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Chapter 1

Introduction

The sweeping, or Moreau, process was introduced in the 1970s by Jean-Jacques

Moreau as a tool for modeling elastoplastic mechanical systems (see, e.g., [16] with

the references to Moreau’s earlier work) and later has become an active research topic

of its own interest; we refer the reader to [5, 12] and the bibliographies therein for

more details and analysis. Originally the sweeping process was formulated as an evo-

lution inclusion in a Hilbert space H. More precisely, let I be a real interval, and

let t →→ C(t) be a Lipschitzian set-valued mapping from I into H with closed and

convex values. Then the sweeping process is described by the dissipative differential

inclusion 
−ẋ(t) ∈ N

(
x(t);C(t)

)
a.e. t ∈ I,

x(0) = x0 ∈ C(0),

(1.0.1)

where N(·; Ω) stands as usual for the classical normal cone to a convex set Ω; see

(2.0.5) with N(x̄; Ω) = ∅ for x̄ /∈ Ω. Moreau’s motivation for this terminology came

from the fact that x(t) could be interpreted, especially if C(t) has nonempty interior,

as the evolution of x0 according to the displacement of C(·). As written in [17], “the

moving point t 7→ x(t) remains at rest as long as it happens to lie in its interior; when
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caught up with the boundary of the moving set, it can only proceed in an inward

normal direction, as if pushed by its boundary, as to go on belonging to C(t).” The

classical theory of the sweeping process establishes the existence and uniqueness of

a Lipschitz continuous trajectory; see, e.g., [16, §5] and the references therein. It is

worth mentioning that, from the theoretical viewpoint, the sweeping process was one

of the important motivations for further developing convex analysis and the theory

of differential inclusions.

Note that in mechanical applications (see, e.g., [16, §6.c]) the moving set may

be taken as a translation of a certain convex subset of a fixed subspace of H. Fur-

thermore, the well-known Skorokhod problem on the reflected Brownian motion in

stochastic analysis can be treated in fact as a version of the sweeping process with a

moving set that is a translation of a fixed convex set. Other particular versions of the

sweeping process over polyhedral moving sets are studied in [10], where the reader

can find more references and practical applications different from those mentioned

above.

The mathematical theory of the sweeping process has been developed in the follow-

ing main directions: perturbations of the dynamics allowing state dependent moving

sets, weakening the time regularity, and/or dropping the convexity of the moving set;

see more discussions and references in [5, 12]. To the best of our knowledge, in all

the publications on the sweeping process the moving set C(t) is given. On the other

hand, it seems quite natural, from both viewpoints of the theory and applications,
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to consider optimal control problems for the sweeping process, where the moving set

C(t) is controlled by some constrained functions to be chosen in order to minimize

a given cost. This dissertation is devoted to a mathematical formulation and first

analysis of this apparently new topic.

Let us provide a more rigorous formulation of the optimal control problem studied

in this dissertation. For simplicity we consider here only the case when the moving

set C(t) is controlled by one functional parameter via an inequality constraint

Cu(t) :=
{
x ∈ Rn

∣∣ u(t, x) ≤ 0
}
, t ∈ [0, T ], (1.0.2)

where the control u(t, x) belongs to a suitable class U of functions from [0, T ] × Rn

to R that are convex in x; see below. When u(·) and hence C(·) are fixed, it is well

known from [16] that there is a unique sweeping trajectory xu corresponding to u via

(1.0.1) with the moving set Cu(·) in (1.0.2). Given a terminal/Mayer cost function

ϕ : Rn → R := (−∞,∞] and a running cost ℓ : Rn × Rn → R, consider the following

optimal control problem:

minimize J [x] := φ
(
x(T )

)
+

∫ T

0

ℓ
(
x(t), ẋ(t)

)
dt, (1.0.3)

over trajectories x = xu of (1.0.1) with the moving set C(t) = Cu(t) generated by

controls u belonging to the prescribed class U .

It is important to emphasize that the formulated dynamic optimization problem is

not an optimization problem over a differential inclusion of the type ẋ ∈ F (t, x) well-

studied in the framework of variational analysis and control theory under Lipschitzian
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requirements on F (t, ·). Indeed, in our case the velocity set F (t, x) = −N
(
x;C(t)

)
is not fixed, since the sweeping set C(t) = Cu(t) is different for each control u ∈ U .

Thus in (1.0.3) we optimize in fact the shape of the set F (t, x), which somehow relates

this problem to dynamic shape optimization. Observe to this end that when C(t) is

fixed in (1.0.1), it does not make sense to formulate any optimization problem for the

differential inclusion

ẋ ∈ F (t, x) := −N
(
x;C(t)

)
, t ∈ [0, T ],

since the latter inclusion admits a unique solution for every initial point x(0) = x0 ∈

C(0).

In what follows we study the new dynamic optimization problem (1.0.1)–(1.0.3)

and its specifications by using advanced tools of variational analysis and generalized

differentiation. After presenting some background material in Section 2 we devote

Section 3 to establishing verifiable conditions for the existence of optimal controls in

the problem formulated above. The methods and results developed in this direction

are based on one hand on the classical ideas of lower semicontinuity via convexity and

coercivity, while on the other hand they employ advanced techniques of variational

convergence.

The remaining larger part of the dissertation is mainly devoted to deriving nec-

essary optimality conditions for problem (1.0.1)–(1.0.3), which is a much harder task

than the existence of optimal controls due to the reasons mentioned above. Although

the methods developed in the dissertation work in more general settings, for defi-
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niteness and simplicity we concentrate here on the case when the C(t) in (1.0.3) is a

moving hyperplane. Note that this particular case of the sweeping process occurs in

many practical mechanical applications; see [12, 16]. In this framework the controlled

sweeping dynamics in (1.0.1) is described by
.
x(t) ∈ −N

(
x(t);C(t)

)
a.e. t ∈ [0, T ], x(0) = x0 ∈ C(0)

with C(t) :=
{
x ∈ Rn

∣∣ λu(t), x⟩ ≤ b(t)
}

and

∥u(t)∥ = 1 a.e. t ∈ [0, T ],

(1.0.4)

where control actions u : [0, T ] → Rn and b : [0, T ] → R are Lipschitz continuous with

Lipschitz constants Lu ≥ 0 and Lb ≥ 0, respectively, and where the corresponding

trajectories x : [0, T ] → Rn are absolutely continuous. By using the normal cone

construction in convex analysis (2.0.5), we can equivalently rewrite the differential

inclusion in (1.0.4) as

.
x(t) ∈ F

(
x(t), u(t), b(t)

)
, x(0) = x0,

where the velocity mapping F : Rn × Rn × R →→ Rn is fixed being given by

F (x, u, b) :=


{
z
∣∣ λz, x− v⟩ ≤ 0 ∀v s.t. λu, v⟩ ≤ b

}
if λu, x⟩ ≤ b,

∅ otherwise.
(1.0.5)

Denoting further y := (x, u, b) ∈ R2n+1, we arrive at the differential inclusion

ẏ(t) ∈ G
(
y(t)

)
:= F

(
x(t), u(t), b(t)

)
× Rn × R (1.0.6)

with F defined in (1.0.5). Observe that the mapping G in (1.0.6) is not Lipschitz

continuous and also does not satisfy similar properties of the Lipschitz type (sub-

Lipschitz, Lipschitz-like, pseudo-Lipschitz, Aubin continuous) that have been used
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in optimization problems for differential inclusions; see [3, 9, 11, 15, 21] and the

references therein. In fact, the mapping G above is even discontinuous. On the

other hand, G satisfies (due to the dissipativity of F ) the one-sided Lipschitz (OSL)

property in the following sense: there is L ∈ R such that

⟨y1 − y2, z1 − z2⟩ ≤ L∥y1 − y2∥2 for all zi ∈ G(yi) and yi, i = 1, 2. (1.0.7)

To study the above optimal control problem, we develop the method of discrete

approximations employed in [13, 15] to derive necessary optimality conditions for Lip-

schitzian differential inclusions. Note that the convergence of discrete approximations

(but not optimality conditions) was established in [6] for OSL differential inclusions

under some additional assumptions that are not satisfied in the framework of (1.0.6).

In particular, the assumptions of [6] imply the continuity of G, which does not follow

from (1.0.7).

In this dissertation we follow the discrete approximating scheme of [13] and, by

taking into account a particular structure of the mapping G in (1.0.6), justify the

strong convergence (in the W 1,p-norm as p ≥ 1) of optimal solutions for discrete ap-

proximations of the continuous-time problem under consideration to its given optimal

trajectory. Then we derive necessary optimality conditions for the discrete-time prob-

lems by using appropriate constructions and techniques of generalized differentiation.

The results derived for the discrete problems are expressed in terms of the coderivative

of the mapping F in (1.0.5), which is fully calculated in this dissertation via the initial

data of the controlled sweeping process (1.0.4). It allows us to pass to the limit in
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the necessary optimality conditions for discrete approximations and establish in this

way constructive necessary conditions for the original optimal control problem of the

sweeping process. The results obtained are illustrated by nontrivial examples, where

the derived optimality conditions allow us to explicitly determine optimal solutions.

The rest of this dissertation (after Chapter 3) is organized as follows. In Chapter 4

we justify the possibility of reducing the original unbounded differential inclusion in

(1.0.4) to a bounded one under uniform Lipschitzian requirements on control functions;

this is widely employed in the sequel. Chapter 5 deals with calculating the coderivative

for a broad class of normal cone mappings that appear, in particular, in necessary

optimality conditions for discrete approximations. These coderivative calculations are

certainly of independent interest for general variational analysis as well as for other

applications.

In Chapter 6 we construct well-posed discrete approximations of the controlled

sweeping process and establish their strong convergence to optimal solutions of (1.0.3)–

(1.0.4). Chapter 7 contains the derivation of necessary optimality conditions for dis-

crete approximations and then for the original continuous-time problem by passing

to the limit with the vanishing step of discretization with employing the coderivative

calculations. Illustrative examples conclude this dissertation. Finally, Chapter 8, we

introduce some problems we are working further on this direction.
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Chapter 2

Preliminaries

In this chapter we present some basic definitions and preliminaries on generalized

differentiation in variational analysis, which are widely used in the formulations and

proofs of the major results. We mainly follow the book [14] and also refer the reader

to [2, 15, 18, 19] for related and additional materials. Our notation is standard in vari-

ational analysis; see, e.g., [14]. Recall that, for a set-valued mapping F : Rn →→ Rm,

the collection

Lim sup
x→x̄

F (x) :=
{
y ∈ Rm

∣∣∣ ∃ sequences xk → x̄, yk → y such that

yk ∈ F (xk) for all k ∈ IN := {1, 2, . . .}
} (2.0.1)

is known as the Kuratowski-Painlevé outer/upper limit of F at x̄. We mention also

that IB stands for the closed unit ball in the space in question, that B(x, r) denoted

the closed ball centered at x with radius r > 0, and that the symbols “co” and “cone”

signify the convex and conic hulls of a set, respectively.

Given a subset Ω ⊂ Rn locally closed around x̄ ∈ Ω, the Bouligand-Severi tan-

gent/contingent cone to Ω at x̄ is defined by

T (x̄; Ω) := Lim sup
t↓0

Ω− x̄

t
. (2.0.2)



9

Then the Fréchet/regular normal cone to Ω at x̄ can be equivalently defined by

N̂(x̄; Ω) := T ∗(x̄; Ω) =
{
v ∈ Rn

∣∣∣ lim sup
x

Ω→x̄

λv, x− x̄⟩
∥x− x̄∥

≤ 0
}
, (2.0.3)

where the notation Λ∗ stands for the dual/polar operation applied to a set Λ ⊂ Rn,

i.e., Λ∗ := {v ∈ Rn| λv, u⟩ ≤ 0 for all u ∈ Λ}, and where the symbol “x
Ω→ x̄” means

that x→ x̄ with x ∈ Ω. The equivalently defined limiting construction

N(x̄; Ω) := Lim sup
x

Ω→x̄

N̂(x; Ω) = Lim sup
x→x̄

{
cone

[
x− Π(x; Ω)

]}
(2.0.4)

is known as the Mordukhovich/limiting normal cone to Ω at x̄, where Π(x; Ω) stands

for the Euclidean projection of x onto Ω. When the set Ω is convex, both normal

cones (2.0.3) and (2.0.4) reduce to the normal cone of convex analysis

N(x̄; Ω) = N̂(x̄; Ω) =
{
v ∈ Rn

∣∣ λv, x− x̄⟩ ≤ 0 for all x ∈ Ω
}

(2.0.5)

while, in contrast to (2.0.3), the limiting normal cone (2.0.4) is generally nonconvex

for simple nonconvex sets, e.g., in both cases of Ω := {(x1, x2) ∈ R2| x2 = |x1|} and

Ω := {(x1, x2) ∈ R2| x2 ≥ −|x1|}. Nevertheless, in contrast to (2.0.3), the limit-

ing normal cone (2.0.4) and the corresponding subdifferential and coderivative con-

structions for extended-real-valued functions and set-valued mappings, respectively,

satisfy comprehensive calculus rules based on the variational/extremal principles of

variational analysis. Recall that the subdifferential of ϕ : Rn → R at x̄ with ϕ(x̄) <∞

generated by (2.0.4) is given by

∂ϕ(x̄) :=
{
x ∈ Rn

∣∣ (v,−1) ∈ N
(
(x̄, ϕ(x̄)); epiϕ

)}
(2.0.6)
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and the corresponding coderivative of F : Rn →→ Rm at (x̄, ȳ) ∈ gphF is

D∗F (x̄, ȳ)(u) :=
{
v ∈ Rn

∣∣ (v,−u) ∈ N
(
(x̄, ȳ); gphF

)}
, u ∈ Rm, (2.0.7)

where epiϕ := {(x, µ) ∈ Rn+1| µ ≥ ϕ(x)} and gphF := {(x, y) ∈ Rn+m
∣∣ y ∈ F (x)}.

We refer the reader to [14, 18] for more details and equivalent representations of

(2.0.6) and (2.0.7).
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Chapter 3

Existence of Optimal Controls

In this chapter we establish the existence of solutions to the optimal control problem

(1.0.1)–(1.0.3) for the sweeping process under appropriate assumptions on the initial

data. Let us first describe in more details the set U of feasible controls to (1.0.1)–

(1.0.3).

Given a time interval [0, T ], a point x0 ∈ Rn, constants L > 0 and η < 0, and a

real function ψ, ψ2 : [0,∞) → R satisfying the growth/coercivity conditions

lim
ρ→∞

ψi(ρ) = ∞, i = 1, 2, (3.0.1)

we define the control set U by

U :=
{
u : [0, T ]× Rn → R such that

(a) u(·, x) is L-Lipschitz for all x ∈ Rn,

(b) u(t, ·) is convex for all t ∈ [0, T ],

(c) ψ1(∥x∥) ≤ u(t, x) ≤ ψ2(∥x∥) for all t ∈ [0, T ] and x ∈ Rn,

(d) there is a constant M > 0 with the property that for all

t ∈ [0, T ] there exists xt ∈ Rn such that

u(t, xt) ≤ η and ∥xt − x0∥ ≤M
}
.
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Let us prove the compactness of the set of feasible controls in a suitable topology.

Proposition 3.0.1. (compactness of feasible controls). The control set U de-

fined above is compact in the topology of the uniform convergence on compact subsets

of [0, T ]× Rn.

Proof. Let {Km| m ∈ N} be a nested sequence of closed balls covering Rn. By

conditions (b) and (c) in the definition of the control set U for each m ∈ IN there is

constant Lm ≥ 0 such that for every u ∈ U the function x→ u(t, x) is Lm-Lipschitzian

on Km whenever t ∈ [0, T ]. By (a) and the above remark we can use the Arzelà-

Ascoli theorem, which yields that for each m a subsequence {umk | k ∈ N} uniformly

converges on [0, T ] × Km. Employing the diagonal process, we find a subsequence

{um} uniformly converging on every compact subset of [0, T ]× Rn to some function

u. Our intention is to show that u ∈ U .

It is easy to observe that u(·, x) is Lipschitz continuous on [0, T ] with constant L

for all x ∈ Rn, that u(t, ·) is convex on Rn for all t ∈ [0, T ], and that u(t, x) ≥ ψ(∥x∥)

for all (t, x) ∈ [0, T ]×Rn. Thus properties (a), (b), and (c) in the definition of U are

satisfied. To justify the remaining property (d), pick any t ∈ [0, T ] and m ∈ N and

then select xmt ∈ B(x0,M) with um(t, x
m
t ) ≤ η. By taking a converging subsequence

for each t ∈ [0, T ], we find a point xt such that u(t, xt) ≤ η. Therefore u ∈ U , which

justifies (d) and completes the proof of the proposition.

The next proposition summarizes the main properties of the set Cu in (1.0.2)

defined for any feasible control u ∈ U .
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Proposition 3.0.2. (properties of moving controlled sets). Let u ∈ U , and let

Cu(t) be the corresponding moving set defined in (1.0.2). Then we have the following:

(C1) Cu(t) is nonempty, compact, and convex for all t ∈ [0, T ].

(C2) There is R > 0 depending only on ψ and such that

Cu(t) ⊂ B(xt, R) for all t ∈ [0, T ].

The latter implies, whenever u ∈ U , that

Cu(t) ⊂ B(x0,M +R) for all t ∈ [0, T ].

(C3) For each t ∈ [0, T ] and each x ∈ Cu(t) with u(t, x) = 0 the normal cone to Cu(t)

at x is represented by

N(x;Cu(t)) = R+∂xu(t, x),

where R+ := [0,∞), and where ∂xu(t, x) stands for the subdifferential of convex

analysis of u(t, ·) taken at the point x ∈ Cu(t).

(C4) There is a constant L′ ≥ 0 depending only on L, T,R,M, η and such that for all

u ∈ U the set-valued mapping t →→ Cu(t) is Lipschitz continuous on [0, T ] with

constant L′.

Proof. Properties (C1) and (C2) are immediate consequences of conditions (b),

(c), and (d) in the definition of U and of the growth assumption (3.0.1). Property
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(C3) follows from the convexity of u(t, ·) due to, e.g., [18, Theorem 6.14]. It remains

to justify property (C4).

To proceed, observe first that the set-valued mapping t→→ epi(u(t, ·)) is Lipschitz

continuous on [0, T ] with constant L by property (a) in the definition of U . Indeed,

letting x ∈ Rn and ξ ≥ u(t, x), we get

d((x, ξ), epi(u(s, ·)) ≤ |u(t, x)− u(s, x)| ≤ L|t− s| for all t, s ∈ [0, T ].

Fix now x ∈ Cu(t) and t, s ∈ [0, T ], and let (x̄, u(s, x̄)) be a unique projection of

(x, u(t, x)) onto the convex set epi(u(s, ·)). Observe that

∥x̄− x∥+ |u(s, x̄)− u(t, x)| ≤
√
2L|s− t|,

which gives in turn that

∥x̄− x∥ ≤
√
2L|s− t|. (3.0.2)

Recalling that u(t, x) ≤ 0, the latter yields

u(s, x̄) ≤
√
2L|s− t|. (3.0.3)

If u(s, x̄) ≤ 0, then x̄ ∈ Cu(s) and we are done. Otherwise, employing (C2) and

property (d) from the definition of U gives us

u(s, x̄)− u(s, xs)

∥x̄− xs∥
≥ −η

∥x̄− xs∥
≥ −η√

2LT +R + 2M
(3.0.4)

due to ∥x̄−xs∥ ≤ ∥x̄−xt∥+∥xt−xs∥. By the continuity of u(s, ·) there is a point x̄s

in the segment joining x̄ and xs such that u(s, x̄s) = 0, i.e., x̄s ∈ Cu(s). The convexity
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of u(s, ·) and property (3.0.4) imply the estimates

u(s, x̄)− u(s, x̄s)

∥x̄− x̄s∥
≥ u(s, x̄)− u(s, xs)

∥x̄− xs∥
≥ −η√

2LT +R + 2M
.

On the other hand, it follows from (3.0.3) that

u(s, x̄)− u(s, x̄s) = u(s, x̄) ≤
√
2L|s− t|,

which allows us to arrive at the final estimate

∥x̄− x̄s∥ ≤ (
√
2LT +R + 2M)

√
2L

−η
|t− s|.

Combining the latter with (3.0.2) concludes the proof of the proposition.

Proposition 3.0.2 together with the classical theory of the sweeping process (see,

e.g., [12]) implies that for every u ∈ U the Cauchy problem
ẋ(t) ∈ −N

(
x(t);Cu(t)

)
,

x(0) = x0

(3.0.5)

admits a unique solution xu : [0, T ] → Rn, which is Lipschitz continuous with constant

L′.

Now we are ready to establish the existence of optimal controls in problem (1.0.1)–

(1.0.3) under consideration, which is the main result of this chapter.

Theorem 3.0.3. (existence of optimal controls for the sweeping process).

In addition to properties (a)–(d) of the feasible control set U , suppose that both ter-

minal cost ϕ : Rn → R and running cost ℓ : Rn × Rn → R in (1.0.3) are proper and



16

lower semicontinuous extended-real-valued functions, that ℓ is bounded from below on

bounded sets, and that ℓ(x, ·) is convex for all x ∈ Rn. Then the optimal control

problem (1.0.1)–(1.0.3) admits a solution.

Proof. Having in hand the constants M and R from the definition of U and from

Proposition 3.0.2, respectively, denote Q := B(x0,M +R) and consider a minimizing

sequence {um| m ∈ N} ⊂ U for problem (1.0.1)–(1.0.3). By construction we have

that the corresponding trajectories xm of (3.0.5) take values in Q for all m ∈ N

and t ∈ [0, T ]. The compactness of U from Proposition 3.0.1 allows us to select a

subsequence of {um} (without relabeling), which uniformly on [0, T ] × Q converge

to some ū ∈ U . Moreover, it follows from the above and the Newton-Leibniz for-

mula that the corresponding trajectories xum := xm of of (3.0.5) converges weakly in

W 1,1(0, T ;Rn) to some x̄. Employing the standard semicontinuity results (see, e.g.,

[1, Theorem 13.1.1] and its proof), we conclude that

J [x] ≤ lim inf
m→∞

J [xm]

for the Bolza functional (1.0.3) under the assumptions made. To prove that x̄ is a

global minimizer for (1.0.1)–(1.0.3), it remains to show that x̄ is a solution to the

Cauchy problem (3.0.5) generated by the control u = ū.

To proceed, fix t ∈ [0, T ] such that the derivatives ẋm(t) as m ∈ IN and ẋ(t)

exist and a sequence of convex combinations of ẋm(t) converges to ẋ(t); the latter

is possible due the classical Mazur theorem on weak closure and due to the fact

that the strong convergence of a sequence in L1(0, T ;Rn) implies the a.e. conver-
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gence of a subsequence. It follows from [18, Theorem 7.17] that the control sequence

um(t, ·) converges epigraphically to ū(t, ·) on Q. By Attouch’s theorem (see, e.g., [18,

Theorem 12.35]), the subdifferentials ∂xum(t, ·) converge graphically to ∂xū(t, ·) on Q.

Finally, [18, Theorem 5.37] ensures that ˙̄x(t) ∈ −N(x̄(t);Cū(t)), which thus concludes

the proof of this theorem.
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Chapter 4

Reduction to Bounded Differential

Inclusions

An underlying feature of the sweeping differential inclusion (1.0.1) and its specification

in (1.0.4) is the intrinsic unboundedness of the right-hand side. However, known results

in the theory and applications of differential inclusions deal with either bounded ones

or with special Lipschitzian kinds of unboundedness, which is not the case of the

set C(t) and the differential inclusion in (1.0.4). On the other hand, it is proved

by Thibault [20] that the unbounded differential inclusion of the sweeping process

(1.0.1) can be reduced to a bounded one, by replacing the normal cone in (1.0.1) by

the scaled subdifferential of the distance function, provided that the moving set C(t)

is Lipschitz continuous (or, more generally, absolutely continuous with respect to the

Hausdorff distance). Neither of these assumptions holds for the set C(t) in (1.0.4).

In this Chapter we show, by exploiting a special structure of the control sweeping

process in (1.0.4), that the differential inclusion therein can be equivalently reduced to

the bounded one of Thibault’s type provided that the unform Lipschitz constant for

the u-component of control functions in (1.0.4) is sufficiently small (namely, LuT <
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1). Note that the latter assumption does not much restrict the generality from the

viewpoint of necessary optimality conditions; we just need to assume that it holds

for an optimal control in (1.0.3)–(1.0.4), which in many cases can be achieved by

rescaling.

Theorem 4.0.4. (reduction to boundedness). Assume that

LuT < 1 (4.0.1)

in (1.0.4). Then the differential inclusion in (1.0.4) is equivalent to the bounded one

.
x(t) ∈ −M ∂distC(t)(x(t)) a.e. t ∈ [0, T ], x(0) = x0 ∈ C(0), (4.0.2)

where ∂ stands for the subdifferential of the distance function in the sense of convex

analysis, and where the constant M is computed by

M :=
∥x0∥Lu + Lb

1− LuT
. (4.0.3)

Furthermore, the sets of feasible trajectories for the original differential inclusion in

(1.0.4) and the equivalent one (4.0.2) are uniformly bounded by

∥x(t)∥ ≤ ∥x0∥+MT for all t ∈ [0, T ]. (4.0.4)

Proof. Note that the distance function to a nonempty set Ω is convex if and only

if the set Ω is convex. It is well known in convex analysis that

∂dist(x̄; Ω) = N(x̄; Ω) ∩ IB for any x̄ ∈ Ω. (4.0.5)
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Thus every trajectory of (4.0.2) is a trajectory of (1.0.4). To justify the opposite

implication, we borrow some ideas from the proof of [20, Proposition 2.1], where the

absolute continuity of C(·) is assumed while the sets C(t) may be nonconvex. Pick

any trajectory x(t) of (1.0.4) and any t ∈ [0, T ] such that the derivative
.
x(t) exists

and is different from zero; there is nothing to prove otherwise. It follows from (4.0.5)

that
.
x(t)∥∥ .
x(t)

∥∥ ∈ −∂distC(t)(x(t)). (4.0.6)

Since x(τ) ∈ C(τ) whenever τ ∈ [0, T ] due to (1.0.1), we get from (4.0.5) and the

subdifferential construction of convex analysis that⟨
−

.
x(t)∥∥ .
x(t)

∥∥ , x(s)− x(t)

⟩
≤ distC(t)(x(s))− distC(t)(x(t))

= distC(t)(x(s)) for all s ∈ [0, T ].

The latter implies, whenever s < t with distC(t)(x(s)) > 0, that ⟨u(t), x(s)⟩ − b(t) > 0,

⟨u(s), x(s)⟩ − b(s) ≤ 0. Taking into account that ∥u(t)∥ = 1, we have

distC(t)(x(s)) =
|⟨u(t), x(s)⟩ − b(t)|

∥u(t)∥

≤ ⟨u(t), x(s)⟩ − b(t)− ⟨u(s), x(s)⟩+ b(s)

≤
(
max
t∈[0,T ]

∥x(t)∥Lu + Lb

)
(t− s).

Thus for all s ≤ t we get the estimate

distC(t)(x(s)) ≤
(
max
t∈[0,T ]

∥x(t)∥Lu + Lb

)
(t− s)
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and consequently arrive at⟨
−

.
x(t)∥∥ .
x(t)

∥∥ , x(s)− x(t)

⟩
≤

(
max
t∈[0,T ]

∥x(t)∥Lu + Lb

)
(t− s), i.e.,

⟨
.
x(t)∥∥ .
x(t)

∥∥ , x(s)− x(t)

s− t

⟩
≤

(
max
t∈[0,T ]

∥x(t)∥Lu + Lb

)
, s < t. (4.0.7)

Passing to the limit as s ↓ t in (4.0.7) gives us

∥∥ .
x(t)

∥∥ ≤ max
t∈[0,T ]

∥x(t)∥Lu + Lb :=M1 for a.e. t ∈ [0, T ],

which yields in turn by the Newton-Leibnitz formula that

∥x(t)∥ ≤ ∥x0∥+M1T for all t ∈ [0, T ]. (4.0.8)

Repeating the above procedure with taking (4.0.8) into account, we get

∥∥ .
x(t)

∥∥ ≤ (∥x0∥+M1T )Lu + Lb :=M2

and then obtain by induction that

∥∥ .
x(t)

∥∥ ≤Mk for a.e. t ∈ [0, T ] with Mk+1 = (∥x0∥+MkT )Lu + Lb, k ∈ IN.

(4.0.9)

By assumption (4.0.1) it follows from (4.0.9) that {Mk}k∈IN is a Cauchy sequence,

and hence it converges to some M > 0. By passing to the limit in (4.0.9) as k → ∞,

we get the estimate

∥ẋ(t)∥ ≤M for a.e. t ∈ [0, T ],

where the number M agrees with that in (4.0.3). Thus x(t) is a trajectory of (4.0.2).

To complete the proof of the theorem, it remains to observe that the unform bound-



22

edness of trajectories (4.0.4) immediately follows from (4.0.2) by the Newton-Leibnitz

formula.

In the rest of this dissertation we suppose for simplicity and with no loss of gen-

erality that

∥x0∥Lu + Lb

1− LuT
= 1,

i.e., M = 1 in (4.0.3), and hence the equivalent differential inclusion (4.0.2) is written

as

.
x(t) ∈ −∂distC(t)(x(t)) a.e. t ∈ [0, T ], x(0) = x0 ∈ C(0).

This reduction is crucial in justifying the convergence of discrete approximations and

deriving necessary optimality conditions for the optimal control problem of the sweep-

ing process under consideration given in Chapter 6 and Chapter 7, respectively. The

next proposition important in what follows shows how such a truncation affects the

coderivatives (2.0.7) of set-valued mappings that appear in the derivation of necessary

optimality conditions.

Proposition 4.0.5. (coderivatives under truncation). Let F : Rn →→ Rm be a

set-valued mapping of closed graph, and let F1 : Rn →→ Rm be defined by

F1(x) := F (x) ∩ IB, x ∈ Rn. (4.0.10)

Take any pairs (x̄, ȳ) ∈ gphF1 and v ∈ D∗F1(x̄, ȳ)(u) and assume that 0 /∈ D∗F (x̄, ȳ)(ȳ)

if ∥ȳ∥ = 1. Then there is a number t ≥ 0 such that

v ∈ D∗F (x̄, ȳ)(u+ tȳ). (4.0.11)



23

Proof. By the above definitions we have

(v,−u) ∈ N
(
(x̄, ȳ); gphF1

)
and gphF1 = gphF × (Rn × IB).

It is well known that the normal cone to the closed unit ball IB ⊂ Rm at ȳ ∈ IB with

∥ȳ∥ = 1 is computed by

N(ȳ; IB) =
{
ty∗ ∈ Rm

∣∣ t ≥ 0, ∥y∗∥ = 1, λy∗, ȳ⟩ = 1
}
.

On the other hand, we have for the Euclidean norm under consideration that

∥y∗ − ȳ∥2 = λy∗, y∗⟩+ λȳ, ȳ⟩ − 2λy∗, ȳ⟩ = 0,

i.e., y∗ = ȳ, and we can identify N(ȳ; IB) = {tȳ| t ≥ 0}. Thus

N
(
(x̄, ȳ);Rn × IB

)
=

 {(0, 0)} if ∥ȳ∥ < 1.

{(0, tȳ)| t ≥ 0} if ∥ȳ∥ = 1.

By the assumption of 0 /∈ D∗F (x̄, ȳ)(ȳ) for ∥ȳ∥ = 1 we have

N
(
(x̄, ȳ); gphF

)
∩
[
−N

(
(x̄, ȳ);Rn × IB

)]
= {(0, 0)}.

Applying the intersection rule for limiting normals (see, e.g., [14, Corollary 3.5]) gives

us

N
(
(x̄, ȳ); gphF1

)
= N

(
(x̄, ȳ); gphF

)
+N

(
(x̄, ȳ);Rn × IB),

and so there is t ≥ 0 such that (v,−u)− (0, tȳ) ∈ N((x̄, ȳ), gphF ), which amounts to

(4.0.11) and completes the proof the proposition.



24

Chapter 5

Calculating Coderivatives of

Normal Cone Mappings

This chapter in entirely devoted to computing the coderivative (2.0.7) of the normal

cone multifunction F : Rn × Rn × R →→ Rn defined by

F (x, u, b) := −N
(
x;C(u, b)

)
with C(u, b) :=

{
y ∈ Rn

∣∣ ⟨u, y⟩ ≤ b
}
. (5.0.1)

Note that coderivatives of normal cone mappings accumulate some second-order in-

formation about the processes under consideration and play a significant role in many

aspects of variational analysis, optimization, and control. We refer the reader to [8]

and bibliographies therein for calculations of coderivatives of normal cone mappings

generated by convex polyhedra as well as for more discussions, and applications. To

the best of our knowledge, nothing has been done for calculating coderivatives of more

involved mappings (5.0.1), which is provided in this dissertation. Our motivation for

this issue comes from applications to optimal control of the sweeping process while

the results obtained are certainly of their own interest with potential applications to

other variational topics.

As mentioned in Chapter 1, by definition of the normal cone in convex analysis the
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mapping F in (5.0.1) can be represented in the explicit form (1.0.5). Furthermore,

denoting

R{u} :=
{
λu

∣∣ λ ∈ R
}
, R+{u} :=

{
λu

∣∣ λ ≥ 0
}
, and R−{u} :=

{
λu

∣∣ λ ≤ 0
}
,

we have the following representation of (5.0.1):

F (x, u, b) =


R−{u} if ⟨u, x⟩ = b,

0 if ⟨u, x⟩ < b,

∅ if ⟨u, x⟩ > b

(5.0.2)

for every b ∈ R and every 0 ̸= u ∈ Rn. It follows from (5.0.2) that gphF = Λ1 ∪ Λ2

around any point (x, u, b, z) ∈ gphF with u ̸= 0, where

Λ1 :=
{
(x, u, b, z)

∣∣ ⟨u, x⟩ ≤ b, z = 0
}

and (5.0.3)

Λ2 :=
{
(x, u, b, z)

∣∣ ⟨u, x⟩ = b, ∃λ ≤ 0 with z = λu
}
. (5.0.4)

It is obvious that the set Λ1 is closed. To check the closedness for Λ2 in (5.0.4), take

sequences (uk, zk) → (u, z) and λk ≤ 0 with zk = λkuk as k → ∞ and show that

z = λu for some λ ≤ 0. Indeed, by u ̸= 0 we get that u(i) ̸= 0 for at least one fixed

component i ∈ {1, . . . , n}. Thus u
(i)
k ̸= 0 for all k ∈ IN sufficiently large, and so

0 ≥ λk = z
(i)
k /u

(i)
k → z(i)/u(i) ≤ 0. Then it follows from zk = λkuk as k → ∞ that

z = λu with λ := z(i)/u(i).

Now we proceed, step by step based on the definitions in Chapter 2, with com-

puting the coderivative of F in terms of the initial data of the sweeping process. Let

us start with computing the contingent cone (2.0.2) to the set Λ1 and then to Λ2. For

convenience in this chapter we use notation TΛ(·) instead of T (·; Λ), etc.
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Proposition 5.0.6. (calculating the contingent cone to Λ1). Let (x̄, ū, b, z̄) ∈ Λ1

with ū ̸= 0 in (5.0.3). Then we have the expression

TΛ1(x̄, ū, b, z̄) =

 Rn × Rn × R× {0} if ⟨ū, x̄⟩ < b,{
(h, p, l, 0}

∣∣ ⟨ū, h⟩+ ⟨x̄, p⟩ ≤ l
}

if ⟨ū, x̄⟩ = b.
(5.0.5)

Proof. The case of ⟨ū, x̄⟩ < b is obvious. In the other case of ⟨ū, x̄⟩ = b it is easy

to see that TΛ1(x̄, ū, b, z̄) = TΘ(x̄, ū, b)×{0}, where Θ := {(x, u, b)| ⟨u, x⟩ ≤ b}. Since

the gradient of the function ⟨u, x⟩ − b is not zero at (x̄, ū, b), we get

TΘ(x̄, ū, b) =
{
(h, p, l}

∣∣ ⟨ū, h⟩+ ⟨x̄, p⟩ ≤ l
}

and thus arrive at the claimed formula (5.0.5).

Proposition 5.0.7. (calculating the contingent cone to Λ2). Let (x̄, ū, b, z̄) ∈ Λ2

with ū ̸= 0 in (5.0.4). Then we have

TΛ2(x̄, ū, b, z̄) =


{
(h, p, l,m}

∣∣ ⟨ū, h⟩+ ⟨x̄, p⟩ = l, λp−m ∈ R{ū}
}

if z̄ ̸= 0,{
(h, p, l,m}

∣∣ ⟨ū, h⟩+ ⟨x̄, p⟩ = l, m ∈ R−{ū}
}

if z̄ = 0,

(5.0.6)

where the multiplier λ < 0 is uniquely defined by z̄ = λū.

Proof. It follows from definition (2.0.2) of the contingent cone that

TΛ2(x̄, ū, b, z̄) =
{
(h, p, l,m}

∣∣ ∃ tk ↓ 0, ∃ (hk, pk, lk,mk) → (h, p, l,m) s.t.

(x̄+ tkhk, ū+ tkpk, b+ tklk, z̄ + tkmk) ∈ Λ2

}
for all k ∈ IN,

which by the definition of Λ2 in (5.0.4) amounts to

TΛ2(x̄, ū, b, z̄) =
{
(h, p, l,m}

∣∣ ∃ tk ↓ 0, ∃ (hk, pk, lk,mk) → (h, p, l,m), ∃λk ≤ 0 s.t.
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⟨ū+ tkpk, x̄+ tkhk⟩ = b+ tklk, z̄ + tkmk = λk(ū+ tkpk)
}
. (5.0.7)

Dividing by tk and passing to the limit in (5.0.7) as k → ∞, we get ⟨ū, h⟩+ ⟨x̄, p⟩ = l.

Observing further that

ū+ tkpk → ū ̸= 0, z̄ + tkmk → z̄,

it follows similarly to the above argument that λk → λ ≤ 0. In particular, z̄ = λū

and thus λ < 0 if z̄ ̸= 0. It also follows from (5.0.7) that

t−1
k (λ− λk)ū = λkpk −mk for all k ∈ IN.

Since ū ̸= 0 and λkpk −mk → λp−m, we get that t−1
k (λ− λk) → γ for some γ ∈ R.

Thus γū = λp−m. If z̄ = 0, then λ = 0 and therefore t−1
k (−λk) → γ ≥ 0 by λk ≤ 0).

Summarizing all the above, we arrive at the inclusion “⊂” in (5.0.6).

Next let us justify the reverse inclusion in (5.0.6) considering first the case of

z̄ ̸= 0. In this case z̄ = λū with some λ < 0. Take h, p, l,m such that λp−m ∈ R{ū}

and

⟨ū, h⟩+ ⟨x̄, p⟩ = l. (5.0.8)
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In particular, we get λp−m = γū for some γ ∈ R. Putting

tk := k−1,

λk := λ− k−1γ,

hk := (λ/λk)h,

pk := (λ/λk)p,

lk := (λ/λk)l + k−1⟨pk, hk⟩,

mk := m for all k ∈ IN,

observe that tk ↓ 0, λk → λ (hence λk < 0 for sufficiently large k ∈ IN) and that

(hk, pk, lk,mk) → (h, p, l,m) as k → ∞. It follows furthermore that

z̄ + tkmk = λū+ k−1m = λū+ k−1(λp− γū) = λkū+ k−1λkpk = λk(ū+ tkpk),

which implies by using (5.0.8) the relationships

⟨ū+ tkpk, x̄+ tkhk⟩ = b+ k−1⟨x̄, pk⟩+ k−1⟨ū, hk⟩+ k−2⟨hk, pk⟩

= b+ k−1(λ/λk)(⟨x̄, p⟩+ ⟨ū, h⟩) + k−2⟨hk, pk⟩

= b+ k−1(λ/λk)l + k−2⟨hk, pk⟩

= b+ tklk for all k ∈ IN.

This shows that (h, p, l,m) ∈ TΛ2(x̄, ū, b, z̄) via (5.0.7) and thus justifies the claimed

reverse inclusion “⊃” in (5.0.6) in the case of z̄ ̸= 0.

In the remaining case of z̄ = 0, take h, p, l,m such that m ∈ R−{ū} and that
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(5.0.8) holds. Then m = γū for some γ ≤ 0. Putting further

tk := k−1,

λk := k−1γ,

hk := h,

pk := p,

lk := l + k−1⟨pk, hk⟩,

mk := m+ λkp for all k ∈ IN,

observe that tk ↓ 0, λk → 0, λk ≤ 0, and (hk, pk, lk,mk) → (h, p, l,m) as k → ∞.

Moreover

z̄ + tkmk = k−1(m+ λkp) = k−1(γū+ λkp) = λk(ū+ tkpk)

and, exploiting again the additional relation (5.0.8), we arrive at

⟨ū+ tkpk, x̄+ tkhk⟩ = b+ k−1⟨x̄, pk⟩+ k−1⟨ū, hk⟩+ k−2⟨pk, hk⟩

= b+ k−1l + k−2⟨pk, hk⟩

= b+ tklk for all k ∈ IN.

It shows that (h, p, l,m) ∈ TΛ2(x̄, ū, b, z̄) via (5.0.7), and thus the inclusion “⊂” in

(5.0.6) holds also in the case of z̄ = 0. This completes the proof of the proposition.

Now we are ready to compute the contingent cone to the graph of the original

set-valued mapping (5.0.1) arising in the sweeping process.
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Proposition 5.0.8. (calculating the contingent cone to the graph of F ). Take

any (x̄, ū, b̄, z̄) ∈ gphF from the graph of F in (5.0.1). The following assertions hold:

(i) If ⟨ū, x̄⟩ < b, then

TgphF
(x̄, ū, b, z̄) =

{
(h, p, l,m)

∣∣ m = 0
}
.

(ii) If ⟨ū, x̄⟩ = b and z̄ ̸= 0, then

TgphF
(x̄, ū, b, z̄) =

{
(h, p, l,m)

∣∣ ⟨ū, h⟩+ ⟨x̄, p⟩ = l, λp−m ∈ R{ū}
}
,

where λ < 0 is uniquely defined by z̄ = λū.

(iii) If ⟨ū, x̄⟩ = b and z̄ = 0, then

TgphF
(x̄, ū, b, z̄) =

{
(h, p, l,m)

∣∣ [m = 0, ⟨ū, h⟩+ ⟨x̄, p⟩ ≤ l
]
or

[
⟨ū, h⟩+ ⟨x̄, p⟩ = l, m ∈ R−{ū}

]}
.

Proof. Recall that due to representation (5.0.1) of the mapping F we have

gphF = Λ1∪Λ2, and this set is closed around the reference point as follows from the

arguments above. In case (i) we easily get TΛ1∪Λ2(x̄, ū, b̄, z̄) = TΛ1(x̄, ū, b̄, z̄), and the

result follows from Proposition 5.0.6. In case (ii) we similarly have TΛ1∪Λ2(x̄, ū, b̄, z̄) =

TΛ2(x̄, ū, b̄, z̄), where λ < 0 due to ū ̸= 0 and z̄ ̸= 0 in this case. Then the result

follows from Proposition 5.0.7. Finally, in case (iii) we have

TΛ1∪Λ2(x̄, ū, b, z̄) = TΛ1(x̄, ū, b, z̄) ∪ TΛ2(x̄, ū, b, z̄),

and thus it is a combination of Proposition 5.0.6 and Proposition 5.0.7.

Next we compute the regular normal cone (2.0.3) to the graph of F by using

the polarity/duality correspondence with the contingent cone computed in Proposi-

tion 5.0.8. Taking into account this duality we use the ∗-notation for normal vectors.
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Proposition 5.0.9. (calculating the regular normal cone to the graph of F ).

Given any (x̄, ū, b̄, z̄) ∈ gphF for the normal cone mapping (5.0.1), the following

assertions hold:

(i) If ⟨ū, x̄⟩ < b, then

N̂gphF
(x̄, ū, b, z̄) =

{
(h∗, p∗, l∗,m∗)

∣∣ (h∗, p∗, l∗) = (0, 0, 0)
}
.

(ii) If ⟨ū, x̄⟩ = b and z̄ ̸= 0, then

N̂gphF
(x̄, ū, b, z̄) =

{
(h∗, p∗, l∗,m∗)

∣∣ (h∗, p∗ + λm∗, l∗) ∈ R{(ū, x̄,−1)}, ⟨m∗, ū⟩ = 0
}
,

where the multiplier λ < 0 is uniquely defined by z̄ = λū.

(iii) If ⟨ū, x̄⟩ = b and z̄ = 0, then

N̂gphF
(x̄, ū, b, z̄) =

{
(h∗, p∗, l∗,m∗)

∣∣ (h∗, p∗, l∗) ∈ R+{(ū, x̄,−1)}, ⟨m∗, ū⟩ ≥ 0
}
.

Proof. The first assertion is obvious. To justify (ii), we use the polar represen-

tation of N̂ via the contingent cone T . Taking into account that N̂gphF
(x̄, ū, b, z̄) =

N̂Λ2(x̄, ū, b, z̄) in this case gives the expression

N̂gphF
(x̄, ū, b, z̄) =

{
(h∗, p∗, l∗,m∗)

∣∣ ⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩+ ⟨m∗,m⟩ ≤ 0

∀h, p, l,m s.t. ⟨ū, h⟩+ ⟨x̄, p⟩ = l, λp−m ∈ R{ū}
}
.

Let (h∗, p∗, l∗,m∗) ∈ N̂gphF
(x̄, ū, b, z̄) = N̂Λ2(x̄, ū, b, z̄). Then

⟨h∗, h⟩+⟨p∗, p⟩+⟨l∗, l⟩+⟨m∗, λp−γū⟩ ≤ 0 for all h, p, l s.t. ⟨ū, h⟩+⟨x̄, p⟩ = l ∀γ ∈ R.
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Putting h = p = l = 0 here gives us ⟨m∗,−γū⟩ ≤ 0 for all γ ∈ R, which implies that

⟨m∗, ū⟩ = 0. Then the above relationship reads as

⟨h∗, h⟩+ ⟨p∗ + λm∗, p⟩+ ⟨l∗, l⟩ ≤ 0 for all h, p, l with ⟨ū, h⟩+ ⟨x̄, p⟩ = l.

Since ū ̸= 0, the set {(h, p, l)|⟨ū, h⟩+ ⟨x̄, p⟩ = l} describes a closed hyperplane whose

negative polar is R{(ū, x̄,−1)}. Hence we get

(h∗, p∗ + λm∗, l∗) ∈ R
{
(ū, x̄,−1)

}
for all (h∗, p∗, l∗,m∗) ∈ N̂Λ2(x̄, ū, b, z̄).

Conversely, choose any (h∗, p∗, l∗,m∗) satisfying (h∗, p∗ + λm∗, l∗) ∈ R{(ū, x̄,−1)}

and such that ⟨m∗, ū⟩ = 0 holds. Picking an arbitrary element (h, p, l,m) ∈ TΛ2(x̄, ū, b, z̄),

we have ⟨ū, h⟩+ ⟨x̄, p⟩ = l with λp−m ∈ R{ū}. Hence λp−m = γū for some γ ∈ R

and (h∗, p∗ + λm∗, l∗) = µ(ū, x̄,−1) for some µ ∈ R; therefore

⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩+ ⟨m∗,m⟩ = ⟨h∗, h⟩+ ⟨p∗ + λm∗, p⟩+ ⟨l∗, l⟩ − γ⟨m∗, ū⟩

= µ(⟨ū, h⟩+ ⟨x̄, p⟩ − l) = 0.

The latter implies that (h∗, p∗, l∗,m∗) ∈ N̂Λ2(x̄, ū, b̄, z̄), which justifies assertion (ii).

To prove (iii), recall that N̂gphF
(x̄, ū, b, z̄) = N̂Λ1∪Λ2(x̄, ū, b, z̄) in this case and
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that the dual of a set union equals to the intersection of the duals. Thus

N̂gphF
(x̄, ū, b, z̄) =N̂Λ1(x̄, ū, b, z̄) ∩ N̂Λ2(x̄, ū, b, z̄)

=
{
(h∗, p∗, l∗,m∗)

∣∣ ⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩+ ⟨m∗, m⟩ ≤ 0

∀h, p, l,m s.t. m = 0 and ⟨ū, h⟩+ ⟨x̄, p⟩ ≤ l
}∩

{
(h∗, p∗, l∗,m∗)

∣∣ ⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩+ ⟨m∗,m⟩ ≤ 0

∀h, p, l,m with ⟨ū, h⟩+ ⟨x̄, p⟩ = l, m ∈ R−{ū}
}
.

To calculate the first of the duals above, take (h∗, p∗, l∗,m∗) satisfying

⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩+ ⟨m∗,m⟩ ≤ 0 ∀h, p, l,m with m = 0, ⟨ū, h⟩+ ⟨x̄, p⟩ ≤ l

and thus arrive at the relationship

⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩ ≤ 0 for all h, p, l with ⟨ū, h⟩+ ⟨x̄, p⟩ ≤ l.

The set {(h, p, l)|⟨ū, h⟩ + ⟨x̄, p⟩ ≤ l} describes a closed halfspace whose dual is

R+{(ū, x̄,−1)}. Hence the first dual is contained in the set R+{(ū, x̄,−1)} × Rn.

Conversely, pick (h∗, p∗, l∗,m∗) ∈ R+{(ū, x̄,−1)} × Rn and (h, p, l,m) such that

m = 0 and ⟨ū, h⟩+ ⟨x̄, p⟩ ≤ l. Then (h∗, p∗, l∗) = µ(ū, x̄,−1) for some µ ≥ 0, and so

⟨h∗, h⟩+⟨p∗, p⟩+⟨l∗, l⟩+⟨m∗,m⟩ = ⟨h∗, h⟩+⟨p∗, p⟩+⟨l∗, l⟩ = µ(⟨ū, h⟩+⟨x̄, p⟩− l) ≤ 0.

This shows that the first dual above coincides with the set R+{(ū, x̄,−1)} × Rn.

It remains to calculate the second dual above. To proceed, take (h∗, p∗, l∗,m∗)

such that

⟨h∗, h⟩+⟨p∗, p⟩+⟨l∗, l⟩+⟨m∗,m⟩ ≤ 0 ∀h, p, l,m s.t. ⟨ū, h⟩+⟨x̄, p⟩ = l and m ∈ R−{ū},
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which is equivalent to the relationship

⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩+γ⟨m∗, ū⟩ ≤ 0 ∀γ ∈ R− and ∀h, p, l s.t. ⟨ū, h⟩+ ⟨x̄, p⟩ = l.

Putting h = p = l = 0, we derive from here that ⟨m∗, ū⟩ ≥ 0. Putting further γ = 0,

the relationship above implies also that

⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩ ≤ 0 ∀h, p, l s.t. ⟨ū, h⟩+ ⟨x̄, p⟩ = l.

Arguing similarly to the previous case gives us (h∗, p∗, l∗) ∈ R{(ū, x̄,−1)}, which

means that the second dual under consideration is contained in the set R{(ū, x̄,−1)}×

{m∗|⟨m∗, ū⟩ ≥ 0}.

Conversely, for (h∗, p∗, l∗,m∗) belonging to the latter set and for (h, p, l,m) with

⟨ū, h⟩ + ⟨x̄, p⟩ = l and m ∈ R−{ū} we get (h∗, p∗, l∗) = µ(ū, x̄,−1) with some µ ∈ R

and γ ∈ R− such that m = γū. This gives therefore that

⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩+ ⟨m∗,m⟩ = ⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩+ γ⟨m∗, ū⟩

≤ ⟨h∗, h⟩+ ⟨p∗, p⟩+ ⟨l∗, l⟩

= µ(⟨ū, h⟩+ ⟨x̄, p⟩ − l) = 0,

which shows that the second dual coincides with the set R{(ū, x̄,−1)}×{m∗|⟨m∗, ū⟩ ≥

0}. Intersection of this set with the set R+{(ū, x̄)} × Rn yields the asserted formula

in the third case and thus completes the proof of the proposition.

Passing to the limit from regular normals, we calculate next the limiting normal

cone (2.0.4) to the graph of the normal cone mapping (5.0.1).
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Proposition 5.0.10. (calculating the limiting normal cone to the graph of

F ). Let (x̄, ū, b, z̄) ∈ gphF belong to the graph of F in (5.0.1). The following asser-

tions hold:

(i) If ⟨ū, x̄⟩ < b, then

NgphF
(x̄, ū, b, z̄) =

{
(h∗, p∗, l∗,m∗)

∣∣ (h∗, p∗, l∗) = (0, 0, 0)
}
.

(ii) If ⟨ū, x̄⟩ = b and z̄ ̸= 0, then

NgphF
(x̄, ū, b, z̄) =

{
(h∗, p∗, l∗,m∗)

∣∣ (h∗, p∗ + λm∗, l∗) ∈ R{(ū, x̄,−1)}, ⟨m∗, ū⟩ = 0
}
,

where λ < 0 is uniquely defined by z̄ = λū.

(iii) If ⟨ū, x̄⟩ = b and z̄ = 0, then

NgphF
(x̄, ū, b, z̄) =

{
(h∗, p∗, l∗,m∗)

∣∣ [h∗ = p∗ = l∗ = 0
]

or[
(h∗, p∗, l∗) ∈ R{(ū, x̄,−1)} and ⟨m∗, ū⟩ = 0

]
, or[

(h∗, p∗, l∗) ∈ R+{(ū, x̄,−1)} and ⟨m∗, ū⟩ ≥ 0
]}
.

Proof. It follows from the explicit formula (5.0.2) for the mapping F that in the

first two cases the limiting normal cone to the graph of F agrees with the regular one,

and so assertions (i) and (ii) of this proposition reduce to those in Proposition 5.0.9.

In case (iii) we represent the limiting normal cone to the graph of F as

NgphF
(x̄, ū, b̄, z̄) = NΛ1∪Λ2(x̄, ū, b̄, z̄ = A ∪B ∪ C
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with the sets A, B, and C defined by

A := Lim sup
(x,u,b,z)→(x̄,ū,b̄,0)
(x,u,b,z)∈Λ1\Λ2

N̂Λ1∪Λ2 (x, u, b, z) = Lim sup
(x,u,b,z)→(x̄,ū,b̄,0)
(x,u,b,z)∈Λ1\Λ2

N̂Λ1 (x, u, b, z)

B := Lim sup
(x,u,b,z)→(x̄,ū,b̄,0)
(x,u,b,z)∈Λ2\Λ1

N̂Λ1∪Λ2 (x, u, b, z) = Lim sup
(x,u,b,z)→(x̄,ū,b̄,0)
(x,u,b,z)∈Λ2\Λ1

N̂Λ2 (x, u, b, z)

C := Lim sup
(x,u,b,z)→(x̄,ū,b̄,0)
(x,u,b,z)∈Λ1∩Λ2

N̂Λ1∪Λ2 (x, u, b, z) .

Let us calculate subsequently all the three sets A, B, and C. It immediately follows

from assertion (i) of Proposition 5.0.9 that

A = N̂Λ1 (x, u, b, z) = {(0, 0, 0)} × Rn. (5.0.9)

Next we justify the formula

B =
{
(h∗, p∗, l∗,m∗)

∣∣ (h∗, p∗, l∗) ∈ R{(ū, x̄,−1)}, ⟨m∗, ū⟩ = 0
}
. (5.0.10)

To proceed, pick any (h∗, p∗, l∗,m∗) ∈ B and find by definition sequences (xk, uk, bk, zk) →

(x̄, ū, b̄, 0) and (h∗k, p
∗
k, l

∗
k,m

∗
k) → (h∗, p∗, l∗,m∗) as k → ∞ satisfying (xk, uk, bk, zk) ∈

Λ2\Λ1 and (h∗k, p
∗
k, l

∗
k,m

∗
k) ∈ N̂Λ2 (xk, uk, bk, zk) for all k ∈ IN . By Proposition 5.0.9(ii)

we have the relationships ⟨m∗
k, uk⟩ = 0 and

(h∗k, p
∗
k + λkm

∗
k, l

∗
k) = µk(uk, xk,−1), k ∈ IN,

with λk ≤ 0 uniquely defined by zk = λkuk and with some µk ∈ R. As in the proof of

the closedness of Λ2 above, we get that λk → λ for some λ ≤ 0 uniquely defined by

z̄ = λū. Since zk → 0, it follows that λ = 0 and moreover ⟨m∗, ū⟩ = 0. Next we see

that µk(uk, xk,−1) → (h∗, p∗, l∗). Hence µk → −l∗ and so

µkuk → −l∗ū = h∗ and µkxk → −l∗x̄ = p∗ as k → ∞.
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Consequently we arrive at

(h∗, p∗, l∗) = −l∗(ū, x̄,−1) ∈ R{(ū, x̄,−1)},

which thus justifies the inclusion “⊂” of (5.0.10).

To prove the converse inclusion “⊃” in (5.0.10), let (h∗, p∗, l∗,m∗) be such that

(h∗, p∗, l∗) ∈ R{(ū, x̄,−1)} and ⟨m∗, ū⟩ = 0. Combining this with

(x̄, ū, b̄,−k−1ū) ∈ Λ2\Λ1, k ∈ IN,

gives us (x̄, ū, b̄,−k−1ū) → (x̄, ū, b̄, 0) as k → ∞. It follows from Proposition 5.0.9(ii)

that

(h∗, p∗ + k−1m∗, l∗,m∗) ∈ N̂Λ2(x̄, ū, b̄,−k−1ū), k ∈ IN.

Indeed, taking −k−1 for λ in Proposition 5.0.9(ii), we derive the claimed relationship

from

(h∗, p∗ + k−1m∗ + (−k−1m∗), l∗) = (h∗, p∗, l∗) ∈ R{(ū, x̄,−1)}.

By the obvious convergence

(h∗, p∗ + k−1m∗, l∗,m∗) → (h∗, p∗, l∗,m∗) as k → ∞

we arrive at (h∗, p∗, l∗,m∗) ∈ B and thus get representation (5.0.10).

To justify assertion (iii), it remains to show that

C =
{
(h∗, p∗, l∗,m∗)

∣∣ (h∗, p∗, l∗) ∈ R+{(ū, x̄,−1)}, ⟨m∗, ū⟩ ≥ 0
}
. (5.0.11)

The proof of the inclusion “⊂” in (5.0.11) follows exactly the same lines as the proof of

the corresponding inclusion in (5.0.10). The converse inclusion in (5.0.11) is evident
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since the right-hand side of (5.0.11) equals N̂Λ1∪Λ2(x̄, ū, b̄, 0) according to Proposi-

tion 5.0.9(iii). On the other hand, we have N̂Λ1∪Λ2(x̄, ū, b̄, 0) ⊂ C by definition of the

set C and due to (x̄, ū, b̄, 0) ∈ Λ1∩Λ2. Unifying the above representations in A∪B∪C

yields the claimed formula in case (iii) and completes the proof of the proposition.

Finally, we arrive at the main result of this section, which gives us exact formulas

for calculating the coderivative (2.0.7) of the normal cone mapping (5.0.1) and plays

a significant role in the implementation of the method of discrete approximations to

derive necessary optimality conditions for the controlled sweeping process (1.0.4) in

the subsequent sections.

Theorem 5.0.11. (calculating the coderivative of the normal cone map-

ping). Let (x̄, ū, b̄, z̄) ∈ gphF for the normal cone mapping (5.0.1). The following

assertions hold:

(i) If ⟨ū, x̄⟩ < b, then

D∗F (x̄, ū, b̄, z̄)(m∗) = {(0, 0, 0)}.

(ii) If ⟨ū, x̄⟩ = b̄ and z̄ ̸= 0, then

D∗F (x̄, ū, b̄, z̄)(m∗) =

 R{(ū, x̄,−1)} − {(0, λm∗, 0)} for ⟨m∗, ū⟩ = 0,

∅ for ⟨m∗, ū⟩ ̸= 0,

where λ < 0 is uniquely defined by z̄ = λū.
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(iii) If ⟨ū, x̄⟩ = b̄ and z̄ = 0, then

D∗F (x̄, ū, b̄, z̄)(m∗) =


R{(ū, x̄,−1)} for ⟨m∗, ū⟩ = 0,

R+{(ū, x̄,−1)} for ⟨m∗, ū⟩ < 0,

{(0, 0, 0)} for ⟨m∗, ū⟩ > 0.

Proof. It follows directly from definition (2.0.7) of the coderivative and the

calculation of the limiting normal cone (2.0.4) in Proposition 5.0.10.

Now we consider the truncation of the normal cone mapping (5.0.1) defined by

F1(x, u, b) := F (x, u, b) ∩ IB = −N
(
x;C(u, b)

)
∩ IB (5.0.12)

with the controlled moving set C(u, b) = {y ∈ Rn| ⟨u, y⟩ ≤ b}. The next proposition

calculates the coderivative of F1 by using Theorem 5.0.11 and the calculus result of

Proposition 4.0.5.

Proposition 5.0.12. (coderivative of the truncated mapping). Let (x̄, ū, b̄, z̄) ∈

gphF1 for the truncated mapping (5.0.12). Then the coderivative of F1 is expressed

via the coderivative of F in Theorem 5.0.11 as

D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) =

 D∗F
(
x̄, ū, b̄, z̄

)
(m∗) if ∥z̄∥ < 1,∪

t≥0D
∗F

(
x̄, ū, b̄, z̄

)
(m∗ + tz̄) if ∥z̄∥ = 1.

(5.0.13)

Proof. The formula in the case of ∥z̄∥ < 1 in (5.0.13) is obvious, since in this

case the mapping F1 in (5.0.12) is not different locally from F . In the case of ∥z∥ = 1

we apply Proposition 4.0.5 to our mapping F1, which has the structure of (4.0.10).

To proceed, let us check that the qualification condition

0 /∈ D∗F (x̄, ū, b̄, z̄)(z̄) if ∥z̄∥ = 1 (5.0.14)
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holds for the mapping F from (5.0.1). Indeed, we employ Theorem 5.0.11 in case

(ii), since the requirement ∥z̄∥ = 1 automatically yields that λū, x̄⟩ = b̄. Thus the

negation of the qualification condition (5.0.14) reads in this case as

(αū, αx̄− λz̄,−α) = 0 if λz̄, ū⟩ = 0 for some α ∈ R (5.0.15)

with λ < 0 satisfying z̄ = λū. It follows from (5.0.15) that λz̄ = 0, which contradicts

the conditions λ < 0 and z̄ ̸= 0. Finally, we employ formula (4.0.11) from Proposi-

tion 4.0.5 that gives us the second expression in (5.0.13) and completes the proof of

the proposition.

Thus the coderivative of F1 is calculated by the explicit formulas of Theorem 5.0.11

if ∥z̄∥ < 1. In the case of ∥z̄∥ = 1 in Proposition 5.0.12 we arrive at the following

formulas.

Corollary 5.0.13. (calculating the coderivative of the truncated mapping).

Let (x̄, ū, b̄, z̄) ∈ gphF1 with ∥z̄∥ = 1 in (5.0.12). Then we have

D∗F1(x̄, ū, b̄, z̄)(m
∗) =

 R
{
(ū, x̄,−1)

}
−

{(
0, λ(m∗ − λ2λm∗, ū⟩ū)

)}
if λm∗, ū⟩ ≥ 0,

∅ if λm∗, ū⟩ < 0,

where the number λ < 0 is uniquely defined by z̄ = λū.

Proof. As mentioned above, in the setting of ∥z̄∥ = 1 we automatically have

λū, x̄⟩ = b̄ and thus case (ii) of Theorem 5.0.11 is applied. Observe first that

⟨m∗ + tz̄, ū⟩ = ⟨m∗, ū⟩+ t/λ for all t ≥ 0. (5.0.16)
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Since λ < 0, the assumption ⟨m∗, ū⟩ < 0 yields that ⟨m∗ + tz̄, ū⟩ < 0 for all

t ≥ 0, and thus the combination of (5.0.13) with Theorem 5.0.11(ii) implies that

D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) = ∅. Under the other assumption of ⟨m∗, ū⟩ ≥ 0 we get from

(5.0.16) that

⟨m∗ + tz̄, ū⟩ = 0 ⇐⇒ t = −λ ⟨m∗, ū⟩ ≥ 0.

This implies in turn by (5.0.13) and Theorem 5.0.11(ii) that

D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) = D∗F

(
x̄, ū, b̄, z̄

) (
m∗ − λ ⟨m∗, ū⟩ z̄

)
= D∗F

(
x̄, ū, b̄, z̄

) (
m∗ − λ2 ⟨m∗, ū⟩ ū

)
= R

{
(ū, x̄,−1)

}
−

{(
0, λ(m∗ − λ2⟨m∗, ū⟩ū), 0

)}
,

which completes the proof of the corollary.

Another useful consequence of Proposition 5.0.12 via Corollary 5.0.13 important

in the sequel is a full characterization of the kernel for D∗F1(x̄, ū, b̄, z̄) we get next.

Corollary 5.0.14. (characterization of the coderivative kernel for the trun-

cated mapping). Let (x̄, ū, b̄, z̄) ∈ gphF1 for the truncated mapping (5.0.12). The

following hold:

(i) If z̄ = 0, then

(0, 0, 0) ∈ D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) for all m∗ ∈ Rn.

(ii) If 0 < ∥z̄∥ < 1, then

(0, 0, 0) ∈ D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) ⇐⇒ m∗ = 0.
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(iii) If ∥z̄∥ = 1, then

(0, 0, 0) ∈ D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) ⇐⇒ m∗ ∈ R+ {ū} .

Proof. The result for z̄ = 0 in (i) follows immediately from Proposition 5.0.12

and cases (i) and (iii) in Theorem 5.0.11. In case (ii) of this corollary we get from

Proposition 5.0.12 and Theorem 5.0.11(ii) that

(0, 0, 0) ∈ D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) =⇒ (0, 0, 0) = µ (ū, x̄,−1)− (0, λm∗, 0)

for some µ ∈ R and λ < 0 uniquely defined by z̄ = λū. This yields that µ = 0

and hence m∗ = 0. Conversely, it follows from m∗ = 0 by Proposition 5.0.12 and

Theorem 5.0.11(ii) that

D∗F1

(
x̄, ū, b̄, z̄

)
(0) = R

{
(ū, x̄,−1)

}
∋ (0, 0, 0) .

Finally, if ∥z̄∥ = 1 in case (iii), then Corollary 5.0.13 ensures that

(0, 0, 0) ∈ D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) =⇒ ⟨m∗, ū⟩ ≥ 0, (0, 0, 0) = µ (ū, x̄,−1)−

(
0, λ

(
m∗ − λ2 ⟨m∗, ū⟩ ū

)
, 0
)

for some µ ∈ R and λ < 0 uniquely defined by z̄ = λū. As before, we get from the

above that µ = 0 and hence

m∗ = λ2 ⟨m∗, ū⟩ ū ∈ R+ {ū} .

Assuming conversely thatm∗ ∈ R+ {ū} implies that ⟨m∗, ū⟩ ≥ 0 andm∗ = λ2 ⟨m∗, ū⟩ ū.

Thus applying Corollary 5.0.13 yields in this case that

D∗F1

(
x̄, ū, b̄, z̄

)
(m∗) = R

{
(ū, x̄,−1)

}
∋ (0, 0, 0) ,

which completes the proof of this corollary.
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Chapter 6

Well-Posed Discrete

Approximations

In this chapter we develop the method of discrete approximations to study the control

sweeping process (1.0.4) and the dynamic optimization problem for it formulated in

Chapter 1. Our standing assumptions are those in Theorem 4.0.4, and we always

suppose with no loss of generality that M = 1 therein. Along with the original

normal cone mapping F (x, u, b) from (5.0.1), equivalently represented in (5.0.2), we

consider its truncation F1 defined by (5.0.12).

Our first result is about a certain strong approximation of an arbitrary feasible

solution to the differential inclusion in (1.0.4), or equivalently in (1.0.6), by feasible

solutions to the corresponding finite-difference inclusions piecewise linearly extended

to the continuous-time interval. This result is of its own interest while playing a

crucial role in the justification well-posedness (stability, convergence) of discrete ap-

proximations and the implementation of this method to deriving necessary optimality

conditions for the controlled sweeping process.

To the best of our knowledge, the strong approximation type obtained for general
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differential inclusions (see [6, 13, 15] and the references therein) cannot be applied to

the sweeping system under consideration since the Lipschitz continuity assumption

of [13, 15] and the “modified one-sided Lipschitz condition” (MOSL) of [6] are not

satisfied in this framework. The proof of the following theorem is based on the

extension of the approach in [13] to non-Lipschitzian and discontinuous differential

inclusions with taking into account a specific structure of the sweeping process (1.0.4).

Theorem 6.0.15. (discrete approximations of feasible solutions). Let z̄(·) =

(x̄(·), ū(·), b̄(·)) be an arbitrary feasible solution to the controlled sweeping system

(1.0.4), and let

∆k :=
{
0 = tk0 < tk1 < . . . < tkk = T

}
with hk := max

0≤j≤k−1
{tkj+1 − tkj} ↓ 0 as k → ∞

(6.0.1)

be an arbitrary partition of [0, T ] for each k ∈ IN . Then there exists a sequence of

piecewise linear function zk(·) = (xk(t), uk(t), bk(t)) on [0, T ] with ∥uk(tkj )∥ = 1 for

j = 0, . . . , k − 1, satisfying the discretized inclusions

xk(t) = xk(tj) + (t− tj)v
k
j , x(0) = x0, tkj ≤ t ≤ tkj+1, j = 0, . . . , k − 1, (6.0.2)

with vkj ∈ F1(z
k(tkj )) on ∆k for all k ∈ IN and such that

zk(t) → z̄(t) uniformly on [0, T ] and

T∫
0

∥ .
z
k
(t)−

.
z̄(t)∥ dt→ 0 as k → ∞.

(6.0.3)

The latter implies the convergence
.
z
k
(t) →

.
z̄(t) of some subsequence for a.e. t ∈ [0, T ].
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Proof. By Theorem 4.0.4 with M = 1 we have the estimates

∥ ˙̄z(t)∥ ≤ 1 a.e. t ∈ [0, T ] and ∥z̄(t)∥ ≤ ∥x0∥+ T on [0, T ]. (6.0.4)

Thus z̄(·) is in fact a feasible solution to the truncated differential inclusion with

the replacement of F (·) = −N(x(·);C(·)) in (1.0.4) (and equivalently in (1.0.6))

by F1(·) from (5.0.12). Due to the density of step functions in L1([0, T ];R2n) we

approximate (
.
x̄(t), (

.
ū(t)) strongly in L1([0, T ];R2n) by a sequence of step functions

(wk
1(t), w

k
2(t)), which are bounded in L1([0, T ];R2n) and constant on the intervals

[tkj , t
k
j+1), j = 0, . . . , k − 1, from the sequence of partitions (6.0.1). Then define the

sequence of pairs

(
yk1(t), y

k
2(t)

)
:= z̄(0) +

t∫
0

(
wk

1(s), w
k
2(s)

)
ds, t ∈ [0, T ],

and easily observe by construction and the Lebesgue dominated convergence theorem

that (
yk1(t), y

k
2(t)

)
→

(
x̄(t), ū(t)

)
uniformly in t ∈ [0, T ] as k → ∞.

Define next yk3(·) to be piecewise linear on [0, T ] and satisfying the following conditions

on ∆k:
[
⟨x̄(tkj ), ū(tkj )⟩ = b̄(tkj )

]
=⇒

[
⟨yk1(tkj ), yk2(tkj )⟩ = yk3(t

k
j )
]
and

[
⟨x̄(tkj ), ū(tkj )⟩ <

b̄(tkj )
]

=⇒
[
⟨yk1(tkj ), yk2(tkj )⟩ < yk3(t

k
j )
]
. Then we have the convergence yk(t) :=

(yk1(t), y
k
2(t), y

k
3(t)) → z̄(t) := (x̄(t), ū(t), b̄(t)) uniformly on [0, T ] and wk(t) := (wk

1(t), w
k
2(t), w

k
3(t)) →

(
.
x̄(t),

.
ū(t),

.

b(t)) strongly in L1([0, T ];R2n+1) as k → ∞.

Fix any ε > 0. Since wk(t) →
.
z̄(t) a.e. on [0, T ] along a subsequence of k → ∞

and since wk(·) are piecewise constant functions while z̄(·) is a feasible solution to
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(1.0.4), for any k ∈ IN and j ∈ {0, . . . , k − 1} we can select a numerical sequence

{sm}m∈IN ⊂ [tkj , t
k
j+1) converging to tkj and such that

∥∥∥wk
1(sm)−

.
x̄(sm)

∥∥∥ ≤ ε/2 whenever j = 0, . . . , k − 1 and k ∈ IN

and that the differential inclusion in (1.0.4) holds at t = sm for every m ∈ IN .

Recall that wk
1(·) is a constant function on [tkj , t

k
j+1), i.e., w

k
1 ≡ akj on [tkj , t

k
j+1). Then

we have dist(akj ;F (z̄(sm)) ≤ ε/2 for j = 0, . . . , k − 1. Letting now m → ∞ gives us

dist(akj ;F1(z̄(t
k
j )) ≤ ε/2. Observe that the above constructions of yk3(·) and yk(·) imply

that dRn(F1(y
k(tkj );F1(z̄(t

k
j )) ≤ ε/2 for all k ∈ IN sufficiently large, where dRn(·; ·)

stands for the Hausdorff distance between compact subsets in Rn. This ensures the

estimate

dist
(
akj ;F (y

k(tkj )
)
≤ ε for all j = 0, . . . , k − 1 and k ∈ IN. (6.0.5)

Fix k ∈ IN and define uk(t) := yk2(t) for t ∈ [0, T ]. By normalization we can always

achieve the constraints ∥uk(t)∥ = 1 on ∆k. Construct now required trajectories xk(t)

for inclusions (6.0.2) and the control functions bk(t) on ∆k denoting for simplicity

tj := tkj , j = 0, . . . , k − 1. We proceed by induction assuming that xk(tj) is known

and that ∥xk(tj) − yk1(tj)∥ ≤ hkε; it is always the case for j = 0. Then choose

bk(tj) := ⟨xk(tj), uk(tj)⟩ if yk3(tj) = ⟨yk1(tj), yk2(tj)⟩ and bk(tj) < ⟨xk(tj), uk(tj)⟩ if
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yk3(tj) < ⟨yk1(tj), yk2(tj)⟩. By

|⟨xk(tj), uk(tj)⟩ − ⟨yk1(tj), yk2(tj)⟩| = |⟨xk(tj), yk2(tj)⟩ − ⟨yk1(tj), yk2(tj)⟩|

= |⟨xk(tj)− yk1(tj), y
k
2(tj)⟩|

≤ ∥xk(tj)− yk1(tj)∥ · ∥y2(tj)∥ ≤ hkε

we have |bk(tj) − yk3(tj)| < 2hkε. Extend now the discrete trajectory xk(·) to the

whole interval (tj, tj+1] as follows. Select a Euclidean projection

vkj ∈ Π
(
akj ;F1

(
yk(tj))

)
and by vkj ∈ F1(y

k(tj)) get from (6.0.5) that ∥vkj − akj∥ ≤ ε. It follows from the above

choice of bk(tj), from yk2(tj) = uk(tj), and from the normal cone structure of the

mapping F1 (exploited also in the proof of Proposition 6.0.16) that

vkj ∈ F1

(
yk(tj)

)
= F1

(
xk(tj), u

k(tj), b
k(tj)

)
,

and thus inclusion (6.0.7) is satisfied at tj. Extending next xk(t) := xk(tj)+(t− tj)vkj

to the interval t ∈ [tj, tj+1], observe that

∥ẏk1(t)− ẋk(t)∥ = ∥akj − vkj ∥ ≤ ε for all t ∈ (tj, tj+1),

which implies in turn that

∥yk1(t)− xk(t∥ ≤ |t− tj| · ∥akj − vkj ∥ ≤ hkε for all t ∈ [tj, tj+1].

This allows us to define bk(tj+1) in the same way as bk(tj) and get the induction

estimate |bk(tj+1) − yk3(tj+1)| < 2hkε. Extending further bk(t) linearly to [tj, tj+1]
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yields that

|ḃk(t)− ẏk3(t)| =
∣∣∣bk(tj+1)− bk(tj)

tj+1 − tj
− yk3(tj+1)− yk3(tj)

tj+1 − tj

∣∣∣
=

∣∣∣bk(tj+1)− yk3(tj+1)

tj+1 − tj
− bk(tj)− yk3(tj)

tj+1 − tj

∣∣∣
≤ |bk(tj+1)− yk3(tj+1)|

tj+1 − tj
+

|bk(tj)− yk3(tj)|
tj+1 − tj

≤ 2hkε

hk
+

2hkε

hk
= 4ε, t ∈ (tj, tj+1).

Finally, putting zk(t) := (xk(t), uk(t), bk(t)), t ∈ [0, T ], we conclude from the con-

structions and arguments above that zk(·) → x̄(·) in the norm of L1([0, T ];R2n+1) as

k → ∞, which justifies (6.0.3) and completes the proof of the theorem.

Note that Theorem 6.0.15 concerns just the controlled sweeping process (1.0.4)

while not its optimization. It establishes the approximation of any feasible solution

to (1.0.4). Having this result in hand, we are able to construct a sequence of discrete-

time optimization problems whose optimal solutions exist and strongly approximate

a given optimal solution to the original dynamic optimization problem (1.0.3)–(1.0.4)

labeled as (P ) from now on.

Let z̄(·) = (x̄(·), ū(·), b̄(·)) be an optimal solution to problem (P ), and let F1 be

defined in (5.0.12). We construct the following sequence of discrete-time optimization

problem (Pk), k ∈ IN , with hk ↓ 0 as k → ∞:

minimize Jk[z
k] := φ(xkk) + hk

k−1∑
j=0

ℓ
(
xkj ,

xkj+1 − xkj
hk

)

+
k−1∑
j=0

tj+1∫
tj

∥∥∥(xkj+1, u
k
j+1, b

k
j+1)− (xkj , u

k
j , b

k
j )

hk
−
(
˙̄x(t), ˙̄u(t), ˙̄b(t)

)∥∥∥2

dt

(6.0.6)
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over elements zk := (xk0, x
k
1, . . . , x

k
k, u

k
0, u

k
1, . . . , u

k
k−1, b

k
0, b

k
1, . . . , b

k
k−1) satisfying the con-

straints

xkj+1 ∈ xkj + hkF1(x
k
j , u

k
j , b

k
j ), j = 0, . . . , k − 1, with xk0 = x0, (6.0.7)

∥∥ukj∥∥ = 1 for j = 0, . . . , k − 1. (6.0.8)

Note that the index j = 0, . . . , k plays a role of the discrete time in (Pk) and that

inclusions (6.0.7) correspond to those in (6.0.2) at the partition points.

First of all we need to make sure that that problems (Pk) admit optimal solutions.

It is not difficult to check under general assumptions imposed on the cost functions.

Proposition 6.0.16. (existence of discrete optimal solutions). Suppose that

the cost functions ϕ and ℓ in (6.0.6) are lower semicontinuous. Then for each k ∈ IN

problem (Pk) admits an optimal solution.

Proof. Fix k ∈ IN and observe that the set of feasible solutions to (Pk) is obviously

nonempty and bounded by (5.0.12), (6.0.7), and (6.0.8). Thus it remains to show

that it is closed and then to apply the classical Weierstrass existence theorem. To

proceed, take a sequence of zm = (x0, x1m, . . . , xmk, u0m, . . . , u(k−1)m, b0m, . . . , b(k−1)m)

convergent to z = (x0, x1, . . . , xk, u0, . . . , uk−1, b0, . . . , bk−1) as m → ∞ omitting the

upper index “k” for simplicity. We need to check that z is feasible to (Pk) provided

that all zm have this property. This only requires checking that the components of

the limiting vector z satisfy inclusions (6.0.7) for all j; it is obvious for constraints

(6.0.8). Consider the two possible cases for every j = 0, . . . , k − 1:
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(a) If ⟨xj, uj⟩ < bj, then for m ∈ IN sufficiently large we also have ⟨xjm, ujm⟩ <

bjm. It immediately follows from the normal cone definition that x(j+1)m = xjm and

thus xj+1 = xj for large m ∈ IN , i.e., inclusion (6.0.7) is satisfied for the limiting

discrete trajectory.

(b) Let ⟨xj, uj⟩ = bj. Taking into account that

F1(x, u, b) =
{
− αu

∣∣ 0 ≤ α ≤ 1
}

whenever λx, u⟩ = b (6.0.9)

by the construction of (5.0.12) and that the triple (xjm, ujm, bjm) satisfies (6.0.7), we

get that

x(j+1)m = xjm + hk(−αm)ujm for all m ∈ IN

along a sequence of 0 ≤ αm ≤ 1, which converges without loss of generality to some

number α ∈ [0, 1]. This implies that xj+1 = xj + hk(−α)uj by passing to the limit at

m→ ∞. Employing (6.0.9) again, we justify that z is a feasible solution to problem

(Pk) for each k ∈ IN , which thus completes the proof of the proposition.

Our next goal is to establish an appropriate strong convergence of optimal solu-

tions of discrete approximations (Pk) to the given optimal solution z̄(·) of the original

sweeping control problem (P ). To proceed, we need some amount of relaxation sta-

bility of the original problem. Along with (P ), consider the relaxed sweeping control

problem (R) given by

minimize Ĵ [z] := φ
(
x(T )

)
+

∫ T

0

ℓ̂F
(
x(t), ẋ(t)

)
dt

subject to all the constraints in the controlled sweeping process (1.0.4), where ℓ̂F (z, v)
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is the convexification of ℓF in the v variable, i.e., the largest convex and lower semi-

continuous function majorized by ℓF (z, ·) for each x, and where

ℓF (z, v) := ℓ(x, v) + δ
(
v;F1(z)

)
is defined via the set indicator function δ(v;F ) equal to 0 if v ∈ F and to∞ otherwise.

Denoting by JP and ĴR the optimal value (infimum) of the cost functionals in (P )

and (PR), respectively, we always have that ĴR ≤ JP . Furthermore, it follows from

Theorem 3.0.3 and its proof that the minimum is achieved in (R) under our standing

assumptions of Theorem 4.0.4 provided in addition that the terminal cost function ϕ

is lower semicontinuous.

We say that the original problem (P ) is stable with respect to relaxation if the

equality JP = ĴR holds. Note that it is always the case when the running cost

ℓ(x, ·) is lower semicontinuous and convex in the velocity variable for each x. Also,

this property is known to be automatically satisfied (as yet another manifestation

of “hidden convexity” of continuous-time control systems) for nonconvex differential

inclusions with no endpoint constraints under Lipschitzian or MOSL assumptions;

see [6, 13, 15] for precise results, discussions, and references. As mentioned above,

the latter Lipschitz-type assumptions are not fulfilled for the sweeping process under

consideration. However, we conjecture that the relaxation stability automatically

holds for (P ) without any convexity of ℓ(x, ·) due to specific features of the controlled

sweeping process exploited partly in the proof of Theorem 6.0.15; so far we keep

relaxation stability as an assumption in the next theorem.
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Theorem 6.0.17. (strong convergence of discrete solutions). Let z̄(·) =

(x̄(·), ū(·), b̄(·)) be an optimal solution to problem (P ), which is stable with respect

to relaxation. Assume in addition that both terminal and running costs in (1.0.3) are

continuous at x̄(T ) and at (x̄(t), ˙̄x(t)) a.e. t ∈ [0, T ], respectively. Then any sequence

of optimal solutions z̄k(t) = (x̄k(t), ūk(t), b̄k(t)) to discrete problems (Pk) piecewise

linearly extended to [0, T ] converges to z̄(t) strongly in the space W 1,p([0, T ];R2n+1)

as k → ∞ whenever p ∈ [1,∞).

Proof. Due to the uniform boundedness results of Theorem 4.0.4 the strong

convergence z̄k(·) → z̄(·) in W 1,p([0, T ];R2n+1) as k → ∞ is invariant with respect to

all p ∈ [1,∞); so it is in fact sufficient to show that

lim
k→∞

∫ T

0

∥∥ ˙̄zk(t)− ˙̄z(t)
∥∥ dt = 0. (6.0.10)

Arguing by contradiction, suppose that (6.0.10) does not hold and then, invoking

the classical Dunford theorem on the weak compactness in L1([0, T ];R2n+1), find a

number γ > 0 and a function v(·) ∈ L1([0, T ];R2n+1) such that

lim
k→∞

∫ T

0

∥∥ ˙̄zk(t)− ˙̄z(t)
∥∥ dt→ γ and ˙̄zk(·) → v(·) weakly in L1([0, T ];R2n+1)

(6.0.11)

along a subsequence of k ∈ IN , which we identify as usual with the whole natural

series. Defining an absolutely continuous function z̃ : [0, T ] → R2n+1 by

z̃(t) :=
(
x0, ū(0), b̄(0)

)
+

T∫
0

v(s) ds for all t ∈ [0, T ],
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we easily get that ˙̃z(t) = v(t) a.e. t ∈ [0, T ] and that ˙̄zk(·) → ˙̃z(·) weakly in

L1([0, T ];R2n+1) as k → ∞. Furthermore, the convexity of the values of F1(·) in

(5.0.12) and the classical Mazur theorem on weak closure imply that z̃(·) is a feasible

trajectory to problem (P ) and hence to its relaxation (R).

Let {zk(·)}k∈IN be a sequence of feasible solutions to (Pk) strongly approximating

z̄(·) by Theorem 6.0.15. Since z̄k(·) is an optimal solution to (Pk) for each k ∈ IN , we

have

Jk[z̄
k] ≤ Jk[z

k], k ∈ IN. (6.0.12)

It follows from the strong convergence in Theorem 6.0.15, the continuity assumptions

of this theorem, and the Lebesgue dominated convergence theorem that

Jk[zk] → J [z̄] as k → ∞.

On the other hand, the arguments above and the construction of (R) ensure that

ĴR[z̃] = ϕ
(
x̃(T )

)
+

∫ T

0

ℓ̂
(
x̃(t), ˙̃x(t)

)
dt ≤ lim inf

k→∞
J [z̄k]

for the first component of z̃(·). Passing finally to the limit in (6.0.12) as k → ∞ with

taking into account (6.0.11) and the relaxation stability of (P ) , we arrive at

Ĵ [z̃] + γ ≤ J [z̄] = Ĵ [z̄], i.e. Ĵ [z̃] < Ĵ [z̄],

which contradicts the optimality of z̄(·) in the relaxed control problem and thus

justifies (6.0.10). This completes the proof of the theorem.
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Chapter 7

Necessary Optimality Conditions

The concluding chapter of this dissertation is devoted to deriving necessary optimality

conditions for the controlled sweeping problem (P ) by using the method of discrete

approximations [13, 15]. Employing the well-posedness of discrete approximation

problems (Pk) and strong convergence of their optimal solutions established in the

previous chapter, our further procedure is first to obtain necessary conditions for

optimal solutions to (Pk) and then to derive optimality conditions for (P ) by passing

to the limit from those for (Pk). The implementation of the second step in [13, 15] is

strongly based on Lipschitzian properties of differential inclusions, which is not the

case for the sweeping process. Here we develop another approach that utilizes the

constructive coderivative calculations given in Chapter 5.

Let us begin with deriving necessary conditions for optimal solutions to problems

(Pk) defined in (6.0.6)–(6.0.8), where F1 : R2n+1 →→ Rn is an arbitrary set-valued

mapping of closed graph while its special structure in (5.0.12) is not exploited so

far. For simplicity we assume in what follows that the cost functions ϕ and ℓ are

locally Lipschitzian around the points in question, although these assumptions can

be subsequently relaxed to lower semicontinuity.
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Theorem 7.0.18. (necessary optimality conditions for discrete approxima-

tions). Fix k ∈ IN and let z̄k = (x̄0, x̄
k
1, . . . , x̄

k
k, ū

k
0, ū

k
1, . . . , ū

k
k−1, b̄

k
0, b̄

k
1, . . . , b̄

k
k−1)

be an optimal solution to problem (Pk), where F1 : R2n+1 →→ Rn is an arbitrary

closed-graph mapping. Then there exist λk ≥ 0, ξki ∈ R (i = 0, . . . , k − 1), and

pk = (pk0, . . . , p
k
k) ∈ R(k+1)n, not equal to zero simultaneously, such that

−pkk ∈ λk∂φ(x̄kk) and

(pkj+1 − pkj
hk

, pkj+1−
1

hk
λkθkj ,−

2

hk
ξkj ū

k
j , 0

)
∈ λk(wk

j , v
k
j , 0, 0)+N

((
x̄kj ,

x̄kj+1 − x̄kj
hk

, ūkj , b̄
k
j

)
; gphF1

)
with some (wk

j , v
k
j ) ∈ ∂ℓ

(
x̄kj ,

x̄k
j+1−x̄k

j

hk

)
for j = 0, . . . , k − 1, where

θkj := 2

tj+1∫
tj

( x̄kj+1 − x̄kj
hk

−
.
x̄(t)

)
dt. (7.0.1)

Proof. Consider an extended new variable

z := (x0, x1, . . . , xk, y0, . . . , yk−1, u0, . . . , uk−1, b0, . . . , bk−1) ∈ R(3k+1)n+k

with the fixed initial vector x0 and define for it the following problem of mathematical

programming (MP ) with many equality and geometric constraints:

minimize φ0[z] := φ(xk) + hk

k−1∑
j=0

ℓ(xj, yj)

+
k−1∑
j=0

tj+1∫
tj

∥∥∥∥(xj+1, uj+1, bj+1)− (xj, uj, bj)

hk
−

(
.
x̄(t),

.
ū(t),

.

b̄(t)
)∥∥∥∥2

dt subject to

hj(z) := ∥uj∥2 − 1 = 0 for j = 0, . . . , k − 1,

gj(z) := xj+1 − xj − hkyj = 0 for j = 0, . . . , k − 1,
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z ∈ ∆j :=
{
z
∣∣ yj ∈ F1(xj, uj, bj)

}
for j = 0, . . . , k − 1, and (7.0.2)

z ∈ ∆k :=
{
z
∣∣ x0 is fixed}.

It is clear that problem (MP ) is equivalent to (Pk) for each fixed number k ∈ IN .

Necessary optimality conditions for problem (MP ) in terms of the limiting normal

cone (2.0.4) are given, e.g., in [13, Proposition 5.1]; see also [15, 18] for more discus-

sions and references. Applying this result to the given optimal solution z̄ = z̄k of Pk

in the form (MP ) and omitting the upper index “k” for simplicity, we find numbers

µ0 ≥ 0 and ξj ∈ R (j = 0, . . . , k − 1) as well as vectors ψj ∈ Rn (j = 0, . . . , k − 1)

and z∗j ∈ R(3k+1)n+k (j = 0, . . . , k), not equal to zero simultaneously, such that

z∗j ∈ N(z̄; ∆j) for j = 0, . . . , k and (7.0.3)

−z∗0 − . . .− z∗k ∈ ∂
(
µ0φ0

)
(z̄) +

k−1∑
j=0

(
∇gj(z̄)

)∗
ψj +

k−1∑
j=0

(
∇hj(z̄)

)∗
ξj. (7.0.4)

Letting λk := µ0 ≥ 0 and denoting

z∗j =
(
x∗0j, . . . , x

∗
kj, y

∗
0j, . . . , y

∗
(k−1)j, u

∗
0j, . . . , u

∗
(k−1)j, b

∗
0j, . . . , b

∗
(k−1)j

)
∈ R(3k+1)n+k

for j = 0, . . . , k, we have from the structures of the sets ∆j above that the first

component of z∗k is arbitrary while the others are zero and that the inclusions in

(7.0.3) are equivalent to

(x∗jj, y
∗
jj, u

∗
jj, b

∗
jj) ∈ N

((
x̄kj ,

x̄kj+1 − x̄kj
hk

, ūkj , b̄
k
j

)
; gphF1

)
,

x∗ij = y∗ij = u∗ij = b∗ij = 0, and

x∗kj = u∗kj = u∗kj = 0 for every i, j = 1, . . . , k − 1 with i ̸= j.
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Taking this into account, we get from (7.0.4) the following relationships:

−x∗jj = λkhkw
k
j + ψj−1 − ψj for j = 1, . . . , k − 1,

−y∗jj = λkhkv
k
j + λkθkj − hkψj for j = 1, . . . , k − 1,

−ψk−1 ∈ λk∂φ(x̄kk), and

−u∗jj = 2ξjū
k
j for j = 1, . . . , k − 1,

where (wk
j , v

k
j ) ∈ ∂ℓ

(
x̄kj ,

x̄k
j+1−x̄k

j

hk

)
for every j = 0, . . . , k − 1, and where the numbers

θkj are defined in (7.0.1). Denoting finally

pk0 := 0, pkk := ψk−1, and pkj := ψj−1 for j = 1, . . . , k − 1,

we arrive at all the necessary optimality conditions claimed in the theorem.

The next result is a consequence of Theorem 7.0.18 and the precise coderivative

calculations in Chapter 5 for set-valued mappings arising in the controlled sweeping

process.

Corollary 7.0.19. (necessary optimality conditions for the discretized sweep-

ing process). Let the mapping F1 in the framework of Theorem 7.0.18 be defined by

(5.0.12). Then for each k ∈ IN we have the relationships

−pkk ∈ ∂ϕ(x̄kk), (7.0.5)

pkj+1 − pkj
hk

= wk
j , ξkj = 0 for j = 0, . . . , k − 1, and (7.0.6)

(
wk

j , v
k
j

)
∈ ∂ℓ

(
x̄kj ,

x̄kj+1 − x̄kj
hk

)
, j = 0, . . . , k − 1, (7.0.7)

in the necessary optimality conditions of Theorem 7.0.18.
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Proof. It follows from the necessary conditions via the normal cone in Theo-

rem 7.0.18 and the coderivative definition (2.0.7) that

(pkj+1 − pkj
hk

−λkwk
j ,−

2

hk
ξkj ū

k
j , 0

)
∈ D∗F1

(
x̄kj , ū

k
j , b̄

k
j ,
x̄kj+1 − x̄kj

hk

)(
−pkj+1+

1

hk
λkθkj+λ

kvkj

)
for all j = 0, . . . , k− 1. Fix j and apply to the latter inclusion Proposition 5.0.12 and

the explicit coderivative calculations of Theorem 5.0.11. Then we have the following

three cases:

(i) If
⟨
x̄kj , ū

k
j

⟩
< b̄kj , then

pkj+1−pkj
hk

= λkwk
j and ξkj = 0.

(ii) If
⟨
x̄kj , ū

k
j

⟩
= b̄kj and

x̄k
j+1−x̄k

j

hk
̸= 0, then there are numbers ν ∈ R and t ≥ 0

such that ⟨
pkj+1 −

1

hk
λkθkj − λkvkj − t

x̄kj+1 − x̄kj
hk

, ūkj

⟩
= 0 and

(pkj+1 − pkj
hk

−λkwk
j ,−

2

hk
ξkj ū

k
j , 0

)
= ν

(
ūkj , x̄

k
j ,−1

)
−
(
0, λ

(
−pkj+1+

1

hk
λkθkj+λ

kvkj+t
x̄kj+1 − x̄kj

hk

)
, 0
)
,

where the number λ < 0 is uniquely defined by
x̄k
j+1−x̄k

j

hk
= λūkj . The latter inclusion

implies that ν = 0, and hence we get
pkj+1−pkj

hk
= λkwk

j and the equalities

− 2

hk
ξkj ū

k
j = λ

(
− pkj+1 +

1

hk
λkθkj + λkvkj + t

x̄kj+1 − x̄kj
hk

)
,⟨

ūkj ,−pkj+1 +
1

hk
λkθkj + λkvkj + t

x̄kj+1 − x̄kj
hk

⟩
= 0,

which ensure in turn that ξkj = 0. Our final case is:

(iii)
⟨
x̄kj , ū

k
j

⟩
= b̄kj and

x̄k
j+1−x̄k

j

hk
= 0. Employing Theorem 5.0.11(iii) leads us to

the same conclusion as in the previous case (ii).

Thus in all the three cases (i)–(iii) we get the necessary optimality conditions of

Theorem 7.0.18 with pk0 = 0 and ξkj = 0 for j = 0, . . . , k − 1. Due to the above
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nontriviality (λk, pk1, . . . , p
k
k) ̸= 0 these conditions ensure that λk > 0, which allows us

to set λk = 1 by normalization. Hence we arrive at (7.0.5)–(7.0.7) and complete the

proof of the theorem.

Now we are ready to derive necessary conditions for optimal solutions of the

original problem (P ) by passing to the limit from discrete approximations.

Theorem 7.0.20. (coderivative optimality conditions for the controlled sweep-

ing process). Let z̄(·) = (x̄(·), ū(·), b̄(·)) be an optimal solution to problem (P ),

which is assumed to be stable with respect to relaxation. Then there are functions

p : [0, T ] → Rn absolutely continuous on [0, T ] and (w(·), v(·)) ∈ L∞([0, T ];R2n) such

that

(0, 0, 0) ∈ D∗F1

(
x̄(t), ū(t), b̄(t),

.
x̄(t)

) (
v(t)− p(t)

)
a.e. t ∈ [0, T ], (7.0.8)

p(t) = p(T ) +

∫ t

T

w(s) ds with − p(T ) ∈ ∂φ
(
x̄(T )

)
, and (7.0.9)

(
w(t), v(t)

)
∈ co ∂ℓ

(
x̄(t), ˙̄x(t)

)
a.e. t ∈ [0, T ], (7.0.10)

where the coderivative of F1 from (5.0.12) is calculated in Proposition 5.0.12 and

Theorem 5.0.11.

Proof. Given the optimal solution z̄(·) to the original problem (P ), we construct

its discrete approximations (Pk) whose optimal solutions z̄k(·) = (x̄k(·), ūk(·), b̄k(·))

strongly converge to z̄(·) as k → ∞ by Theorem 6.0.17. Applying necessary optimality

conditions for zk(·) from Theorem 7.0.18 and Corollary 7.0.19 allows us to find dual
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elements pk = (pk0, . . . , p
k
k), v

k = (vk0 , . . . , v
k
k−1), and wk = (wk

0 , . . . , w
k
k−1) satisfying

the relationships (7.0.5), (7.0.6), and

(0, 0, 0) ∈ D∗F1

(
x̄kj , ū

k
j , b̄

k
j ,
x̄kj+1 − x̄kj

hk

)(
− pkj+1 −

1

hk
θkj + vkj

)
, j = 0, . . . , k − 1,

(7.0.11)

where the quantities θkj are defined in (7.0.1). For each k ∈ IN we extend the dis-

crete arcs pk(·) piecewise linearly to the whole interval [0, T ] similarly to zk(·), while

for wk(·) and vk(·) we consider their piecewise constant extensions to [0, T ]. It fol-

lows from (7.0.7), the well-known boundedness of the limiting subdifferential ∂ℓ by

the Lipschitz constant of ℓ, and standard functional analysis that the sequence of

(wk(t), vk(t)) is weakly compact in L2([0, T ];R2n). Hence we suppose with no rela-

beling that

wk(t) → w(t) and vk(t) → v(t) weakly in L2([0, T ];Rn) as k → ∞

for some w(·), v(·) ∈ L∞([0, T ];Rn) due to the uniform boundedness of vk(t) and

wk(t). The classical Mazur theorem ensures that there are convex combinations of

vk(t) and wk(t), which converge to v(t) and w(t), respectively, strongly in L2([0, T ];Rn)

and thus a.e. on [0, T ] along some subsequences. Furthermore, it follows from the first

relationship in (7.0.6) that the corresponding convex combinations of the piecewise

constantly extended “discrete derivatives”
pkj+1−pkj

hk
of pk(t) converge to w(t) a.e. on

[0, T ]. Using the boundedness of {pk(T )} by (7.0.5) and the Lipschitz continuity

of ϕ and then the Newton-Leibniz formula, we conclude that the sequence {pk(t)}
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converges uniformly on [0, T ] to the function

p(t) := p(T ) +

∫ t

T

w(s) ds for 0 ≤ t ≤ T

absolutely continuous on [0, T ] with the transversality condition−p(T ) ∈ ∂ℓ(x̄(t), ẋ(t)),

which follows by passing to the limit in (7.0.5) due to the well-known robustness

(closed graph) property of the limiting subdifferential. Employing further this ro-

bustness property of the subdifferential ∂ℓ and passing to the limit in (7.0.7) along

the a.e. convergent sequences of convex combinations of vk(t) and wk(t), we arrive at

the inclusion (7.0.10).

To complete the proof of the theorem, it remains passing to the limit in the

coderivative inclusion (7.0.11) as k → ∞. To proceed, define first

θk(t) :=
θkj
hk

for t ∈ [tj, tj+1), j = 0, . . . , k − 1,

and observe by (7.0.1) and Theorem 6.0.17 the L1-convergence of these extensions:∫ T

0

|θk(t)| dt =
k−1∑
j=0

|θkj | ≤ 2
k−1∑
j=0

∥∥ ˙̄x(t)− x̄kj+1 − x̄kj
hk

∥∥∥ dt
=

∫ T

0

∥ ˙̄x(t)− ˙̄xk(t)∥ dt→ 0 as k → ∞,

which implies the a.e. on [0, T ] convergence of a subsequence. Now we are able to

pass to the limit in inclusion (7.0.11) extended to the whole interval [0, T ] by taking

into account the established pointwise convergence of all the sequences therein, the

robustness of the coderivative with respect to all of its variables, and the coderivative

structure in Proposition 5.0.12 and Theorem 5.0.11 that allows us to replace the
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weakly convergent sequence of vk(t) by strongly convergent sequence of their convex

combination. Thus we arrive at (7.0.7) and complete the proof of the theorem.

Next we present several consequences of Theorem 7.0.20. The first one imposes

the differentiability assumption on the running cost.

Corollary 7.0.21. (coderivative optimality conditions for the controlled

sweeping process with smooth running costs). Suppose that in the frame-

work of Theorem 7.0.20 the running cost ℓ(·, ·) is strictly differentiable at (x̄(t), ˙̄x(t))

for a.e. t ∈ [0, T ]. Then

(0, 0, 0) ∈ D∗F1

(
x̄(t), ū(t), b̄(t), ˙̄x(t)

)(∫ T

t

∇xℓ
(
x̄(s), ˙̄x(s)

)
ds+∇vℓ

(
x̄(t), ˙̄x(t)

)
− p

)

for a.e. t ∈ [0, T ] with some constant p ∈ −∂φ
(
x̄(T )

)
.

Proof. By the strict differentiability assumption on ℓ we have

∂ℓ
(
x̄(t), ˙̄x(t)

)
=

{
∇ℓx

(
x(t), ˙̄x(t)

)
,∇ℓv

(
x(t), ˙̄x(t)

)}
.

Then the result readily follows from Theorem 7.0.20.

Taking further into account a particular coderivative kernel form of inclusion

(7.0.8) in Theorem 7.0.20 and its specification in Corollary 7.0.21 and then apply-

ing the coderivative kernel expressions given in Corollary 5.0.14, we can derive from

these results explicit necessary optimality conditions for (P ) formulated entirely via

the initial data of controlled sweeping process. Let us present some consequences of

this type .
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Corollary 7.0.22. (explicit optimality conditions for the sweeping process

with smooth running costs). In the setting of Corollary 7.0.21 the following hold

for a.e. t ∈ [0, T ] with some constant p ∈ −∂ϕ(x̄(T )):

(i) If 0 < ∥ ˙̄x(t)∥ < 1, then we have

∇vℓ
(
(x̄(t), ˙̄x(t)

)
+

∫ T

t

∇xℓ
(
(x̄(s), ˙̄x(s)

)
ds = p.

(ii) If ∥ ˙̄x(t)∥ = 1, then we have

∇vℓ
(
(x̄(t), ˙̄x(t)

)
+

∫ T

t

∇xℓ
(
(x̄(s), ˙̄x(s)

)
ds ∈ p+ R+

{
ū(t)

}
.

Proof. Follows from Corollary 7.0.21 and Corollary 5.0.14.

The next corollary characterizes optimal solutions to problem (P ) with no running

costs.

Corollary 7.0.23. (characterizations of optimal solutions for problems with

terminal costs). Let ℓ = 0 in the framework of Theorem 7.0.20. Then for a.e.

t ∈ [0, T ] exactly one of the following three cases holds:

(i) ˙̄x(t) = 0.

(ii) 0 < ∥ ˙̄x(t)∥ < 1 and 0 ∈ ∂φ
(
x̄(T ))

)
.

(iii) ∥ ˙̄x(t)∥ = 1 and R+ {ū(t)} ∩ ∂φ
(
x̄(T )

)
̸= ∅.

Proof. Follows from Theorem 7.0.20 and Corollary 5.0.14.

To conclude this dissertation, we present three examples showing how the opti-

mality conditions obtained above allow us to find optimal solutions to the controlled

sweeping process.
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Our first example concerns the optimal control problem (P ) with a smooth running

cost.

Example 7.0.24. (calculating optimal solutions for the sweeping process

with running costs). Consider the controlled sweeping process (1.0.4) with the

cost functional

minimize J [x] := φ
(
x(T )

)
+

T∫
0

∥∥ .
x(t)

∥∥2
dt,

i.e., with ℓ(x, v) = ∥v∥2 in (P ). Then the coderivative inclusion (7.0.8) is written as

(0, 0, 0) ∈ D∗F1

(
x̄(t), ū(t), b̄(t), ˙̄x(t)

)
(2 ˙̄x(t)− p) a.e. t ∈ [0, T ]

with some p ∈ −∂φ(x̄(T )). Let us examine all the possibilities for optimal solutions

to this problem based on the results of Corollary 7.0.22.

Consider first the case of p ̸= 0. If 0 < ∥ẋ(t)∥ < 1, then by Corollary 7.0.22(i) we

have 2 ˙̄x(t)− p = 0, i.e., ˙̄x(t) = p
2
. This implies that

ū(t) = −
˙̄x(t)

∥ ˙̄x(t)∥
= − p

∥p∥
,

and by ˙̄x(t) ̸= 0 it gives b̄(t) = ⟨x̄(t), ū(t)⟩.

If ∥ẋ(t)∥ = 1 in the case of p ̸= 0, then by Corollary 7.0.22 there is α ≥ 0 such

that

2 ˙̄x(t)− p = αū(t) for this t ∈ [0, T ]. (7.0.12)

It follows from the structure of the controlled sweeping process in (1.0.4) that the

vectors ū(t) and ˙̄x(t) are parallel and have the opposite directions. Then we conclude
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from (7.0.12) that the vectors ˙̄x(t) and p have the same direction. Since ∥ẋ(t)∥ = 1,

it gives that

˙̄x(t) =
p

∥p∥
, ū(t) = − p

∥p∥
, and b̄(t) = ⟨x̄(t), ū(t)⟩.

Consider finally the remaining case of p = 0. Then by Corollary 7.0.22 we have

that either ∥ ˙̄x(t)∥ = 1 or ∥ ˙̄x(t)∥ = 0 for a.e. t ∈ [0, T ]. If ∥ ˙̄x(t)∥ = 1 in this case,

then there is α ≥ 0 such that 2 ˙̄x(t) = αū(t). As mentioned above, the vectors ū(t)

and ˙̄x(t) have the opposite directions. This leads to ˙̄x(t) = 0, a contradiction. Thus

x̄(t) = 0 for all t ∈ [0, T ] and we arrive at the conclusion of x̄(t) ≡ x0 on [0, T ], which

completes our consideration.

The next example concerns problem (P ) with a specific while rather general ter-

minal cost that may not be smooth.

Example 7.0.25. (calculating optimal solutions for the sweeping process

with nonsmooth terminal costs). Consider problem (P ) with ℓ(x, v) = ∥v∥2 and

with terminal cost given by the distance square

φ(x) := dist2(x;K), x ∈ R,

where K is a closed set not containing the origin, and where the dynamics is given by

(1.0.4) with x0 = 0. Recall that we always assume that M = 1 in (4.0.3). It is well

known (see, e.g., [18, Example 8.53]) that the limiting subdifferential of the distance

function at points x /∈ K is given by the exact formula

∂dist(x;K) =
x− Π(x;K)

dist(x;K)
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via the (generally multivalued) Euclidean projector, and so we get by the elementary

subdifferential chain rule that

∂dist2(x;K) = 2
(
x− Π(x;K)

)
, x /∈ K.

Invoking the calculations in Example 7.0.24 gives us that optimal trajectories for this

problem have constant velocities and follow any of the steepest descent direction of

dist(x;K). Thus for every w ∈ Π(0;K) there exists an optimal trajectory in the

direction w. Setting p := −2(x(1)−w), we see that the velocity of the corresponding

optimal trajectory in the direction z is given by p/2 if 0 < ∥w∥ ≤ 2 and by w/∥w∥

if ∥w∥ > 2; the case x(1) = w ∈ K is impossible. To conclude our consideration,

observe that the terminal point (T = 1) of the optimal trajectory is x(1) = w/2 in

the first case and w/∥w∥ in the second one.

Note that in both Example 7.0.24 and Example 7.0.25 optimal trajectories x(·) of

the sweeping process happen to be of constant velocity. Our final example shows that

it is not always the case even for the two-dimensional sweeping process with smooth

cost functions, where the running cost does not depend on the velocity variable.

Example 7.0.26. (optimal sweeping trajectories with variable velocities).

Consider problem (P ) with the cost functions

φ(x) :=
(
x1 +

1

π

)2

+ x22 and ℓ(x) :=
(
x21 + x22 −

1

π2

)2

, x = (x1, x2) ∈ R2,

the initial condition x0 = (1/π, 0), and the terminal time T = 1. Since J [x̄] = 0 for
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the minimizing functional at the trajectory

x̄(t) =
1

π

(
cos(πt), sin(πt)

)
, t ∈ [0, 1],

this trajectory is optimal to (P ). Observe that x̄(·) satisfies the necessary optimality

condition from Corollary 7.0.22(ii) with p = 0. The corresponding optimal controls

are

ū(t) =
1

π

(
− sin(πt), cos(πt)

)
and b̄(t) = 0 for all t ∈ [0, 1].

Observe further that every optimal trajectory x̃(·) must satisfy the condition ∥x̃(t)∥ =

1/π for a.e. t ∈ [0, 1]; this follows from Corollary 7.0.22(i). In fact, if ∥x̃(t)∥ ≠ 1/π on

a set of positive measure, then p cannot be constant. Hence, the necessary optimality

condition given by Corollary 7.0.22(ii) becomes

(0, 0) ∈ 2
((
x1(1) + 1/π

)
, x2(1)

)
+ R+{ū(t)},

which yields, since ū(t) cannot be constant, that
(
x1(1), x2(1)

)
= (−1/π, 0). This

implies that ∥ ˙̃x(t)∥ = 1 for a.e. t ∈ [0, 1], and so the unique optimal trajectory to (P )

is x̄(·).
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Chapter 8

Discussion

Here are some problems we are working on this direction.

Sweeping process governed by polyhedral convex sets: We consider prob-

lem (1.0.4) in case C(t) is a convex polyhedra:

C(t) := {x ∈ Rn|⟨ui(t), x⟩ ≤ 0, i ∈ T := {1, ...,m}}, (8.0.1)

where controls ui : [0, 1] → Rn are Lipschitz functions for every i = 1, ..,m. In [8], the

authors establish an explicit representation of coderivatives of normal cone mappings

to covex polydehra given by

F (x(t)) := −NC(t)(x(t)), t ∈ [0, 1],

entirely in terms of the initial data of the convex polyhedron (8.0.1).

Staying in the flow of [4], the applicant intends to establish necessary optimality

conditions of this sweeping process governed by polyhedral convex sets. The existence

of optimal solution of this problem is also considered.

Sweeping process and applications to linear complementary systems:
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A linear complementarity system is governed by the simultaneous equations

.
x(t) = Ax(t) +Bu(t) (8.0.2)

y(t) = Cx(t) +Du(t) (8.0.3)

y(t) ≥ 0, u(t) ≥ 0, yT (t)u(t) = 0. (8.0.4)

The function u(·), x(·), y(·) take values in Rk,Rn and Rk, respectively; A,B,C

and D are constant matrices of appropriate dimensions. This problem is posed in

a general nonlinear setting (see (8.0.3)) where the right-hand side of the differential

inclusion in (8.0.2) depends on control functions u(·) and is certainly not completely

solved. For more detail, we refer the reader to [7] and the references therein. The

applicant intends to use the same approach applied in [4] to proceed.
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We formulate and study an optimal control problem for the sweeping (Moreau)

process, where control functions enter the moving sweeping set. To the best of our

knowledge, this is the first study in the literature devoted to optimal control of the

sweeping process. We first establish an existence theorem of optimal solutions and

then derive necessary optimality conditions for this optimal control problem of a

new type, where the dynamics is governed by discontinuous differential inclusions

with variable right-hand sides. Our approach to necessary optimality conditions is

based on the method of discrete approximations and advanced tools of variational

analysis and generalized differentiation. The final results obtained are given in terms

of the initial data of the controlled sweeping process and are illustrated by nontrivial

examples.
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