itself is induced by CuSO4 action on the 

metallothionein promoter of pMT-Gal4.  The CoAP is performed by incubating protein 

lysate with agarose beads coated with rabbit IgG antibodies. The NTAP tag stably binds 

to the IgG beads. The reaction is washed repeatedly and then Western blot is 

performed for NTAP and Myc. The Myc-tagged protein will only be present if it was 

“pulled down” by the NTAP-X construct. All “pull downs” must be compared to an NTAP-

vector-only control to prove that what is being “pulled down” is the result of the protein in 

question and not the NTAP itself. When Drosophila cells are used to test Drosophila 

proteins, the cellular environment may be well-suited to provide the mechanisms to 

bestow the native post-translational modifications. This ability makes CoAP superior to 

Y2H when it comes to testing PPIs of proteins that exhibit certain requisite post-

translational modifications, but it is still fallible. Many proteins fail to be produced 

effectively for CoAP. Whether it be the wrong post-translational modification, the lack of 

a necessary stabilizing partner molecule, or a total incompatibility with the cell type, 

some protein combinations cannot effectively be tested by CoAP. 
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Figure 4. Co-affinity purification. X and Y are proteins being tested for interaction, and N-terminal fusion proteins are 

made to simplify binding and detection. NTAP-X  and Myc-Y are co-expressed in S2R+ or S2 cells and harvested. The 

lysate is incubated with rabbit IgG antibodies that bind NTAP constructs. The mixture is incubated on ice and washed 

with cold lysis buffer 5 to 10 times. Following washing, the mixture is Western blot for NTAP and Myc. If Myc-Y is co-

detected with NTAP-X and not with an NTAP-only control, the test is positive for a PPI between X and Y. 

 

Y2H and CoAP techniques are complementary to each other in the information 

they yield. Y2H technologies make the screening of whole cDNA libraries a 

straightforward endeavor. The troublesome effects of the sometimes high false-positive 

rate in Y2H PPIs are mitigated by further testing. CoAP is a very powerful tool for 

detecting PPIs that fills this need. CoAP has two main advantages that complement the 

simple, yet limited, ability of Y2H assays. Growing properly folded, functional fusion 

proteins is best done in a system that matches the native conditions as closely as 

possible. Growing the fusion constructs in conditions similar to the native cell 

environment, as opposed to the nucleus of yeast as in Y2H, promotes the addition of 
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post-translational modifications that may be key in functional proteins. This is one 

advantage. As all proteins that associate with the bound NTAP-X are “pulled down,” 

distant, yet biologically relevant relationships can be demonstrated. While this can be 

considered an advantage, it can complicate the picture of what is interacting with what. 

The ability for Y2H to discriminate between the binary and complex interactions 

supports the case for these two techniques being an effective combination, when used 

in tandem. 

To carry out CoAP, 2 to 3 million S2R+ cells are seeded in approximately 2mL of 

Schneider’s liquid media in a cell culture dish. After 24 hours, Effectine Transfection 

Reagent (Qiagen) is used to transfect the cultures with the desired combinations of the 

3 necessary plasmids (the NTAP-X plasmid, the Myc-Y plasmid, and pMT-Gal4). About 

18 hours later, CuSO4 is used to induce plasmid expression of NTAP-X and Myc-Y. 

Approximately 72 hours after that, the cells are harvested, protein extracts are made, 

and protein concentration is tested using a Bradford assay (Biorad). Following both an 

NTAP and Myc Western to verify that the proper size protein constructs were produced, 

the CoAP is conducted. An aliquot of Rabbit IgG coated agarose bead solution is placed 

in a 1.5mL tube. 250-500μg of protein extract is added to the tube and the 5-10 rounds 

of washing with fresh lysis buffer, centrifugation, and removal of the supernatant is 

performed. Through this process, all contaminants that do not bind the NTAP construct 

are removed. The purified protein extract is analyzed by Western blot again for NTAP 

and Myc. The verified presence of the Myc-tagged protein and the NTAP-tagged protein 

in the same CoAP sample is a positive PPI result if the empty vector control fails to 

retain the Myc-tagged protein. 
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2.2.2 Co-affinity purification of orthologs of Drosophila Cyclin J protein 

interactions 

The results of the CoAP experiments are not known at the time of this report, but 

the design of the first set of CoAPs is in Figure 5. I used the aaeCyclin J, aaeCyclin B, 

aaeCdk1, aaeCdk2, and aaeCks85A entry vectors and the pHZ13attR (NTAP fusion) 

and pHZ12attR (Myc fusion) destination vectors in an LR reaction to create the 

plasmids for the CoAP test. 

 

 

Figure 5. Co-affinity purification design. Listed are the constructs used in the co-affinity purification (CoAP) test of 

previously identified Cyclin J PPIs. NTAP-X fusion constructs or vector only controls are co-expressed with the 

adjacent Myc-Y fusion constructs and are tested for CoAP. 
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2.3 Plasmids and strains 

Entry vectors (Appendix B) 

Destination vectors (Appendix B) 

Yeast strains (Appendix B) 

Constructing the Cyclin J baits (human) 

I began the construction of the human Cyclin J bait by withdrawing the 

pDONR223-hscycj Gateway (Invitrogen) entry plasmid from the hORF cDNA library 

[27]. I used M13F and M13R to sequence the ORF and flanking regions of pDONR223-

hscycj. The sequence file names are hsCycJF-M13F(-21) and hsCycJR-M13R. These 

sequence results encompassed the whole human CycJ ORF. pDONR223-hscycj 

corresponds to human Cyclin J isoform 2 (GenBank accession: NP_061957.2), is a 

perfect match to it, and is in the expected reading frame. I was now ready to create the 

bait plasmid. I used pDONR223-hscycj and the destination plasmid pNLEXattR in an LR 

reaction (Invitrogen) to create pNLEXattR-hscycj. The final step in creating the bait was 

transforming the proper yeast with the bait plasmid. I used an LiAoc yeast 

transformation protocol to transform RFY309 with pNLEXattR-hscycj. The bait yeast 

was selected on solid uracil-, histidine-, dextrose yeast plates. 

Constructing the Cyclin J baits (mosquito) 

I used Herculase (Stratagene) high-fidelity polymerase and aeCycA3F & R 

primers to PCR-amplify the mosquito Cyclin J ORF from the mosquito cDNA library [28]. 

Next, I used Herculase, DM1 & DM2 primers, and the previous PCR product to PCR-
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amplify a new product that is the mosquito Cyclin J ORF flanked by full attB1 & attB2 

sites. With these sites, the PCR product was ready to be cloned into the Gateway entry 

plasmid. I used this PCR product and pDONR221 (Invitrogen) in a BP reaction 

(Invitrogen) to create pDONR221-aaecycj. I used M13F and M13R to sequence the 

ORF and flanking regions of pDONR221-aaecycj. The sequence file names are 

aaeCycJF-M13F(-21) and aaeCycJR-M13R. These sequence results encompassed the 

whole mosquito CycJ ORF. pDONR221-aaecycj corresponds to the putative Aedes 

aegypti Cyclin A3 (NCBI Reference Sequence: XP_001653129.1), which is considered 

Aedes aegypti Cyclin J. This construct does have an N294H amino acid inconsistency 

with that sequence and is in the expected reading frame. I was now ready to create the 

bait plasmid. I used pDONR221-aaecycj and the destination plasmid pNLEXattR in an 

LR reaction (Invitrogen) to create pNLEXattR-aaecycj. The final step in creating the bait 

was transforming the proper yeast with the bait plasmid. I used an LiAoc yeast 

transformation protocol to transform RFY309 with pNLEXattR-aaecycj. The bait yeast 

was selected on solid uracil-, histidine-, dextrose yeast plates. 

Constructing the directed assays baits and preys 

I cloned the other ORFs for the screen from either the HeLa or mosquito cDNA 

library, or I obtained entry clones through the hORF cDNA library [27]. For a list of the 

constructs used in the directed assays, see Figure 3. I used Herculase high-fidelity 

polymerase and the appropriate primers (see Appendix A) to PCR-amplify the selected 

human and mosquito ORFs flanked by the attB1 & attB2 sites necessary for the BP 

reaction, and then I performed the BP reaction to create Gateway entry vectors (see 

Appendix B). After sequencing and analyzing these entry vectors I made or obtained 
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from the hORF library in a manner similar to the human and mosquito Cyclin J baits, I 

was able to verify that all the entry vectors matched the desired ORFs. Details of these 

constructs are in the Finley Lab plasmid bank. I used the constructs to perform several 

LR reactions to create the destination vectors, then used an LiAoc yeast transformation 

protocol to transform the appropriate yeast strain in order to conduct the directed 

assays. 

Hela cDNA library 

Made by Jeno Gyuris [25], the library is comprised of cDNA from HeLa cells 

grown in 5% serum on plates to 70% confluence. cDNAs are inserted into pJG4-5, a 

Y2H vector used to make B42 activating domain N-terminal fusion proteins. The vector 

is TRP1+, and a GAL1 promoter is used to drive fusion protein production. The cDNA 

library contains 9.8 x 106 individual members, >90% of which contain a cDNA insert 

whose average size ranges between 1 kb and 2 kb. 

Mosquito cDNA library 

Made by Dumrong Mariang [28], the library is comprised of pooled cDNA from 

ten stages of Aedes aegypti development. The cDNA is inserted into pRF4-5o, a Y2H 

vector used to make B42 activating domain N-terminal fusion proteins. The vector is 

TRP1+, and a GAL1 promoter is used to drive fusion protein production. The cDNA 

library includes more than 107 individual members, 64% of which contain a cDNA insert 

whose average size ranges between 0.3 kb and 4 kb. The average size of the inserts is 

1.4 kb. 
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CHAPTER 3 Identification of Cyclin J interacting proteins in mosquito and human 

3.1 Introduction 

To identify biologically relevant Cyclin J PPIs, I performed two yeast two-hybrid 

(Y2H) library screens and a Y2H directed assay. More information about the Cyclin J 

PPI network would be a useful resource in the quest to shed light on the pathways in 

which Cyclin J acts. Thirty-six putative PPIs were previously identified for Drosophila 

Cyclin J, but these were detected by Y2H, a technique that can result in false positives 

[21, 22]. Since all the putative PPIs involve Drosophila Cyclin J, probing other species 

for conserved PPIs could increase confidence in PPIs that span more than one species. 

Of specific interest was the identification the Cdk partner for Cyclin J. The preparations 

for conducting CoAP to test for PPIs involving Cyclin J are complete, but the results of 

the CoAP assays cannot be included in this report, due to time constraints. 

3.2 A screen for human proteins that interact with Cyclin J 

To identify human Cyclin J interacting proteins, I conducted a Y2H screen of a 

HeLa cell cDNA library (see section 2.3 for details). First, I created a human Cyclin J 

bait by sub-cloning the human Cyclin J ORF from the human ORF cDNA library [27] into 

the Y2H bait vector. Before conducting the screen, I tested the human Cyclin J bait and 

determined that it did not activate the Y2H reporters appreciably on its own. To begin 

the screen, I mated the human Cyclin J bait yeast with the HeLa cDNA library yeast and 

selected colonies in which the reporters were active. I picked 77 positive colonies of 

various sizes and tested them on Y2H indicator plates. Pictures of these indicator plates 

are presented in Figure 6a. I scored the reporter activity of the yeast spots and found 
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that only 2 exhibited weak total scores (see Figure 2 for scoring calculations). The 

leucine reporter appears to be activated by the bait alone for all 77. This is seen when 

looking at Figures 6a and comparing the UHWL/D plates (bait-only active) and 

UHWL/grm plates (bait and prey active). Growth is observed equally on both plate 

types. This is interpreted as the bait activating the leucine reporter. The 2 positive LacZ 

scores are very weak, and I decided not to continue the screen for the sake of 2 

questionable prospective interactions. To be sure that this result was not due to an error 

on my part, I re-performed the mating, this time selecting 138 positive diploid colonies of 

various sizes and testing them on Y2H indicator plates (Figure 6b-c). On this attempt, I 

observed the same leucine activation and 5 positive LacZ scores that were very weak. 

This confirmed that a Y2H screen using this bait/library combination is not a worthwhile 

undertaking to find biologically relevant Cyclin J PPIs.  
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Figure 6a-c. Human Cyclin J library screen indicator plates. Indicator plates for the human Cyclin J interaction screen 

of the HeLa cDNA library. (a) Plate 1 (b) Plate 2 (c) Plate 3. All plates lack uracil, histidine, and tryptophan (UHW) to 

select for diploids. The bottom two plates in each figure lack leucine (L); colonies that grow on these have the leucine 

reporter activated. The top two plates in each figure contain the X-gal substrate (X); colonies that are blue on these 

plates have an active LacZ reporter. The right two plates in each figure have glucose (D), which represses production of 

the library protein. The left two plates have galactose (plus raffinose and maltose, grm) which activates production of the 

library protein.  

 



34 
 

 

3.3 A screen for mosquito proteins that interact with Cyclin J 

To identify mosquito Cyclin J interacting proteins, I conducted a Y2H screen of a 

mosquito cDNA library [28]. First, I created a mosquito Cyclin J bait by sub-cloning the 

Aedes aegypti Cyclin J ORF, that I PCR amplified from the mosquito cDNA library, into 

the Y2H bait vector. Before conducting the screen, I tested the mosquito Cyclin J bait 

and determined that it did not activate the Y2H reporters appreciably on its own. To 

begin the screen, I mated the mosquito Cyclin J bait yeast with the mosquito cDNA 

library yeast and selected colonies in which the reporters were active. I picked 576 

positive colonies of various sizes and tested them on Y2H indicator plates. Pictures of 

these indicator plates are presented in Figure 7a-f. I scored the reporter activity of the 

yeast spots, 574 had galactose-dependent reporter activity, suggesting an interaction 

between Cyclin J and those library proteins. I chose 378 clones of various positive 

reporter scores to be re-arrayed into four 96-well plates for further study. I performed 

colony PCR to amplify the prospective interacting cDNA inserts with flanking regions 

used to conduct gap repair cloning. I performed restriction digests of the PCR reactions 

with Alu I to identify duplicate clones (Figure 8a-d). The digests were not useful because 

the reactions appeared incomplete. I then decided to move forward with the gap repair 

cloning. I used the gap repair technique to sub-clone all of the 378 initial positive ORFs 

into Y2H prey vectors in fresh yeast to re-test the interactions. 
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Figure 7a-f. Mosquito Cyclin J library screen initial clones. Indicator plates for the mosquito Cyclin J interaction screen 

of the mosquito cDNA library. There were 576 clones tested. 574 had positive galactose-dependent scores. (a) Plate 1 

(b) Plate 2 (c) Plate 3 (d) Plate 4 (e) Plate 5 (f) Plate 6. Plate labels are as in Figure 6. 

 

Figure 8a-d. Colony PCR and Alu I restriction digests. I restriction digested the colony PCR reactions of the 378 

prospective mosquito Cyclin J interactors, ran them on agarose gels, and compared the band pattern of the digests to 

identify identicals. Left side – Colony PCR using GoTaq (Promega) and the primers BCO1 & BCO2 of the 378 

prospective mosquito Cyclin J interactors. Reactions are electrophoresed at 100 volts for 30 minutes on 0.9% agarose 

gels. Right side – Alu I restriction digests using the colony PCR reaction, the NEB buffer 2, and Alu I restriction digest. 

Reactions are electrophoresed at 100 volts for 45 minutes on 4% agarose gels. (a) Plate 1 (b) Plate 2 (c) Plate 3 (d) Plate 

4. 
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I re-tested the 378 reconstituted initial positives by mating them to the mosquito 

Cyclin J bait again. Pictures of these indicator plates are presented in Figure 9a-d. I 

scored the reporter activity of the yeast spots and found that 271 of the 384 were 

successfully re-tested. Growth of yeast spots on both of the UHW plates (which select 

for diploid yeast; meaning that both the bait and library protein are present) signified a 

successful re-test. For example, Plate 1, spots A1 was not a successful re-test and 

spots A2 was a successful re-test. A positive reporter score is constituted by an 

increase in reporter score of the grm plate (where the bait and library protein are 

expressed) over the D plate (where only the bait is expressed). Of the 271, positive 

reporter scores were found in 239. Plate 2, spots A3 exemplifies positive reporter 

scores with both reporters active, and F2 exemplifies a positive reporter score with only 

one. I then tested the prospective interactors by mating them with 5 control baits to 

assess specificity. Taking specificity into account, I chose 94 yeast clones of various 

positive reporter scores and sequenced their inserts. Out of the 94, 71 were unique 

mosquito transcripts. Table 2 includes the mosquito protein ID, the reporter score from 

the Cyclin J test, and the Drosophila ortholog, if one is known. 
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Figure 9a-d. Mosquito Cyclin J library screen clones re-test. I successfully sub-cloned the inserts of 271 of the 378 

initial positive mosquito Cyclin J interactors and created fresh yeast to re-test the interactions with the mosquito Cyclin J 

bait. 239 of the 271 had positive galactose-dependent scores. (a) Plate 1 (b) Plate 2 (c) Plate 3 (d) Plate 4. 
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Table 2. Mosquito library screen results. I identified 71 unique mosquito proteins in the yeast two-hybrid screen of the 

mosquito cDNA library. This table illustrates the mosquito protein ID, the total reporter score, and the Drosophila 

ortholog, if one exists (N/A if no ortholog exists). The “X detected” column shows the number of instances that gene 

was detected out of the 94 sequenced.  

 

None of the sequenced library proteins matched orthologs of the putative 

Drosophila Cyclin J interactors. Seventy-one new putative Cyclin J PPIs were identified 

and are valuable, but no overlap with previous results indicates that no conserved PPIs 

were detected.     

3.4 Directed assays for potentially conserved Cyclin J interactions 

I set out to answer three questions in this set of experiments. (1) Does human 

Cyclin J interact with human Cdk1 and/or Cdk2? (2) Does mosquito Cyclin J interact 

with mosquito Cdk1 and/or Cdk2? (3) Are other candidate Cyclin J interactions 

conserved between human, mosquito, and Drosophila? I created Y2H constructs 

expressing activation domains (AD) or DNA-binding domains (BD) fusion proteins for 
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several human and mosquito orthologs of previously identified Drosophila Cyclin J 

interactors to address these questions. I used the format used in the re-testing of Cyclin 

J interactors to mate each AD with each BD (see Figure 3). 

The most important PPI for a Cyclin is its Cdk partner. Previously, Drosophila 

Cyclin J was shown to interact with Cdk2, but not Cdk1, in a Y2H assay [15]. Also, 

research done in two labs conflict with each other over the identity of Cyclin J’s in vivo 

Cdk partner. The Finley lab used CoIP to demonstrate that Cyclin J co-purifies with 

Cdk1 and Cdk2 [17]. The Lehner lab reported that Cyclin J co-purifies with Cdk1 only 

[16]. I tested two other proteins for conservation of a PPI with Drosophila Cyclin J, Gus 

and Spindle-A. According to Flybase, a Drosphila database, Gus is a protein that has 

been linked to the processes of oocyte anterior/posterior axis specification and dorsal 

appendage formation [29]. Spindle-A is a protein that has been linked to the processes 

of germarium-derived oocyte fate determination, female meiosis, double-strand break 

repair, polarity specification of dorsal/ventral axis, intracellular mRNA localization, cell 

cycle checkpoint involvement, oogenesis, polarity specification of anterior/posterior axis, 

and karyosome formation in Drosophila, also according to Flybase [30]. 

3.4.1 Testing for a human Cyclin J interaction with human Cdk1 and Cdk2 

I set out to obtain evidence of the identity of the Cyclin J/Cdk partner by looking 

for potentially conserved interactions in other species. To test this, with respect to 

human (hs) Cyclin J, Cdk1, and Cdk2, I performed Y2H assays with each of the three 

as ADs and BDs. Previous Y2H results have shown that Drosophila (dm) Cyclin J, 

Cdk1, and Cdk2 all interact with Cks30A and Cks85A [22]. In my assays, I used the 
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human orthologs of Cks30A and Cks85A, respectively Cks2 and Cks1B, as positive 

controls to validate proper construct function, since these two proteins are well-known 

Cdk interactors. I was unable to produce an hsCks1-BD, so the hsCks2-BD, hsCks1-

AD, and hsCks2-AD constructs were the controls I had at my disposal. 

I was unable to test human Cyclin J interactions because the Cyclin J constructs 

that I used appeared to be non-functional in the two-hybrid assays. The hsCyclin J-BD 

did not produce a positive interaction score with the hsCdk1-AD (Figure 10a; spots A10) 

or the hsCdk2-AD (Figure 10a; spots A11), both of which were able to interact with 

mosquito Cyclin J-BD. 

The hsCyclin J-BD does not appear to be a reliable construct, because it does 

not produce a positive interaction score with the hsCks1B-AD (Figure 10a; spots B2) or 

the hsCks2-AD (Figure 10a; spots B3). Both of the human Cks AD constructs appear to 

be working in this assay, since they show interactions with the mosquito Cyclin J-BD 

(see Figure 10d; spots B2 & B3). The failure of the human Cyclin J-BD to successfully 

screen the HeLa cDNA library also points to the ineffectiveness of this construct. The 

hsCdk1-AD’s reliability cannot be reliably tested by hsCks2-BD, because hsCks2-BD 

does not appear to be a reliable construct itself. The hsCdk1-AD does produce a 

positive interaction score with the mosquito Cyclin J-BD (Figure 10d; spots A10), so that 

does indicate that it is valid to some degree. The hsCdk2-AD’s reliability also cannot be 

reliably tested by hsCks2-BD, because hsCks2-BD does not appear to be a reliable 

construct itself. Like hsCdk1-AD, hsCdk2-AD produces a positive interaction score with 

the mosquito Cyclin J-BD (Figure 11d; spots A11), so that indicates that it is also valid 

to some degree. 
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The hsCdk1-BD does not appear to be a reliable construct, because it does not 

produce a positive interaction score with the hsCks1B-AD (Figure 10b; spots B2) or the 

hsCks2-AD (Figure 10b; spots B3). The hsCdk2-BD appears to mildly activate the 

reporters on its own, but it produces a positive interaction score with the hsCks2-AD 

(Figure 10b; spots D3) and appears to be a reliable construct. The hsCyclin J-AD does 

not appear to be a reliable construct, because it does not produce a positive interaction 

score with the hsCks2-BD (Figure 10c; spots B1). 

 

 

Figure 10a. Directed yeast two-hybrid assays with hsCyclin J. All spots have hsCyclin J-BD. They also have the 

indicated AD proteins. Plate labels are as in Figure 6.  
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Figure 10b. Directed yeast two-hybrid assays with hsCdk1 and hsCdk2. All spots in A & B have hsCdk1–BD and all 

spots in C & D have hsCdk2–BD. They also have the indicated AD proteins. Plate labels are as in Figure 6. 
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Figure 10c. Directed yeast two-hybrid assays with hsCks2 and aaeCks30A. All spots in A & B have hsCks2–BD and all 

spots in C & D have aaeCks30A–BD. They also have the indicated AD proteins. Plate labels are as in Figure 6. 

 

The unreliability of the hsCyclin J-BD and AD constructs and the hsCdk1-BD 

construct makes the direct testing of this partnership impossible in my assays. 

Therefore, I will not reference any further testing that involves human Cyclin J 

constructs. There are caveats involving the interactions detected between human Cdk1 

and Cdk2 and mosquito Cyclin J that will be detailed in the section that involves the 

mosquito tests.  
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3.4.2 Testing for a mosquito Cyclin J interaction with mosquito Cdk1 and Cdk2 

I conducted the testing that involved the mosquito constructs similarly to the 

testing of the human counterparts. To test the potential Cyclin J/Cdk1 and 2 

partnerships, I performed Y2H assays with the BD and AD versions of mosquito (aae) 

Cyclin J, Cdk1, and Cdk2. Again, previous Y2H results have shown that Drosophila 

Cyclin J, Cdk1, and Cdk2 all interact with Cks30A and Cks85A. In these assays, I used 

the mosquito orthologs of Cks30A and Cks85A, that in this case share the same name, 

as positive controls. I was unable to produce an aaeCks85A-BD, so I had the 

aaeCks30A-BD, aaeCks30A-AD, and aaeCks85A-AD constructs as the controls at my 

disposal. 

Mosquito Cyclin J and Cdk2 interact, suggesting that their interaction may be 

conserved. The aaeCyclin J-BD produced a positive interaction score with the aaeCdk2-

AD (Figure 10d; spots A3). Also, the hsCdk2 J-BD did produce a clear positive 

interaction score with the aaeCyclin J-AD (Figure 10b; spots C4). Here, I was finally 

able to produce some convincing data concerning the identity of a Cdk partner for 

Cyclin J. The aaeCyclin J-BD did not produce a positive interaction score with the 

aaeCdk1-AD (Figure 10d; spots A2), even though the Cdk1-AD was capable of 

interacting with aaeCks30A-BD (Figure 10c; spots C2). The aaeCdk1-BD produced an 

ambiguous result with the aaeCyclin J-AD (Figure 10e; spots A4). The faded, dark color 

of the yeast spot on the UHW/grmX plate could indicate that Cyclin J and Cdk1 is a 

toxic combination to yeast cells. This result could indicate an interaction, but the lack of 

a clear indicator suggests that the interaction cannot be determined with this BD/AD 

combination. 
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The aaeCyclin J-BD is a reliable construct, because it produces a positive 

interaction score with the aaeCks85A-AD (Figure 10d; spots A6) and the aaeCks30A 

(Figure 10d; spots A7). The aaeCyclin J-AD also appears to be a reliable construct, 

because it produces a positive interaction score with the aaeCks30A-BD (Figure 10c; 

spots A4).  

The aaeCdk1-BD is a reliable construct, because it produces a positive 

interaction score with the aaeCks85A-AD (Figure 10e; spots A6) and the aaeCks30A 

(Figure 10e; spots A7). The aaeCdk1-AD also appears to be a reliable construct, 

because it produces a positive interaction score with the aaeCks30A-BD (Figure 10c; 

spots C2).  

The aaeCdk2-BD is a reliable construct, because it also produces a positive 

interaction score with the aaeCks85A-AD (Figure 10e; spots C6) and the aaeCks30A 

(Figure 10e; spots C7). The aaeCdk2-AD also appears to be a reliable construct, 

because it produces a positive interaction score with the aaeCks30A-BD (Figure 10c; 

spots C3).  

Based on these results, I conclude that mosquito Cyclin J interacts with mosquito 

Cdk2, but most likely, not Cdk1. 
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Figure 10d. Directed yeast two-hybrid assays with aaeCyclin J. All spots have aaeCyclin J-BD. They also have the 

indicated AD proteins. Plate labels are as in Figure 6. 
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Figure 10e. Directed yeast two-hybrid assays with aaeCdk1 and aaeCdk2. All spots in A & B have aaeCdk1–BD and all 

spots in C & D have aaeCdk2–BD. They also have the indicated AD proteins. Plate labels are as in Figure 6. 

 

I conclude that the Cyclin J/Cdk2 partnership is supported by my results. The 

interaction test was unambiguously positive in both BD and AD orientations for both 

constructs. The Cyclin J/Cdk1 interaction cannot be excluded, however. This conclusion 

is based on two results. The apparent toxic product that results from the aaeCdk1-

BD/aaeCyclin J-AD test and the positive score of the aaeCyclin J-BD/hsCdk1-AD test 

warrants further investigation of this partnership. 
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3.4.3 Testing for a mosquito Cyclin J interaction with mosquito Gus 

Gus has been shown to interact with Cyclin J in a previous Y2H assay [22]. I set 

out to test the conservation of this interaction. I was able to create BD and AD human 

and mosquito Gus constructs, and I tested their interaction with the mosquito Cyclin J 

BD and AD. 

Mosquito Cyclin J and Gus interact, suggesting that this interaction may be 

conserved. The aaeGus-BD produced a positive interaction score with the aaeCyclin J-

AD (Figure 10f; spots C4), which was validated in an earlier section. The aaeCyclin J-

BD also produced a very weak positive interaction score with the aaeGus-AD (Figure 

10d; spots A8) and the hsGus-AD (Figure 10d; spots B4). I did not create positive 

controls for the Gus constructs, so their validity cannot be unquestionably determined. 

The hsGus-BD did not produce a positive interaction score with the aaeCyclin J-AD 

(Figure 10f; spots A4). 

Based on these results, I conclude that mosquito Cyclin J interacts with mosquito 

Gus. 
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Figure 10f. Directed yeast two-hybrid assays with hsGus and aaeGus. All spots in A & B have hsGus–BD and all spots 

in C & D have aaeGus–BD. They also have the indicated AD proteins. Plate labels are as in Figure 6. 

 

I conclude that the Cyclin J/Gus PPI is supported by my results. All of the 

interaction tests that involved a mosquito Cyclin J construct, which has been shown to 

be valid, consistently showed a positive test result for both human and mosquito Gus. 

While a positive test result across species is encouraging to have, the test result 

between same-species constructs is more valuable and relevant. That is why the 

mosquito Cyclin J/mosquito Gus reporter scores lead me to believe that the interaction 

is supported, even though the mosquito Cyclin J/human Gus reporters were not active.      
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3.4.4 Testing for a mosquito Cyclin J interaction with mosquito Spindle-A 

Spindle-A has been shown to interact with Cyclin J in a previous Y2H assay [22]. 

I set out to test the conservation of this interaction in mosquito and human orthologs. I 

was able to create an hsSpindle-A-BD construct and a human and mosquito AD 

construct. I tested for their interaction with the mosquito Cyclin J BD and AD. 

Mosquito Cyclin J and Spindle-A interact, but the conservation of the PPI is 

questionable, due to the conflicting results of Spindle-A BD and AD tests I will soon 

discuss. The hsSpindle-A-BD did not produce a positive interaction score with the 

aaeCyclin J-AD (Figure 10g; spots A4), which was validated in an earlier section. I did 

not create positive controls for the Spindle-A constructs, so their validity cannot be 

unquestionably determined. 

The aaeCyclin J-BD produced a positive interaction score with the aaeSpindle-A-

AD (Figure 10d; spots A1) and the hsSpindle-A-AD (Figure 10d; spots A9), but both of 

these ADs may be “sticky” constructs since they both appear to interact positively with 

almost every BD I tested. 
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Figure 10g. Directed yeast two-hybrid assays with hsSpindle-A. All spots have hsSpindle-A-BD. They also have the 

indicated AD proteins. Plate labels are as in Figure 6. 

 

I conclude that the Cyclin J/Spindle-A PPI is not supported by my results. This is 

for two reasons. First, not only did the human and mosquito Cyclin J-BDs detect 

interactions with human and mosquito Spindle-A-ADs, but several other BDs detected 

interaction with both Spindle-A ADs. These include hsCdk2, dmBicoid, aaeCyclin Y, 

hsCks2, hsSpindle-A, and aaeCks30A (results not shown). Second, the hsSpindle-A-BD 

does not detect an interaction with aaeCyclin J-BD or any of these other constructs in 

the AD orientation. It only detects interactions with human and mosquito Spindle-A-ADs. 

I believe that both of the Spindle-A-AD constructs are “sticky,” and therefore activate 

reporters in many cases, regardless of any true PPI. I also believe that the result 
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demonstrated by the hsSpindle-A-BD of only interacting with itself and its mosquito 

ortholog is more likely a valid set of results. 
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Figure 11a-c. Directed yeast two-hybrid assays reporter scores. A summary of all interactions observed in the directed 

assays together with reporter scores (11a) Directed yeast two-hybrid assays interactions detected 1 (11b) Directed yeast 

two-hybrid assays interactions detected 2 (11c) Directed yeast two-hybrid assays interactions detected 3. 



55 
 

 

CHAPTER 4 Conclusions and discussion 

4.1 Significance of the results to date 

The present total of 107 putative Cyclin J PPIs are valuable resources to 

continue the process of characterizing Cyclin J with more information. I chose to focus 

on the Drosophila orthologs of the mosquito Cyclin J interactors detected in the screen 

of the mosquito library, because information about Drosophila proteins is more readily 

available than mosquito proteins. Two of the great advantages of the Drosophila model 

organism are the number of techniques have been developed to manipulate the 

genome and there are many resources available to look up findings, such as the 

Flybase online database [30]. Most of the following information was located through the 

Flybase database. Many of the Drosophila orthologs of the newly identified putative 

interactors are known to be highly expressed in ovaries and early embryos and are 

genetically linked to sterility defects. As CycJ and armi were shown to genetically 

interact, CycJ could also modulate a number of these phenotypes. I have chosen to 

highlight several of these newly-identified PPIs to discuss some notable connections to 

oogenesis. 

For proteins to be directly functionally related, they need to occur in the same 

space at the same time. So, for the PPIs identified in this screen to be biologically 

relevant, they need to share these characteristics. Many of the PPIs detected in this 

screen have been documented to occur in the cell types essential to oogenesis. Since 

Cyclin J only occurs in ovaries and early embryos, co-expression of its putative 

interactors in these specialized cell types is a critical attribute. 
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The fusome is a highly important structure in oogenesis that connects the cytosol 

of the 16 germline cells that are derived from a germline stem cell to become the 15 

nurse cells and the 1 ooctye [31]. Cysteine proteinase-1 (Cp1) is an endopeptidase 

linked to autophagic cell death that was identified by screening a library of proteins 

known to be present in fusomes using a protein trap assay [31, 32]. Ubiquitin carboxy-

terminal hydrolase (Uch) is a ubiquitin thiolesterase linked to protein deubiquitination 

that was identified by in situ hybridization to be present in nurse cells and oocytes [33]. 

Another important cell type in oogenesis is the follicle cell. They line the outside 

of the germarium, which is the vessel-like organ that transitions into the egg chamber 

and is the structure in which the process of oogenesis occurs [34]. Stambha A (Stm A), 

a protein of unknown function, and Kinesin heavy chain (Khc), a motor protein that has 

been linked to regulation of pole plasm specificity, are proteins that were identified by in 

situ hybridization to be present in germline stem cells, follicle cells,  nurse cells, oocytes, 

and embryos [34-38]. These documented localizations and links to oogenesis make 

these PPIs biologically relevant, and worthy targets to pursue in the further study of 

Cyclin J function. 

Mutant phenotype analysis provides clues to the function of proteins. Several of 

the PPIs detected in this screen have previously documented mutant phenotypes 

involving oogenesis defects. Any involvement with oogenesis makes a PPI identified in 

this screen a good candidate to pursue further connections to Cyclin J. Nascent 

polypeptide associated complex protein alpha subunit (Nac α) is annotated to have a 

function of protein binding and is linked to regulation of pole plasm specificity, a critical 

process in anterior-posterior axis specification [39]. There is a mutant fly line created by 
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P element mutation (Nac α04329), which has a documented oogenesis defect that 

manifests as fewer than normal, tiny collapsed eggs [40]. Cp1, which was mentioned 

above to localize to fusomes, has a mutant phenotype, created by deletions within the 

ORF, in which the flies produce a normal amount of eggs that never hatch [41]. Qin is a 

fairly newly characterized piRNA pathway member linked to post-transcriptional gene 

silencing by RNA that has a FLPase-mutated allele (QinM41-13), which has a mutant 

phenotype that manifests as egg chambers with abnormal numbers of oocytes and 

germline stem cell maintenance defects [42, 43]. Inducer of meiosis 4 (Ime4) is a 

protein that has methyltransferase activity and is linked to egg chamber encapsulation 

of the oocyte [44]. There is a mutant fly line created by a P element mutation (Ime4c1), 

which has a documented oogenesis defect that manifests as compound egg chambers 

with supernumerary nurse cells [44]. This phenotype seems to exactly match the armi, 

CycJ double-null phenotype [18]. Heat shock protein 83 (Hsp83) has ATPase-coupled 

protein folding activity and is also linked to regulation of pole plasm specificity [45, 46]. 

Hsp83e6A and Hsp8319F2 are mutations caused by ethyl methanesulfonate exposure, 

and the fly lines with these mutant alleles manifest with approximately 75% of the egg 

chambers arresting at different developmental stages, not later than stage 9, and the 

remaining egg chambers show a prominent defect in the transfer of nurse cell 

cytoplasm to the oocyte, a necessary step in oocyte maturation [47].        

Another common factor among several PPIs detected is a connection to Notch 

signaling. This signaling pathway is well-established for the roles it has in many 

processes during egg chamber development [48]. A common theme seen in the 

processes that involve the Notch signaling pathway is cell fate specification [48]. It is a 
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key factor in maintaining the germline stem cell niche, the differentiation of polar cells 

and stalk cells, the establishment of the anterior-posterior axis, and the differentiation of 

the follicle cells into their specialized parts of the egg chamber [48]. Two proteins that 

were identified in the screen have features that are instantly recognizable within the 

known framework of the Notch signaling pathway. CG33713 is a protein of unknown 

function that has an ankyrin repeat-containing domain and a FERM/acyl-CoA-binding, 

3-helical bundle domain. Domains with ankyrin repeats are known to facilitate binding 

between proteins, and they are known to be necessary for the Notch intracellular 

domain (NICD) to bind downstream targets [48]. FERM/acyl-CoA-binding, 3-helical 

bundle domains are known to localize a protein to the cell membrane [49]. This 

combination of features mirrors Notch itself, which is located at the cell membrane and 

has an ankyrin repeat domain. Another protein detected in the screen was 

AAEL009906-PB. No orthologous Drosophila protein has been identified to date. This 

protein also has no identified function, but it has a PDZ domain, which facilitates binding 

between proteins [48]. Several known Notch ligands have PDZ domains [48]. These 

domains are important for the organizing of cell-cell junctions [48]. 

Aside from these proteins with common Notch-associated domains, six other 

proteins identified in the screen have been directly linked to the Notch signaling 

pathway. This has been done through RNA interference (RNAi) assays. RNAi assays 

hijack the innate post-transcriptional gene silencing machinery to target and “knock 

down” one given gene at a time, in order to study the resulting phenotype [50]. Three 

proteins, already mentioned earlier for having mutant phenotypes that involve 

oogenesis, Nac α, Khc, and Ime4, have also been linked to Notch signaling through 
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specific tests that identify Notch signaling defects by the phenotype produced. Nac α 

scored hits on two assays that tested for Notch signaling defects by causing defects in 

bristle morphology and a fatal malformation of the notum when “knocked-down” [51]. 

Khc also scored hits on the same two assays [51]. Ime4 scored hits on four assays that 

tested for Notch signaling defects by causing defects in bristle morphology, loss of 

bristles, increased lateral inhibition, and a fatal malformation of the notum when 

“knocked-down” [51]. CG10492, which has a CCHC-type zinc finger domain but an 

unknown function, scored one hit on an assay that tested for Notch signaling defects by 

causing a fatal malformation of the notum when “knocked-down” [51]. Translationally-

controlled tumor protein (Tctp), which has Ras guanyl-nucleotide exchange factor 

activity and is annotated to be a positive regulator of cell size, scored two hits on assays 

that tested for Notch signaling defects by causing a non-fatal malformation of the notum 

and a defect in planar polarity when “knocked-down” [51, 52]. Finally, Nero, which has 

deoxyhypusine monooxygenase activity and is annotated as being a positive regulator 

of autophagy, scored hits on two assays that tested for Notch signaling defects by 

causing defects in bristle morphology and loss of bristles when “knocked-down” [51, 53]. 

The connections between what is theorized about Cyclin J and the experimental 

knowledge regarding the newly-identified PPIs are numerous. Like Cyclin J, many of 

these putative PPIs are known to localize to cell types within the ovary. Mutating CycJ 

has been shown to produce mutant phenotypes that involve egg laying and hatching. 

When deleted with armi, severe egg chamber abnormalities are seen. Several of the 

newly-identified PPIs have documented mutant phenotypes that involve eggs and 

oogenesis. Also, the newly-identified PPIs are enriched with RNAi phenotypes linked to 
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the Notch signaling pathway. A couple have domains that are common features of 

proteins of the Notch pathway, which is well-understood to be indispensable for normal 

oogenesis. With the unearthing of all these details, many of the above proteins are likely 

related to Cyclin J function.          

4.2 Future directions 

To create a thorough profiling of Cyclin J’s PPI activity, 3 immediate tasks are 

necessary. The first is the completion of the CoAP tests. Further testing of the mosquito 

Cyclin J with the two Cdks and an attempt to conduct a successful PPI test with human 

Cyclin J with the two Cdks will likely yield valuable data involving the identity of a Cyclin 

J, Cdk partnership. Next, the mosquito library screen identified 71 new putative Cyclin J 

PPIs. Similar to the process of the directed assays utilized here, testing for conservation 

of these PPIs with their human and Drosophila orthologs would increase confidence in 

them in a way similar to the aim of this project. In addition, manipulation of the ORF of 

Cyclin J, followed by repetition of the PPI tests previously completed will work to map 

the domains essential to Cyclin J PPIs. Further down the road, following confirmation of 

the PPIs, creating double-mutant Drosophila strains may confirm or deny observable 

phenotypic relationships controlled by the PPIs, similar to the tests involving the piRNA 

pathway proteins.             
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APPENDIX A 

(1) List oligonucleotides, the Finley Lab bank #, and sequence. (2) List oligonucleotides, 

the Finley Lab bank #, and general target. 
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APPENDIX B 

(Entry vectors) List entry vectors, origin, primers used, reference ID, and the Finley Lab 

bank #. (Destination vectors) List destination vectors, the assay involved, cell type 

transfected, and the Finley Lab bank #. 
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Cyclins are proteins that bind to Cyclin-dependent kinases, or Cdks, through a conserved 

domain called the Cyclin Box. Many Cyclins regulate the cell cycle. A few Cyclins impact cellular 

processes outside of the cell cycle. Also, a few Cyclins have poorly understood functions.   

Cyclin J is a member of the Cyclin superfamily of proteins. Cyclin J is conserved among all 

metazoans, but is presently not well understood. All the research done on Cyclin J has been 

done in Drosophila. 

Its mRNA is present in the early embryo, then disappears, only to reappear in adult 

females. When probing protein extracts with antibodies, Cyclin J can be seen in unfertilized 

oocytes and embryos for the first few hours following fertilization. Immunoprecipitating Cyclin J 

from unfertilized oocytes and early embryos, Cdk2 co-immunoprecipitates. The same assay co-

immunoprecipitates Cdk1 in unfertilized eggs only. Another group has observed very different 
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results in regard to Cdk interaction. They observe Cyclin J to co-immunoprecipitate with Cdk1 

and not to interact with Cdk2 in whole ovaries. 

This project has one specific aim. It is to identify and test for biologically relevant Cyclin J 

protein-protein interactions (PPIs). I am using approaches that involve two assays to test PPIs. 

The assays I am employing are the yeast two-hybrid assay (Y2H) and co-affinity purification 

(CoAP). When a PPI is detected using two different assays, for example Y2H and CoAP, it is more 

likely to be a true positive. Orthologs of Drosophila Cyclin J’s PPIs will also be tested. I am 

comparing Drosophila, mosquito, and human orthologs of PPIs. A PPI is also more likely to be a 

true positive when the PPI is conserved between more than one species. 
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