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Exploratory factor analysis (EFA) is frequently used in the social sciences and is a common component in 
many validity studies. A core aspect of EFA is the determination of which observed indicator variables 
are associated with which latent factors through the use of factor loadings. Loadings are initially extracted 
using an algorithm, such as maximum likelihood or weighted least squares, and then transformed - or 
rotated - to make them more interpretable. There are a number of rotational techniques available to the 
researcher making use of EFA. Prior work has discussed the advantages of a number of these criteria from 
a theoretical perspective, but few previous studies compare their performance across a broad range of 
conditions. This simulation study compared eight factor rotation criteria in terms of how well they were 
able to group dichotomous indicator variables correctly on the same factor, order the indicators by the 
magnitude of the factor loadings (identifying those indicators that were most strongly associated with the 
factors) and estimate the inter-factor correlations. Results reveal a mixed pattern of performance among 
the various rotations with the orthogonal Equamax consistently near the top in terms of correctly grouping 
and ordering indicator variables, and the orthogonal Facparsim performing well with more observed 
indicators. Advice regarding possible rotations to use for researchers conducting EFA with dichotomous 
indicators is provided. 
 
Key words: Factor rotation, dichotomous data, exploratory factor analysis, EFA. 
 
 

Introduction 
Exploratory Factor Analysis (EFA) of items on 
an instrument is a tool employed by 
psychometricians in the investigation of validity 
evidence for cognitive and affective measures 
(Zumbo, 2007; McDonald, 1999). In 
conjunction with subject matter expertise 
regarding the purpose of the instrument and its 
assumed structure, EFA can be used to identify 
the latent constructs underlying the observed 
items (McLeod, Swygert & Thissen, 2001). 
When items are found to group in conceptually 
meaningful ways based on content, instrument 
developers can conclude that the traits the scale 
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is intended to measure are actually being 
represented. Conversely, when individual items 
are found to load on multiple factors - or to 
group in ways that do not conform to their 
content or intent - developers may target them 
for revision or removal from the instrument 
(Sass & Schmitt, 2010). Given its role in validity 
assessment, psychometricians must have a full 
understanding regarding the performance of 
EFA in the context of item level data under a 
variety of conditions. The objective of this 
simulation study was to investigate one 
important aspect of the EFA analysis process: 
factor rotation. A variety of factor rotation 
methods were compared with respect to how 
well they recovered the underlying latent 
structure for a set of dichotomous indicators like 
those that might comprise a psychological or 
educational scale. (Readers interested in learning 
more about the basic factor analysis model are 
encouraged to read one of several excellent 
references including: Gorsuch, 1983; Thompson, 
2004; McLeod, Swygert & Thissen, 2001.) 
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Factor Analysis of Dichotomous Data 
The original EFA model was based on 

the presumption that observed indicators were 
continuous variables, calling into question its 
applicability for dichotomous data such as that 
from item responses (Gorsuch, 1983). Early 
analyses applying the standard linear EFA 
model to dichotomous item response data 
consistently identified a factor reflecting item 
difficulty, having nothing to do with substantive 
dimensions related to item content (Hattie, 1985; 
Guilford, 1941; Spearman, 1927). Furthermore, 
the use of linear factor analysis with 
dichotomous items was found to produce 
distorted factor loading estimates for very 
difficult and very easy items (Hattie, 1985). 

In response to these problems, 
McDonald introduced nonlinear factor analysis 
based on the normal ogive (McDonald, 1967; 
1962). In the case of dichotomous variables such 
as item responses, this factor model takes the 
form 
 

0 1 21{ 1| } ( ...  )j j j jmP U Nθ β β θ β θ β θ= = + + + +  

(1) 
 
where Uj is the response to item with a 1 
indicating correct, βj0 is the intercept for item j 
and βj1 is the factor loading for item j with latent 
trait m. Parameter estimation in this Normal 
Ogive Harmonic Analysis Robust Method 
(NOHARM) is conducted using unweighted 
least squares (ULS), allowing for analysis of 
large sets of items exhibiting high 
dimensionality (McDonald, 1981; 1967). This 
model was implemented in the NOHARM 
software package (Fraser & McDonald, 1988) 
and features both Varimax and Promax 
rotations. 

Bock and Aitkin (1981) developed an 
alternative model for the factor analysis of 
dichotomous item response data that takes the 
form: 
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where ( ) ( )i j j i jz a bιθ θ= − , ja  is the slope for 

item j, jb  is the threshold for item j, and jιθ  is 

the latent trait for subject i on item j. In this 
conceptualization of the model, aj corresponds 
to item discrimination and bj corresponds to item 
difficulty, in the context of item response theory. 
This full information factor model underlies the 
TESTFACT software (Bock, et al., 2003) and is 
estimated using marginal maximum likelihood 
(MML), in contrast to the ULS used with 
NOHARM. Researchers comparing these 
approaches have found that ULS tends to 
provide more accurate parameter estimation for 
a smaller number of items, although MML is 
generally more accurate for more items (Gosz & 
Walker, 2002). As with NOHARM, TESTFACT 
allows for either VARIMAX or PROMAX 
rotations. 

Christofferson (1975) also introduced a 
factor model for item response data based on the 
normal ogive model, as was McDonald’s 
approach. The Christofferson model is expressed 
as 
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where zi is the threshold for item i. This model 
was expanded upon by Muthén (1978) and has 
been shown to be equivalent to McDonald’s 
model (McDonald, 1997). 

Another approach to factor analysis for 
dichotomous data, such as item responses, is 
based on robust weighted least squares (RWLS). 
Weighted least squares (WLS) estimation has 
been shown to perform poorly for categorical 
variables in the context of factor analysis with 
small to moderate sample sizes (Flora & Curran, 
2004). Muthén, du Toit and Spisic (1997) and 
Muthén (1993) extended the WLS approach in 
the form of RWLS, which does not require the 
inversion of the weight matrix used in the 
standard WLS approach, leading to very stable 
parameter estimation for samples as small as 100 
with dichotomous indicator variables (Flora & 
Curran, 2004). The RWLS approach can also be 
used in the context of EFA with the MPLus 
software package (Muthén & Muthén, 2007) as 
was done herein. 
 
Factor Rotation

 
The estimation of factor loadings in 

EFA typically occurs in two stages, the first of 
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which - factor extraction - involves the initial 
estimation of loadings based on the covariance 
matrix for the indicator variables. The second 
step in an EFA - factor rotation - involves the 
transformation of the initial factor loadings in 
order to make them more interpretable in terms 
of (ideally) clearly associating an indicator 
variable with a single factor (Gorsuch, 1983). 
Although a large number of rotation algorithms 
have been described in the literature, these 
criteria all have the common goal of reducing a 
complexity function, f(Λ), so that the loadings 
approximate a simple structure and are thus 
more interpretable in practice. 

The notion of simple structure has been 
discussed extensively in the factor analysis 
literature, and though there is a common sense 
as to its meaning, there is no agreement 
regarding exact details. Thurstone (1947) first 
described simple structure as occurring when 
each row in the factor loading matrix has at least 
one zero, where rows represent indicator 
variables and columns represent factors. He also 
included 4 other rules that were initially 
intended to yield over-determination and 
stability of the factor loading matrix, but which 
were subsequently used by other researchers to 
define simple structure for methods of rotation 
(Browne, 2001). Subsequent to Thurstone’s 
work, others varying definitions of simple 
structure have been provided. For example, 
Jennrich (2007) defined perfect simple structure 
as occurring when each indicator has only one 
nonzero factor loading and compared it to 
Thurstone simple structure in which there are a 
fair number of zeros in the factor loading matrix, 
but not as many as in perfect simple structure. 
Conversely, Browne (2001) defined the 
complexity of a factor pattern as the number of 
nonzero elements in the rows of the loading 
matrix. These many varying definitions of 
simple structure have led to the development of 
a number of rotational criteria with the 
overarching goal of obtaining the most 
interpretable solution possible for a set of data 
(Asparouhov & Muthén, 2009).  

Factor rotations are broadly classified as 
either: (1) orthogonal, in which the factors are 
constrained to be uncorrelated, or (2) oblique, in 
which this constraint is relaxed. Within each of 
these classes, several options are available. 

Browne (2001) provides an excellent discussion 
of a number of these rotational criteria along 
with a history of their development and 
concluded that, when the factor pattern in the 
population conformed to what is termed above 
as pure simple structure, most of the rotation 
methods reviewed produced acceptable 
solutions. However, when there was greater 
complexity in the factor pattern, the rotations did 
not all perform equally well and - in some cases 
- the majority of them produced unacceptable 
results (Browne, 2001). For this reason, he 
argued for the need of educated human judgment 
in the selection of the best factor rotation 
solution for a given problem. In a similar vein, 
Yates (1987) stated that some rotations are 
designed to find a perfect simple structure 
solution in all cases, even when this may not be 
appropriate for the data at hand.  

Several excellent discussions of these 
rotation criteria are available in the literature, 
including two recently published manuscripts 
which provide detailed descriptions for 
interested readers (Sass & Schmitt, 2010; 
Asparouhov & Muthén, 2009). The rotations 
included in this study are summarized in Table 
1. Many of these methods are readily available 
in common statistical software packages such as 
MPlus (Muthén & Muthén, 2007), which is 
featured in this study, as well as SAS and SPSS. 
Perhaps the most popular method in applied 
practice is the orthogonal Varimax rotation 
(Kaiser, 1958), which is a member of a larger 
group of criteria known collectively as the 
Orthomax family of rotations. The goal in 
Varimax rotation is to create simple structure by 
maximizing differences among loadings within 
factors across variables. Other notable Orthomax 
rotations include Quartimax, Equamax, 
Parsimax and Factor Parsimony. Promax is a 
two-stage oblique Procrustean rotation in which 
loadings are first obtained from the orthogonal 
Varimax rotation and then transformed based 
upon a target matrix of loadings raised to a 
particular power (typically the 4th power), after 
which a transformation matrix is obtained using 
least squares (Hendrickson & White, 1964). 
Other Procrustean rotations include Promaj 
(Trendafilov, 1994) and Promin (Lorenzo-Seva, 
1999). Another group of factor rotations is the 
Crawford-Ferguson  (CF)  family  (Crawford &  
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Table 1: Summary of Studied Rotation Methods* 
 

Rotation 
Criteria 

Definition Comments 

Varimax ( ) ( ) ( )
2

2 22 2 2

1 1

/
p p

ij ij
i i

f p pλ λ
= =

  
Λ = −  

   
   Spreads variance 

across factors 

Quartimin ( ) 2 2

1 1

p m m

ij il
i j l j

f λ λ
= = ≠

Λ =  

Designed to minimize 
complexity of loadings 

across indicator 
variables. 

Quartimax ( ) 4 2 2

1 1 1 1

p pm m m

ij ij il
i j i j l j

f λ λ λ
= = = = ≠

Λ = +   Spreads variance 
across indicators 

Equamax 
2 2 2 2

1 1 1 1

1
2 2

p p pm m m

ij il ij lj
i j l j i i l j

m m
p p

λ λ λ λ
= = ≠ = = ≠

 
− + 

 
   Combines Quartimax 

and Varimax criteria 

Parsimax ( ) 2 2 2 2

1 1 1 1

1 1
1

2 2

p p pm m m

ij il ij il
i j l j i i l j

m mf
p m p m

λ λ λ λ
= = ≠ = = ≠

  − −Λ = − +   + − + −   
   

Equal weight is given 
to factor and indicator 

complexity. 

Geomin ( ) ( )
1

2

1 1

p m m

ij
i j

f λ
= =

 
Λ = + ∈ 

 
 ∏  

Accommodates factor 
complexity while still 
providing interpretable 

solution. 

Promax 
Raise loadings from Varimax to some power (e.g., 4) and rotate the 

resulting matrix allowing for correlated factors. 

Based on Varimax 
rotation, but allows for 

correlated factors. 

Facparsim ( ) 2 2

1 1

p pm

ij il
i i l j

f λ λ
= = ≠

Λ =  
Minimizes loading 
complexity across 

factors. 

*p=Number of indicators, m=Number of factors, λ=Extracted factor loading 
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Ferguson, 1970). This criterion accounts for 
complexity across both the indicator variables 
and the factors. Members of the CF family differ 
in terms of a parameter, k, ranging between 0 
and 1, where larger values of k place greater 
weight on minimizing factor complexity, 
whereas lower values emphasize the 
minimization of indicator variable complexity 
(Crawford & Ferguson, 1970). Other rotations 
that have been discussed widely in the literature 
are oblique Quartimin (Carroll, 1957), which 
seeks to minimize complexity only within the 
indicator variables, and Geomin (Yates, 1987) 
which also was designed to minimize variable 
complexity, but which allows for more such 
complexity than does Quartimin. There are a 
number of other rotation criteria extant in the 
literature. However, given that the current study 
is focused on comparing methods that are 
available to practitioners in commonly available 
software, they will not be discussed here. The 
interested reader is invited to read Mulaik (2010) 
and Browne (2001) for excellent descriptions of 
these alternative methods of rotation. 
 
Prior Research on Factor Rotations 

As noted, a large number of rotational 
criteria are available to a researcher interested in 
using EFA. Some of these, such as Varimax and 
Promax, are well known and frequently used, 
while others may be less well known but offer 
statistical advantages over the more commonly 
used approaches (Asparouhov & Muthén, 2009). 
Despite the abundance of available rotational 
methods, a great deal of empirical research has 
not been conducted regarding which might be 
best in a given research context (Sass & Schmitt, 
2010). In addition, virtually none of the prior 
work examining the performance of these 
various rotation methods has been conducted 
with dichotomous indicator variables (the focus 
of this study). Therefore, earlier work using 
continuous indicators provides the only extant 
evidence regarding the comparative behavior of 
factor rotation methods, all of which can be 
applied to both EFA with continuous or 
dichotomous indicators. Thus, although they did 
not utilize dichotomous indicators, earlier 
studies provide researchers with some insights 
into what might be expected with regard to the 
performance of these rotation methods in 

general. Nevertheless, it is not clear to what 
extent earlier research with continuous 
indicators may be applicable. Therefore, this 
article builds upon this earlier research in an 
attempt to extend these results based on 
continuous variables to the case of dichotomous 
indicators. 

One recent Monte Carlo study (Sass & 
Schmitt, 2010) compared the ability of four 
rotational methods in terms of their abilities to 
reproduce the population factor loadings used to 
generate the data. This study involved 30 
standard normally distributed observed 
indicators with 2 factors, and 4 different types of 
factor structure including perfect simple, 
approximate simple, complex and general (a 
single common factor) structures; note that the 
variables used in this study were continuous and 
not categorical. Sass and Schmidt focused on the 
performance of these rotation methods for 
normally distributed indicator variables; 
however, their study is relevant to this research 
with dichotomous indicators in that it is one of 
the few to systematically compare multiple 
rotational criteria. Furthermore, several of the 
rotations considered by Sass and Schmidt are 
also included in this study. Therefore, although 
their results with continuous, normally 
distributed variables may not be directly 
applicable to situations involving dichotomous 
indicators, their study does provide some 
potential insights into the performance of the 
rotational criteria that may in turn inform this 
research. 

Sass and Schmidt generated a sample of 
300, with correlations between the factors (0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) and used four 
oblique single stage rotational criteria, including 
Quartimin, CF-Equamax, CF-Facparsim and 
Geomin. They found that in the perfect simple 
structure condition all of the methods performed 
equally well, echoing Browne (2001). In the 
more complex cases, however, CF-Equamax and 
CF-Facparsim demonstrated somewhat less bias 
in factor loading estimates than did the other 
rotations. These authors concluded that 
researchers must be careful not to think of a 
particular rotational solution as inherently right 
or wrong, given that model fit does not change 
based on rotation. Echoing Browne (2001), Sass 
and Schmitt argued that the selection of the best 
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rotation must be made by the researcher using 
informed judgment, and cannot be done 
deterministically based solely on statistical 
results. 

A similar finding was reported by 
Asparouhov & Muthén (2009), who stated that 
based on their own simulated comparisons of the 
Geomin and Quartimin rotation criteria with 
loading bias as the primary outcome variable, 
the researcher in the end is responsible for 
determining what constitutes a simple and 
interpretable solution. Consistent with Sass and 
Schmitt (2010), they found that for simple factor 
patterns the rotation criteria performed similarly, 
but for more complex patterns the results across 
rotational methods (and even for the same 
method using different settings) might differ 
substantially. As noted, although the previous 
simulation research comparing factor rotation 
performance was focused on continuous 
indicator variables, it remains relevant for this 
study in that it provides the only published 
evidence regarding the behavior of these rotation 
criteria, all of which can be used with 
dichotomous indicators.  

The goal of this simulation study was to 
extend upon this earlier work by comparing the 
performance of several methods of factor 
rotation with dichotomous, rather than normally 
distributed continuous, indicator variables, and 
by including several more rotation criteria, 
including the very popular Varimax and Promax 
methods as well as others that have been shown 
to be effective previously. Furthermore, the 
current study extends upon these earlier efforts 
by including a broader range of conditions with 
respect to number of indicator variables, sample 
sizes and number of factors. Finally, the focus of 
this study in terms of outcomes is different than 
that of the previously mentioned research. 
 

Methodology 
A Monte Carlo simulation study was conducted 
to compare the performance of several methods 
of factor rotation in four areas: (1) proportion of 
correctly grouped indicator variables, (2) 
proportion of incorrectly grouped indicator 
variables, (3) proportion of indicator variables 
correctly ordered based on their population 
factor loading values, and (4) for oblique 
rotations, bias in the estimates of inter-factor 

correlations. Outcome 1 was the proportion of 
all item pairs that should have been grouped 
together that actually were, and outcome 2 was 
the proportion of all item pairs that should have 
been kept separate that actually were. Outcome 
3 was the proportion of cases in which the item 
with the larger factor loading in the population 
also had the larger loading in the sample. 
Outcome 4 was the degree of accuracy of the 
inter-factor correlation estimate, which was 
calculated as ro−rp, where ro = sample estimate 
of inter-factor correlation between two factors 
and rp = population inter-factor correlation used 
in data simulation. In addition, the standardized 
bias of the correlation estimates was also 
calculated as the bias defined previously divided 
by the standard deviation of the correlation 
estimates.  

These outcomes were selected because 
they reflect issues that applied researchers might 
be interested in; that is, how accurately are the 
factors defined by appropriately grouped 
variables, how well ordered are the indicators in 
terms of the magnitude of their relationships to 
the factors and how well estimated are the 
correlations among the factors. Although all of 
these outcomes may be important in specific 
contexts, one could argue that the ability to 
accurately identify the factor structure by 
correctly grouping the items together may be the 
most crucial. Given that validity assessment is 
typically based on the extent to which the 
empirically identified factors reflect what would 
be expected for the constructs in question based 
on substantive content of the items, the accuracy 
of an EFA solution from a sample to reproduce 
the population factor structure would seem to be 
paramount. However, in certain circumstances 
each of these outcomes would be important to 
researchers using EFA. 

For each combination of the simulation 
conditions, 1,000 replications were generated 
using MPlus, version 5.1 (Muthén & Muthén, 
2007) and all study conditions were completely 
crossed with one another. Dichotomous 
indicators were generated in MPlus using 
threshold values of 0.25 and were held constant 
across the observed variables. The relationship 
between the threshold (τ) value and the 
probability (Pi) of a respondent endorsing a 
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dichotomous item is 
1

.
1iP

e−τ=
+

 The threshold 

value of 0.25 corresponds to a probability of 
endorsing an item of 0.56 and was selected 
because it has been used in other simulation 
research involving factor analysis of 
dichotomous data (French & Finch, 2006; 
Meade & Lautenschlager, 2004). 

For each replication, exploratory factor 
analysis with Robust Weighted Least Squares 
(WLSMV) extraction was conducted using the 
MPlus software because it has been supported 
for use with categorical data in prior research 
(e.g., Muthén & Muthén, 2007; Flora & Curran, 
2004). In conducting EFA with dichotomous 
data, MPlus first calculates the tetrachoric 
correlation matrix among the variables and then 
uses it to estimate the factor analysis parameters 
(factor loadings, inter-factor correlations). The 
commands to run the analysis requested the 
extraction of the correct number of factors (2 or 
4) for a given replication but because the 
analysis was EFA, individual indicators were not 
linked to specific factors as they would have 
been in a confirmatory factor analysis. For 
example, when the data generated were from a 2 
factor condition, the MPlus commands to run the 
EFA on the sample requested the extraction of 2 
factors, but the individual indicators were not 
linked to a given factor. 

Data were generated for either 2 or 4 
factors in the population, and for each factor 
there were either 6 or 12 observed indicator 
variables, leading to the following combinations: 
2 factors with 6 indicators each, 2 factors with 
12 indicators each, 4 factors with 6 indicators 
each and 4 factors with 12 indicators each. Four 
inter-factor correlation conditions were 
simulated: 0.1, 0.3, 0.5 and 0.7. All pairs of 
factors were correlated at the same level for a 
given combination of study conditions. For 
example, in the 4 factor, 6 indicator condition 
with r = 0.3, each pair of the 4 factors were 
generated with a correlation of 0.3. Four sample 
size conditions were simulated, 100, 200, 500 
and 1,000. Prior research studying the minimum 
sample size necessary for EFA to provide 
reliable results with continuous indicators has 
found that when communalities are relatively 
high (e.g., 0.5), and most of the factors have a 

large number of indicators population factor are 
recovered well with samples as small as 100 
subjects (MacCallum, et al., 1999). 

Conversely, MacCallum, et al. (1999), 
found that for low communalities and many 
factors, each of which has a small number 
indicators, samples of 500 or more are 
necessary. Preacher and MacCallum (2002) 
found that for sample sizes as low as 30, factor 
structure recovery was good (low root mean 
square error) provided that communalities were 
high (e.g., 0.8), the number of factors retained 
was 4 or fewer and the total number of 
indicators was 25 or more.  

Subsequently, other researchers 
investigating the impact of sample size on factor 
analysis have reported similar findings with 
regard to the need for larger samples with 
relatively poorly conditioned solutions (fewer 
indicators with low factor loadings, low 
communalities and many factors), and the 
positive performance with smaller samples 
(fewer than 50) when factors are well 
conditioned (de Winter, Dodou & Wieringa, 
2009; Gagné & Hancock, 2006; Mundfrom, 
Shaw & Ke, 2005). Of particular interest given 
the inclusion of non-simple structure conditions 
in the current research are the results of de 
Winter, et al., who found that in the presence of 
non-simple structure, EFA performs worse with 
relatively smaller samples in terms of factor 
structure recovery, particularly when factors are 
correlated at 0.5 or greater. Given these earlier 
studies, sample sizes selected for the current 
research range from what might be considered 
somewhat small (100) to very large (1,000). 

Finally, the data were generated with 4 
levels of factor structure complexity, reflecting 
different degrees to which individual indicators 
cross-loaded with a secondary factor. Table 2 
provides an example of these patterns for each 
level of structural complexity in the 2 factor 6 
indicator condition. For example, in complexity 
condition 1 each indicator has non-zero loadings 
for only one factor, whereas in the other 3 
conditions, each indicator has an additional non-
zero loading on one other factor with complexity 
conditions differing based upon the magnitude 
of these non-zero loadings. In the 4 factor 
conditions, each indicator variable had only 2 
non-zero loadings, one for its primary factor and  
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Table 2: Example Factor Loading Patterns Used In the Simulations 
 

Complexity Condition 1 Complexity Condition 2 

Indicator Factor 1 Factor 2 Indicator Factor 1 Factor 2 

Y1 0.8 0 Y1 0.8 0.1 

Y2 0.8 0 Y2 0.8 0.1 

Y3 0.6 0 Y3 0.6 0.1 

Y4 0.6 0 Y4 0.6 0.1 

Y5 0.4 0 Y5 0.4 0.1 

Y6 0.4 0 Y6 0.4 0.1 

Y7 0 0.8 Y7 0.1 0.8 

Y8 0 0.8 Y8 0.1 0.8 

Y9 0 0.6 Y9 0.1 0.6 

Y10 0 0.6 Y10 0.1 0.6 

Y11 0 0.4 Y11 0.1 0.4 

Y12 0 0.4 Y12 0.1 0.4 

Complexity Condition 3 Complexity Condition 4 

Indicator Factor 1 Factor 2 Indicator Factor 1 Factor 2 

Y1 0.8 0.2 Y1 0.8 0.3 

Y2 0.8 0.2 Y2 0.8 0.3 

Y3 0.6 0.2 Y3 0.6 0.3 

Y4 0.6 0.2 Y4 0.6 0.3 

Y5 0.4 0.2 Y5 0.4 0.3 

Y6 0.4 0.2 Y6 0.4 0.3 

Y7 0.2 0.8 Y7 0.3 0.8 

Y8 0.2 0.8 Y8 0.3 0.8 

Y9 0.2 0.6 Y9 0.3 0.6 

Y10 0.2 0.6 Y10 0.3 0.6 

Y11 0.2 0.4 Y11 0.3 0.4 

Y12 0.2 0.4 Y12 0.3 0.4 
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the other for a single secondary factor. For 
example, in complexity condition 2 with 4 
factors and 12 indicators for each, indicator 1 
had a loading of 0.8 for factor 1, a loading of 0.1 
for factor 2 and loadings of 0 for factors 3 and 4. 
On the other hand, indicator 48 had a loading of 
0.4 for factor 4, a loading of 0.1 for factor 3 and 
0 loadings for factors 1 and 2. The decision to 
allow indicators in the 4 factor conditions to 
cross load with only one other factor was made 
to avoid confounding the number of cross 
loadings with the number of factors, making it 
impossible to directly compare results in the 2 
and 4 factors cases. Similar factor loading 
patterns were used with the other factor and 
indicator combinations included in this study. 
Although a very large number of different such 
factor patterns could have been simulated using 
the number of factors and indicators included in 
this study, these patterns were selected because 
it was felt that they represented a range of non-
simple structure conditions, were few enough so 
as to keep the study manageable and allowed for 
investigation of the impact of progressively 
greater factor complexity.  

The methods of factor rotation included 
the study were Quartimin (oblique), Varimax 
(orthogonal), Quartimax (orthogonal), Equamax 
(orthogonal), Parsimax (oblique), Geomin 
(oblique), Promax (oblique) and Facparsim 
(oblique). The selection of these particular 
rotations was made based upon a combination of 
prior research results, popularity in use and 
availability in statistical software. Again, though 
prior research comparing performance of 
rotational criteria used continuous indicators, 
these are the only available studies examining 
this issue; therefore, it was determined that these 
earlier studies did provide some insights into 
which rotations should be used. Sass and 
Schmitt (2010) used only oblique rotations, 
including Quartimin, oblique CF-Equamax, CF-
Facparsim and Geomin, and found that Geomin 
and Quartimin performed slightly better in a 
pure simple structure condition (Complexity 
condition 1 in the current study), whereas 
oblique CF-Equamax and CF-Facparsim were 
somewhat better in the more complex cases. 
Asparouhov and Muthén (2009) compared 
Quartimin with Geomin using two values of the 
constant ε, 0.01 and 0.0001 and reported that 

Geomin with ε = 0.001 consistently produced 
the least bias in factor loading estimates. Based 
on these results, the current study included 
Geomin with ε = 0.001, Quartimin, and 
Facparsim. In addition, three orthogonal 
rotations (i.e., Varimax, Quartimax and 
Equamax) were included because heretofore 
their performance has not been investigated in 
such a study and they are very commonly used 
in practice. Similarly, Promax was included in 
the study because of its popularity and ubiquity 
in statistical software, and the fact that it was not 
included in the earlier work. For each included 
rotation criterion, except for Geomin as noted 
above, the default settings in MPlus were used in 
conducting the analyses in order to mimic what 
researchers are likely to do in practice.  

In addition to the Monte Carlo 
simulation, this study also included the use of 
EFA with item responses from a sample of 1,000 
examinees who took the Law School 
Admissions Test (LSAT). These data, which 
have been discussed previously in the literature, 
have been shown to contain 4 separate factors 
corresponding to the 4 reading passages 
contained in the exam (Stout, et al., 1996). For 
these data, EFA using the RWLS method of 
extraction was followed with each of the 
rotations included in the simulation study. Note 
that analysis was conducted on the raw binary 
data. 
 

Results 
Because an initial examination of the simulation 
outcomes revealed that the results for factors 1, 
2, 3 and 4 were similar in terms of the grouping 
of indicators and the ordering of indicators by 
factor loading magnitude, results are presented 
for the first factor only. Similarly, estimates of 
the inter-factor correlation between factors 1 and 
2 were similar to those for the other factor pairs 
(where applicable), thus, only the results for this 
correlation will be presented. 
 
Factor Grouping 

A repeated measures Analysis of 
Variance (ANOVA) was used to identify which 
of the manipulated conditions and their 
interactions were significantly associated with 
the proportion of item pairs correctly grouped 
together, which served as the dependent 
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variable. These conditions included type of 
rotation, number of observed indicators per 
factor, number of factors, factor complexity, 
sample size and inter-factor correlation. 
Assumptions of equality of variance and 
normality of errors were assessed using 
Levene’s test and QQ plots, respectively, and 
were found to have been met. The results of the 
ANOVA indicated that the highest order 
significant (α = 0.05)interaction was type of 
rotation by number of factors, number of 
indicators and factor complexity (η2 = 0.112). In 
addition, the interaction among type of rotation, 
inter-factor correlation and factor complexity 
was also significantly related to the proportion 
of indicators correctly grouped (η2 = 0.482), as 
was the main effect of sample size (η2 = 0.801). 
All other significant main effects and 
interactions were subsumed in one of these three 
terms and will therefore not be discussed. 

Table 3 shows the proportion of 
observed indicator variables correctly and 
incorrectly grouped by the number of factors, 
number of indicators per factor, factor 
complexity and method of rotation. An 
examination of these results reveals that across 
methods of rotation the proportion of variables 
correctly grouped declined as the factor structure 
became more complex, but the proportion 
incorrectly grouped together increased. (Note 
that the numbers for complexity conditions 
presented in subsequent tables correspond to the 
numbers in Table 2). This decrease in indicator 
grouping accuracy with increased structural 
complexity was less marked for the Quartimin 
(QMIN) rotation across the number of factors 
and number of indicators, and the Facparsim 
(FAC) when there were 12 indicators per factor, 
regardless of the number of factors. Indeed, 
when there were 12 indicators per factor the 
decline in grouping accuracy for QMIN was 
very small, 0.04 for 2 factors and 0.02 for 4 
factors. By contrast, QMIN also demonstrated a 
much higher rate of incorrectly grouping 
indicator variables together for more complex 
factor patterns, across numbers of factors and 
indicators. The other rotations generally 
demonstrated comparable levels of grouping 
accuracy across the conditions contained in 
Table 3. The only exceptions to this general 

result were for Varimax (VAR) and Parsimax 
(PAR) with 4 factors, both of which had 
somewhat larger declines in the proportion of 
correctly grouped indicators than the other 
approaches in the presence of 4 factors, and for 
Equamax (EQU), which consistently 
demonstrated among the lowest rates of 
incorrectly grouping indicators together, and 
comparable rates of correctly grouping 
indicators with one another. 

Table 4 presents the proportions of 
correctly and incorrectly grouped indicators by 
method of rotation, inter-factor correlation and 
factor complexity. As evident in Table 3, with 
increasing model complexity QMIN displayed a 
smaller decline in the proportion of correctly 
grouped indicators and a greater increase in the 
proportion of incorrectly indicators, than did the 
other rotation methods. Of particular interest is 
that two of the orthogonal rotations, VAR and 
EQU, did not show any greater diminution in the 
proportion of correctly grouped indicators than 
the oblique rotations as the inter-factor 
correlations increased, nor did they have greater 
increases in the proportion of incorrectly 
grouped items. By contrast, the orthogonal 
method QUA exhibited among the highest rates 
of incorrectly grouped indicators for the more 
complex factor patterns when the inter-factor 
correlation was 0.5 or 0.7. EQU and PAR 
consistently demonstrated among the lowest 
rates of incorrect indicator grouping, while being 
comparable to the other rotational methods 
(except QMIN) in terms of correctly grouped 
indicator variables.  

The impact of the factor pattern on 
correct indicator grouping was essentially the 
same regardless of the inter-factor correlation, 
with decreases in the proportion of correctly 
grouped item pairs and increases in the 
proportion of correctly grouped item pairs. For 
all methods of rotation, the proportion of 
correctly grouped indicator variables increased 
concomitantly with increases in sample size, 
whereas the proportion of incorrectly grouped 
indicators declined (see Table 5). 
 
Factor Loading Magnitudes 
 As with the proportion of correctly 
grouped items, repeated measures ANOVA was 
used to determine which of the study conditions  
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Table 3: Proportion of Variables Correctly | Incorrectly Grouped into Factors by Number of Factors (F), 
Number of Indicators per Factor (I) and Population Factor Complexity (C) 

 

F I C EQU* GEO PAR PRO QUA QMIN VAR FAC 

2 6 

1 .94|.10 .94|.11 .94|.10 .91|.10 .94|.11 .93|.14 .94|.10 .88|.10 

2 .91|.16 .90|.18 .91|.16 .87|.17 .90|.18 .91|.31 .91|.16 .79|.17 

3 .86|.27 .85|.31 .86|.28 .82|.29 .85|.33 .88|.57 .85|.27 .69|.26 

4 .78|.45 .77|.51 .77|.45 .74|.48 .78|.56 .87|.83 .75|.46 .66|.49 

2 12 

1 .97|.02 .97|.03 .97|.02 .95|.02 .97|.03 .96|.12 .97|.02 .99|.03 

2 .95|.04 .95|.05 .95|.04 .93|.05 .95|.05 .96|.32 .95|.04 .98|.06 

3 .89|.10 .88|.11 .89|.09 .86|.10 .89|.22 .92|.66 .88|.10 .98|.13 

4 .80|.24 .80|.28 .80|.21 .77|.23 .83|.48 .92|.96 .78|.22 .95|.29 

4 6 

1 .92|.13 .91|.14 .91|.13 .90|.14 .91|.14 .91|.21 .90|.13 .82|.15 

2 .90|.17 .89|.17 .89|.17 .87|.16 .89|.18 .90|.30 .88|.16 .73|.19 

3 .86|.25 .86|.26 .85|.25 .83|.24 .86|.27 .90|.43 .83|.25 .63|.26 

4 .82|.38 .82|.41 .79|.38 .82|.41 .85|.42 .90|.59 .73|.42 .51|.43 

4 12 

1 .96|.05 .95|.05 .95|.05 .95|.15 .95|.05 .95|.07 .95|.14 .99|.06 

2 .94|.06 .94|.07 .94|.06 .94|.19 .94|.06 .95|.13 .94|.18 .96|.08 

3 .89|.13 .92|.18 .88|.12 .92|.32 .90|.16 .94|.28 .93|.31 .95|.18 

4 .82|.22 .88|.31 .79|.20 .88|.45 .85|.28 .93|.41 .83|.45 .93|.31 
 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, QMIN = 
Quartimin, VAR = Varimax, FAC = Facparsim. 
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Table 4: Proportion of Variables Correctly | Incorrectly Grouped into Factors by Inter-Factor Correlations (r) 
and Population Factor Complexity (C) 

 

r C EQU* GEO PAR PRO QUA QMIN VAR FAC 

0.1 

1 .97|.04 .97|.04 .97|.04 .95|.08 .97|.04 .97|.04 .97|.07 .98|.03 

2 .96|.05 .95|.05 .95|.05 .94|.08 .95|.05 .95|.05 .95|.07 .95|.05 

3 .93|.10 .92|.11 .92|.10 .91|.13 .92|.10 .92|.11 .92|.12 .92|.11 

4 .85|.21 .84|.24 .84|.21 .83|.30 .84|.23 .91|.60 .85|.30 .80|.26 

0.3 

1 .96|.05 .96|.05 .96|.05 .95|.07 .96|.05 .96|.05 .96|.07 .96|.05 

2 .94|.07 .94|.08 .94|.08 .92|.10 .94|.08 .94|.08 .94|.09 .92|.08 

3 .91|.13 .90|.15 .90|.14 .88|.18 .89|.15 .93|.40 .89|.17 .86|.16 

4 .83|.26 .84|.31 .84|.26 .82|.36 .82|.30 .91|.68 .86|.36 .84|.37 

0.5 

1 .95|.08 .94|.08 .94|.08 .93|.10 .94|.08 .94|.08 .94|.09 .95|.08 

2 .94|.10 .93|11 .93|.10 .91|.13 .93|.11 .92|.22 .93|.12 .91|.10 

3 .88|.19 .87|.23 .87|.20 .85|.27 .87|.22 .93|.66 .87|.27 .86|.24 

4 .80|.34 .85|.41 .78|.33 .83|.42 .85|.55 .94|.73 .84|.41 .80|.48 

0.7 

1 .91|.14 .90|.16 .90|.15 .88|.17 .90|.16 .94|.38 .89|.16 .87|.16 

2 .87|.21 .87|.24 .87|.21 .84|.27 .87|23 .94|.75 .86|.26 .85|.24 

3 .82|.32 .85|.38 .81|.31 .82|.38 .85|.52 .92|.80 .83|.37 .79|.51 

4 .76|.49 .75|.55 .74|.43 .74|.49 .77|.69 .88|.82 .74|.48 .73|.50 
 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, QMIN = 
Quartimin, VAR = Varimax, FAC = Facparsim. 
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and their interactions were significantly related 
to the proportion of correctly ordered factor 
indicators based on their loading magnitudes in 
the sample. The highest order significant 
interaction was the rotation by inter-factor 
correlation by factor pattern (η2 = 0.201). In 
addition, the 2-way interactions of rotation by 
number of indicators per factor (η2 = 0.236) and 
rotation by number of factors (η2 = 0.275) were 
also statistically significant, as was the main 
effect of sample size (η2 = 0.858).  

For all of the rotations, results 
demonstrate (see Table 6) that the proportion of 
correctly ordered factor indicators by loading 
magnitude declines with increases in the inter-
factor correlation and with increased factor 
complexity (reflected through higher numbers 
for the factor complexity condition). In addition, 
the deleterious impact of greater factor 
complexity was more pronounced for larger 
values of the inter-factor correlation. For 
example, in the simple structure condition (C = 
1) with correlations of 0.1 and 0.3, the rotations 
performed similarly with respect to correct 
ordering of the factor indicators by loading 
magnitude, whereas for r = 0.5 FAC displayed a 
higher proportion of correctly ordered factor 
loadings, and for r = 0.7, FAC, QMIN and VAR 
all had somewhat higher proportions of correctly 
ordered loadings. On the other hand, for the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
greatest factor complexity (C = 4) VAR 
consistently had the highest proportion of 
correctly ordered loadings, with a variety of 
other rotations performing comparably for a 
given inter-factor correlation. For example, 
QMIN performed similarly to VAR in the most 
complex case for inter-factor correlations of 0.1, 
0.3 and 0.7, and FAC had similar values to VAR 
for proportion of correctly ordered loadings in 
the most complex case when r = 0.3. 

Results in Table 7 show that all of the 
rotations were more accurate in terms of 
correctly ordering indicators by the magnitude 
of factor loadings for 12 indicators, for 2 factors 
and for larger sample sizes. FAC was the 
rotation method whose performance was most 
strongly influenced by the number of indicators. 
For 6 indicators per factor, it performed the 
worst in terms of correctly ordering loadings, 
whereas for 12 indicators it performed the best. 
QMIN and VAR consistently produced among 
the most accurate ordering of loadings by 
magnitude across all of the conditions contained 
in Table 7. The performances of the other 
rotation methods were generally similar to one 
another, and somewhat worse than that of QMIN 
and VAR. 
 
Inter-Factor Correlation Bias 

A repeated measures ANOVA identified 
the 3-way interaction of rotation method by  

Table 5: Proportion of Variables Correctly | Incorrectly Grouped into Factors by Sample Size 
 

N EQU* GEO PAR PRO QUA QMIN VAR FAC 

100 .83|.31 .85|.33 .82|.30 .82|34 .84|.33 .88|.45 .84|.33 .84|.32 

200 .87|.21 .88|.24 .86|.21 .86|.25 .88|.24 .92|.40 .88|.24 .86|.23 

500 .92|.11 .92|.14 .91|.11 .90|.17 .93|.17 .95|.37 .92|.16 .89|.13 

1000 .94|.07 .94|.09 .94|.07 .93|.13 .94|.14 .97|.37 .94|.13 .94|.12 

 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, 
QMIN = Quartimin, VAR = Varimax, FAC = Facparsim. 
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Table 6: Proportion of Factor Loadings Correctly Ordered by Magnitude by Inter-Factor Correlations (r) 
and Population Factor Complexity (C) 

r C EQU* GEO PAR PRO QUA QMIN VAR FAC 

0.1 

1 .94 .94 .94 .93 .94 .94 .94 .96 

2 .93 .92 .93 .91 .93 .93 .93 .94 

3 .90 .89 .89 .88 .91 .93 .90 .92 

4 .83 .81 .81 .81 .81 .84 .84 .81 

0.3 

1 .93 .92 .93 .91 .92 .93 .93 .94 

2 .91 .90 .90 .89 .90 .91 .91 .91 

3 .87 .85 .85 .84 .85 .87 .87 .84 

4 .78 .76 .75 .77 .76 .81 .81 .82 

0.5 

1 .90 .89 .89 .88 .89 .90 .90 .95 

2 .89 .87 .88 .86 .87 .89 .90 .92 

3 .81 .79 .79 .79 .78 .84 .83 .81 

4 .73 .70 .68 .68 .73 .70 .77 .70 

0.7 

1 .83 .81 .81 .81 .80 .84 .85 .84 

2 .79 .75 .75 .77 .75 .82 .81 .80 

3 .72 .69 .67 .71 .70 .76 .76 .69 

4 .65 .63 .57 .65 .64 .70 .70 .64 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, QMIN = Quartimin, 
VAR = Varimax, FAC = Facparsim. 

 
Table 7: Proportion of Factor Loadings Correctly Ordered by Magnitude by Number of Indicators per 

Factor (I), Number of Factors (F), and Sample Size 

I EQU* GEO PAR PRO QUA QMIN VAR FAC 

6 .75 .72 .72 .74 .72 .76 .77 .66 

12 .93 .92 .91 .90 .92 .94 .93 .97 
 

F EQU GEO PAR PRO QUA QMIN VAR FAC 

2 .89 .86 .87 .86 .88 .91 .90 .86 

4 .78 .77 .76 .79 .76 .79 .80 .78 
 

N EQU GEO PAR PRO QUA QMIN VAR FAC 

100 .69 .67 .66 .67 .67 .71 .70 .68 

200 .80 .78 .77 .78 .78 .82 .82 .79 

500 .91 .89 .89 .90 .89 .94 .93 .90 

1000 .95 .94 .94 .94 .94 .96 .96 .92 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, QMIN = Quartimin, 
VAR = Varimax, FAC = Facparsim. 
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inter-factor correlation by factor complexity 
(η2 = 0.049) as the highest order significant 
term. In addition, the main effects of number of 
factors (η2 = 0.313), number of indicators per 
factor (η2 = 0.041), and sample size (η2 = 0.021) 
were also statistically significant. Table 8 
contains the mean raw bias and the standardized 
bias values across replications by the inter-factor 
correlation and the degree of model complexity. 
For r = 0.1, the sample correlation estimates 
displayed a positive bias across rotations, except 
for the simple structure condition (C = 1). In 
addition, as the degree of complexity increased, 
so did both raw and standardized bias, except for 
PRO. When r = 0.3, the negative bias in the 
simple structure condition was greater than for r 
= 0.1, and the positive bias for more complex 
models was lower, across rotation methods. For 
r = 0.5 and 0.7, bias was uniformly negative 
across levels of factor complexity, with greater 
negative bias associated with the largest 
population correlation. In addition, for r = 0.5 all 
rotation methods, except PAR, displayed greater 
negative bias for simple structure data (C = 1) or 
for the most complex structure (C = 4). In 
contrast, when r = 0.7, bias was generally higher 
for simple structure than for the next level of 
factor complexity (C = 2), after which bias 
increased concomitantly with increased model 
complexity. None of the rotation criteria 
consistently produced the least raw or 
standardized biased estimates. 

Table 9 shows that inter-factor 
correlation bias was more pronounced (and 
negative) when more indicators were present. In 
addition, the degree of bias for most of the 
rotation methods was slightly greater (and 
negative) for 4 factors as compared to 2, where 
the bias was positive. Finally, bias in the inter-
factor correlation estimates declined with 
increased sample size, and across all conditions 
PAR produced somewhat more negatively 
biased estimates than the other criteria. 
Otherwise, differences in estimation accuracy 
across the conditions were relatively minor. 
Analysis of LSAT Data 
 In order to demonstrate the relative 
performance of the rotation criteria on an actual, 
well studied data set, EFA was run on the LSAT 
data described in Stout, et al. (1996). Given that 
these authors, and others, reported the presence 

of 4 stable dimensions, 4 factors were extracted 
in this analysis, and each rotation was applied. 
Table 10 contains the factor loadings only for 
the primary factor for each item in order to save 
space. There were no cross-loaded items for any 
of the rotation criteria, defined as having 
multiple factors for which the loading values 
were great than 0.32 (Tabachnick & Fidell, 
2007). A perusal of these results demonstrates 
that across items and factors, the loading values 
for the 8 different rotations were very similar to 
one another. There is no discernible pattern of 
difference in loadings by rotation, suggesting 
that a researcher using any of these criteria 
would reach the same substantive conclusions 
regarding both how items grouped together, and 
the strength of relationships between items and 
factors. 

Table 11 includes the correlation 
estimates for the 4 factor solution of the LSAT 
data for each of the oblique rotations studied 
here, and their standard errors with the exception 
of PROMAX, for which standard errors are not 
calculated in MPlus. These results demonstrate a 
greater degree of variation across rotation 
criteria than was evident for the factor loadings. 
For example, PROMAX had much larger inter-
factor correlation estimates than the other 
methods for factor 1 with 3, 1 with 4 and 3 with 
4. By contrast, PARSIMAX had much lower 
correlation estimates than the other methods for 
factors 1 with 3, 1 with 4, 2 with 4 and 3 with 4. 
GEOMIN, QUARTIMIN and FACPARSIM had 
very similar inter-factor correlation estimates to 
one another for this sample. 
 

Conclusion 
This study extends previous research comparing 
rotations in EFA, which focused on continuous 
factor indicator variables by comparing the 
performance of 8 factor rotation criteria with 
dichotomous indicator variables using the 
WLSMV initial extraction method in MPlus 
across a variety of conditions. Among the 
rotations included were some that had 
previously been found to be promising in terms 
of accuracy of factor loading estimates such as 
Geomin and Facparsim, and others that had not 
been studied before but which are very 
commonly used in practice, including Varimax 
and Promax. The outcomes of interest included  
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Table 8: Inter-Correlation Bias (Standardized Bias) by Inter-Factor Correlations (r) and Population Factor 
Complexity (C) 

 

r C GEO* PAR PRO QMIN FAC 

0.1 

1 -0.04 (-0.43) -0.05 (-0.75) -0.02 (-0.23) -0.04 (-0.44) -0.03 (-0.33) 

2 0.08 (0.45) 0.05 (0.34) 0.12 (0.69) 0.08 (0.49) 0.09 (0.50) 

3 0.18 (0.65) 0.14 (0.55) 0.22 (0.84) 0.19 (0.73 0.19 (0.73) 

4 0.24 (0.73) 0.21 (0.73) 0.17 (0.52) 0.25 (0.80) 0.26 (0.79) 

0.3 

1 -0.12 (-0.84) -0.16 (-0.93) -0.10 (-0.71) -0.11 (-0.79) -0.11 (-0.78) 

2 -0.01 (-0.04) -0.07 (-0.38) 0.03 (0.13) -0.01 (-0.02) 0.01 (0.01) 

3 0.07 (0.22) 0.01 (0.05) 0.08 (0.30) 0.08 (0.27) 0.09 (0.29) 

4 0.09 (0.25) 0.07 (0.23) -0.02 (-0.07) 0.12 (0.35) 0.11 (0.32) 

0.5 

1 -0.21 (-0.95) -0.27 (-1.53) -0.18 (-0.94) -0.20 (-0.92) -0.21 (-0.92) 

2 -0.09 (-0.34) -0.17 (-0.77) -0.08 (-0.31) -0.09 (-0.32) -0.09 (-0.33) 

3 -0.08 (-0.22) -0.12 (-0.46) -0.14 (-0.43) -0.06 (-0.18) -0.08 (-0.19) 

4 -0.13 (-0.35) -0.09 (-0.29) -0.20 (-0.58) -0.19 (-0.60) -0.20 (-0.59) 

0.7 

1 -0.31 (-1.00) -0.37 (-1.65) -0.31 (-1.20) -0.30 (-1.07) -0.32 (-1.06) 

2 -0.26 (-0.78) -0.31 (-1.15) -0.32 (-1.00) -0.25 (-0.76) -0.27 (-0.79) 

3 -0.30 (-0.80) -0.28 (-0.80) -0.35 (-1.06) -0.36 (-1.06) -0.36 (-1.08) 

4 -0.38 (-0.99) -0.31 (-0.81) -0.33 (-1.05) -0.33 (-1.54) -0.36 (-1.44) 

 

*GEO = Geomin, PAR = Parsimax, PRO = Promax, QMIN = Quartimin, FAC = Facparsim. 
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the proportion of accurately grouped indicator 
variables, the proportion of indicators correctly 
ordered by the magnitude of their loading values 
and, for the oblique methods, the accuracy of 
inter-factor correlation estimates. It is hoped that 
this study builds upon earlier work by focusing 
on dichotomous indicators (i.e., items), by 
including outcomes that would be of interest to 
practitioners interested in using these methods to 
identify potential latent variables in existing 
measures and by expanding the range of 
conditions under which the rotations are 
examined, including the rotations themselves. 
 
Implications for Practice 

One implication of this study for 
researchers using EFA with categorical indicator 
variables is that when they know, or suspect, 
that the correlations among the factors will be 
upwards of 0.5, they should expect to have 
problems not only with appropriately grouping 
variables together, but also with accurately 
ordering variables in terms of the importance of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
their relationships with the factors. These 
problems are likely to be particularly acute if the 
factor pattern structure is very complex. It does 
seem however, that having a larger sample may 
ameliorate these problems to some extent, so 
that when it is likely the factors will be highly 
correlated and/or the factor pattern may be 
complex in nature, researchers should ideally try 
to obtain samples of 500 or more. These results 
are similar to those reported in de Winter, 
Dodou and Wieringa (2009) for continuous data. 

A second implication is that - for the 
oblique methods of rotation studied - there may 
be problems with accurately estimating inter-
factor correlations across conditions like those 
simulated here. When these correlations were 
greater than 0.3, all of the criteria produced 
underestimates of r, whereas for lower 
correlations r was overestimated for more 
complex factor patterns and underestimated for 
the less complex patterns. These correlation 
estimation  bias  results  are  similar  to  those  
 

Table 9: Inter-Correlation Bias by Magnitude by Number of Indicators Per Factor (I), Number of Factors (F), 
and Sample Size 

I GEO* PAR PRO QMIN FAC 

6 0.03 -0.03 0.02 0.04 0.06 

12 -0.13 -0.15 -0.15 -0.14 -0.13 

 

F GEO PAR PRO QMIN FAC 

2 0.17 0.10 0.16 0.11 0.12 

4 -0.16 -0.17 -0.17 -0.14 -0.15 

 

N GEO PAR PRO QMIN FAC 

100 -0.11 -0.12 -0.08 -0.10 -0.11 

200 -0.10 -0.12 -0.08 -0.09 -0.10 

500 -0.06 -0.09 -0.08 -0.06 -0.08 

1000 -0.03 -0.08 -0.08 -0.04 -0.06 
 

*GEO = Geomin, PAR = Parsimax, PRO = Promax, QMIN = Quartimin, FAC = Facparsim. 
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Table 10: Rotated Factor Loading Matrices for LSAT Data 
 

Item EQU* GEO PAR PRO QUA QMIN VAR FAC 

Factor 1 

1 0.35 0.33 0.33 0.33 0.34 0.33 0.35 0.32 

2 0.40 0.40 0.40 0.41 0.40 0.40 0.40 0.39 

3 0.43 .045 0.45 0.47 0.43 0.45 0.43 0.45 

4 0.36 0.39 0.38 0.40 0.36 0.38 0.36 0.38 

5 0.40 0.38 0.38 0.39 0.39 0.38 0.39 0.38 

6 0.51 0.53 0.52 0.55 0.51 0.53 0.51 0.53 

7 0.33 0.30 0.31 0.30 0.31 0.30 0.33 0.30 

Factor 2 

8 0.52 0.54 0.54 0.56 0.51 0.54 0.52 0.53 

9 0.38 0.40 0.40 0.41 0.37 0.39 0.38 0.39 

10 0.52 0.55 0.55 0.57 0.51 0.55 0.53 0.54 

11 0.28 0.27 0.28 0.28 0.27 0.27 0.28 0.27 

12 0.37 0.40 0.39 0.42 0.37 0.40 0.37 0.39 

13 0.38 0.37 0.37 0.39 0.38 0.38 0.37 0.38 

Factor 3 

14 0.54 0.55 0.54 0.58 0.54 0.56 0.54 0.55 

15 0.53 0.54 0.53 0.56 0.53 0.54 0.53 0.54 

16 0.44 0.46 0.45 0.48 0.44 0.46 0.44 0.46 

17 0.16 0.15 0.15 0.15 0.16 0.15 0.16 0.15 

18 0.48 0.48 0.45 0.49 0.49 0.49 0.47 0.49 

19 0.51 0.50 0.47 0.51 0.52 0.51 0.50 0.51 

Factor 4 

20 0.42 0.41 0.38 0.41 0.43 0.41 0.42 0.41 

21 0.56 0.56 0.53 0.57 0.57 0.57 0.55 0.56 

22 0.59 0.60 0.56 0.61 0.60 0.60 0.58 0.60 

23 0.47 0.48 0.45 0.49 0.48 0.48 0.47 0.48 

24 0.50 0.52 0.49 0.53 0.50 0.52 0.50 0.52 
 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, 
QMIN = Quartimin, VAR = Varimax, FAC = Facparsim. 



W. HOLMES FINCH 
 

567 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
reported by Sass and Schmitt (2010) for the case 
of continuous indicators. 

A third implication for practitioners is 
that including more indicator variables 
(assuming that they are of good quality) will 
yield better solutions both in terms of correctly 
grouping the indicators and accurately ordering 
them in terms of their relationships to the 
factors. This result seems reasonable given that 
including more indicators for each factor 
provides a greater amount of information for the 
EFA extraction algorithm as well as for the 
rotations. The number of indicators was 
particularly important for the FAC technique, 
particularly in the case of a more complex factor 
pattern structures with more factors. Based on 
these results, researchers may consider using 
FAC when they have at least 12 indicators per 
factor, as it demonstrated better performance in 
terms of grouping the variables as well as 
ordering them, particularly in the 4 factor case. 
On the other hand, FAC would not appear to be 
optimal with fewer indicators per factor.  

A final implication of these results is 
that, in terms of both indicator grouping and 
ordering of importance in terms of factor 
relationships, researchers may generally find 
orthogonal and oblique rotations will produce  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
similar results. Indeed, one of the consistently 
best performers in this study was the orthogonal 
rotation EQU. This result is not completely 
surprising, as EQU was designed to spread 
loading variation more equally across factors 
than several of the other rotations studied here 
(Saunders, 1962) by combining the VAR and 
QUA criteria. Thus, although VAR seeks to 
maximize the variation of loadings for factors, 
and QUA seeks to simplify loadings for the 
observed variables, EQU combines these two 
goals. This is not to suggest that researchers 
should only use EQU as the rotation of choice 
for all problems. When factors are thought to be 
correlated, the choice of an orthogonal rotation 
may not be appropriate, regardless of how well it 
performs. However, when the inter-factor 
correlation is low and the primary goal of a 
study is to identify which indicators are 
associated with which factors, EQU would be a 
reasonable choice.   

When a researcher is interested in 
estimating inter-factor correlations, or they 
believe that these correlations may be fairly 
large (greater than 0.5), several of the oblique 
rotations studied here would appear to be 
appropriate. In particular, PAR and FAC (for 
situations with a larger number of indicator 

Table 11: Inter-Factor Correlation (Standard Error) Estimates for LSAT Data by Oblique Rotations 
 

Factor Pair GEO* PAR PRO QMIN FAC 

1 with 2 0.35 (0.05) 0.30 (0.04) 0.32 (NA) 0.34 (0.06) 0.34 (0.06) 

1 with 3 0.28 (0.05) 0.20 (0.04) 0.42 (NA) 0.28 (0.05) 0.29 (0.05) 

1 with 4 0.26 (0.05) 0.18 (0.04) 0.35 (NA) 0.26 (0.05) 0.26 (0.06) 

2 with 3 0.32 (0.05) 0.35 (0.04) 0.36 (NA) 0.33 (0.05) 0.31 (0.05) 

2 with 4 0.42 (0.05) 0.23 (0.04) 0.38 (NA) 0.42 (0.05) 0.42 (0.05) 

3 with 4 0.30 (0.04) 0.20 (0.03) 0.50 (NA) 0.32 (0.04) 0.33 (0.05) 
 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QMIN = Quartimin, 
FAC = Facparsim. 
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variables) demonstrated consistently strong 
performance in terms of correctly grouping and 
ordering indicator variables. On the other hand, 
QMIN may not be reliable for researchers 
interested in finding the correct groupings of 
factor indicators, as it (or the equivalent methods 
of oblique Quartimax and Oblimin) appears to 
reduce dimensionality in the sample too much 
by grouping most of the variables into a single 
factor. As a consequence, researchers using 
QMIN may come to the conclusion that, based 
on the sample there are a smaller number of 
factors present than is actually true for the 
population. 
 
Limitations 

As with any research effort, limitations 
to this study that must be considered when 
interpreting the results. First, for all of the 
rotations the MPlus system defaults were used. 
This was a decision made for two reasons: (1) It 
was desired to mimic what might be most 
commonly done in practices, and (2) In many 
cases there are a very large number of 
alternative settings that could have been used for 
some of the rotations. Therefore, in order to 
keep the study to a manageable size and the 
interpretation of the results fairly 
straightforward, it was felt that only a limited 
number of options could be used. Nonetheless, 
in practice researchers can choose from a 
broader range of settings when using many of 
these rotational criteria. 

A second limitation relates to the 
conditions simulated, including the factor 
patterns used and the number of indicators. In 
both cases, the selections made for this study 
were designed to mimic what would be seen in 
practice. However, clearly many other factor 
patterns and numbers of indicators could have 
been included, which may well have provided 
different results. Future studies should focus on 
both of these issues in order to expand upon 
what was learned here. 

Finally, these results were based on 
dichotomous indicator variables, which may not 
translate directly to ordinal data, such as that 
commonly found in many psychological scales. 
It should be noted that because rotations focus 
on loadings rather than the raw data, it is not 
clear how important this issue might be. 

Nonetheless, future research should verify to 
what extent the nature of the categorical data has 
an impact on the performance of rotational 
criteria. 
 
Summary 

In the final analysis, the admonition 
offered by Browne (2001) for researchers to use 
their expert judgment in conjunction with 
statistical results is definitely supported by these 
results. It is clearly not possible to state that any 
single rotational criterion will fit all EFA 
problems adequately, although in practice 
researchers often appear to use favorites 
regardless of the context. However, these results 
do suggest that certain features of the data will 
support the use of one or more such methods 
studied here. Clearly the ubiquitous VAR and 
PRO rotations must be used with caution when 
at all, as often they do not produce optimal 
results in terms of accurately reflecting the 
underlying factor structure. With the increased 
availability of other rotations in software 
packages such as MPlus, researchers are no 
longer limited to a small number of available 
options, and can thus experiment with a broader 
array of tools than could be done previously. 
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