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CHAPTER 1 

Introduction 

Soft condensed matter is a subfield of condensed matter comprising materials in states of 

matter that are neither simple liquids nor crystalline solids. These materials are extremely soft, it 

can be destroyed easily by mechanical means, and that is why we call it soft. These materials are 

familiar from our everyday life- glues, paints, soaps, and plastics are examples of soft materials. 

Much of the food we eat and indeed ourselves classed as soft matter
1
. 

Soft matter materials include colloidal dispersions, polymers, amphiphiles, and liquid 

crystals. Although these materials seem to be very different, they have common structural and 

dynamical properties that we can consider them as a class. One of these properties is their 

intermediate mesoscopic length scales. Colloidal dispersions are less than 1m in size, polymer 

chains and the self-assembled structures formed by amphiphilic molecules have dimensions in 

the range of 10 nm which is larger than the atomic size (> 0.1 nm) and smaller than the 

macroscopic objects (<10 m). Another feature of soft matter is that they undergo Brownian 

motion. This means that they are subjected to random forces from thermal motion of the 

surrounding molecules
2
. The small size of soft matter structures allow them to fluctuate in any 

thermal system and the typical energies between the bonds of the structures are comparable to 

thermal energies.  Therefore, soft matter systems can be considered as a constant state of random 

motion; polymer chains in solution or melt are continually writhing and turning and the colloidal 

particles diffuse in solutions due to Brownian motion
1
. 

Soft matter systems have a tendency to self-assemble. These systems move toward 

equilibrium to minimize the free energy. The balance of the energy and the entropy lead to 
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complex structures of soft matter systems. This self-assembly can occur at the levels of 

molecules such as the block co-polymer systems
3
, or on the mesoscopic level such as 

amphiphilic molecules. These amphiphilic molecules consist of hydrophilic “water loving” part 

and hydrophobic “water hating” part; therefore when immersed in aqueous solution, the 

molecules assemble themselves to form remarkable structures such as micelles which may be 

spherical or cylindrical in shape, bilayers, and vesicles. Moreover, these aggregates may 

themselves associate in ordered arrangements to produce complex phases.  

Condensed matter is held together by intermolecular forces, which determine their bulk 

and macroscopic properties. In solids, each molecule is locked on crystal lattice point and there 

is a direct relationship between the energy of the bonds and the stiffness. In liquids, on the 

contrary, the molecules are not locked rigidly into specific positions, but its position relative to 

its neighbor‟s, changes on a characteristic relaxation time. In soft matter, characteristic relaxation 

times fall into a range of values perceptible to the human senses, and these materials behave in a 

way that is neither solid-like nor liquid like-they are viscoelastic. In many systems, the relaxation 

time diverge as the temperature is lowered leading to a non-equilibrium state of matter-a glass- 

in which liquid-like property such as lack of order and solid-like elastic property appeared at the 

same time
1
. The term „soft‟ originate from macroscopic mechanical properties. Many soft 

materials have weak ordering on the contrary of the three-dimensional atomic long-range order 

found in crystalline solid. However, there is a degree of local order similar to that one in liquid. 

The intermolecular force is responsible for the ordering of soft materials. These forces are a 

balance of repulsive interactions at short distances and attractive interactions that predominate at 

larger length-scale. Repulsive force results from the overlap of the electrons when atoms 

approach another. The origin of this repulsion is essentialy quantum mechanical due to Pauli‟s 
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exclusion principle. Attractive interactions in uncharged molecules result from van der Waals 

forces, which arise from interactions between dipoles. All such molecules can be thought of as 

having constantly fluctuating random dipole moment. This interaction has the same order of 

magnitude as thermal energy kBT at room temperature. Therefore, there is a probability that the 

bond energy may be broken and subsequently reformed by thermal agitation. 

  Understanding condensed matter systems‟ behavior depends on accurate models of the 

microscopic behavior of its components at the molecular and atomic scale, obtained to 

understand the macrosopic properties.  To access the microscopic behavior of these systems, 

adequate probes are required. There are two aspects of interest related to soft matter systems. 

The first one is related to the sample structure, which can be accessed by direct microscopy, but 

with visible light, this access is limited in resolution to a few hundred of nanometer and 

restricted to transparent samples. However, progress in electron microscopy provides structural 

information to subnanometer resolution, but the gained information is limited to a few atomic 

layers on the sample surface
4
. The real space images obtained using such direct imaging 

techniques give us structural information that can be understood in terms of atomic positions. 

The second aspect of interest is related to the dynamics of the sample, which can be accessed by 

scattering methods that can reveal the characteristic microscopic excitations in the sample. 

Compared to imaging, the information obtained by scattering methods cannot be directly 

interpreted in real space. However, the detailed description is not that important to understand 

the microscopic properties but instead the typical correlations in the atomic positions and 

motions. The advantage of the scattering methods is that they can reveal these correlations over a 

huge range both of length and time scales including at the microscopic scales relevant for the 

intrinsic particle interaction
4
. In scattering experiment, particles or waves emitted by a source, 
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are deflected by the sample to inspect, and the scattered intensity is collected by a detector. 

Examples of the scattering techniques are dynamic light scattering (DLS) and fluorescence 

correlation spectroscopy (FCS) which is the counterpart to DLS where the former use incoherent 

(fluorescence) light while the latter uses coherent light.  Other types of scattering are X-ray and 

neutron beams, which have much smaller wavelength than light so it can be used to probe much 

smaller features than visible light.  

A brief description of the major classes of soft matter is introduced here before 

progressing further. Colloidal dispersions can be defined as a microscopically heterogeneous 

system where particles of solids or droplet of liquid with dimensions in the range between 1 nm 

to 1 m are dispersed in a liquid medium
1, 2

. Paint, ink, mayonnaise, and ice cream are familiar 

examples of such systems. Moreover, milk and blood, which are biological fluids, are considered 

as colloidal dispersions. Because of the small size of the colloidal particles, their surface to 

volume ratio is large, and many molecules lie close to the interface between one phase and 

another
2
. Therefore, they are characterized with high area of interface associated with a 

substantial amount of interfacial energy. Despite this large energy, colloidal dispersions are 

characterized by their stability, which prevent colloidal particles to combine forming larger 

aggregates in order to reduce the interfacial energy. Gravity is one force that may destabilize a 

dispersion. If the dispersed particles are denser than the dispersing fluid, the particles have the 

tendency to sediment. Opposing this tendency is the Brownian motion of the particles. As the 

dispersed particles become smaller, the Brownian motion overcomes gravity. At small enough 

size, the effect of gravity is minimized to destabilize the dispersion. If the particles encounter one 

another and come into contact, they will stick irreversibly forming larger assembly in a process 

known as aggregation. The process of reversible aggregation is called flocculation. To prevent 
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colloidal aggregation, the forces between the colloidal particles, which are normally the 

attractive van der Waals interactions, must be changed to make the particles repel each other. 

This can be achieved by exploiting electrostatic forces in charge stabilization, or by attaching 

polymers chains to the surface of them in steric stabilization
1
. Phase transitions and critical 

phenomena such as critical slowing down of diffusion and critical opalescence are some of the 

phenomena that colloidal systems have in common with molecular systems. Due to their large 

size and slow dynamics, the experimental study of colloids is much simpler than for molecular 

systems. For example, instead of using X-ray or neutron scattering, light scattering and 

microscopy can be used in many cases. The slow dynamics of colloids gives rise to non-

equilibrium phenomena including shear thinning which is a very useful property in paint. At high 

shear rates, the viscosity of the paints should be small so that the paint can be brought to the 

wall. After that, the paint should stay on the wall and not slide off the wall under gravity. Hence, 

at low shear rates the viscosity of the paint should be large
4
. 

The technology of preparing and processing colloids is of industrially importance since 

long time ago. However, it is recently that physical chemists and physicists have started to probe 

the physical chemical basis of colloidal stability. Better knowledge of the nature of interpaticle 

interactions have led to profound understanding of the behavior of colloids. This knowledge is 

leading to a new era of colloid science, where materials can be designed for specific applications.  

For example, a group of researchers presented a novel method for creating asymmetrical 

particles with unusual, flattened shapes from colloidal latex microspheres pinned at an oil−water 

interface
5
. “The shape and degree of asymmetry are controlled by incubating particles for 

minutes to tens of minutes at an elevated temperature. Fluid interfaces also provide interesting 

possibilities for tuning the chemistry and shape of the particles further. By changing the surface 
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wetting properties, it should be possible to generate an even greater variety of shapes by 

controlling the relative portions of the particle in each phase” (Fig.1.1). 

 

 

 

Fig. 1.1 (a) SEM image of 

asymmetric particles formed at an 

oil-water interface. (b)Magnified 

image of a single particle. (c) 

Original spherical particles. The 

scale bars are 5 μm.(Park 2010) 

 

The second large class of soft matter is polymers. A polymer is a large molecule 

composed of many repeating elementary units, called monomers. These monomers are connected 

to each other by covalent bonds. In the simplest case, polymers are long, linear chain molecules. 

Such polymers are linear homopolymers. The entire structure of a polymer is generated during a 

process by which the monomers are covalently bonded together called polymerization, or by the 

variation of the polymer architecture. On large distances compared to the size of a monomer, the 

chemical structure of the building block play a minor role, and the properties of the chain are 
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determined by the statistical mechanics of the chain, essentially the chain entropy. Many 

properties of polymers are direct consequences of the central limit theorem, which is the law of 

large numbers. This theorem states that Gaussian distribution governs the most probable spatial 

conformation of large number of monomers. Therefore, the laws of statistics are universally 

valid
4
. One of the universal characteristic of polymers is the fact that two molecules cannot cross 

each other; this introduces the effect of entanglement, which gives striking viscoelastic effects in 

polymer melts and solutions. In addition, properties derived from specific chemical structure of 

the monomers play a role in determine the properties of the chain. For example, the 

microstructure of polymer, which can be regular or random, determines whether the polymer 

crystallizes or not. Moreover, the miscibility of polymer systems is very sensitive to the chemical 

structure of the chain. In addition, transport properties such as diffusion are determined by 

friction coefficient, which is specific for a given polymer.  The interplay between universal and 

specific properties is one of the major challenges of polymer science
4
.   

The development of methods for the controlled synthesis of polymers is one of the most 

important technological advances of this century. Polymer materials are used everywhere 

because they are durable, simple to produce and easy to process, and because their mechanical 

properties are very versatile; the same polymer can flow viscously, react like a rubber, or show a 

pronounced brittleness. More recently, polymers can be modified to have specific properties such 

as high strength (in fibers) or electrical conductivity. For example, the synthesis of a conjugated 

organic polymer has been widely used as a conductive material in devices such as light-emitting 

diodes, televisions and solar cells. In a paper published in PNAS
6
., a group of researchers 

succeed in synthesizing highly structured short chains of polymer poly(3,4-

ethylenedioxythiophene), or PEDOT (Fig 1.2) could potentially have an impact on everyday 
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electronic products. PEDOT has been used in electronic application for its transparency, 

ductility, and stability of its conducting, or doped state. Therefore, it is used in organic light 

emitting diodes, which is found in many electronic devices such as televisions and computer 

monitors. It may soon be possible to build integrated circuits from polymers. Moreover, our 

developing knowledge of the structure and the properties of synthetic polymers will be important 

to our exploration and exploitation of biopolymers such as DNA and proteins. Engineering of 

biomaterials is expected to be the next important technological advances to humankind
6
.  

 

 

 

Fig 1.2 A high-resolution scanning 

tunneling microscope image (top) and 

density functional theory-calculated 

structures (bottom) reveal the 

formation of a well-organized PEDOT 

polymer. (Lipton-Duffin 2010)
6
 

 

 

Liquid crystal state is a new state of matter, which was discovered in the nineteenth 

century.  The term liquid crystal refers to a phase formed between a crystal and a liquid with a 

degree of order intermediate between the molecular disorder of the liquid and the regular 

structure of a crystal
1
. The most important property of liquid crystal phases is that the molecules 

can have long-range orientational order. This will be possible if the molecules are anisotropic, 
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whether this results from rod-like or disc-like shape. Molecules that are able to form liquid 

crystal phases are called mesogens. Liquid crystal phases can be divided into two classes: 

thermotropic and lyotropic. The former exhibit a phase transition into the liquid crystal phase as 

the temperature is changed while the latter exhibit transitions as a function of both temperature 

and concentration of liquid crystal molecules in a solvent. Thermotropic liquid crystal phases are 

formed by pure mesogens in a certain temperature range, in which heat is generated or 

consumed. Lyotropic liquid crystal phases form in solution, and the concentration controls the 

liquid crystallinity. Thermotropic liquid crystal phase are formed by anisotropic molecules with 

long-range oriental order, and some degree of translational order
2
. Understanding the correlation 

between the molecular structure and the physical properties of thermotropic liquid crystals are 

important, and they are exploited in liquid crystal displays (LCDs), digital watches, and other 

electronic equipments. The simplest phase of liquid crystal phases is the nematic phase-here, the 

molecules have no long-range positional order, but they possess long-rang orientational order. 

Thus, the nematic phase can be considered to be anisotropic liquid. The nematc phases formed 

by chiral molecules are called chiral nematics or more commonly cholestrerics. A more ordered 

phase is the smectic phase – here, the molecules maintain the orientational order and they gain 

long-range positional order in one dimension. Phases with two-dimensional positional order can 

be formed by disc-like molecules then being termed as columnar phase.  

Recently, the previously largely independent research fields of colloids, membranes, 

microemulsions, and polymers have been integrated in the new research field soft matter. Many 

phenomena in these systems have the same underlying physical mechanics. Moreover, it has 

been recognized that combinations of these systems, like for example polymers and colloids, 

exhibit new properties which are found in each system separately. These mixed systems have a 
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higher degree of complexity than the separate systems. In order to understand their behavior, 

knowledge from each subfields of soft matter has to be put together. An important part of this 

complexity is the effective interactions between the macromolecules which, in complex systems, 

are not limited to the coulomb and quantum-mechanical interactions. Instead, it depends on the 

many degrees of freedom of the solvent, and it is already the result of a thermodynamic average. 

One of these complex systems is the mixture of nanoparticles with macromolecules such as 

polymers, proteins, etc. Understanding the interactions in these systems is essential for solving 

various problems in technological and medical fields, such as developing high performance 

polymeric materials, chromatography, and drug delivery vehicles. Many experimental and 

theoretical studies have been done to understand the structural, mechanical and rheological 

properties of macromolecules at and near flat surfaces. Several experiments have indicated that 

the local density, segmental packing, conformation, and mobility of the chains close to an 

interface are significantly different compared to the bulk
7-14

. However, very little is known at the 

molecular level about the interaction of macromolecules with nanoparticles, whose size 

approaches to the average size of the molecule. Lack of such knowledge is an important 

problem, because it hinders progress in fields as diverse as soft matter, biotechnology and 

nanomedicine. Therefore, a detailed understanding of the interactions of nanoparticles in 

solutions of macromolecules is required to make important technological advances. The first part 

of the thesis has investigated the dynamics of colloidal particles in semi dilute and entangled 

polymer solution. The second part of this research has studied another complex system, which 

are the colloidal dispersions in binary liquid mixtures. Recently, there has been a great interest in 

colloidal dispersions and the dynamics of colloids. If colloidal particles are immersed in a 

solvent consisting of a binary liquid mixture, one of the fluid components may preferentially 
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adsorb onto the bodies because of the difference in their affinity for the fluid components
15

. Near 

the critical point of the liquid mixture, the enhancement of the adsorption of the preferred 

component, which is so-called “critical adsorption”, becomes particularly pronounced due to the 

correlation effects induced by the critical composition fluctuations of the solvent
16-19

. Critical 

adsorption on a spherical nanoparticle is expected to exhibit important differences in behavior 

due to the effect of surface curvature
19

. It has been demonstrated experimentally that critical 

adsorption is highly related to thermally-induced reversible colloidal aggregation. This so-called 

flocculation phenomena is observed in binary liquid mixtures (2,6 lutidine + water, isobutyric 

acid + water, etc.) in the presence of a small volume fraction of silica or polystyrene colloidal 

particle
20-23

. Many theoretical and experimental studies have tried to explain this phenomenon; 

however, none of them can explain all of the experimental observations
24, 25

. Therefore, to 

properly address the aggregation phenomena, the knowledge of the adsorption profiles at the 

surface of a single sphere near the critical temperature of the liquid mixture will be useful. As far 

as I know, this is the first experimental study in which the critical adsorption on spherical 

particles was measured. In the broader framework, the results presented here will help in 

understanding the interaction of liquids with surfaces possessing geometric structure
26

, the phase 

behavior of multi-component fluids
27, 28

, and wetting phenomena
20, 29-31

. 

This dissertation shall be organized as follows. Chapter 2 will present background 

information pertinent to the thesis. It will cover polymers, while special attention will be paid to 

polymer solutions . In addition, it will cover critical adsorption on colloidal dispersions in binary 

liquid mixture. Chapter 3 outlines the experimental techniques employed during my research: 

fluorescence correlation spectroscopy and ellipsometry. Chapters 4-6 include the results of my 

experiments. Particularly, Chapter 4 covers gold nanoparticles diffusion in different semidilute 
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and entangled polymer solutions. Chapter 5 covers the investigation of critical adsorption on 

spherical colloidal particles in binary mixtures, and chapter 6 discus the results of gold 

nanoparticles adsorption on solid surfaces. 
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CHAPTER 2 

BACKGROUND 

2.1 INTRODUCTION 

 This chapter presents the background information pertinent to the thesis. First, it will 

cover polymers with special attention to polymer diffusion in semidilute and entangled solutions. 

Next, a brief discussion of phase transition and critical phenomena will be introduced. As an 

example of a phase transition, binary mixtures will be treated mathematically to calculate the 

phase diagram. Finally, critical adsorption in binary mixtures on planar and spherical surfaces 

will be addressed and some of the theoretical results will be introduced. 

2.2 POLYMERS 

2.2.1 INTRODUCTION TO POLYMERS 

  Polymers refer to a large class of soft matter comprising natural and synthetic materials 

with wide variety of different physical and chemical properties arising from the different 

arrangements and chemical identity of the molecules that make them up. They play an essential 

and ubiquitous role in everyday life, ranging from familiar synthetic plastics and fibers to natural 

biopolymers such as DNA and proteins that are essential for life. Although polymers have a wide 

variety of different properties, which arise from the different chemistry that makes them up, 

many of their physical properties have universal characteristics resulting from the generic 

properties of long, string-like, molecules
1
.  
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2.2.2 POLYMER MICROSTRUCTURE 

A polymer is a large molecule (macromolecule) that is built from many elementary units, 

called monomers. These structural repeating units are connected to each other by covalent bonds 

in the form of a long chain. In other long-chain objects, the subunits are not joined by covalent 

bonds, but by physical ones. Examples of this are the long chains of compact protein molecules, 

which constitute actin filaments. Such objects are sometimes called „living polymers‟; they can 

change their length in response to changes in the environment. This contrasts with the more usual 

covalently linked polymers, in which the length of the molecules is fixed during the 

polymerization
1
. 

The entire structure of polymer is generated during a process by which chemical monomers are 

covalently bonded together called polymerization
32

. The number of monomers in a polymer 

molecule is called the degree of polymerization N, and the molar mass M of a polymer is equal 

to its degree of polymerization N times the molar mass Mmon of its chemical monomer  

  2.1 

 

The conventional way to describe the mass of a polymer is the molar mass, which is the mass of 

one mole of these molecules. Most polymers are based on carbon with a huge variety of possible 

structures, and from these different structures, we have different properties. The general structure 

of vinyl monomers and polymers are shown in Fig 2.1, where R represents different possible 

chemical moities. If the R group is hydrogen, we have the simplest chemical structure with a 

carbon main chain and two hydrogen atoms per carbon.  The repeating unit is –CH2–CH2–, and 

the polymer is named after the monomer used in their synthesis (ethylene, CH2= CH2). The 
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chemical identity of the monomers and the polymer‟s microstructure are the two main factors 

that determine the physical properties of a polymer. Polymer‟s microstructure is the organization 

of atoms along the chain, which is fixed during polymerization process, and it cannot be changed 

without breaking covalent bonds
32

. 

 

Fig 2.1: Polymerization of vinyl monomers (Rubinstein 2003). 

 

Polymers with more than one type of chemical group attached to each main chain carbon 

atom can have different arrangements of the groups in three dimensions. There are two regular 

arrangements of side groups called: isotactic and syndiotactic arrangements (Fig  2.2)- these have 

similar side groups appearing on the same side of the chain or on alternative sides, respectively.  

If the arrangement of the groups is random, then we have an atactic polymer (Fig. 2.2). The 

atactic arrangement has very large energy barriers to rotation of the side groups preventing any 

rearrangement of the groups once the arrangement is set in place during the synthesis of the 

polymer. This is called „quenched disorder‟ and it is the reason why these molecules usually 

cannot crystallize- they form glasses at low temperatures. 

H 

C C 

R H 

N 

H 

N 

C C 

H 

H H 

R 
Monomer Polymer 



16 
 

 
 

 

Fig. 2.2 Tacticities of vinyl polymers, illustrated with all backbone carbons with H and R groups 

(Rubinstein 2003). 

 

In many polymers, the molecule contains only one type of monomer - such molecules are 

called homopolymers. However, polymers containing more than one type of monomer are called 

copolymers. Copolymers can be alternating, random, block, or graft depending on the sequence 

in which their monomers are bonded together (Fig. 2.3). A pure random arrangement of 

monomers is called random copolymer. If the different monomers arranged in blocks, they are 

called block copolymers. Block copolymers can be diblock if they contain two blocks and 

triblock if they contain three blocks. Polymers with many alternating blocks are called 

multiblock copolymers. If a polymer contains a side chain that has a different composition or 

configuration than the main chain, the polymer is called a graft. One kind of graft copolymer is 

high-impact polystyrene (HIPS), which is produced by grafting chains of polybutadine onto a 

polystyrene backbone. The polystyrene gives the material strength, but the rubbery 

polybutadiene chains give it resilience to make it less brittle.  Combining several different 
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monomers into a single chain leads to new macromolecules called heteropolymers. Many 

biopolymers are heteropolymers. DNA is a heteropolymer consisting of four different types of 

monomers (nucleotides), while natural proteins are heteropolymers consisting of 20 different 

types of monomers (amino acids). 

 

Fig. 2.3 Types of copolymers (Rubinstein 2003). 

According to the way the polymer is synthesized, they have different architectures. This 

feature also controls the properties of polymers. Types of polymer architectures include: linear, 

ring, star-branched, H-branched, comb, ladder, dendrimer or randomly branched as sketched in 

Fig 2.4. Linear polymers are completely characterized by the number of monomers present in the 

chain, which is the degree of polymerization, N. Physical properties such as modulus, tensile 

strength, and the glass transition temperature follow a similar trend with increasing chain length. 
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Fig. 2.4  Examples of Polymer architectures: (a) linear; (b) ring; (c) star; (d) H; (e) comb; (f) ladder; (g) 

dendrimer; (h) randomely branched. (Rubbinstien 2003). 

 

 

Dendrimers are three-dimensional structures that branch outwards from a common center; 

therefore, the density of monomer units decreases when moving closer to the center of the 

dendrimer. This property provides potential medical applications, such as drug delivery.  

2.2.3 POLYMER CONFORMATIONS 

A conformation is the spatial structure of a polymer determined by the relative locations 

of its monomers in space. Polymer characteristics such as microstructure, architecture, degree of 

polymerization and chemical composition are fixed during polymerization and cannot be 

changed without breaking covalent bonds. However, after polymerization, a polymer molecule 

can adopt many different conformations, and it depends on rotations about the bonds that make 

up the polymer backbone. There are three characteristics that determine the conformation of a 
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polymer: the flexibility of the chain, interaction between monomers on the chain, and 

interactions with surroundings. Chains can be stiff or flexible depending on the inherent 

flexibility of the chain. The interaction between the monomers on the chain can be either 

attractive or repulsive. The monomers of a chain can also interact with their surrounding (other 

chains or the solvent) and the relative strength of these various interactions can change with 

temperature. Thus, chain conformations can be changed by tuning these effects.  

2.2.4  PHYSICAL STATES OF POLYMERIC MATERIALS 

1) LIQUID POLYMERS 

Polymer melts and solutions are two types of polymer liquids. Polymer solutions can be 

obtained by dissolving a polymer in a solvent. Interactions between polymer molecules in 

solution depend strongly on concentration.  In dilute solution, the molecules are well separated 

and do not interact with each other, so each molecule can be considered as an isolated chain. 

However, as the concentration is increased the coils start to overlap. This is called the coil 

overlap concentration, c* where the coils are just in contact. The volume fraction, an alternative 

measure of the concentration, is the ratio of the occupied volume nVm of the polymer in the 

solution to the volume of the solution, so Ø* is the corresponding overlap volume fraction to c*. 

According to that, polymer solutions are classified as dilute or semidilute (Fig. 2.5). At volume 

fractions below overlap (Ø < Ø*) the solution is called dilute. In this regime, the average 

distance between chains in dilute solutions is larger than their size. Therefore, most of the 

properties of dilute solutions are very similar to pure solvent with slight modifications due to the 

presence of the polymer. At volume fractions above overlap (Ø > Ø*) the solution is called semi 

dilute. The solvent occupies most of the volume of a semi dilute solution. In this case, however, 
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polymer coils overlap and dominate most  of the physical properties of semi dilute solutions 

(such as viscosity)
32

.  

 

 

 Polymer melts are neat polymeric liquids above their glass transition and melting 

temperatures. It is a bulk liquid state formed by polymers in the absence of a solvent. A 

macroscopic piece of a polymer melt remembers its shape and behaves elastically on short time 

scales, but it shows liquid flow behavior with high viscosity at long times. Such time dependent 

mechanical properties are termed viscoelastic because of the combination of viscous flow at long 

times and elastic response at short times
32

. Silly Putty is a familiar example of polymer melts. 

This will flow like a liquid out of a container, because pouring is a slow flow due to gravitational 

forces (long times). However, if it is formed into a ball and dropped on the floor, it bounces 

back, i.e., it behaves like an elastic material due to the brief impact of the ball with the floor 

(short times). In a polymer melt, there is a strong overlap with neighboring chains which lead to 

entanglement that greatly slows the motion of polymers. Rubber is a common and important 

example of polymer melt in which cross-links, randomly placed between adjacent chains, bond 

Fig. 2.5 Regimes of polymer solutions (a) Dilute Ø < Ø* (b) overlap Ø = Ø* (c) Semidilute Ø 

> Ø* 

(a) (b) 

 

(c) 
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the chains together to form a macroscopic network. The cross-links, however, prevent 

macroscopic bulk flow. 

In polymer solution, a polymer chain is in continual motion because of thermal energy, 

and it will undergo many different conformations in rapid succession. In the dilute regime, the 

conformation of a polymer depends on the interaction between chain segments and solvent 

molecules. If the solvent is good, a chain expands from its unperturbed dimensions to maximize 

the number of segment-solvent contacts and the polymer chain adopts a swollen coil 

conformation in this situation, and solvent molecules are allowed to freely move through gaps 

and cavities created by the chain. If the solvent is poor, the chain will contract to minimize 

interactions with the solvent and the polymer chain adopts a compact globule conformation. An 

intermediate case, the θ-solvent, occurs when these two effects are perfectly balanced; the 

polymer molecule will adopt unperturbed dimensions. Since solvent quality is dependent upon 

temperature (higher temperatures yield better quality), the θ state is achieved at one particular 

temperature (the θ-temperature). A θ solvent has properties most closely related to an ideal 

system due to the elimination of monomer-monomer interactions. 

The simplest model of a polymer chain is the ideal chain where there are no interactions 

between monomers separated by many bonds along the chain. Linear polymer melts and 

concentrated solutions have practically ideal chain conformations because the interactions 

between the monomers are almost completely screened by surrounding chains. In addition, 

chains are nearly ideal in polymer solutions at θ temperature. In this case, the size of linear 

chains can be characterized by their mean-square end-to-end distance. For a linear ideal chain 

made up of N monomers, each of length a and having different orientations the mean-square end-

to-end distance is: 
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2.2   

  

The path of the polymer in space can be imagined as a random walk. This implies that the 

overall size of a random walk is proportional to the square root of the number of steps. However, 

for branched or ring polymers with too many ends or no ends at all, the size of polymers of any 

architecture can be characterized by the radius of gyration. The mean square radius of gyration 

<Rg
2
> is defined as the average square distance from all monomers to the center of mass of the 

polymer and is related to the mean-square end-to-end distance of an ideal linear chain: 

  2.3 

 

                                                        

Real chains interact with both their solvent and themselves. The relative strength of these 

interactions determines whether the monomers effectively attract or repel one another. The net 

two-body interaction between monomers in a solvent can be characterized by a parameter called 

the exclusion volume, v. The exclusion volume is that volume which each segment of a coil 

occupies which is not accessible to the other parts of the chain. The excluded volume is 

temperature dependent and makes a positive contribution to the free energy of the polymer coil

When the attraction between monomers just balances the effect of the hard core repulsion (which 

prevents monomers from overlapping), the net excluded volume is zero (v = 0) and the chain will 
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adopt a nearly ideal conformation. This situation corresponds to a particular temperature θ for a 

solvent and is called the θ-condition
32

. 

If the attraction between monomers is weaker than the hard-core repulsion, the excluded 

volume is positive and the chain swells. This happens at a temperature above the θ-temperature. 

The coil size is larger than the ideal size with radius R ~ N
3/5 

(Fig 2.6 a). This is referred to as the 

good solvent behavior. If the attraction between monomers is stronger than the hard-core 

repulsion, the excluded volume is negative and the chain collapses. This occurs below the θ-

temperature and corresponds to a poor solvent. In a poor solvent, the polymer is in a collapsed 

globular conformation corresponding to a dense packing of thermal blobs (Fig. 2.6b). The size of 

a globule is smaller than the ideal size: Rgl ~ N
1/3

.  

 

 

2) VISCOELASTIC POLYMERS  

Polymers like most soft materials behave in a way that combines the viscous response of 

Newtonian liquids and the elastic response of Hookean solids, with an additional dependence on 

timescales. For a Hookean solid the application of a shear stress σ, to the material produces a 

strain e, that is proportional to applied stress with the constant of proportionality being the shear 

R 
ζT 

(a) 

ζT Rgl 

(b) 

Fig. 2.6 Polymer chain conformations in (a) good solvent: self-avoiding walk of 

thermal blobs (b) poor solvent: collapsed globule of thermal blobs [24] 
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modulus G as in the relation (G = σ/e). In a Newtonian liquid, the application of shear stress 

produces a time-dependent strain  proportional to the applied stress with the constant of the 

proportionality being the viscosity of the liquid η  and ė is the strain rate, as given by (σ = ηė). 

Viscoelastic materials respond to an applied stress in a time dependent way. A constant stress 

applied at time t = 0 causes the material to respond in an elastic way, with constant strain, but 

after a certain time τ it begins to flow like a liquid. This time τ is the relaxation time; it is the 

time that separates the solid-like behavior from the liquid-like behavior. For ideal simple liquid, 

η ~ G0τ, where G0 is an instantaneous shear modulus which characterizes the elastic response at 

times much shorter than the relaxation time and η characterizes the viscous behavior at long 

times. However, for complex fluids like polymer melts, the viscoelastic response has a time 

dependence that is characterized by more than one relaxation time and the effective viscosity 

may depend on shear rate: σ = η(ė)ė. In the dilute-solution limit, the polymer contribution to the 

viscoelastic properties is just that of a single coil in an infinite bath of solvent, multiplied by the 

number of such coils in solution. For polymer solutions that are dilute, there are hydrodynamic 

interactions that affect the viscoelastic properties of the solution. These hydrodynamic 

interactions are the disturbances in the solvent velocity field created by motion of one part of a 

polymer chain that then affect the drag exerted by the solvent on other parts of the same chain.  

In most concentrated solutions or melts, entanglements between the long polymer molecules 

greatly slow polymer relaxation. Polymer melts can have relaxation times of order of 

milliseconds or even seconds, resulting in very spectacular viscoeleastic properties.  

3) SOLID POLYMERS 

There are different types of polymeric solids. Upon cooling a polymer melt, it can either 

transform into a semicrystalline solid below its melting temperature Tm or into a polymeric glass 
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below its glass transition temperature Tg. The semi-crystalline state consists of small crystalline 

regions called lamellae in a matrix of amorphous material, which can be in either a liquid-like or 

glassy state. The incomplete crystallization that leads to the semi-crystalline state is owing to 

kinetic limitations, branching and the presence of quenched disorder. A fully crystalline state is 

inaccessible on experimental timescales. Examples of semi-crystalline solid polymers include 

synthetic polymers such as polyethylene as well as natural materials like starch. Familiar 

examples of glass include polystyrene (PS) and poly(methyl methacrylate) (PMMA). 

4) GLASSY POLYMERS 

The transformation of a liquid into a glass on cooling is a common, yet mysterious 

process. When a liquid is cooled, the molecules composing it draw more closely together to 

maximize attractive interactions. If the molecules are bulky and of irregular shape, including 

most polymers, or if the liquid is cooled so fast that the liquid does not have time to crystallize, 

then at low temperatures it vitrifies into a rigid phase that retains the disordered molecular 

arrangements of the liquid. This rigid disordered material is called glass. Glasses are liquids 

whose molecules are so tightly packed, and hence are so sluggish, that they cannot relax to 

equilibrium even over long periods of time. Almost all polymers form glasses; everyday 

examples include poly(methyl methacrylate) and polycarbonates, which are extensively used for 

their transparency and good mechanical properties, and polystyrene in disposal plastic cups.  

 

2.2.5 DIFFUSION IN POLYMER SOLUTION 

Diffusion is the process responsible for the spread of particles through random motion 

from one part of a system to another. While diffusion in both gases and liquids can be 
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successfully predicted by theories, diffusion in polymers is complex and the diffusion rates 

should lie between those in liquids and in solids. There are different physical models and theories 

of diffusion used in describing the diffusion in polymer solutions.  It depends mainly on the 

concentration and degree of swelling of polymers
33

. The diffusion was first treated 

mathematically by Fick who developed a law for diffusion in one dimension, the equation is 

known as Fick‟s first law. In the case of diffusion without convection, this equation can be 

written as: 

                                                           

  2.4 

 

where j is the flux per unit area, D is the diffusion coefficient, and   is the gradient of the 

concentration along the z-axis.  This equation is the starting point of numerous models of 

diffusion in polymer systems. In the study of solvent diffusion in polymer solutions, it is known 

that the diffusion of the solvent is linked to the physical properties of the polymer network and 

the interactions between the polymer and the solvent itself.  The amount of solvent absorbed per 

unit area of polymer at time t, Mt, is represented by: 

 

                                                                                                                                       2.5 

where k is a constant and n a parameter related to the diffusion mechanism, the value of which 

lies between 1/ 2 and 1. This equation can be used to describe the solvent diffusional behaviors 

for any polymer-penetrant system. Alfrey et al. intoduced a classification according to the 

solvent diffusion rate and the polymer relaxation rate. 
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I.  Fickian diffusion (Case I): observed in polymer networks when the temperature is well above 

the glass transition temperature of the polymer (Tg). In this case, when the polymer is in the 

rubbery state, the polymer chains will have a higher mobility that allows an easier penetration of 

the solvent. As a result, Fickian diffusion is characterized by a solvent diffusion rate, Rdiff, slower 

than the polymer relaxation rate, Rrelax (Rdiff << Rrelax), and a large gradient of solvent penetration 

is observed in the system. The solvent concentration profile shows an exponential decrease from 

the completely swollen region to the core of the polymer. The diffusion distance is proportional 

to the square root of time  

  2.6 

 

II.  Non-Fickian diffusion (Case II and anomalous): observed in glassy polymers, i.e. when the 

temperature of study is below Tg. In this case, the polymer chains are not mobile enough to 

permit immediate penetration of the solvent in the polymer core. There are two kinds of non-

Fickian diffusion : Case II diffusion and anomalous diffusion. The main difference between these 

two diffusion categories depends on the solvent diffusion rate. In Case II diffusion, the solvent 

diffusion rate is faster than the polymer relaxation process (Rdiff >> Rrelax), whereas in anomalous 

diffusion, the solvent diffusion rate and the polymer relaxation are about the same order of 

magnitude (Rdiff ~ Rrelax). For case II, the diffusion distance is directly proportional time.  

  2.7 

For anomalous diffusion, the diffusion distance is given by: 

  2.8 

where  1/2 <n<1. 
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2.2.6  PREVIOUS EXPERIMENTS ON POLYMER DIFFUSION IN SOLUTION AND 

ANOMALOUS DIFFUSION 

Liu et. al.
34

 measured  the self-diffusion coefficient Ds of dye-labeled polystyrene chains 

having Mw = 3.90 * 10
5
 g/mol over almost 4 decades of polymer concentration in toluene 

solution, from 10
-4

 to 0.4 g/mL, by fluorescence correlation spectroscopy (FCS). In the very 

dilute regime up to a concentration of 5 *10
-3

 g/mL, the diffusion coefficient remains practically 

constant. Then there is a transition regime around 0.01 g/mL, which is the overlap concentration. 

In Fig.2.7a, the experimental results are compared with the predictions of scaling and reptation 

theory. Next, from 0.02 to 0.40 g/mL in the semidilute regime, the self-diffusion coefficient 

decreases with increasing polymer concentration as Ds ~c
-1.75

, in agreement with the theoretical 

prediction of scaling and reptation theory. In Figure 2.7b, the experimental data are fitted to the 

stretched-exponential equation Ds = D0 exp- (-15c
0.65

), with D0 =2 * 10
-7

 cm
2
/s and c given in 

g/mL. The crossover is fitted rather well. On the other hand, in the higher concentration range 

the experimental concentration dependence of Ds seems to be less curved than the fit function. 

There is an extensive discussion in the literature whether the experimental data support the 

scaling predictions, which are applicable in certain concentration regimes, or are better described 

by continuous function over the entire concentration range. 
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Fig. 2.7 Diffusion coefficient of labeled polystyrene in toluene as a function of polymer concentration: (a) 

showing predictions according to reptation and scaling theory; (b) showing a fit according to Phillies‟ 

equation (Liu 2005). 

 

The tracer diffusion of spherical particles in polymer solutions has been studied widely to 

understand the diffusion in solutions containing mixtures of macromolecules of differing 

architectures. Won et. al.
35

 have used dynamic light scattering (DLS) to follow the tracer 

diffusion of polystyrene spheres (R≈200 nm) in dilute, semidilute and entangled solution of poly 

(vinyl methyl ether) (PVME) (Mw = 1.3 x l0
6
). They found that the diffusivity drops by almost 5 
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orders of magnitude over the range of matrix concentration from dilute to entangled.  In addition, 

they focus on the applicability of the reputation hypothesis. In general, the diffusivity of a sphere 

follows the Stokes-Einstein (SE) reation: D=kT/6πηR, where R is the radius of the sphere and η 

is the zero-shear-rate viscosity of the medium in which it is suspended. This relation assume that 

the medium may be treated as a continuum on the length scale of R. SE Equation works perfectly 

for noninteracting spheres in a small-molecule solvent, but it is certainly not obvious that an 

arbitrary polymer solution will satisfy the continuum assumption. The product Dη /D0ηs where 

D0 is the infinite dilution diffusivity of the sphere and ηs is the solvent viscosity may deviate 

from unity as the polymer concentration increases above c*. Dη /D0ηs >1 is referred as a positive 

deviation from SE behavior and Dη /D0ηs<1 as a negative deviation. A positive deviation 

corresponds to a diffusivity that decreases with increasing concentration less rapidly than the 

solution viscosity increases. The DLS diffusion data are presented as a function of matrix 

concentration in Fig. 2.8 in a double-logarithmic format. By the highest matrix concentration, the 

mobility of the spheres has decreased by well over 4 orders of magnitude; the largest drop 

reported previously has been less than 3 orders of magnitude. Significant decreases in mobility 

do not begin to appear until a matrix concentration of 0.006 g/mL. 
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Fig 2.8 Tracer diffusion coefficient of PS spheres in PVME solutions as a function of matrix 

concentration. The smooth curve represents the equation shown on the plot (Won 1994). 

 

Using previously measured solution viscosities, the data were compared with the Stokes-

Einstein (SE) relation. The principal new result of this work is that although a positive deviation 

from SE behavior is observed near c* for the matrix, SE behavior is recovered once the matrix 

becomes sufficiently entangled. Possibly, previous studies of sphere diffusion were not extended 

to sufficiently high concentration (i.e., c >> c* and R >> ξ) to observe this phenomenon. This 

new result was confirmed via forced Rayleigh scattering. In addition, these data can reconcile 

measurements of sphere diffusion with reptation-based models for chain mobility in well-

entangled systems. The behavior near c* is discussed in terms of the matrix correlation length, ξ, 

which has a maximum at ξ ≈ Rg, for c ≈ c*. An explanation of the positive deviation for SE is 

that the fluid within a distance ξ of the sphere surface may have different composition from the 

bulk, and this could certainly influence sphere diffusion over this length scale. For the system 

used in their study, in which the surface-matrix interaction is assumed neutral, a depletion layer 

would exist, leading to an enhanced short-time diffusion for the spheres. 
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2.3 PHASE TRANSITION AND CRITICAL PHENOMENA 

Phase transition is a term used to describe the transition between three familiar phases of matter: 

solid, liquid, and gaseous phases. Ehrenfest classified phase transitions into first-order and 

second-order phase transitions. An order parameter can be defined for a phase transition, which 

typically takes a zero value in the disordered phase and a non-zero value in the ordered phase. 

The way the order parameter varies with temperature tells us about the nature of the transition. 

There is a fundamental difference between first-order phase transition, where the order parameter 

changes discontinuosly at the phase transition (e.g. melting of a crystal), and the second-order 

transitions, where the order parameter is continuous. The classic example of a second- order 

transition is the change from a liquid to a gas at a critical point, which is a particular combination 

of pressure, temperature, and density called the critical pressure, critical temperature, and critical 

density respectively. Near the critical point, the fluid is sufficiently hot and compressed that the 

distinction between the liquid and gaseous phases is almost non-existent. At low temperature, 

there is a large difference between the liquid and the gas densities, ρL and ρG, and as the critical 

temperature is approached this density difference tends to zero. Thus, ρL - ρG can be considered 

as the order parameter, since it has a non-zero value below the critical temperature and zero 

above it. A phase boundary separates different phases. A change in parameters such as the 

temperature across the phase boundary causes a sudden change in the phase of a material. This 

phase boundary sometimes disappears at a critical point, where the two phases become 

indistinguishable and the material shows anomalous behavior. The theory of critical phenomena 

explains this behavior. Binary mixtures of two liquids systems exhibit a critical temperature 

below which the two components do not mix homogeneously in all proportions.  
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Continuous phase transition can be characterized by parameters known as critical 

exponents, which describe the behavior near the critical point of the various quantities in interest. 

These exponents take the same values for very different systems. This phenomenon, called 

universality, is explained qualitatively and quantitatively by the renormalization group. The most 

important exponent is the one that describing the divergence of the correlation length while 

approaching the transition. The correlation length can be defined as a measure of the range over 

which fluctuations in one region of space are correlated with those in another region. In a 

physical system, any two points that are separated by a distance larger than the correlation length 

will each have fluctuations, which are relatively independent, that is, 

uncorrelated. Experimentally, the correlation length is found to diverge at the critical point. Thus 

near the critical point, the correlation length may be written as:  

  , where  2.8 

The divergence of the correlation length at the critical point means that very far points become 

correlated. In other words, the long-wavelength fluctuations dominate. Thus, the system near a 

second-order phase transition „loses memory‟ of its microscopic structure and begins to display 

new long-range macroscopic correlations. For a binary mixture system, the correlation length ξ is 

a measure of the width of the range over which the concentration varies. Such a width increases 

with increasing nearness to the critical liquid–liquid point, so much so that, in the immediate 

vicinity of the critical point, the correlation length of a binary mixture at critical composition 

exhibits an anomalous behavior conforming to the exponential law (Eq. 2.8)  
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2.3.1 BINARY MIXTURES 

Assume we have two miscible liquids in all proportions at high temperature, but separate 

into two distinct phases when the temperature is lowered
1
. Using the regular solution model 

which is a mean field theory, the free energy of mixing, Fmix can be predicted. To calculate Fmix, 

we need to calculate the change in the entropy on mixing, Smix and the change of the energy on 

mixing, Umix. To find Smix, the molecules of the two liquids are imagined to be arranged on a 

lattice, where each lattice has a z neighbors, and the composition of the mixture is measured in 

terms of the volume fraction υ.  if the volume fraction of A molecules is υA, and the volume 

fraction of B is υB, then we can use the Boltzmann formula to write down the entropy
1
 : 

  2.9 

Here, we assume that the sites are independent of each other. To find Umix, we assume that 

molecules interact only with their nearest neighbors in a way that is pairwise additive, then the 

energy of mixing can be written as: 

  2.10 

where,  is the energy interaction between two neighboring A molecules. 

              is the energy interaction between two neighboring B molecules. 

   is the energy interaction between A molecule and a neighboring B molecule.  

 For incompressible mixture, υA+ υB=1, then we introduce a single dimensionless parameter χ, 

which characterizes the strength of the energetic interaction between A and B relative to their 

self interaction.  
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  2.11 

Using this definition, we can write the energy of mixing as: 

  2.12 

The free energy of mixing, F=U-TS can be written down as: 

  2.13 

 

The phase behavior of the mixture can be understood by looking at the shape of the curves of 

free energy against composition change with varying χ. Fig. 2.8 shows examples of these curves. 

For χ < 0, the curve has a single minimum at υA= υB=0.5, and for χ ≥ 2, the curves has two 

minima and a maxima at υA= υB=0.5. 
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Fig. 2.9  The free energy of mixing devided by kBT, as a function of the composition. 

 If the free energy resulting from phase separation into any pair of volume fraction υ1 and υ2 is 

always higher than the free energy of the starting composition, then the mixture is stable.  On the 

other hand, if there is any region of composition in which the curve is convex, then there are 

some starting compositions, which can lead to a lowering free energy. These compositions are 

known as the coexisting compositions, and the locus of these compositions as the temperature is 

changed is called the coexistence curve. Within this curve, there are compositions that are 

unstable for small fluctuations in compositions and will immediately phase-separate. The 

curvature of the free energy d
2
F/dυ

2
 in this case is negative. On the other hand, there are 

compositions that are locally stable for small fluctuations in composition, but globally unstable 

with respect to separation in two coexisting curves. The curvature d
2
F/dυ

2
 in this case is 

negative, such compositions are said to be metastable. The limit for local stability is defined at 

d
2
F/dυ

2
=0. Finally, a critical temperature Tc separates the two types of compositions that are 

stable and those that are phase-separated. The phase diagram for the mixture is a plot that shows 
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on a plane of composition and temperature the regions where the mixture is stable, unstable, or 

metastable. By knowing the relationship between the free energy for mixing as a function of 

composition and the phase behavior, the phase diagram can be calculated. Fig. 2.10 shows an 

example of the calculated phase diagram for the regular solution model described. 

Fig 2.10:  The phase diagram of a liquid mixture whose free energy of mixing is described by the 

regular solution model.  
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2.3.2 CRITICAL ADSORPTION IN COLLIDAL DISPERSION 

If colloidal particles are immersed in a solvent consisting of a binary liquid mixture, one 

of the fluid components may preferentially adsorb onto the bodies because of the difference in 

their affinity for the fluid components
15

. This preferential adsorption layer has a width of the 

order of the solvent correlation length, which is a few angstroms, affecting only one or a few 

layers of liquid molecules next to the particles
36-38

. However, near the critical point of the liquid 

mixture, the enhancement of the adsorption of the preferred component is called “critical 

adsorption”, and this becomes particularly long- ranged and pronounced due to the correlation 

effects induced by the critical composition fluctuations of the solvent. The critical adsorption of 

simple fluids at semi-infinite and planar liquid-vapor and liquid solid surfaces in many different 

systems has been studied in much detail and is well understood. The effect of a solid boundary 

on a simple fluid or binary fluid undergoing a continuous phase transition was studied by Fisher 

and de Gennes
39

. Next to a strongly adsorbing boundary, they predicted that the order parameter 

profile should decay away from the boundary as
38, 40

: 

 ),/()(  htzPMtz c  
 

2.14 

where ρ(z) is the density a distance z from the boundary, c is the critical density, t=T/Tc-1 is the 

reduced temperature, ξ = ξot
−ν

 the bulk correlation length, = 1.65 is the gap exponent. h= [(, 

T) - (c, T)]/2kBT, where  (c, T) is the chemical potential along the isochore. Equation 2.14 

is obtained by taking the derivative with respect to h of the fundamental renormalization group 

scaling relation for the free energy . Below Tc , P(x,y) satisfies the constraint that, for z→∞ and 
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h→, the shape of the coexistence region in the bulk is described )/()(   zPMtz c  , and 

hence P(x,y)→1. Above Tc , for z→∞ and h→, it must be P(x,y)→0 s0 that 0)(  cz  . 

Binary fluid mixtures near their critical demixing point belong to the same universality class as 

the liquid-vapor critical point, where in eq. 2.14 the volume fraction υ is the appropriate order 

parameter. One of the primary advantages of studying adsorption near a binary liquid mixture 

critical point is that this adsorption is described by a universal function P(z/ξ), which is a 

function of the dimensionless depth x = z/ξ, where z is the depth away from the surface while ξ 

is the bulk correlation length given by ξ = ξot
−ν 

. Here, ξo is system dependent amplitude; ν 

≈0.632 is a universal critical exponent. Therefore, the relationship between the local volume 

fraction υ(z) of the adsorbed component and the universal function P(z/ξ) can be written as: 

   )/(     zPMtz c  
2.15 

 

Another quantity, which is measured experimentally is the excess adsorption per unit area, which 

for a planar wall geometry  is given by: 

 BtAM oc  
    

 
2.16 

where A and B are parameters depend on the size of the gap. 

Compared to planner surfaces, critical adsorption on spherical particles is expected to 

behave differently because of the surface curvature
19

. The spherical particles with mesoscopic 

radius R0 immersed in a binary liquid are characterized by the dimensionless variable R0/, 

where R0 is the radius of the dissolved sphere and  is the bulk correlation length. The 
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corresponding adsorption profiles at the radial distance s from the surface are characterized by 

universal scaling functions P±(s/±, R0/±) for T≠Tc. Close to Tc, critical adsorption on the 

surface of a sphere with radius R0 is characterized by an order parameter  

    
    

 2.17 

The scaling functions P± depend on two scaling variables x±=s/±, y±=R0/±. 

The excess adsorption Γ (t→0,R) describing the total enrichment of the preferred 

component of the fluid near criticality in proximity of a sphere has a curvature dependence  

characterized by universal scaling functions G± (R0/±) obtained from integrating P±(s/±, R0/±) 

over x±=s/±. In a theoretical result, this has been calculated as 

 
       

    
 

2.18 

 

In the limit R0/±→0, the scaling functions G± (y±) is given by   

            
    

 2.19 

 

Fig. 2.10 shows numerical results for G± (y±) corresponding to a sphere;  y±G± (y±)  is plotted as 

a function of  y±
-1

= ± / R0. We note that  y±G± (y±) diverges as y±
-1

→∞. In addition, the excess 

adsorption yields 

                
    

 2.20 
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where,  is the bulk susceptibility critical exponent. One of the objectives of my thesis is to 

experimentally test these scaling predictions.  

 

Fig. 2.11. Scaling functions G±(y±) for a sphere 

in mean- field approximation (i.e., d=D with 

D=4) as a function of y±
-1 =ξ± /R for (a) T>Tc 

and (b) T<Tc. for D=4 the exponent -D +2+β/ν 
is equal to -1.(Hanke 1999) 

 

Another motivation comes from the observation that the critical adsorption is highly related to 

thermally-induced reversible colloidal aggregation
21-23, 28

. Close to the critical demixing point of 

the binary liquid, the colloids were found to undergo a sharply defined reversible aggregation 

transition, termed flocculation, in contrast to the irreversible coagulation. This flocculation 

phenomena was first observed in the binary liquid mixtures (2,6 lutidine + water) in the presence 

of a small volume fraction of Stöber silica colloidal particles
13

. These silica particles are known 
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to adsorb lutidine preferentially, yet flocculation occurs on the water-rich side of the binary 

phase diagram. Subsequently, particle aggregation phenomena have been reported in several 

other phase-separating binary mixtures. 

These findings have been discussed in terms of the wetting behavior of the colloidal 

materials with respect to the two components of the binary mixture; in particular, the flocculation 

transition has been tentatively associated with the prewetting line, which extends from the 

wetting transition (at coexistence) into the one-phase region as shown in the phase digram in fig. 

2.11. The bold solid line on this diagram represents the two-phase coexistence curve for lutidine 

and water, which possesses a lower consolute point with a critical lutidine mass fraction Cc ( 

≈0.29) and a critical temperatue Tc(≈34
0
C). Below the coexistence curve the liquid mixture is in 

the one phase region, while above the coexistence curve, the liquid mixture separated into two 

phases, one lutidine rich and the other lutidine poor. The light solid line represents a typical 

colloidal aggregation line for the colloidal particles in the mixture. Prior to aggregation, there is a 

strong increase in lutidine adsorption on the surface the particles as seen from turbidity 

measurements and the adsorption layer can be seen to increase with temperature up to the 

aggregation
20

. 
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Fig. 2.12 The schematic phase diagram of 2,6 lutidine and water mixture containing small amounts of 

silica colloids. Here CL is the bulk lutidine concentration (weight fraction), with Cc~0.29 and TC~34%C. 

(Beysens 1998) 

The colloidal particles used in many of these experiments have surface hydroxyl groups 

which dissolve in the binary mixture. Therefore, the surface becomes negatively charged. If one 

of the components of the mixture preferentially adsorbs onto the particles, an adsorbed film of 

the phase rich in that component can develop onto them. If the phase separation temperature of 

the liquid mixture is approached, the thickness of the adsorbed layer around the colloidal 

particles will increase. This leads to wetting films of the preferred phase coating the colloidal 

particles. These wetting films result in the presence of effective surface fields, which could lead 

to flocculation in these systems. 

There are numerous theoretical and experimental studies attempting to explain this 

thermally-induced reversible colloidal aggregation phenomenon. Unfortunately, most of these 

explanations have not provided definitive predictions that could be compared directly with 

experimental results. Law, Petit, and Beysens modified and improved the DLVO  theory to 

include the presence of an adsorbed layer around the colloidal particles
24

. They described the 
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attractive dispersion interactions by the Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) potential. They 

found that a shorter screening length inside the adsorption layer screens the charge of the 

particles so they get close to each other. Once they are close, the adsorption layers come 

together, and the coalescence energy and the repulsion form the secondary minimum. They 

found that for particles with a diameter of 100 nm an adsorbed layer thickness of about 12 nm is 

necessary for aggregation to take place. 

Sluckin  argues that the aggregation is an equilibrium phase separation of a three 

component system, two solvents and colloids
41

. Following this idea, Jayalakshmi and Kaler has 

been suggested that if a high concentration of particles is used, it can alter the solvent phase 

diagram. In this case, flocculation may be linked to phase separation in the ternary mixture 
27

.  

Comparing their results with earlier aggregation studies strongly support their suggestions that 

the aggregation phenomena observed for colloidal particles in binary liquid mixtures is in fact a 

true phase separation in the ternary mixture. 

 Fisher and de Gennes predicted that the confinement of critical fluctuations of the order 

parameter in a binary liquid mixture near its critical demixing point Tc gives rise to long-ranged 

forces between immersed plates or particles, the so-called “critical Casimir effect”. In particular, 

they pointed out that these long-ranged forces would lead to the flocculation of colloidal particles 

which are dissolved in a near-critical binary liquid mixture. If the liquid mixture is near the 

critical point, the interference of critical adsorption on neighboring particles can give rise to an 

attractive critical Casimir force. This has also been argued to contribute to flocculation for a 

near-critical solvent mixture
42, 43

. 
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CHAPTER 3 

EXPERIMENTAL TECHNIQUES 

3.1 FLUORESCENCE CORRELATION SPECTROSCOPY 

3.1.1 FLUORESCENCE 

 Luminescence is the emission of light from electronically excited states. It is divided into 

two types, fluorescence and phosphorescence, depending upon the nature of the ground states 

and the excited states. In a singlet excited state, the electron in the excited orbital has the 

opposite spin orientation as the second electron in the ground-state orbital. These two electrons 

are said to be paired. Consequently, return to the ground state is spin allowed and occurs rapidly 

by emission of a photon. This emission is called fluorescence and the emission rates of 

fluorescence are typically 10
-8

 s
-1

, so that a typical fluorescence lifetime is near 10 ns. The 

lifetime is the average period of time a fluorescent substance (fluorophores) remains in the 

excited state.  In a triplet state these electrons are unpaired, that is, their spins have the same 

orientation. Therefore, a change in the spin orientation is needed to return to the singlet ground 

state. Phosphorescence is the emission which results from a triplet excited state returning to a 

singlet ground state. Such transitions are not allowed and the emission rates are slow (10
3
-10

0
 s

-

1
), so that phosphorescence lifetimes are typically milliseconds to seconds

44
. 

Substances, which display significant fluorescence generally, possess delocalized 

electrons formally present in conjugated double bonds. Some typical fluorophores are shown in 

Fig.3.1. The first known fluorophore is quinine, which was responsible for stimulating the 

development of the first spectrofluorometers. Many other fluorophores are encountered in daily 
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life. The green or red-orange glows seen in antifreeze are due to fluorescein or rhodamine, 

respectively.  

 

   

           Quinine    Fluorescein   Rhodamine b 

Fig. 3.1 Structures of typical fluorophores 
44

 ( Lakowicz 1999) 

Fluorescence spectral data are presented as emission spectra. A fluorescence emission 

spectrum is a plot of the fluorescence intensity versus wavelength (nanometers) or wavenumber 

(cm
-1

). Emission spectra vary widely and depend upon the chemical structure of the fluorophore 

and the solvent in which it is dissolved. One characteristic that are displayed by fluorophores is 

Stokes‟ shift, which is a shift to lower wavelength (i.e., a loss of energy) of the emission relative 

to the absorption Fig.3.2. This energy loss between excitation and emission are observed 

universally for fluorescing molecules in solution. Another characteristic is that the same 

fluorescence emission spectra are usually independent of the excitation length.  
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Fig. 3.2 Absorption and fluorescence emission spectrum of quinine (Lakowicz 1999)
44

 

3.1.2 Luminance of metal nanoparticles  

Optical techniques for detecting single molecules open new windows at the nanoscale in the 

fields of material science and cell biology. Early work has used aromatic dye molecules, whose 

fluorescence can be detected with high signal to noise ratio. Nevertheless, the finite 

photochemical lifetime of dyes limit their uses to probe very slow (~100 s) dynamics
45, 46

. In 

addition, the small size of the dye molecules (≈1 nm) makes it difficult to extend this method in 

measuring the dynamics at larger length scale. Semiconductor nanocrystals, which resist 

bleaching for longer times, have recently been introduced as labels. The random interruption of 

their luminescence by long off-times is, however, a serious drawback for many applications. 

Tracking biomolecules requires chemically and photochemically stable labels, ideally no larger 

than a few nanometers
45, 46

. It has been shown in the recent years that metal nanoparticles have a 

highly efficient photoluminescence upon multi-photon excitation, which can provide sufficient 

contrast against background even in dense condensed matter environment
47-49

. Noble metals, in 

particular gold, interact strongly with light although they are chemically inert, and they resist 

Stokes’ shift  
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high illumination levels and do not saturate, and they can be attached to biomolecules. Therefore 

gold nanoparticles are used for optical labels in FCS experiments (Fig 3.3a)
50

. By plotting of 

emission intensity versus incident power, the excitation of nanoparticles can be determined if it 

is a three-photon process or a two-photon process. Fig. 3.3b shows the dependence of the 

emission intensity on the incident power.  The two-photon induced luminescence is forbidden for 

a perfect spherical particle, so here in the graph, the particles are deviated from perfectly 

spherical shape, or they have some surface defects. In general, gold nanoparticles are photostable 

under hours of continuous excitation and do not blink like semiconductor quantum dots. 
50

  

 

Fig.3.3 (a) Intensity-intensity autocorrelation function of gold colloid diffusion in water. (Inset) Photon 

counts plotted as a function laser power on a log-log scale for a single gold colloid embedded in the 

polymer melt.(Grabowski 2009) 

 

3.1.3 FLUORESCENCE CORRELATION SPECTROSCOPY (FCS) TECHNIQUE 

Thermally induced diffusion is one of the fundamental properties exhibited by molecules 

within a solution. This diffusion is directly related to the hydrodynamic radius of the molecules 

via the Stokes-Einstein relation
4, 51, 52

. Any change in that radius will change the associated 

diffusion coefficient of the molecules. Such changes occur to molecules when interacting with 
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their environment. The ability of precisely measuring the diffusion coefficient is important in 

many systems. Standard methods for diffusion coefficient measurements are dynamic light 

scattering (DLS)
53

, pulsed field gradient NMR
54

, or size exclusion electrophoresis
55

. All of these 

methods work at high sample concentrations, far away from the limit of infinite dilution. To 

obtain the correct infinite-dilution limit and thus a correct estimate of the hydrodynamic radius, 

one has to take measurements at different concentrations and to extrapolate the 

concentration/diffusion coefficient curve toward zero concentration
56

. In contrast to the above 

techniques, fluorescence correlation spectroscopy (FCS) was invented for measuring diffusion, 

concentration, and chemical biochemical interactions/reactions of fluorescent or fluorescently 

labeled molecules at nanomolar concentrations in solution.   

Fluorescence correlation spectroscopy (FCS) is an experimental technique used to obtain 

temporal fluctuations of moving fluorescent molecules in a sample. These fluctuations can be 

quantified in their strength and duration by temporally autocorrelating the recorded intensity 

signal, a mathematical procedure after which the technique is named. The autocorrelation 

analysis provides a measure for the self-similarity of a time series signal by analyzing the 

temporal fluctuations data. Consequently, one can measure the translational diffusion, the 

rotational diffusion, the flow, or the chemical reactions of the molecules. FCS was first 

introduced by Madge, Elson and Webb in 1972 to measure the diffusion and chemical dynamics 

of DNA-drug interaction
57, 58

.  Although the principal ideas behind FCS, as well as its 

applications, were already well established at that time, the technique suffered from poor signal-

to-noise ratios, mainly because of low detection efficiency, large ensemble numbers and 

insufficient background suppression. Introducing the confocal illumination scheme in FCS in 

1993 by Rigler et. al have generated important technical improvements and pushed the 



50 
 

 
 

sensitivity of the technique to the single- molecule level, thus increasing the signal- to-noise ratio 

dramatically
59

.  Moreover, using efficient fluorescent dyes to label the molecules of interest, 

strong and stable light sources like lasers, and ultrasensitive detectors, e.g. avalanche 

photodiodes with single-photon sensitivity, the detection of the fluorescence signal coming from 

individual molecules in highly dilute samples has become practical
60

. Therefore, FCS 

experiments can be conducted in a wide variety of specimens, ranging from materials science to 

biology
60

.  

In FCS experiments, the number of fluorescent molecules which emitted photons from 

the focal volume element in equilibrium is monitored as a function of time.  The recorded 

fluorescence emission signal is proportional to the number of fluorescent molecules in the probe 

volume
61

. Fluctuations in the fluorescence signal are induced by molecules entering and leaving 

the illuminated region and as fluorescent molecules chemically transform to and from non-

fluorescent forms. This technique works properly if the signal fluctuates and the fluorescence 

intensity has a characteristic time behavior. Since the measured intensity fluctuation always 

contains some noise, information about different processes occurring in a given focal volume is 

obtained from the characteristic spectrum of that noise. 

FCS is a single molecule sensitive technique. For observing molecular behavior to be 

effective, the fluctuations have to be detectable. Moreover, the number of molecules in the 

detection volume has to be small enough so that the contribution of each individual molecule is 

identifiable
62

. At the same time, the signal from these molecules has to be strong enough for the 

information to be useful. Therefore, it is obvious that FCS can only function properly if one 

somehow manages to reduce the concentrations and observation volumes such that only few 

molecules are simultaneously detected, and at the same time increase the fluorescence photon 
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yield per single molecule. Experimentally, one can obtain small open volumes, often less than a 

femtoliter, by strong focusing of the illumination into a double cone with a waist 1 μm in 

diameter plus selection of the fluorescence emitted only from this region by inserting a pinhole 

in the image plane. This is achieved by the use of a confocal laser-scanning microscope, 

reducing background from out-of-focus excitation. In addition, the signal strength can be 

improved by using efficient fluorescent dyes to label the molecules of interest. 

The single molecule sensitivity of FCS allows the detection of fluorescent molecules 

(fluorophores) in the small focal volume of the laser beam (of order of 0.1 fL). These 

fluorophores keep diffusing into and out of the laser focus and the number of them will 

fluctuate
60

. Since the laser focus maintains a constant volume, this implies using grand canonical 

ensemble to better understand the theoretical foundation of FCS. These fluctuations can be the 

result of Brownian diffusion, chemical reactions, externally induced flows, and other such 

processes
57, 62

. The autocorrelation function (ACF) of a fluctuation F(t) measured with respect to 

time. The measured fluctuations F(t) will be treated mathematically by calculating the 

autocorrelation function (ACF) G () which is given by: 
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3.1 

Where < > denotes a time average and    is the time lag. G () decays from a maximum value at 

 =0 to zero at large lag times. Fig 3 shows the development of an autocorrelation curve. The 

amplitude of G () and the characteristic delay time provides multiple parameters on single 

molecule scale with high spatial and temporal resolution such as local concentration, mobility 

coefficients.  
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Fig.3.4 The development of an autocorrelation curve. The ACF calculates the self-similarity of 

fluctuations as a function of time lag. By fitting the curve to a particular model, the diffusion coefficient 

and concentration of fluorescent dyes in a solution may be calculated. 

 

Most of the systems under study such as polymers do not inherently fluorescence when 

they are excited by laser. This problem was solved by labeling these polymer molecules with 

fluorescent dyes. However, these dyes also have a problem that they can not stand high power 

lasers. Fluorescent dyes emit a limited number of photons before they irreversibly photobleach. 

In order to solve these problems, more stable dyes have been introduced in the FCS experiments 

and these dyes can emit larger number of photons before photobleaching.  

The FCS experimental set-up composes mainly of the laser source as illustrated in Fig. 

3.4. This laser excites the fluorophores within the laser beam focus. There are two kinds of lasers 

used in FCS experiments: continuous light (one-photon excitation), pulsed laser light (two-
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photon excitation). We are using the second one which was used first by Berland et al. after the 

invention of two-photon confocal microscopy by Denk
63

. 

 

Fig 3.4 Schematical drawing of  two-photon FCS setup   

 

 

In one photon excitation, the incoming laser light is strongly focused by a high numerical 

aperture objective (ideally NA > 0.9) to a diffraction limited spot. Only the few fluorophores 

within the illuminated region are excited with one photon. In order to limit the detection volume 

also in axial direction, a pinhole is introduced in the image plane, which blocks all light not 

coming from the focal region.  

Two-photon excitation requires the absorption of two photons of theoretically double the 

wavelength usually required for the excitation, within the tiny time interval of about one 

Dichroic Mirror 

           Objective  
 

Laser Focus 

Short-Pass Filter 

Ti- Sapphire Laser 800 nm, 120 fs,  

PMT2 PMT1 
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femtosecond (10
-15

 s). In order to obtain a reasonable probability of such three-particle events  ( 

two absorbed photons and one emitted photon) the photon flux must be extremely high. This 

means, a high output power is required, and also pulsed excitation is used, to get an even higher 

photon density per pulse relative to the average output power. The probability of absorbing two 

photons per excitation process is proportional to the mean square of the intensity. This allows the 

laser to excite only the immediate vicinity of the objective‟s focal spot which receives sufficient 

intensity for significant fluorescence excitation. Under two-photon excitation, bleaching occurs 

only in the focal region. In contrast to this, under one-photon excitation, all fluorophores residing 

in the double cone above and below the focal spot are excited and bleached. Unfortunately, 

determining the two-photon excitation spectra of different dyes is difficult. As two-photon 

excitation is a quantum mechanically forbidden process, the selection rules differ greatly from 

those valid for one-photon processes. In addition, because of the pulsed excitation in two-photon 

excitation, the maximum number of photons that a dye molecule emits before undergoing 

photodestruction is significantly lower than that for the one-photon excitation. Moreover, due to 

the quadratic intensity dependence, the range of applicable powers is much narrower. In spite 

these experimental difficulties, two-photon excitation combines good signal-to-noise ratio with 

low invasiveness, especially for sensitive biological applications. 

In two-photon setup the high optical resolution is obtained by the use of non- linear two 

photon absorption. The laser is focused inside the sample using a high power objective
64

. An 

infrared femtosecond Ti-sapphire (Mai Tai, Spectra physics) laser is being used for two-photon 

excitation. The laser beam passes through a beam expander which is a telescope consisting of 

two achromatic lenses separated by a distance equal to the sum of their focal length. The purpose 

of these lenses is to limit the diffraction in the focus for a beam of width ~ 0.35 µm after it exits 
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the objective. After that the beam reflects off the dichroic mirror, which is made of a special 

multilayer dielectric coating. The purpose of this mirror is to transmit the wavelengths above 

certain value and reflect the wavelength under the same value. So to choose these mirrors, it 

should be matched with the fluorophores used in the experiment. The laser light is collected by 

the same objective to focus the beam into the sample. This objective must have a high numerical 

aperture (NA). The fluorescent light is collected using a photomultiplier tube (PMT) which has 

the single photon sensitivity. There is a short pass filter in the way between the dichroic mirror 

and PMT to eliminate the scattered light or light leakage from dichotic mirror.  

The fluctuations of fluorescent molecules are recording using data acquisition card where 

the data is the number of photons being collected by PMT as a function of time. The frequency 

of acquisition can be altered using computer software. Then these data will be auto correlated 

using a software package that updates the autocorrelation function during the period of the 

experiment. Then these ACF will be analyzed using a suitable model. 

3.1.4 FCS THEORY 

FCS is a method for investigating molecular dynamics. The fluorescent beads or 

molecules are homogenously distributed in the sample container in a rest condition. The 

excitation light sources focus into the sample container to form a focus spot. Whenever the 

fluorescent beads or   molecules move into the focus spot, they absorb energy and emit 

fluorescent light. Then, photomultiplier tube (PMT) is used to detect the fluorescent signal. The 

detected analog signal from PMT is then converted to digital signal (photon counts) by 

discriminator. The photon counts are stored as the raw data in a sampling time T. thus, the 

detected fluorescence fluctuation F(t) as a function of t ( t= i T, i =0 to M-1, M is the data size) 

is measured. The average of F(t) is denoted by  
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where  T  is the sampling time  and M is the raw data size.  The fluctuation of F(t) is given by: 

 
)()()( tFtFtF   

3.3 

 

If only one fluorescent chemical species is present in the sample region, F(t) is given by: 

 

 drtrCrEkQtF ),()()(  

3.4 

 

where k is a constant, Q is the product of the absorptivity, fluorescence quantum efficiency and 

experimental fluorescence collection efficiency of the fluorescent molecules, E (r) is the spatial 

intensity profile of the excitation light, and C(r,t) is the number density at position r and time t. 

then one can write eq.3.1  as follows: 
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where  ),(),(),( trCtrCtrC  , by substituting  this equation into equation 3.1 we get: 
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For the 3D Gaussian model with two photon excitation the spatial intensity profile of the 

excitation light E(r) is given by: 
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where 0w  is the beam waist and 0z  is the length of the beam in the z axis. 

For Brownian (translational) diffusion, only the fluctuation C(r,t) will have characteristic 

behavior governed by the diffusion equation: 
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where D is the diffusion coefficient. The solution of the above equation is given by: 
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By assuming that the sample is stationary, the following relation holds for translational diffusion 

in two dimensions: 
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The diffusion coefficient for spherical particles is given by the Stokes-Einstein relation: 
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3.11 

where RH is the hydrodynamic radius of the particle, η is the viscosity of the surrounding fluid, 

and T is the ambient temperature. By correlating the change in concentration of particles through 

a sample volume, the diffusion of particles can be determined, as well as the average particle size 

(for spherical particles). Substituting eq. 3.10 and 3.7 in 3.6, we get: 
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where w0 and z0 are the beam width in the lateral and axial directions, D is the diffusion 

coefficient, and the density of fluorescent particles is: 
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The average number of molecules within the excitation volume may be calculated by multiplying 

particle density by the area of the laser focus: 
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If an external flow of velocity V is introduced to the system, an exponential term is superposed 

over the usual autocorrelation function.  
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3.1.5 CROSS CORRELATION: 

In performing an autocorrelation analysis, one effectively compares a measured signal with itself 

at some later time and looks for recurring patterns. Nevertheless, it may also be useful to find 

common features in two independently measured signals. Whereas autocorrelation measurements 

are sensitive only to signal variations within one channel, cross-correlation analysis is used to 

compare the signals arising from two different channels. Only temporally coordinated 

fluctuations in both channels give rise to cross-correlation. Phenomena limited to one 

fluorophore, e.g., triplet blinking, or artifacts in one detector will not show in the cross-

correlation curve, because they are not directly related to the other channel. In fact, cross 

correlation analysis is just the straightforward way to achieve much higher detection specificity. 

In analogy to equation (3.1), the cross-correlation function is defined as: 
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where i and j are two different measured signals of the fluorescent intensity. 
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3.2 Ellipsometry 

3.2.1 Introduction 

Ellipsometry, introduced by Drude in 1889
65

 is a powerful optical technique for the 

investigation of the structural (thickness) and optical (complex refractive index or dielectric 

function) properties of thin films. The name “ellipsometry” was introduced in 1945 by Alexandre 

Rothen
66

, and it stems from the most general state of polarization, which is elliptical. According 

to Azzam and Bashara
67

, ellipsometry can be defined as the measurement of the state of 

polarization of a polarized light wave. It is generally conducted to obtain information about an 

optical system that modifies the state of polarization. During an ellipsometric experiment, 

polarized light is allowed to interact with an optical system under investigation. This interaction 

changes the state of polarization of the incident light wave. Most commonly, ellipsometry is 

performed in reflection, that is, a light beam of known polarization is reflected by the sample, 

and the polarization of the reflected beam is measured. The measurement yields the change in 

polarization upon reflection, which can be used to deduce the optical properties of the sample, 

and it can yield information about layers that are thinner than the wavelength of the probing light 

itself, even down to a single atomic layer. Ellipsometry is commonly used to characterize film 

thickness for single layers or complex multilayer stacks ranging from a few angstroms or tenths 

of a nanometer to several micrometers with an excellent accuracy. However, there are many 

other applications of ellipsometry in other areas including chemical deposition, depth gradients 

and profiles, phase transition temperatures, expansion coefficients, in situ growth monitoring
65, 

67, 68
. 

Ellipsometry is a popular technique because it is used in real time and in-situ. In addition, 

it is non-penetrating, inexpensive, very sensitive, and it does not require ultra vacuum conditions. 



61 
 

 
 

A variety of ellipsometry configurations have been developed over the years as technology has 

improved. Ellipsometry is usually performed by modulating the polarization state of a light 

beam. This is achieved by means of optical components such as linear polarizers. The earliest 

ellipsometers featured polarizers that would be rotated until no reflected light passed through the 

other side – such devices have been called “null ellipsometers”
69

. In contrast, a phase-modulated 

ellipsometer continuously shifts a component of a polarized beam of light
70

. Exploitation of 

phase modulation in ellipsometry allows for sub-angstrom resolution of thin films. Ellipsometric 

measurements may be performed as a function of wavelength (spectroscopic ellipsometry), as a 

function of the angle of incidence (variable-angle) or both. On the other hand, monochromatic 

elipsometry utilizes single wavelength. In addition, considerable amount of information may be 

obtained from optically anisotropic samples by acquiring ellipsometric data as a function of the 

polarization state of the light beam incident on the sample.    
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Fig. 3.5 Schematic of phase-modulated ellipsometry setup. 

 

The polarization of the light can be decomposed into s and p components (the s 

component oscillating perpendicular to the plane of incidence and parallel to the sample surface 

and p is parallel to the plane of incidence). The optical scheme for a monochromatic, phase-

modulated ellipsometer  is shown in Fig.3.5 A laser light source (He-Ne laser, λ = 632.8 nm, 5 

mW)  is directed onto a polarizer oriented at 45
0
 to the plane of incidence so that the beam 

components parallel and perpendicular to the plane of incidence (referred to as s and p 

components, respectively) are equal in magnitude.  The now polarized beam enter a 

birefringence modulator which is oriented parallel to the plane of incidence. The birefringence 

modulator consists of a 10 mm thick piece of fused silica, which is set into longitudinal 

He-NeLaser 

 

Polarizer 

Birefringence 

Modulator  

Sample 

 

Analyzer 

Iris 

Photomultiplier Tube 

(PMT) 

θ 



63 
 

 
 

oscillation of amplitude δ0 at a fixed frequency of 50 kHz. This oscillation creates a sinusoidally 

varying phase shift between the s and p components of the laser.  After reflection by the sample, 

the phase modulation of the light beam is converted to an intensity modulation by the analyzer, 

which is oriented at +45
0 

or -45
0
. The light intensity is finally picked up by the photomultiplier 

tube detector.  

 

3.2.2 ELLIPSOMETER THEORY 

The polarizer is rotated by 45
0 

relative to the s and p axes. The amplitude of the electric field 

vector after the light passes through the polarizer is given by: 

 

 

3.17 

where  are unit vectors along s and p axes. The birefringence modulator modulates the 

polarization of the light beam passing through it at frequency 50 kHz utilizing the photoelastic 

effect, which cause glass to become birefringent under strain. The strain is induced by setting an 

isotropic glass slab (fused silica) of thickness d into longitudinal oscillation at its resonance 

frequency, driven by the piezoelectric effect. The periodic uniaxial strain  
0

  which is 

produced in the center of the slab results in a periodic change in the refractive index for light 

polarized parallel to the oscillation direction. This leads to a periodic variation in the refractive 

index difference for light polarized parallel and perpendicular to the oscillation direction. The 

dominant change is along the axis. In this direction, the refractive index increases during 

compression and decreases during expansion 
71

. The difference in the refractive index varies 

sinusoidally with time at the frequency ω0. This strain-induced birefringence gives a phase shift 

between the light polarized in the two directions of : 
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where  is the wavelength of the light beam, d the BM glass slab thickness and  0 and 

 n are the periodic uniaxial strain and the periodic variation in the refractive index difference  

As in our case the incident light is polarized at 45
0
 to the axis of vibration, after birefringence 

element the light will be elliptically polarized with an oscillating phase shift between 

components parallel and perpendicular to the vibration axes. After passing through the 

birefringence modulator, a sinusoidally varying phase shift is created between the s and p 

polarizations.  The light wave incident on the ambient medium-film surface has the form 

 
 

3.19 

where  and  are the amplitude and the angular frequency of the phase shift. The reflection at 

the ambient medium-film surface causes a change in the amplitude and the phase shift for the s 

and p polarizations. The two effects are included in the complex reflection coefficients, 

 
 

 

 

3.20 

 

So the amplitude of the electric field vector of the reflected light between the sample cell and the 

analyzer is given by: 
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The analyzer is a linear polarizer that samples the two alternative directions winch are rotated by 

45˚ relative to s and p axes. The electric field amplitude for these two directions are: 

 

 

3.22 

The PMT measure the intensity of light which is proportional to  

 

 

3.23 

where . The output current of the PMT is proportional to the intensity and the gain 

voltage VG, applied across PMT‟s dynodes. The electronics supplies a voltage to a lock-in 

amplifier which is proportional to the ac component of IPMT. The lock-in measures the 

amplitudes of the ac voltage components possessing angular frequencies ω0 and 2ω0. At 

Brewster angle  for a surface with a profile thickness of zero. However, for a nonzero 

thickness  at Brewster angle . In this case,  is defined as the angle at which 

. Practically,  is found by zeroing in on the angle of incidence at which =0. At 

this angle  is proportional to  and the proportionality constant is determined by the 

calibration procedure.  

In Brewster angle ellipsometry, the quantity  is measured and defined as the imaginary 

part of the ratio of the complex components measured at Brewster angle.       
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The nature of dependence of  on the thickness of the surface makes it ideal for probing the 

structure of the surface as a function of the distance perpendicular to the surface. For a step 

surface with zero thickness, rp =0, so ρ=0. A nonzero surface thickness gives a nonzero value for 

ρ, which is determined from the Drude equation. For thin profile compared to the wavelength of 

the light λ, 

 

 

3.25 

where Є(z) is the optical dielectric constant as a function of z, the depth into the surface, and  Є 

(+∞) and Є (-∞) are the optical dielectric constants of the bulk incident and reflecting mediums, 

respectively. As an example, consider as seen in Fig. 3.5, a surface that has the optical dielectric 

profile is given by : 
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For this profile, the Drude equation is given by: 
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We can see that  proportional to the thickness of the layer. The minimum resolution of the 

ellipsometer is . With  this 

resolution corresponds to d≈ 0.05 nm. So ellipsometry can be used to measure the thickness of 

monolayers. The maximum sensitivity of  is seen to occur at  as shown in Fig. 3.7 below. 

(z) 

o 

2 

z 

d=10nm 

Fig. 3.6. Interface with dielectric profile. 
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Fig. 3.7 Variation of Re(r) and Im(r) with layer thickness. 
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CHAPTER 4 

DIFFUSION OF NANOPARTICLES IN SEMIDILUTE AND ENTANGLED 

POLYMER SOLUTIONS 

 
Some parts of the  following material were originally published in The Journal of Physical 

Chemestry B Letters (2009)
72

 

 

4.1 DIFFUSION OF GOLD NANOPARTICLES IN POLYSTYRE-TOLUENE 

SOLUTIONS 

 

Understanding the transport properties of nano- and micrometer-sized particles in 

crowded solutions of macromolecules (polymers, proteins, etc.) is important in various problems 

of medical and technological interests, such as chromatography, electrophoresis, and drug 

delivery
73-75

. This understanding would also be beneficial to several important fields of studies 

across disciplines. For example, the diffusional characteristics of tracer particles in crowded 

solution of flexible and rigid rod macromolecules are important for diverse biological 

phenomena ranging from metabolism, protein-protein interactions, enzyme reactions and gene 

therapy. In the field of biophysics, macromolecular crowding dramatically affects cellular 

processes such as protein folding and assembly, regulation of metabolic pathways, and 

condensation of DNA. In addition, the modeling of cellular processes, such as enzyme reactions, 

critically rely on understanding the diffusion of globular proteins in crowded cytoplasmic 

environments
76, 77

. 

In the area of polymer physics, the dynamics of particles can provide important 

information about the local mechanical and viscoelastic properties of the solution, an approach 

widely used in microrheology 
78-81

. Mason and Weitz presented a novel experimental method to 

measure linear viscoelastic moduli of complex fluids using dynamic light scattering. In their 

study, they show that the response of the fluid to thermal fluctuations, as probed by the average 
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motion of small particles dispersed within the fluid, provides a close representation of the 

response of the bulk fluid to an imposed shear strain.  Dynamic light scattering was used to 

measure the mean square displacement of a probe particle <Δr
2
>, and relate this to the complex 

shear modulus by describing the motion of the particle with a generalized Langevin equation. 

The Brownian motion of these particles is strongly influenced by the nature of the surrounding 

matrix. Albert Einstein derived that the mean square displacement <Δr
2
> of a particle undergoing 

Brownian motion in a Newtonian fluid must increase linearly with time. Later, the concepts of 

Einstein were expressed in a stochastic differential equation of motion by Paul Langevin. Mori 

and Kubo derived the generalized Langevin equation, in which the constant friction coefficient 

of the traditional Langevin equation is replaced by a memory function that couples the motion of  

a particle to the history of its velocity, thus accounting for the viscoelasticity of the medium that 

surrounds the particles. This has formed the foundation for a field of investigation known as 

microrheology
78-81

. In microrheology, the thermal displacement of particles is analyzed in terms 

of the rheological response of the surrounding material. 

 

 A large body of experimental work has focused on comparing the experimentally 

measured translational diffusion coefficient (D) of the particles with the prediction from Stokes-

Einstein (SE) relation using the known polymer macroscopic viscosity η
35, 82-84

. The translational 

diffusion coefficient (D) of the sphere and η is typically related via the Stokes-Einstein relation: 
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where R is the radius of the sphere and η is the zero shear-rate viscosity of the medium in which 

it is suspended. This relation assumes that the medium may be treated as a continuum on the 

length scale of R. Ullmann et. al. have studied the diffusion coefficient of polystyrene latex 

probe spheres in aqueous solutions of poly (ethy1ene oxide) as a function of the sphere radius R, 

the polymer concentration c, and the molecular weight M of the polymer. They found that the 

Stokes-Einstein equation for D fails badly, for D being larger than that predicted from R and the 

macroscopic shear viscosity η, and the failure increases with increasing polymer concentration.  

In the de Gennes models of polymer solutions
85

, solution properties depend qualitatively 

on the polymer concentration c, with properties changing their nature as the polymer 

concentration passes from one regime to the next, particularly at the overlap concentration c*, 

which divide the dilute solutions from semidilute solutions. A semidilute polymer solution can 

be viewed as a transient mesh of polymer chain, the distance between the contact (entanglement) 

points of the chains giving a scaling length ξ. For high molecular weight polymers, ξ is much 

less that the total chain length and the entanglement points dominate the polymer dynamics. 

Moreover, the local properties are predicted to be independent of molecular weight M. In the 

semidilute regime, the average mesh size ξ decreases with increasing concentration according to 

ξ ≈ Rg (c/c*)
-3/4

.  Here, the overlap concentration is given by c*= Mw/ (4/3πNARg
3
) and Rg is the 

radius of gyration of the polymer chains  

It is further predicted that polymer solution properties follow scaling laws in which the 

logarithmic dependence of a property is proportional to a power of the polymer concentration. 

For example, the following scaling relation gives the diffusion coefficient, D: 

 
 

4.2 
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where D0 is the limit of low polymer concentration, and α and ν are arbitrary parameters
82

. 

 In another theoretical analysis of probe motion in semidilute solutions, de Gennes and 

coworkers argue that if R>> ξ, the polymer solution will appear to the probe particle as a 

continuum. On the other hand, if R ≤, the polymer solution cannot be treated as a continuum 

anymore and its local viscosity η may change with the length scale at which it is probed.  

Theories developed by Odijk
86

, following Ogston
87, 88

, Philles
89-91

, Cukier
92

, Altenberger
93

, 

Amsden
94

 and de Gennes
95, 96

 predicted the same exponential dependence of viscosity on probe 

size, but they differ in the physical mechanisms that led to such dependence.  Mechanisms  used 

as a basis include hydrodynamic drag on the solute molecule, energy barriers to solute jumps, 

and physical obstruction due to the presence of the polymer chains. Although none of these 

models is successful at explaining all the experimental observation, all experiments and 

theoretical calculations showed the same universal stretched exponential dependence of viscosity 

on the size of nanoprobes and concentration of polymer solutions. 

 

 

An important advance in the study of the relation between nanoviscosity, probe size and 

polymer concentration came in 1978 with the experiments of Langevin and Rondelez
97

. They 

showed that instead of two variables ( probe size and concentration of a polymer), the nano 

viscosity felt by the nanoprobe is an exponential function of only a single variable, R/ ξ, where R 

is the size of a probe and ξ is the correlation length which is dependent on concentration, in the 

semi dilute solution. Following this experimental work, de Gennes
85, 95

 developed a theoretical 

approach to the viscosity of polymer solution. He suggests that a dense polymer solution can be 

viewed as a transient statistical network of mesh size (correlation length), ξ, in a solvent. This 
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size also corresponds to the size of the “blob” inside which all monomers belong to the same 

polymer chain.  Moreover, he postulated that the viscosity should depend on R as η(R/ ξ), as 

verified by Langevin and Rondelez. Therefore, in this approach, the viscosity experienced by the 

probe of size R>> ξ should have a constant value equal to the macroscopic viscosity, while for 

R< ξ, the viscosity should depend on R as η(R/ ξ). Thus, in this model, the crossover length 

scale, L, is equal to ξ. Since ξ decreases with polymer concentration, for any size, R, there is a 

well-defined concentration, c(ξ), for which a crossover occurs to the macroscopic viscosity. In 

the first case, when R>> ξ, the mobility of the particle is coupled to the chain relaxation; hence, 

the particles experience the macroscopic zero shear rate viscosity and the particle diffusion 

satisfies the SE relation
35, 98

. In the opposite case, when R< ξ the particles generally experience 

the local microscopic viscosity, which is a strong function of the length scale at which it is 

probed
83

. The local viscosity is generally lower than the macroscopic viscosity of the polymer 

solution, therefore in this situation the particle mobility is faster compared to SE prediction
35

. 

In this chapter, we focus on the diffusion of gold particles in semidilute polymer solution 

of polystyrene (PS) in toluene. The size of the nanoparticles used in our experiments is such that 

R≈ ξ. We have used the methods of fluctuation correlation spectroscopy (FCS), which have high 

sensitivity and selectivity
99-101

.  

Unlike traditional FCS, which depends upon fluorescent dyes, we have utilized 

multiphoton absorption induced luminescence of gold nanoparticles as contrast. This overcomes 

the problem of finite photochemical lifetime of dyes in probing slow polymer dynamics. In 

addition, it allows us to measure the dynamics at length scales larger than the size of the dye 

molecules (≈1 nm). The novelty of this investigation is the use of much lower concentration of 

particles (<10
-4

 % v/v) which perturbs the system minimally as compared to methods such as 
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dynamic light scattering (DLS) or fluorescence recovery after photobleaching (FRAP). It also 

simplifies the interpretation of data as the particle-particle interaction through depletion forces or 

by the formation of polymer bridges between neighboring particles can be neglected. 

 

Polystyrene (PS) of Mw = 240 kg/mol (Mw/Mn = 1.10, Polymer Sources, Inc.) and a 

dilute concentration of particles were prepared in toluene by stirring the samples as needed and 

was kept within a sealed cell to prevent evaporation of solvent during measurements. Gold 

nanoparticles of radius, R ≈ 2.5 nm were purchased commercially (Microspheres-Nanospheres, 

Inc.) and their size was verified by transmission electron microscopy (TEM) measurements 

(Figure 4.1). Control experiments involving the gold particles and polymer conducted over 

several days yielded no evidence of time dependent changes in diffusion or clumps in the counts 

vs time data. This implies that there are no strong chemical interactions (e.g., ionic, covalent, 

etc.) between particle and polymer are present, which would have led to adsorption of polymers 

onto surfaces.  

 

Fig 4.1 (a) TEM of gold colloids deposited on carbon film magnified 800 000×. A JEOL FasTEM 2010 

TEM with a LaB6 filament working at 200 kV was employed to capture the image. (b) A histogram 

obtained from measuring the diameters of gold colloids is displayed. The average diameter measured is 

4.7 ±1.1 nm. 
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A plot of emission intensity vs incident power showed that the excitation of particles is a 

three photon process
50

. Recent experiments have demonstrated that gold nanoparticles excited by 

a laser can generate significant local thermal effects in the vicinity of the particle
102

. According 

to the theory of photothermal heterodyne detection by Berciaud et. al., ΔT (the surface 

temperature increment relative to the ambient temperature) are given by ΔT=Pabs/4πκR,  where 

Pabs is the absorbed heating laser power, κ is the thermal conductivity of gold nanoparticles, and 

R is the radius of the nanoparticle. A particle of R = 20 nm excited by a 1 mW laser could have a 

local temperature 50 K above that of the surrounding liquid medium.  As the absorption cross-

section has a R
3
 dependence, the thermal halo effect for R = 2.5 nm size particles has a local 

temperature ((2.5/20)
3
*50), which is <0.1 K higher as compared to the surrounding liquid. 

Therefore, the local thermal effect is not expected to significantly affect the diffusive behavior of 

particles in our experiments. Samples were prepared with concentrations, c = 0.1, 0.15, 0.27, and 

0.33 g/cm
3
 of PS using a digital balance with a resolution of 1 mg. The overlap concentration 

(c*), which denotes the onset of the semidilute regime was determined by using the 

relationship,
14

 c* = Mw/ (4/3πNARg
3
). Here, NA is Avogadro‟s number and the radius of gyration 

of the polymer chains, Rg ≈ 18 nm was estimated from experimental results of a previous study 

103
. We obtained c* = 0.015 g/cm

3
; so all concentrations studied are above the overlap 

concentration. In the semidilute regime, the average mesh size, ξ decreases with increasing 

concentration according to ξ ≈ Rg(c/c*)
-0.75 

and independent of the molecular weight Mw since 

Rg~ Mw
 0.6

.   For the concentration range studied in our experiments, the particle size is 

comparable to the mesh size; R/ ξ ranges from 0.6 (for c = 0.1 g/cm
3
) to 1.4 (for c = 0.33 g/cm

3
). 
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 The  diffusion coefficient (D) is obtained by the following procedure: G(τ) = G(0)/[(1 + 

S(τ))(1 + S(τ)/p2)
1/2

], where G(0) is the autocorrelation function (ACF) magnitude at small time, 

and p (ωz / ω0 ≈5) is the ratio of the effective length to width of the ellipsoidal laser focus. S(τ) = 

τ/τD for normal diffusion, where τD is the average residence time of the particles within the focus. 

D is related with τD through D = ω0
2
/8 τD, where the half-width of laser focus ω0 ≈ 0.2 μm. 

 

Figure 4.2 displays representative autocorrelation functions for nanoparticles in neat 

toluene, and PS concentrations of c = 0.1 and 0.33 g/cm
3
. It is clear from the Figure that as the 

concentration of polymer is increased, the mean decay time of the correlation functions 

increases, which can be attributed to the increase of viscosity of the solution. At higher 

concentrations of polymer, the simple diffusion model fails to fully describe the autocorrelation 

function. We used a more general functional form for S(τ) = (τ/ τa)
α
, with α < 1, which is known 

as anomalous subdiffusion
76, 104

 to fit all autocorrelation functions in Figure 2. In this case, an 

apparent diffusion coefficient can be defined as D = ω0
2
/8τa, which describes the diffusion 

coefficient at the length scale of ω0 and at the time scale of τa.
1
 Table 4.1 shows the fitting 

parameter used to fit the autocorrelation function for all concentrations. 
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Figure 4.2 Autocorrelation plots of 5 nm gold colloids diffusing through neat toluene (circles), 0.1 g/cm
3
 

PS in toluene (squares), and 0.33 g/cm
3
 PS in toluene (triangles). All curves were fitted with an 

anomalous diffusion model, where D = 141 μ m
2
/s, α = 0.95 in toluene, D = 53.1 μ m

2
/s, α = 1.0 in the 0.1 

g/cm
3
 PS solution, and D= 2.98 μ m

2
/s, α = 0.73 in the 0.33 g/cm

3
 PS solution. Typical fitting error for α 

is ±0.05. 

 

Table 4.1: Fitting parameters of S(τ) = (τ/ τa)
α
 used to fit the autocorrelation functions 

Concentration (g/cm
3
) τa  ( 10

-5
 sec) α 

0.1 2.13±0.21 0.98±0.05 

0.15 16.5±0.17 0.93±0.075 

0.27 42.1±5.59 0.82±0.01 

0.33 177.93±39.89 0.73±0.01 

 

In Figure 4.3, we plot D and α as a function of concentration of PS. As the concentration 

of polystyrene increases, D decreases monotonically. At neat toluene and lower concentrations, 

the anomalous exponent α ≈ 1, which suggests that the diffusing particles obey homogeneous 

dynamics; however, at higher concentrations, the transport behavior of particles becomes clearly 

subdiffusive. Note that, even for samples with the highest concentration of polymers, the glass 

transition temperature (Tg) of the mixture was well below the measurement temperature (≈27 
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°C). For c = 0.33 g/cm
3
, we estimated Tg ≈ -100 °C by employing the Fox equation

105
, 1/Tg, 

solution= x1/Tg,toluene+x2/Tg,polystyrene, where Tg is the glass transition temperature of the mixture of 

toluene and polystyrene,  and x1,2 is the mass fraction of the toluene and the polystyrene, 

respectively. Table 4.2 shows the calculated value of the glass transition temperatures for PS-

toluene solutions of all concentrations. To obtain more insight into the transport process, we 

studied the diffusion of free dyes (coumarin 480) in polymer solutions with similar 

concentrations.   

 

Figure4.3 Concentration dependence on the 

diffusion coefficient of 5 nm gold colloids at 27
0
C. 

The data are fitted (solid line) according to the 

Phillies‟ equation with fitting parameters, D0 ≈ 170 

μm
2
/s, μ ≈ 12, ν ≈ 0.9. (inset) Anomalous exponent 

α obtained for gold colloids plotted as a function of 

concentration.  

 

In Figure 4.4, we present the measured values for D and α as a function of concentration. The 

diffusion of coumarin is normal within experimental error bars for all concentrations studied. 

Diffusion data can be fitted reasonably well with the Vrentas-Duda free volume theory
50

, which 

assumes that the friction coefficient is a strong function of concentration due to the dependence 

of free volume on concentration
106

. 
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Table 4.2: The glass transition temperatures for the PS-toluene solutions. 

Concentration (g/cm
3
) Tg (

0
C) 

0.1 -127 

0.15 -122 

0.27 -108 

0.33 -100 

 

 

Figure 4.4 Concentration dependence on the 

diffusion coefficient of coumarin at 27 
0
C. 

The data are fitted (solid line) according to 

the Vrentas-Duda equation. (inset) 

Anomalous exponent α for coumarin 

obtained as a function of concentration. 

 

 

 We compared the diffusion coefficient of the particle with the prediction from SE 

relation. The viscosity information of the PS-toluene solution at various concentrations has been 

obtained from refs 
107, 108

. For all concentrations studied the correlation length, ξ of the polymer 

solution is comparable to the particle radius. In this case, our results indicated that the measured 

diffusivity of the particle exceeds the SE-predicted value, when the solution viscosity was used 

to calculate the predicted value. To be more precise, for c = 0.1 g/cm
3
, D/DSE≈ 0.3, 2, and 7 

when we used solvent viscosity, linear viscosity, and solution viscosity, respectively. The 
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calculation is shown here for c=0.1g/cm
3
 and the calculated D/DSE for all concentrations is 

shown in table 4.3. Firstly, the solvent (Toluene) viscosity is 0.59 cP, so the predicted diffusion 

from Stokes-Einstein equation for 5 nm gold nano particles would be DSE=147 μm
2
/s and D/ DSE 

=0.3. Secondly, the linear viscosity depends on the concentration through the given relation: ln η 

= -5.26 + B1c, where B1=0.4 for Mw=240 kg/mol and c is the concentration. For c=0.1 g/cm
3
 

η=5.5 cP, then the predicted diffusion DSE =15.8 μm
2
/s and D/ DSE=2.75. Finally, the solution 

viscosity is given by: ln η = -5.26 + B1c + B2c
2 

+ B3c
3
. For c=0.1 g/cm

3
, η=13.6 cP and the 

predicted diffusion DSE =6.4 μm
2
/s and D/DSE=7. In this case, motion of the particle is not 

completely coupled with the polymer matrix relaxation, and the particle experienced local 

nanoviscosity. This local viscosity is smaller than the macroscopic viscosity of the polymer 

solution, but higher than the solvent viscosity. For rigid, spherical particles, it is customary to fit 

the concentration dependence of diffusion coefficient with a stretched exponential relation, 

known as Phillies equation: D(c) = D0 exp (-μc
ν
), where D0 is the diffusion coefficient in pure 

solvent and ν is the scaling parameter. Our data in Figure 4.3 can be fitted by a stretched 

exponential reasonably well with a value of the exponent, ν ≈ 0.9, as determined by a nonlinear 

least -squares fit. 

Table 4.3 Comparison between experimental diffusion and prediction from Stokes-Einstein equation 

 D/DSE 

c (g/cm
3
) Solvent viscosity Linear viscosity Solution viscosity 

0.1 0.3 2.75 7 

0.15 0.2 1.93 13 

0.27 0.07 1 47 

0.33 0.03 0.34 42 
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Let us now discuss the observation of anomalous subdiffusive behavior of nanoparticles 

at higher concentrations of polymers. This indicates that the mean square displacement (MSD) of 

the particles, <r
2
(t)> increases less than linearly with time. This has been observed previously in 

complex, heterogeneous environments, such as in gels
96,101

 or inside of a cell cytoplasm
76, 77

. 

Computer simulations also predicted such behavior in the presence of fixed obstacles at high 

concentrations
109

. Particle tracking microrheology experiments measured an anomalous exponent 

of α = 3/4 for the diffusion of tracer particles in filamentous actin network, when the size of then 

tracer is larger than the network mesh size
110

. This indicated a coupling between the tracer 

motions with the transverse thermal fluctuation of the network. However, the entangled network 

that the concentrated polymer solutions formed in our experiments is temporary. We estimated 

the volume fraction of polymers at entanglement concentration by using, υe ≈ (Me/Mw)
0.76

. 

Where Me is the entanglement molar mass
32

. From the known polystyrene density which is 1.05 

g/cm
3
 and entanglement molecular weight at the melt (Me ≈ 17 kg/ mol), we determined ce ≈ 

ρ*υe =0.15 g/cm
3
. Therefore, the observation of subdiffusion coincides with the onset of the 

entanglement effect. The entanglement length of the PS solution was estimated to be ≈10 nm at c 

= 0.3 g/cm
3
, which is comparable to the size of the particles. In this case, an analogy with glass 

forming colloidal systems can be made, where a tracer particle can be trapped for a long time 

within a transient cage formed by other particles. In such cases, particle tracking experiments had 

revealed subdiffusion. A similar situation can arise in our experiments as well, where the 

mobility of the nanoparticles can become restricted due to transient caging of the particles within 

the entanglement tube formed by the polymer chains. This also explains why normal diffusion 

was observed in experiments with dyes. Because of their much smaller size, they are not likely to 

be caged.  In an alternative scenario, nonspecific interactions such as steric or van der Waals 
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interactions of the particles with the macromolecule in a crowded environment can cause 

heterogeneities in the frictional drag. These interactions are typically weak and have energies of 

the order of thermal energy so that the particles could bind and unbind with the macromolecular 

segment as they move within the focal volume
76

. This may give rise to a spectrum of time scales, 

resulting in a nonlinear relationship between MSD and time. A definitive microscopic 

interpretation requires experiments both as a function of polymer molecular weight and particle 

sizes, which are currently under progress. 

 

 In conclusion, we report measurement of translational diffusion coefficient of 

nanoparticles in semidilute polymer solutions. The focus of this work was to investigate the 

situation when the size of the particle is comparable to the matrix correlation length. An 

important finding is the observation of anomalous subdiffusion at entangled polymer solutions. 

The results will have ramifications in understanding the colloidal transport properties in polymer 

solutions and in other structured fluids. The approach used here will also be helpful to extend the 

technique of microrheology at much smaller scales comparable to the molecular dimensions. 

 

 

4.2 DIFFUSION OF NANOPARTICLES PROBES IN SEMIDILUTE 

POLY(ETHYLENEGLYCOL)-WATER SOLUTION 

 

This work is a continuation of our previous study on probe diffusion of gold nanoparticles in 

semidilute and entangled polymer solution of polystyrene (PS)  in toluene where the radius of the 

particles was much smaller than the radius of gyration (Rg) but comparable to the average mesh 

size ξ of the fluctuating polymer network.  In this work, the diffusion coefficient of gold 
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nanoparticles in poly(ethy1ene glycol) in water solutions was studied as a function of sphere 

radius R, polymer concentration c, and polymer molecular weight Mw. The radii of the particles 

are comparable to both Rg and ξ .  

 

The diffusion of hard spheres in linear polymer solutions has been theoretically studied based on 

different physical models. As discussed earlier, all of these models describe the reduced 

diffusion coefficient of probe particle in a stretched exponential function of the concentration of 

the polymer matrix.  

 D/D0 = exp (-μc
ν
) 4.3 

where D0 is the diffusion coefficient in pure solvent, μ is a function of the probe size R, and ν is 

a scaling parameter related to the solution properties of the polymers. This phenomenological 

approach was first introduced by Phillies to describe the self-diffusion behavior of 

macromolecules over a wide range of concentrations. He generalized a simple scaling equation 

for optical probes in polymer solutions:  

 D/D0 = exp (-ac
ν
Mw

γ
R

δ
) 4.4 

where Mw is the molecular weight of the background polymer,  R is the probe radius, and ν, γ, 

and δ are scaling coefficients. Experimentally, ν = 0.5-1.0, γ= 0.8 ± 0.1, and δ = 0.2. These 

values are substantially inconsistent with theoretical predictions γ = 0 and δ  = 1 for probe 

diffusion in open-coil polymer solutions. 

In semidilute concentration regime, where R is of the same order of the correlation length, ξ, the 

diffusion will be dominated by the fluctuation of the mesh size, and an activation energy using 

scaling analysis be used proportional to R/ ξ. Therefore, the diffusion coefficient can be written 

as: 
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 D = D0 exp (-β(R/ ξ )
δ
) 4.5 

 

Using ξ = Rg(c/c*)
-0.75

, eq 4.5 can be written as a stretched exponential function of polymer 

concentration. eq 4.3 In this case, if we assume that δ=1 according to several theoretical 

predictions, then ν = 0.75. 

Poly (ethylene glycol) (PEG) of Mw = 5.4, 37.8, 102 kg/mol (Mw/Mn = 1.08, Polymer Sources, 

Inc.) and a dilute concentration of particles were prepared in water by stirring the samples as 

needed. Gold nanoparticles of diameter, D ≈ 5, 10 nm were purchased commercially 

(Microspheres-Nanospheres, Inc.) and their size was verified by transmission electron 

microscopy (TEM) measurements. Control experiments involving the gold particles and polymer 

conducted over several days yielded no evidence of time dependent changes in diffusion or 

clumps in the counts vs time data. This implies that no strong chemical interactions (e.g., ionic, 

covalent, etc.) between particle and polymer are present, which would have led to adsorption of 

polymers onto surfaces.  

Poly(ethylene glycol) (PEG) is a flixable polymer and its radius of gyration in water as a 

function of molecular weight is given by Rg = 0.02 Mw 
0.58

 [nm]
111

. Using this relation, we 

calculated Rg = 2.9 nm (for PEG 5400 g/mol), Rg = 9 nm (for PEG 37 800 g/mol) and Rg = 16.1 

for PEG 102 000 g/mol). The average mesh size, ξ   is a function of polymer concentration, c, ξ 

= Rg(c/c*)
-0.75

, where c* is the polymer overlap concentration at which chains start to overlap.  

The overlap concentration depends on the molecular weight of PEG:  c* = 0.086 g cm
-3

 (for PEG 

5400), c* = 0.02 g cm
-3

 (for PEG 37 800), c* = 0.001 g cm
-3

 (for PEG 102 000). Thus, for 

example, 8.6 % (w/w %) solution of PEG 5 400 in water, the polymer chains start to overlap. 

The mesh size, ξ, only weakly depends on the molecular weight. All samples were prepared with 
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concentrations, c=0.1, 0.2, 0.3, and 0.4 g/cm3 (w/w %) of PEG; so all concentration studied here 

were above the overlap concentration in the semidilute regime and the average mesh size ξ 

corresponding to these concentrations was 2.6 nm, 1.55 nm, 1.14 nm, and 0.9 nm, respectively. 

The probe gold nanopartibles have two different sizes: 5 nm, 10 nm and so R/ ξ ranges from 0.86 

to 5.43. 

Measurements of the diffusion coefficient D of the 5 nm and 10 nm gold nanoparticles 

are plotted as a function of the polymer concentration in figure 4.5.  At each concentration, the 

average of three different measurements for D was recorded with the standard deviation as the 

error of the measurement. The behavior exhibited by 5 nm and 10 nm spheres for the three 

different molecular weights: 5400 g/mol, 37 800 g/mol, and 102 000 g/mol were largely similar. 

In each PEG-water system, the diffusion coefficients decrease monotonically with increasing 

polymer concentration; D of the 5 nm nanosphere in pure water was 112 μm
2
/s, which is D0, and 

it falls to 62 μm
2
/s, 57.7 μm

2
/s and 49.5 μm

2
/s in 0.1 g/cm

3
 solutions of 5400 g/mol, 37 800 

g/mol, and 102 000 g/mol polymers, respectively.  
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5 nm gold nanparticles 10 nm gold nanoparticles 

Fig 4.5 The concentration dependence of the : (a) 5 nm gold nanoparticles in three different Mw: 

5.4k g/mol (triangles), 37.8 kg/mol (circles), and 102kg/mol (squares). (b) 10 nm for the same 

Mw. 

All the diffusion measurements was fitted using Phillis stetched exponential D=D0 exp (-μc
ν
), 

where D0 is the diffusion of the nanoparticles in pure water. D0 was measured for both 5nm and 

10 nm nanospheres to be 112 μm
2
/s and 85 μm

2
/s, respectively. The solid line in Fig. 4.5 shows 

the fit to this equation. The corresponding μ and ν are given in Table 4.4. 

 

 Molecular weight ( g/mol )      

Nanosphere 

size(nm) 

 

5,400 

 

37,800   

     

 102,000                                                       

 μ ν μ ν μ ν 

5 4.6 0.89 4.0 0.76 2.7 0.53 

10 3.1 0.86 2.8 0.81 3.16 0.71 
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According to eq. 4.5, we plot ln (D/D0) as a function of R/ξ for 5 nm and 10 nm nanospheres in 

PEG solutions (Mw =5.4K, 37.8K, and 102K) in Fig. 4.6.  Since R/ξ ratio for 10 nm particles is 

double the ration for 5 nm particles (ξ is the same in both cases), there is a shift in the curve for 

10 nm particles to the right. In addition, the larger particles (10 nm) shows slower diffusion 

compared to the smaller ones (5nm).  A master fit of the data gives stretched exponential power 

of δ=0.96, 1.22 for 5nm and 10nm particles, respectively. The predicted value for δ is 1 by 

Cukier and Altenberger et al. this value indicates that the diffusion in polymer solution is a 

single relaxation process. If the particles diffuse in a continuum medium, it should obey Stokes-

Einstein relation. 
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Fig. 4.6 Reduced probe diffusion coefficient vs the ratio of probe radius to mesh size (R/ ξ) for different 

probes: 5 nm (squares) and 10 ( circles) for three different molecular weights Mw= 5.4k, 37.8k, and 102 

k. the slopes of the fitting lines are 0.96 and 1.22 for the 5nm  and 10 nm probes, respectively. 

 

The macro viscosity (η) of the polymer solution was estimated in two different regimes. 

In the semidilute regime, where  the concentration is greater than the overlap concentration υ* 

and less than the entanglement concentration υe, the relation   ηsp≈(υ/ υ*)
2
  was used 

32
. Here, the 

specific viscosity (ηsp ) is given by ηsp =(η-ηs)/ ηs , and from this relation we can calculate η. In 

the entanglement regime,  ηsp  is given by ηsp≈(υ/ υ*)
14/3

 N
2/3

/[Ne]
2
 where N is the Kuhn 

monomers in the whole chain of polymer which can be  calculated using the relation N=Mw/M0, 

where M0 is the molar mass of PEG Kuhn monomer, and its value for PEG is 137 g/mol. The 

other quantity, Ne is the Kuhn monomers in an entanglement strand, and its value is 15 for PEG. 

The calculations are summarized in the following table. 

 Macro solvent viscosity η (cP) 

c(g/cm
3
) Mw=5400 g/mol Mw=8000 g/mol Mw=37800 g/mol Mw=102400 g/mol 

0.1 2.35 3.44 26 9.17*10
8
 

0.2 6.4 10.77 9425 2.3*10
10

 

0.3 18 24 62906 1.6*10
11

 

0.4 68 366 243168 6.2*10
11
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According to de Gennes scaling theory, the reduced diffusion coefficient does not depend 

on molecular weight Mw whenever c>c*, because the mesh size is a function of only polymer 

concentration in the semidilute and concentrated regime. Our results indicate that D/D0 depends 

weakly upon molecular weight Mw   in agreement with the theoretical prediction. To compare, 

we plot (Fig. 4.7) the results of this study with our previous study for diffusion of 5nm gold 

nanoparticles in 240k PS solutions in toluene.  

 

 

 

 

 

 

 

 

Fig. 4.7 Reduced probe diffusion coefficient vs the ratio of probe radius to mesh size (R/ ξ) for different 

probes: 5 nm ( squares) in PEG-Water system (Molecular weight: 5,4k, 37,8k, and 102k) and (triangles) 

PS-Toluene system. The slopes of the fitting line are: 1.06 and 1.24 for both systems, respectively.
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CHAPTER 5 

CRITICAL ADSORPTION ON SHERICAL NANOPARTICLES 

The following material in a modified form was originally published in Physical Review 

Letters (2007) 

 

There has been a great interest recently in colloidal suspensions and the dynamics of 

colloids. Colloidal dispersions are familiar in everyday life, such as paint, and they are of great 

fundamental and technological importance. If colloidal particles are immersed in a solvent 

consisting of a binary liquid mixture, one of the fluid components may preferentially adsorb onto 

the bodies because of the difference in their affinity for the fluid components. The width of this 

layer is order of the solvent correlation length, which is a few angstroms. But near the critical 

point of the liquid mixture, as the correlation length diverges, the layer thickens and its 

importance in governing the properties of the suspension increases significantly.  

As mentioned in chapter 2, the critical adsorption of simple fluids and liquid mixtures 

at semi-infinite and planar liquid-vapor and liquid solid surfaces in many different systems 

has been studied in much detail and is well understood. For a spherical particle, critical 

adsorption is expected to exhibit differences in behavior due to the effect of surface curvature. 

It has also been demonstrated experimentally that critical adsorption is highly related to 

thermally-induced reversible colloidal aggregation. This flocculation phenomena is observed 

in binary liquid mixtures (2,6 lutidine + water, isobutyric acid + water, etc.) in the presence of 

a small volume fraction of silica or polystyrene colloidal particles
21-23, 112

. Many theoretical 

and experimental studies have tried to explain this phenomenon; however, none of them can 
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explain all of the experimental observations
113, 114

. In this regard, a direct study of the critical 

adsorption onto a single isolated particle will be of great interest. 

The colloidal particles used in many of these experiments have surface hydroxyl groups 

which dissolve in the binary mixture. Therefore, the surface becomes negatively charged. If one 

of the components of the mixture preferentially adsorbs onto the particles, an adsorbed film of 

the phase rich in that component can develop onto them. If the phase separation temperature of 

the liquid mixture is approached, the thickness of the adsorbed layer around the colloidal 

particles will increase. This leads to wetting films of the preferred phase coating the colloidal 

particles. These wetting films result in the presence of effective surface fields, which could lead 

to flocculation in these systems
112, 113

. However, it has also been suggested that if a high 

concentration of particles is used, the aggregation phenomena observed for the colloidal particles 

in binary liquid mixtures would be in fact a true phase separation in the ternary mixture.
115

.  If 

the liquid mixture is near the critical demixing point Tc, the confinement of critical fluctuations 

of an order parameter field induces long-ranged forces between the surfaces of the film. This 

force has been recently called the “critical Casimir force”. This  is an attractive force, and it has 

been argued to play an important role to flocculation for a near-critical solvent mixture
42, 43, 116

. It 

has still not been worked out the roles of these different effects on flocculation. But we believe 

that the knowledge of the adsorption profiles at the surface of a single sphere near Tc would be 

useful to understand this phenoemena. This is the first experimental study in which the critical 

adsorption on spherical particles was measured. The results presented here will help in 

understanding the interaction of liquids with surfaces possessing geometric structure
26

, the phase 

behavior of multi-component fluids
115, 117

, and wetting phenomena
29-31, 112

. 
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Theoretical background 

The spherical particles with mesoscopic radius R0 immersed in a binary liquid are 

characterized by the dimensionless variable R0/, where R0 is the radius of the dissolved sphere 

and  is the bulk correlation length. At a distance z from the surface of the sphere, critical 

adsorption is characterized by a universal scaling function P(z/, R0/)
17

. The curvature 

dependence of the excess adsorption (t, R0) describes the total enrichment of the preferred 

component of the fluid near the criticality in the proximity of the sphere, which is also 

characterized by universal scaling function G(R0/) obtained from P(x,y) by integrating over 

x=z/. Near Tc, the excess adsorption is expected to follow a scaling relation,  (t0)  t
-
, 

where t is the reduced temperature, t=|T-Tc|/Tc, and  is the bulk susceptibility critical 

exponent
17

. In this study, we test these scaling relations by measuring the enlarged effective 

hydrodynamic radius (R) of spherical particles due to critical adsorption.  

 

Methods 

Materials and preparation 

The colloidal particles used in this experiment were fluorescently labeled green silica 

nanospheres purchased from Microspheres-Nanospheres, Inc., of radii approximately 25 nm 

and 10 nm. The critical mixture used was 2, 6 lutidine + water (LW).  LW has an inverted 

coexistence curve with a lower critical temperature of ~33.9 
0
C

 
and a critical composition of 

28.2% lutidine by weight. These particles possess small surface charges. Lutidine  is the 

prefered solvent as it adsorbs onto the surface of the particles
112

. This was verified by 

observing that the majority of the particles reside in the lutidine-rich phase in the two-phase 
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region. To set up the experiment, the sample was prepared by mixing the lutidine with water 

at the critical composition and then ultrasonicating the mixture. Next, the sample was inserted 

in a home-built sample cell. Then, the temperature of the sample cell was controlled using a 

commercial temperature controller (Lakeshore, Inc.) and was regulated  3 mK over 1 hour. 

Finally, measurements were taken within 25 mK of Tc, so that the size-ratio y= R0/  was 

varied by a factor of about 40.   

Experimental technique 

We choose the fluorescence correlation spectroscopy method for investigation because 

the particle concentration in these experiments is much lower (< 10
-5

 v/v)
 
compared to other 

traditional methods of particle-size measurements, such as scattering. The sample cell was placed 

on the stage of a Zeiss inverted microscope. Near-infrared light pulsed from a femtosecond 

Ti:Sapphire laser was focused through a long working distance objective (63x, NA=0.75) into 

the liquid mixture. Fluorescence was excited only at the focus of the laser spot, collected through 

the same objective, and detected by single photon counting modules. The laser power was kept 

below 1 mW. By utilizing two-photon excitation of the fluorophores at the focus of a laser beam, 

we could measure diffusion within a tiny focal volume of the order of 0.1 femtoliter (Fig. 1a). 

Fluctuations in the fluorescence signal was induced by molecules entering and leaving the 

illuminated region (Fig. 1b). By calculating the autocorrelation function, G() of this fluctuation 

(F), G()= <F(t)F(t+)>/<F(t)>
2
, and using a suitable model to analyze it, the center-of-mass 

diffusion coefficient of the particles was obtained. The hydrodynamic radius (R) of the particle 

was determined from the measured diffusion coefficient by using the Stokes-Einstein (SE) 

relation: R=kBT/6D, where kB is Boltzmann‟s constant, T is the absolute temperature and  is 
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the viscosity of the binary solvent (Fig. 1c inset). All experiments were performed at the one-

phase region of the liquid mixture. 

 

FIG 1. Experimental scheme: (a) A focused femtosecond laser caused two-photon excitation of fluorophores 

within a cylindrical volume of dimensions 0~0.4 μm and z0~2 m. (b) Photon emission counts fluctuate with time, 

resulting from the diffusion of particles into and out of the focus spot. (c) Normalized intensity-intensity autocorrelation 

functions GN() of R0  25 nm SiO2 colloids plotted as a function of logarithmic time lag  for two temperatures: T = 

Tc – T = 1.125 K (squares, D = 3.56 m
2
/s) and T = 0.025 K (circles, D = 0.88 m

2
/s). The solid lines correspond to 

single diffusion time fits. (Inset) The schematic of a nanoparticle was attached with a fluorescent dye and an adsorbed 

liquid layer. R0 is the radius of the solid core and R- R0 is the thickness of the adsorbed film. 

 

Results and Discussion 

Figure 1c shows the autocorrelation functions collected from this experiment at two 

different temperatures for the particles of the radius, R0 25 nm. The function is given by, 

G()=G(0)/[(1+ 8D/0
2
)(1+8D/z0

2
)], where 0 and z0 are the half-widths of the excitation 

focus in lateral and axial directions, respectively. We obtained the diffusion coefficient (D) 

from the fitting of the autocorrelation function (ACF). Far away from Tc, by averaging over 3-
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4 measurements, we determined D 3.5 m
2
/s and 8 m

2
/s in LW critical mixture for R0=25 

and 10 nm particles, respectively. These are close to the expectation from SE relation based 

on the known viscosity of the solution (=2.6 cP) at room temperature
118

. In addition, the 

ACFs can be fitted with a single diffusion coefficient indicating that the polydispersity of the 

particles (about 10%) can be neglected 

Figure 2 shows the variation of diffusion coefficients for both particles as a function of T (=Tc-

T), which decreases as the critical temperature is approached. Each point in the graph is the 

average, and the error bars are the standard deviation measured in three experiments. The graph 

shows this trend with different samples. Turbidity of the sample does not present major problem 

in the range of temperatures, where the experiments were performed. However, because of 

strongly scattered signal measurements becomes difficult very close to Tc (within 10 mK).  By 

taking into account the temperature dependence of viscosity especially its weak divergence near 

Tc, we have determined the hydrodynamic radius (R)
118

. By subtracting the hard sphere size of 

the particle (R0), the thickness of the adsorbed layer has been obtained, which was plotted 

against the reduced temperature (t) in the Fig 2 insets. The results found in this study indicate 

that there is an enhancement of the adsorbed film thickness as the Tc is approached. We are 

aware of suggestions that near the critical point, when the growing correlation length becomes 

larger than the particle size, the SE relation could break down.  
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FIG 2. Diffusion coefficient of 25 nm (top) and 10 nm (bottom) SiO2 particles plotted against T. (Insets) The thickness of 

the adsorbed liquid layer on the surface of particles plotted as a function of reduced temperature (t). The solid line is the 

best fit and the dashed line is the variation of the correlation length (). 

 

However, we have verified through studies of diffusion of fluorescent molecules that SE relation 

is obeyed even very close to Tc
119

. A more direct test of this verification will be to use a liquid-

vapor system near the critical point and to study the diffusion of particles to check the validity of 

SE relation. Nonetheless, within the temperature range in this experiment, the thickness of the 

adsorbed film follows behavior similar to that of  the correlation length, which is given by = 0t
-
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
. We obtained =0.61 and 0.56 for 25 nm and 10 nm particles, compared to literature  value of 

=0.63
120

.  

The excess adsorption (), which describes the total enrichment of the preferred 

component by volume, was also determined. Assuming that the result of the adsorption is an 

enlarged sphere, we have used a simple relation to calculate:  =4π(R
3
 – R0

3
)/3. To compare 

our results with theoretical ansatz, we then derived a dimensionless quantity, e as a function 

of the size ratio y=R0/, where e = /(A0M-ξ0); A0=4πR0
2
 is the surface area of the particle, 

and M- is the coefficient of the bulk order parameter, which is  0.9 for LW. As shown in Fig. 

3, the results for the two different sized particles indicate that although their functional forms 

are similar, the excess adsorption per unit area on R0≈10 nm particles is systematically lower 

compared to R0≈25 nm particles. These results can be compared to currently available 

theoretical studies
17

, according to which, e is governed by a universal scaling function, which 

in the limit t0 is given by the following: e(y) =










1t
g +  t G(y). Here, g+ is a 

universal number, whose numerical value  0.6
120

. In Fig. 3 we plotted the theoretical scaling 

form for the excess adsorption using Ising exponents,   0.32,   0.63. The functional form 

of the theoretical prediction for excess adsorption is consistent with the experimental data. 

Good data collapse is obtained when e is plotted vs. reduced temperature as shown in the 

Fig. 3 inset. The solid line is a least square fit of the data to a power law. The slope of this line 

is -0.97  0.12, which is close to the mean field value of the bulk susceptibility exponent. For 

comparison, we have also plotted in the figure the expectation from the Ising exponent.  
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FIG 3. The quantity e  is plotted as a function of y= R0/ for both particles (squares: 25 nm, circles: 10 nm). The solid line 

is the theoretical mean-field prediction. (Inset) e vs. t on a log-log scale. The solid line through the data corresponds to the 

slope of -0.97. The dashed line has a slope of -1.24. 

 

Conclusion 

In summary, we have used the FCS experimental method to study the critical 

adsorption on particles possessing high surface curvature. These experiments have determined 

the temperature dependence of excess adsorption near the critical point of a binary liquid 

mixture. The results from this investigation will be useful in understanding the collective 

behavior of colloidal suspensions and in situations where fluids interact with structured 

substrates such as near corners and edges.   
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CHAPTER 6 

KINETICS OFADSORPTION OF GOLD NANOPARTICLES ON 

SOLID/LIQUID INTERFACES 

Interactions of macromolecules, colloids and bioparticles such as proteins with 

solid/liquid interfaces leading to adsorption is of great importance in many practical process such 

as filtration procedures, electrophoresis, and chromatography. A fascinating new application of 

colloid adsorption is the “colloid bar coding” technique, which enables the encoding of libraries 

of a million of compounds by using a fluorescent dyes. Understanding the kinetics and 

mechanisms of particle adsorption phenomena is relevant for colloid science, biophysics. 

Moreover, in the field of medicine, one can control protein and cell separation, enzyme 

immobilization, thrombosis, etc.  

The kinetic aspects of adsorption is caused by widely varying transport conditions 

including diffusion
121-124

, forced convection
125

, or mixing
126, 127

. Colloid particle adsorption 

proceeds via more complicated path than molecular adsorption because particle transfer from the 

bulk to the interface is affected by many interactions differing in magnitude and the 

characteristic length scale. The diffusion transport mechanism was the dominating one in various 

experimental studies on colloid and protein adsorption. However, the disadvantage of diffusion 

controlled transport is its inherent unsteadiness, leading to considerable decrease in adsorption 

rate with time
128

.  

Due to the significance of protein adsorption, many works have been carried out to 

explain mechanisms and kinetics of these processes
129

. The experimental techniques used to 

quantify the amount of the adsorbed substance include reflectometry
124, 130-132

, ellipsometry
133, 
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134
, and total internal reflection fluorescence (TIRF)

125, 135
. Proteins have the propensity to adsorb 

to interfaces because they are interfacially active molecules, and they are spontaneously 

accumulated at interfaces
136

.  Physical adsorption at a liquid-solid interface is due to favorable 

van der Waals, ionic and/or polar interactions. It is important to predict the amount of protein 

adsorbed to a surface as a function of time and certain protein and surface properties. The protein 

adsorption kinetics can be mimicked by colloid systems. The advantage of working with colloid 

systems is that the adsorbed particles can be directly detected and counted by using optical 

microscopy or AFM. 

The adsorption of colloids and proteins is often irreversible, that is, desorption and 

surface diffusion are slow compared to the rate of adsorption. In these cases, the random 

sequential adsorption (RSA) model may apply. In this model, particles are represented as rigid 

objects that deposit sequentially at random positions onto surface. This process continues until 

no additional particles may be placed on the surface, and the maximum (jamming) coverage Θmx 

is attained. In addition, overlapping with a previously placed particle is rejected and a new place 

is chosen. The determination of the adsorption kinetics under the diffusion-controlled regime is 

often used in protein adsorption studies. The adsorption is governed by two parameters: the 

dimensionless adsorption constant   and the maximum (jamming) coverage Θmx. The 

adsorption rate is governed by the equation: 

 

 

6.1 

 

In addition, the limiting long-time solution derived from this equation has the form: 
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6.2 

Johnson and Lenhoff determined the kinetics of colloid particles using atomic force microscopy 

(AFM). They measured the particle adsorption kinetics in a stepwise manner by immersing a 

mica sheet into the colloid suspension (polystyrene latex of average diameter 116 nm), and the 

results of their experiments is shown in Fig. 6.1. There is a good agreement between the 

theoretical and experimental data, which suggest that RSA model can account for colloid 

adsorption kinetics and can be exploited to predict protein adsorption kinetics. 

 

Fig. 6.1 Adsorption kinetics of Latex particles 

on mica under the diffusion-controlled 

transport( AFM method); the particle 

coverage versus the adsorption time t 

dependence for two different concentrations: 

curve 1,2. The continuos lines represent the 

exact theoretical results derived numerically. 

The continuos line represents the theoritical 

results of RSA model (Józef Tóth 2002). 

 

In this chapter, the kinetics of gold nanoparticle (of radius 10 nm) adsorption on silicon 

wafer were investigated as a function of the diffusion of these particles in polymer solution with 

different concentrations. As found in chapter 4, the diffusion of the probe gold nanoparticles in 

polymer solutions decreased monotonically with concentration. The thickness of the adsorbed 
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layer of gold nanoparticles was measured as a function of time using ellipsometry. 

Understanding the relationship between the adsorption kinetics of these particles and the 

diffusion is important in protein adsorption studies. 

Control experiments have been done using different polymer-liquid combinations to ensure that 

the polymers do not adsorb on the surface of the silicon wafers. On the other hand, we search for 

the suitable colloid nanoparticles that adsorb onto the surface of the wafers. Gold nanoparticles 

was negatively charged citrate-passivated. In this case, the substrate must be positively charged 

to bind electrostatically the gold nanoparticles. Silicon wafers were immersed in base solution of 

NaOH for 15 minutes, after that they rinse with deionized (DI) water. The samples have been 

dried out using argon gas and they exposed to ultraviolet/ozone (UVO) treatment for 30 min in 

order to generate a large number of surface-bound hydroxl groups, which are required for 

coupling organosilane. The samples were coated with 3-aminopropyltri ethoxysilane (APTES) 

using vapor diffusion method. Aqueous solutions of poly vinyl alcohol purchased from Sigma 

were prepared with different concentrations: 0,1, 2, 3, 4, and 5 % (wt %). The gold nanoparticles 

were added to these solution in very low concentrations (<10
-4

 % v/v). The silicon wafers were 

placed in a home-built cell and filled with polymer solutions. A dynamical measurement of the 

thickness were performed using a phase-modulated ellipsometer (Beaglehole Instruments) whose 

angle of incident was fixed near the Brewster angle. The data were recorded at equally spaced 

time interval using lock-in amplifier. Following this, the diffusion of the gold nanoparticles of 

the same sample was measured using FCS. 

The y- lock-in amplifier signal, which is linearly proportional to the ellipticity  (a 

quantity proportional to the thickness of the adsorbed layer) is recorded as a function of time. 

Fig. 3 shows the plot of  versus time for two different concentrations of PVA-water: 1% and 5 
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%. The data were fitted using equation 6.2, which is an exponential growth. The two fitting 

parameters are Θmx and  . If we let τa= Θmx/ , then we can fit the data of one parameter τa and 

Θmx. 
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Fig  6. 2.  The ellipticty as a function of time for two different concentrations of PVA-water solutions: 2 

% (top) and 4 % ( bottom),  the solid line is the fit of the data using  31500 s, 3800 s , respectively. 
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As we see from Fig. 6.3, the time constant is decreased when the concentration of polymer 

solution is increased. We know from chapter 4 that the diffusion of gold nanoparticles is 

decreased by increasing the polymer concentration. This means that the time constant is 

proportional to the diffusion of the goldnanoparticles. A suggested explanation to these observed 

results is that the faster the nanoparticles the longer time they need to settle down and adsorbed 

onto the surface. The time constant τa  obtained from the fitting line in Fig. 3 is plotted versus 

concentration in Fig. 6.4 
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Fig. 6.3. The time constant of the exponential growth of the adsorped layer of gold nanoparticle on silicon 

wafers. The data of τa is obtained from the fitting parameter to the equation:   
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The maximum thickness ρmx , which is the second parameter of the fitting equation was plotted 

versus cocncetration. As Fig. 6.5 shows, ρmx  is decreased with concentration 
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Fig. 6.4 The maximum thickness ρmx ( y lock-in amplifier signal) versus cocncetration. 

 

In conclusion, we have studied the adsorption kinetics of gold nanoparticles which was 

controlled by the diffusion using ellipsometry. The thickness of the adsorped layer was 

measured as a function of time. The time constant of the maximum adsorption was 

determined by fitting the data with an exponential growth function. The results show that the 

time constant of adsorption deceases as the diffusion coefficient of the nanoparticle decreases.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

My experiments in this dissertation have focused on conducting fundamental 

investigation in the dynamics and kinetics of polymeric-colloidal systems. Understanding the 

interaction of nanoparticles with macromolecules (polymers, proteins, etc.) is important in 

numerous problems of technological and medical interests, such as developing high performance 

polymeric materials, nano-template surfaces, and effective drug delivery vehicles. In the broader 

context, research in soft matter field has importance for characterization of polymer 

nanocomposites, multicomponent polymer systems, etc. In our lab, I was doing research using 

novel spectroscopy techniques called fluorescence correlation spectroscopy (FCS), which can 

offer structural and dynamical information about these systems with unprecedented spatial and 

temporal resolution, down to the atomic and molecular scale. This allows us to understand the 

issue of heterogeneities in soft matter systems. Another technique is ellipsometry, which is 

generally used to measure the thickness of thin films. In our research, we have been used 

ellipsometry to investigate the kinetics of adsorption layer of the nanoparticles on liquid/solid 

interface. 

The mesoscopic length scale of soft condensed matter allows them to fluctuate in any 

thermal environment. They are subjected to random force from surrounding molecules and they 

undergo Brownian motion. The dynamics observed for polymers, colloids, and fluorescent dyes 

were all driven by Brownian diffusion.  It has been recognized that combinations of these 

systems, like for example polymers and colloids, exhibit new properties which are found in each 

system separately. These mixed systems have a higher degree of complexity than the separate 

systems. An important part of this complexity is the effective interactions between the 
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macromolecules which, in complex systems, are not limited to the coulomb and quantum-

mechanical interactions. Instead, it depends on many degrees of freedom of the solvent, and it is 

already the result of a thermodynamic average.  The optical measurements of FCS and 

ellipsometry were performed by myself under the supervision and assistance of my advisor, Dr. 

Ashis Mukhopadhyay. These experiments allowed us to report important observations in 

Chapters 4 – 6. 

Length scales influence the diffusion of colloids in semidilute and entangled polymer 

solution environments. The Stokes-Einstein (SE) relation was developed for mesoscopic objects 

surrounded by a homogenous distribution of smaller solvent molecules. Colloids smaller than the 

polymer mesh of semidilute and entangled network violate this assumption. Our experiments on 

5 nm diameter gold colloids in semidilute and entangled solution of polymer with 18 nm radius 

of gyration illustrate deviation from the SE prediction. The colloids diffused from 7 (at the lower 

concentration) to 47 ( at the higher concentration) times faster when compared SE theory that 

employed the solution viscosity. In this case, motion of the particle is not completely coupled 

with the polymer matrix relaxation, and the particle experienced local nanoviscosity. Moreover, 

we observe anomalous diffusion behavior of the gold nanoparticles at higher concentration of 

polymer solution. This indicates that the mean square displacement increase less than linearly 

with time and shows the importance of heterogeneous environment of the concentrated polymer 

solutions. If we use smaller probes (free dyes), we observe normal diffusion behavior. A number 

of questions are still open in this context, including what is the length-scale for which we 

observe a crossover from solvent viscosity to macroviscosity. 

Spherical colloidal nanoparticles immersed in critical binary mixture was studied to 

determine the critical adsorption profile on the surface of these particles by using FCS. The 
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temperature dependence of the adsorbed film thickness and excess adsorption was determined 

from FCS measurements of the enlarged effective hydrodynamic radius of the particles. Our 

results indicated that the adsorbed film thickness is of the order of correlation length associated 

with concentration fluctuations. The excess adsorption per unit area increases following a power 

law in reduced temperature with an exponent of 1, which is the mean-field value for the bulk 

susceptibility exponent. The volume fraction of the colloidal particles was much lower compared 

to other traditional methods. Experiments with high volume fraction were also performed, but 

the data were yet not analyzed. There is expectation that the particles alter the critical behaviors, 

such as the critical temperature and critical composition. Moreover, we would like to address the 

effect of changing the interaction between the particles by either adding salt to change the 

electrostatic interaction or coating the particles with polymers to change the steric interaction. 

The kinetics of adsorption gold nanoparticles immersed in polymer solution on silicon 

wafers were investigated using ellipsometry. The thickness of the film saturates after some time 

for every sample depending on the concentration of the polymer solution. The saturated value, 

which is the maximum thickness of the adsorption layer depend inversely on the polymer 

solution concentration. On the contrary, the time required for saturation increased with polymer 

concentration. There will be an extension for this study to measure the diffusion of the gold 

nanoparticles and the results will be analyzed to see if there is a relation between the kinetics of 

the adsorption and the diffusion.  
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Soft matter is a subfield of condensed matter including polymers, colloidal dispersions, 

surfactants, and liquid crystals. These materials are familiar from our everyday life- glues, paints, 

soaps, and plastics are examples of soft materials. Many phenomena in these systems have the 

same underlying physical mechanics. Moreover, it has been recognized that combinations of 

these systems, like for example polymers and colloids, exhibit new properties which are not 

found in each system separately. These mixed systems have a higher degree of complexity than 

the separate systems. In order to understand their behavior, knowledge from each subfields of 

soft matter has to be put together. One of these complex systems is the mixture of nanoparticles 

with macromolecules such as polymers, proteins, etc. Understanding the interactions in these 

systems is essential for solving various problems in technological and medical fields, such as 

developing high performance polymeric materials, chromatography, and drug delivery vehicles. 
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The author of this dissertation investigates fundemental soft matter systems, including colloid 

dispersions in polymer solutions and binary mixture. 

The diffusion of gold nanoparticles in semidilute and entangled solutions of polystyrene 

(PS) in toluene were studied using fluorescence correlation spectroscopy (FCS). In our 

experiments, the particle radius (R ≈ 2.5 nm) was much smaller compared to the radius of 

gyration of the chain but comparable to the average mesh size of the fluctuating polymer 

network. The diffusion coefficient (D) of the particles decreased monotonically with polymer 

concentration and it can be fitted with a stretched exponential function. At high concentration of 

the polymer, a clear subdiffusive motion of the particles was observed. The results were 

compared with the diffusion of free dyes, which showed normal diffusive behavior for all 

concentrations. In another polymer solution, poly ethylene glycol (PEG) in water, the diffusion 

of the gold nanoparticles depends on the dimentionlesss length scale R/ξ, where R is the radius 

of the nanoparticle and ξ is the average mesh size of the fluctuating polymer network. 

 

FCS were used to study the  critical adsorption on curved surfaces by utilizing spherical 

nanoparticles immersed in a critical binary liquid mixture of 2,6 lutidine + water. The 

temperature dependence of the adsorbed film thickness and excess adsorption was determined 

from FCS measurements of the enlarged effective hydrodynamic radius of the particles. Our 

results indicated that the adsorbed film thickness is of the order of correlation length associated 

with concentration fluctuations. The excess adsorption per unit area increases following a power 

law in reduced temperature with an exponent of -1, which is the mean-field value for the bulk 

susceptibility exponent. 
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The kinetics of adsorption of gold nanoparticles in polymer solutions on silicon substrate was 

studied using ellipsometry by measuring the thickness of the adsorbed layer versus time. The 

data showed an exponential growth with relaxation time constants, which is proportional to the 

diffusion of the gold nanoparticles in polymer solution. 
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