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Chapter 1

Introduction

Considering hybrid stochastic systems of switching diffusion type, this dissertation

develops asymptotic properties of solutions for systems of Kolmogorov’s backward

equations and stability analysis of singular systems with switching. By hybrid sys-

tems we mean such dynamical systems in which continuous dynamics and discrete

events coexist. Basically, the discrete events can change value only through dis-

crete “jump” while continuous processes dynamically evolve according to a differential

equation. Hybrid systems provide a convenient framework for modeling systems in

many emerging applications arising in physical sciences, biological sciences, engineer-

ing, and finance. In the past 15 years, there has been much effort in understanding

such systems. In fact, the coexistence of continuous and discrete events, in turn,

introduces new challenges for modeling, analysis, and computation. A new trend is

to use a continuous-time Markov chain to represent the discrete events.

Our analysis is partly based on Markov processes. The theory of Markov chains

can be traced back to the work of Markov, who introduced the concept in 1907.

Kolmogorov systematized the theory in the early 1930s. It has experienced significant

advances in the last few decades. To mention some of the important contributions,
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we mention the work of Doeblin, Doob, Levy, Chung, Dynkyn, and so on. Especially,

fundamental work on continuous-time Markov chains was done by Doob in the 1940s

and Levy in the 1950s. A new modern treatment of the theory is in Ethier and Kurtz

[14].

The premise of the model can be seen from the following example. Many important

movements in economy arise from discrete events. For example, a nation’s economy

sometimes appear quite calm and at other instances are rather volatile. To describe

how this volatility changes over time is by far important. It is easily seen that

monetary, fiscal, or income policies, often change in a way referred to as shocks in

economics. These shifts cannot be observed directly. These discrete events are often

governed by hidden random processes. Since late 80’s, increasing interests on using

Markov-based models in economics have been shown. Although most of these efforts

are devoted to time series analysis (see Brunner [6], Cai [7], Hamilton and Susmel

[18], Hansen [19, 20] and the references therein), it is conceivable that the use of

Markov-based models will play a more and more prominent role in the future. Similar

to the consideration of stock market, a continuous-time Markov chain can be used to

formulate the trend of the economy. For example, suppose that the economy has two

possible “states,” fast growth phase (denoted by 2) and slow growth phase (denoted by

1). At any given time t, the economy will be in either the fast growth state or the slow

growth state governed by the outcome of a Markov chain. Similarly, consider another

example with the use of unemployment data, the economy may be said to be in state
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1 if the unemployment rate is rising and in state 2 if the unemployment rate is falling.

Corresponding to the two states, either the economic growth or the unemployment

rates, the regimes or configurations of system differ resulting in different coefficients

of the model. This then leads to a hybrid or switching model modulated by a Markov

chain with finite state space.

In addition, another challenge arises from state space of discrete events. Fre-

quently, dynamic systems in the real world are very large and complex. For example,

in a multi-sector economy, it is likely that the state space of α(·) is large. The large

number of states of the underlying chain gives a detailed representation of the po-

sition of the economy. Mathematically, to model complex world scenarios, the state

space of the Markov chain is often large. This causes the underlying computational

tasks infeasible. For instance, treating controlled linear quadratic systems that are

modulated by a continuous-time Markov chain, one needs to solve a system of Riccati

equations in lieu of a single Riccati equation. The large-scale nature of the Markov

chain often makes the amount of computation insurmountable. Reducing computa-

tional complexity becomes an important task. In this dissertation, we use two-time

scale approach to overcome this challenge.

It has long been recognized that in large-scale systems, not all components or

subsystems evolve at the same speed. Some of them vary rapidly, whereas others

change slowly. Using the contrast of different rates of variations, one may introduce

two-time scales. The main premise is: One may split a large state space of the
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underlying Markov chain into smaller subspaces so that within each subspace, the

states switch back and forth at essentially the same rate. It would be ideal, if we

could completely separate these subspaces. However, this cannot be done in general.

The state space cannot be separated as isolated subspaces. They can only be split

to weakly coupled subspaces, termed as nearly completely decomposable spaces. We

may use the different rates of change to aggregate the states into clusters or subspaces

so that within each subspace, the process changes relatively frequently, whereas from

one subspace to another, the transitions take place relatively infrequently. Using a

representative in each subspace to represent all of its states (or aggregating all the

states in the subspace into one super state), we obtain an aggregated process. Using

aggregation, the effective state space becomes a substantial reduction of complexity

can be achieved. To formulate such problems, we introduce a small parameter into

the system resulting in two distinct time scales, the normal time and the fast time.

In the literature, there have been much effort devoted to singular perturbation

methods and their applications. Aggregation in dynamic systems were considered in

Simon and Ando [47] (see also Courtois [12]), in which the term nearly completely

decomposability was coined. In Phillips and Kokotovic [44], singularly perturbed

Markov chains were examined thoroughly. General discussion on singular perturba-

tion techniques can be found in Bogoliubov and Mitropolski [3] and many other ref-

erences. Singular perturbation theory has a wide range of applications. In Sethi and

Zhang [45], Sethi et al. [46], the authors made effective use of hierarchical structures
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of Markovian systems in production planning and manufacturing. For applications in

chemical physics, we refer the reader to Kampen [25] among others. Related applica-

tions can be found in Kokotovic et al. [32], Phillips and Kokotovic [44], and references

therein. Recent works on two-time-scale modeling using diffusions could be found in

Fouque et al. [17], where stochastic volatility was modeled by use of the fast-slow

diffusions. An up-to-date treatment of switching diffusions can be found in Mao and

Yuan [37], Yin and Zhu [53], and references therein. Two-time-scale expansion has

emerging applications in communication theory (see Tse et al. [49]), physics, and so

on.

Owing to their applications across different disciplines, asymptotic properties and

stability of hybrid systems have drawn much attention. We often need to study Kol-

mogorov forward equations (KFEs) and Kolmogorov backward equations (KBEs),

which usually describe the density of processes and the expected cost functions, re-

spectively. In literature, weak convergence methods were used in Anisimov [1], Khas-

minskii [26], Pardoux and Veretennikov [41, 42, 43], Skorokhod [48] among others.

Asymptotic expansions of solutions of forward equations were presented in Khasmin-

skii et al. [30, 31], Yin and Zhang [50], in which matched asymptotic expansions

were constructed to approximate the solutions. The problems of systems of forward

equations for switching diffusions have been worked out in Il’in et al. [22, 23]. In

many applications, instead of treating the forward equations, we need to deal with

the backward systems. The study of certain asymptotic properties of the backward
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equations was carried out in Matkowsky and Schuss [38], Papanicolaou [39, 40] for

small perturbation with the main focus on the leading term of the asymptotic ex-

pansions. Most recent results dealing with singularly perturbed backward equations

for diffusions can be found in Khasminskii and Yin [29] where the fast diffusion was

considered.

The second part of the dissertation is devoted to stability. It is concerned with

regular systems and singular systems. Some of the recent effort in stability of jump

systems can be found in Feng et al. [16], Ji and Chizeck [24], Mao [36] (see also

Khasminskii [27], Kushner [33], Mao [35], and the references therein for general dis-

cussion on stochastic stability). Linear systems were treated in Feng et al. [16], Ji

and Chizeck [24], whereas nonlinear systems were dealt with in Mao [36]. Stability of

hybrid dynamic systems containing singularly perturbed random processes was stud-

ied in Badowski and Yin [2]. On the other hand, singular systems, which have many

synonyms such as descriptor systems, generalized systems, and implicit systems, are

featured in differential-algebraic equations (DAEs). They arise in various applications

in physical sciences, engineering, and economic systems. Owing to their importance,

such systems have been studied extensively and used widely in control and optimiza-

tion tasks. For some recent literature, we refer the reader to Campbell [8, 9], Cheng

et al. [10], Dai [13], Lewis [34] among others. While the references mentioned above

are all concerned with deterministic systems, recent works also include formulation,

analysis, and computation involving stochastic systems; see Boukas [4], Boukas et al.
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[5], Huang and Mao [21], Yin and Zhang [51], among others.

The rest of this dissertation begins with a review of hybrid systems and the

regime-switching models. Chapter 3 is concerned with the construction of asymp-

totic expansions of solutions of systems of Kolmogorov backward equations. We treat

Kolmogorov backward equations with terminal value conditions; both fast switching

and rapid diffusion are considered. In addition, the corresponding errors bound is

obtained. In the second part of the dissertation, we study the stability of singular

jump-linear systems with a large state space. In chapter 4, we established sufficient

conditions for stability of solutions of singular linear hybrid systems. Using the limit

of the system as a guide, we employ perturbed Liapunov function methods to show

that if the limit system is stable so is the original system in a suitable sense for ε

small enough. A few further remarks are provided in Chapter 5.
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Chapter 2

Preliminaries

This chapter is devoted to certain background materials used in the rest of this

dissertation. In what follows, we focus on Markov chains in Section 2.1, irreducibility

and quasi-stationary distribution in Section 2.2, and switching-diffusion processes in

Section 2.3.

2.1 Markov Chains

Throughout the dissertation, we denote M = {1, 2, · · · ,m}. For any matrix A, we

use A′ to represent its transpose. A jump process is a stochastic process with right

continuous and piecewise constant sample paths.

Definition 2.1.1. Let α(·) = {α(t) : t ≥ 0} be a jump process defined on (Ω,F , P )

taking values in M.Then α(·) is a Markov chain with state space if

P (α(t) = i|α(r) : r ≤ s) = P (α(t) = i|α(s))

for all 0 ≤ s < t and i ∈ M.

For any i, j ∈ M and t ≥ t ≥ s ≥ 0, denote P (t, s) the transition matrix (pij(t, s))

of the Markov chain α(·), where pij(t, s) = P (α(t) = j|α(s) = i). If this transition
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probability depends only on (t − s), then α(·) is called stationary. Otherwise, it is

non-stationary.

Definition 2.1.2. The matrix Q(t) = (qij(t)) for t ≥ 0 is said to satisfy q-property

if for all i, j ∈ M and t ≥ 0, qii(t) = −
∑

k ̸=i qik(t) and qij(t) is Borel measurable,

uniformly bounded, and positive.

Any matrix that satisfies q-property may be called a generator. Let Q(x, t) be an

x-dependant generator; that is, Q(x, ·) is a generator for each x. From now on, for

i ∈ M and an appropriate function u on M, we denote

Q(x, t)u(x, ·)(i) =
∑
j∈M

qij(x)u(x, j) =
∑

j∈M,j ̸=i

qij(x) (u(x, j)− u(x, i))

2.2 Irreducibility and quasi-stationary distribution

Definition 2.2.1. (irreducibility)

1. A generator Q(t) is said to be weakly irreducible if the system of equations

ν(t)Q(t) = 0,
m∑
i

νi(t) = 1 (2.2.1)

has a unique solution and all coordinates of this solution is non-negative.

2. A generator Q(t) is said to be strongly irreducible, or simply irreducible, if all

coordinate of the unique solution of (2.2.1) is positive.
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For example, Q1 =

−2 2

0 0

 is weakly irreducible, but it is not irreducible,

whereas Q2 =

−2 2

4 −4

 is irreducible.

Definition 2.2.2. For t ≥ 0, ν(t) is termed a quasi-stationary distribution if it is

the unique solution of (2.2.1) with non-negative coordinates.

2.3 Switching-diffusion processes

Let B(·) be an Rd-valued standard Brownian motion defined in a filtered probability

space (Ω,F , {Ft} , P ). For suitable functions b(·, ·, ·) and σ(·, ·, ·), the two-component

(X(·), α(·)) is called a switching diffusion or a regime-switching diffusion if the con-

tinuous dynamics satisfies stochastic differential equations

dX(t) = b(X(t), α(t), t)dt+ σ(X(t), α(t), t)dB(t), X(0) = x, α(0) = ι, (2.3.1)

and the pure jump process α(·) satisfies the transition law

P (α(t+∆) = j|α(t) = i,X(s), α(s), s ≤ t) = qij(X(t))∆ + o(∆). (2.3.2)
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Associated with (2.3.1) and (2.3.2), there is an operator L defined by

Lf(x, ι, t) = lim
∆t→0

1

∆t
E
(
[f(X(t+∆t), α(t+∆t), t+∆t)− f(x, ι, t)]

∣∣∣
X(t) = x, α(t) = ι}

=
∂f(x, ι, t)

∂t
+∇f(x, ι, t)b(x, ι, t) + Tr(∇2f(x, ι, t)A(x, ι, t))

+Q(x, t)f(x, ·, t)(ι)

=
∂f(x, ι, t)

∂t
+

m∑
i=1

bi(x, ι, t)
∂f(x, ι, t)

∂xi

+
1

2

m∑
i,j=1

aij(x, ι, t)
∂2f(x, ι)

∂xi∂xj
+Q(x, t)f(x, ·, t)(ι),

(2.3.3)

where ∇ and ∇2 denote the gradient and Hessian operator respectively and A =

(aij) = σσ′.

Figure 2.1: Switching-diffusion process

Figure (2.1) illustrates the motion of switching-diffusion processes. Suppose that
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there are m identical circles. On each circle, the underlying process evolves as a

diffusion, and it jumps from one circle at position x to the same point on another circle

instantaneously. The law of transitions satisfies equation (2.3.2). If it may jump to

any point on another circle instantaneously, then integro-differential equations involve

(see Il’in et al. [22]). More details about switching-diffusion can be found in Yin and

Zhu [53, chapter 2].
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Chapter 3

Asymptotic Expansions of

Solutions of Systems of

Kolmogorov Backward Equations

for Two-Time-Scale Switching

Diffusions

3.1 Introduction

This chapter is concerned with systems of Kolmogorov backward equations, which

arise in switching diffusions and describe properties of the associated functionals. Is

it possible to construct asymptotic expansions for hybrid switching systems? In this

chapter, we answer this question by analytic methods. The structure of the chapter

is as follows.

Section 3.2 presents the problem formulation. One distinct feature considered here
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is: We do not assume that the jump process to be Markov, but rather, the switching

component has a generator Q(x, t) that depends both on the continuous state x and

the time t. That is, the switching process is not homogeneous in time and is coupled

with the continuous dynamics. For recent results on switching diffusions, we refer the

reader to Zhu and Yin [54].

In light of the different rates of changes, we treat two distinct cases, namely, the

fast-varying switching in Section 3.3 and the rapidly-changing diffusion in Section

3.4. In the first case, although the discrete component lives in a finite set, the set is

rather large owing to various modeling considerations of complex systems and ran-

dom environments. As a result, one often has to treat a large dimensional system of

partial differential equations. Aiming at reducing the computational complexity, we

introduce a two-time-scale formulation in the models. We may divide the large state

space of the discrete component to subspaces such that the interactions within each

subspace are frequent, but the changes from one subspace to another are relatively

rare. Lumping the states in each subspace into a single super-state leading to a re-

duced system. Corresponding to the reduced system, the total number of Kolmogorov

PDEs is substantially less than that of the original one. Thus, we achieve the goal of

reduction of complexity by aggregating states and by taking appropriate averaging.

In the second case, the diffusion part has two diffusion processes. One of them is

fast varying, whereas the other is slowly changing. Suppose that we are interested

in finding the optimal controls of a suitable cost function for this switching diffusion.



15

It is difficult to solve the problem directly due to the different time scales and the

interactions of the continuous dynamics with that of the discrete events. Nevertheless,

under suitable conditions, the fast-varying diffusion does not blowup, but it has an

invariant probability measure. As a result, it may be viewed as a noise and can be

averaged out with respect to the invariant measure leading to a limit system. We

can proceed to use the optimal control of the limit system (assuming that it has an

optimal control) to construct controls of the original system. This leads to near-

optimal controls of the original systems with reduced computational effort.

For both cases, our approach is constructive. It provides a step-by-step and induc-

tive procedure. Using averaging techniques, we derive asymptotic expansions leading

to a reduction of complexity. Upon obtaining the formal asymptotic expansions,

we derive the error bounds. This enables us to show that the asymptotic series so

constructed are uniformly valid with desired uniform error bounds.

The novelty of our approaches includes the following aspects. (1) In both the

aforementioned papers, the switching takes place in an irreducible finite set, whereas

the switching is allowed to evolve in several irreducible classes in our work. (2) The

solutions of the forward equations are probability measures, whereas those of the

backward equations are functionals. To facilitate the analysis, new techniques are

developed in our work. (3) For the forward equations, the probabilistic nature enables

us to use the orthogonality (with respect to the invariant measure) directly, whereas

in our work, we need to bring out certain orthogonality from tangled information. We
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note that the asymptotic expansions constructed will be of utility for many control

and optimization problems of large-scale and complex systems.

Section 3.5 gives some illustrations and remarks.

3.2 Problem formulation

Consider a switching diffusion, a Markov process Y (t) having two components, a

continuous component X(t) and a switching component α(t). The state space of the

process is

X = S ×M

where S is the unit circle and M = {1, . . . ,m}. By identifying the endpoints 0 and

1, let x ∈ [0, 1] be the coordinates in S. Suppose

b(·, ·, ·) : [0, 1]×M× [0, T ] → R

σ(·, ·, ·) : [0, 1]×M× [0, T ] → R.

The dynamics of the process can be represented by the following stochastic differential

equation

dX(t) = b(X(t), α(t), t)dt+ σ(X(t), α(t), t)dB(t), (3.2.1)

together with transition law for the second component α(t)

P (α(t+∆) = ℓ|α(t) = k,X(t) = x) = qkℓ(x, t)∆ + o(∆), (3.2.2)
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where o(∆)/∆ → 0 as ∆ → 0. In the above, B(·) is a standard real-valued Brownian

motion, and Q(x, t) = (qkℓ(x, t)) is an x and t dependent generator for the jump

process satisfying for each k, ℓ ∈ M,

qkℓ(x, t) ≥ 0, when k ̸= ℓ, and
∑
ℓ∈M

qkℓ(x, t) = 0.

Associated with (3.2.1) and (3.2.2), there is an operator L defined by

L(x, t)u(x, t) = (L1(x, t)u(x, 1, t), . . . ,Ll(x, t)u(x,m, t))
′ where

Lk(x, t)u(x, k, t) =
1

2
a(x, k, t)

∂2

∂x2
u(x, k, t) + b(x, k, t)

∂

∂x
u(x, k, t), k ∈ M,

(3.2.3)

u(x, k, t) is a real-valued function for each k ∈ M,

u(x, t) = (u(x, 1, t), . . . , u(x,m, t))′ ∈ Rm,

and

a(x, k, t) = σ2(x, k, t), k ∈ M.

Consider the following system of equations

− ∂

∂t
u(x, k, t) = Lk(x, t)u(x, k, t) +Q(x, t)u(x, ·, t)(k), k ∈ M,

u(x, k, T ) = g(x, k), k ∈ M,
(3.2.4)

where for each k = 1, . . . ,m, u(·, k, ·) ∈ C2,1([0, 1]× [0, T ]) (twice continuously differ-

entiable with respect to x and continuously differentiable with respect to t), and

Q(x, t)u(x, ·, t)(k) =
∑
ℓ∈M

qkℓ(x, t)u(x, ℓ, t).

System (3.2.4) is the well-known system of Kolmogorov backward equations.
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3.3 Switching Diffusions with Rapid Switching

Let ε > 0 be a small parameter, αε(·) be a jump process with state space M and

Q(x, t) is of the form

Qε(x, t) =
Q̃(x, t)

ε
+ Q̂(x, t). (3.3.1)

Henceforth, we relabel the states of M so that

M = M1 ∪M2 · · · ∪Ml ∪M∗ (3.3.2)

where

Mı = {sı1, . . . , sımı},

for ι = 1, . . . , l and

M∗ = {s∗1, . . . , s∗m∗}.

In what follows, we will use sıȷ with ı = 1, . . . , l, ∗ and ȷ = 1, . . . ,mı to denote a

state in M. Sometimes, when we use k ∈ M, we mean k is one of the sıȷ’s. This

convention will be used throughout the section.

Assume that Q̃(x, t) is of the form:

Q̃(x, t) =



Q̃1(x, t)

. . .

Q̃l(x, t)

Q̃1
∗(x, t) . . . Q̃l

∗(x, t) Q̃∗(x, t)


. (3.3.3)

Denote

uε(x, t) = (uε(x, sıȷ, t) : sıȷ ∈ M, ı = 1, . . . , l, ∗, ȷ = 1, . . . ,mı)
′,

g(x) = (g(x, sıȷ) : sıȷ ∈ M, ı = 1, . . . , l, ∗, ȷ = 1, . . . ,mı)
′.
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Then the system of different equations (3.2.4) has the form

− ∂

∂t
uε(x, t) = L(x, t)uε(x, t) +Qε(x, t)uε(x, t), (3.3.4)

uε(x, T ) = g(x). (3.3.5)

We make the following assumptions.

(A1) For each ı = 1, . . . , l, t ∈ [0, T ], and each x ∈ [0, 1], Q̃ı(x, t) is weakly irreducible

in that for any ı = 1, . . . , l and x ∈ [0, 1],

νı(x, t)Q̃ı(x, t) = 0, νı(x, t)11mı =
mı∑
ȷ=1

νıȷ(x, t) = 1,

where 11mı = (1, . . . , 1)′ ∈ Rmı , has a unique solution, and the solution is termed

a quasi-stationary distribution.

(A2) For some positive integer n, Q̃(·, ·) and Q̂(·, ·) ∈ C2(n+2),n+2([0, 1]× [0, T ]). That

is, Q̃(·, ·) and Q̂(·, ·) are 2(n+ 2)-times continuously differentiable with respect

to x and (n+ 2)-times continuously differentiable with respect to t.

(A3) For each t ∈ [0, T ] and x ∈ [0, 1], Q̃∗(x, t) is Hurwitz (i.e., all of its eigenvalues

have negative real parts).

(A4) For each k ∈ M, g(·, k) are periodic in x with period 1 and g(·, k) ∈ C2(n+2)([0, 1]).

(A5) For each k ∈ M, a(·, k, t), b(·, k, t) are periodic in x with period 1 for all

t ∈ [0, T ] and a(·, k, ·), b(·, k, ·) ∈ C2(n+2),n+2([0, 1]× [0, T ]).
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3.3.1 Construction of Asymptotic Expansions

For convenience, we use a stretched variable

τ =
T − t

ε
, (3.3.6)

which magnifies the details of the solution near the terminal time T . Denote

Φε
n(x, t) = (Φε

n(x, k, t) : k = sıȷ, ı = 1, . . . , l, ∗, ȷ = 1, . . . ,mı)
′,

Ψε
n(x, τ) = (Ψε

n(x, k, t) : k = sıȷ, ı = 1, . . . , l, ∗, ȷ = 1, . . . ,mı)
′.

We aim to approximate the solution uε(x, t) of (3.3.4) by

Φε
n(x, t) + Ψε

n(x, τ), where

Φε
n(x, t) =

n∑
j=0

εjϕj(x, t), Ψε
n(x, τ) =

n∑
j=0

εjψj(x, τ).
(3.3.7)

In constructing the asymptotic expansions, to obtain the desired estimates, we

need to compute a couple of more terms. Thus, we need to compute Φε
i (x, t) for

i ≤ n+2. Substituting Φε
i (x, t) for i = 0, . . . , n+2 into (3.2.4) and equating coefficients

powers of εi, we obtain:

Q̃(x, t)ϕ0(x, t) = 0,

Q̃(x, t)ϕ1(x, t) = − ∂

∂t
ϕ0(x, t)− (L+ Q̂)(x, t)ϕ0(x, t),

· · · · · ·

Q̃(x, t)ϕi+1(x, t) = − ∂

∂t
ϕi(x, t)− (L+ Q̂)(x, t)ϕi(x, t),

(3.3.8)

for i = 1, . . . , n+ 2, where

L(x, t)ϕi(x, t) = (Lk(x, t)ϕi(x, k, t) : k = sıȷ, ı = 1, . . . , l, ∗, ȷ = 1, . . . ,mı)
′. (3.3.9)
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Likewise, substituting Ψi(x, τ) for i ≤ n+ 2 into (3.3.4), we obtain

∂

∂τ

(
i∑

j=0

εjψj(x, τ)

)
=

i∑
j=0

εj
(
Q̃(x, T − ετ) + ε(L+ Q̂)(x, T − ετ)

)
ψj(x, τ).

(3.3.10)

For simplicity, we denote the jth-order partial derivative w.r.t. t by

f (j)(x, t) =
∂jf(x, t)

∂tj

in what follows. By means of the Taylor expansion, we have

Q̃(x, T − ετ) =
i∑

j=0

Q̃(j)(x, T )

j!
(−ετ)j + R̃i(x, ετ),

ε(L+ Q̂)(x, T − ετ) =
i−1∑
j=0

(L+ Q̂)(j)(x, T )

j!
ε(−ετ)j + R̂i−1(x, ετ),

where R̃i(x, ετ) = O(εi+1) and R̂i−1(x, ετ) = O(εi+1) uniformly in x ∈ [0, 1] for any

τ > 0. Equating coefficients of powers of εi, for i = 0, 1, . . . , n + 2 and using the

Taylor expansions above, we obtain

∂ψ0(x, τ)

∂τ
= Q̃(x, T )ψ0(x, τ),

∂ψ1(x, τ)

∂τ
= Q̃(x, T )ψ1(x, τ) +

(
−τQ̃(1)(x, T ) + (L+ Q̂)(x, T )

)
ψ0(x, τ),

· · · · · ·
∂ψi(x, τ)

∂τ
= Q̃(x, T )ψi(x, τ) + ri(x, τ)

ri(x, τ) =
i−1∑
j=0

(
(−τ)i−j Q̃

(i−j)(x, T )

(i− j)!
+ (−τ)i−j−1 (L+ Q̂)(i−j−1)(x, T )

(i− j − 1)!

)
ψj(x, τ).

(3.3.11)

From the initial condition, we derive

ϕ0(x, T ) + ψ0(x, 0) = g(x) and ϕi(x, T ) + ψi(x, 0) = 0, for i > 0.
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Therefore, we obtain

ψ0(x, τ) = exp(Q̃(x, T )τ)(g(x)− ϕ0(x, T )),

ψi(x, τ) = − exp(Q̃(x, T )τ)ϕi(x, T ) +

∫ τ

0

exp(Q̃(x, T )(τ − s))ri(x, s)ds, for i > 0.

(3.3.12)

Denote

1̃1(x, t) =



11m1

. . .

11ml

d1(x, t) . . . dl(x, t)


, (3.3.13)

where dı(x, t) = −Q̃−1
∗ (x, t)Q̃ı

∗(x, t)11mı , for ı = 1, . . . , l.

In what follows, we will prove the smoothness of φi for 0 ≤ i ≤ n + 2 and the

exponential decay of ψi for 0 ≤ i ≤ n + 1 which implies the desired error bound by

Lemma 3.3.9.

Lemma 3.3.1. The solutions of the equation Q̃(x, t)ϕ(x, t) = 0 are given by

ϕ(x, t) = 1̃1(x, t)β(x, t)

with β(x, t) = (β1(x, t), . . . , βl(x, t))′ ∈ Rl. More precisely, ϕ(x, t) is of the partitioned

form

ϕ(x, t) = ([ϕ1(x, t)]′, . . . , [ϕl(x, t)]′, [ϕ∗(x, t)]′)′,

such that ϕı(x, t) ∈ Rmı×1 and ϕ∗(x, t) ∈ Rm∗×1 satisfy

ϕı(x, t) = βı(x, t)11mı ,

ϕ∗(x, t) =
l∑

ı=1

βı(x, t)dı(x, t).
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Proof. Let ϕ(x, t) = ([ϕ1(x, t)]′, . . . , [ϕl(x, t)]′, [ϕ∗(x, t)]′)′ be a solution of the above

equation. Then for any ı = 1, . . . , l,

Q̃ı(x, t)ϕı(x, t) = 0,
l∑

ı=1

Q̃ı
∗(x, t)ϕ

ı(x, t) + Q̃∗(x, t)ϕ
∗(x, t) = 0.

Thus

ϕı(x, t) = βı(x, t)11mı ,

ϕ∗(x, t) =
l∑

ı=1

−βı(x, t)Q̃−1
∗ (x, t)Q̃ı

∗(x, t)11mı .

The lemma is proved. 2

Denote

P (x) = 1̃1(T )ν(x, T ) =



11m1ν
1(x, T )

. . .

11ml
νl(x, T )

d1(x, T )ν1(x, T ) . . . dl(x, T )νl(x, T ) 0m∗×m∗


(3.3.14)

with

ν(x, t) = (diag(ν1(x, t), . . . , ν l(x, t), 0l×m∗)) =


ν1(x, t) 01×m∗

. . .
...

νl(x, t) 01×m∗

 .

(3.3.15)

Lemma 3.3.2. For each ı = 1, . . . , l, suppose that Q̃ı(x, T ) is weakly irreducible.

Then there exist constants C and γ such that

| exp(Q̃ı(x, T )τ)− 11mıν
ı(x, T )| ≤ Ce−γτ .
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Proof. See Yin and Zhang [52, Lemma A.2].

Lemma 3.3.3. There exists positive constants γ and C such that

| exp(Q̃(x, T )τ)− P (x)| ≤ Ce−γτ , for all τ,

where |A| is the matrix norm, e.g., |A| = ∥A∥∞.

Proof. To prove this lemma, it suffices to show for all m-column vector z

∣∣∣[exp(Q̃(x, T )τ)− P (x)
]
z
∣∣∣ ≤ Ce−γτ |z|.

Given z = (z1, . . . , zl, z∗)′ ∈ Rm×1, set

y(x, τ) = (y1(x, τ), . . . , yl(x, τ), y∗(x, τ))′ = exp(Q̃(x, T )τ)z.

Then

P
¯
(x)z =



11m1ν
1(x, T )z1

...

11ml
ν1(x, T )zl

l∑
ı=1

dı(x, T )νı(x, T )zı


and y(x, τ) is a solution to

dy(x, τ)

dτ
= Q̃(x, T )y(x, τ), y(x, 0) = z.

It follows that

dy∗(x, τ)

dτ
= Q̃∗(s, T )y

∗(x, τ) +
l∑

ı=1

Q̃ı
∗(x, T )y

ı(x, τ), y∗(x, 0) = z∗,



25

and for ı = 1, . . . , l,

dyı(x, τ)

dτ
= Q̃ı(x, T )yı(x, τ), yı(x, 0) = zı.

Then

y∗(x, τ) = exp(Q̃∗(x, T )τ)z
∗ +

l∑
ı=1

∫ τ

0

exp(Q̃∗(x, T )(τ − s))Q̃ı
∗(x, T )y

ı(x, s)ds,

and for each ı = 1, . . . , l,

yı(x, τ) = exp(Q̃ı(x, T )τ)zı.

By Lemma 3.3.2,

|yı(x, τ)− 11mıν
ı(x, T )zı| = | exp(Q̃ı(x, T )τ)− 11mıν

ı(x, T )||zı| ≤ C e−γτ |z|.

Since Q̃∗(x, τ) is a Hurwitz matrix, we have

Q̃−1
∗ (x, T ) = −

∫ ∞

0

exp(Q̃∗(x, T )s)ds

= −
∫ τ

0

exp(Q̃∗(x, T )(τ − s))ds−
∫ ∞

τ

exp(Q̃∗(x, T )s)ds.

Therefore,

y∗(x, τ)−
l∑

ı=1

dı(x, T )νı(x, T )zı

= exp(Q̃∗(x, T )τ)z
∗ +

l∑
ı=1

∫ τ

0

exp(Q̃∗(x, T )(τ − s))Q̃ı
∗(x, T )y

ı(x, s)ds

+
l∑

ı=1

Q̃−1
∗ (x, T )Q̃ı

∗(x, T )11mıν
ı(x, T )zı

= A0 + A∞ +
l∑

ı=1

Aı,
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where

A0 = exp(Q̃∗(x, T )τ)z
∗,

A∞ = −
l∑

ı=1

∫ ∞

τ

exp(Q̃∗(x, T )s)Q̃
ı
∗(x, T )11mıν

ı(x, T )zıds

Aı =

∫ τ

0

exp(Q̃∗(x, T )(τ − s))Q̃ı
∗(x, T )[exp(Q̃

ı(x, T )τ)− 11mıν
ı(x, T )]zıds.

for ι = 1, . . . , l. For the first two terms, we have

|A0| ≤ C e−γτ |z|

|A∞| ≤ C

∫ ∞

τ

e−γs |z|ds = C e−γτ |z|.

Moreover, owing to Lemma 3.3.2, for each ı = 1, . . . , l,

|Aı| ≤ C|z|
∫ τ

0

e−γ(τ−s) e−γs ds = Cτ e−γτ |z| ≤ C e−γ̃τ |z|

for some 0 < γ̃ < γ. These inequalities lead to the desired result. 2

3.3.2 Leading Term ϕ0(x, t) and Zero-order Terminal Layer

Term ψ0(x, τ)

Since, in view of (3.3.8),

Q̃(x, t)ϕ0(x, t) = 0

We derive from Lemma 3.3.1 that

ϕ0(x, t) = 1̃1(x, t)β0(x, t).

Recall that for a suitable function f(x, t), ḟ(x, t) =
∂f(x, t)

∂t
. Then

ϕ̇0(x, t) = 1̃1(x, t)β̇0(x, t),
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so

Q̃(x, t)ϕ1(x, t) = −1̃1(x, t)β̇0(x, t)− (L+ Q̂)(x, t)(1̃1(x, t)β0(x, t))
def
= b̃0(x, t). (3.3.16)

By definition, we have ν(x, t)Q̃(x, t) = 0 and ν(x, t)1̃1 = Il ∈ Rl×l, the l × l identity

matrix with ν(x, t) given in (3.3.15). Multiplying both sides of equation (3.3.16) from

the left by ν(x, t), we obtain

β̇0(x, t) = −ν(x, t)(L+ Q̂)(x, t)(1̃1(x, t)β0(x, t)). (3.3.17)

In view of (3.3.12),

ψ0(x, τ) = exp(Q̃(x, T )τ)(g(x)− ϕ0(x, T )). (3.3.18)

We demand that ψ0(x, τ) → 0 as τ → ∞. Letting τ → ∞ in (3.3.18) and noting

exp(Q̃(x, T )τ) → P (x) with P (x) given in (3.3.14), we obtain

P (x)ψ0(x, 0) = 0. (3.3.19)

Multiplying both sides from the left by ν(x, T ), (3.3.19) is equivalent to

ν(x, T )ψ0(x, 0) = 0. (3.3.20)

On the other hand,

ν(x, T )ψ0(x, 0) = ν(x, T )(g(x)− ϕ0(x, T ))

= ν(x, T )g(x)− β0(x, T ).
(3.3.21)

Thus

β0(x, T ) = ν(x, T )g(x). (3.3.22)
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Conversely, condition (3.3.19) holds provided β0(x, T ) satisfies (3.3.22). As a result,

β0(x, t) can be determined from differential equation (3.3.17) and terminal condition

(3.3.22) uniquely. Moreover, with this β0(x, t), we also have ν(x, t)̃b0(x, t) = 0.

3.3.3 Higher-order Terms

Define Qv(x, t) =
( Q̃(x, t)

ν(x, t)

)
. Then we have the following Lemma.

Lemma 3.3.4. Under condition (A1), rank(Qv(x, t)
′Qv(x, t)) = m.

Proof. Let w(x, t) ∈ Rm×1 be a solution of

Qv(x, t)w(x, t) = 0. (3.3.23)

Then (3.3.23) yields

Q̃(x, t)w(x, t) = 0 and ν(x, t)w(x, t) = 0.

For the first equation above, in view of Lemma 3.3.1,

w(x, t) = 1̃1(x, t)η(x, t).

Substituting this into the second equation, we obtain

ν(x, t)w(x, t) = ν(x, t)1̃1(x, t)η(x, t) = η(x, t).

So η(x, t) = 0 and hence w(x, t) ≡ 0. Thus the only w(x, t) = (w1(x, t), . . . , wm(x, t))
′ ∈

Rm×1 satisfying

w1(x, t)Q
1
v(x, t) + · · ·+ wm(x, t)Q

m
v (x, t) = 0
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is 0, where Qk
v(x, t) is the kth-column of Qv(x, t) for each k = 1, . . . ,m. Thus the m

columns of Qv(x, t) are linearly independent. Hence

rank(Qv(x, t)) = m.

As a result,

rank(Q′
v(x, t)Qv(x, t)) = rank(Qv(x, t)) = m. 2

To proceed to the error bound, for i > 0, we construct ϕi(x, t) and ψi(x, τ) by in-

duction. Suppose that the terms ϕj(x, t) and ψj(x, τ) for j < i have been constructed

such that ψj(x, τ) decays exponentially fast and ϕj(x, t) are smooth. Moreover, as-

sume ν(x, t)̃bj(x, t) = 0 for all j < i. Using (3.3.8), we have

Q̃(x, t)ϕi(x, t) = −ϕ̇i−1(x, t)− (L+ Q̂)(x, t)ϕi−1(x, t)
def
= b̃i−1(x, t). (3.3.24)

Thus, by Lemma 3.3.1, ϕi(x, t) is the sum of solutions to the homogeneous equation

and a particular solution ϕ̂i(x, t) of the nonhomogeneous equation. It is of the form

ϕi(x, t) = 1̃1(x, t)βi(x, t) + ϕ̂i(x, t) (3.3.25)

such that

Q̃(x, t)ϕ̂i(x, t) = b̃i−1(x, t).

The Fredholm alternative leads to ν(x, t)̃bi−1(x, t) = 0. Denote Qv(x, t) as defined in

Lemma 3.3.4 and b̂i−1(x, t) =
( b̃i−1(x, t)

0

)
. We can find a unique solution ϕ̂i(x, t)

of (3.3.24) such that Q̃(x, t)ϕ̂i(x, t) = b̃i−1(x, t) and ν(x, t) is orthogonal to ϕ̂i(x, t).
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That is,

Qv(x, t)ϕ̂i(x, t) = b̂i−1(x, t).

Lemma 3.3.4 implies that the particular solution is uniquely determined by

ϕ̂i(x, t) = (Qv(x, t)
′Qv(x, t))

−1Qv(x, t)
′b̂i−1(x, t). (3.3.26)

On the other hand

Q̃(x, t)ϕi+1(x, t) = −ϕ̇i(x, t)− (L+ Q̂)(x, t)ϕi(x, t)
def
= b̃i(x, t).

Multiplying both sides by ν(x, t) from the left and noting (3.3.25), we deduce

β̇i(x, t) = −ν(x, t) ˙̂ϕi(x, t)−ν(x, t)(L+Q̂)(x, t)ϕ̂i(x, t)−ν(x, t)(L+Q̂)(x, t)
(
1̃1(x, t)βi(x, t)

)
.

(3.3.27)

Equation (3.3.27) is uniquely solvable if the terminal condition is specified. We need

to use the terminal layer term to determine the terminal condition. In view of (3.3.12),

ψi(x, τ) = − exp(Q̃(x, T )τ)ϕi(x, T ) +

∫ τ

0

exp(Q̃(x, T )(τ − s))ri(x, s)ds. (3.3.28)

We demand that ψi(x, τ) → 0 as τ → ∞. Letting τ → ∞ in (3.3.28) and noting that

exp(Q̃(x, T )τ) → P (x)

with P (x) given in (3.3.14) and that ri(x, t) decays exponentially fast, we obtain

P (x)ψi(x, 0) +

∫ ∞

0

P (x)ri(x, s)ds = 0. (3.3.29)

By multiplying both sides from the left by ν(x, T ), the above equation is equivalent

to

ν(x, T )ψi(x, 0) +

∫ ∞

0

ν(x, T )ri(x, s)ds = 0. (3.3.30)
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We have

ν(x, T )ψi(x, 0) +

∫ ∞

0

ν(x, T )ri(x, s)ds

= −ν(x, T )ϕi(x, T ) +

∫ ∞

0

ν(x, T )ri(x, s)ds

= −βi(x, T )− ν(x, T )ϕ̂i(x, T ) +

∫ ∞

0

ν(x, T )ri(s)ds

= −βi(x, T ) +
∫ ∞

0

ν(x, T )ri(x, s)ds.

(3.3.31)

Note that the integral involving ri(x, s) is well defined since |ri(x, s)| ≤ C e−γs by

induction hypothesis. By virtue of (3.3.29) and (3.3.31), we obtain

βi(x, T ) =

∫ ∞

0

ν(x, T )ri(x, s)ds. (3.3.32)

Conversely, when βi(x, T ) satisfies (3.3.27), condition (3.3.29) holds as desired. Then

ϕi(x, t) = 1̃1(x, t)βi(x, t) + ϕ̂i(x, t) = 1̃1(x, t)βi(x, t) + (Qv(x, t)
′Qv(x, t))

−1Qv(x, t)
′b̂i−1

(3.3.33)

with βi(x, t) uniquely determined by the differential equations (3.3.27) and the termi-

nal condition (3.3.32). In addition, ν(x, t)̃bi(x, t) = 0. Moreover, by the construction,

it is readily seen that ψi(x, τ) decays exponentially fast.

Proposition 3.3.5. ϕi ∈ C2(n+2−i),n+2−i([0, 1]× [0, T ]) for any i = 0, . . . , n+ 2.

Proof. We prove this by induction. First, denote Qa(x, t) = (Q̃(x, t) 1̃1(x, t)). Then

ν(x, t)Qa = (0l×m Il).

Moreover, using irreducibility of Q̃ı(x, t) for ı = 1, . . . , l, we can follow the proof of

Lemma 3.3.4 to prove that rank(Q′
a(x, t)Qa(x, t)) = m. So

ν(x, t) = (0l×m Il)Q
′
a(x, t)(Qa(x, t)Q

′
a(x, t))

−1.
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Thus ν(·, ·) ∈ C2(n+2),n+2([0, 1]× [0, T ]) and 1̃1(·, ·) ∈ C2(n+2),n+2([0, 1]× [0, T ]). There-

fore, (3.3.17) implies that β0(·, ·) ∈ C2(n+2),n+2([0, 1]×[0, T ]). So ϕ0 ∈ C2(n+2),n+2([0, 1]×

[0, T ]). Assume that ϕj ∈ C2(n+2−j),n+2−j([0, 1] × [0, T ]) for any j < i. In view of

(3.3.24), we deduce b̂i−1 ∈ C2(n+2−i),n+2−i([0, 1]× [0, T ]). Then we derive from (3.3.26)

and (3.3.27) that ϕ̂i ∈ C2(n+2−i),n+2−i([0, 1] × [0, T ]) and βi ∈ C2(n+2−i),n+2−i([0, 1] ×

[0, T ]). Thus (3.3.33) implies ϕi ∈ C2(n+2−i),n+2−i([0, 1]× [0, T ]). 2

Lemma 3.3.6. For a fixed integer i and an integer h satisfying 0 ≤ h ≤ 2(n+2− i),

put

wh
i (x, τ) =

∂hψi(x, τ)

∂xh
.

Assume for any τ, x,

|ψi(x, τ)| ≤ C e−γτ

max
h=0,...,2(n+2−i)

∣∣∣∣∂hri(x, τ)∂xh

∣∣∣∣ ≤ C e−γτ .

Then for any τ, x,

max
h=0,...,2(n+2−i)

∣∣wh
i (x, τ)

∣∣ ≤ C e−γτ .

Proof. First,

|w0
i (x, τ)| = |ψi(x, τ)| ≤ C e−γτ .

Suppose for any h1 < h, ∣∣wh1
i (x, τ)

∣∣ ≤ C e−γτ , (3.3.34)
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Then (3.3.11) implies

∂wh
i (x, τ)

∂τ
= Q̃(x, T )wh

i (x, τ) +
h−1∑
h1=0

h!

h1!(h− h1)!

∂h−h1Q̃(x, T )

∂xh−h1
wh1

i (x, τ) +
∂hri(x, τ)

∂xh

wh
i (x, 0) =

∂hψi(x, 0)

∂xh
.

(3.3.35)

It follows that

wh
i (x, τ) = exp(Q̃(x, T )τ)wh

i (x, 0)

+
h−1∑
h1=0

∫ τ

0

h!

h1!(h− h1)!
exp(Q̃(x, T )(τ − s))

∂h−h1Q̃(x, T )

∂xh−h1
wh1

i (x, s)ds

+

∫ τ

0

exp(Q̃(x, T )(τ − s))
∂hri(x, s)

∂xh
ds.

(3.3.36)

Define

w̃h
i (x)

def
= ν(x, T )wh

i (x, 0) +
h−1∑
h1=0

∫ ∞

0

h!

h1!(h− h1)!
ν(x, T )

∂h−h1Q̃(x, T )

∂xh−h1
wh1

i (x, s)ds

+

∫ ∞

0

ν(x, T )
∂hri(x, s)

∂xh
ds.

We claim that

w̃h
i (x) = 0. (3.3.37)
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Note that (3.3.36) implies

|wh
i (x, τ)| ≤ | exp(Q̃(x, T )τ)− P (x)||wh

i (x, 0)|

+
h−1∑
h1=0

∫ τ

0

h!

h1!(h− h1)!

∣∣∣exp(Q̃(x, T )(τ − s))− P (x)
∣∣∣ ∣∣∣∣∣∂h−h1Q̃(x, T )

∂xh−h1

∣∣∣∣∣
×
∣∣wh1

i (x, s)
∣∣ ds

+
h−1∑
h1=0

∫ ∞

τ

h!

h1!(h− h1)!

∣∣P (x)∣∣ ∣∣∣∣∣∂h−h1Q̃(x, T )

∂xh−h1

∣∣∣∣∣ ∣∣wh1
i (x, s)

∣∣ ds
+

∫ τ

0

∣∣∣exp(Q̃(x, T )(τ − s))− P (x)
∣∣∣ ∣∣∣∣∂hri(x, s)∂xh

∣∣∣∣ ds
+

∫ ∞

τ

∣∣P (x)∣∣ ∣∣∣∣∂hri(x, s)∂xh

∣∣∣∣ ds
≤ C e−γτ +(h+ 1)

∫ τ

0

C e−γ(τ−s) e−γs ds+ (h+ 1)

∫ ∞

τ

C e−γs ds

= C e−γτ .

Note that we use γ to represent a generic positive constant, whose value may be

different for different appearances. Now we prove (3.3.37). In fact, (3.3.30) implies

for any h1,

h∑
ι=0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι
wι

i(x, 0) +
h∑

ι=0

∫ ∞

0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι

∂ιri(x, s)

∂xι
ds = 0,

h1∑
ι=0

h1!

ι!(h1 − ι)!

∂h1−ιν(x, T )

∂xh1−ι

∂ιQ̃(x, T )

∂xι
= 0.

(3.3.38)

We derive from (3.3.11), (3.3.38), and (3.3.35) that

w̃h
i (x) = −

h−1∑
ι=0

h!

ι!(h− ι)!

∂h−ιν

∂xh−ι
(x, T )wι

i(x, 0)−
h−1∑
ι=0

∫ ∞

0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι

∂ιri(x, s)

∂xι
ds

−
h−1∑
h1=0

∫ ∞

0

h!

h1!(h− h1)!

h−h1−1∑
ι=0

h− h1!

ι!(h− h1 − ι)!

∂h−h1−ιν(x, T )

∂xh−h1−ι

∂ιQ̃(x, T )

∂xι
wh1

i (x, s)ds.
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On the other hand, the last term of the above equation equals

−
h−1∑
h1=0

∫ ∞

0

h−h1∑
ι=1

h!

h1!ι!(h− h1 − ι)!

∂ιν(x, T )

∂xι
∂h−h1−ιQ̃(x, T )

∂xh−h1−ι
wh1

i (x, s)ds

= −
h∑

ι=1

∫ ∞

0

h−ι∑
h1=0

h!

(h− ι)!ι!

(h− ι)!

h1!(h− ι− h1)!

∂ιν(x, T )

∂xι
∂h−h1−ιQ̃(x, T )

∂xh−h1−ι
wh1

i (x, s)ds

= −
h−1∑
ι=0

h!

ι!(h− ι)!

∫ ∞

0

ι∑
h1=0

ι!

h1!(ι− h1)!

∂h−ιν(x, T )

∂xh−ι

∂ι−h1Q̃(x, T )

∂xι−h1
wh1

i (x, s)ds.

Hence,

w̃h
i (x) = −

h−1∑
ι=0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι
wι

i(x, 0)

−
h−1∑
ι=0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι

∫ ∞

0

( ι∑
h1=0

ι!

h1!(ι− h1)!

∂ι−h1Q̃(x, T )

∂xι−h1
wh1

i (x, s)

+
∂ιri(x, s)

∂xι

)
ds

= −
h−1∑
ι=0

h!

ι!(h− ι)!

∂h−ιν

∂xh−ι
(x, T )wι

i(x, 0)−
h−1∑
ι=0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι

∫ ∞

0

∂wι
i(x, s)

∂s
ds

= −
h−1∑
ι=0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι
wι

i(x, 0)−
h−1∑
ι=0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι

∫ ∞

0

∂wι
i(x, s)

∂s
ds

= −
h−1∑
ι=0

h!

ι!(h− ι)!

∂h−ιν(x, T )

∂xh−ι
lim
s→∞

wι
i(x, s) = 0.

The last equation holds owning to (3.3.34). Thus (3.3.37) is valid. Therefore,

∣∣wh
i (x, τ)

∣∣ ≤ C e−γτ

for any h. 2

Proposition 3.3.7. There exist constants C and 0 < γi < γ such that for any

0 ≤ i ≤ n+ 1,

max
h=0,...,2(n+2−i)

∣∣∣∣∂hψi(x, τ)

∂xh

∣∣∣∣ ≤ C e−γiτ , ∀τ ≥ 0, 0 ≤ x ≤ 1. (3.3.39)
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Proof. First, under condition (3.3.19), we have

|ψ0(x, τ)| = |P
¯
(x)ψ0(x, 0) + (exp(Q̃(x, T )τ)− P

¯
(x))ψ0(x, 0)|

= | exp(Q̃(x, T )τ)− P
¯
(x)||ψ0(x, 0)|

≤ Cε−γτ .

Applying Lemma 3.3.6 with r0 = 0, we deduce that (3.3.39) is valid for i = 0. Assume

that for any j < i,

max
h=0,...,2n+2

∣∣∣∣∂hψj(x, τ)

∂xh

∣∣∣∣ ≤ Cε−γjτ .

Then

max
h=0,...,2n+2

∣∣∣∣∂hri(x, τ)∂xh

∣∣∣∣ ≤ Cε−γτ .

with γ = min (γ1, . . . , γi−1). Under condition (3.3.29), we deduce

|ψi(x, τ)| ≤
∣∣∣(exp(Q̃(x, T )τ)− P

¯
)ψi(x, 0)

∣∣∣
+

∣∣∣∣∫ τ

0

(exp(Q̃(x, T )(τ − s))− P
¯
)ri(x, s)ds

∣∣∣∣+ ∣∣∣∣∫ ∞

τ

−P
¯
ri(x, s)ds

∣∣∣∣
≤ Cε−γτ + C

∫ τ

0

ε−γ(τ−s)ε−γsds+ C

∫ ∞

τ

ε−γsds.

Thus

|ψi(x, τ)| ≤ C e−γτ .

Lemma 3.3.6 again shows that (3.3.39) holds for i. This completes the proof by

induction. 2

3.3.4 Error Estimates

For a suitable function f , define

Lεf =
∂f

∂t
+Qεf + Lf. (3.3.40)
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Lemma 3.3.8. Let ω(x, s) be the solution of the following equation

Lε(x, t)ω(x, t) = ζ(x, t), for t < T,

ω(x, T ) = 0.
(3.3.41)

Then

ωi(x, t) = −E
∫ T

t

ζ(Y ε,x,i(s))ds.

where Y ε,x,i(t) = (Xε(t), αε(t)) satisfies

Xε(T ) = x, αε(T ) = i ∈ M.

Proof. Since Lε is the generator of Y ε, by virtue of Itô’s formula,

ω(x, t) = ω(Y ε(T ))− ω(Y ε(t))

= −
∫ T

t

Lεω(Y ε(s))ds+M(t)

= −
∫ T

t

ζ(Y ε(s))ds+M(t),

(3.3.42)

where M(t) is a martingale. Taking expectation in (3.3.42) leads to the desired

assertion. 2

Lemma 3.3.9. Suppose that ζ ∈ C([0, 1]× [0, T ]) is periodic in x ∈ [0, 1], satisfying

sup
(x,t)∈[0,1]×[0,T ]

|ζ(x, t)| ≤ Cεκ.

Let ξε(x, t) be a solution to

Lεξε(x, t) = ζ(x, t), ξε(x, T ) = 0, ∀x ∈ [0, 1]. (3.3.43)

Then

sup
(x,t)∈[0,1]×[0,T ]

|ξε(x, t)| ≤ Cεκ.
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Proof. The desired result follows from the previous Lemma. 2

Theorem 3.3.10. There exists a C > 0 such that

sup
(x,t)∈[0,1]×[0,T ]

|pε(x, t)− Φε
n(x, t)−Ψε

n(x, τ)| ≤ Cεn+1.

Proof. Recall the definition of τ in (3.3.6). Put

eε,κ(x, t) = pε(x, t)− Φε
κ(x, t)−Ψε

κ(x, τ).

Then Lεuε(x, t) = 0 and therefore,

Lεeε,κ(x, t) = −LεΦε
κ(x, t)− LεΨε

κ(x, τ).

Moreover

LεΦε
κ(x, t) =

κ∑
i=0

εiϕ̇i(x, t) +
κ∑

i=0

εi−1Q̃(x, t)ϕi(x, t) +
κ∑

i=0

εi(L+ Q̂)(x, t)ϕi(x, t)

=
κ∑

i=0

εi(−Q̃(x, t)ϕi+1(x, t)− (L+ Q̂)(x, t)ϕi(x, t)) +
κ∑

i=0

εi−1Q̃(x, t)ϕi(x, t)

+
κ∑

i=0

εi(L+ Q̂)(x, t)ϕi(x, t)

= −εκQ̃(x, t)ϕκ+1(x, t) + ε−1Q̃(x, t)ϕ0(x, t)︸ ︷︷ ︸
0

.

So

|LεΦε
κ(x, t)| ≤ Cεκ.

Note that

ε
d

dt
ψi(

T − t

ε
) = − d

dτ
ψi(x, τ),
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which yields

LεΨε
κ

(
x, τ
)
=

κ∑
i=0

−εi−1∂ψi(x, τ)

∂τ
+

κ∑
i=0

εi−1Q̃(x, t)ψi(x, τ) +
κ∑

i=0

εi(L+ Q̂)(x, t)ψi(x, τ)

=
κ∑

i=0

εi−1(−Q̃(x, T )ψi(x, τ)− ri(x, τ)) +
κ∑

i=0

εi−1Q̃(x, t)ψi(x, τ)

+
κ∑

i=0

εi(L+ Q̂)(x, t)ψi(x, τ)

=
κ∑

i=0

εi−1(−Q̃(x, T ) + Q̃(x, t))ψi(x, τ)−
κ∑

i=0

εi−1ri(x, τ)

+
κ∑

i=0

εi(L+ Q̂)(x, t)ψi(x, τ).

For the second term, we have

κ∑
i=0

εi−1ri(x, τ)

=
κ∑

i=1

εi−1

i−1∑
j=0

(
(−τ)i−j Q̃

(i−j)(x, T )

(i− j)!
+ (−τ)i−j−1 (L+ Q̂)(i−j−1)(x, T )

(i− j − 1)!

)
ψj(x, τ)

=
κ−1∑
j=0

κ∑
i=j+1

(
εi−1(−τ)i−j Q̃

(i−j)(x, T )

(i− j)!
+ εi−1(−τ)i−j−1 (L+ Q̂)(i−j−1)(x, T )

(i− j − 1)!

)
ψj(x, τ)

=
κ−1∑
j=0

κ∑
i=j+1

(
εj−1(t− T )i−j Q̃

(i−j)(x, T )

(i− j)!
+ εj(t− T )i−j−1 (L+ Q̂)(i−j−1)(x, T )

(i− j − 1)!

)
ψj(x, τ)

=
κ−1∑
j=0

εj−1

(
κ−j∑
i=1

(t− T )i
Q̃(i)(x, T )

i!

)
ψj(x, τ)

+
κ−1∑
j=0

εj

(
κ−j−1∑
i=0

(t− T )i
(L+ Q̂)(i)(x, T )

i!

)
ψj(x, τ).

Therefore,

LεΨε
κ

(
x, τ
)

= εκ−1(−Q̃(x, T ) + Q̃(x, t))ψκ(x, τ) + εκ(L+ Q̂)(x, t)ψκ(x, τ)

+
κ−1∑
j=0

εj−1

(
Q̃(x, t)−

κ−j∑
i=0

(t− T )i
Q̃(i)(x, T )

i!

)
ψj(x, τ)

+
κ−1∑
j=0

εj

(
(L+ Q̂)(x, t)−

κ−j−1∑
i=0

(t− T )i
(L+ Q̂)(i)(x, T )

i!

)
ψj(x, τ).

(3.3.44)
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Using Taylor expressions and Proposition 3.3.7, we obtain∣∣∣LεΨε
κ

(
x, τ
)∣∣∣ ≤ Cεκ−1|t− T | e−γτ +Cεκ + C

κ−1∑
j=0

εj−1 |t− T |κ−j+1 e−γτ

+C
κ−1∑
j=0

εj |t− T |κ−j e−γτ

= Cεκτ e−γτ +Cεκ + C
κ−1∑
j=0

εκτκ−j+1 e−γτ +C
κ−1∑
j=0

εκτκ−j e−γτ

≤ Cεκ.

Piecing this together with the estimates on LεΦκ(x, t), we have shown that

sup
(x,t)∈[0,1]×[0,T ]

|Lεeε,κ(x, t)| ≤ Cεκ.

Note the terminal condition eε,κ(x, T ) = 0. Thus Lemma 3.3.9 implies

sup
(x,t)∈[0,1]×[0,T ]

|eε,κ(x, t)| ≤ Cεκ.

Taking κ = n+ 1, we obtain

sup
(x,t)∈[0,1]×[0,T ]

|eε,n+1(x, t)| = O(εn+1).

Finally, note that

eε,n+1(x, t) = eε,n(x, t) + εn+1ϕn+1(x, t) + εn+1ψn+1(x, τ). (3.3.45)

The continuity of ϕn+1(x, t) and the exponential decay properties of ψn+1(x, τ) yield

that

sup
(x,t)∈[0,1]×[0,T ]

|εn+1ϕn+1(x, t) + εn+1ψn+1(x, τ)| ≤ Cεn+1.

Substituting this into (3.3.45), we obtain

sup
(x,t)∈[0,1]×[0,T ]

|eε,n(x, t)| ≤ Cεn+1. 2
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3.4 Fast Diffusion

Suppose that α(t) is a jump process with generator Q(x, t). Let two operators L̃ and

L̂ be defined as in (3.2.3) where a and b are correspondingly replaced by ã and b̃ (â

and b̂ respectively). That is,

L̃(x, t)u(x, k, t) = 1

2
ã(x, k, t)

∂2

∂x2
u(x, k, t) + b̃(x, k, t)

∂

∂x
u(x, k, t)

L̂(x, t)u(x, k, t) = 1

2
â(x, k, t)

∂2

∂x2
u(x, k, t) + b̂(x, k, t)

∂

∂x
u(x, k, t).

Let L(x, t) in (3.3.4) be of the form

Lε(x, t) =
L̃(x, t)
ε

+ L̂(x, t).

Throughout this section, in addition to assumptions (A4), we also assume that

(A6) ã(x, k, t) > 0 for all x, t and k. That is, the fast changing part of the diffusion

is uniformly elliptic.

(A7) For each k ∈ M,

• ã(·, k, t), â(·, k, t), b̃(·, k, t), b̂(·, k, t) are periodic in x with period 1 for

each t ∈ [0, T ] and ã(·, k, ·), â(·, k, ·), b̃(·, k, ·), b̂(·, k, ·) ∈ C2(n+2),n+2([0, 1]×

[0, T ]).

• ã(·, k, T ) ∈ C2n+6([0, 1]) and b̃(·, k, T ) ∈ C2n+5([0, 1]).

(A8) Q(·, ·) ∈ C2(n+2),n+2([0, 1]× [0, T ]).

We consider

−∂ũ
∂t

ε

= Q(x, t)ũε + Lε(x, t)ũε, ũε(x, T ) = g(x). (3.4.1)



42

Similarly to Section 3.3, we seek asymptotic expansions of the form (3.3.7). Substi-

tuting the expansions in (3.4.1), we obtain

L̃(x, t)ϕ0(x, t) = 0,

L̃(x, t)ϕ1(x, t) = − ∂

∂t
ϕ0(x, t)− (L̂+Q)(x, t)ϕ0(x, t)

def
= ς0(x, t),

· · · · · ·

L̃(x, t)ϕi+1(x, t) = − ∂

∂t
ϕi(x, t)− (L̂+Q)(x, t)ϕi(x, t)

def
= ςi(x, t),

(3.4.2)

where i = 2, . . . , n+ 2. Likewise, substituting Ψκ(x, τ) for κ ≤ n+ 2 into (3.4.1) and

applying Taylor expansion for L̃(x, T − ετ), L̂(x, T − ετ) and Q(x, T − ετ), we arrive

at

∂ψ0(x, τ)

∂τ
= L̃(x, T )ψ0(x, τ),

∂ψ1(x, τ)

∂τ
= L̃(x, T )ψ1(x, τ) +

(
−τ L̃(1)(x, T ) + (L̂+Q)(x, T )

)
ψ0(x, τ),

· · · · · ·
∂ψi(x, τ)

∂τ
= L̃(x, T )ψi(x, τ) + ri(x, τ)

ri(x, τ) =
i−1∑
j=0

(
(−τ)i−j L̃(i−j)(x, T )

(i− j)!
+ (−τ)i−j−1 (L̂+Q)(i−j−1)(x, T )

(i− j − 1)!

)
ψj(x, τ),

(3.4.3)

where

L̃(i)(x, T ) =
∂iL̃(x, T )

∂ti
, L̂(i)(x, T ) =

∂iL̂(x, T )
∂ti

, Q(i)(x, T ) =
∂iQ(x, T )

∂ti
.

From the initial condition, we derive

ϕ0(x, T ) + ψ0(x, 0) = g(x) and ϕi(x, T ) + ψi(x, 0) = 0, for i > 0.

We recall that the adjoint operator of L̃k has the form

L̃∗
k(x, t)u(x, k, t) =

∂2

∂x2

[
1

2
ã(x, k, t)u(x, k, t)

]
− ∂

∂x

[
b̃(x, k, t)u(x, k, t)

]
, k ∈ M.



43

In what follows, we will prove the smoothness of φi for 0 ≤ i ≤ n + 2 and the

exponential decay of ψi for 0 ≤ i ≤ n + 1 which implies the desired error bound by

Lemma 3.4.13. Let us consider the layer terms by starting with some lemmas.

Lemma 3.4.1. For each k ∈ M, there exists a unique solution µk to the following

equations

L̃∗
k(x, t)µk(x, t) = 0∫ 1

0

µk(x, t)dx = 1

µk(0, t) = µk(1, t).

(3.4.4)

Remark 3.4.2. By the smoothness and the periodicity of the boundary conditions

in (3.4.4), the function µk defined above also satisfies

∂

∂x
(ã(0, k, t)µk(0, t)) =

∂

∂x
(ã(1, k, t)µk(1, t)).

Definition 3.4.3. For any functions ξ(x), ζ(x) on [0, 1], define

[ξ, ζ] =

(∫ 1

0

ξ1(x)ζ1(x)dx, . . . ,

∫ 1

0

ξm(x)ζm(x)dx

)′

and

⟨ξ, ζ⟩ =
m∑
k=1

∫ 1

0

ξk(x)ζk(x)dx.

Lemma 3.4.4. Let Xs
x(k, τ) be a Markov process corresponding to the generator

L̃k(x, s) and ωk(x) be a bounded measurable real-valued function. Then

∣∣∣∣Eωk(X
s
x(k, τ))−

∫ 1

0

ωk(x)µk(x, s)dx

∣∣∣∣ ≤ C e−γτ .

Proof.
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The quasi-stationary density function µk of the diffusion process verifies the so-

called Doeblin condition which implies the desired result.

Lemma 3.4.5. Consider the following Poisson equation with periodic boundary con-

ditions

L̃k(x, t)ϕ(x, k, t) = ζk(x, t)

ϕ(0, k, t) = ϕ(1, k, t)

∂

∂x
ϕ(0, k, t) =

∂

∂x
ϕ(1, k, t),

for each k ∈ M.

(3.4.5)

Then

1. The only solution to L̃kϕ(x, k, t) = 0 is ϕ(x, k, t) = φk(t).

2. (3.4.5) has a solution if and only if

[ζ(·, t), µ(·, t)] = 0.

Proof.

1. Assume ϕ(0, k, t) = ϕ(1, k, t) = φk(t). Put ξk(x, t) = ϕ(x, k, t)− φk(t). Then

L̃(x, k, t)ξk(x, t) = 0, ξk(0, t) = ξk(1, t) = 0.

It could be verified by the maximum principle for the elliptic operator L̃ that ξk = 0;

see Evans [15, Chapter 6]. So ϕ(x, k, t) = φk(t). That is, ϕ(x, k, t) is independent of

x.

2. The system of equations (3.4.5) is solvable then

⟨ζk(·, t), µk(·, t)⟩ =
⟨
L̃k(·, t)ϕk(·, t), µk(·, t)

⟩
=
⟨
ϕk(·, t), L̃∗

k(·, t)µk(·, t)
⟩
= ⟨ϕk(·, t), 0⟩ = 0.
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Thus

[ζ(·, t), µ(·, t)] = 0.

Conversely, assume that [ζ(·, t), µ(·, t)] = 0. Under the uniform-ellipticity condition,

it can be shown that the following equation

L̃k(x, t)ϕ(x, k, t) = ζk(x, t)

ϕ(0, k, t) = ϕ(1, k, t)

has a solution. In view of (3.4.2) and using integration by part,

⟨ζk(·, t), µk(·, t)⟩ =
∫ 1

0

(
L̃k(x, t)ϕk(x, t)

)
µk(x, t)dx

= ã(x, k, t)µk(x, t)
∂

∂x
ϕk(x, t)

∣∣∣
x=1

− ã(x, k, t)µk(x, t)
∂

∂x
ϕk(x, t)

∣∣∣
x=0

+b̃(x, k, t)µk(x, t)ϕk(x, t)
∣∣∣
x=1

− b̃(x, k, t)µk(x, t)ϕk(x, t)
∣∣∣
x=0

−ϕk(x, t)
∂

∂x
(ã(x, k, t)µk(x, t))

∣∣∣
x=1

+ ϕk(x, t)
∂

∂x
(ã(x, k, t)µk(x, t))

∣∣∣
x=0

+

∫ 1

0

ϕk(x, t)
(
L̃∗

k(x, t)µk(x, t)
)
dx

= ã(0, k, t)µk(0, t)

(
∂

∂x
ϕk(1, t)−

∂

∂x
ϕk(0, t)

)
.

Since ⟨ζk(·, t), µk(·, t)⟩ = 0 and ã(0, k, t)µk(0, t) > 0, we obtain

∂

∂x
ϕk(1, t) =

∂

∂x
ϕk(0, t).

The proof is concluded. 2

3.4.1 Leading Term ϕ0(x, t) and Zero-order Terminal Layer

Term ψ0(x, τ)

Note that (3.4.2) gives

L̃(x, t)ϕ0(x, t) = 0,
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which, by Lemma 3.4.5, implies

ϕ0(x, t) = φ0(t). (3.4.6)

Moreover, we derived from (3.4.2) that

L̃(x, t)ϕ1(x, t) = −∂ϕ0(x, t)

∂t
− (L̂+Q)(x, t)ϕ0(x, t)

= −φ̇0(t)−Q(x, t)φ0(t).

Again, Lemma 3.4.5 implies that

φ̇0(t) + [Q(x, t)φ0(t), µ(x, t)] = [φ̇0(t), µ(x, t)] + [Q(x, t)φ0(t), µ(x, t)] = 0. (3.4.7)

The φ0(T ) is to be determined. Also, the zero-order terminal layer term is uniquely

determined by
∂ψ0(x, τ)

∂τ
= L̃(x, T )ψ0(x, τ)

ψ0(x, 0) = g(x)− ϕ0(x, T ).
(3.4.8)

Then ψ0(x, τ) = Eψ0(X
T
x (τ), 0) where X

T
x (τ) is a Markov process corresponding to

the generator L̃(x, T ). We demand limτ→∞ ψ0(x, τ) = 0. By Lemma 3.4.4, we deduce

[ψ0(·, 0), µ(·, T )] = 0, (3.4.9)

which is equivalent to

φ0(T ) = [g(·), µ(·, T )] . (3.4.10)

Hence ϕ0(x, t) is uniquely determined by (3.4.6), (3.4.7), and (3.4.10).

3.4.2 Higher-order Terms

Before proceeding further, we need to verify the following lemmas.
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Lemma 3.4.6. Let ψ(x, τ) be a solution of

∂ψ(x, τ)

∂τ
= L̃(x, t)ψ(x, τ) + r(x, τ)

ψ(x, 0) = ω(x),

where ω(x) is a l-dimensional vector function and r(x, τ) decays exponentially fast,

i.e., there exist C, γ > 0 such that

sup
x∈[0,1]

|r(x, τ)| ≤ C e−γτ .

Then ∣∣∣∣ψ(x, τ)− [ω(·), µ(·, t)]−
∫ ∞

0

[r(·, s), µ(·, t)] ds
∣∣∣∣ ≤ C e−γτ .

Proof. In fact, for each k ∈ M, ψ(x, k, τ) satisfies

∂ψ(x, k, τ)

∂τ
= L̃k(x, t)ψ(x, k, τ) + rk(x, τ)

ψ(x, 0) = ωk(x),

Thus

ψ(x, k, τ) = Eωk(Xx(k, τ)) +

∫ τ

0

Erk(Xx(k, τ − s), s)ds,

whereXx(k, τ) is the diffusion process associated with the generator L̃k(x, t) satisfying

Xx(k, 0) = x. It follows from Lemma 3.4.4 that

|Eωk(Xx(k, τ))− ⟨ωk(·), µk(·, t)⟩ | ≤ C e−γτ .
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Moreover,∣∣∣∣∫ τ

0

Erk(Xx(k, τ − s), s)ds−
∫ ∞

0

⟨rk(·, s), µk(·, t)⟩ ds
∣∣∣∣

≤

∣∣∣∣∣
∫ τ/2

0

Erk(Xx(k, τ − s), s)ds−
∫ τ/2

0

⟨rk(·, s), µk(·, t)⟩ ds

∣∣∣∣∣
+

∫ τ

τ/2

|Erk(Xx(k, τ − s), s)| ds+
∫ ∞

τ/2

|⟨rk(·, s), µk(·, t)⟩| ds

≤ C e−γτ +

∫ τ

τ/2

C e−γ(τ−s) ds+

∫ ∞

τ/2

C e−γs ds

≤ C e−γτ .

So the proof of the lemma is completed. 2

By using (3.4.2), we have

L̃(x, t)ϕi(x, t) = ςi−1(x, t). (3.4.11)

By Lemma 3.4.5, we arrive at

ϕi(x, t) = φi(t) + φ̂i(x, t), (3.4.12)

where φ̂i(x, t) is a particular solution of (3.4.11) satisfying

[φ̂i(·, t), µ(·, t)] = 0. (3.4.13)

Denote a(x, k, t) = 2ã−1(x, k, t)̃b(x, k, t) and ς i−1(x, k, t) = ã−1(x, k, t)ςi−1(x, k, t).

Then

∂2φ̂i(x, k, t)

∂x2
+ a(x, k, t)

∂φ̂i(x, k, t)

∂x
= ς i−1(x, k, t), φ̂i(0, k, t) = φ̂i(1, k, t).

Then we obtain

φ̂i(x, k, t) = φ̃i(k, t) + φi(k, t)

∫ x

0

e−ρk(y,t) dy +

∫ x

0

∫ y

0

eρk(z,t)−ρk(y,t) ς i−1(z, k, t)dzdy

(3.4.14)
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where ρk(x, t) =

∫ x

0

a(y, k, t)dy. By the periodicity of φ̂i(·, t) (i.e. φ̂i(0, t) = φ̂i(1, t)),

we deduce

φi(t) = −

∫ 1

0

∫ y

0

eρk(z,t)−ρk(y,t) ςi−1(z, t)dzdy∫ 1

0

e−ρk(y,t) dy

. (3.4.15)

Moreover, it follows from (3.4.13) that

φ̃i(k, t) = −
∫ 1

0

∫ x

0

φi(k, t) e
−ρk(y,t) µ(x, k, t)dydx

−
∫ 1

0

∫ x

0

∫ y

0

eρk(z,t)−ρk(y,t) ς i−1(z, k, t)µ(x, k, t)dzdydx.

(3.4.16)

On the other hand,

L̃(x, t)ϕi+1(x, t) = − ∂

∂t
ϕi(x, t)− (L̂+Q)(x, t)ϕi(x, t)

= −φ̇i(t)−
∂φ̂i(x, t)

∂t
−Q(x, t)φi(t)− (L̂+Q)(x, t)φ̂i(x, t).

Using Lemma 3.4.5, we obtain

φ̇i(t)+[Q(x, t)φi(t), µ(x, t)] =

[
−∂φ̂i(x, t)

∂t
− (L̂+Q)(x, t)φ̂i(x, t), µ(x, t)

]
. (3.4.17)

The terminal layer term is uniquely determined by

∂ψi(x, τ)

∂τ
= L̃(x, T )ψi(x, τ) + ri(x, τ)

ψi(x, 0) = −ϕ0(x, T ).
(3.4.18)

Denote by XT
x (k, τ) the Markov process corresponding to the generator L̃k(x, T ).

Then

ψi(x, k, τ) = Eψi(X
T
x (k, τ), k, 0) +

∫ τ

0

Eri(X
T
x (k, τ − s), k, s)ds.

Furthermore, by demanding limτ→∞ ψi(x, τ) = 0 and using Lemma 3.4.4, we obtain

[ψi(·, 0), µ(·, T )] +
∫ ∞

0

[ri(·, s), µ(·, T )] ds = 0. (3.4.19)
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In virtue of the initial condition in (3.4.18), we arrive at

φi(T ) =

∫ ∞

0

[ri(·, s), µ(·, T )] ds. (3.4.20)

Thus ϕi(x, t) is uniquely determined by (3.4.12), (3.4.14), (3.4.17) and (3.4.20).

Lemma 3.4.7. There exists a Green function for the following problem

∂ψ

∂t
= L̃(x, t)ψ

ψ(0, t) = ψ(1, t)

ψ(x, 0) = ω(x).

Proof. Let Ĝ be the Green function for the corresponding parabolic equation in the

unbounded domain. Then there exist positive constants C1, C2, K1, and K2, such

that for all x, y ∈ R and t > s,

C1F1(t− s, y − x) ≤ Ĝ(s, x, t, y) ≤ C2F2(t− s, y − x). (3.4.21)

Here for h1 = 1, 2, Fh1(y, t) is the fundamental solution of the equation

Kh1∆w =
∂w

∂t
,

where ∆w denotes the Laplacian of w. Define

G(s, x, t, y) =
∞∑

ι=−∞

Ĝ(s, x, t, y + ι).

In view of (3.4.21), G is well-defined, since when t > s,

G(s, x, t, y) ≤ C2

∞∑
ι=−∞

1√
4πK2(t− s)

exp

(
−|y + ι− x|2

4K2(t− s)

)
≤ ∞.
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Moreover, by virtue of estimates on the derivatives of Ĝ, there exist C > 0 and K > 0

such that ∣∣∣∣ ∂h∂yh Ĝ(s, x, t, y)
∣∣∣∣ ≤ C

1

(t− s)(1+h)/2
exp

(
−K|y − x|2

(t− s)

)
,∣∣∣∣ ∂∂tĜ(s, x, t, y)

∣∣∣∣ ≤ C
1

(t− s)3/2
exp

(
−K|y − x|2

(t− s)

)
.

Thus G is differentiable with respect to y and t, and the series

∂G

∂t
=

∞∑
ι=−∞

∂Ĝ(s, x, t, y + ι)

∂t

and

∂hG

∂th
=

∞∑
ι=−∞

∂hĜ(s, x, t, y + ι)

∂th

converge uniformly. Furthermore, G is periodic with period 1 and satisfies the differ-

ential equation. 2

Remark 3.4.8. If L̃(x, t) does not depend on t then we can write the Green function

as G(x, t− s, y). In this case, the solution has the form

ψ(x, t) =

∫ 1

0

G(x, t, y)ω(y)dy.

Lemma 3.4.9. Consider
∂ψ

∂t
= L̃(x, T )ψ

ψ(0, t) = ψ(1, t)

ψ(x, 0) = ω(x).

Then there exists an invariant density µ(x) such that for some γ > 0 and for h =

0, 1, 2,

sup
x∈[0,1]

∣∣∣∣∂hG(y, τ, x)∂xh
− ∂hµ(x)

∂xh

∣∣∣∣ ≤ C e−γτ .
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Proof. We have (see Khasminskii and Yin [28, Lemma 5.1])

sup
x∈[0,1]

|G(x, τ, y)− µ(y)| ≤ C e−γτ .

Then ∣∣∣∣ ∂h∂yh (G(x, τ, y)− µ(y))

∣∣∣∣ = ∣∣∣∣ ∂h∂yh
(∫ 1

0

G(x, τ − 1, z)G(z, 1, y)− µ(y)

)∣∣∣∣
=

∣∣∣∣ ∂h∂yh
∫ 1

0

(G(x, τ − 1, z)− µ(z))G(z, 1, y)

∣∣∣∣
=

∣∣∣∣∫ 1

0

(G(x, τ − 1, z)− µ(z))
∂hG(z, 1, y)

∂yh

∣∣∣∣
≤ C e−γτ .

Since C does not depend on x, we obtain the desired result. 2

Lemma 3.4.10. For any i = 0, . . . , n+ 2,

ϕi ∈ C2(n+2),n+2−i([0, 1]× [0, T ]).

Proof. First of all, from (3.4.4), we obtain µ ∈ C2(n+2),n+2([0, 1] × [0, T ]). We will

prove this lemma by induction. For i = 0, (3.4.2) implies ϕ0 ∈ C2(n+2),n+2([0, 1] ×

[0, T ]) Now assume ϕj ∈ C2(n+2),n+2−j([0, 1]× [0, T ]) for j ≤ i. In view of (3.4.2), ςi ∈

C2(n+1),n+1−i([0, 1]× [0, T ]). Then, by (3.4.14), φ̂i+1 ∈ C2(n+2),n+1−i([0, 1]× [0, T ]). On

the other hand, we can conclude from (3.4.17) that φi+1 ∈ Cn+1−i([0, T ]). Therefore,

ϕi+1 ∈ C2(n+2),n+1−i([0, 1]× [0, T ]). This completes the proof of this lemma. 2

Lemma 3.4.11. Let 0 ≤ i ≤ n + 1 be a fixed integer. For a nonnegative integer h

with 0 ≤ h ≤ 2(n+ 2− i), put fh
i (x, τ) =

∂hψi(x, τ)

∂xh
. Assume for any τ, x,

|ψi(x, τ)| ≤ C e−γτ
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and

max
h=0,...,2(n+2−i)

∣∣∣∣∂hri(x, τ)∂xh

∣∣∣∣ ≤ C e−γτ .

Then for any τ, x,

max
h=0,...,2(n+2−i)

∣∣fh
i (x, τ)

∣∣ ≤ C e−γτ .

Proof. First,

|f 0
i (x, τ)| = |ψi(x, τ)| ≤ C e−γτ .

Suppose for any h1 < h, ∣∣fh1
i (x, τ)

∣∣ ≤ C e−γτ . (3.4.22)

Then (3.4.3) implies

∂fh
i (x, τ)

∂τ
=

∂h

∂xh

(
ã(x, T )

∂2ψ

∂x2 i
(x, τ) + b̃(x, T )

∂ψi(x, τ)

∂x

)
+
∂hri(x, τ)

∂xh

= L̃(x, T )fh
i (x, τ) +

∂hri(x, τ)

∂xh

+
h−1∑
h1=0

h!

h1!(h− h1)!

(∂h−h1 ã(x, T )

∂xh−h1
fh1+2
i (x, τ) +

∂h−h1 b̃(x, T )

∂xh−h1
fh1+1
i (x, τ)

)
def
= L̃(x, T )fh

i (x, τ) +
∂hri(x, τ)

∂xh
+ f̃h

i (x, τ)

fh
i (x, 0) =

∂hψ(x, 0)

∂xh
.

(3.4.23)

We claim that

f̂h
i

def
=

∫ 1

0

fh
i (x, 0)µ(x, T )dx+

∫ ∞

0

∫ 1

0

f̃h
i (x, s)µ(x, T )dxds = 0.

Let Gh
i and µ

h
i be the Green function for equation (3.4.23) and its associated invariant
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density respectively. Put wh
i (x, s) = Gh

i (x, s)− µh
i (x, T ). Then

fh
i (x, τ) =

∫ 1

0

Gh
i (x, τ, y)f

h
i (y, 0)dy +

∫ τ

0

∫ 1

0

Gh
i (x, τ − s, y)

∂hri(y, s)

∂xh
dxds

+

∫ τ

0

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
Gh

i (x, τ − s, y)
(∂h−h1 ã(y, T )

∂yh−h1
fh1+2
i (y, s)

+
∂h−h1 b̃(y, T )

∂yh−h1
fh1+1
i (y, s)

)
dyds

=

∫ 1

0

wh
i (x, τ, y)f

h
i (y, 0)dy +

∫ τ

0

∫ 1

0

wh
i (x, τ − s, y)

∂hri(y, s)

∂xh
dyds

+

∫ τ

0

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
wh

i (x, τ − s, y)
∂h−h1 ã(y, T )

∂yh−h1
fh1+2
i (y, s)dyds

+

∫ τ

0

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
wh

i (x, τ − s, y)
∂h−h1 b̃(y, T )

∂yh−h1
fh1+1
i (y, s)dyds

+

∫ ∞

τ

∫ 1

0

µh
i (y, T )

∂hri(y, s)

∂xh
dyds

+

∫ ∞

τ

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
µh
i (y, T )

∂h−h1 ã(y, T )

∂yh−h1
fh1+2
i (y, s)dyds

+

∫ ∞

τ

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
µh
i (y, T )

∂h−h1 b̃(y, T )

∂yh−h1
fh1+1
i (y, s)dyds.

On the other hand, by Lemma 3.4.9, for all s > 0,

max
j=0,1,2

sup
x∈[0,1]

∣∣∣∣∂jwh
i (x, s)

∂yj

∣∣∣∣ ≤ C e−γs .

Therefore, we derive from (3.4.22) that∣∣∣∣∣
∫ τ

0

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
wh

i (x, τ − s, y)
∂h−h1 ã(y, T )

∂yh−h1
fh1+2
i (y, s)dyds

∣∣∣∣∣
=

∣∣∣∣∣
∫ τ

0

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!

∂2

∂y2

(
wh

i (x, τ − s, y)
∂h−h1 ã(y, T )

∂yh−h1

)
fh1
i (y, s)dyds

∣∣∣∣∣
≤
∫ τ

0

C e−γ(τ−s) e−γs ds ≤ C e−γ̃τ ,
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and also the following inequality∣∣∣∣∣
∫ ∞

τ

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
µh
i (y, T )

∂h−h1 ã(y, T )

∂yh−h1
fh1+2
i (y, s)dyds

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

τ

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!

∂2

∂y2

(
µh
i (y, T )

∂h−h1 ã(y, T )

∂yh−h1

)
fh1
i (y, s)dyds

∣∣∣∣∣
≤
∫ ∞

τ

C e−γs ds = C e−γτ

for some 0 < γ̃ < γ. Similarly, there exists 0 < γ̂ < γ such that∣∣∣∣∣
∫ τ

0

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
wh

i (x, τ − s, y)
∂h−h1 b̃(y, T )

∂yh−h1
fh1+1
i (y, s)dyds

∣∣∣∣∣ ≤ C e−γ̂τ ,∣∣∣∣∣
∫ ∞

τ

∫ 1

0

h−1∑
h1=0

h!

h1!(h− h1)!
µh
i (y, T )

∂h−h1 b̃(y, T )

∂yh−h1
fh1+1
i (y, s)dyds

∣∣∣∣∣ ≤ C e−γ̂τ ,∣∣∣∣∫ τ

0

∫ 1

0

wh
i (x, τ − s, y)

∂hri(y, s)

∂xh
dyds

∣∣∣∣ ≤ C e−γ̂τ ,∣∣∣∣∫ ∞

τ

∫ 1

0

µh
i (y, T )

∂hri(y, s)

∂xh
dyds

∣∣∣∣ ≤ C e−γ̂τ ,∣∣∣∣∫ 1

0

wh
i (x, τ, y)f

h
i (y, 0)dy

∣∣∣∣ ≤ C e−γ̂τ .

Put γ = min (γ̃, γ̂). Then

sup
x∈[0,1]

∣∣fh
i (x, τ)

∣∣ ≤ C e−γτ .

Thus the desired result follows immediately by induction. Now we will verify the

above claim. In fact, for any h1 ≤ h,

∂fh1−1
i (x, s)

∂s
=

∂h1−1

∂xh1−1
(L̃(x, T )ψi(x, s)) +

∂h1−1ri(x, s)

∂xh1−1

=

h1−1∑
ι=0

(h1 − 1)!

ι!(h1 − 1− ι)!

( ∂h1−1−ι

∂xh1−1−ι
L̃(x, T )

)
f ι
i (x, s) +

∂h1−1ri(x, s)

∂xh1−1
.

Integrating the above equation, we have

−fh−1
i (x, 0) =

∫ ∞

0

( h−1∑
h1=0

(h− 1)!

h1!(h− 1− h1)!

( ∂h−1−h1

∂xh−1−h1
L̃(x, T )

)
fh1
i (x, s)+

∂h−1ri(x, s)

∂xh−1

)
ds.
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Differentiating with respect to x and noting that

(h− 1)!

h1!(h− 1− h1)!
+

(h− 1)!

(h1 − 1)!(h− h1)!
=

h!

h1!(h− h1)!
,

we obtain

−fh
i (x, 0) =

∫ ∞

0

( h−1∑
h1=0

(h− 1)!

h1!(h− 1− h1)!

(( ∂h−h1

∂xh−h1
L̃(x, T )

)
fh1
i (x, s)

+
( ∂h−1−h1

∂xh−1−h1
L̃(x, T )

)
fh1+1
i (x, s)

)
+
∂hri(x, s)

∂xh

)
ds

=

∫ ∞

0

( h−1∑
h1=0

(h− 1)!

h1!(h− 1− h1)!

( ∂h−h1

∂xh−h1
L̃(x, T )

)
fh1
i (x, s)

+
h∑

h1=1

(h− 1)!

(h1 − 1)!(h− h1)!

( ∂h−h1

∂xh−h1
L̃(x, T )

)
fh1
i (x, s) +

∂hri(x, s)

∂xh

)
ds

=

∫ ∞

0

( h∑
h1=0

h!

h1!(h− h1)!

( ∂h−h1

∂xh−h1
L̃(x, T )

)
fh1
i (x, s) +

∂hri(x, s)

∂xh

)
ds

=

∫ ∞

0

(
L̃(x, T )fh

i (x, s) + f̃h
i (x, s)

)
ds.

Therefore,

−
⟨
fh
i (x, 0), µ(x, T )

⟩
=

∫ ∞

0

< L̃(x, T )fh
i (x, s), µ(x, T ) > ds

+

∫ ∞

0

< f̃h
i (x, s), µ(x, T ) > ds

=

∫ ∞

0

< f̃h
i (x, s), µ(x, T ) > ds.

Hence, the claim is proved. 2

Lemma 3.4.12. There exist constants C and 0 < γ̃ < γ such that for any 0 ≤ i ≤

n+ 1 and τ > 0,

max
h=0,...,2(n+2−i)

max
x∈[0,1]

∣∣∣∣∂hψi(x, τ)

∂xh

∣∣∣∣ ≤ C e−γ̃τ . (3.4.24)

As a result, for any 0 ≤ i ≤ n+ 1 and τ > 0,

max
0≤h1≤n+2

|L̃(h1)(x, T )ψi(x, τ)| ≤ C e−γ̃τ
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and

max
0≤h1≤n+2

|(L̂+Q)(h1)(x, T )ψi(x, τ)| ≤ C e−γ̃τ .

Proof. First, under condition (3.4.9) and by Lemma 3.4.6, we have

|ψ0(x, τ)| = |ψ0(x, τ)− [ψ0(·, 0), µ(·, T )] | ≤ C e−γτ .

Applying Lemma 3.4.11 with r0 = 0, we verify that (3.4.24) holds for i = 0. Assume

that for any j < i,

max
h=0,...,2(n+2−j)

sup
x∈[0,1]

∣∣∣∣∂hψj(x, τ)

∂xh

∣∣∣∣ ≤ C e−γτ .

Then for some 0 < γ̃ < γ,

max
h=0,...,2(n+2−i)

sup
x∈[0,1]

∣∣∣∣∂hri(x, τ)∂xh

∣∣∣∣ ≤ C e−γτ .

Now, under condition (3.4.19), we again derive from Lemma 3.4.6 that

|ψi(x, τ)| =
∣∣∣∣ψi(x, τ)− [ψi(·, 0), µ(·, T )]−

∫ ∞

0

[ri(·, t), µ(·, T )] dt
∣∣∣∣ ≤ C e−γ̃τ .

Thus Lemma 3.4.11 yields (3.4.24). This completes the proof by induction. 2

3.4.3 Error Estimates

For any function f , define

Dεf =
∂f

∂t
+Qf + Lεf. (3.4.25)
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Lemma 3.4.13. Suppose that ζ ∈ C([0, 1]× [0, T ]) is periodic in x ∈ [0, 1], satisfying

sup
(x,t)∈[0,1]×[0,T ]

|ζ(x, t)| ≤ Cεκ.

Let ξε(x, t) be a solution to

Dεξε(x, t) = ζ(x, t), ξε(x, T ) = 0, ∀x ∈ [0, 1]. (3.4.26)

Then

sup
(x,t)∈[0,1]×[0,T ]

|ξε(x, t)| ≤ Cεκ.

Proof. Using τ = (T − t)/ε and putting F ε(x, τ) = ξε(x, ετ), (3.4.26) becomes

∂F ε(x, τ)

∂τ
= (L̃(x, ετ) + εL̂(x, ετ))F ε(x, τ) + εQ(x, ετ)F ε(x, τ) + εζ(x, ετ).

Since L̃(x, ετ) + εL̂(x, ετ) is elliptic, there exists a Green’s function Gε such that

F ε(x, τ) =

∫ τ

0

∫ 1

0

Gε(s, y, τ, x)εζ(y, εs)dyds+

∫ τ

0

∫ 1

0

Gε(s, y, τ, x)εQ(y, εs)F
ε(y, s)dyds.

We have∫ 1

0

Gε(s, y, τ, x)dy ≤
∫ 1

0

∞∑
ι=−∞

1√
4πc(τ − s)

exp

(
−(x+ ι− y)2

4πc(τ − s)

)
dy

=

∫ ∞

−∞

1√
4πc(τ − s)

exp

(
− (x+ y)2

4πc(τ − s)

)
dy

=

∫ ∞

−∞
e−z2dz, with z =

x+ y√
4πc(τ − s)

=
π

2
√
2
.

Put f(τ) = supx∈[0,1] |F ε(x, τ)|. Then

f(τ) ≤ Cεκ+1τ + Cε

∫ τ

0

f(s)ds ≤ Cεκ + Cε

∫ τ

0

f(s)ds.
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Using Gronwall’s inequality, we obtain

f(τ) ≤ Cεκ exp

(
Cε

∫ τ

0

ds

)
≤ Cεκ.

Lemma 3.4.13 is thus proved. 2

Theorem 3.4.14. There exists C > 0 such that

sup
(x,t)∈[0,1]×[0,T ]

∣∣∣∣uε(x, t)− Φε
n(x, t)−Ψε

n(x,
T − t

ε
)

∣∣∣∣ ≤ Cεn+1.

Proof. Put

eε,κ(x, t) = uε(x, t)− Φε
κ(x, t)−Ψε

κ(x, τ).

Then Dεuε(x, t) = 0 and therefore,

Dεeε,κ(x, t) = −DεΦε
κ(x, t)−DεΨε

κ(x,
T − t

ε
).

Moreover

DεΦε
κ(x, t) =

κ∑
i=0

εiϕ̇i(x, t) +
κ∑

i=0

εi−1L̃(x, t)ϕi(x, t) +
κ∑

i=0

εi(L̂+Q)(x, t)ϕi(x, t)

=
κ∑

i=0

εi(−L̃(x, t)ϕi+1(x, t)− (L̂+Q)(x, t)ϕi(x, t)) +
κ∑

i=0

εi−1L̃(x, t)ϕi(x, t)

+
κ∑

i=0

εi(L̂+Q)(x, t)ϕi(x, t)

= −εκL̃(x, t)ϕκ+1(x, t) + ε−1L̃(x, t)ϕ0(x, t)︸ ︷︷ ︸
0

.

So, by Lemma 3.4.10,

|DεΦε
κ(x, t)| ≤ Cεκ.
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Using the strethed variable τ , ε ∂
∂t
ψi(x, τ) = − d

dτ
ψi(x, τ) which yields

DεΨε
κ

(
x, τ
)
=

κ∑
i=0

−εi−1 d

dτ
ψi(x, τ) +

κ∑
i=0

εi−1L̃(x, t)ψi(x, τ) +
κ∑

i=0

εi(L̂+Q)(x, t)ψi(x, τ)

=
κ∑

i=0

εi−1(−L̃(x, T )ψi(x, τ)− ri(x, τ)) +
κ∑

i=0

εi−1L̃(x, t)ψi(x, τ)

+
κ∑

i=0

εi(L̂+Q)(x, t)ψi(x, τ)

=
κ∑

i=0

εi−1(−L̃(x, T ) + L̃(x, t))ψi(x, τ)−
κ∑

i=0

εi−1ri(x, τ)

+
κ∑

i=0

εi(L̂+Q)(x, t)ψi(x, τ).

The second term is equal to

κ∑
i=0

εi−1ri(x, τ)

=
κ∑

i=1

εi−1

i−1∑
j=0

(
(−τ)i−j L̃(i−j)(x, T )

(i− j)!
+ (−τ)i−j−1 (L̂+Q)(i−j−1)(x, T )

(i− j − 1)!

)
ψj(x, τ)

=
κ−1∑
j=0

κ∑
i=j+1

(
εi−1(−τ)i−j L̃(i−j)(x, T )

(i− j)!
+ εi−1(−τ)i−j−1 (L̂+Q)(i−j−1)(x, T )

(i− j − 1)!

)
ψj(x, τ)

=
κ−1∑
j=0

κ∑
i=j+1

(
εj−1(t− T )i−j L̃(i−j)(x, T )

(i− j)!
+ εj(t− T )i−j−1 (L̂+Q)(i−j−1)(x, T )

(i− j − 1)!

)
ψj(x, τ)

=
κ−1∑
j=0

εj−1

(
κ−j∑
i=1

(t− T )i
L̃(i)(x, T )

i!

)
ψj(x, τ)

+
κ−1∑
j=0

εj

(
κ−j−1∑
i=0

(t− T )i
(L̂+Q)(i)(x, T )

i!

)
ψj(x, τ).

Therefore,

DεΨε
κ(x, τ) = εκ−1(−L̃(x, T ) + L̃(x, t))ψκ(x, τ) + εκ(L̂+Q)(x, t)ψκ(x, τ)

+
κ−1∑
j=0

εj−1

(
L̃(x, t)−

κ−j∑
i=0

(t− T )i
L̃(i)(x, T )

i!

)
ψj(x, τ)

+
κ−1∑
j=0

εj

(
(L̂+Q)(x, t)−

κ−j−1∑
i=0

(t− T )i
(L̂+Q)(i)(x, T )

i!

)
ψj(x, τ).

(3.4.27)
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Using Taylor expression and Proposition 3.4.12, we obtain

|DεΨε
κ(x, τ)| ≤ Cεκ−1|t− T | e−γτ +Cεκ + C

κ−1∑
j=0

εj−1 |t− T |κ−j+1 e−γτ

+C
κ−1∑
j=0

εj |t− T |κ−j e−γτ

= Cεκτ e−γτ +Cεκ + C

κ−1∑
j=0

εκτκ−j+1 e−γτ +C
κ−1∑
j=0

εκτκ−j e−γτ

≤ Cεκ.

Piecing this together with the estimates on DεΦκ(x, t), we have shown that

sup
(x,t)∈[0,1]×[0,T ]

|Dεeε,κ(x, t)| ≤ Cεκ

for k ≤ n+1. Note the terminal condition eε,κ(x, T ) = 0. Thus Lemma 3.4.13 implies

sup
(x,t)∈[0,1]×[0,T ]

|eε,κ(x, t)| ≤ Cεκ.

Taking κ = n+ 1, we obtain

sup
(x,t)∈[0,1]×[0,T ]

|ee,n+1(x, t)| = O(εn+1).

Finally, note that

eε,n+1(x, t) = eε,n(x, t) + εn+1ϕn+1(x, t) + εn+1ψn+1(x, τ). (3.4.28)

The continuity of ϕn+1(x, t) and the exponential decay properties of ψn+1(x, τ) yield

that

sup
(x,t)∈[0,1]×[0,T ]

|εn+1ϕn+1(x, t) + εn+1ψn+1(x, τ)| ≤ Cεn+1.

Substituting this into (3.4.28), we obtain

sup
(x,t)∈[0,1]×[0,T ]

|eε,n(x, t)| ≤ Cεn+1

as desired. 2
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3.5 Illustrations and Remarks

3.5.1 Illustrations

Asymptotic expansions have been obtained in this paper. In this section, we provide

some interpretations of our results.

To illustrate, let us begin with a simple case. Consider (3.2.1) together with

(3.2.2), in which Qε(x) = Q(x)/ε and Q(x, t) is weakly irreducible. Now (3.2.1) and

(3.2.2) can be written as

dXε(t) = b(Xε(t), αε(t))dt+ σ(Xε(t), αε(t))dB(t),

P (αε(t+∆) = ℓ|αε(t) = k,X(t) = x) = qεkℓ(x)∆ + o(∆).
(3.5.1)

Using weak convergence methods (see e.g., Yin and Zhang [52]), one can show that

Xε(·) converges weakly to X(·) such that X(·) is the solution of

dX(t) = b(X(t))dt+ σ(X(t))dB(t), (3.5.2)

where

b(x) =
m∑
i=1

b(x, i)νi(x), σ(x) =

√√√√ m∑
i=1

σ2(x, i)νi(x), and

ν(x) = (ν1(x), . . . , νm(x))

(3.5.3)

is the quasi-stationary distribution. The asymptotic results obtained in this paper

gives us more than those only obtained by the weak convergence. It provides new

insight even for the leading term in the asymptotic expansion.

Suppose that U(x, α) is a smooth functional. Our asymptotic expansions (e.g.,

Theorem 3.3.10) and the probabilistic interpretation of the solution of the backward
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equation enable us to conclude that for any t > Kε ln(1/ε) and some K > 0,

EU(Xε(t), αε(t)) → EU(X(t)) = E
m∑
i=1

U(X(t), i)νi(X(t)).

Next, consider Ũ(x, α, t) = 1A1B (the indicators of A and B, resp.), which can be

thought of as an approximation to the smooth function U . Then we have

P (Xε(t) ∈ A,αε(t) ∈ B) →
∑
i∈B

∫
A

P (X(t) ∈ dx)νi(x) as ε→ 0.

In particular, when A = [0, 1],

P (αε(t) ∈ B) →
∑
i∈B

Eνi(X(t)) as ε→ 0.

As a convention, Xx,i(t) denotes the process X(t) starting at X(0) = x and α(t) = i.

By virtue of the Markov property of (Xε(t), αε(t)), for 0 < t1 < t2 not depending on

ε,

P (αε,x,i(t1) ∈ A1, α
ε,x,i(t2) ∈ A2)

=
∑
i1∈A1

∫ 1

0

P (Xε,x,i(t) ∈ dx1, α
ε,x,i(t) = i1)P (α

ε,x1,i1(t2 − t1) ∈ A2)

→
∑
i1∈A1

∫ 1

0

P (Xx(t) ∈ dx1)νi1(x1)
∑
i2∈A2

νi2(X
x1(t2 − t1)) as ε→ 0

=
∑
i1∈A1

∑
i2∈A2

Eνi1(X
x(t1))Eνi2(X

Xx(t1)(t2 − t1))

=
∑
i1∈A1

∑
i2∈A2

E[νi1(X
x(t1))E(νi2(X

x(t2))|Xx(t1))]

= E
∑
i1∈A1

∑
i2∈A2

νi1(X
x(t1))νi2(X

x(t2)).

In fact, by induction, we obtain the finite dimensional distributions

P (αε,x,i(t1) ∈ A1, α
ε,x,i(t2) ∈ A2, . . . , α

ε,x,i(tn) ∈ An)

→ E
∑
i1∈A1

∑
i2∈A2

· · ·
∑
in∈An

νi1(X
x(t1))νi2(X

x(t2)) · · · νin(Xx(tn)) as ε→ 0.
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As another illustration, consider a control problem with the cost function given

by

Jε(x, α, u(·)) = Ex,α

∫ T

0

C(Xε(t), αε(t), u(t))dt, (3.5.4)

where (Xε(·), αε(·)) is given by (3.5.1). Generally, the problem is difficult to solve

due to the complexity of the problem setup. Using our asymptotic expansions, we

can show that there is an associated cost function for the limit problem

J(x, u(·)) = Ex

∫ T

0

C(X(t), u(t))dt, (3.5.5)

where X(t) is given in (3.5.2) and C(x, u) =
∑m

i=1C(x, i)νi(x) as defined in (3.5.3).

We can then find optimal control of the limit problem. Using this optimal control in

the original system, we can obtain asymptotic optimal control under suitable condi-

tions.

3.5.2 Remarks

Let us remark on the case that the switching process has a more complex structure.

Q̃(x, t) =



Q̃1(x, t)

. . .

Q̃l(x, t)

Q̃1
∗(x, t) . . . Q̃l

∗(x, t) Q̃∗(x, t)

0ma×ma


, (3.5.6)
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That is, the process includes recurrent states, absorbing states, and transient states.

We denote m = m1 + · · ·+ml +m∗ +ma, and

1̃1(x, t) =



11m1

. . .

11ml

d1(x, t) . . . dl(x, t)

Ima


,

where

dk(x, t) = −Q̃−1
∗ (x, t)Q̃k

∗(x, t)11mk
(x, t) ∈ Rm∗×mk , for k = 1, . . . , l.

It is readily seen that Q̃(x, t)1̃1(x, t) = 0 for each x ∈ [0, 1] and t ∈ [0, T ]. Denote also

ν(x, t) =



ν1(x, t) 01×m∗

. . .
...

νl(x, t) 01×m∗

Ima


∈ Rl×m,

P (x) = 1̃1(x, T )ν(x, T ) =



11m1ν
1(x, T ) 0m1×m∗

. . .
...

11ml
νl(x, T ) 0ml×m∗

d1(x, T )ν1(x, T ) . . . dl(x, T )νl(x, T ) 0m∗×m∗

Ima


.

Analogue calculations can be carried out and a similar asymptotic expansion can be

constructed.

For non-diffusion case, we focus on the system of equations (see Chiang [11, p.
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402]),
d

dt
uε(t) = −Q(t)uε(t),

uε(T ) = u0,
(3.5.7)

for some 0 < T < ∞, where uε(t) ∈ Rm×1, Q(t) =
Q̃(t)

ε
+ Q̂(t) for some generators

Q̃(t) and Q̂(t), and

Q̃(t) =



Q̃1(t)

. . .

Q̃l(t)

Q̃1
∗(t) . . . Q̃l

∗(t) Q̃∗(t)


.

Under the following conditions

• For each i = 1, . . . , l, and each t ∈ [0, T ], Q̃i(t) is weakly irreducible with the

associated quasi-stationary distribution denoted by νi(t),

• For some positive integer n, Q̃(·) and Q̂(·) are (n + 2)-times continuously dif-

ferentiable,

• For each t ∈ [0, T ], Q̃∗(t) is Hurwitz (i.e., all of its eigenvalues have negative

real parts),

A similar asymptotic expansion can also be constructed and the corresponding error

bound can also be obtained.
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Chapter 4

Stability of Singular Jump-Linear

Systems with A Large State Space:

A Two-time-scale Approach

4.1 Introduction

Singular systems, which have many synonyms such as descriptor systems, general-

ized systems, and implicit systems, are featured in differential-algebraic equations

(DAEs). They arise in various applications in physical sciences, engineering, and

economic systems. Owing to their importance, such systems have been studied ex-

tensively and used widely in control and optimization applications. For some recent

literature, we refer the reader to Campbell [8, 9], Cheng et al. [10], Dai [13], Huang

and Mao [21], Lewis [34] among others. While the references mentioned above are all

concerned with deterministic systems, recent works also include formulation, analysis,

and computation involving stochastic systems; see for instance, Boukas [4], Boukas

et al. [5], Huang and Mao [21], Yin and Zhang [51], among others.
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The main motivations of this chapter are from the following two aspects. First

it is motivated by the recent stability analysis in Huang and Mao [21] for analyzing

stability of stochastic systems with Markov regime switching. Second, it is motivated

by the two-time-scale formulation of Markov chains; see for example, Yin and Zhang

[51, 52]. In this chapter, we treat a system similar to Huang and Mao [21], but the

discrete state space is very large. We focus on stability analysis. By sending ε → 0,

we obtain a limit system with reduced state space for an aggregated switching process.

Knowing the stability of the limit system, we aim to obtain stability of the original

system under suitable conditions.

The rest of this chapter is organized as follows. The precise problem formulation is

given next. Section 4.3 presents a number of preliminary results. Section 4.4 focuses

on stability of the underlying singular systems. Our approach is along the line of

two-time-scale approach. Under broad conditions, we show that by use of the limit

system, we can obtain stability of the original system. Section 4.5 presents a couple

of examples for demonstration. Finally, Section 4.6 gives some further remarks and

concludes the paper.

4.2 Problem formulation

Suppose that α(t) is a continuous-time Markov chain taking values in a finite state

space M. In this paper, we consider the switching process α(t) having fast and slowly
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varying transitions in that the generator of the Markov chain is given by

Qε =
Q̃

ε
+ Q̂, (4.2.1)

where

Q̃ = diag(Q̃1, . . . , Q̃l), (4.2.2)

where diag(D1, . . . , Dl) denotes a diagonal block matrix with entries D1, . . . , Dl, and

Q̂ is another generator without specific structure. Because of the structure of the

matrix Q̃ in (4.2.2), we write the state space M as

M = M1 ∪M2 ∪ · · · ∪Ml, where

Mi = {si1, . . . , simi
} for i = 1, . . . , l.

To indicate the ε-dependence of the Markov chain, we write it as αε(t) henceforth.

Let B(·) be a standard real-valued Brownian motion.

Throughout the paper, we use the following condition for the fast changing part

of the generator Q̃.

(B1) For i = 1, . . . , l, the generator Q̃i is irreducible.

Here, by irreducibility, we meant that the systems of equations

νiQ̃i = 0

νi11i = 1

has a unique nonnegative solution. In the above νi ∈ R1×mi and 11i = (1, . . . , 1)′ ∈

Rmi×1. The νi is nothing but the stationary distribution associated with the generator

Q̃i. In what follows, we also use the notation qsijsκι to denote the (m1 + · · · +mi +

j,m1 + · · ·+mκ + ι)th entry of a given matrix Q.
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Suppose that for each sij ∈ M, A(sij), G(sij), and H(sij) are n×n matrices such

that G(sij) is singular. Our interest lies in the following system of switching linear

systems:

G(αε(t))dxε(t) = A(αε(t))xε(t)dt+H(αε(t))xε(t)dB(t),

xε(0) = ξ, αε(0) = ι = sij,
(4.2.3)

for some i ∈ {1, . . . , l} and j = 1, . . . ,mi, where B(·) is an n-dimensional standard

Brownian motion. We aim at studying the stability of the system above. The difficulty

lies in that the system is singular, so that the standard stability analysis techniques

do not carry over.

4.3 Preliminary Results

We will use the following assumptions.

(B2) For any i = 1, . . . , l and any j ∈ Mi, the triplet (G,A,H) satisfies one of the

following conditions

a. det(sG(sij)−A(sij)) ̸= 0 for some s, deg(det(sG(sij)−A(sij))) = rij and

rank([G(sij) H(sij)]) = rij.

b. det(sG(sij)−H(sij)) ̸= 0 for some s, deg(det(sG(sij)−H(sij))) = rij and

rank([G(sij) A(sij)]) = rij.

Denote by {τk} a sequence of jump times of the Markov chain αε(t), namely,

τ ε0 = 0 and τ εk+1 = inf {t > τ εk : αε(t) ̸= αε(τk)}. Then αε(t) = αε(τk) on [τ εk , τ
ε
k+1).

Moreover, τk → ∞ as k → ∞.
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Lemma 4.3.1. If (B2) holds, then (4.2.3) has a unique solution.

Proof. Assume that (B2)-b is valid. The following argument is similar if (B2)-a

holds. For convenience, denote sij = αε
τ0
. There exist nonsingular n × n matrices

L(sij), R(sij) such that

L(sij)G(sij)R(sij) =

Irij 0

0 0

 ,

L(sij)A(sij)R(sij) =

A1(sij) A2(sij)

0 0

 ,

L(sij)H(sij)R(sij) =

H1(sij) 0

0 In−rij

 ,

where A1(sij) and H1(sij) are rij×rij matrices and A2(sij) is an rij×(n−rij) matrix.

Let

wε(t) = R−1xε(t) = [[wε
1(t)]

′ [wε
2(t)]

′]′.

Then (4.2.3) is equivalent to
dwε

1(t) = [A1(α
ε(t))wε

1(t) + A2(α
ε(t))zε2(t)] dt+H1(α

ε(t))wε
1(t)dBt,

0 = wε
2(t)dBt,

wε(0) = R−1(ι)ξ, αε(0) = ι ∈ M,

(4.3.1)

or 
dwε

1(t) = A1(α
ε(t))wε

1(t)dt+H1(α
ε(t))wε

1(t)dBt,

wε
2(t) = 0,

wε(0) = R−1(ι)ξ, αε(0) = ι ∈ M,

(4.3.2)

which has a unique solution on interval [τ0, τ1]. Continuing this process, we can prove

that (4.2.3) has a unique solution for all t ≥ 0 by induction. 2
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4.4 Stability

In order to find stability conditions on the limit processes instead of the original

processes, we lump the states in each Mi into a single state and define

αε(t) = i if αε(t) ∈ Mi.

Denote the state space of αε(·) by

M = {1, . . . , l} , and denote ν̃ = diag
(
ν1, . . . , ν l

)
,

where νk is the stationary distribution corresponding to Q̃k. Define

Q = ν̃Q̂11, where

11 = diag (11m1 , . . . , 11ml
) ,

11k = (1, . . . , 1)′ ∈ Rk×1.

For i ∈ Mi, denote

Ĝ(i) =

mi∑
j=1

νijG(sij),

Â(i) =

mi∑
j=1

νijA(sij),

Ĥ(i) =

mi∑
j=1

νijH(sij).

We need the following assumption for our further analysis

(B3) For i ∈ M, rank(G(si1)) = · · · = rank(G(simi
)) = rank ([G′(si1)| · · · |G′(simi

)]) ,

Remark 4.4.1. (B3) is equivalent to

(B3’) For i = 1, . . . , l, there exists a corresponding sequence of elementary row oper-

ations transforming {G′(sij)}j∈Mi
into row echelon matrices.
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We derive from (B3) that, for any sij ∈ M, there exist non-singular n×n matrices

L(sij) and R(sij) such that

L(sij)G(sij)R(sij) =

Iri 0

0 0

 ,

where rij = ri for all j = 1, . . . ,mi and R(sij) could be chosen to be the same matrix,

denoted by R̂(i), for all sij ∈ Mi.

For any i ∈ M, put

L̂(i) =

(
mi∑
j=1

νijL
−1(sij)

)−1

.

Then

L̂(i)Ĝ(i)R̂(i) =

Iri 0

0 0

 .

For any sij ∈ M, denote

Ğ(sij) = Ĝ(i), L̆(sij) = L̂(i), R̆(sij) = R̂(i).

Then

L̆(sij)Ğ(sij) = L(sij)G(sij).

Given any U ∈ Rn×n, Ŭ = 1
2
(U + U ′) is a symmetric matrix. Let

V (x, sij) = x′Ğ′(sij)UĞ(sij)x.

Then

V (x, sij) = x′Ğ′(sij)ŬĞ(sij)x = x′G′(sij)Û(sij)G(sij)x,

where

Û(sij) = L′(sij)L̆
′−1(sij)Ŭ L̆

−1(sij)L(sij).
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For a suitable function V , define

LεV (x, κ) = lim
s→0+

[E (V (xε(t+ s), αε(t+ s))|xε(t) = x, αε(t) = κ)− V (x, κ)]

Thus

LεV (x, κ) = x′
{
A′(κ)Û(κ)G(κ) +G′(κ)Û(κ)A(κ) +H ′(κ)Û(κ)H(κ)

+
∑
ι∈M

q̂κιG
′(ι)Û(ι)G(ι)

}
x

(4.4.1)

Denote by ⊗ the Kronecker product of matrices. We shall use operators ⟨·⟩ and

⟨·, ·⟩ defined by

⟨A⟩ = A⊗ A and ⟨A,B⟩ = A⊗B +B ⊗ A.

Let zε(t) = E ⟨xε(t)⟩. Using a similar argument as that in Huang and Mao [21],

we obtain

G̃(αε(t))żε(t) = Ã(αε(t))zε(t),

zε(0) = ξ̃ = E ⟨ξ⟩ , αε(0) = ι.
(4.4.2)

where

zε(0) = ξ̃ = ⟨ξ⟩ ,

G̃(sij) =
⟨
Ğ(sij)

⟩
=
⟨
Ĝ(i)

⟩
≡ G(i),

Ă(sij) = L̆−1(sij)L(sij)A(sij),

H̆(sij) = L̆−1(sij)L(sij)H(sij),

Ã(sij) =
⟨
Ğ(sij), Ă(sij)

⟩
+
⟨
H̆(sij)

⟩
+

l∑
κ=1

mκ∑
ι=1

q̂εsij sκιG̃(sκι).

For i ∈ M, denote

A(i) =
⟨
Ĝ(i), Â(i)

⟩
+
⟨
Ĥ(i)

⟩
+

l∑
κ=1

qiκĜ(κ).

The following result can be proved similar to the development in Yin and Zhang [51];

the details are omitted.
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Proposition 4.4.2. Let zε(t) be the solution of (4.4.2). Then as ε→ 0, zε(·) weakly

converges to z(·), a solution of the singular system of differential equations

G(α(t))ż(t) = A(α(t))z(t),

z(0) = ξ̃,
(4.4.3)

To carry out the stability analysis, we need more assumptions.

(B4) There exists a nonsingular matrix P (i) for each i = 1, . . . , l such that

a. G
′
(i)P (i) = P

′
(i)G

′
(i) ≥ 0.

b. A
′
(i)P (i) + P

′
(i)A(i) +

∑
i1∈M

qii1G
′
(i1)P (i1) < 0.

In the above, the notation ≥ 0 and < 0 are in the sense of ordering for positive

definite matrices.

(B5) For each sij ∈ M,
(
G̃(sij), Ã(sij)

)
is impulse-free, i.e.,

deg
[
det
(
sG̃(sij)− Ã(sij)

)]
= rank G̃(sij).

Remark 4.4.3. Note that G̃(sij) = G(i). Besides, we can compute L(sij) involved

in (B5) for any sij ∈ Mi in the following way: Use elementary row operations to

transform [
G′(si1)

∣∣∣ · · · ∣∣∣G′(simi
)
]

into a row echelon matrix [
Ģ′(si1)

∣∣∣ · · · ∣∣∣Ģ′(simi
)
]
.

Again, use elementary row operations to transform
[
Ģ(sij)

∣∣∣In] into the reduced row

echelon matrix


Iri 0

0 0

∣∣∣∣L(sij)
, where In is an n×n identity matrix. In addition,
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if R(sij)’s are the same for any sij ∈ Mi then L(i) could be relaxed and

Ã(sij) =
⟨
Ĝ(i), A(sij)

⟩
+ ⟨H(sij)⟩+

l∑
κ=1

mκ∑
ι=1

q̂εsij sκιG̃(sκι)

Lemma 4.4.4. Assume (B1), (B3)–(B5) hold. Then there exists constants c1 > 0

and c2 > 0 such that

(i) |żε(t)| ≤ c1 |zε(t)| .

(ii) [zε(t)]′G
′
(αε(t))P (αε(t))zε(t) ≥ c2 |zε(t)|2.

Remark 4.4.5. The inequalities involves matrices. Thus, the second inequality is in

the sense of matrix bound. The order of the matrices is determined by the ordering

of positive definite matrices.

Proof. The proof is divided into a couple of steps.

To prove (i) above, we derive from condition (B5) that

G
¯
(sij) = L̃(sij)G̃(sij)R̃(sij) =

Ir2ij 0

0 0

 ,

A
¯
(sij) = L̃(sij)Ã(sij)R̃(sij) =

Ǎ(sij) 0

0 In2−r2ij

 ,

where Ǎ(sij) is a nonsingular r2ij × r2ij matrix. Let

yε(t) = R̃−1(αε(t))zε(t) = [y′1(t) y
′
2(t)]

′.
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Then

G
¯
(αε(t))ẏε(t) = A

¯
(αε(t))yε(t),

yε(0) = R̃−1(ι)ξ̃,

αε(0) = ι.

(4.4.4)

So

ẏε1(t) = Ǎ(αε(t))yε1(t),

yε2(t) = 0,

yε(0) = R̃−1(ι)ξ̃, αε(0) = ι.

(4.4.5)

Thus ẏ2(t) = 0. Denote

◦
A(i) =

Ǎ(i) 0

0 0n2−r2i

 and

A̧(i) = R(i)
◦
A(i)R(i)−1.

Then

żε(t) = A̧(αε(t))zε(t).

Furthermore, A̧(i) is bounded. Hence, the proof is completed.

As for (ii), put

P
¯
(sij) = (L̃−1)′(sij)P (i)R̃(sij) =

P
¯11(sij) P

¯12(sij)

P
¯21(sij) P

¯22(sij)

 , ∀sij ∈ M.

Then

G
¯
′(sij)P

¯
(sij) = P

¯
′(sij)G

¯
(sij) ≥ 0,

which implies

P
¯12(sij) = P

¯21(sij) = 0 and P
¯11(sij) > 0.
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Thus

[zε(t)]′G
′
(αε(t))P (αε(t))zε(t) = [zε(t)]′ G̃′(αε(t))P (αε(t))zε(t)

= [yε(t)]′ G
¯
′(αε(t))P

¯
(αε(t))yε(t)

= [yε1(t)]
′ P
¯11(α

ε(t))yε1(t)

≥ c3 |yε1(t)|
2 = c3 |yε(t)|2 ≥ c2 |zε(t)|2 .

Thus the assertion is proved. 2

Theorem 4.4.6. Assume (B3)–(B5) hold. There exists constants γ > 0 and c > 0

such that

E |xε(t)|2 ≤ ce−γt
√
ε.

Proof. For any α ∈ M, define

V0(z, α) = z′G
′
(α)P (α)z = z′G̃′(α)P (α)z

Moreover, by the irreducibility of Q̃i,

Q̃V0(z, ·)(α) = 0.

Therefore

LεV0(z
ε(t), αε(t)) = [zε(t)]′ [Ã′(αε(t))P (αε(t)) + P

′
(αε(t))Ã(αε(t)) + g(αε(t))]zε(t),

(4.4.6)

where

g(sij) =
l∑

κ=1

mκ∑
ι=1

q̂sijsκιG
′
(sκι)P (sκι).
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Denote

L = [zε(t)]′
[
A

′
(αε(t))P (αε(t)) + P

′
(αε(t))A(αε(t)) + g(αε(t))

]
zε(t). (4.4.7)

where

g(i) =
l∑

κ=1

qiκG
′
(κ)P (κ).

In order to obtain the desired stability result, we use the methods of perturbed

Liapunov functions. The main idea lies in introducing perturbations to an appropriate

Liapunov function. The perturbations are small in magnitude compared with the

original Liapunov function, and that it results in desired cancellation of the unwanted

terms.

To proceed, define the perturbations

V ε
1 (z, t) = Et

∫ ∞

t

et−uz′
[
Ã′(αε(u))− A

′
(αε(u))

]
P (αε(u))zdu,

V ε
2 (z, t) = Et

∫ ∞

t

et−uz′P
′
(αε(u))

[
Ã(αε(u))− A(αε(u))

]
zdu,

V ε
3 (z, t) = Et

∫ ∞

t

et−uz′ [g(αε(u))− g(αε(u))] ydu.

In order to estimate V ε
2 (z, t) and LεV ε

2 (z
ε(t), t), we consider

V ε
2A(z, t) = Et

∫ ∞

t

et−uz′P
′
(αε(u))

[⟨
Ğ(αε(u)), Ă(αε(u))

⟩
−
⟨
Ĝ(αε(u)), Â(αε(u))

⟩]
zdu,

V ε
2H(z, t) = Et

∫ ∞

t

et−uz′P
′
(αε(u))

[⟨
H̆(αε(u))

⟩
−
⟨
Ĥ(αε(u))

⟩]
zdu,

V ε
2Q(z, t) = Et

∫ ∞

t

et−uz′P
′
(αε(u))

[
h(αε(u))− h(αε(u))

]
zdu,
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where h(sij) =
∑l

κ=1

∑mi

ι=1 q̂
ε
sij sκιG̃(sκι) and h(i) =

∑l
κ=1 qiκG(κ). Then

V ε
2 (z, t) = V ε

2A(z, t) + V ε
2H(z, t) + V ε

2Q(z, t).

On one hand,⟨
Ğ(αε(u)), Ă(αε(u))

⟩
−
⟨
Ĝ(αε(u)), Â(αε(u))

⟩
=
⟨
Ĝ(αε(u)), Ă(αε(u))− Â(αε(u))

⟩
=
⟨
Ĝ(αε(u)), L̆−1(αε(u))L(αε(u))

[
A(αε(u))− Â(αε(u))

]⟩
+
⟨
Ĝ(αε(u)),

[
L̆−1(αε(u))− L−1(αε(u))

]
L(αε(u))Â(αε(u))

⟩
On the other hand,

A(αε(u))− Â(αε(u)) =
l∑

i=1

mi∑
j=1

A(sij)
[
χ(αε(u) = sij)− νijχ(α

ε(u) ∈ Mi)
]

L̆−1(αε(u))− L−1(αε(u)) = −
l∑

i=1

mi∑
j=1

L−1(sij)
[
χ(αε(u) = sij)− νijχ(α

ε(u) ∈ Mi)
]

and for u ≥ t,

Eε
t

[
χ(αε(u) = sij)− νijχ(α

ε(u) = i)
]
= O

(
ε+ e−k0(u−t)/ε

)
,

Therefore

|V ε
2A(z, t)| ≤

l∑
i=1

mi∑
j=1

|z|2
∫ ∞

t

et−uO
(
ε+ e−k0(u−t)/ε

)
du

= O(ε) |z|2 .

(4.4.8)

Similarly, from the fact that⟨
H̆(αε(u))

⟩
−
⟨
Ĥ(αε(u))

⟩
=
⟨
H̆(αε(u)), H̆(αε(u))− Ĥ(αε(u))

⟩
+
⟨
H̆(αε(u))− Ĥ(αε(u)), Ĥ(αε(u))

⟩
h(αε(u))− h(αε(t)) =

l∑
i=1

mi∑
j=1

Q̂G̃(·)(sij)Eε
t

[
χ(αε(u) = sij)− νijχ(α

ε(u) = i)
]
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we derive

|V ε
2H(z, t)| ≤ O(ε) |z|2 ,

∣∣V ε
2Q(z, t)

∣∣ ≤ O(ε) |z|2 .

Thus

|V ε
2 (z, t)| ≤ O(ε) |z|2 .

Furthermore,

LεV ε
2 (z

ε(t), t) = lim
δ↓0

Eε
t [V

ε
2 (z

ε(t+ δ), t+ δ)− V ε
2 (z

ε(t), t)]

= lim
δ↓0

Eε
t [V

ε
2 (z

ε(t+ δ), t+ δ)− V ε
2 (z

ε(t), t+ δ)]

+ lim
δ↓0

Eε
t [V

ε
2 (z

ε(t), t+ δ)− V ε
2 (z

ε(t), t)]

= − [zε(t)]′ P
′
(αε(t))

[
Ã(αε(t))− A(αε(t))

]
zε(t) + V ε

2 (z
ε(t), t)

+Et

∫ ∞

t

et−u [żε(t)]′ P
′
(αε(t))

[
Ã(αε(u))− A(αε(u))

]
zε(t)du

+Et

∫ ∞

t

et−u [zε(t)]′ P
′
(αε(t))

[
Ã(αε(u))− A(αε(u))

]
żε(t)du

≤ − [zε(t)]′ P
′
(αε(t))

[
Ã(αε(t))− A(αε(t))

]
zε(t) +O(1)V ε

2 (z
ε(t), t)

≤ − [zε(t)]′ P
′
(αε(t))

[
Ã(αε(t))− A(αε(t))

]
+O(ε) |zε(t)|2

(4.4.9)

Using a similar argument, we obtain

|V ε
1 (z, t)| = O(ε) |z|2 ,

|V ε
3 (z, t)| = O(ε) |z|2

LεV ε
1 (z

ε(t), t) ≤ − [zε(t)]′
[
Ã′(αε(t))− A

′
(αε(t))

]
P (αε(t))zε(t) +O(ε) |zε(t)|2

LεV ε
3 (z

ε(t), t) ≤ −[zε(t)]′ [g(αε(u))− g(αε(u))] zε(t) +O(ε) |zε(t)|2 .
(4.4.10)

Define

V ε(t) = V0(z
ε(t), αε(t)) +

3∑
i=1

V ε
i (z

ε(t), t). (4.4.11)
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Then

V ε(t) = V0(z
ε(t), αε(t)) +O(ε) |zε(t)|2 . (4.4.12)

In addition,

LεV ε(t) ≤ L+O(ε) |zε(t)|2 . (4.4.13)

By assumption, there exists a constant γ > 0 such that

L+ γV0(z
ε(t), αε(t)) ≤ L+ γc |zε(t)|2 ≤ 0.

Using

Lε
(
eγtV ε(t)

)
= eγt(γV ε(t) + LεV ε(t))

≤ eγtO(ε) |zε(t)|2 ,

we obtain

E
[
eγtV ε(t)

]
≤ EV ε(0) + E

∫ t

0

eγuO(ε) |zε(u)|2 du

≤ O(ε)
∣∣∣ξ̃∣∣∣2 + E

∫ t

0

eγuO(ε) |zε(u)|2 du.

On the other hand,

V0(z
ε(t), αε(t)) > |zε(t)|2 /c.

Therefore,

E
[
eγt |zε(t)|2

]
≤ O(ε)

∣∣∣ξ̃∣∣∣2 + E

∫ t

0

eγuO(ε) |zε(u)|2 du.

Gronwall’s inequality yields that

E
[
eγt |zε(t)|2

]
≤ O(ε)

∣∣∣ξ̃∣∣∣2 .
Hence

E |zε(t)|2 ≤ e−γtO(ε)
∣∣∣ξ̃∣∣∣2 .
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Therefore,

E |xε(t)|2 ≤ CE |x̂ε(t)|2 ≤ C

√
E |zε(t)|2 ≤ e−γt/2O(

√
ε) |ξ|2 .

The proof is completed. 2

4.5 Examples

In this section, we provided a couple of examples to illustrate the two-time-scale

singular systems. In the examples, the matrix manipulations were done by use of

symbolic computation techniques through the use of Maple.

Example 4.5.1. Let αε(t) be a switching process taking values in M = {1, 2} with

generator

Qε =
Q̃

ε
, where Q̃ =

 −4 4

2 −2

 and ε = 0.1.

Consider the singular system

G(αε(t))ẋ(t) = A(αε(t))x(t)dt+H(αε(t))x(t)dB(t), (4.5.1)

where

G(1) = G(2) =

 1 0

0 0

 , A(1) =
 0 0.5

0 0

 , A(2) =
 −3.5 0

0 0

 ,
H(1) =

 1 0

0 0.5

 , H(2) =

 0 0

0 1

 .
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Then

G̃(1) = G̃(2) =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,

Ã(1) =



1 0.5 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.25


, Ã(2) =



−3.5 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


.

Now let us consider the corresponding limit singular system

G ż(t) = A z(t), (4.5.2)

where

G =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, A =



−2.3333 0.1667 0 0

0 0.1667 0 0

0 0 0.1667 0

0 0 0 0.75


.

Then

G
′
P = P ′G =



P1,1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


and

P1,2 = P1,3 = P1,4 = 0.
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Thus

A
′
P + P ′A

=



−4.0P1,1 0.16̄P1,1 + 0.16̄P2,1 0.16̄P3,1 0.75P4,1

0.16̄P1,1 + 0.16̄P2,1 0.3̄P2,2 0.16̄P2,3 + 0.16̄P3,2 0.16̄P2,4 + 0.75P4,2

0.16̄P3,1 0.16̄P2,3 + 0.16̄P3,2 0.3̄P3,3 0.16̄P3,4 + 0.75P4,3

0.75P4,1 0.16̄P2,4 + 0.75P4,2 0.16̄P3,4 + 0.75P4,3 1.50P4,4


.

Hence G and A satisfy (B3)–(B5) with

P =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


.

Therefore, (4.5.1) is asymptotically mean-square stable.

For further demonstration, we next plot the sample paths of the systems. This is

done by use of Matlab. We set the steps h = 0.0001. We then obtain the following

figures for the first coordinate.
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Figure 4.1: A trajectory of singular dynamic system (4.5.1): Time between 0 and 1;

ε = 0.001

0.05 0.1 0.15 0.2 0.25 0.3

(a) Time between 0 and 0.3

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

(b) Time between 0.3 and 0.5

0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

(c) Time between 0.5 and 0.7

0.75 0.8 0.85 0.9 0.95 1

(d) Time between 0.7 and1

Figure 4.2: A trajectory of singular dynamic system (4.5.1) in [0, 1], ε = 0.001

The system quickly comes to its limit position. Fig. 4.1 shows the results for

ε = 0.001, whereas Fig. 4.3 displays the sample path and trajectory corresponding

to ε = 0.1. Moreover, it is easily seen that the smaller the ε, the faster the system
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0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Figure 4.3: A trajectory of singular dynamic system (4.5.1): Time between 0 and 1;

ε = 0.1

decays.

Example 4.5.2. Let αε(t) be a switching process taking values in M = {1, 2, 3, 4}

with generator

Qε =
Q̃

ε
+ Q̂

where

Q̃ =



−4 4 0 0

1 −1 0 0

0 0 −2 2

0 0 3 −3


, Q̂ =



−1 0 1 0

0 −1 0 1

0 1 −1 0

1 0 0 −1


and ε = 0.1. Consider the singular system

G(αε(t))ẋ(t) = A(αε(t))x(t)dt+H(αε(t))x(t)dB(t), (4.5.3)



88

where

G(1) = G(2) =

 1 0

0 0

 , G(3) = G(4) =

 1 0

0 1

 ,
A(1) =

 0 0.5

0 0

 , A(2) =
 −3.5 0

0 0

 , A(3) =
 −1 0

0 2

 , A(4) =
 −2 0

0 1

 ,
H(1) =

 0 0

0 0.5

 , H(2) =

 0 0

0 1

 , H(3) =

 0 1

0 0

 , H(4) =

 0 0

0 0

 .
As ε→ 0, E ⟨xε(t)⟩ → y(t) such that

G(α(t))dz(t) = A(α(t))y(t)dt,

where α(t) is the Markov chain generated by

Q =

 −1 1

1 −1

 and

G(1) =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, G(2) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

A(1) =



−2.8 0.1 0 0

0 1 0 0

0 0 1 0

0 0 0 1.85


, A(2) =



−1.4 0 0 0.6

0 0.6 0

0 0 −2.4 0

0 0 0 0.6


.

Since G and A satisfy (B3) − (B5), (4.5.3) is asymptotically mean-square stable

as demonstrated in Fig.4.4.
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0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
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0.9

1

Figure 4.4: A trajectory of the singular dynamic system (4.5.3) in [0, 0.5], ε = 0.1

4.6 Remarks

This chapter has been devoted to singular jump-linear systems whose switching pro-

cess has a large state space. Alternatively, it could be called singular system with

singularly perturbed Markov chain. The multi-scale structure and two-time-scale for-

mulation are used to reflect that the discrete event process in the system has a large

state space. We have established reduction of complexity results from the angle of

stability analysis. We have used perturbed Liapunov function methods to carry out

the desired task. The conclusion shows that as the small parameter goes to 0, we can

use the stability of the limit system to infer that of the original system. The original

system is normally difficult to analyze because of its large dimensionality, whereas

the limit system is relatively simpler. Thus the result provides a practical guideline

for treating many such systems.
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Chapter 5

Discussion

This dissertation is adherent to two-time-scale switching diffusions where the switch-

ing processes live in a large but finite state space. In this dissertation, we have

studied asymptotic expansions of Kolmogorov backward equations for switching dif-

fusions and stability of singular linear systems. There are still a number of interesting

open problems.

In the fast diffusion case mentioned in Chapter 3, only positive recurrent case has

been Considered. We may deal with null recurrent processes or transient processes.

These are challenging problems.

Also, we may study stability of singular systems with time delays, which was not

considered in Chapter 4. Furthermore, random delay may also be incorporated into

the formulation.

In the future, stability associated with numerical solutions of switching diffusions

may be studied. Developing and analyzing numerical schemes for singularly perturbed

hybrid systems are also very difficult problems, which require much attention. These

problems deserve in-depth study and devoted attention.
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In this dissertation, we consider solutions of hybrid systems in which both continu-

ous dynamics and discrete events coexists. One of the main ingredients of our models

is the two-time-scale formulation. Under broad conditions, asymptotic expansions

are developed for the solutions of the systems of backward equations for switching

diffusion in two classes of models, namely, fast switching systems and fast diffusion

systems. To prove the validity of the asymptotic expansions, uniform error bounds

are obtained.

In the second part of the dissertation, a singular linear system is considered.

Again a two-time-scale formulation is used. Under suitable conditions, the system

has a limit. Using the limit system as a guide, our effort is devoted to deriving a

sufficient condition for the stability of the original system. These results present a

perspective on reduction of complexity from stability and asymptotic analysis points

of view.
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