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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

The emerging area of nanotechnology includes the study of materials having 

a characteristic length scale less than 100 nm and their applications. One 

particularly exciting topic is the use of nanoscale magnetic materials for biomedical 

application [1]. Many interesting properties of magnetic nanoparticles have been 

investigated, and these studies have led to an expectation that these systems will 

have applications in biomedicine. Magnetic nanoparticles may be useful for these 

applications if they can be made biocompatible, stable, and biodegradable, possibly 

by coating them with suitable materials to allow them to be attached to antibodies, 

proteins and drugs. Generally, polysaccharides (like dextran) and polymers (like 

poly ethylene glycol) are used for such coating. 

 Magnetic nanoparticles have the potential to be delivered to a specific region 

in the body by applying an external magnetic field. For this use in vivo, one needs 

large magnetizations for the magnetic nanoparticles so that they respond to 

externally applied magnetic field at and above room temperature. Magnetite 

(Fe3O4) and Maghemite (-Fe2O3) are suitable particles for many biomedical 

applications, as they have bulk magnetization values of 82 emu/g and 75 emu/g 

respectively [2], and are relatively non-toxic [3]. Because of thermal fluctuations, 
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sufficiently small magnetic nanoparticles have no remanent magnetization at room 

temperature. This minimizes the possibility of aggregation, which could have 

harmful effects, and favors biological absorption and eventually the excretion of 

particles by the body. These particles can be prepared as isolated particles or 

dispersed in a carrier liquid, where they are called a “ferrofluid”. We have 

investigated many physical properties of magnetic nanoparticles both in powder 

and solution form. In addition to understanding the physics of these nanoparticles, 

we have also investigated many biomedical applications of magnetic nanoparticles 

including magnetic hyperthermia, drug delivery, radiation therapy, and as a 

contrast agent in MRI.  

1.2 MAGNETIC NANOPARTICLES  

  In ferromagnetic materials below the transition temperature the local 

magnetic moments of atoms are ordered with parallel alignment . The interactions 

producing this arrangement originate from the properties of the local moments and 

are called the exchange interaction [4]. This exchange from the coulomb interaction 

between two electrons and the fact that the wave function of two electrons must be 

antisymmetric under the exchange of all electron coordinates, space and spin [5]. 

Inside a ferromagnetic material there are a number of regions having parallel spins. 

These regions are called magnetic domains, and are illustrated in Figure 1.1. 
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Figure 1.1: Magnetic domains 

In each of these domains, a large number of atomic moments, typically 1012 to 1015, 

are aligned parallel so that the magnetization within the domain is almost 

saturated [6]. However, the direction of this spin alignment varies from one domain 

to another, and will be randomly oriented in the absence of an external magnetic 

field. The formation of these domains is a consequence of minimizing the magnetic 

free energy. Magnetic domains will form in a sample until the energy cost of 

forming a domain wall exceeds the reduction in free energy gained from forming 

another domain. Domain walls are the transition region between domains, in which 

the local moments are not parallel but the direction of magnetization changes 

smoothly from one domain to another. The width of a domain wall is given by the 

relation [7]; 

2/1
2











Ka

J
S ………………………………………………………………………(1.1) 

Where δ is width of domain wall, J is exchange integral, K is anisotropy constant, a 

is lattice spacing and S is the magnitude of spin. Equation (1.1) implies thatlarger 
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exchange interactions lead to wider domain walls, and larger magnetocrystalline 

energies lead to narrower domain walls.  

 When a ferromagnetic material containing a number of magnetic domains is 

magnetized with an external magnetic field, it will not relax back to zero 

magnetization after this external field is removed. The magnetization must be 

driven back to zero by applying a field in the opposite direction. If an alternating 

magnetic field is applied to the material, its magnetization will trace out a closed 

loop called a hysteresis loop. This irreversibility in the magnetization is called 

hysteresis and it is related to the existence of magnetic domains in the material 

that can be realigned in an external field. Once the magnetic domains are 

reoriented, it takes some external field cause a second reorientation. In a hysteresis 

curve (figure 1.2), the saturation magnetization (Ms) is the maximum magnetic 

moment per unit volume.  The coercivity (Hc) is the magnitude of the magnetic field 

required to return the magnetization zero after being driven to saturation. The 

residual magnetization after removing magnetic field on it is called remanent 

magnetization or remanence (Mr) [8]. 

When the size of ferromagnetic material is decreased, a critical is size is reached, 

below which it is energetically unfavourable to form a domain boundary.  Below this 

critical size, the ferromagnet exists only as single domain particles. This critical size 

can be estimated from the balance between the magnetostatic energy and energy to 

form a domain wall, which is given by [9]:  

Hc 

Mr 
Ms 

H 

 

M 
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                                  dc = [9(AK1)1/2] /[2Ms2] …………………….(1.1) 

Here, A is the exchange constant (which is also referred to as the stiffness constant 

or Bloch wall coefficient), K is the magnetocrystalline anisotropy constant, and Ms is 

the saturation magnetization.  

 

Figure 1.2: Hysteresis loop with Ms, Mr and Hc. 

The value of the critical diameter is normally less than 100 nm. For example, 

magnetite has dc ~ 80 nm and iron has dc ~ 12 nm [10]. Thus, magnetic 

nanoparticles having a diameter on the order of a few nanometers have only a 

single magnetic domain.  Since the individual spins in the nanoparticles are ordered 

ferromagnetically, they rotate coherently, leading to a single large effective 

moment. 

 Because of their crystal structures, magnetic nanoparticles have uniaxial 

anisotropy (or cubic anisotropy) and the magnetic moments are typically aligned 



6 
 

 
 

along one direction of the easy axis (or axes). The easy axis refers to the 

energetically favorable direction of magnetization in magnetic materials, which is 

determined by the crystal lattice and the interaction energies. At zero field, the 

actual direction of the magnetization will normally be point along one of the two 

directions defined by the easy axis. To change the direction of the magnetization, 

one has to overcome an energy barrier that is determined by the uniaxial anisotropy 

energy together with the external magnetic field. The energy barrier „EA‟ in the 

presence of external magnetic field H is given by [5] 

                                       EA = V( Ksin2-MHcos) …………………(1.2) 

Where V is the volume of the nanoparticle,  is the angle between magnetization 

and the easy axis, and  is the angle between external magnetic field and 

magnetization as shown in Fig 1.3 a. In the absence of an external magnetic field, 

the maximum value of energy barrier is KV and a minima occurs along either of the 

easy axis directions (figure 1.3 b). 

                                                  

Figure 1.3: (a) Direction of easy axis, magnetization and external field in a magnetic 

nanoparticle (b) Energy barrier between two easy axis in a magnetic nanoparticle.  

(a) (b) 
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If the thermal energy KBT is large compared to the value of the energy barrier, the 

direction of the nanoparticle moment can flip freely between the two directions 

defined by the easy axis. This leads to the moments being randomly oriented, while 

fluctuating, so the net magnetization is zero. This phenomenon of showing 

paramagnetic behavior in the magnetically ordered phase is called 

superparamagnetism. The flipping frequency of the nanoparticle moments is given 

by the relation: 

                                               f = f0 exp(-EA/KBT) …………………(1.3) 

Where f0 is the attempt frequency to overcome the energy barrier (EA), having a 

value of ~ 1010 Hz. The relaxation time (), which is the average time it takes the 

system to jump from one minimum to the other, is the reciprocal of the flipping 

frequency (f). Typically, experimental measuring frequency is about 100 sec and at 

sufficiently high temperatures, f of nanoparticle moments is higher than the 

experimental measuring frequency because of the large thermal energy [4]. At high 

temperatures, no hysteresis is observed in the M-H curve, which shows 

superparamagnetic behaviour (figure 1.4). As the temperature is lowered, the 

flipping frequency (f) decreases, and a critical temperature is reached below which f 

becomes smaller than experimental measuring frequency.  Below this temperature, 

the nanoparticles moments are frozen (on average), and the system shows a 

hysteresis loop in the M-H curve conistent with typical ferromagnetic behaviour. 

This critical temperature is called blocking temperature TB.  
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M

H  

 Figure 1.4: Single valued M-H curve of magnetic nanoparticles above their blocking 

temperature. 

 When a system of magnetic nanoparticles is cooled in a zero external 

magnetic field and the magnetization is measured on warming in a small applied 

field, the zero field cooled (ZFC) magnetization curve is obtained as shown in figure 

1.5.  

 

 

 FC

 ZFC

T

M

0

 

Figure 1.5: Typical ZFC and FC magnetization curves. 
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Starting from high temperatures, the magnetic moments of individual nanoparticles 

are randomly oriented because of thermal energy. When the system is cooled at zero 

fields, these moments are frozen in random direction blocking further reorientation 

below a certain temperature. This temperature is called the blocking temperature 

(TB.). The peak of the ZFC curve corresponds to the blocking temperature. Since 

magnetic moments are frozen in random directions, the net magnetization is zero at 

sufficiently low temperatures in this ZFC curve. As temperature is increased, the 

moments begin to fluctuate because of increasing thermal energy, and these 

fluctuating moments tend to align in the direction of the external magnetic field. 

Above the blocking temperature the increasing thermal fluctuations tend to 

randomize the direction of the individual moments, so the magnetization decreases, 

as one observes for a conventional paramagnet. Note that the blocking temperature 

depends weakly on applied magnetic field, as can be inferred from Eq. (1.2).  

 The magnetization curve obtained by cooling a collection of magnetic 

nanoparticles in an applied field and then measuring the magnetization on 

warming in the same field is called the field cooled (FC) curve, as shown in Figure 

1.5. In FC samples, the magnetic moment of each nanoparticle is approximately 

frozen along the applied field at low temperatures.  The FC curve in Fig. 1.5 shows 

a small upturn at the lowest temperatures because of a small paramagnetic 

contribution to the signal. As the temperature increases, the alignment of the 

magnetic moments decreases as the thermal energy exceeds the anisotropy energy. 

Above the blocking temperature, the thermal energy is sufficient to overcome the 
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magnetocrystalline energy of nanoparticles. This is why both FC and ZFC curves 

show paramagnetic behavior (M  1/T) above the blocking temperature.  

1.3 BIOMEDICAL APPLICATIONS OF MAGNETIC 

NANOPARTICLES 

Magnetic nanoparticles have great potential for applications in medicine. 

Some of the specific physical and chemical properties of magnetic nanoparticles that 

make them suitable for biomedical applications are: 1) they can be manipulated by 

non-invasive external magnetic field 2) they are superparamagnetic with no 

remnant magnetization 3) their surface can be easily modified to attach various 

molecules and surfactants 4) they are small enough to accumulate inside the living 

cells 5) they can be heated by applying an alternating magnetic field 6) they act as 

magnetic resonance imaging contrast agents and 7) iron oxide magnetic 

nanoparticles are biocompatible with FDA approval for use in vivo. With this 

background, magnetic nanoparticles have been used for many biomedical 

applications including magnetically targeted drug delivery, magnetic hyperthermia, 

radiation therapy, and as a contrast agent in magnetic resonance imaging (MRI).  

1.3.1    DRUG DELIVERY BASED ON MAGNETIC NANOPARTICLES 

In 1960, Freeman and collaborators pioneered the concept of magnetically 

guided drug delivery using iron nanoparticles [11]. Since this time, the idea of using 

magnetic nanoparticles to improve techniques for drug delivery has attracted 

tremendous interest. In conventional treatments, the drug is administered through 
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intravenous injection and then travels through the heart to be pumped all over the 

body [12]. As drugs are normally intended for only a small region in the body (for 

example, a cancerous tumor), this standard method for delivery is inefficient as it 

requires a larger amount of the drug and may lead to side effects on healthy 

systems. In order to overcome these problems, magnetically targeted drug delivery 

system (MTDDS) may be used to both limit the amount of drug used and deliver it 

to a more precisely controlled region. In MTDDS, biocompatible magnetic 

nanoparticles attached with drugs are injected into the blood stream, where they 

can be concentrated at specific locations in the body by an external magnetic field 

gradient at the targeted area. The drug is then released at the targeted region by 

some mechanism, such as changing the pH value, enzymatic action, or increasing 

temperature [13]. 

  Magnetite (Fe3O4) and Maghemite (-Fe2O3) are the most commonly used 

magnetic nanoparticles for targeted drug delivery. These nanoparticles respond well 

to external magnetic fields because of their relatively large magnetization.  

Additionally, iron oxide is biocompatible and non-toxic. The force acting on a 

spherical magnetic nanoparticles in a magnetic field gradient is given by [14, 15]:  

                                            F = (m. )B =  ½( V/ µ0) B2………………….(1.4) 

Where m is the magnetic moment,  is the susceptibility and V is the volume of the 

magnetic nanoparticle. B is the external magnetic field acting on the system. At the 
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same time, the viscous force arising from the carrier liquid, which acts to oppose 

motion produced by the magnetic force, is given by stokes‟ law, 

                                           Fvisc = 3dv…………………..(1.5) 

where d and v are the diameter and instantaneous velocity of the nanoparticle 

respectively, and  is the viscosity of suspending medium. Considering the one 

dimensional case, at steady state, the magnetic force and viscous force are equal 

which gives the velocity of nanoparticle v, 

                                      v = (d2/36 µ0)B2 …………… (1.6) 

For example, taking typical values for the parameters involved in equation (1.6) 

including a magnetic field ~ 1T, velocity of magnetic nanoparticles of ~ 10 cm sec-1, 

the viscosity of blood ~ 0.0028 Pa-sec, the susceptibility of magnetite ~ 650 and  the 

diameter of magnetic nanoparticle  ~ 10 nm , the magnetic field gradient required 

for controlling the motion of nanoparticles in vivo is approximately ~ 9.7 x 104 T m-1.  

1.3.2    MAGNETIC HYPERTHERMIA 

Hyperthermia has the potential to be used for the treatment of malignant 

cancer cells. Blood flow is reduced in cancer cells, which makes them more acidic 

due to the formation of lactic acid [16]. These acidic tumor cells are temperature 

sensitive and are easily killed as the temperature is increased. Furthermore, the 

reduced blood flow to tumor cells limits their ability to dissipate heat. As a result, 

cancer cells can be eliminated by raising the local temperature between 410C to 
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450C at the site of tumor [17]. One of the problems associated with hyperthermia is 

the fact that healthy cells will generally also be killed if the temperature is 

increased significantly. 

 Different approaches for inducing hyperthermia have been developed, 

including: radio-frequency hyperthermia, microwave hyperthermia, whole-body 

hyperthermia and in vivo hyperthermia. Of these approaches, in vivo hyperthermia, 

in which magnetic nanoparticles are used as a hyperthermic agent, is of particular 

interest as these nanoparticles can be injected directly into a blood vessel and 

transported to the tumor site by an external magnetic field. Moreover, this localized 

hyperthermia is less likely to damage nearby healthy cells because tumor cells can 

be heated directly using embedded magnetic nanoparticles and there is a possibility 

of differentiating between tumor cells and healthy cells by using an antibody-

antigen biological reaction. Magnetic nanoparticles generate heat in an alternating 

magnetic field through two relaxation mechanisms: (a) Brownian relaxation and (b) 

Néel relaxation. In Brownian relaxation, the whole particle rotates to align with the 

applied field and heat is generated because of the friction between particle and the 

suspending medium. The heat generation is characterized by a time constant B  

                                             B  = (3VB)/KBT  ……………………..(1.7) 

Where VB is the hydrodynamic volume (the total volume of the nanoparticle and 

coating in solution) and  is the viscosity of suspending medium. In Néel relaxation, 

the magnetic moment rotates away from the easy axis towards the external 
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magnetic field without any physical motion of the nanoparticle. In this case, the 

heat is produced by the internal magnetic viscosity opposing the change in 

magnetization. This heat generation is characterized by a time constant N , 

                                           N = 0 exp(E/KBT) …………………..(1.8) 

Where E = KV, K is anisotropy constant and V is the volume of magnetic 

nanoparticle. The resultant power generation by the AC magnetic field is given by 

[14]: 

                                                P = µ00H02 f (2f) /[(1+(2f)2] …………(1.9) 

Where f and H0 are the frequency and amplitude of applied alternating magnetic 

field respectively, µ0 is permeability of free space, 0  is the magnetic susceptibility 

and  is effective time constant which is given by 

                                              = (NB)/(N + B) …………………………….(1.10)  

The different mechanisms associated with Néel and Brownian relaxation are shown 

in Figure 1.6 [14]. The heat produced from magnetic nanoparticles is usually 

referred in terms of specific (power) absorption rate (SAR). This quantity has units 

of Wg-1. Mathematically, SAR is given by [18], 

                                         SAR = cΔT/Δt …………………………………….. (1.11) 

where c is sample specific heat capacity (calculated as mass-weighted mean value of 

magnetic carriers and equivalent medium) and ΔT is increase in temperature in the  
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Figure 1.6: (a) Magnetic moment (dotted arrow) locked with crystal easy axis (solid 

arrow) rotates away from the easy axis towards the magnetic field. (b) The whole 

particle with magnetic moment locked with crystal easy axis moves toward 

magnetic field. Taken from reference [14]. 

time interval Δt. Since specific absorption also depends on applied field (H) and 

frequency (f), to compare the result with other experiment, SAR can be made 

independent of these quantities by dividing with the product of square of the 

applied field and frequency and the quantity is referred as intrinsic loss power (ILP) 

[19]. So, intrinsic loss power is given by, 

fH

SAR
ILP

2
 ………………………………………………………………………(1.12) 

1.3.3    MAGNETIC RESONANCE IMAGING 

Magnetic resonance imaging (MRI) is one of the most powerful clinically used 

non-invasive imaging techniques, which is based on the principle that protons 

precess around the applied magnetic field, B, at the Larmor frequency given by; 

w = γB………………………………………………………………….. (1.13) 
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Here γ is the gyromagnetic ratio, having a value of 42.58 MHz/T for protons in 

water. A radiofrequency pulse is used to tip the precessing protons and they return 

to the original state through two relaxation mechanisms, namely, longitudinal 

relaxation, T1, and transverse relaxation, T2. T1 and T2 are also called spin-lattice 

relaxation and spin-spin relaxation time respectively. Since these relaxation times 

are sensitive to the local spin environment, they are used to generate bright and 

dark MR images. 

 Contrast agents are regularly used to enhance the image contrast between 

healthy and diseased tissue. Dipolar relaxivity ,R1,2, the efficiency of a contrast 

agent that affects proton relaxation rate, is defined by [20] 

CrRR .2,1

0

2,12,1  …………………………………………………….(1.14) 

Where R1,2 = 1/T1,2 is the proton relaxation rate in the presence of contrast agent 

and 
0

2,1R  is the relaxation rate in the absence of contrast agent . The suffix 1 and 2 

correspond to the T1 and T2 relaxation times respectively. C is the concentration of 

the contrast agent and r1,2 is the relaxivity, which measures the increase in 

relaxation rate per unit concentration of contrast agent. According to equation 

(1.14), the relaxation rate increases with an increase in concentration of the 

contrast agent. This allows one to correlate the observed MR signal with the 

concentration of contrast agents in tissue. The dipolar interaction between iron 

oxide nanoparticles and water proton increases the T2 relaxation rate, which 

decreases the MR signal intensity producing a negative (dark) image. Iron oxide 
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also enhances T2 relaxation rate because of the susceptibility effect. Susceptibility is 

the ratio of magnetization (M) of the substance in the presence of external magnetic 

field (H): 

H

M
 …………………………………………………(1.15) 

In the susceptibility effect, a magnetization difference due to the inhomogeneous 

distribution of magnetic nanoparticles in vivo produces a magnetic field gradient, 

which enhances the loss of phase coherence of the spins producing a dark image. In 

dipolar interaction, only nearby water protons interact with the nanoparticles while 

in the susceptibility effect, proton relaxation is affected far from the magnetic 

center. This makes the susceptibility effect an important mechanism to reduce T2 

relaxation time in vivo [20]. Iron oxide nanoparticles have an order of magnitude 

larger T2-relaxivity than the gadolinium chelates currently being used for clinical 

applications. Iron oxide nanoparticles are also a good intravascular contrast agent 

since they do not leak into interstitium, unlike gadolinium chelates. Paramagnetic 

materials having an unpaired electron, such as gadolinium, reduces T1 and give 

high intensity signal  producing a positive (bright) image. 

1.3.4    RADIATION THERAPY 

Radiation can interact with, and damage, cells. While radiation produces 

ionization, there are two separate mechanisms through which radiation damages 

cells; direct and indirect effects. In direct effects, radiation removes the electrons 
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shared by base pairs of DNA. If this interaction affects enough DNA molecules, the 

chromosome will not be able to replicate properly, which results in the destruction 

of these cells. In indirect effects, radiation ionizes the water in cells to produce 

positively charged water molecules (H2O+), which in turn gives a hydrogen ion (H+) 

and a hydroxyl radical (OH*). The electron produced by the ionization of water 

reacts with another water molecule to give negatively charged water molecule 

(H2O-), which further decomposes to give a hydroxyl ion (OH-) and a hydrogen 

radical (H*). This hydroxyl radical may react with a hydrogen radical to form a 

water molecule. However, since the hydroxyl radical is very reactive, it may also 

react with another hydroxyl radical forming hydrogen peroxide (H2O2). This 

hydrogen peroxide is toxic and destroys the cells. Energy required for the ionization 

of water is 1018 kJ/mole [21] and the absorption cross-section for 500 keV photon in 

water is 0.1 cm2/g. The reaction induced in the indirect effect is as follows [22]: 

H2O         H2O+ + e- 

H2O+        H+ + OH* 

e- + H2O         H2O-  

H2O-           H* + OH- 

H* + H*         H2 

H+ + OH-       H2O 

OH* + OH*       H2O2 
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 The effects of radiation therapy can be localized using biocompatible metal or 

metal oxide nanoparticles, such as gold and iron oxide. When relatively higher 

energy radiation is incident on these nanoparticles, ideally accumulated inside 

tumor cells, they produce lower energy X-rays and auger electrons with higher 

linear energy transfer. Linear energy transfer (LET) is defined as energy lost per 

unit path traveled by particles or radiation: 

dx

dE
LET 

      ……………………………………………………………….(1.16)                    
 

 Since these secondary X-rays and electrons have lower energy and higher 

absorption cross-sections, they will not travel as far as higher energy photons to 

damage the surrounding healthy cells.  
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CHAPTER 2  

SYNTHESIS AND CHARACTERIZATION 

TECHNIQUES 

2.1 SYNTHESIS 

Because of the vast potential applications of magnetic nanoparticles, 

particularly iron oxide nanoparticles, in medicine, a number of different techniques 

have been developed to synthesize γ-Fe2O3 and Fe3O4 nanoparticles in a range of 

sizes and shapes. Modifying the Massart method of co-precipitation [23] by varying 

the temperature and reaction time, iron oxide nanoparticles of sizes between 4 to 10 

nm can be prepared [24]. The arrested precipitation method, where a molecule 

added into the salt mixture acts as a growth inhibitor, is also used to synthesize 

nanoparticles of smaller sizes [25]. Reverse microemulsion is also used to obtain 

iron oxide nanoparticles of size less than 10 nm [26]. For high crytallinity and 

narrow size distribution, thermal decomposition of organometallic compounds is 

often a suitable synthesis technique [27]. As a single step preparation, laser and 

spray pyrolysis of vapour and aerosols have been also reported as a path for 

synthesizing nanoparticles [28,29]. Varying the precursor, surfactants and solvents, 

the high temperature decomposition method allows the production of nanoparticles 

in the range of 10 to 30 nm. Particles with diameters greater than 30 nm can be also 

synthesized by co-precipitation while controlling the ratio of ferrous and ferric salts, 
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and hexanediamine as a base instead of ammonium hydroxide [30]. Particles having 

sizes up to 300 nm can be also obtained by using the oxidizing agent KNO3 in a 

mixture of water/ethanol to oxidize ferrous salt [31,32]. Using different solvents, 

changing the nature and concentration of precursors, and adding impurities during 

the synthesis can lead to particles having different shapes such as spherical, cubic, 

triangular, tetrahedral, and diamond [29]. However, among these many techniques 

for synthesizing iron oxide, we use co-precipitation because of its simplicity, and 

capacity to produce superparamagnetic iron oxide nanoparticles of reasonable size.  

Moreover, the co-precipitation technique is compatible with different approaches for 

functionalizing the nanoparticles with organic surfactants.  We describe the co-

precipitation technique in detail in the following. 

2.1.1    SYNTHESIS OF Fe3O4 NANOPARTICLES 

We synthesized iron oxide nanoparticles by co-precipitation. This is simple 

and efficient technique that was carried out under a fume hood at ambient 

conditions. FeCl2.4H2O and FeCl3.6H2O were mixed in a 1:2 molar ratio to ensure 

proper stoichiometry and the Fe3O4 nanoparticles were precipitated from solution 

by the addition of NH4OH. For a typical synthesis, 10.811 g of FeCl3.6H2O in 40 mL 

of 2 M HCl was mixed with 3.976 g of FeCl2.4H2O in 10 mL of 2 M HCl in a 1 L 

beaker. After stirring the mixture with magnetic stirrer for about 5 min, 500 mL of 

1 M NH4OH was added dropwise. Initially, the solution turned brown but 

eventually changed to black with the formation of Fe3O4 nanoparticles. The 

resultant iron oxide nanoparticles were washed several times with de-ionized (DI) 
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water until the supernatant becomes neutral, which was confirmed by litmus paper. 

Then, in many cases, a portion of the ferrofluid sample was lyophilized to produce a 

powder, which is desirable for many applications. This involved freezing ferrofluid 

and keeping the frozen ferrofluid under very low vacuum such that ice directly 

convert into water vapor, which is referred to as sublimation. Since drying ferrofluid 

at higher temperature may change some properties of iron oxide and coating, 

lyophilizing ferrofluid has the advantage of preserving those properties. These iron 

oxide nanoparticle obtained from the co-precipitation method has particle diameters 

in the range of 10-12 nm. The chemical reaction can be represented by the following 

[33]: 

FeCl2 + 2FeCl3 + 8NH4OH → Fe3O4 + 8NH4Cl + 4H2O                                  (2.1)                                              

Iron oxides form agglomeration unless they are coated with some surfactants. Since 

we want to use iron oxide nanoparticles for biomedical application, we have used a 

number of different biocompatible surfactants to coat the iron oxide nanoparticles.  

2.1.2    FATTY ACIDS COATED IRON OXIDE 

Smaller diameter nanoparticles stay longer in the blood stream and have 

greater accumulation in the lymph nodes, which is crucial for the diagnosis of 

lymph nodes affected by metastases [34]. Since fatty acids have short chain length, 

their coating on magnetic nanoparticles makes overall hydrodynamic diameter 

smaller as compared long chain length polymer, which make fatty acid coated 

nanoparticles useful for the diagnosis of disease. In order to coat the nanoparticles 
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with myristic acid (MA), 2 g of the Fe3O4 was mixed with 2 g of myristic acid 

dissolved in 50 mL of acetone. This mixture was stirred for 30 minutes, rinsed with 

methanol and then dispersed in cyclohexane to make ferrofluid of myristic acid 

coated Fe3O4 (MA-Fe3O4). Since fatty acid doesn‟t dissolve in water we couldn‟t 

suspend fatty acid coated nanoparticles in aqueous solution. We used the same 

approach to coat the nanoparticles with lauric acid (LA). To coat with oleic acid 

(OA), we added 0.4 g of oleic acid into 275 ml of iron oxide solution synthesized in 

section 2.1.1 before rinsing. The solution contains about 2 g of iron oxide. The 

mixture was continuously stirred with a magnetic stir rod and boiled for half an 

hour at a temperature of 85 oC. The mixture was then rinsed several times until the 

litmus paper shows pH of the supernatant neutral. OA coated Fe3O4 (OA-Fe3O4) 

was also dispersed in cyclohexane to make ferrofluid.  We expect that while myristic 

acid and lauric acid coated nanoparticles may be useful for some applications, the 

high temperature preparation required for oleic acid coating may be incompatible 

with a number of biologically relevant molecules. 

2.1.3    DEXTRAN COATED IRON OXIDE 

Dextran is biocompatible and its coating on iron oxide nanoparticles makes 

these nanoparticles long circulating without recognized by immune system of body, 

which makes dextran coated iron oxide nanoparticle a good contrast agent for 

magnetic resonance imaging. In addition, dextran is easy to functionalize and label 

with some optically, biologically, and therapeutically relevant molecules. In order to 

coat the iron oxide nanoparticles with dextran surfactant, 2 g of magnetite 
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nanoparticles were dispersed in 25 ml of 0.5 M NaOH and 2 g of 15-20 kDa dextran 

(or other molecular weight dextran) was dispersed in a separate 25 ml of 0.5 M 

NaOH solution. The iron oxide solution was added dropwise to the dextran solution 

under sonication for half an hour and the resulting mixture was left under 

sonication for 24 h. Dextran coated iron oxide are not stable in water. However, 

they are stable in 0.5 M NaOH and cell growth medium. 

2.1.4    FUNCTIONALIZING IRON OXIDE TO ATTACH FITC AND         

TAT PEPTIDE 

In many cases, it is desirable to introduce new properties to the magnetic 

nanoparticles by attaching different functional groups.  Fluoro isothiocyanate 

(FITC) is a widely used fluorescent dye, frequently used for imaging in confocal 

microscopy [35], and tat peptide has been shown to selectively target the cell 

nucleus [35]. To add FITC and tat peptide to dextran coated nanoparticles, 0.5 ml of 

Dextran coated Fe3O4 nanoparticles were added to a solution containing 2.5 ml of 5 

M NaOH, 1 ml of DI water and 1 ml of epichlorohydrin[36]. The mixture was 

incubated at room temperature for 24 h with shaking to promote the interaction 

between organic phase of epichlorohydrin and aqueous phase of dextran Fe3O4 

colloid. After 24 hr of incubation, the mixture was dialyzed several times using 10 

kDa cut off filters to remove the excess of epichlorohydrin. Subsequently, 1.25 ml of 

concentrated ammonium hydroxide was added and the mixture was left for 
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sonication overnight [35]. The resulting solution is amino functionalized dextran 

Fe3O4. 

To label dextran coated Fe3O4 with FITC, 1 ml of 0.01 M FITC (10 μmol) in 

phosphate buffer saline (PBS) with pH 7.4 was added to 1 ml of amino 

functionalized dextran Fe3O4 [37]. The mixture was allowed to stand for 1 hr at 

room temperature. Excess FITC was then removed by dialysis using using 10 kDa 

cut off filters. 

To attach tat peptide to the FITC labeled dextran Fe3O4, we added 90 μL of 

tat peptide solution in PBS (803 μM) to 110 μL of Fe3O4-Dex-NH2-FITC and the 

mixture was allowed to react overnight at room temperature. We also tried to 

attach tat peptide using the heterobifunctional crosslinker N-succinimidyl 3-(2-

pyridyldithio) propionate (SPDP) [32]. 50 μL of N-succinimidyl 3-(2-pyridyldithio) 

propionate (SPDP, 25 mM) in dimethyl sulfoxide (DMSO) was added to 60 μL of 

Fe3O4-Dex-NH2-FITC and the mixture was allowed to stand for 1 hr at room 

temperature. 90 μL of tat peptide solution in PBS (803 μM) was then added to the 

mixture of SPDP and Fe3O4-Dex-NH2-FITC and the mixture was allowed to react 

overnight at room temperature. However, since the tat peptide did not have a thiol 

group (sulfhydride), the crosslinker did not attach the tat peptide. We also 

attempted to attach tat peptide to amine functionalized dextran Fe3O4 without 

FITC. 50 μL of N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP, 25 mM) in 

DMSO was added to 60 μL of Fe3O4-Dex-NH2 in PBS and the mixture was allowed 

to stand for 1 hr at room temperature. 90 μL of tat peptide solution in PBS (803 μM) 
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was then added to the mixture of SPDP and Fe3O4-Dex-NH2 and the mixture was 

allowed to react overnight at room temperature. In this case as well, the crosslinker 

did not attach tat peptide because of the absence of thiol group. 

2.1.5    HYALURONIC ACID COATED IRON OXIDE 

Hyaluronic acid (HA) is a major component of vertebrate tissue and body 

fluid, which has been used to target tumor cells in various nanomedicine studies 

[38]. In order to coat the iron oxide nanoparticles with hyaluronic acid, 80 mg of 

magnetite nanoparticles were dispersed in 1 ml of 0.5 M NaOH and 80 mg of 

hyaluronic acid was dispersed in a separate 1 ml of 0.5 M NaOH solution. The iron 

oxide solution was added dropwise to the hyaluronic acid solution, which was 

sonicated over a period of 15 minutes, with the resulting mixture being held under 

sonication for 24 h.  

2.1.6    IRON OXIDE ADSORBED ON PNIPAM 

Poly-N-isopropylacrylamide(PNIPAM) is a thermosensitive polymer which 

absorbs water and swells below a critical temperature, referred as lower critical 

solution temperature (LCST), and shrinks and releases water above LCST. This 

property has been used to load and release the drug from these microgels [39]. 

PNIPAM microgels were synthesized by a free radical  polymerization technique 

[40]. In this process, 550 mg of N-isopropylacrylamide and 50 mg of N,N-

methylenebis-acrylamide were dissolved in 40 ml of de-ionized water to which 5 ml 

of an aqueous solution having 250 mg  ammonium persulfate (50 mg/ml) was added 
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as an initiator. The mixture was stirred for 15 min under a nitrogen atmosphere at 

a constant temperature of 343 K, which was maintained by using hot plate and oil 

bath. After 15 min, 5 ml of an aqueous solution with 35 mg sodium acrylate was 

added to increase the density of carboxylic groups to promote iron oxide 

nanoparticle attachment. The mixture was refluxed (condensing water vapor using 

cold water) under the same conditions for 4 h. After this procedure, the microgels 

were dialyzed in de-ionized water for two days, freeze dried, and preserved at room 

temperature. The microgel sample obtained after adding sodium acrylate on 

PNIPAM is designated as PNIPAM-SA.   We mixed 467 mg of magnetite 

nanoparticles with 200 mg of PNIPAM-SA for 24 h using a non-magnetic stirrer to 

avoid promoting agglomeration. In order to increase the colloidal stability of the 

composite, we added 60 mg of sodium poly(styrene-sulfonate) (PSS) to the magnetic 

microgels and stirred the resulting mixture for 48 h at room temperature. Finally, 

the mixture was centrifuged, and washed several times.  

2.1.7    TETRAMETHYLAMMONIUM HYDROXID COATED IRON 

OXIDE  

Tetramethylammonium hydroxide (TMAH) coating creates negative charge 

on the surface of nanoparticles and makes stable ferrofluid. TMAH coating also 

facilitate silica coating on these nanoparticles. In addition, it may be also helpful to 

disperse TMAH coated iron oxide for the electron transport study where polymer 

coating is not needed.  280 mg of iron oxide nanoparticles synthesized in section 



28 
 

 
 

2.1.1 were dispersed in 10 mL stock solution of tetramethyl ammonium hydroxide 

(TMAH). 20 mL of DI water was then added into the mixture, which was agitated 

for 10 min to ensure the dispersion and stability of iron oxide nanoparticles.  

2.1.8    SYNTHESIS OF Mn3O4 NANOPARTICLES 

In addition to the iron oxide nanoparticles used for biomedical studies, we 

also prepare Mn3O4 nanoparticles for investigations on magnetodielectric coupling 

in nanomaterials. We used a co-precipitation method to synthesize Mn3O4 

nanoparticles by mixing 19.8 g of MnCl2 in 100 mL of HCl and de-ionized water in a 

1:9 ratio.  We then added 50 mL of NH4OH drop wise to produce a light brown 

precipitate. We rinsed this precipitate a number of times using de-ionized water to 

remove any residual ions before filtering the solution and drying the sample in air 

for 1 hr at a temperature of 100 0C. The dried precipitate was again heated in air for 

1 hr maintaining a temperature of 500 0C, at which time the powder changed to a 

dark brown. 

2.1.9    EFFECT OF CARRIER LIQUID ON FERROFLUID 

Surfactants need to be soluble in the carrier liquid to form a well dispersed 

ferrofluid. We had tried to disperse fatty acids (MA, LA and OA) coated iron oxide in 

water but the particles settled down since the fatty acids were not soluble in water.  

However, these nanoparticles form a stable ferrofluid in cyclohexane because MA, 

LA and OA are soluble in cyclohexane. In some cases, even the surfactant is soluble 

in the carrier liquid, it is necessary to develop some charge on the surface of 
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nanoparticles to ensure good solubility. Dextran is soluble in water so we initially 

tried to disperse dextran coated iron oxide nanoparticles in DI water but found that 

they settled down quickly. We then dispersed dextran coated iron oxide in 0.5 M 

NaOH, which created negative charge on the surface of dextran coated 

nanoparticles, and the particles were well dispersed in the solution because of 

electrostatic repulsion. Similarly, iron oxide nanoparticles labeled with tat peptide 

could be well dispersed in 0.01 M growth medium with pH 7.4 whereas they settled 

down in 0.01 M phosphate buffer saline (PBS) with pH 7.4 in few hours. 

2.2 CHARACTERIZATION TECHNIQUES 

 We need to characterize the sample to confirm that we have prepared 

materials having the required properties for different applications. We have used 

different characterization techniques to study structure, size and composition of the 

samples prepared for many biomedical applications, among others. Various 

techniques that we used for the characterization are described in the following: 

2.2.1    X-RAY DIFFRACTION 

X-rays are electromagnetic radiation with the wavelength of 0.01 to 10 nm. 

Hard X-rays (short wavelength X-rays) have wavelength comparable to the size of 

atoms and can be used to probe the arrangement of atoms and molecules inside the 

crystalline materials. Generally, X- rays of wavelength 1.54 Å and 0.8 Å produced 

by Cu and Mo targets respectively are used in diffractometers. When X-rays 

interact with atoms of the materials, diffracted waves from different layers of atoms 



30 
 

 
 

interfere with one other to produce sharp maxima in the intensity if atoms are 

arranged periodically. The X-ray diffraction pattern gives the arrangement of atoms 

and structure of the crystalline solid in reciprocal space. Conditions of diffraction is 

given by Bragg‟s law [41], 

 ……………………………………………………………(2.2) 

Where d is the spacing between the crystal planes, λ is the wavelength of incident 

X-ray beam and n is the order of diffraction. The characteristic length scale for the 

crystalline structure „L‟ can be calculated from the diffraction peak width using the 

Debye-Scherrer‟s equation [42], 

………………………………………………………….(2.3) 

Where FWHM is full width half maximum of the diffraction peak and θ is the 

diffraction angle.  This neglects effects from instrumental broadening, among other 

effects, which limits the size determination to nanoparticles less than 

approximately 40 nm for the diffractometer used in this study. We used Cu Kα 

radiation on a Rigaku Ru2000 rotating anode diffractometer operating at a voltage 

of 40 kV and current of 150 mA to collect X-ray diffraction (XRD) patterns of 

different powder samples.  

2.2.2    TRANSMISSION ELECTRON MICROSCOPY (TEM) 

The transmission electron microscope (TEM) operates on the same principles 

as that of optical microscope but the TEM uses electrons instead of light. TEM uses 
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electrons as the “light source” and their much smaller wavelength make it possible 

to get a resolution a thousand times better than with a light microscopes. TEM can 

be used to see objects to the order of a few angstrom (10-10 m). Because of its high 

magnifications, TEM has been a valuable tool in medical, biological, and materials 

research. A "light source" at the top of the microscope emits the electrons that travel 

through vacuum in the column of the microscope. Instead of glass lenses focusing 

the light in the light microscope, the TEM uses electromagnetic lenses to focus the 

electrons into a very thin beam. The electron beam then travels through the 

specimen we want to study. Depending on the density of the material present, some 

of the electrons are scattered and disappear from the beam. At the bottom of the 

microscope the unscattered electrons hit a fluorescent screen, which gives rise to a 

"shadow image" of the specimen with its different parts displayed in varied 

darkness according to their density. We used JOEL HR TEM 2010, operated at 200 

kV, to image the particles. Ferroflud was diluted using its carrier liquid and a drop 

of dilute solution of ferrofluid was put in the copper grid and the sample was dried 

before imaging.   We note that this process of drying the ferrofluid can lead to some 

agglomeration of the nanoparticles, which is then observed in TEM images of the 

sample. 

2.2.3    SCANNING ELECTRON MICROSCOPY (SEM) 

Scanning electron microscopy is an excellent technique for characterizing the 

surface morphology of materials. It uses electrons instead of light to form an image. 

SEM has a large depth of field, which allows more of a specimen to be in focus at 
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one time. SEM has also much higher spatial resolution, so closely spaced specimens 

can be magnified to much higher levels of about 300 thousand times. Because the 

SEM uses electromagnets rather than glass lenses, it offers more control in the 

degree of magnification. A beam of electrons with 25 keV is produced at the top of 

the microscope by an electron gun. The electron beam follows a vertical path 

through the microscope, which is held under vacuum. The beam travels through 

electromagnetic fields and lenses, which focus the beam toward the sample. Once 

the beam hits the sample, electrons and X-rays are ejected from the sample. 

Detectors collect these X-rays, backscattered electrons, and secondary electrons and 

convert them into a signal that is sent to a screen, which produces the final image. 

We used a Hitachi S-2400 Scanning Electron Microscope to image the particles. The 

sample was prepared by dispersing small amount of loosely spaced particles on top 

of the conducting silicon wafer and the particles were lightly coated with gold to 

avoid charge accumulation while imaging the particles. 

2.2.4    THERMOGRAVIMETRIC ANALYSIS (TGA) 

Thermogravimetric (TGA) analysis is used for measuring endotherms, 

exotherms, and weight loss on heating or cooling [43]. Thermogravimetric analysis 

uses heat to force reactions and physical changes in the material under 

investigation. TGA provides a quantitative measurement of the mass change in a 

system associated with reactions and thermal degradation. TGA records the change 

in mass from dehydration, decomposition, and oxidation of a sample with time and 

temperature. Characteristic thermogravimetric curves are measured for specific 
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materials and chemical compounds due to unique sequence from physicochemical 

reactions occurring over specific temperature ranges and heating rates. These 

unique characteristics are related to the molecular structure of the sample. We 

typically used 5 to 10 mg of powder sample when running TGA analyses. The TGA 

instrument used for the measurement was from Perkin Elmer. 

2.2.5    FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

Fourier transform infrared spectroscopy (FTIR) is used to identify unknown 

materials, measure the quality or consistency of a sample, and determine the 

amount of component in a mixture. In infrared spectroscopy, IR radiation of 

wavelength 25 μm  is passed through a sample. A portion of this infrared radiation 

is absorbed by the sample with the remainder passing through potassium bromide 

(KBr).  The resulting spectrum represents the molecular absorption and 

transmission [44]. This makes infrared spectroscopy useful for several types of 

analysis, including the identification of specific materials or chemical complexes. 

We used approximately 1 mg of powder sample which was mixed with about 10 mg 

of KBr powder to make a very thin pellet for infrared spectroscopy. 

2.2.6    DYNAMIC LIGHT SCATTERING (DLS) 

Dynamic Light Scattering is used to determine the hydrodynamic size of 

particles in solution. When a monochromatic beam of light, such as a laser, passes 

through a solution, Brownian motion of the particles in solution causes time 

dependent fluctuation in the intensity of scattered light. It is possible to determine 
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the size distribution for a collection of nanoparticles by finding the diffusion 

coefficient using the autocorrelation function. The autocorrelation curve can be fit 

using a single exponential function, C(τ)=Aexp(-2Γτ)+B, with Γ=Dq2 [45]. The 

diffusion coefficient, D, is related to hydrodynamic size by the relation [46],  

D = KBT/3πηd ……………………………………………………(2.4)                                                            

Where η is the viscosity of the medium and d is hydrodynamic diameter of the 

particle. Dynamic light scattering (DLS) measurements were performed using a 90 

Plus particle size analyzer from Brookhaven Instrument Corporation. The system 

typically operates at an angle of 90° and uses a laser of wavelength 632.8 nm. We 

used solutions with concentrations of about 150 μg/ml for these measurements. 

2.2.7    FLUORESCENCE CORRELATION SPECTROSCOPY (FCS) 

FCS is minimally invasive technique used to determine the concentration, 

chemical reaction rate, and diffusion coefficient of fluorescently labeled molecules 

from the fluctuation of fluorescence signal. The concentration of the molecules 

should be very low, on the order of nanomolar, so that multiple particles do not 

contribute to the measured correlation signal. A fluorescent dye, such as fluoro 

isothiocyanate (FITC), rhodamine and alexa fluor, is used to label the particles. The 

fluorescence intensity is detected from a microscopic volume of about 10-15 L defined 

by the beam of laser light. The time dependent fluorescence intensity is quantified 

in terms of temporal autocorrelation function, which is related to the diffusion 

coefficient by the relation [47], 
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 …………………………………………………..(2.5) 

with G(0) the autocorrelation at t=0, ω0 is the (half) width in lateral direction, and 

z0 is the (half) length in the axial direction of the laser focus. From the diffusion 

coefficient, we can calculate the hydrodynamic diameter of the particles using the 

relation (2.4). 

2.2.8    SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE 

(SQUID) 

A magnetometer is used to measure magnetization as a function of magnetic 

field and temperature, which gives the insight of magnetic properties of materials.  

Using a Josephson junction, a superconducting quantum interference device 

(SQUID) can measure extremely weak magnetic signals. A Josephson junction is 

made up of two superconductors, separated by thin normal layer. A direct current 

(DC) SQUID consists of two Josephson junctions in parallel so that electrons 

tunneling through the junctions demonstrate quantum interference, dependent 

upon the strength of the magnetic field within a loop. Schematic diagram of DC 

Josephson effect is shown in Fig 2.1. DC SQUIDs show a large change in response 

to even tiny variations in a magnetic field. We used both powder and liquid sample 

for the magnetic measurement. We put about 20-30 mg of powder sample into a gel 

capsule which is further packed by cotton to avoid any motion of particles inside the 

capsule. We keep this capsule inside the drinking straw at fixed distance so that the  
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Figure 2.1: Shematic diagram of DC Josephson effect. 

sample centers well during the measurement. The gel capsule is also fixed inside 

the straw by sewing with nylon thread to avoid any motion during the 

measurement. Since liquid dissolves gel capsule, we make epoxy capsule by mixing 

stycast 1266 part A and B in 100:28 ratio by weight. After curing the mixture of 

epoxy in drinking straw, we cut about 1 cm of epoxy and drill a hole to load the 

liquid sample, which is further sealed by epoxy cap to avoid any leakage of 

ferrofluid. Loading the epoxy capsule into the straw for the measurement is same as 

we do for gel capsule. 

2.2.9    PHYISCAL PROPERTY MEASUREMENT SYSTEM (PPMS) 

Physical property measurement system (Quantum Design) is a 

multifunctional device which is used for the measurement of specific heat, AC and 

DC magnetization, and electric and thermal transport in the temperature range 

from 1.8 to 400 K with magnetic fields up to 9 T. The PPMS consists of a cryostat 

unit having superconducting magnetic coil. Different sample holders can be 
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mounted in the cryostat for different measurements, which can be controlled by 

proprietary software. The PPMS can detect AC and DC signal upto 10-8 and 10-5 

emu. We used the system for different measurements including AC magnetization, 

DC magnetization, specific heat capacity, and temperature and field sweep for 

dielectric measurements. We used both liquid and solid samples for various 

characterization using PPMS. 

2.2.10   RAMAN SPECTROSCOPY 

Raman spectroscopy is the technique in which the frequency of incident 

photon of monochromatic light changes due the inelastic scattering with local modes 

in the sample. Local modes may be both phonons and magnons. Phonons are the 

quanta of vibration energy of atoms in crystal lattice whereas magnons are the 

excitation of spins wave. In case of an interaction with these local modes, the 

reemitted light can have a higher or lower frequency than the incident photon, 

which is called the Raman effect [48]. The spectrum for the energy-shifted scattered 

light gives the information about the vibrational and rotational transition in the 

molecule or phonons in the crystal. In many cases, the scattered light may not have 

also any change in frequency (elastic scattering), which is referred as Rayleigh 

scattering, which does not give information about the molecule. Raman scattering is 

non-invasive technique having very weak effect (1015 times smaller than Rayleigh 

scattering), which has very useful application in studying phase transition in 

crystal, investigating defect in crystal, measuring stress, and fingerprinting 

molecules. Since the impurities introduced into the crystal change the vibration 
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modes of phonons which is detected very well in Raman Spectrocopy and is also 

better techniques to detect defects in crystal as compared to XRD. We used solid 

samples by making the pellet to collect Raman spectra. Ar+ ion-laser (514.5 nm) 

with a Triax 550 detector was used to collect the Raman spectra. 

2.2.11 MÖSSBAUER SPECTROSCPY 

 Mössbauer spectroscopy is a technique that has been used in different area of 

Physics, Chemistry, Biology and Metallurgy and is based on the Mössbauer effect. 

When atoms are fixed in a crystal lattice, the emission and absorption of gamma 

radiation due to the transition in nuclear ground and excited state is recoil free 

because of the coupling to the entire mass of the crystal. This allows one to 

investigate the hyperfine structure of nuclear energy levels and different valence 

state of elements. Source, sample, detector and a drive to move the source or 

absorber, are the basic component in the Mössbauer spectroscopy instrument. 

Generally, source is moved toward the sample to shift the energy level. For 

example, 57Fe source moving toward a sample with a velocity of 1 mm/sec increases 

the emitted photon by ten natural linewidths. Mössbauer spectra are described by 

the isomer shift (δ), quadrupole splitting (Δ) and hyperfine splitting. The isomer 

shift is related to the difference in energy of absorber and source, which arises from 

the difference in electron density at the nucleus. Quadrupole splitting is caused by 

the interaction between the nuclear quadrupole moment and electric field gradient 

produced by nearby electron.  This results the splitting of individual peak into 

doublet in the absorption spectrum. The isomer shift moves the resonance 
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absorption away from zero velocity while the quadrupole splitting introduces a 

separation between the two component peaks of the absorption doublet. Isomer shift 

and qudrupole splitting are generally evaluated with respect to reference material. 

In magnetic materials, due to the presence of magnetic field at nucleus, hyperfine 

splitting occurs and produces sextet pattern, as the hyperfine energy levels depend 

on the quantum numbers of the Fe ions. The combination of isomer shift, 

quadrupole splitting and hyperfine field is sufficient to provide information about 

site occupancy and valence state of Fe atom. Since Mössbauer parameters are 

temperature sensitive, measurements at lower temperatures can provide better 

peak resolution. We used a solid sample of about 70 mg to obtain the Mössbauer 

spectra at 78 and 300 K as described in section 3.3.1. 
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CHAPTER 3 

PHYSICAL PROPERTIES OF NANOPARTICLES IN 

SOLUTION 

3.1 INTRODUCTION 

 Because superparamagnetic iron oxide nanoparticles have potential 

technological [49] and biomedical [1] applications, it is of great importance to 

understand the static and dynamic magnetic behavior of these nanoparticles 

dispersed in carrier liquid. To make iron oxide nanoparticles well dispersed in 

solution, the surface of these nanoparticles needs to be sterically stabilized by 

coating with a suitable organic or inorganic surfactant. The hydrodynamic size, 

which is the size of core and surfactant layer together, plays an important role for 

biomedical applications of these nanoparticles. The hydrodynamic size of the coated 

nanoparticles is typically determined by estimating the diffusion constant of the 

system in solution and then relating this to the particle size through the Stokes 

Einstein relation [50]. A number of techniques, including dynamical light scattering 

(DLS) and fluorescence correlation spectroscopy (FCS) can be used to determine the 

diffusion constant in solution [51,52]. Other approaches can also be used to estimate 

the hydrodynamic size, including using magnetic susceptibility to measure the 

relaxation time in a particular solvent [53].  All of these techniques consider only 

single particle effects, since the threshold concentration for changes in the effective 
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viscosity is larger than that typically considered in ferrofluids [54].  This also 

assumes that magnetic interactions can be neglected, which is reasonable as dipolar 

interactions will be very weak for dilute solutions.  

In some previous studies, the hydrodynamic diameter estimated using DLS 

significantly exceeds the expected size. A factor of two difference was found between 

the hydrodynamic diameter of octadecyltrichlorosilane coated nanoparticles 

determined using DLS measurements, approximately 90 nm, and the diameter 

estimated from atomic force microscopy studies, 54 nm, with the difference being 

attributed at least in part to solvents [55]. In another study, 10 nm magnetite 

nanoparticles coated with polydimethylsiloxane were found to have a diameter of 53 

nm using DLS, while theoretical calculations based on chain extension predict a 

size of 28 nm [56]. These results have important implications for measurements of 

particle size, as having accurate particle size information is crucial for determining 

the suitability of different polymer coated nanoparticles for specific applications.  In 

order to address this point, we have measured the hydrodynamic diameter of Fe3O4 

nanoparticles coated with a monolayer of dextran in solution using different 

techniques and compared these results together with other estimates for the 

particle sizes.   

 Since the surfactant coating also changes charge, functionality, reactivity of 

the nanoparticles, and can enhance the stability and dispersion of nanopaticles in 

carrier liquid, it is also important to investigate other effects of surfactant coatings 

including magnetohydrodynamic response. Surface coating with dextran [57], 
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deoxyribonucleic acid (DNA) [58], yeast alcohol dehydrogenase (YADH) [59], 

polyethyleneglyocol (PEG) [60], silica [61], polyvinyl alcohol (PVA) [62], heparin 

[63], phospholipids [64] and alkyl phosphonate/phosphate [65] on iron oxide 

nanoparticles can improve their biocompatibility for in-vivo applications. Numerous 

investigations have been reported on the effects of surface coatings on the magnetic 

properties of the nanoparticles. Fu et al [66] found no significant effect on the 

coercivity or blocking temperature of Fe3O4 nanoparticles coated with lauric acid or 

decanoic acid. However, for 6 nm Fe3O4 nanoparticles coated with gold [67], the 

blocking temperature increased from 80 K to ~130 K when the particles were coated 

with methoxypolyethylene glycol (MPEG). The difference in the blocking 

temperature was attributed to the interaction between the iron oxide nanoparticles 

and the polymer coating.  

The saturation magnetization of Fe3O4 nanoparticles coated with oleic acid 

can exhibit an anomalous temperature dependence, believed to be caused by the 

modification of the superexchange interaction between the iron ions from the 

surface layer of the nanoparticles in presence of the surfactant [68,69]. There has, 

however, been limited work on investigating the effects of the surface coating 

thickness on the magnetohydrodynamic and Brownian relaxation mechanism of 

magnetic nanoparticles. In one recent study, Vekas et al [70] have examined the 

stability of magnetite nanoparticles coated with surfactants of different chain 

lengths, such as lauric acid, myristic acid, dodecyclbenzene sulphonic acid, and oleic 

acid dispersed in transformer oil and water.  It was found that the oleic acid 
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surfactant with 18 carbon atoms and a double bond was more effective in producing 

a stable dispersion than the shorter chain length surfactants such as lauric acid (12 

carbon atoms) and myristic acid (14 carbon atoms). The thickness of the surfactant 

molecules will modify the hydrodynamic radius of the nanoparticles, and is expected 

to play an important role in determining the ac magnetic response of the system.  

The loss component of the magnetic susceptibility in ferrofluids depends strongly on 

both Brownian relaxation, with the entire nanoparticle rotating in the carrier 

liquid, and on Néel relaxation, with the magnetic moment of the nanoparticle 

reversing direction with no physical rotation of the nanoparticle. These relaxation 

mechanisms depend on the size of the magnetic nanoparticles (Néel) or on the 

hydrodynamic size of the coated nanoparticles (Brownian).  Additionally, the 

magnetohydrodynamic response of ferrofluids to external dc magnetic fields, which 

leads to chain formation, depends strongly on both the size of the magnetic 

nanoparticle core as well as the overall hydrodynamic size.  

Within this framework, preparing nominally identical Fe3O4 nanoparticles 

coated with surfactants having different chain lengths would allow the effects of 

Brownian relaxation to be distinguished from the effects of Néel relaxation. The 

similar Fe3O4 core size would ensure similar Néel relaxation behavior, while the 

Brownian relaxation, which depends on hydrodynamic radius, would lead to a 

different ac magnetic response in the nanoparticles. With these motivations in 

mind, we studied magnetohydrodynamic response of luaric acid (LA), myristic acid 
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(MA) and oleic acid (OA) coated Fe3O4 nanoparticles in the presence of both AC and 

DC magnetic field. 

Another interesting property of magnetic nanoparticles in solution is that 

they produce heat in the presence of alternating magnetic field through Néel and 

Brownian relaxation, which is referred as magnetic hyperthermia. While majority of 

studies on magnetic nanoparticle hyperthermia have been targeting biomedical 

applications [71-74], as heating neoplastic cells to 41-45 oC can produce the 

preferential death of cancer cells, there are a number of other intriguing 

possibilities, including magnetically controlled curing of epoxies [75] and the 

selective heating of nanoparticles for catalysts in synthesis reactions [76].  

Furthermore, the mechanisms expected to contribute to magnetic heating have 

well-defined temperature dependences, so it is important to experimentally 

investigate temperature dependent magnetic hyperthermia in order to test these 

specific models.  

The relaxation of nanoparticle magnetic moments in a liquid ferrofluid, 

responsible for heat generation in magnetic nanoparticles exposed to ac magnetic 

field, occurs through two primary mechanisms; Néel and Brownian relaxation. Both 

of these relaxation mechanisms occur concurrently, but independently, in liquid 

suspensions of nanoparticles, but only Néel relaxation persists for nanoparticles 

embedded in a rigid matrix, including a frozen solid. A number of studies have 

explored the Néel and Brownian relaxation mechanisms near room temperature by 

studying the magnetic response for nanoparticles samples in liquid and solid 
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matrices [77-79]. Typically, the Néel relaxation is investigated by restricting 

Brownian relaxation using epoxy, wax, or similar agent to eliminate nanoparticle 

motion. While there is considerable interest in understanding the details of 

magnetic hyperthermia in nanoparticles, the majority of studies, both theoretical 

and experimental, have focused on exploring the dependence of magnetic heating on 

particle size [80,81] and frequency [82].  Rosensweig has theoretically investigated 

the heating rate as a function of both particle size and viscosity in great detail [80], 

while Seehra and coworkers have demonstrated that the magnetic susceptibility of 

3 nm and 9 nm FePt nanoparticles, directly affecting the magnetic heating, depends 

strongly on particle size [81].  Studies by Lacroix and co-authors on FeCo 

nanoparticles on magnetic losses in the frequency range from 2 kHz to 100 kHz 

have explored the frequency dependence of the magnetic heating [82].   

Our investigations on the temperature dependence of the magnetic heating 

complement these earlier studies, and provide an additional check on the 

underlying validity of the magnetic relaxation models.  These studies are 

particularly relevant given the recent interest in testing the range of validity for the 

Néel relaxation model [83]. Our work aims to explore the effects of magnetic 

hyperthermia on frozen ferrofluids and to investigate the temperature dependence 

of the Néel, present in both the solid and liquid states, and Brownian, present in 

only the liquid state, relaxation mechanisms. 
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3.2 DEXTRAN COATED IRON OXIDE NANOPARTICLES 

Dextran is a long chain polysaccharide made up of glucose units. The 

molecular weight of dextran varies from 1 kDa to 2000 kDa. Dextran is neutral, 

easily soluble in water, stable, biocompatible, and biodegradable. It can be 

functionalized with many charged groups, such as amine and carboxylic groups to 

attach biological entities including drugs, fluorescent dyes, and peptides. Dextran is 

used clinically for replacing lost blood, plasma substitution, as a volume expander 

in anemia, in solutions for storing organs for transplantation, and as a carrier for 

vaccines, among other applications [84]. Dextran is also used as a starting and 

intermediate reagent for the wide range of synthesis in biotechnological and 

technical industries, including in the photographic industry to improve the quality 

of silver emulsions of photograph. Because of biocompatibility, ease of 

functionalization, freedom to choose different molecular weight, and wide ranges of 

applications, we chose dextran to coat the iron oxide nanoparticles. These dextran 

coated nanoparticles were used to determine the hydrodynamic size by different 

techniques, such as, dynamic light scattering (DLS), fluorescent correlation 

spectroscopy (FCS) and AC magnetization measurements. This allowed us to 

investigate which technique of determining hydrodynamic size gives theoretically 

expected hydrodynamic size. We also used the dextran coated nanoparticles to 

investigate the magnetic heating in both frozen and liquid ferrofluid to investigate 

the behavior of magnetic heating with temperature. 
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3.2.1    EXPERIMENTAL DETAILS 

Dextran coated iron oxide nanoparticles were synthesized as described in 

section 2.1.3. We used different chain lengths of dextran, 5 kDa, 15-20 kDa, 60-90 

kDa and 670 kDa, to coat the iron oxide nanoparticles and dispersed these dextran 

coated iron oxide nanoparticles in 0.5 M NaOH. The crystalline structure and size of 

the iron oxide nanoparticles was determined from X-ray diffraction patterns 

collected using Cu Kα radiation on a Rigaku Ru2000 rotating anode diffractometer. 

Transmission electron microscope (TEM) images were also taken using a JOEL HR 

TEM 2010 operating at 200 kV to confirm the core size of the nanoparticles. 

Dynamic light scattering on a 90 Plus particle size analyzer from Brookhaven 

Instrument Corporation was used to estimate the hydrodynamic size of the 

nanoparticles. For the FCS measurement, 15-20 kDa dextran coated iron oxide was 

crosslinked with epichlorohydrin, aminated and labeled with fluorescein 

isothiocyanate (FITC) as described in section 2.1.4. For the hyperthermia 

measurements, we used the set up shown in Figure 3.1. This hyperthermia 

apparatus, shown in figure 3.1, consists of a parallel LC tank circuit, with a 

capacitor having a capacitance of 0.02 μF and coil made from 1/8”  Cu tubing having 

an inductance of 8 μH. Though the current passing into and out of the tank circuit 

is small, the current inside the parallel LC circuit is high because of the reactive 

current, which is an advantage of this configuration as compared to a simple series 

LC circuit. Since the current coming out of the system is small because of the 
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cancellation of the reactive current passing in opposite directions through the 

inductor and capacitor, it also avoids the use of a high power resistance and larger 

 

                       Figure 3.1: Magnetic hyperthermia set-up. 

heat sink as required for a series LC circuit. Since the magnetic field is directly 

proportional to the current flowing through the coil, higher currents gives higher 

magnetic fields, which are desirable for most applications.  

We used the RF generator model CLX-2750 from COMDEL, which can 

deliver a power of 2500 W. We used only 200 W of delivered power, which gave a 

current of roughly 18 A through the coil, which was measured using the mutual 

inductance to a separate pick-up coil, producing an alternating magnetic field of 70 

Oe. If the circuit is not in resonance, the amplifier is unable deliver the required 

power because of the impedance mismatch. In order for the tank circuit to be on 
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resonance, we had to connect the power supply to the proper tapping point on the 

coil, as illustrated in Figure 3.1. The circuit was in resonance at about 395 kHz, 

which was the operating frequency for the hyperthermia measurements discussed 

in this work. Since a relatively high current was passing through the coil, we used a 

small pump to flow water continuously through the copper tubing to provide cooling. 

This also served to minimize possible radiative heat transfer from the coil to the 

sample. For the hyperthermia measurements on frozen and liquid ferrofluid, we 

used 10 ml of ferrofluid in a plastic vial having a diameter and height of about 2 

inches. The vial was also insulated with cotton padding and styrofoam to minimize 

the heat exchange with environment. We used liquid nitrogen to freeze the sample, 

but started measurements only at– 45 oC. The sample was kept inside the coil and 

rise in temperature of the ferrofluid in the presence of alternating magnetic field 

was measured by IR thermometer from Extech Instruments.  This thermometer was 

positioned to ensure that the beam area covered the largest possible fraction of the 

top surface of the sample, without impinging on the walls of the container.  In 

practice, this corresponded to a distance of approximately 8.5” above the sample. 

3.2.2    RESULTS AND DISSCUSSIONS 

The results of the structural and magnetic characterizations on the  dextran coated 

iron oxide nanoparticles are shown in Fig 3.2. Figs 3.2 a, b, c and d show the X-ray 

diffraction patterns, TEM images, thermogravimetric analysis (TGA) curve and the 

room temperature magnetization curve of the dextran coated Fe3O4 nanoparticles 
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respectively. From TEM images, diameter of the iron oxide nanoparticles is 12 nm 

with standard deviation of 2 nm . 
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Figure 3.2: (a) X-ray diffraction spectrum of freeze dried 15-20 kDa dextran Fe3O4 

(b) TEM images of 15-20 kDa dextran coated Fe3O4 nanoparticls (c) 

Thermogravimetric analysis data for the 15-20 kDa and 60-90 kDa molecular mass 

dextran coated nanoparticles and (d) room temperature M(H) curve of 15-20 kDa 

dextran dextran coated Fe3O4 ferrofluid. 

Thermogravimetric analysis (TGA) on 15-20 kDa and 60-90 kDa dextran coated 

samples showed single step sharp drop in weight close to 770 oC and 730 oC 

respectively, providing evidence that there is a monolayer coating on these samples 
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[85]. Previous reports suggest that two sharp transitions should be seen in TGA for 

bilayer polymer coatings [86]. There was a weight loss of 45 % and 50% for the 15 - 

20 kDa and 60 – 90 kDa dextran coated sample respectively, consistent with the 

lower molecular mass polymer making a smaller contribution to the total mass of 

the composite.  We also expect the geometry of these polymer coated nanoparticles 

to depend on the molecular mass of the coating. The XRD peaks can be fully indexed 

to the Fe3O4 crystal structure, with no evidence for impurity phases. Transmission 

electron microscopy images show the core. Since lower molecular weight dextran, up 

to approximately 10 kDa, is known to extend linearly in solution while higher 

molecular weight dextran is coiled [87], the geometry of lower and higher molecular 

weight dextran coated sample are expected to differ. These nanoparticles have 

single valued M (H) curves at room temperature and exhibit separation between 

ZFC and FC curves with a peak in the FC magnetization curve, showing they are 

superparamagnetic. The saturation magnetization of these nanoparticles is about 

61 emu/g of Fe3O4.  This is smaller than the saturation magnetization for bulk 

Fe3O4, 93 emu/g, but consistent with other studies on iron oxide nanoparticles, 

which typically show smaller magnetizations than bulk [88].  

   Since the hydrodynamic size of the nanoparticles is crucial for both magnetic  

heating as well as biomedical application, we determined hydrodynamic size of 

different chain length dextran coated sample using a number of different  

techniques including dynamic light scattering (DLS), AC magnetization, and 

fluorescent correlation spectroscopy (FCS). For dynamic light scattering, to give 
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enough scattering of light but avoid the agglomeration of nanoparticles, we diluted 

the original solution by 1:250, giving a volume fraction of nanoparticles ϕ=0.2% in 

the solution.  
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Figure 3.3 (a) Autocorrelation curve measured using DLS for 5 kDa dextran coated 

sample.   The dashed line is the fit to an exponential function having a single 

exponent. (b) Imaginary part of the ac magnetic susceptibility as a function of 

frequency for the different chain length dextran coated sample. The arrow indicates 

the peak in magnetic relaxation associated with Brownian relaxation. (c) 

Representative correlation curve measured for a 15-20 kDa dextran coated 

nanoparticle measured using FCS. (d) Histogram showing the frequency 

distribution of nanoparticle sizes using repeated FCS measurements. 
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The DLS system was calibrated before doing the measurement by using polystyrene 

beads of know size of about 10 nm suspended in water. This helped to to rule out 

any possibility of instrumental error. A representative curve for the 5 kDa dextran 

coated sample, with DLS data and fit of single exponential function, C(τ)=Aexp(-

2Γτ)+B, where Γ=Dq2, is shown in Fig 3.3a. This autocorrelation curve fit, using a 

refractive index 1.34 for the 0.5 M NaOH solution [89], gives the diffusion constant 

D.  From this, we calculated the hydrodynamic diameter of the nanoparticles using 

the Stokes-Einstein equation  [90]: 

 

D
kBT

3d
 ………………………………………………………….(3.1) 

This considered a viscosity of η=0.96 cp, for the NaOH solution at room 

temperature, T=298 K.  We found the hydrodynamic diameter of 5 kDa dextran 

coated sample to be 91 nm. Similar analysis on higher chain length dextran coated 

sample gave sizes up to 132 nm. The DLS sizes for different chain length dextran 

coated sample are shown in Fig. 3.4, which also includes the sizes estimated using 

different techniques, as discussed in the following. Because the relaxation rate for 

particles depends on the hydrodynamic radius, the size of magnetic nanoparticles 

can also be indirectly determined from the magnetic loss.  For these AC magnetic 

susceptibility measurement, we sealed 37 mm3 of as-prepared solution in epoxy 

capsules for each of the different chain length dextran coated samples, and 

measured the out of phase component of the magnetic response as function of 
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frequency at room temperature, using Quantum Design PPMS equipped with the 

ACMS option. These curves are shown in Fig 3.3b. 
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Figure 3.4. Hydrodynamic size for the dextran coated nanoparticles as determined 

using dynamical light scattering  (DLS) and ac magnetic susceptibility 

measurements  (ACMS) as a function of the molecular weight of dextran.  The 

fluorescence correlation spectroscopy (FCS) measurement on the single 

representative 15-20 kDa dextran coated nanoparticle sample is shown as the open 

star for comparison.  The solid lines show a decaying exponential fit to the data.    

The relaxation peak corresponding to Brownian relaxation, where ωτB=1, is shown 

by arrow. Brownian relaxation is related with the hydrodynamic size of the 

nanoparticles by following relation: 



B 
d3

2kBT
 ……………………………………………………………(3.2) 

Again, using the viscosity of 0.5 M NaOH, η = 0.96, we found a hydrodynamic 

diameter of 105 nm to 132 nm for 5 kDa to 670 kDa dextran coated sample 
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respectively, consistent with the size obtained from DLS measurement. These 

values are also potted in Fig 3.4. 

As a final check on the hydrodynamic size of the nanoparticles, we did  FCS 

measurement on the FITC labeled 15-20 kDa dextran coated sample, with volume 

fraction of ϕ=0.004%.  This is 50 times more dilute than the sample used for DLS 

and magnetization measurement.  We require such dilute solutions for FCS studies 

to ensure that only a single nanoparticles is in the focus of the laser. A 

representative curve of autocorrelation function, G() as a function of time ()  is 

shown in Fig. 3.3 (c). We fit these data to the equation [47]: 

2/1)2
081)(2

081(

)0(
)(

zDD

G
G





  ………………………………………..(3.3) 

We note that the autocorrelation function is related to the diffusion coefficient D, 

which in turn depends on the hydrodynamic size of the nanoparticle. In equation 

(3.3), G(0) is the autocorrelation at τ=0, ω0 is the (half) width in lateral direction, 

and z0 is the (half) length in the axial direction of the laser focus. We estimated ω0  

0.45 m and z0  2 m by a calibration experiment using the well-studied dye 

rhodamine 6G, whose diffusion coefficient is known to be 280x10-12 m2/s in water. 

From our fit, D, is 7.7 μm2/s for the 15-20 kDa dextran coated nanoparticles and we 

calculated hydrodynamic diameter this sample to be 57 nm using equation (3.1). We 

also repeated the measurement several times and have plotted the statistical 

distribution of size of nanoparticles as a histogram in Fig 3.3 (d). This size 

distribution implies majority of the size of 15-20 kDa dextran coated sample lies 
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within the range of  55 ± 5 nm. The size from FCS measurement is also plotted in 

Fig 3.4 along with size from DLS and magnetic measurements. 

 The size from DLS and magnetic measurement as a function of molecular 

weight can be fit to the decaying exponential, y = A[exp(-x/B)]+C, shown by solid 

line in Fig 3.4. Studies on pure dextran in solution show the diameter of the coiled 

polymer increases rapidly with molecular mass to 10 kDa then increases more 

slowly with a further increase in molecular weight [87].  Thus, this shallow increase 

in hydrodynamic size for nanoparticles samples coated with higher molecular mass 

dextran is consistent with results on pure dextran. However, while the 

hydrodynamic size determined using DLS and magnetic measurements 

approximately follow the functional form expected for dextran, the magnitude of 

hydrodynamic diameter differs greatly from what is expected based on physical 

considerations. Since the chain length of 5 kDa dextran in solution is 18 nm [87], 

the hydrodynamic diameter of iron oxide nanoparticles of core diameter 12 nm 

coated with a monolayer of 5 kDa dextran should be 48 nm.  This is a factor of two 

smaller than the size obtained from DLS and magnetic measurement, and well 

outside the expected uncertainties for these characterization techniques. Similarly, 

the diameter of 20 kDa dextran in solution is 22 nm [87], so the size of the12 nm 

iron oxide nanoparticle coated with a monolayer 15-20 kDa molecular mass dextran 

should be approximately 56 nm, again about a factor of two smaller than measured 

using DLS.  



57 
 

 
 

We find, however, much better agreement between the hydrodynamic size 

measured using FCS and the size expected from such physical considerations. The 

diameter for the 15-20 kDa coated nanoparticles is approximately 55 +/- 5 nm, 

which is completely consistent with the expected size of 56 nm found by combining 

the independently measured sizes for the iron oxide nanoparticles and dextran in 

solution. Since the DLS unit was properly calibrated before the measurement, and 

the results are consistent with the independent magnetic measurements, we believe 

that the anomalously large size obtained from DLS not due to any instrumental 

error. Furthermore, the discrepancy is not due to the well-known dependence of 

viscosity on volume fraction [91] since for a factor of two error in size, the volume 

fraction should be two orders of magnitude greater than that we used (ϕ=0.2%) for 

these DLS measurement. Similar discrepancies in size have been also observed in 

previous studies using DLS to size polymer coated nanoparticles in solution, 

although the origin of this difference has not been discussed [55,56]. Considering 

our results, we suggest that for polymer coated iron oxide nanoparticles samples, 

FCS yields the accurate hydrodynamic size while DLS may overestimate the size by 

the factor of two.  

We did magnetic hyperthermia measurement on a ferrofluid with 15-20 kDa 

dextran coated iron oxide. The ferrofluid was heated in the presence of an 

alternating magnetic field of 70 Oe from -45 to 45 oC in 2000 s and the rise in 

temperature was measured as a function of time, which is plotted in Fig 3.5a.  

Plateau feature seen in the Fig 3.5a is associated with the melting of frozen 
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ferrofluid. Rise in temperature of ferrofluid was affected by both ambient and 

magnetic heating. We also measured the rise in temperature of the ferrofluid as a 

function of time without applying magnetic field, which is plotted in Fig 3.5b in 

different time scale along with the result of Fig 3.5a for comparison. Time taken by 

ferrofluid at the melting phase due to ambient heating alone is about six times 

larger as compared to that the time taken due to ambient and magnetic heating. We 

also let the ferrofluid cool under ambient condition after heating it magnetically 

from room temperature to 40 oC to estimate the contribution of ambient heat loss in 

it. This is shown in Inset of Fig 3.5b. The temperature of ferrofluid as a function of 

time in the absence of magnetic field allows us to calculate the ambient heat 

exchange with ferrofluid. 

          

Figure 3.5: Temperature versus time for the ferrofluid heated magnetically from -45 

to 45 oC (dark curve) and due to ambient heating from -45 oC to room temperature 

(gray curve). (a) with magnetic field (b) with and without a magnetic field. Inset: 

Thermal relaxation in a ferrofluid heated to +45 oC and allowed to cool to room 

temperature in zero applied magnetic field. 

We first calculated the ambient heat transfer on frozen ferrofluid assuming 

that the heat transfer is radiative rather than ambient. We also assumed that the 
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temperature is uniform throughout the sample. The heating equation for the 

sample is given by: 

 
  …………………………………………………………..(3.4) 

Here M, C and T are the mass,  specific heat  and temperature of the frozen sample, 

respectively. The Second term in equation (3.4) represents the radiative heat 

transfer from room temperature (TR) to the sample.  is the Stefan-Boltzmann 

constant, A is the total area of the sample surface (4x10-3 m2) and  is the 

emissivity, which is equatl to 0.98. We solved the equation (3.4) and obtained the 

transcendental equation for T as:  

   …………………… (3.5) 

Where Ti is the temperature of the sample at t = 0. We fitted this equation to the 

ambient heating data of Fig 3.5b by taking Ti = 228 K, TR = 295 K and specific heat 

capacity ice as a function of temperature. The fit (solid line) with data is shown in 

Fig 3.6a. Since the fit agrees with experimental data, it implies that there is 

radiative heat transfer in frozen ferrofluid. We calculated the magnetic heating 

power by subtracting ambient heating power in frozen ferrofluid obtained from Fig 

3.6 a and plotted as a function of temperature in Fig 3.6b. The magnetic heating 

shows clear temperature dependence. In the frozen ferrofluid, only Néel heating 

contributes since the particles are fixed and Brownian relaxation is absent. We 
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fitted the magnetic heating power in frozen ferrofluid with theoretical power 

contributed by Néel 

 

    

Figure 3.6: (a) Ambient heating from -40 to -10 oC (open circle) and fit to equation 

3.5 (solid line) (b) Magnetic heating after subtracting background in frozen 

ferrofluid (open circle); solid line – theoretical Néel heating, dashed line – 

theoretical Néel heating at slightly lower τ0 and higher K as compared to the values 

obtained from solid line fit. 

relaxation only by taking o =1.1x10-9 s, a magnetocrystalline anisotropy of 

K=31x103 kJ m-3, and a magnetic core size of 12 nm. With the selection of these 

parameters, theoretical Néel heating power fit very well with the experimental 

data. However, the fit is very sensitive with the selection of these parameters since 

the slight change of these parameters lead to different power, which is shown in Fig 

3.6b for the slightly lower value of o and higher value of K. Ambient heating at low 

temperature in frozen ferrofluid is described very well by the radiative heat 

transfer. However, at the melting phase, where latent heat of melting is associated, 

(a) 

(b) 
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and above melting phase, where convective heat transfer may be dominant, we 

couldn‟t fit equation (3.5). 

We have plotted experimental zero field (open circle) and field applied (closed 

triangle) heating data in Fig 3.7a. Thes data were obtained by taking the derivative 

of experimental data, temperature versus time, and multiplying dT/dt by the heat 

capacity and mass of the sample. For the frozen ferrofluid, we took the heat capacity 

of ice as 2108 Jkg-1oC-1 and for liquid ferrofluid, we took heat capacity of of water as 

4187 Jkg-1oC-1. The mass of ferrofluid was 10 g. As expected, zero field power 

decreases with increasing temperature and becomes zero at room temperature. 

Also, the power is positive below room temperature and negative above room 

temperature indicating heat gain and loss by the sample below and above room 

temperature respectively. Field applied heating data shows higher power as 

compared to zero field heating due to the presence of additional heating caused by 

Néel and Brownian relaxation. Since we are unable to calculate the fraction of ice 

remaining as a function of temperature, we haven‟t calculated the power at the 

range of -2.5 to 2.5 oC. We have also calculated the magnetic heating power on 

frozen ferrofluid and liquid ferrofluid by using polynomial fits to model the data. 

Both zero field and field applied data on Fig 3.5b were fitted with polynomial and 

power of heating was calculated as mentioned for Fig 3.7 a. After subtracting the 

ambient power, only magnetic heating has been plotted in Fig 3.7b. In the frozen 

ferrofluid, the magnetic heating, which is due to only Néel relaxation, increases 

with increase in temperature upto approximately -15 oC, consistent with Fig 3.6 b. 
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The magnetic heating in liquid ferrofluid is greater than that in frozen ferrofluid, 

which is due to presence additional Brownian relaxation in liquid ferrofluid. 

However, the magnetic heating in liquid ferrofluid varies from 8 W/g near 10 oC to 

 

Figure 3.7: (a) Experimental heating power for ferrofluid with (closed triangle) and 

without (open circle) magnetic field. No background correction. (b) Magnetic heating 

power of ferrofluid after doing background correction using polynomial fit. Open 

square is the magnetic heating power at 0 oC. 

just about 5 W/g at 40 oC. This decrease in magnetic heating in liquid ferrofluid is 

due to the temperature dependence of Néel and Brownian relaxation and also 

change in viscosity with temperature. We also calculated magnetic heating power at 

(a) 

(b) 
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0 oC by considering all the ferrofluid melted at 0 oC and is shown as a large square 

in Fig 3.7b. 

 3.2.3    CONCLUSIONS 

We synthesized iron oxide nanoparticles coated with dextran having 

molecular weights of 5 kDa, 15-20 kDa, 60-90 kDa and 670 kDa. Their 

hydrodynamic size was measured using DLS, AC magnetization and FCS 

measurement. DLS and magnetic measurement gave sizes ranging from 90 to 140 

nm, which is a factor of two larger than the size expected on the basis of physical 

consideration. FCS measurement on 15-20 kDa dextran coated sample gave a 

hydrodynamic diameter of about 55 nm, which is close to the expected value. We 

conclude that FCS measurement provide a more accurate estimate of particle size in 

dilute solutions than DLS and magnetic measurement. It is important to obtain 

accurate size of nanoparticles since there are many biomedical application where 

the size of nanoaprticles play a crucial role [92,93]. 

We did the magnetic hyperthermia measurement on ferrofluid from frozen 

state to liquid state and calculated power produced by Néel heating alone in frozen 

ferrofluid, and due to Néel and Brownian heating in liquid ferrofluid on the same 

sample. We found that ambient heating in frozen ferrofluid can be modeled by 

radiative heat transfer. We determined temperature dependent Néel heating in 

frozen ferrofluid, maximum magnetic heating in melting ferrofluid, and 

temperature dependent Néel and Brownian heating in liquid phase of ferrofluid. .   
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3.3 FATTY ACIDS COATED IRON OXIDE  

NANOPARTICLES 

Fatty acids are carboxylic acid with long chains of hydrocarbon. Their chain 

lengths vary from 10 – 30 carbons. There are two types of fatty acids: saturated and 

unsaturated. Fatty acids having only single bonds between carbon atoms are called 

saturated since they are saturated with hydrogen and include lauric acid, myristic 

acid, palmitic acid, and stearic acid, among others. Fatty acids with one or more 

double bond between carbon atoms are referred as unsaturated since they need 

hydrogen to saturate. Unsaturated fatty acids include oleic acid, erucic acid, 

sapienic acid, and elaidic acid, among others. Unsaturated fatty acids have two 

configuration, namely, cis and trans. In cis configuration, two adjacent hydrogen 

aotms are on the same side of the double bond and offer flexibility to the chain 

whereas in trans configuration two hydrogen atoms are on opposite side of the 

double bond, which make the chain rigid. Fatty acids are not highly soluble in water 

and this limited solubility decreases with an increase in chain length. Since fatty 

acids are non polar, they dissolve readily in organic solvents such as cyclohexane, 

benzene, chloroform, and toluene. Fatty acids play an important role in many 

metabolic functions, such as moving oxygen through the bloodstream, assisting the 

function and development of cell membranes, and preventing early aging among 

others. Because of the many biomedical applications of fatty acids, we chose lauric 
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acid, myristic acid, and oleic acid to coat iron oxide nanoparticles and studied the 

magneto hydrodynamic properties of these nanocomposites. 

3.3.1    EXPERIMENTAL DETAILS 

We synthesized lauric acid (LA), myristic acid (MA) and oleic acid (OA) 

coated iron oxide nanoparticles as described in section 2.1.2. X-ray diffraction 

pattern of fatty acids coated iron oxide were taken using Cu Kα radiation on a 

Rigaku Ru2000 rotating anode diffractometer to confirm the crystal structure of 

nanoparticles. TEM images were taken using JOEL HR TEM 2010, operated at 200 

kV, to get the core size of nanoparticles. Dynamic light scattering (DLS) 

measurements were performed to determine the hydrodynamic size of LA, MA and 

OA coated iron oxide nanoparticles dispersed in cyclohexane. These DLS 

measurement used a 632.8 nm He-Ne laser with the scattered light collected at 90o. 

A 128-channel counter with 60 μs bin size was used to determine the correlation 

function, which can determine particles size down to 10 nm.  

We used a Quantum Design Superconducting Quantum Interference Device 

(SQUID) to measure the DC magnetization as a function of temperature and 

magnetic field, while the AC magnetization was measured using a standard option 

in a Quantum Design Physical Property Measurement System (PPMS). For the 

magnetic measurements, we used 30 mg of powder sample mounted in a gelatin 

capsule and the sample was pressed with cotton to avoid any motion during the 

measurement. We used slightly different set-up for the magnetic hyperthermia than 
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the version presented section 3.2.1. These measurements used a 5 cm long coil with 

80 turns. The current passing through the coil was 15 A at a frequency of 100 kHz, 

which produced an alternating magnetic field of 300 Oe. 

The Mössbauer spectra were collected in the transmission geometry using 

both sides of a (Wissel) transducer coupled to cobalt 57 in Rh matrix sources of 

about 50 mCi (29 Oct. 2007) or approximately 13 mCi at the time of the 

measurements, and 256 channels of multichannel analyzers. A thin iron foil was 

used for the velocity calibration and the linearity verification. Janis VT series 

Cryostat was used to collect the Mössbauer spectra at 78 K. Approximately 70 mg of 

the sample were uniformly distributed in a Teflon circular cell of 1.7 cm diameter 

for the Mössbauer measurement. The isomer shift values are reported with 

reference to iron and the spectra were least square fitted with MossWin program.    

For magneto-optic measurements, 0.4 ml of liquid ferrofluid in a standard 

quartz suprasil spectrophotometer cuvette having a 1 mm path length was placed 

between a pair of water-cooled Helmholtz coils, which could produce a DC magnetic 

field of 400 Oe. A He-Ne laser beam (λ = 632.8 nm) of power 10 mW was 

transmitted through the sample perpendicular and parallel to the applied field and 

the scattered light patterns were collected on a 220 mm x 220 mm translucent 

screen placed at distance of 500 mm from the sample. The time dependent images of 

field induced scattering patterns on the screen were taken and analyzed by image 

analysis software to produce 2D map of scattered light intensity. 
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3.3.2    RESULTS AND DISCUSSIONS 

X-ray diffraction patterns of LA, MA and OA coated iron oxide nanoparticles 

are shown in Figs 3.8 a, b and c respectively. All the peaks can be labeled to the  

 

Figure 3.8. XRD patterns for (a) lauric acid (LA), (b) myristic acid (MA), and (c) oleic 

acid (OA) coated Fe3O4 nanoparticles. Taken from R. Regmi et al., J. Appl. Phys. 
106, 113902 (2009).   

Bragg reflections expected for Fe3O4. We also calculated the size of 

nanoparticles from the most intense peak, the (311) reflection, using the Debye 

Scherrer equation, d=(0.9λ)/βcosθ, where β is the full width half maximum (FWHM) 

of the peak. This yielded values of 12.3, 11 and 10.5 nm for the crystallite size for 
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LA, MA and OA coated samples respectively. We also calculated the size of the 

nanoparticles from two more intense peaks, (440) and (333), and found an 

uncertainty of approximately 2 nm on the size of nanoparticles. TEM images of LA, 

MA and OA coated iron oxides are shown in Figs 3.9a, b and c respectively. We 

measured the size of many nanoparticles manually to plot the histogram, which was 

fitted by a log normal distribution, shown in the inset of Fig 3.9a, b and c for 

corresponding particles. All the nanoparticles were about 12 nm with a standard 

deviation of 2 to 3 nm. The sizes of nanoparticles along with standard deviation are 

given in Table I. 

 

Figure 3.9. TEM images for (a) lauric acid, (b) myristic acid, and (c) oleic acid coated 

Fe3O4 nanoparticles.  For all images the scale bar shows a length of 100 nm.  The 

insets show a histogram of the particle sizes, with the solid line showing a fit to a 

log-normal distribution. Taken from R. Regmi et al., J. Appl. Phys. 106, 113902 

(2009).   

We did thermogravimetric analysis (TGA) measurements for all three fatty 

acid coated nanoparticles along with bare Fe3O4 to determine the amount and 

number of coated layers of surfactants for these nanocomposite materials. The TGA 

curves for these samples are shown in Fig. 3.10. For the LA, MA and OA coated 
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samples, there is a weight loss of 12, 15, and 31% respectively, showing single step 

transition close to 400 oC. This single step transition implies that there is a 

monolayer coating of LA, MA, and OA on the corresponding particles. We also found 

a 3-4% loss in weight in the bare Fe3O4 nanoparticles at lower temperatures.  We 

attribute this decrease to adsorbed moisture or hydroxyl groups on the surface of 

the bare Fe3O4. Although these measurements were done in a nitrogen atmosphere, 

we found a weight gain for these nanoparticles at higher temperature due to the 

oxidation of nanoparticles. 
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Figure 3.10. Thermo Gravimetry Analysis (TGA) for bare Fe3O4 nanoparticles, 

lauric acid, myristic acid,  and oleic acid  coated samples. 

We used DLS to determine the hydrodynamic size of fatty acid coated 

nanoparticles in the cyclohexane solvent. We fitted the autocorrelation function 

obtained from the DLS measurement and extracted the relaxation rate Γ at the 

wave vector q=(4πnsin(θ/2))/λ0, where θ=90o, λ0=632.8 nm and refractive index of 
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cyclohexane, n=1.44. Using Γ=Dq2 and D=kBT/6πηR, we calculated the 

hydrodynamic radius of each nanoparticle by using the viscosity of cyclohexane 0.98 

cP. The DLS sizes of LA, MA and OA coated nanoparticles are given in Table 3.1. 

Since the chain lengths of LA, MA and OA are 1.6, 1.8 and 2.0 nm respectively, the 

hydrodynamic diameter of these polymer coated nanoparticles are approximately 

twice that calculated on the basis of the chain length of a single layer coating of 

surfactant added to the core size of the nanoparticles. We repeated the DLS 

measurement on these samples after a six month period and found the same result,  

Samples Ms 

(emu/g) 

±3 emu/g 

DXRD (nm) 

±2 nm 

DDLS(nm)  DTEM (nm) 

 

σH (nm) 

TEM 

Fe3O4 LA 58 12.3 32 11.6 3.3 

Fe3O4  MA 62 11 34 11.9 2.9 

Fe3O4 OA 58 10.5 36 12.3 3.1 

 

Table 3.1: Properties of ferrofluid nanoparticles coated with surfactants of varying 

chain lengths; Ms – saturation magnetization, scaled by the Fe3O4 mass fraction in 

the composite; DXRD – crystalline diameter from XRD; DDLS – hydrodynamic 

diameter from DLS as discussed in the text; DTEM – solid diameter from TEM; σH – 

standard deviation in DTEM.  

precluding the possibility of agglomeration accounting for the overestimation of the 

size. Similar discrepancies in the measured size of polymer coated nanoparticles 

have been reported in the literature previously [55,56]. Since the hyperfine field is 
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sensitive to Fe valence, we collected Mössbauer spectra to differentiate Fe3O4, which 

contains both divalent and trivalent Fe, from γ-Fe2O3, which contains only trivalent 

Fe. We show the data for only the LA coated sample in Fig. 3.11, as the Mössbauer 

spectra of all LA, MA and OA coated samples were qualitatively and quantitatively 

similar. The values of the fitted Mössbauer parameters for LA-Fe3O4 are listed in 

Table 3.2. As described in section 2.2.11, the isomer shift (δ), quadrupole splitting 

(Δ) and hyperfine field (H) give information about the valence states of iron and 

their occupancy in the crystal lattice.  

 

Figure 3.11:  57Fe Mossbauer spectra for lauric acid coated Fe3O4 nanoparticles at 

(a) 300 K (b) 78 K. Open rectangle, dot, dash dot, cross and solid line represent 

experimental data, 1st sextet, 2nd sextet, doublet and fitted to two sextets and one 

doublet respectively. Taken from R. Regmi et al., J. Appl. Phys. 106, 113902 (2009).   

The flipping frequency of the net magnetization in non-interacting magnetic 

nanoparticles is given by f=f0exp(-KV/kBT) where K is the magnetocrystalline 

anisotropy constant, V is the volume of a nanoparticle, f0 is the microscopic attempt 

frequency (typically in the order of 1012 Hz), and T is the temperature. For f<<fobs, 



72 
 

 
 

the observation frequency during the experiment (108 Hz for 57Fe), 

superparamagnetic fluctuations are suppressed, and a six line Mössbauer pattern is 

observed. For f>>fobs, the superparamagnetic fluctuations are dominant, and the six 

line pattern collapses into a quadrupole doublet or a singlet. However, because of 

the exponential dependence of f on the nanoparticle volume and the size 

polydispersity of these nanoparticles, both six line patterns and quadrupole 

doublets can be observed in the same spectrum. 

Samples T = 300 K 

H ±1.5       δ ±0.04      

Δ±0.04 

 (kOe)        (mm/s)       

(mm/s)     

T = 78 K 

H ±1.5      δ ±0.04       

Δ±0.04 

 (kOe)        (mm/s)      

(mm/s) 

Fe3O4 LA 466 

414 

0.31 

0.36 

0.01 

0.02 

520 

499 

0.45 

0.40 

0.01 

0.10 

 

Table 3.2- Mossbauer parameters for LA coated Fe3O4 nanoparticles; H- hyperfine 

magnetic field;  - isomer shift; Δ – quadrupole splitting. 

At 300 K, where the nanoparticles moments have sufficient thermal energy to 

fluctuate freely, the Mössbauer spectra of the lauric acid coated sample shown in 

Fig. 3.11a were fitted using two sextets at hyperfine field of H1 = 466   kOe and H2 =   

414 kOe.  H1 is produced by Fe3+ at a tetrahedral A-site and the octahedral B-site of 
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a spinel ferrite whereas H2 is produced by a mixed valence state, Fe2.5+, at 

octahedral B-site due to the electron hopping mechanism between Fe2+ and Fe3+ 

[94]. Additionally, the spectrum also has a quadrupole doublet with isomer shift (δ) 

= 0.33 mm/s and quadruple splitting (Δ) = 0.58 mm/s, which is characteristic of the 

presence of superparamagnetic Fe3O4 nanoparticles. 

There are no thermal fluctuations at 78 K because of the freezing of the 

nanoparticles moments below the blocking temperature of about 150 K for lauric 

acid coated nanoparticles. The Mössbauer spectra of the lauric acid coated sample 

shown in Fig. 3.11b were fitted using two sextets at hyperfine field of H1 = 520   kOe 

and H2 =   499 kOe. These values are in agreement with the literature value of 

magnetite phase [94]. This observation also precludes the presence of other phases 

of iron oxide, such as hematite or goethite, where iron is present at only one 

crystallographic site. Also, it discounts the presence of γ-Fe2O3 since Fe3+ on both A 

and B sites have same value of hyperfine field, 510 kOe.  

We did DC magnetization measurements for the LA, MA, and OA coated 

nanoparticles. The magnetizations as a function of DC magnetic field for all three 

samples are shown in the inset of Fig 3.12. The LA, MA and OA coated 

nanoparticles have saturation magnetization of 58, 62, and 58 emu/g of Fe3O4 

respectively, excluding the mass contribution from surfactants determined from 

TGA. These values are given in Table I with an uncertainty of 3 emu/g of Fe3O4, 

which is due to the uncertainty in weight of the sample for TGA and magnetic 

measurements. The saturation magnetization of these nanoparticles is smaller than 
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the bulk value of Fe3O4, 90 emu/g, which can be attributed to the presence of a 

disordered surface spin layer in nanoparticles [95].  
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Figure 3.12: Zero-Field cooled (ZFC) and Field cooled (FC) magnetization curves for 

lauric acid coated Fe3O4. Inset: Room temperature magnetization as a function of 

field for lauric acid, myristic acid, and oleic acid coated Fe3O4.  These plots show the 

magnetization scaled by the total mass of the composite system. 

Also, the surfactant coating can further reduce the saturation magnetization of 

magnetic nanoparticles by making more disordered surface spins [96].  

The single valued M(H) curve at room temperature implies that these 

nanoparticles are superparamagnetic. This is also confirmed by superparamagnetic 

blocking crossover observed in the field cooled (FC) and zero field cooled (ZFC) 

magnetization measurements. Since all the fatty acids coated nanoparticles showed 

similar behavior, we have shown representative ZFC and FC curves under a 

measuring field of 200 Oe for the LA coated iron oxide nanoparticles. The ZFC curve 
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shows a broad maxima at 150 K, indicating a ploydispersity of the nanoparticles, 

consistent with TEM images and the room temperature Mössbauer results. 

 We also did the AC magnetization measurement on lyophilized samples of 

LA, MA and OA coated nanoparticles to probe the dynamics of the blocking 

transition. Again, we show only a representative curve for the LA coated sample. 

The imaginary part of the AC susceptibility as a function of temperature at three 

different frequencies is shown in Fig. 3.13.   
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Figure 3.13: Temperature dependence of the out-of-phase component of the ac 

susceptibility of lauric acid coated Fe3O4  nanoparticles measured at 100 Hz, 1 kHz, 

and 10 kHz.   

Since the sample was lyophilized,Brownian relaxation is completely suppresses so 

the peak in AC loss is associated only with Néel relaxation. As the peak 

temperature increases with increasing frequency, we used the Arrhenius equation, 

f=f0exp(-EA/kBT), to estimate the activation energy (EA) and characteristic frequency 
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(f0) of the moment reversal. We found EA~ 570 meV with f0~2.8 x 1016  Hz for the LA 

coated sample, EA~ 490 meV with f0~1.6 x 1014  Hz for MA coated sample and EA~ 

530 meV with f0~1.1 x 1014  Hz for OA coated sample. We had also done AC 

magnetization measurement for bare Fe3O4 yielding EA= 348 meV with f0=7.2 x 010 

Hz, which are systematically smaller than the values obtained for the fatty acids 

coated samples. The difference may be due to the change in surface spin properties 

for surfactant coated nanoparticles. The peak at lower temperature, 50 K, is likely 

due to the disordered surface spins freezing into spin-glass-like state [97]. 

These AC and DC magnetization and Mössbauer measurements show that 

the magnetic properties of nanoparticles are independent of surfactant coating, 

which allows us to investigate how the magneto hydrodynamic properties depend on 

the surfactant, without concern to differences in the magnetic reponse of the 

nanoparticles. As a first study, we investigated the magneto hydrodynamic response 

of different chain length fatty acids coated samples by magnetic hyperthermia. We 

applied a 300 Oe alternating magnetic field at the frequency of 100 kHz to 1 mL of 

LA, MA and OA coated iron oxide dispersed in cyclohexane. The rise in temperature 

is shown in Fig 3.14. We also calculated the specific absorption rate (SAR) using the 

following relation: 

SAR = )(
t

TC LL








 …………………………………………………..(3.6) 
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Figure 3.14: Rise in temperature as a function of time for lauric acid (open 

rectangle), myristic acid (open circle) and oleic acid (open star) coated Fe3O4 along 

with carrier liquid cyclohexane(open triangle). Inset: SAR plotted against chain 

length. 

where CL and ρL are the specific heat  and density of the carrier liquid, φ = weight 

concentration of the magnetic nanoparticles in the ferrofluid, and 
t

T




is the rate of 

increase in the temperature. Substituting CL=1.83 kJ/kg-K and ρL= 0.78 g/cm3 for 

cyclohexane, ϕ = 5 mg/ml, and 
t

T




as the initial slope of the curve, we found the SAR 

for LA, MA and OA coated sample to be 37, 46, and 64 W/g respectively. The 

differences in these values reflect the contribution of Brownian relaxation, which 

depends on the chain length and hydrodynamic size of the nanoparticles. Since the 

magnetic properties are similar for all fatty acid coated samples, the contributions 

from Néel relaxation are practically identical for all samples. The SAR values are 
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plotted as a function of chain length in the inset of Fig. 3.14, which implies that the 

SAR increases approximately linearly with the chain length of the surfactants.  

The magneto-hydrodynamic response of the ferrofluids was also investigated by 

dc magnetic-field-induced anisotropic light scattering patterns. An anisotropic 

interaction between the induced dipoles of nanoparticles in the presence of the dc 

magnetic field caused them to from chain like structure. These chain like structures 

have been studied extensively both theoretically and experimentally [98-100]. The 

self-assembly results in a strong anisotropy of the scattering patterns for the light  

propagating through the ferrofluid in the presence applied magnetic field [98,101]. 

The time evolution of these patterns is used to investigate the hydrodynamic 

response of nanoparticles in solution [98,101].   

We observed strong anisotropy for all three samples for the light propagating 

perpendicular (Figure 3.15a) to the direction of applied field as compared to the 

light propagating parallel to the direction of applied field (Figure 3.15b). We used 

the framework and system notations introduced in reference [98] for a quantitative 

description of the patterns. The time-dependent optical anisotropy factor A(h,t) is 

defined as: 

                            
),(),(

),(),(
2),(

||

||

thIthI

thIthI
thA









 …………………………………….(3.7) 

  

where ( , / 2)I I h       is the intensity of light scattered perpendicular to the field 

and ),()0,(||   hIhII  is the intensity of light scattered parallel to the  
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Figure 3.15: Time dependent light scattering patterns in a 400 Oe applied magnetic 

field at representative instants of time after turning ON the magnetic field for light 

propagating (a) perpendicular to the field and (b) parallel to the field. Taken from R. 

Regmi et al., J. Appl. Phys. 106, 113902 (2009).   

 

magnetic field.  These notations are explained in reference [98]. Scattering patterns 

(Figures 3.15a and 3.15b) show that )()(|| hIhI  , which is also is reflected in the 

angular dependence of the scattered intensity of MA coated sample shown in Figure 
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3.16 for several value of scattering vector h. This suggests the development of 

anisotropic nanoparticle chains and columns. 

Time evolution of optical anisotropy factor A for LA, MA and OA coated sample is 

shown in Fig 3.17 for the median value of scattering vector h = 60 mm. We observed 

correlation between the kinematics of chain formation and optical anisotropy 

constant depending  on the chain length of the surfactant. We found that the time 

evolution of larger chain length OA coated sample is slower than other samples. We 

also observed fluctuations of A for LA and OA coated samples for time 0 < t < 1500 s 

after turning the magnetic field ON. Similar fluctuations in A (Figure 3.17) were  
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Figure 3.16:  Angular dependence of the intensity of scattered light for the myristic-

acid coated sample.  

observed for all three surfactant coated sample while turning the field OFF. Shorter 

chain length LA (C12 chain length) coated sample has shown larger fluctuations 

while switching the field OFF whereas longer chain length OA coated sample (C18 
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chain length) has shown more fluctuations while switching the field ON. We also 

observed remnant magnetism in all there sample after removing external magnetic 

field persisting to a time scale of hours. OA coated sample has shown maximum 

remanance and anisotropic properties as compared to other samples. The theory of 

fluctuation-mediated long range lateral chain interaction was first proposed by 

Halsey and Torr [99], and have also further investigated by others [102-104]. 

 

Figure 3.17: (Color on-line) Time dependence of the optical anisotropy parameter A 

at the median value (h = 60 mm) of the scattering vector for the oleic acid, myristic 

acid and lauric acid coated nanoparticles with field ON and OFF. Taken from R. 

Regmi et al., J. Appl. Phys. 106, 113902 (2009). 

Since the scattering pattern is sensitive to chain-chain separation, the fluctuation 

in OA and LA coated sample reflects the chain formation during field ON and 

deformation during field OFF.,  
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3.3.3    CONCLUSION 

 We investigated the magnetic and magnetohydrodyanmic properties of lauric 

acid, myristic acid, and oleic acid coated iron oxide nanoparticles. The magnetic 

properties did not vary significantly among the different surfactant coating.  

Conversely, the magnetic heating and magneto-optic properties did depend on the 

hydrodynamic size, which varied over the different chain length fatty acids coated 

iron oxide nanoparticles. In magnetic heating, the specific absorption rate (SAR) 

increases with increase in chain length. Magneto-optic measurement also suggested 

strong surfactant dependent optical anisotropy. This implies that magnetic 

nanoparticles with different hydrodynamic size respond differently in the presence 

of both AC and DC magnetic field, which allows us to control the 

magnetohydrodynamic properties of magnetic nanoparticles by coating them with 

different chain length surfactants. 

3.4   SUMMARY 

We synthesized iron oxide nanoparticles coated with different chain lengths 

of dextran varying from 5 kDa to 670 kDa. Measurement of hydrodynamic size on 

these nanoparticles by three different techniques namely DLS, AC magnetization 

and FCS suggests that FCS measurements on polymer coated nanoparticles give 

the most accurate hydrodynamic size whereas DLS and magnetic measurement find 

diameters a factor of two larger than expected from physical considerations.  
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We also did magnetic hyperthermia measurement on the 15-20 kDa dextran 

coated sample continuously from the frozen to the liquid phase to differentiate the 

contributions of Néel and Brownian heating. These measurements suggested that 

magnetic heating due to Néel and Brownian relaxation are temperature dependent. 

We also found significant magnetic heating in the inhomogeneous melting phase of 

the nanoparticles as compared to the heating on frozen and liquid ferrofluid, which 

may be because of enhanced Brownian relaxation due to finite size effects, capillary 

forces in inhomogeneous melting phase, and increased viscosity at low temperature. 

We studied the magnetohydrodynamic properties of different chain length 

fatty acids (lauric, myristic and oleic acid) coated iron oxide nanoparticles. We found 

that the magnetic properties of these nanoparticles do not vary with different 

surfactant coating, unlike the magnetohydrodynamic properties. Different chain 

length surfactants change the hydrodynamic size of nanoparticles, which modifies 

the Brownian relaxation. This means that the magnetic heating and magneto-optic 

properties of liquid ferrofluid, both of which depend on Brownian relaxation of 

nanoparticles, also vary with the chain lengths of surfactant coatings.  This 

provides another handle to tune the response of magnetic nanoparticles in solution 

without changing the magnetic response of the particles. 
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CHAPTER 4 

DRUG DELIVERY USING MAGNETIC 

NANOPARTICLES 

4.1 INTRODUCTION 

Delivering drug to specific sites and at specific concentrations in vivo increase 

their therapeutic effects and minimizes potentially dangerous side effects. Many 

non-magnetic drug carriers have been used for the targeted drug delivery, but most 

of these lack good targeting and are cleared up by the reticuloendothelial system 

(RES). The RES is a part of immune system and engulfs foreign object, harmful 

bacteria and virsues, and also ingests abnormal and old cells in our body. Magnetic 

nanoparticles have a number of advantages for targeted drug delivery, including: 1) 

they can be controlled by non-invasive external magnetic field to accumulate at 

specific site in vivo 2) their surface can be modified to attach ligands to target 

specific site in vivo 3) they are small enough to accumulate inside cells 4) they can 

be heated by applying non-invasive external alternating magnetic field to release 

the drug 5) they acts as contrast agent and their distribution inside body can be 

monitored by using magnetic resonance imaging and 6) iron oxide magnetic 

nanoparticles are biocompatible and has food and drug administration (FDA) 

approval to use in vivo. Given the great potential of iron oxide nanoparticles for 

targeted drug delivery, we have studied drug release from a thermosensitive 
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polymer Poly-N-isopropylacrylamide (PNIPAM) triggered by magnetic 

hyperthermia. In addition, we have also studied the drug release from different 

molecular mass dextran coated iron oxide nanoparticles to investigate the effect of 

chain length on the drug release profile. 

4.2 HYPERTHERMIA CONTROLLED DRUG RELEASE 

FROM MAGNETIC MICROGELS 

Poly-N-isopropylacrylamide (PNIPAM) is a biocompatible and stimuli-

responsive polymer having a number of biomedical application including controlled 

drug delivery, artificial muscles, cell adhesion mediators, and precipitation of 

proteins [105-109]. PNIPAM shows a reversible volume changing phase transition 

associated with a structural coil-to-globule conformational change in solution above 

the lower critical solution temperature (LCST) of 305 K (32 oC) [110-113]. PNIPAM 

absorbs water and swells below the LCST while it shrinks and release 

hydrophobically bound water above the LCST. This property has been used for 

studies of controlled drug release using PNIPAM [114,115]. There has been 

considerable interest to synthesize nanocomposites with stimuli-responsive polymer 

and metal and metal oxide for chemotherapy drug release [116-122]. In these 

nanocomposites, nanoparticles are embedded in cavities or polymer shells and 

immobilized by entanglement or covalent bonding with the chains. In the proposed 

chemotherapy delivery vehicle, the hybrid composite material consisting of 

PNIPAM and iron oxide nanoparticles is loaded with the drug to be delivered and 
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injected in the vasculature surrounding the target tumor. Incorporating iron oxide 

nanoparticles in the polymer matrix provides a number of benefits, including:  1) 

the ability to determine the distribution profile of the drug attached to the 

PNIPAM/magnetite composite using Magnetic Resonance Imaging 2) the possibility 

of remotely and controllably releasing the drug by the non-invasive application of 

an external magnetic field, and 3) increasing the efficacy of the drug by locally 

heating the tumor site.  

In a recent study by Purushotham et al. [120] magnetite was incorporated in 

the PNIPAM matrix and the composite showed the drug release at the rate 0.001 

mg/ min when heated from 310 to 321 K (37 to 48 oC) over a total time of 47 min. 

Hoare et al. [119] showed drug release of ~0.012 mg/min in the same system over a 

time interval of 35-75 min.   These studies show substantial drug release can be 

produced solely by magnetic heating, but the timescales involved are relatively long.  

However, if this targeted drug release is to be combined by magnetic hyperthermia 

therapy, the elevated temperatures should be maintained only for much shorter 

time periods to avoid damaging the surrounding cells.   The objective of our study is 

to investigate the in vitro burst release of chemotherapy drugs loaded into a 

PNIPAM/nanoparticles composite, driven solely by the heating produced by an 

external magnetic field in a short interval of time. We selected mitoxantrone as the 

model anti cancer drug because its effectiveness increases at 316 K (43 oC), making 

it a suitable candidate for combined targeted drug release/hyperthermia 

applications [123]. 
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4.2.1   EXPERIMENTAL DETAILS 

 Magnetite nanoparticles having a diameter of roughly 12 nm were prepared 

by a co-precipitation method described in detail in section 2.1.1. The PNIPAM 

microgels were synthesized by a free radical polymerization technique as described 

in section 2.1.6. Thermogravimetric analysis between 315 K and 1000 K, shown in 

Figure 1, established that the resulting PNIPAM-SA-Fe3O4 composite contained 50 

% iron oxide by mass, as indicated by the sharp drop in sample weight at the 

polymer dissociation temperature. This dissociation temperature can be determined 

more precisely by plotting the temperature derivative of the thermogravimetric 

response (also shown in Figure 4.1).  This decomposition temperature is found to be 

very close to 600 K.  
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Figure 4.1: Thermogravimetric weight as a function of temperature for PNIPAM-

SA-Fe3O4 (lighter line) and the temperature derivative of the weight (dark line). 

In order to increase the colloidal stability of the composite, we had added 60 mg of 

sodium poly(styrene-sulfonate) (PSS) to the magnetic microgels since PSS has a 



88 
 

 
 

sulfonate group (SO3-), which creates negative charge on the surface of the 

PNIPAM-SA-Fe3O4 and helps to avoid agglomeration by electrostatic repulsion 

making well dispersed ferrofluid. We imaged the PNIPAM-SA parent 

microgels and PNIPAM-SA-Fe3O4 magnetic microgels using a Hitachi S-2400 

Scanning Electron Microscope (SEM) and a Jeol-2010 FasTEM Transmission 

Electron Microscope (TEM). The dynamic light scattering (DLS) measurements 

were performed using a 90 Plus particle size analyzer from Brookhaven Instrument 

Corporation to investigate samples of PNIPAM-SA and PNIPAM-SA-Fe3O4 

dissolved using deionized water as a solvent.  We measured the dc magnetization of 

dry PNIPAM-SA-Fe3O4 and ac magnetization of a solution PNIPAM-SA-Fe3O4, 

using DI water as the carrier liquid, using the standard ACMS option on a 

Quantum Design Physical Property Measurement System (PPMS).  The 

thermodynamics of the phase transition of the PNIPAM/nanoparticle composites 

was investigated using a Q 2000 DSC system (TA Instruments, Delaware, USA). 

Samples of PNIPAM-SA, PNIPAM-SA-Fe3O4 and bare Fe3O4 nanoparticles were 

prepared at concentration of 5 mg/ml in DI water.  The samples were scanned from 

283 to 323 K at a scan rate of 3 K/min under a continuous nitrogen stream. TA 

universal analysis software extracted both the transition temperature and ΔH, 

which was determined from the area under each peak.  

 The magnetic heating was accomplished using an RF generator model CLX-

2750 (COMDEL) to produce an alternating magnetic field having an amplitude of 

approximately 130 Oe at a fixed frequency of 380 kHz. The samples, consisting of 50 
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mg of PNIPAM-SA-Fe3O4 loaded with the anticancer drug mitoxantrone dispersed 

in 0.5 ml phosphate buffer solution with pH 7.4, was placed inside a 40 turn 

induction coil of length 8.5 cm and surrounded by a high density Styrofoam 

insulation to prevent direct heat transfer from the coil to the sample. The 

temperature of the solution was measured using an IR thermometer having a 

temperature resolution of +/- 0.6 oC. The amount of drug released from the magnetic 

microgel at different points in the experiment was determined by using a Cary 50 

Bio, UV-Visible spectrophotometer to measure the transmission of liquid decanted 

from the sample. A phosphate buffer with a pH 7.4 was used as the solvent. In order 

to compare the magnetically induced drug release with conventional heating 

methods, we also investigated the release from PNIPAM-SA loaded with 

mitoxantrone heated in a standard water bath. 

4.2.2   RESULTS AND DISCUSSIONS 

We imaged the PNIPAM-SA and PNIPAM-SA-Fe3O4 microgels using 

scanning electron microscopy and the PNIPAM-SA-Fe3O4 sample using 

transmission electron microscopy, as shown in Fig. 4.2.  Figs 4.2a and b present 

SEM images for PNIPAM-SA and PNIPAM-SA-Fe3O4 respectively, showing the 

typical lengthscale for these polymer globules, being 360 nm for PNIPAM-SA and 

200 nm for PNIPAM-SA-Fe3O4.  While it is difficult to unambiguously establish the 

sample morphology, the TEM images of PNIPAM-SA-Fe3O4, Figs 4.2c and d, 

suggest that the Fe3O4 nanoparticles partially coat the polymer. Some PNIPAM-SA  
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Figure 4.2: (a) SEM image of PNIPAM-SA (b) SEM image of PNIPAM-SA-Fe3O4. (c), 

(d) TEM images of PNIPAM-SA-Fe3O4. Taken from R. Regmi et al., J. Mater. 
Chem., 20, 6158 (2010). 

globules appear to almost completely coated, while others are completely devoid of 

the nanoparticles.  This inhomogeneous distribution of magnetic nanoparticles may 

adversely affect the response of the composite, since only a fraction of the PNIPAM 

polymer will be directly affected by nanoparticle heating. There is also evidence for 

the presence of small Fe3O4 nanoparticle agglomerations that are not bound to the 

PNIPAM-SA framework.  This heterogeneous distribution of Fe3O4 on the PNIPAM-

SA globules may develop due to surface-mediated nanoparticle agglomeration.  

 To further probe the geometry of the microgels and to determine the LCST 

for the PNIPAM-SA and the magnetic PNIPAM-SA-Fe3O4 samples, we performed 
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dynamic light scattering (DLS) measurements at different temperatures, as shown 

in Figure 4.3.   
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Figure 4.3: Hydrodynamic diameter as a function of temperature for the PNIPAM-

SA-Fe3O4 composite, as determined using dynamic light scattering measurements. 

Inset: Hydrodynamic diameter versus temperature for PNIPAM-SA. 

It is known that pure PNIPAM has a LCST of 305 K, which we find increases to 310 

K with the addition of hydrophilic sodium acrylate [124].  This is shown in the inset 

to Figure 4.3, which illustrates the volume collapse from a hydrodynamic size of 

almost 540 nm to approximately 240 nm at this temperature.  The addition of Fe3O4 

nanoparticles shifts the LCST very slightly to 311 K. More remarkably, the size of 

the PNIPAM-SA-Fe3O4 microgel is considerably reduced compared to the parent 

compound, to only 270 nm, and the fraction change in volume is also much smaller, 

only 12% for PNIPAM-SA-Fe3O4 as compared to 56% for PNIPAM-SA. The 

reduction in the size of PNIPAM-SA after incorporating Fe3O4 nanoparticles may be 

because of an increased cross-link density due to the presence of iron oxide 

nanoparticles [40]. Steric hindrance and nanoparticle-nanoparticle interaction 
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caused by the presence of iron oxide nanoparticles might have hampered the 

polymer aggregation during LCST, which increased the LCST of PNIPAM-SA-Fe3O4 

slightly and also caused a smaller change in volume during LCST in PNIPAM-SA-

Fe3O4 [40].   The microgel sizes extracted from DLS measurements are somewhat 

larger than what we obtain from SEM and TEM images (Fig. 4.2), which reflects the 

fact that DLS is sensitive to the hydrodynamic radius of the composites in solution 

while the electron microscopy images may reflect some volume collapse in the 

microgel out of solution. 

 The heat flow out of the sample as a function of temperature for the 

PNIPAM-SA and PNIPAM-SA-Fe3O4 composites and for bare Fe3O4 is shown in Fig. 

4.4.  
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Figure 4.4: Heat flow as a function of temperature measured by differential 

scanning calorimetry for bare Fe3O4 (dotted line), PNIPAM-SA (dashed line), and 

PNIPAM-SA-Fe3O4 (solid line) samples. 
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For the PNIPAM-SA and PNIPAM-SA-Fe3O4 traces, endothermic peaks occur near 

308 K and 309 K with changes in enthalpy of approximately 2.34 J/g and 1.04 J/g 

respectively. The temperatures of these peaks are consistent with the LCST of 

PNIPAM-SA and PNIPAM-SA-Fe3O4 found using DLS measurements, and the 

magnitude of the enthalpy for the PNIPAM-SA sample is consistent with previous 

results in the literature [125]. The smaller change in enthalpy for the PNIPAM-SA-

Fe3O4 sample, as compared to PNIPAM-SA, can be associated with a change in the 

hydration state of the PNIPAM chains arising from the attachment of Fe3O4 

nanoparticles. The bare Fe3O4 sample does not show any endothermal peak, 

confirming that the features observed at 308 K and 309 K are due to a structural 

change in the PNIPAM polymer component. 

 The magnetic relaxation time τ  for the system depends on both Brownian 

and Néel  relaxation, so the frequency dependence of the magnetic susceptibility 

yields information on changes in these mechanisms. We have measured the in-

phase and out-of-phase components of the complex susceptibility of the PNIPAM-

SA-Fe3O4 ferrofluid as a function of temperature and applied field frequency 

through the LCST transition. Fig. 4.5a shows the out-of-phase component of the ac 

susceptibility as a function of temperature for this sample, measured at a frequency 

of 1000 Hz.  This curve shows a clear maximum close to 308 K, corresponding to the 

LCST of the microgel.  At this transition temperature, the PNIPAM-SA polymer 

changes to a hydrophobic state producing a sharp drop in the hydrodynamic volume 

of the microgel.  In turn, this increases the frequency of Brownian relaxation given 
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by [126] fB=kBT/3ηVH, producing a peak in the magnetic dissipation. This anomaly 

in the magnetic dynamics can also be seen by considering the variation of the 

resonant frequency with temperature.  The inset to Fig. 4.5a plots the resonant 

frequency, determined from the peak in M‟‟ versus f plots (not shown), at different 

temperatures.  
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Figure 4.5: (a) Out-of-phase component of the ac magnetic susceptibility measured 

as a function of temperature for PNIPAM-SA-Fe3O4. Inset: Peak frequency as a 

function of temperature. (b) Room temperature magnetization curve measured for 

PNIPAM-SA-Fe3O4. 
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The saturation magnetization Ms, remnant magnetism Mr and coercivity Hc are the 

most important parameters for assessing the suitability of magnetic materials for 

applications. We plot the room temperature M (H) curve measured for lyophilized 

PNIPAM-SA-Fe3O4 in Fig. 4.5b. The saturation magnetization of the composite is 33 

emu/g of composite,  as compared to approximately 68 emu/g for the bare Fe3O4 

nanoparticles used in the composite. This implies PNIPAM-SA-Fe3O4 contains 

approximately 50% iron oxide by mass, which is consistent with our estimates of the 

composition using TGA (see Fig. 4.1). Because of the higher concentration of iron 

oxide in PNIPAM-SA-Fe3O4, the Ms value is relatively large as compared to typical 

Ms values of such a hybrid material such as 10 emu/g for Fe18PNIPAM-AAS to 20 

emu/g for Fe38PNIPAM-AAS [40] consistent with the larger mass fraction of Fe3O4 

in the microgel. The advantage of the higher value of magnetization of the sample is 

that it can readily respond to the externally applied alternating magnetic field, 

although higher iron oxide fractions can negatively impact drug loading fractions in 

some composites [127].  The sample is also non-coercive at room temperature, which 

is typical for superparamagnetic nanoparticles, making the composite suitable for 

biomedical applications.  

 Having established that a conformal transition occurs in the PNIPAM-SA-

Fe3O4 microgel at approximately 311 K, we investigated the possibility of using 

external magnetic fields to heat this composite on short timescale.  We plot the 

increase in the temperature of PNIPAM-SA-Fe3O4 samples having different 

concentrations of magnetic nanoparticles during the application of an external 
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magnetic field in Fig. 4.6. There is some increase in temperature for the background 

buffer solution, which may be associated with resistive heating in the induction coil.  

There  is a systematic increase in the magnetic component of heating with 

nanoparticle concentration. On this plot, the LCST for the composite (see Fig. 4.3) 

corresponds to a ΔT of approximately 13 K, which is reached within 3 min of 

applying the external magnetic field.  We also note that local temperatures of  314- 
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Figure 4.6: Change in temperature of PNIPAM-SA-Fe3O4 as a function of time 

under magnetic hyperthermia, for nanoparticle concentrations ranging from 25 

mg/mL to 100 mg/mL as indicated.  The open symbols show the response of buffer 

solution, used as a background control.  

318 K are sufficient to kill cancer cells [128], which are obtained within 4 min for 

the samples having higher concentrations of magnetic nanoparticles.  

 Having established that magnetic hyperthermia can be used to heat the 

sample above the LCST, we investigated the loading and release of the anticancer 

drug mitoxantrone in both the PNIPAM-SA and PNIAPM-SA-Fe3O4 composites. To 

load the samples, we stirred a mixture consisting of 1 mg/ml of mitoxantrone and 25 
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mg/ml of microgel for 12 hours under ambient conditions. The drug loading fraction 

was determined to be 100% in PNIPAM-SA-Fe3O4 and 65% in PNIPAM-SA.  It is 

unclear why drug loading is more efficacious in the magnetic composite, although 

this may be related to the electrostatic effects discussed in the following. The drug-

loaded PNIPAM-SA-Fe3O4 composite was heated using only an applied magnetic 

field from 298 to 323 K in 4 min, while the drug-loaded PNIPAM-SA sample was 

heated over the same range of temperatures in 30 min using a water bath.  While 

the drug release fraction determined by following this particular measurement 

protocol represents a convolution of the release rate at different temperatures with 

the warming rate, we believe that it provides a useful insight into the release 

dynamics that will be relevant for clinical applications.  However, as the heating 

rate is relatively constant, as illustrated in Fig. 4.6 for the PNIPAM-SA-Fe3O4 

composite, we can identify qualitative changes in the temperature dependence of 

the drug release rate by measuring the amount of drug released as a function of 

temperature.  The integrated amount of drug released from each of these samples at 

different temperatures is shown in Fig. 4.7a. Recalling that the measuring time for 

the PNIPAM-SA-Fe3O4 sample is only 4 min compared to 30 min for the PNIPAM-

SA sample, the release rate for the sample with magnetic nanoparticles is roughly a 

factor of 8 larger than for the parent sample.  This is reflected in Fig. 4.7b, which 

plots the estimated total drug release rate as a function of temperature, assuming a 

constant heating rate for both measurements. The higher rate of drug release in Fig 

4.7b is important for clinical applications because it will deliver large amount of 
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drug in short time scale avoiding longer exposure of alternating magnetic field. 

Rather unexpectedly, we do not see any sharp change in the inferred drug release 

rate at the LCST for either sample, although there may be a slight anomaly for the 

PNIPAM-SA-Fe3O4 sample. This apparent insensitivity of the release rate to the 

volume change may arise, at least in part, from electrostatic interactions between 

the positively charged secondary amine groups on the mitoxantrone with the 

negatively charged carboxylic acid and  

 

Figure 4.7: (a) Integrated fractional drug release (%) as a function of temperature 

for mitoxantrone loaded PNIPAM-SA and PNIPAM-SA-Fe3O4. (b) Estimated 

integrated drug release rate for mitoxantrone loaded PNIPAM-SA and PNIPAM-

SA-Fe3O4 as a function of temperature assuming a constant heating rate over 4 min 

total for PNIPAM-SA-Fe3O4 and 30 min total for PNIPAM-SA. (c) Structure of 

mitoxantrone. Taken from R. Regmi et al., J. Mater. Chem., 20, 6158 (2010). 

sulfonate groups on the microgel. Such electrostatic interactions could obscure 

changes in release rate from the conformal effects produced by hyperthermia.  As 
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shown in Fig. 4.7c, mitoxantrone has two amine groups having dissociation 

constants of pKa=5.99 and pKa=8.13 [129]. pKa is -log10Ka, where Ka is the acid 

dissociation constant defined as the ratio of the product of concentration of ionized 

molecule to the concentration of unionized molecules given in units of mol/L. At the 

pH used in these investigations (pH=7.4), the protonation for the amine group is 

calculated by using the following relation [130]: 








 




1
logpKapH …………………………………………………….(4.1) 

Where θ is the degree of protonation. Using equation (4.1), we found the protonation 

for amine group having pKa=5.99 and pKa = 8.13 as 3.74 % and84.3 % respectively .  

This will lead to an overall positive charge at physiological pH.  Conversely, we find 

a zeta potential of -21.6 mV for the bare PNIPAM–SA polymer, which drops to -13.9 

mV with the incorporation of Fe3O4 nanoparticles, consistent with a positive charge 

on the nanoparticles themselves. This zeta potential increases to -33.8 mV with the 

addition of sodium polystyrene sulfonate used to improve the colloidal stability, 

providing the negative charge to compensate the positive mitoxantrone molecules. 

Alexiou et al. [131] have also discussed ionic binding between cationic mitoxantrone 

and anionic ferrofluid. It could be possible to mitigate these electrostatic 

interactions by selecting a more suitable drug or developing a technique to 

covalently embed the magnetic nanoparticles in the microgel to allow a reduction of 

the sodium acrylate monomer content. While these electrostatic effects are expected 

to provide the dominant mechanism for controlling the drug release in these 
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composites, other interactions may also play a role and should be considered in 

future studies. A similar weak dependence of drug release on sample volume was 

observed in studies on doxorubicin loaded in PNIPAM [120]. Coughlan et al. [106] 

have also shown that drug release from the PNIPAM hydrogel depends on the 

solubility and chemical nature of drugs. The drug release rate from our PNIPAM-

SA-Fe3O4 samples (1 %/min average over this temperature range) is about three 

times larger than that found by Purushotham et al. [120] (0.31 %/min), although the 

release rate from our PNIPAM-SA samples is smaller. Because the magnetic 

heating in the PNIPAM-SA-Fe3O4 composite is much faster than the water bath 

heating for PNIPAM-SA, the rate of drug release from the magnetic microgel is 

much faster than the rate of release from the parent sample.  As the efficacy of 

mitoxantrone is improved at elevated temperatures [132], we speculate that in 

addition to providing for controlled release, the thermal effects arising from 

magnetic heating may also contribute to improved outcomes for therapies based on 

this PNIPAM-SA-Fe3O4 composite system. 

4.2.3   CONCLUSIONS 

 We were able to successfully combine Fe3O4 nanoparticles with PNIPAM 

polymer to produce a magnetic microgel composite, which exhibits a conformal 

transition at an LCST of approximately 311 K.  The composites have a relatively 

high saturation magnetization, on the order of 33 emu/g, allowing for magnetic 

heating. The magnetic microgels can be heated to temperatures above the LCST 



101 
 

 
 

with the application of an external alternating magnetic field for only a few 

minutes.  We investigated the loading and release of the anti-cancer drug 

mitoxantrone into the PNIPAM-SA-Fe3O4 composite and into the parent PNIPAM-

SA composite. Interestingly, the drug upload fraction was larger (100 %) for the 

magnetic microgel than for the non-magnetic PNIPAM-SA parent composite (65 %) , 

and the estimated release rate was much higher, being approximately a factor of 8 

larger. Although the drug release does not appear to be particularly sensitive to the 

LCST transition in the PNIPAM-SA-Fe3O4 microgel, this system offers the 

possibility of combining the functionality of magnetic nanoparticles with the 

polymer matrix to allow controlled drug release using only non-invasive magnetic 

fields in a short interval of time. 

4.3  DRUG RELEASE FROM DEXTRAN COATED IRON 

OXIDE 

Motivated by the success in using the PNIPAM/Fe3O4 polymer/nanoparticles 

composites from drug loading and hyperthermia controlled release, we extended 

these investigations to other systems. Since dextran coated nanoparticles can evade 

RES system and can circulate inside body, drug release from dextran coated iron 

oxide nanoparticles is of great interest. Saboktakin et al. [133] has studied release 

of a model drug 5- aminosalicyclic acid from 70 kDa amine functionalzied dextran 

coated iron oxide nanoparticles and found a release of about 85 % in about 15 h. 

Babincova et. al. [134] observed substantial release of 6-carboxyfluorescein dye 
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triggered by laser from dextran-Fe3O4 encapsulated liposomes. In addition, 

Perlstein et. al. [135] have shown the possibility of drug delivery into the brain by 

using 35 to 45 kDa dextran coated iron oxide nanoparticles. In this context, we did 

the drug release study from different chain length dextran (15-20 kDa and 60-90 

kDa) coated iron oxide nanoparticles to investigate whether the different chain 

length of dextran controls the drug release or not.  

We synthesized iron oxide nanoparticles coated with 15-20 kDa and 60-90 

kDa molecular mass dextran as described in section 2.1.3. An anticancer drug, 

camptothecin, was loaded by a solvent evaporation method. 1 mg of camptothecin 

was loaded in each of the two samples with a loading efficiency was 100 %. The drug 

release into PBS was monitored as a function of time using a Cary 50 Bio UV-

Visible spectrophotometer.   
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Figure 4.8: Drug release from 15-20 kDa and 60-90 kDa dextran coated sample. 
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The drug release profile for these two different samples is shown in Fig 4.8. The 

integrated fractional drug release from the 15-20 kDa and 60-90 kDa dextran 

coated nanoparticles samples was 8 and 12 % respectively in 72 h.  At short time,  
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Figure 4.9: Fit of equation (1) to the drug release of (a) 15-20 kDa dextran coated 

sample and (b) 60-90 kDa dextran coated sample. 
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when the concentration of drug in the composite is highest, the release rate is large, 

while as the drug leaves the composite, the rate is reduced.  These release profiles 

can be fit to an exponential relaxation, with different characteristic relaxation times 

for the two molecular masses as: 

Drug release = Ao (1-e-t/τ)……………………………..(4.2) 

Where Ao is saturation value of drug release and τ is the time constant for drug 

release. The fits to Eq. (4.2) for the 15-20 kDa dextran and 60-90 kDa dextran is 

shown in Figs. 4.9a and b respectively.  

The value of Ao is near 7.5 and 12 % for 15-20 and 60-90 kDa dextran coated iron 

oxide respectively, which have relaxation times are close to 19 and 24.5 hrs.  There 

are a number of factors that could influence the release rate from the composite. 

The number of binding sites for the drug to the polymer likely varies with chain 

length.  Since the longer chain dextran has more sites, and these will be located 

further from the magnetic nanoparticle on average, we expect the asymptotic drug 

fraction released should be larger, as observed experimentally.  However, we also 

expect that the diffusion rate for the drug through the polymer coating may be 

smaller for the high molecular mass dextran as compared to the lower mass 

dextran, leading to a larger time constant.  Further studies will be required to 

properly determine the rate-limiting step responsible for drug release from dextran 

coated iron oxide nanoparticles. 
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To conclude, we studied drug release from different chain length dextran 

coated iron oxide nanoparticles and found higher drug release from longer chain 

length dextran coated samples. This offers an exciting possibility for controlled drug 

release from different chain length dextran coated nanoparticles, since the time 

constant for the release may be tuned by dextran mass, and also allows the 

possibility of engineering a very flat release rate by combining different molecular 

mass dextrans together. 

4.4   CELL NUCLEUS TARGETING 

While these previous studies of functionalized iron oxide nanoparticles in 

solution offer important insight into their physical properties, it is necessary to 

understand the interactions of these nanoparticles with living cells.  As a first step 

in confirming that these nanoparticles may be viable for biomedical applications, we 

confirmed that they are non-toxic in sufficiently small quantities.  

Having confirmed that these iron oxide nanoparticles are non-toxic, at least 

in sufficiently small concentrations, the next step was to determine whether the 

nanoparticles are able to penetrate into the cell. More specifically, many 

applications, including brachytherapy and transfection, require the nanoparticles to 

localize at the cell nucleus. For example, Polyakov et al. [136] has localized toxic 

radioisotope at the cell nucleus to improve radiotherapy. Snyder et al. [137] has 

used tat peptide for the enhanced delivery of therapeutic DNA into cell nucleus. 

Since tat peptide is known to target cell nucleus [136,137], we labeled dextran 
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coated iron oxide nanoparticles with tat peptide as described in section 2.1.4. The 

specific aim of this study is to localize iron oxide nanoparticles near the cell nucleus 

to enhance the effects of radiation brachytherapy treatment. Since glioblastoma 

multiforme (GBM) tumors show limited response to current therapies, our goal is to 

introduce iron oxide nanoparticles to the GBM cell nucleus, which will down-convert 

penetrating high energy x-rays to more damaging, lower energy radiation to kill the 

cancerous cells. As a first step in this project, we have conducted in vitro studies to 

target the nucleus of human glioblastoma cells by tat conjugated iron oxide 

nanoparticles.   

   

Figure 4.10: Time dependent study of Tat peptide labeled iron oxide nanoparticles 

penetrating cell nucleus. 

We labeled tat counjugated iron oxide nanoparticles by fluoro isothicyanate (FITC) 

dye, which makes the nanoparticles visible in fluorescent imaging. To confirm that 

the iron oxide nanoparticles are reaching the cell nucleus, we stained the cell 

nucleus with blue colored DAPI and the cytoplasm by red phalloidin-TRITC. Figure 

4.10 shows overlapping  confocal microscopy images of green and blued (green + 

blue = cyan) 24 h after the injection, 48 h after injection, and 72 h after injection.  

These images establish that the iron oxide nanoparticles are mainly localized at the 



107 
 

 
 

cell nucleus, although there are residual nanoparticles in the surrounding 

cytoplasm.  Maximum nanoparticles concentration at the cell nucleus occurs after 

48 h. Since the green FITC dye was attached to the dextran coating, and not 

directly to the iron oxide nanoparticle , we also did a Prussian blue staining to map 

the iron distribution, as shown in Fig. 4.11.  These images confirm that the iron 

oxide nanoparticles have reached the cell nucleus, eliminating the possibility that 

the dextran could have separated from the nanoparticles during the process.  

 

Figure 4.11: Prussian blue staining of (a) control glioblastoma cells without tat 

conjugated nanoparticls (b) glioblastoma cells with nanoparticles. 

We see in Fig 4.11 that the control glioblastoma cells (left panel) do not show any 

signature after Prussian blue staining whereas the cells with tat conjugated 

nanoparticles (right panel) do show a clear blue staining inside the cell nucleus. We 

also did magnetic measurements on the cells using a SQUID magnetometer to 

quantify the iron oxide nanoparticles concentration inside the cell nucleus. The 

M(H) curve is shown in Fig 4.12. We have done the background subtraction in the 

M(H) of Fig 4.12. The saturation of the curve indicated the presence of  

(a) (b) 
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superparamagnetic iron oxide nanoparticles. Given that these iron oxide 

nanoparticles have a saturation magnetization of 60 emu/g, we calculated the 

number of iron oxide nanoparticles per cell from the saturation magnetization in 
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Figure 4.12: M(H) curve of human glioblastoma cells with iron oxide nanoparticles. 

Fig. 4.12. The number of iron oxide nanoparticles per cell is close to 6 x 106, which is 

equivalent to 21 picogram of iron oxide per cell. It is important to know this value of 

the concentration in order to estimate the efficacy of using these nanoparticles to 

improve the outcomes for radiation brachytherapy. It is also crucial to have the 

right concentration of iron oxide into cell to avoid the toxicity due to iron oxide 

itself. We had done a cytoxicity study and had found the concentration 21 picogram 

iron oxide per cell is not toxic to cell. We had also done a separate study where we 

found 250 nanogram of iron oxide per cell was not toxic whereas concentrations 

above it were toxic to cells. 
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In conclusion, we successfully synthesized iron oxide nanoparticles labeled 

with tat peptide. Our preliminary studies also show, tat peptide has taken these 

nanoparticles to the nucleus of the cell and the internalization of iron oxide 

nanoparticles is highest after the incubation period of 48 h. We also confirmed the 

presence of iron oxide nanoparticles inside cells using magnetic measurement, 

which also help us to quantify the amount of iron oxide nanoparticles inside cells. 

4.5   SUMMARY 

We did the magnetic hyperthermia triggered in vitro drug release study. 

Drug release rate of mitoxantrone loaded into the magnetic thermosensitive 

polymer PNIPAM in the presence of alternating magnetic field of 70 Oe is 8 times 

larger compared to bare PNIPAM using water bath. This allows a short time 

exposure of an alternating magnetic field to get higher amount of drug release. We 

also did the camptothecin drug release from 15-20 kDa and 60 -90 kDa dextran 

coated sample as a function to time. We found higher drug release from higher 

molecular weight dextran coated sample. 

We successfully synthesized the tat peptide labeled dextran coated iron oxide 

nanoparticles. In vitro studies suggest that these tat conjugated nanoparticles have 

penetrated the nucleus of the human glioblastoma cells, which has a great potential 

for the localized radiation therapy.  
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Chapter 5 

MAGNETIC AND DIELECTRIC PROPERTIES OF 

NANOPARTICLES 

5.1 INTRODUCTION 

Nanocrystalline materials have high surface to volume ratios and can show 

properties different from their bulk counterparts. Bulk magnetic materials are 

comprised of a number of different domains. Spins in each domain are aligned in 

same direction, with these domains separated by walls having more complex spin 

arrangements. In single domain magnetic nanoparticles, behaviors arising from 

domain walls are absent, which gives different magnetic and electric properties 

than bulk materials. Since magnetic nanoparticles have many applications, 

including magnetic sensors and transducers, microwave adsorption, electromagnetic 

wave shielding, and high density information storage [138], it is of great interest to 

investigate the dielectric and magnetic properties of these systems. In addition, 

coating nanoparticles with surfactants and dispersing them in carrier liquids, 

producing a ferrofluid, offers the possibility of producing new functionalities. 

Dielectric studies of these ferrofluids can also give information about stability, 

homogeneity and structure of the particles in solution [139]. Magnetic measurement 

on these ferrofluids can provide information on the magnetization and dynamics of 

nanoparticles embedded in polymers. Finally, it has also been observed that 
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dielectric anomalies may accompany magnetic transitions [140], so dielectric studies 

of nanoparticles may allow additional insight into their magnetic properties. 

Many widely studied magnetic nanoparticles are spinel oxides, which can be 

represented by the general form of AB2O4, with A and B representing the 

tetrahedral and octahedral sites respectively in the spinel lattice. These materials 

are attractive systems for the study of complex magnetic order. Both the tetrahedral 

A site ions and the octahedral B site ions can be magnetic, which, in combination 

with the fact that the B site ions sit on a pyrochlore lattice, leads to the opportunity 

to investigate a wide range of complex magnetic behaviors in spinels [141,142]. The 

magnetic and electric properties of these spinel oxides also depend on the choice and 

distribution of cations between the A and B sites. We have studied the magnetic 

and dielectric properties of bare Mn3O4 and dextran coated iron oxide nanoparticles. 

5.2 SUPPRESSION OF LOW TEMPERATURE MAGNETIC 

STATES IN Mn3O4 NANOPARTICLES 

The complex magnetic structures arising in Mn3O4, ideally having Mn2+ at 

the A sites and Mn3+ at the B sites, have been discussed  theoretically [142-144], 

and studied experimentally [145-147]. Bulk Mn3O4 exhibits a tetragonal Jahn-

Teller distortion at the Mn3+ site at high temperatures to the I41/amd space group, 

and orders ferrimagnetically into a Yafet-Kittel phase at TN=42 K. At lower 

temperatures, Mn3O4 undergoes a transition to an incommensurate phase at 40 K 

and a transition to a commensurate phase at 34 K, which is cell doubled relative to 
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the Yafet-Kittel phase. Recently, the magnetodielectric response in Mn3O4 has been 

investigated in both ceramic [148] and single crystal samples [149], where it is 

observed that dielectric anomalies accompany the magnetic transitions. 

The suppression of magnetic ordering transitions in finite size systems has 

been studied theoretically and experimentally. The magnetic ordering temperature 

is predicted to vary with the system size according to [150]:   
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with TN() and TN(d) the bulk and nanoscale magnetic ordering temperatures 

respectively, 0  the T=0 correlation length.  λ is the exponent for finite size scaling, 

related to the critical exponent ν, which is expected to vary from λ=1 for mean field 

transitions [151] to λ=2 for Ising spins [152]. This relation has been experimentally 

confirmed in a number of antiferromagnets, including CoO [150] and Cr [153] films 

and Co3O4 nanoparticles [154]. 

Studies on other nanoscale magnetic materials have established that 

magnetic structures can be completely suppressed in nanoparticles, for example, the 

helical antiferromagnetic order developing in bulk FeP appears to be absent in FeP 

nanoparticles [155]. Mn3O4 is a particularly attractive system for the study of finite 

size effect on magnetic transition temperature, because it exhibits three distinct 

magnetic transitions.  Although there have been several studies on nanomaterials 

incorporating Mn3O4, many of these have involved composite systems, such as 
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Mn/Mn3O4 [156] or MnO/Mn3O4 [157] core-shell nanoparticles, and focused on the 

ferrimagnetic transition on Mn3O4, which is found to be at most slightly suppressed 

in finite size systems [158]. Within this framework, we have carefully studied the 

magnetic and thermodynamic properties of Mn3O4 nanoparticles at low 

temperatures to investigate whether the transition temperature of the other two 

magnetic phases show additional suppression compared to the onset of 

ferrimagnetic order. 

5.2.1   EXPERIMENTAL DETAILS 

We used a co-precipitation method to synthesize Mn3O4 nanoparticles as 

described in section 2.1.10. We collected X-ray diffraction patterns using Cu Kα 

radiation on a Rigaku Ru2000 rotating anode diffractometer to confirm the 

crystalline structure of the nanoparticles. Raman spectra were taken at room 

temperature using a Ar+-ion laser (514.5 nm) with a Triax 550 detector. AC and DC 

magnetization, and specific heat capacity measurement were taken using standard 

options on a Quantum Design Physical Property Measurement System (PPMS). For 

AC magnetization measurement, we packed about 20 mg of nanoparticles in a 

gelatin capsule and compressed with cotton to avoid the motion of the nanoparticles 

during measurement. For the specific heat capacity measurement, we mixed 60 mg 

of Mn3O4 nanoparticles with silver powder in 1:1 ration by weight and cold pressed 

into a solid pellet to ensure a good thermal contact. 
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5.2.2   RESULTS AND DISCUSSIONS 

X-ray diffraction patterns are shown in Fig 5.1a and all the peaks can be labeled to 

the crystalline structure of Mn3O4. This implies that no impurity phases are present 

in these samples. We estimated the size of nanoparticles to be 15 nm using the 

Debye-Scherrer equation d=0.9λ/βcosθ, where β is full width half maximum 

(FWHM) of the peak. TEM images of Mn3O4 nanoparticles are shown in Fig 5.1c. 

These show some agglomeration and the nanoparticles are not uniformly spherical. 

The average diameter of these nanoparticles is 25 nm with a standard deviation of 

approximately 4 nm. The size of these nanoparticles determined from TEM images 

is greater than that found from XRD because of the amorphous surface layer on the 

particles. We also took Raman spectra for these Mn3O4 nanoparticles (compressed 

into a pellet) at room temperature.  We found the same peaks observed as in bulk 

Mn3O4 with some redshift and broadening of the peaks, again confirming the phase 

purity of these Mn3O4 nanoparticles. Room temperature Raman spectra for 

nanoparticles and bulk Mn3O4 are shown in Fig. 5.1b. The high intensity peak at 

654 cm-1 in bulk Mn3O4 is shifted to 640 cm-1 in Mn3O4 nanoparticles. Similarly, the 

low intensity peaks at 365 cm-1 , 313 cm-1 and 278 cm-1 in bulk Mn3O4 are shifted to 

350 cm-1 , 295 cm-1, and 272 cm-1 respectively in the Mn3O4 nanoparticles. Han et al. 

have also reported similar redshifts for Mn3O4 nanoparticles prepared in 

mesoporous silica [159]. We did zero field cooled (ZFC) and FC (field cooled) 

measurements at a field of 1 kOe. These ZFC and FC curves are shown in Fig. 5.2. 

The ZFC curve shows a peak at 40 K and a ferrimagnetic transition at 42 K with a 



115 
 

 
 

sharp rise in magnetization. We confirmed the ferrimagnetic transition falls 

between 42 and 43 K from an Arrot plot, as shown in the inset of Fig 5.2. The  
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Figure 5.1: (a) X-ray diffraction spectrum for Mn3O4 nanoparticles (b) Raman 

spectra for bulk and nanoparticle Mn3O4. Inset: Magnified peaks of lower wave 

number (c) TEM images of Mn3O4 nanoparticles. Taken from J. Magn. Magn. 

Mater., 321, 2296 (2009).  

ferrimagnetic transition has been observed in bulk Mn3O4 at 42 K [148]. The peak 

at 40 K is likely related to superparamagnetic blocking in the Mn3O4 nanoparticles; 

(c) 
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this feature is not observed in bulk Mn3O4 [148]. However, bulk Mn3O4 does exhibit 

a splitting of ZFC and FC curve [148], but this may be associated with the 

incommensurate magnetic transition. Moreover, the rounded peak in the ZFC curve 

in the Mn3O4 nanoparticles, which was not observed in bulk Mn3O4, is consistent 

with the polydispersity of the nanoparticles. The saturation magnetization shown 

by FC curve in Mn3O4 nanoparticles is one third of that in bulk Mn3O4. 
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Figure 5.2: Zero field cooled (ZFC) and Field cooled (FC) magnetization curves for 

Mn3O4 nanoparticles measured at 1000 Oe. Inset: Arrot plot showing ferrimagnetic 

transition between 42 and 43 K. 

This decrease in magnetization is likely due to the presence of disordered surface 

spins in magnetic nanoparticles [160,161]. Most significantly, we do not observe any 

other magnetic transition between 10 K and 42 K in Mn3O4 nanoparticles, while 

bulk samples are known to show other ordering transitions at 34 and 40 K [148].  

We also measure the AC susceptibility as a function of temperature at 1 and  
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Figure 5.3: (a) Real and (b) imaginary ac susceptibility of the Mn3O4 nanoparticles 

measured at f=1 kHz and f=10 kHz. The arrow indicates the onset of the frequency 

dependent magnetic response we associate with surface spins. 

10 kHz. Figs. 5.3 a and b show the real and imaginary parts of the AC susceptibility 

as a function of temperature at different frequencies. Both the real and imaginary 
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part of the AC susceptibility show peaks at 42 K corresponding to the Yafet-Kittel 

magnetic ordering transition. The in-phase component of AC susceptibility does not 

show a signature for any other magnetic transition from 15 K to 42 K. However, the 

out-of-phase component shows some anomaly near 30 K, below the cell doubled 

phase transition seen in bulk at 33 K [148]. This anomaly may instead be due to the 

freezing of surface spins in magnetic nanoparticles, which have been also reported 

in the literature for a number of different magnetic nanoparticles system [162,163]. 

We also measured the heat capacity measurement from 25 K to 50 K, which 

is plotted in Fig. 5.4. This heat capacity measurement shows a thermodynamic 

phase transition at 42 K corresponding to ferrimagnetic Yafet-Kittel ordering. 

There is no other thermodynamic transition in the temperature range, consistent  
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Figure 5.4: Specific heat plotted as a function of temperature for the Mn3O4 

nanoparticle sample.  
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with the AC susceptibility measurements. The entropy associated with the 

magnetic ordering of the Mn3O4 nanoparticles is one half as large as that of bulk 

Mn3O4. This is roughly consistent with the reduction of the net magnetic moment by 

a factor of one third in nanoparticles as compared to bulk Mn3O4. This implies that 

there is a layer of spins that do not order magnetically at the Néel temperature but 

remain as an amorphous surface spin layer.   

All these difference measurements suggest that the Mn3O4 nanoparticles 

have only the single ferrimagnetic Yafet-Kittel phase transition near 42 K, which is 

within the few percent of transition temperature observed in bulk Mn3O4. However, 

other two transitions observed in bulk Mn3O4 below 42 K are absent in 

nanoparticles. This may be partially because of finite size effect. The wavelength of 

the incommensurate magnetic structure exceeds tens of chemical unit cells, which is 

longer than 10-20 nm in case of Mn3O4 nanoparticles. Since the wavelength of 

incommensurate magnetic structure is larger than the magnetic size of the Mn3O4 

nanoparticles, 15 nm, this incommensurate phase might not develop in these 

nanoparticles. The cell doubled phase, which develops below 34 K in bulk Mn3O4, 

has a c-axis of length 8 nm, which is about half the size of the Mn3O4 nanoparticles. 

While there is a possibility that these two low temperature magnetic transitions 

might be suppressed by finite size effects, there could be also other mechanisms 

responsible. Equation (5.1) parameterizes the suppression of magnetic transitions 

due to finite size effects. For the cell double phase, the magnetic transition 

temperature has been suppressed by much more than the factor of two. Using 
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equation (5.1), with ξ0 approximately equal to the wavelength of the magnetic 

structure, we found a scaling exponent λ>4, which has no existing explanation. 

Therefore, we also propose that surface spins in Mn3O4 nanoparticles may also 

contribute to the suppression of the cell doubled magnetic transition in Mn3O4 

nanoparticles. 

These thermodynamic and magnetic measurements suggest that 30 % to 50 

% of the Mn spins do not contribute to ordering at the ferrimangetic transition. 

Local interaction with  amorphous surface spins may play a large role in the 

suppression of lower temperature magnetic transitions as compared to finite size 

effect. These surface spins might have a smaller effect on the ferrimagnetic 

transition since the transition is above the blocking temperature of Mn3O4 

nanoparticles (Fig. 5.2) and the spins are fluctuating in paramagnetic phase. Below 

Yafet-Kittel transition, the surface spins starts freezing as indicated by Fig 5.3b. 

These freezing surface spins produce static random field, which might have 

provided the additional barrier to present the low temperature magnetic transition 

in Mn3O4 nanoparticles.  

5.2.3    CONCLUSIONS 

In Mn3O4 nanoparticles, the Yafet-Kittel phase transition is present while 

the incommensurate and cell doubled phase transition observed in bulk Mn3O4 are  

absent above at least 15 K. Both thermodynamic and magnetic measurements show 

the presence of a Yafet-Kittel transition and the suppression of other two 
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transitions. We also observed superparamagnetic blocking and surface spin freezing 

based on DC and AC magnetization respectively. We propose that the suppression 

of the low temperature magnetic transitions in Mn3O4 nanoparticles is due to 

disordered surface spins in addition to finite size effect.  

5.3   DIELECTRIC MEASUREMENTS ON FERROFLUID 

Considering the dielectric response, ferrofluids should be considered as  a 

heterogeneous dielectric mixture consisting of magnetic nanoparticles coated with 

charged surfactant and dispersed in dielectric liquid.  This allows several dielectric 

relaxation processes in this complex fluid. The distribution of counter-ions around 

the particles in the presence of electric field leads to the polarization of particles, 

which is responsible for low frequency dielectric relaxation [113]. At high 

frequencies and low temperature, an interfacial relaxation process occurs because 

the mobility of ions around the particles is insufficiently rapid to follow the change 

in electric fields [164]. Additional contributions to the dielectric response of 

ferrofluids come from relaxation in the carrier liquid and from the intrinsic 

properties of the magnetic nanoparticles comprising the ferrofluid. Dielectric 

studies on ferrofluid provide information about the structure, stability, 

homogeneity, and dielectric relaxation processes in the system [139]. Dielectric 

measurement while applying a magnetic field on ferrofluid can yield insight into the 

correlation between the dielectric behavior and pattern formation in the ferrofluid. 

Since magnetic nanoparticles in solution form chains under an applied magnetic 
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field, magnetic fields can change dielectric behavior of a ferrofluid.  This can allow 

one to indirectly  probe the distribution of nanoparticles in a ferrofluid under an 

applied magnetic field by measuring the dielectric behavior. In general, a change in 

dielectric behavior with an applied magnetic field is referred as a magneto-dielectric 

effect, and, in ferrofluids, these properties have generally only investigated only 

near or above room temperature. Malaescu et al. [165] has used dielectric 

spectroscopy of magnetite nanoparticles dispersed in kerosene to analyze the 

presence of particle agglomeration inside a ferrofluid. Nasri et al. [139] has 

observed magneto-dielectric anisotropy after applying continuous magnetic field on 

manganese ferrite based ferrofluid. We have studied the dielectric behavior of 

dextran coated Fe3O4 dispersed in 0.5 M NaOH as function of temperature, 

frequency, and applied magnetic field to investigate field-induced changes in the 

nanoparticles distribution and magnetodielectric coupling in the ferrofluid. 

5.3.1   EXPERIMENTAL DETAILS 

We synthesized dextran coated Fe3O4 nanoparticles that were dispersed in 

0.5 M NaOH as described in the section 2.1.3. For the dielectric measurement, 

which required the ferrofluid be loaded into vacuum tight cell capable of 

withstanding low temperatures, we designed a custom dielectric cell. This brass cell 

is cylindrical with a diameter of ~ 18.5 mm (0.730”) and a height of 10.6 mm (0.42”). 

It is fabricated from separate upper and a lower halves to allow the dielectric liquid 

to be loaded. Each half contains a circular conducting plate used an electrode, which  
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Figure 5.5: Lower part of dielectric cell 
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Figure 5.6: Upper part of dielectric cell 
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is electrically isolated from the rest of the cell by insulating black epoxy (Stycast 

2850). An indium O-ring, which maintains its integrity at very low temperatures, is               

to seal the cell. Black epoxy was also used to make vacuum tight electrical 

feedthroughs to the electrodes. The spacing between the capacitor plates was 

adjusted to be ~ 1.5 mm when the cell is closed. The interior volume available for 

the ferrofluid of roughly ~ 30 mm3.. This cell can be mounted in a Quantum Design 

PPMS, which provides temperature and magnetic field control. A schematic 

diagram of the cell is shown in Figs 5.5 and 5.6. 

5.3.2   RESULTS AND DISCUSSIONS 

We measured the dielectric response of dextran coated Fe3O4 ferrofluid in 

this dielectric cell over a temperature range from 10 K to 300 K. At lower 

temperature, we observe a frequency dependent peak in the dielectric loss as shown 

in Fig. 5.7 a.  

30 40 50 60 70 80

-0.002

-0.001

0.000
 100 kHz

 30 kHz

 10 kHz

 

 

D

T(K)

(a)

  

100 125 150 175

0.0

0.3

0.6

 100 kHz

 30 kHz

 10 kHz

 

 

D

T(K)

(b)

 

Figure 5.7: Dielectric loss as a function of temperature at different frequency in 

dextran-Fe3O4 ferrofluid (a) from 30 to 80 K and (b) from 100 to 175 K. 
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We fitted the temperature and frequency dependence of this peak to an Arrhenius 

equation, shown in Fig 5.7 a, and found an activation energy of 56 meV. We also 

observed a second frequency dependent peak near 125 K, shown in Fig 5.7 b. To 

confirm that the lower temperature peak is associated with some relaxation 

mechanism of the nanoparticles in solution, we also measured the AC susceptibility 

of this dextran Fe3O4 ferrofluid and conducted dielectric measurement on a pellet 

pressed from the residue of the freeze-dried ferrofluid. Neither of these 

measurements showed any frequency dependent peak near 125 K, suggesting that 

this higher temperature peak may an extrinsic artifact associated with a resonance  
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Figure 5.8: AC loss as a function of temperature at different frequency in dextran-

Fe3O4 ferrofluid. 

in the dielectric probe. However, these measurements confirm that the peaks 

observed at lower temperatures in the dielectric measurement, near 40 K, can be 

associated with magnetic relaxation of nanoparticles, as seen Fig. 5.8.   
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Furthermore, the fact that a sharp peak in the dielectric relaxation can be seen in 

the solid sample at the same temperature, as shown in Fig. 5.9, implies that this 

anomaly is a single-particle effect, and does not arise from any property of the 

nanoparticles in solution. We estimate the activation energy for the magnetic 

relaxation by fitting an Arrhenius equation to the frequency dependent peaks 

observed in AC susceptibility measurement of dextran-Fe3O4 ferrofluid.  This 

yielded  a value of 51 meV, which is consistent with the activation energy we 

obtained from dielectric measurement.  This confirms that the same underlying 

mechanism is responsible for both features. The presence of coincident anomalies in 

both dielectric and magnetic measurements also confirms the presence of magneto-

dielectric coupling in these iron oxide nanoparticles.  
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Figure 5.9: Dielectric loss as a function of temperature in dextran-Fe3O4 pellet. 
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In order to investigate the effects of chain formation on the dielectric response of the 

ferrofluid, we also measured the dielectric response by sweeping the frequency at 

different temperatures and magnetic field   We plot the dielectric loss as a function 

of frequency normalized to the maximum value for these different measurements in 

Fig 5.10, where (0T, 0T) represents the sample was cooled at 0T and the 

measurement was also done at 0 T and (2T, 0T) represents the sample was cooled at 

2 T and the measurement was done at 0 T. The reason for cooling the sample at 

applied field and zero filed was nanoparticles will form more chain like structure in 

the presence of applied magnetic field and will show different dielectric behavior 

than that of zero field cooled. Data in Fig 5.10 are generally analyzed in terms of  

the Casimir-du Pré relation with single relaxation time [166]. Since the relaxation 

curves at different temperature and magnetic fields coincide, as shown in Fig 5.10, 

the characteristic relaxation behaviour is identical. In particular, this analysis 

suggests that the formation of nanoparticles chains has no significant effect on the 

relaxation. We also investigated the dielectric response of the ferrofluid at the 

melting transition at fields of 0 T, 2 T and 5 T to study the effects of chain 

formation. These results are plotted in Fig 5.11 a, with Fig 5.11 b showing the 

difference between the high field and zero field data. Again, all the measurements 

were done at 0 T whereas sample was cooled at 0 T, 2 T, and 5 T as indicated in the 

legend of Fig 5.11 to investigate chain formation in ferrofluid. The sharp increase in 

dielectric loss on melting is associated with a dramatic increase in conductivity in  
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Figure 5.10: Dielectric loss as a function logarithm of frequency scaled to their 

maximum value at different temperature. 

the liquid phase since the ferrofluid is only a good dielectric in the frozen state when 

electrical conductivity is suppressed. However, we didn‟t see any noticeable 

signature of chain formation from these data. 

200 250 300

0

200

400
 0T, 0T

 2T, 0T

 5T, 0T

 

 

D

T(K)

(a)

200 250 300

-300

-200

-100

0

 (2T, 0T) - (0T, 0T)

 (5T, 0T) - (0T, 0T)

 (5T, 0T) - (2T, 0T)

 

 


D

T(K)

(b)

 

Figure 5.11: (a) Dielectric loss as a function of temperature at 0 T, 2 T and 5 T. (b) 

Difference in dielectric loss at 0 T, 2 T and 5 T as a function of temperature.  



130 
 

 
 

Measurements of the electrical properties of the ferrofluid on sweeping 

temperature can also yield information about the freezing and melting dynamics in 

this system.  We measured the zero-field impedance as a function of temperature 

while warming and cooling through the phase transition at several different 

frequencies. The plots are shown in Fig 5.12. It shows that area of the loop at lower 

220 240 260 280

0

30

60

90

120

150

180

210

 30 kHz

 100 kHz

 300 kHz

 1 MHz

 

 

Z
(k


)

T(K)

Warming

Cooling

 

Figure 5.12: Impedance as a function of temperature while cooling and warming 

ferrofluid. 

frequency is higher indicating more dielectric loss at lower frequency as compared 

higher one. 

5.3.3   CONCLUSIONS 

In summary, we designed a vacuum tight dielectric cell to do temperature 

dependent dielectric measurements on ferrofluids. Dielectric measurements at 

lower temperature showed relaxation peaks near 40 K consistent with AC 



131 
 

 
 

susceptibility measurement, which indicates the presence of magneto-dielectric 

coupling in this system. We also did zero field cooled and field cooled dielectric 

measurement to investigate chain formation in ferrofluid. However, we couldn‟t see 

any signature of chain formation from dielectric measurement. Frequency 

dependent study at different temperature implies iron oxide nanoparticles are 

monodispersed with single relaxation time. We also observed frequency dependent 

dielectric loss from the temperature sweep dielectric measurement at melting 

transition of ferrofluid. 

5.4   SUMMARY 

 We investigated suppression of low temperature magnetic states in Mn3O4 

nanoparticles. Only Yafet-Kittel phase transition at 42 K has been observed in 

Mn3O4 nanoparticles as compared to three different transition observed at 42 K, 40 

K, and 34 K in bulk Mn3O4. Finite size effect and disordered surface spins might 

have suppressed low temperature magnetic states in Mn3O4 nanoparticles. We also 

studied the magnetic and dielectric properties of ferrofluid. We observed both 

dielectric and magnetic loss peak around 40 K in ferrofluid indicating same 

mechanism responsible for the feature, which also indicates magnetodielectric 

coupling in ferrofluid. We also did zero field and field cooled dielectric measurement 

in ferrofluid to investigate any signature of chain formation in ferrofluid but could 

see any noticeable feature regarding chain formation from these measurement. Zero 
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field impedance measurement on ferrofluid around melting transition shows higher 

loss at lower frequency.  
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Chapter 6 

MAGNETIC CHARACTERIZATION OF NiMH 

BATTERY 

6.1 INTRODUCTION 

The transition from hydrocarbon based energy will require significant 

advances in energy storage.  While there are a number of different technologies on 

the horizon, nickel metal hydride (NiMH) rechargeable represent a widely used and 

well established energy storage system. These batteries include a hydrogen-

absorbing alloy as the negative electrode and nickel oxyhydroxide (NiOOH) as the 

positive electrode. These batteries are built on the fact that some metallic alloys 

form hydrides by absorbing a volume of hydrogen a factor of one thousand larger 

than their own [167]. This produces very high energy storage densities. In addition, 

these batteries can be cycled (charged and discharged) hundreds of times making 

them a viable long-term solution for energy storage. The charging and discharging 

scheme of these batteries is as follows: 

Alloy + H2O + e-  Alloy(H) + OH- ………………………………… (6.1) 

While charging (the forward reaction in equation 6.1) with an electric potential 

applied, the water in the electrolyte decomposes and gives hydrogen ions, which in 

turn are absorbed by the alloy at the negative electrode. While discharging (the 
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reverse reaction in equation 6.1), the hydrogen desorbs from the alloy and combines 

with hydroxyl ions to form water.  This process also contribute an electron to the 

circuit. The properties of these batteries can be improved by judicious selection of 

the electrode materials.. Some commonly used alloys are AB2, AB5 and A2B7. AB2 

alloys contain metals like titanium (Ti), zirconium (Zr) or hafnium (Hf) at the A site 

and transition metals like manganese (Mn), nickel (Ni) or chromium (Cr) at B sites. 

The AB5 alloys contain hydride forming rare earth metal like lanthanum (La), 

Cerium (Cr) or Neodymium (Nd) at the A site and non hydride forming metals like 

Ni at the B site. A2B7 is typically based on the La-Mg-Ni system alloy with La and 

Mg at A site and Ni at B site. 

Although NiMH batteries have a long track record, there remain considerable 

opportunities to improve their performance. It is crucial to understand the role of 

each element in the electrode through careful study of these alloys, which will give 

insight into how to improve their properties. It has been reported that metallic 

nickel nanoclusters embedded in the surface oxide of these alloys play an important 

role catalyzing the electrochemical reaction in Ni-MH batteries. These Ni based 

clusters affect the high-rate dischargeability (HRD) of the electrodes, and increase 

corrosion and passivation resistance [168,169]. Magnetic characterization can be 

used to help parameterize the surface catalytic activity of alloys since magnetic 

measurements give insight into the nanoscale structure of metallic clusters in the 

electrodes. In addition, the paramagnetic component of the magnetic susceptibility 

can be used to find the concentration of electrons in some alloys [170]. The size of 
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the nanoclusters can be obtained by fitting the room temperature magnetization 

curves using Langevin function [171]: 
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kT
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H
MHHM sB




 )coth()( ………………………………………..(6.2) 

where χB is the intrinsic paramagnetic susceptibility of the alloy, which is estimated 

by the value of the high field magnetization, MS is the saturation magnetization of 

the ferromagnetic metallic Ni or Ni-alloy nanoparticles, μ is the net magnetic 

moment of each metallic cluster (assuming all the individual Ni spins are locked 

together ferromagnetically), k is the Boltzmann constant, and T is the absolute 

temperature. The mass fraction of metallic nickel was calculated from the ratio of 

the measured MS and the known saturation magnetization of pure nickel metal 

(58.6 emu/g) while the size of the metallic nickel clusters was computed using μ 

together with the known moment per metallic Ni atom (0.6 μB/Ni). Within this 

framework, we calculated the size of Ni metal clusters and the fraction of Ni in 

different sample alloys having applications in NiMH batteries as described below. 

In addition, we have also investigated exchange bias effects on these system under 

the assumption that the Ni may have oxidized to form Ni-NiO (ferromagnetic-

antiferromagnetic) nanocomposites.  

6.2 COBALT SUBSTITUTED AB2 ALLOYS  

  Cobalt substitution in Ni AB2 alloys has been investigated extensively to 

improve hydrogen storage and battery applications. Shaltiel et al. [172] found cobalt 
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content decreased the heat formation. Honda et al. [173] found the substitution of 

Co for Mn decreased the hydrogen storage capacity whereas Song et al. [174]  has 

reported increase in capacity by partially replacing Ni with Co. The cycle durability 

has also increased by substituting Co as reported by Chen et al. Same group also 

mentioned the increase in heat formation (ΔH) with the increase in Co content. 

Similarly, Ji et al. [175] has found that cobalt content has increased cycle stability 

and self-discharge. We have done the magnetic studies on the different wt % cobalt 

substituted at the expense of Ni and correlated the wt. % of cobalt content as a 

function Ni cluster size with performance of battery investigated by other studies on 

the same samples.  

Co substituted alloys were obtained from Ovonic Battery Company, Rochester Hills, 

Michigan. They provided six samples: CA01, CA02, CA03, CA04, CA05, and CA06. 

CA01 contains no cobalt, with the Co fraction having a sample-to-sample increase of 

0.5 wt % up to sample CA06 with 2.5 wt% of cobalt. The amount of other 

constituents including cobalt on these alloys is given in the table 6.1, together with 

the Ni fraction and Ni cluster size estimated from the magnetic measurements. 

Since the atomic radii and electronegativity of Co and Ni are the same, Co 

substitution occurs at the expense of Ni and the overall radii and electronegativity 

of the alloys does not change. The magnetic susceptibility of metallic nickel clusters 

embedded in the surface layer of the electrodes is several orders of magnitude larger 

than from 
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Alloy Ti Zr V Ni Cr Mn Co Sn Metallic 

Ni  (%) 

Ni cluster 

size (nm) 

CA01 12 21.5 10 38.1 4.5 13.6 0 0.3 0.038 10.2 

CA02 12 21.5 10 37.6 4.5 13.6 0.5 0.3 0.034 11.5 

CA03 12 21.5 10 37.1 4.5 13.6 1 0.3 0.041 9.7 

CA04 12 21.5 10 36.6 4.5 13.6 1.5 0.3 0.042 9 

CA05 12 21.5 10 36.1 4.5 13.6 2 0.3 0.051 10 

CA06 12 21.5 10 35.6 4.5 13.6 2.5 0.3 0.046 10 

 

Table 6.1: Amount of constituents in the arc-melt prepared cobalt doped alloys. 

nickel in the alloy due to the availability of unpaired electrons [171], so the amount 

of metallic nickel in this surface can be estimated from magnetization 

measurements.  These non-destructive magnetic measurements can be done with a 

minimum of sample preparation, and measure the average properties over 

relatively large volumes, offering considerable advantages over other methods of 

probing the Ni nanoparticles concentrations, including TEM. Room temperature 

magnetization curves for each of these samples are plotted in Fig. 1. These curves 

can be fit to the Langevin function given by equation 6.2. 
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Figure 6.1: Room temperature magnetization curves for alloys CA01–CA06. 

The Langevin fit depends on the saturation magnetization and net magnetic 

moment of the Ni clusters, from which we calculated fraction of metallic Ni and size  
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Figure 6.2: Average size and the concentration of metallic nickel cluster  as a 

function of atomic percentage of Co in alloy. 
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of the Ni cluster respectively. These values are given in table 1 and plotted as a 

function of cobalt content in Fig 6.2. These investigations established that the 

content of metallic nickel increases while the cluster size decrease as Co is 

substituted into the alloy. Studies of hydrogen gas storage properties on these 

samples show that substitution of Co from 1 to 1.5 wt. % has increased the stability 

of hydride and hydrogen storage capability implying the importance of cobalt doping 

in higher charge storage [176]. 1.5 % cobalt doping has also lowest metallic Ni 

inclusions in the surface oxide. 

6.3   ALUMINIUM SUBSTITUTED AB2 ALLOYS  

Relatively large size and less number of valence electron in Aluminium 

makes it an interesting element to study the substitution effect on NiMH battery. 

Inspite of its importance, there are limited number of studies about the Aluminium 

substitution in NiMH battery. Gamo and Moriwaki [177] have reported the 

reduction in flammability after substituting Aluminium at the expense of Zirconium 

(Zr). Wakao et. al. [178] found the durability of electrochemical cycling by the 

substitution of Aluminium. Yamamura et al. [179] found the voltage stand at high 

temperature has imporved after the substitution of  Aluminium in AB2 alloy. We 

did magnetic measurements on different wt % Al substituted in AB2 alloy and have 

correlated the content of Al with size of Ni cluster to the battery performance 

obtained by other studies on the same samples.  
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Aluminium substituted alloys were also obtained from Ovonic Battery 

Company, Rochester Hills, Michigan, labeled as: CA01, CA07, CA08, CA09, CA10, 

and CA11. CA01 contains no aluminium and the Al fraction increase by 0.2 wt % for 

each sample to CA11 with  1 wt% of aluminium. The composition of these alloys, 

including information on the Ni content extracted from magnetic measurements, is 

given in the table 6.2. 

Alloy Ti Zr V Ni Cr Mn Al Sn Metallic 

Ni  (%) 

Ni cluster 

size (nm) 

CA01 12 21.5 10 38.1 4.5 13.6 0 0.3 0.038 10.2 

CA07 12 21.5 10 37.9 4.5 13.6 0.2 0.3 0.059 10.2 

CA08 12 21.5 10 37.7 4.5 13.6 0.4 0.3 0.046 9.5 

CA09 12 21.5 10 37.5 4.5 13.6 0.6 0.3 0.051 10.3 

CA10 12 21.5 10 37.3 4.5 13.6 0.8 0.3 0.057 10.1 

CA11 12 21.5 10 37.1 4.5 13.6 1 0.3 0.061 10.1 

 

Table 6.2: Amount of constituents in the arc-melt prepared aluminium doped alloys. 

As with the measurements on Co substituted alloys, magnetic measurements can be 

used to quantify the amount of metallic nickel on the surface. Room temperature 

magnetization curves measured as a function of applied magnetic field for these 
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samples are plotted in Fig. 6.3. These curves are fit to equation 6.2 to determine the 

saturation magnetization and magnetic moment of each nanocluster, which were 

then used to calculate the percentage of metallic Ni and size of Ni cluster. 

Concentration of metallic Ni and size of Ni cluster for each of the alloy are given in 

table 2 and plotted in Fig 6.4. The amount of metallic nickel present shows a sudden  
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Figure 6.3: Room temperature magnetization curves for alloys CA01 and CA07–

CA11. 

jump as Al is added and then increases steadily with Al fraction, while the average 

size of the nickel clusters remains constant at roughly 10 nm. Incorporating Al into 

the alloys has increased the number of surface metallic nickel clusters, which 

contributes to a high HRD, but does not change the size of Ni clusters. 0.4 % 

Aluminium co-substituted with 1.5 % cobalt improves charge retention, high rate 

dischargeability, cycle life, specific power, and low temperature performance of  
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Figure 6.4: Average size and the concentration of metallic nickel cluster as a 

function of atomic percentage of Ni in alloy. 

alloy. So, the combination of 1.5 % cobalt and 0.4 % Aluminium is the best 

substitution in alloy to improve the quality of the NiMH battery. 

6.4 COMPARISONS OF METALLIC CLUSTERS 

EMBEDDED IN THE SURFACE OF AB2, AB5, and A2B7 

ALLOYS 

AB2, AB5 and AB7 are the alloys used in NiMH battery. Careful comparison 

of structural and physical properties of these alloys is necessary to identify the 

differences between them and suggest the method to improve their properties. 

There are a number of open questions concerning the interplay of composition and 

catalytic activity, which is strongly affected by Ni nanoclusters, in alloys for NiMH 
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battery electrodes.  In particular, there is considerable interest in exploring how 

chemical etching affects the Ni distribution.  In order to measure the size of the Ni 

nanoclusters along with the total fraction of metallic Ni, we did magnetic  

Alloy Composition Alloy 

system 

Saturation 

magnetization 

(memu/g) 

Normalized 

cluster size 

A Ti12Zr21.5Ni36.2V9.5Cr4.5Mn13.6Sn0.3Co2A

l0.4 

AB2 33 1 

B La10.5Ce4.3Pr0.5Nd1.4Ni60.0Co12.7Mn5.9Al

4.7 

AB5 434 0.93 

C La16.3Mg7.0Ni65.1Co11.6 A2B7 369 1.06 

D Nd18.8Mg2.5Ni65.1Al13.6 A2B7 132 0.95 

 

Table 6.3: Compositions and summary of Alloys A-D. 

measurement on four alloys A, B, C and D described below, prepared with different 

etching time: 0 h, 0.5 h, 1h, 2 h, 3 h and 4 h of each. Etching was done at 100 oC in 

30 % KOH at above mentioned time intervals to activate the surface of alloys. We 

obtained these samples from Ovonic Battery Company, Rochester Hills, Michigan. 

The nominal composition and structure are given in the table 3 for these samples. 
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Figure 6.5: The magnetic susceptibility curves measured at room temperature for 

alloys A (a), B (b), C (c), and D (d).  

The characteristics of the nanoscale metallic nickel clusters embedded in the 

surface oxide were studied by probing the magnetic susceptibility, The 

magnetization values associated with the ferromagnetic metallic nickel 

nanoclusters is a few orders of magnitude larger than that from the paramagnetic 

nickel atoms [171]. Room temperature magnetization curves were measured as a 

function of applied magnetic field for the etched powder sample. These curves are 
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plotted in Fig. 6.5 a–d for alloys A–D, respectively. The saturation magnetization 

and magnetic moment of each nanocluster were obtained by fitting equation 6.2 

from which the percentage of metallic Ni and size of the Ni clusters were calculated. 

For easy comparison, values are normalized to cluster size of 4 h etched Alloy A. 

Both the MS values and the normalized sizes of the  Ni clusters in the  4 h samples 

are listed for each alloy in Table 3 and plotted in Fig. 6.6 a and b. The MS and the 

average size of the metallic clusters both decrease with the first half-hour of etching 

for all four alloys. This suggests a dissolution of the native oxide formed during 

powder processing [180]. After this time, a new oxide layer having a higher porosity 

due to selective leaching is formed. The thickness of this oxide layer increases with 

 

Figure 6.6: Evolution of the saturated magnetic susceptibility (a), and normalized 

cluster size (b) as functions of etching time for alloys A–D. Taken from J. Alloys and 

Compd., 506, 831 (2010).  
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the etching time until the accumulated hydrogen reduces any further oxidation of 

the bulk metal. After 4 h of etching, the magnitude of the saturation magnetization 

is largest for Alloy B, followed by the alloy sequence of C, D, and then A. This 

implies that the alloy having higher magnetization has high rate dischargeability 

associated with metallic nanoclusters but low total capacity which is just opposite in 

case of the sample with lowest magnetization. 

6.5   SUMMARY 

 In order to parameterize the size and distribution of Ni nanoclusters in 

NiMH battery electrode materials, we measured the room temperature 

magnetization in cobalt doped and aluminium doped AB2 alloys. In addition, we also 

determined the relative sizes of Ni clusters and saturation magnetization in three 

different alloys, namely, AB2, AB5, and A2B7. Sample with higher saturation 

magnetization has high rate dischargeability with low capacity and vice versa.  
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Chapter 7 

SUMMARY 

 

 We investigated a number of different properties and biomedical applications 

of magnetic nanoparticles.  We have focused primarily on biocompatible iron oxide 

nanoparticles, which can readily be prepared by a fast, simple, and efficient low 

temperature technique. Because of their small size, it is possible to fit millions of 

these nanoparticles inside each cell, which we confirmed using magnetic studies. 

The surfaces of these nanoparticle can be functionalized by attaching a variety of 

biologically active ligands,  This offers the possibility of using these particles to 

carry biologically and therapeutically relevant molecules inside cells.  By 

investigating the physical and biological properties of a variety of these 

functionalized iron oxide particles, we have clarified a number of important issues 

concerning the biomedical applications of magnetic nanoparticles. 

 We used a wide range of biocompatible surfactants to coat these 

nanoparticles including fatty acids, dextran, and hyaluronic acid. We used different 

tools to characterize these nanoparticles, such as Transmission Electron Microscopy 

(TEM) to get the core size of nanoparticles, X-ray diffraction (XRD) to confirm the 

crystal structure, Dynamic Light Scattering (DLS) and Fluorescent Correlation 

Spectroscopy (FCS) to obtain the hydrodynamic size in solution, Thermogravimetry 

analysis (TGA) to establish the number of surfactant layers and amount of coating, 

Zeta potential studies to find the surface charge, and magnetization measurements 
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to establish the magnetic properties of the nanoparticles.  These nanoparticles 

synthesis techniques and studies on their fundamental properties provide a strong 

platform for continuing investigations on biomedical applications of magnetic 

nanoparticles.  Some of the specific studies included in this work are investigations 

on magnetic hyperthermia, targeted drug delivery and radiation therapy. 

 We designed and built a magnetic hyperthermia apparatus to investigate the 

magnetic heating of these nanocomposites produced by an alternating magnetic 

field.  This remote heating provides a non-invasive technique for controlling the 

nanoparticles properties. In one specific investigation, magnetic heating was used to 

trigger the release of an anticancer drug mitoxantrone from a thermosensitive 

polymer, poly N-isopropylacryl amide (PNIPAM). We heated PNIPAM-Fe3O4 above 

the lower critical solution temperature (LCST) of the nanocompostie, 38 oC, by 

applying an alternating magnetic field of 130 Oe for only four minutes. The drug 

release rate from PNIPAM-Fe3O4 was 1 % per minute, which is about 8 times larger 

as compared to the bare PNIPAM heated using a water bath as a control. 

Continuing with the theme of building targeted drug delivery applications around 

magnetic nanoparticles, we also studied the dynamics of drug release from 

nanoparticles coated by different chain length dextran. An anticancer drug 

camptothecin was loaded into 15-20 kDa and 60-90 kDa dextran coated sample and 

the loading effieciency was found to be 100 % for both samples. Time dependent 

drug release measurements in phosphate buffer saline (PBS) showed 12 % and 8 % 

drug release from 60-90 kDa and 15-20 kDa dextran coated sample respectively in 



149 
 

 
 

72 h implying that higher molecular mass coated iron oxide release more drug as 

compared to the lower molecular mass surfactant. As a more discriminating test of 

utilizing magnetic nanoparticles for targeted delivery, we labeled these iron oxide 

nanoparticles with tat peptide to target the cell nucleus. Our preliminary result 

shows that these particles have accumulated inside the cell nucleus, with a net 

nanoparticles concentration of approximately 6 x 106 nanoparticles per cell.  

 Iron oxide nanoparticles have been used for many biomedical application 

including MRI, magnetic hyperthermia, targeted drug delivery, magnetofection, and 

stem cell tracking but, to best of our knowledge, iron oxide nanoparticles have never 

been used for the localized radiation therapy. This novel idea of localizing iron oxide 

nanoparticles at the nucleus of the cell to produce higher linear energy transfer 

(LET) low enery X-ray and Auger electron to damage cell DNA offers an exciting 

opportunity to investigate novel applications of magnetic nanoparticles in radiation 

therapy. In addition, since iron oxide acts a contrast agent in MRI, combining iron 

oxide based radiation therapy with MRI brings one more promising possibility in 

the emerging area of image guided radiation therapy for cancer treatment. 

 In order to further investigate the properties of magnetic nanoparticles in 

solution, we also investigated the dielectric behavior of iron oxide based ferrofluid.  

This involved designing and building a vacuum tight dielectric cell capable of 

holding to low temperatures. Dielectric studies on iron oxide based ferrofluid 

showed relaxation peak at lower temperature of around 40 K, which was also 

accompanied by magnetic measurement, implying significant magnetodielectric 
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coupling in this system. We have also done field cooled and zero field cooled 

dielectric studies on the ferrofluid to investigate the chain formation but did not see 

any noticeable feature that could be associated with chain like structures in these 

measurements. Beyond studies of iron oxide nanoparticles, we also explored the 

properties of other types of magnetic nanoparticles. We established that several low 

temperature magnetic transitions are suppressed in Mn3O4 nanoparticles, plausibly 

due to surface spins.  This has important implications for designing nanoscale 

devices based on novel magnetic materials, as it suggests that the desirable 

magnetic characteristics may not persist in reduced geometries. We also 

investigated the magnetic response of different alloys used for NiMH battery 

electrodes to explore the size and distribution of Ni nanoparticles in these systems. 

These Ni nanoparticles play an important role in catalyzing the electrochemical 

reaction and powering the NiMH batteries, so it is important to develop non-

destructive techniques for studying these particles. We also extended these studies 

to probe the exchange bias effect in this system to indirectly characterize the 

properties of a Ni-NiO (ferromagnetic-anitferromagnetic) nanocomposite formed by 

the oxidation of the Ni nanoparticles. 

 In summary, the physical properties of nanoscale magnet, such as size, 

biocompatibility, ease of functionalization and the ability to manipulate them using 

non-invasive external magnetic field, make them promising agents for biomedical 

applications. This thesis has investigated many physical properties of iron oxide 

nanoparticles along with many biomedical applications. 
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 Magnetic nanoparticles have a number of unique properties, making them 

promising agents for applications in medicine including magnetically targeted drug 

delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation 

therapy. They are biocompatible and can also be coated with biocompatible 

surfactants, which may be further functionalized with optically and therapeutically 

active molecules. These nanoparticles can be manipulated with non-invasive 

external magnetic field to produce heat, target specific site, and monitor their 

distribution in vivo. Within this framework, we have investigated a number of 

biomedical applications of these nanoparticles. We synthesized a thermosensitive 

microgel with iron oxide adsorbed on its surface. An alternating magnetic field 

applied to these nanocomposites heated the system and triggered the release of an 
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anticancer drug mitoxantrone . We also parameterized the chain length dependence 

of drug release from dextran coated iron oxide nanoparticles, finding that both the 

release rate and equilibrium release fraction depend on the molecular mass of the 

surfactant. Finally, we also localized dextran coated iron oxide nanoparticles 

labeled with tat peptide to the cell nucleus, which permits this system to be used for 

a variety of biomedical applications. 

 Beyond investigating magnetic nanoparticles for biomedical applications, we 

also studied their magnetohydrodynamic and dielectric properties in solution. 

Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate 

selection of surfactant and deielctric measurement showed magnetodielectric 

coupling in this system. We also established that some complex low temperature 

spin structures are suppressed in Mn3O4 nanoparticles, which has important 

implications for nanomagnetic devices.  Furthermore, we explored exchange bias 

effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive 

magnetic studies in nickel metalhydride (NiMH) batteries to determine the size of 

Ni clusters, which plays important role on catalyzing the electrochemical reaction 

and powering Ni-MH batteries. 
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