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PREFACE 

 

Precisely orchestrated communication between axons and glial cells is critical for 

normal development of both central and peripheral nervous system. Part of this 

communication comes from a family of alternatively spliced, neuron-derived growth and 

differentiation factors produced by the neuregulin-1 (NRG1) gene. NRG1 has been 

shown to have multiple important functions on the maintenance and development of both 

neurons and glia. NRG1 isoforms are produced as transmembrane precursors 

(proNRG1) that are subsequently proteolytically cleaved to both soluble and 

membrane-bound proteins. All isoforms have an EGF-like domain that is essential for 

erbB receptor activation. Majority of soluble forms have a unique N-terminal, positively 

charged heaprin-binding domain (HBD) that targets the protein to the cell surfaces rich in 

developmentally expressed heparan sulfate proteoglycans (HSPGs). This dissertation 

will focus on the developmentally specific roles of soluble NRG1 in regulating early 

Schwann cell development, and how the interplay between soluble NRG1 and 

neurotrophins such as brain-derived neurotrophic factor (BDNF) can mediate this 

function in vivo. 

In Chapter I, the introduction will be given about some necessary background of 

NRG1, neurotrophic factors and Schwann cell development as well as the diversity of 

HSPGs, followed by the clarification of the rational of this project. In Chapter II, evidence 

will be presented suggesting that the potential usage of NRG1’s heparin-binding domain 

can increase the fusion protein’s targeting specificity through the interaction with specific 
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heparan sulfate in the extracellular matrix, and thus allow us to generate a novel potent 

NRG1 antagonist that could effectively compete with endogenous NRG1 on an even 

footing to block its activity. This new regent would not only enable more effective studies 

of NRG1’s functions in both development and diseases, but also set an example for the 

future development of biopharmaceuticals with enhanced tissue-targeting specificity and 

minimal toxicity. In chapter III, evidence from the studies with this new regent and genetic 

modulations of soluble NRG1 signaling will reveal the precise developmentally specific in 

vivo functions of soluble NRG1 on Schwann cell precursors’ survival, proliferation and 

their differentiation into immature Schwann cells. Further in vivo evidence presented in 

this chapter shows that reciprocal signaling between axon-derived soluble NRG1 and 

Schwann cell-secreted BDNF at the axoglial interface is critical for the early Schwann 

cell development. Finally, a detailed model about how this positive feedback loop through 

soluble NRG1 and BDNF regulate the development of Schwann cell precursors during 

axon-glial communication, will be discussed in chapter IV, which also will tie the body of 

work together by describing the significance and implications of the novel NRG1 

antagonist and soluble NRG1-mediated axoglial signaling for both normal development 

and a variety of neurological disorders including demyelinating diseases and peripheral 

neuropathy.  

Understanding of in vivo functions of soluble NRG1 on Schwann cell development as 

well as the molecular and cellular mechanisms, by which it is mediated by neurotrophic 

factors, is of great interest due to the critical roles NRG1 plays during normal 

development and its potentials for the therapeutics of human diseases.      
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CHAPTER I 

INTRODUCTION 

 

In the nervous system, the function of a neuron is to communicate with other cells 

through its functionally distinct domains including cell body, the axon and the dendrites. 

This cell communication requires recruiting other supporting cells called glia, through 

interacting with them. The glial cells which closely follows the outgrowth of axons, 

support neuron maintenance and later may insulate axons by myelination process for 

optimal and rapid signal transduction in both peripheral and central nervous system. On 

the other hand, neurons can regulate glia behavior such as survival, proliferation and 

differentiation. In the peripheral nervous system (PNS), Schwann cells can form either 

myelination or just ensheathment around axons in respond to axon-derived instruction. 

Furthermore, sensory neurons in Dorsal Root Ganglia (DRG) which contact with 

Schwann cells in peripheral nervous system may also enter the central nervous system 

(CNS) to communicate with another type of glial cells, oligodendrocytes, in which both 

cross-talks at axoglial interface are very important for the normal functions of the nervous 

systems. So far, a lot of research evidence has shown that, at molecular level, the 

communication between neurons and glial cells is mediated by membrane bound and/or 

soluble factors which may be temporally and spatially expressed both by the neuron and 

the glial cells. This axon-glial communication is critical for growth and differentiation of 

both cell types and it would eventually influence the whole developmental process of 

both peripheral and central nervous system. The disruption of this communication has 
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been strongly implicated in many neurodegenerative and demyelinating diseases (Esper 

et al., 2006). 

Neuregulin-1 (NRG1) isoforms are growth and differentiation factors derived from 

neurons, and their functions in nervous system development as well as neurological 

diseases have been studied extensively. However, the mechanisms by which the 

functions of NRG1 on glial cell development are regulated, has not been fully understood. 

Previous in vitro studies from our lab have shown that Schwann cell or target derived 

neurotrophic factors can promote the localized release of soluble NRG1 from neurons or 

nerve endings respectively through PKC pathway (Loeb et al., 2002; Esper and Loeb, 

2004,2009). So in this thesis work, I hypothesize that the reciprocal signaling between 

axon-released soluble NRG1 and Schwann cell-derived neurotrophic factors could 

mediate functional axon-glial communication in vivo, and the locally released soluble 

NRG1 as a part of this reciprocal regulatory loop, may play a critical role in regulating 

Schwann cell development during early embryonic development. 

 

Molecular structure of neuregulin-1 

 The neuregulin-1 (NRG1) is a large family of growth and differentiation factors, with a 

wide range of important functions during the development of heart and nervous system 

as well as in pathogenesis of human diseases ranging from breast cancer to 

schizophrenia (Lupu et al., 1996; Buonanno and Fischbach, 2001; Falls, 2003; Esper et 

al., 2006; Mei and Xiong, 2008). The NRG1 gene encodes at least 31 isoforms through a 

combination of different promoter usage and post-transcriptional alternative splicing 

(Steinthorsdottir et al., 2004; Mei and Xiong, 2008). The original nomenclature of NRG1 
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isoforms is based on their biological activities when they are first discovered, such as 

ARIA (Acetylcholine Receptor inducing Activity), GGF (Glial Growth Factor), SMDF 

(Sensory and Motor neuron Derived Factor). Currently, alternatively splicing isoforms of 

NRG1 proteins are subdivided into six types (I-VI) according to their distinct structure 

and function of N-terminal region (Mei and Xiong, 2008), while they all have a highly 

conserved and tightly folded epidermal growth factor-(EGF) like domain, which is alone 

necessary and sufficient for the binding and activation of erbB receptors (Buonanno and 

Fischbach, 2001; Falls, 2003). NRG1 isoforms are first expressed as trans-membrane 

precursors (proNRG) that then undergo proteolytic cleavage to produce either released 

soluble (type I-II, IV-VI) forms or membrane-bound (type III) form (Fig.1). The cleavage is 

catalyzed by transmembrane proteases including tumor necrosis factor-α converting 

enzyme (TACE/ADAM17), β-site of amyloid precursor protein cleaving enzyme (BACE) 

and meltrin beta (ADAM19) (Horiuchi et al., 2005; Willem et al., 2006; Mei and Xiong, 

2008). As a result, NRG1 type III still remains at the membrane after proteolytic cleavage 

because of the existence of cysteine-rich domain (CRD) that works as a second 

trans-membrane domain, while other soluble NRG1 isoforms can be shed from cell 

membrane to become soluble proteins and function through paracrine signaling during 

the cell-cell communication. These isoforms have significant difference in both 

processing and spatial or temporal expression pattern that are precisely regulated by 

axoglial communication and neuronal activity, so they could take over different in vivo 

functions during embryonic development (Meyer et al., 1997; Eilam et al., 1998; Esper et 

al., 2006). 

 NRG1 isoforms mediate their effects by binding and activating the erbB family of 



4

receptor tyrosine kinases, specifically erbB2, erbB3, and erbB4 (Buonanno and 

Fischbach, 2001; Citri et al., 2003). NRG1 can bind to erbB3 or erbB4, followed by the 

formation of homo- or hetero-dimeric receptors such as erbB2-erbB3, erbB2-erbB4, 

erbB3-erbB4, erbB4-erbB4, leading to the receptor tyrosine trans-phosphorylation and 

activation of downstream signaling including mitogen-activated protein kinase (MAPK) 

and phosphatidylinositol 3-kinase (PI3K) pathways (Yarden and Sliwkowski, 2001) that 

could be involved in many processes during neural development and pathogenesis of 

some cancers (Fig.2). The erbB receptors are expressed in a variety of tissues and cell 

types, including neurons, nerve innervation targets and glial cells during the 

development of nervous system. In Schwann cells, erbB4 is minimally expressed and 

therefore erbB2-erbB3 heterodimer is most popular receptor activation form to mediate 

the functions of NRG1 on Schwann cell development (Birchmeier and Nave, 2008).    

 The common feature shared by most secreted soluble NRG1, except type VI, is to 

have an extracellular spatially-separated heparin-binding domain (HBD) that is also 

called the Immunoglobulin (Ig)-like domain (Fig.1). NRG1’s HBD is unique from other 

HBDs because of its disulfide-linked C2 immunoglobulin domain structure that allows it 

to be capable of maintaining the structural specificity for high affinity heparin binding 

(Loeb, 2003). This C2 loop consists of a long stretch of alternating positively-charged 

amino acids and is separated from the EGF-like domain by a glycosylated spacer. So the 

net result is that a highly positively charged heparin binding domain can specifically 

target released NRG1 protein to extracellular matrix rich in negatively charged 

heparin-sulfate proteoglycans (HSPGs), which could lead to the precise tissue-specific 

localization for multiple functions through the erbB receptor activation during the 
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development of nervous system (Loeb et al., 1999; Li and Loeb, 2001; Pankonin et al., 

2005) (Fig.2). 

 

Interaction of soluble NRG1 and heparan-sulfate proteoglycan 

  Heparan-sulfate (HS) is one of major glycosaminoglycan (GAG) side chains that 

attach to proteoglycan (PG) core proteins. HSPGs have been suggested to be one of the 

most information-condensed biological molecules in nature and are found ubiquitously 

and abundantly in the extracellular matrix on every cell surface of most tissues (Turnbull 

et al., 2001) (Fig.2). The diversity of HSPGs results from both the existence of a large 

number of core proteins that serve to distribute them to different regions of the 

extracellular space, and the generation of the enormous variety of negatively charged, 

sulfated HS structures that could occur during HS biosynthesis in the endoplasmic 

reticulum and the Golgi apparatus as well as the modification of sulfation pattern by 

specific extracellular sulfatases (Dhoot et al., 2001; Esko and Selleck, 2002). In addition 

to the immense diversity of their molecular structure, biologically-driven expression and 

degradation of HSPGs in a cell/tissue-type-specific manner is precisely regulated by 

distinct physiological or pathological signals both temporally and spatially, leading to the 

activation of restricted signaling pathways that is consistent and reproducible at the right 

time and place (Couchman, 2010).  

The highly specific, but low affinity interactions between heparin-binding domain of 

proteins and HSPGs in the extracellular matrix has served to concentrate the ligands or 

viruses near their high affinity cell-surface receptor for sustaining the signaling, as well 

as the protection from proteolysis (Sadir et al., 2004). For example, fibroblast growth 
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factor (FGF), one of the most extensively studied heparin-binding growth factor, binds to 

specific heparan sulfates not only for selective tissue targeting, but also to enhance its 

signaling through membrane receptors (Friedl et al., 2001; Mohammadi et al., 2005). 

Similarly, adeno-associated virus type 2 (AAV-2) is also using specific cell-surface 

HSPGs for cell recognition and can infect human dendritic cells and activate T cells 

through heparin-binding (Manno et al., 2006; Vandenberghe et al., 2006). Therefore, 

HSPGs are natural and highly specific “targets” for a wide variety of heparin-binding 

proteins, growth factors and viruses that have evolved to fully exploit the properties of 

HSPGs for specific tissue/cell targeting and exerting their functions on the regulation of 

cell behaviors and biological processes. 

Our laboratory have shown that the interaction of NRG1’s HBD with HSPGs can 

facilitate the localization of NRG1, resulting in the targeted protein deposition and 

potentiation of NRG1 signaling in specific regions of the developing peripheral and 

central nervous system (Meier et al., 1998; Loeb et al., 1999). The accumulation of 

NRG1 at HSPG-rich synaptic basal lamina of neuromuscular junction provides a 

sustained source of ligands for erbB receptor activation that is important for the induction 

of postsynaptic acetylcholine receptor gene expression in muscle during chick embryonic 

development (Li and Loeb, 2001). 

In addition, previous studies have demonstrated that different sulfate groups that are 

localized at different portion of glycosaminoglycan in HSPGs through the expression of 

specific synthetic enzymes, have distinct ability in binding to soluble NRG1, 

demonstrating that the differential presentation of HSPG sulfation pattern in the different 

tissues or cell types, may contribute to the regulation of soluble NRG1 localization and 
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functions (Nogami et al., 2004; Pankonin et al., 2005). Both the completely desulfated 

heparin and the De-N-sulfated sugars were unable to bind NRG1, while removing the 

2-O- and 6-O- sulfate groups reduced NRG1-heparing binding at a lesser extent, 

suggesting a critical importance of specific sulfation pattern in HSPG for the 

accumulation of NRG1 on the cell surface. Taken together, all these evidence 

demonstrate that NRG1 has a unique, structurally distinct, and highly cell/tissue-specific 

heparin-binding domain that is critical for the targeted distribution of the protein and the 

initiation of optimal signal transduction. 

Because of NRG1’s wide range of functions during embryonic development and the 

strong mitogenic effect in cancers, blocking soluble NRG1 signaling has become an 

attractive target for both developmental studies and therapeutics (Mendelsohn and 

Baselga, 2000; Li et al., 2004a; Esper et al., 2006; Montero et al., 2008). Currently, 

although some soluble NRG1 antagonists could work in cell culture at the high 

concentration, they can not block the signaling effectively in vivo, because they are 

soluble and not able to concentrate on the same cell surface as endogenous soluble 

NRG1 does through specific HSPGs binding, which provides a rational to develop a 

novel effective antagonist with better targeting specificity to block soluble NRG1 

signaling. Therefore, in this thesis work, by taking advantage of the naturally specific 

interaction between NRG1’s HBD and HSPGs, I have worked with other colleagues in 

the lab to generate and characterize a novel fusion protein called HBD-S-H4 that fuses 

the human NRG1’s heparin-binding domain to the soluble ectodomain of human erbB4 

(HER4/H4) receptor, and it has the enhanced targeting specificity and can be used as a 

dominant negative NRG1 antagonist both in vitro and in vivo, which will be described in 
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the Chapter II.  

 

Neuregulin-1 and Neurotrophic factors in the peripheral nerve development 

NRG1 isoforms are highly expressed by different types of neurons and have multiple 

important functions in the development and maintenance of the peripheral nervous 

system including Schwann cells, synapses at neuromuscular junctions (NMJs) and 

somatosensory system (Fischbach and Rosen, 1997; Falls, 2003; Birchmeier and Nave, 

2008; Mei and Xiong, 2008). Transmembrane NRG1 precursor (proNRG1) is transported 

down axons from neuron cell body and then concentrated in the synaptic basal lamina of 

NMJs, where soluble heparin-binding forms of NRG1 have been released from motor 

nerve endings after proteolytic cleavage and activated erbB receptors on the 

postsynaptic muscle membrane of neuromuscular synapses, resulting in up-regulation of 

the expression and insertion of muscle acetylcholine receptors (AChRs) required for the 

proper synaptic transmission (Buonanno and Fischbach, 2001; Li and Loeb, 2001; Li et 

al., 2004b). Other studies have also indirectly implicated the important roles of soluble 

NRG1 in the early development of the sympathetic nervous system and the induction of 

muscle spindle differentiation in vivo (Britsch et al., 1998; Hippenmeyer et al., 2002). 

In the developing peripheral nerves, neuronal axons, once they first emerge from the 

spinal cord into the periphery, are always surrounded and supported by Schwann cells 

that are major glial cells in peripheral nervous system and responsible for the myelination 

process around axons to facilitate the rapid electrical signal transduction from the cell 

body to the axon terminal (Jessen and Mirsky, 2005). Schwann cell lineage is originated 

from neural crest stem cells that first show up at the dorsal part of neural tube and soon 
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migrate along either ventral or lateral direction. Cells towards ventral side of the neural 

tube will become Schwann cell precursors (SCPs) that could be differentiated into 

immature Schwann cells and eventually develop into mature Schwann cells (myelinating 

or non-myelinating cells).     

At the axoglial interface, neuron derived NRG1 plays a critical role in regulating 

Schwann cell survival, proliferation and differentiation as well as migration at multiple 

developmental stages of Schwann cell lineage (Dong et al., 1995; Ciutat et al., 1996; 

Grinspan et al., 1996; Mahanthappa et al., 1996; Meintanis et al., 2001; Winseck et al., 

2002; Jessen and Mirsky, 2005; Lyons et al., 2005; Birchmeier and Nave, 2008; 

Yamauchi et al., 2008). Recently, lots of evidence has shown that membrane-bound type 

III NRG1 is critical for the Schwann cell myelination (Michailov et al., 2004; Taveggia et 

al., 2005; Nave and Salzer, 2006). The protein level of this NRG1 isoform determines the 

differentiation or ensheathment fate of immature Schwann cells and regulates the 

thickness of myelin sheath around axons through activating specific signal pathways 

such as phosphatidylinositol-3-kinase (PI-3K) pathway (Maurel and Salzer, 2000; Chen 

et al., 2003; Ogata et al., 2004; Chen et al., 2006). At early stages of Schwann cell 

development, NRG1 signaling is required for the migration of neural crest stem cell past 

the DRG location to the ventral side of neural tube so that Schwann cell precursors could 

be generated (Dong et al., 1995; Garratt et al., 2000; Wolpowitz et al., 2000). Exogenous 

soluble NRG1 can rescue Schwann cells from both normal-occurring and nerve 

injury-induced apoptosis in vivo (Kopp et al., 1997; Winseck et al., 2002; Winseck and 

Oppenheim, 2006). Moreover, Knocking out all NRG1 isoforms or their erbB2/3 

receptors leads to a almost complete loss of neural crest cell-derived Schwann cell 
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precursors as well as the deficiency of sympathetic gangliogenesis (Meyer and 

Birchmeier, 1995; Meyer et al., 1997; Riethmacher et al., 1997; Morris et al., 1999; 

Woldeyesus et al., 1999). In contrast, mice with specific disruption of the type III NRG1 

isoform show that a reduced number of SCPs are still present in ventral nerve area and 

would be differentiated into Schwann cells along growing axons at the later stage 

(Wolpowitz et al., 2000), suggesting the important in vivo functions of soluble NRG1 on 

regulating Schwann cell precursors’ survival and differentiation. Taken together, NRG1 

provides a critical axonally-derived signaling for promoting Schwann cell development 

and regulating myelination process. However, so far, the precise, developmentally 

specific roles of endogenous soluble NRG1 in regulating Schwann cell development and 

myelination are still not clear.  

The neurotrophic factors are a family of survival and differentiation factors that are 

produced in a variety of tissues, most notably in glia and neuronal targets such as skin 

and muscle (Diamond et al., 1992; Copray and Brouwer, 1994; Jessen and Mirsky, 1999; 

Garratt et al., 2000). The first identified neurotrophic factor Nerve Growth Factor (NGF) 

followed by its other family members Brain-Derived Neurotrophic Factor (BDNF), 

Neurotrophin-3 (NT-3), and Neurotrophin-4 (NT-4). Other target-derived neurotrophic 

factors include glial-cell derived neurotrophic factor (GDNF), hepatocyte growth factor 

(HGF) and ciliary neurotrophic factor (CNTF) etc. Each of them has been shown to 

promote the survival and differentiation of a variety of neuron types both in vitro and in 

vivo through the activation of receptor tyrosine kinase including Trk family receptors 

(Lewin and Barde, 1996; Gilbert, 2000). NGF signals are mediated by TrkA receptor, 

BDNF and NT-4/5 are the ligands for TrkB, and TrkC is the main receptor for NT-3. Upon 
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binding their specific ligands, the Trk receptors homo-dimerize and auto-phosphorylate 

each other to transduce an intracellular signal. There has been a great deal of attention 

to the roles of target-derived neurotrophic factors in supporting survival of neurons that 

send their axons into the periphery (Snider, 1994; Snider and Wright, 1996). Meanwhile, 

Schwann cells are another major source of a variety of neurotrophic factors including 

BDNF, NT-3, GDNF, CNTF, PDGF, and IGF-2 (Jessen and Mirsky, 1999; Garratt et al., 

2000; Mirsky et al., 2002), and the roles of Schwann cell-derived neurotrophic factors in 

the regulation of developing peripheral nerves are still poorly understood. Actually, 

Knockout critical components of NRG1-erbB signaling in mice shows the loss of 

Schwann cells followed by the dramatic death of the sensory and motor neurons that 

they support (Meyer and Birchmeier, 1995) (Riethmacher et al., 1997; Morris et al., 1999; 

Woldeyesus et al., 1999; Wolpowitz et al., 2000), suggesting that the survival of 

developing neurons depends on not only target-derived neurotrophic factors, but also 

trophic supports from Schwann cells which are associated with peripheral axons along 

the course to their targets. Because neuronal survival is mediated in part by Schwann 

cell secreted neurotrophic factors, it seems reasonable to postulate a bidirectional 

signaling network between NRG1 and neurotrophic factors at the axon-Schwann cell 

interface. 

Now it is becoming clear that the functions of neurotrophic factors go well beyond 

neuronal survival. In DRG sensory neuron cultures, NGF, BDNF and NT-3 have direct 

effects on Schwann cell myelination through TrkA, p75NTR and TrkC receptor 

respectively (Chan et al., 2001; Cosgaya et al., 2002; Chan et al., 2004; Ng et al., 2007). 

The axotomy of the peripheral nerve produces an impressive up-regulation of BDNF, 
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NT-4 and NGF suggesting an important function for these neurotrophic factors in nerve 

regeneration as well as in development (Funakoshi et al., 1993). In addition, the injection 

of GDNF into rats leads to the proliferation and myelination of non-myelinating Schwann 

cells around some of the very small caliber C-fiber axons (Hoke et al., 2003). Similarly, 

we have demonstrated that in the neuromuscular synapses, neurotrophic factors 

produced by postsynaptic muscles promote activity-dependent soluble NRG1 release 

from presynaptic nerve terminal and the addition of both BDNF and GDNF is able to 

rescue NRG1 expression after the blockade of synaptic activity, suggesting a feedback 

loop between presynaptic NRG1 release and postsynaptic expression of neurotrophic 

factors (Loeb et al., 2002). Above all, we have extended the study of bidirectional 

communication between neurotrophic factors and NRG1 signaling to axon-glial interface, 

and found that Schwann cell derived neurotrophic factors, including BDNF and GDNF, 

promote the rapid local release of soluble NRG1 from axons, through protein kinase C-δ 

(PKC-δ) activation, in both motor and sensory neuron cultures (Esper and Loeb, 

2004,2009). So likely, the study of the interplay between neuron-derived soluble NRG1 

and Schwann cell-secreted neurotrophic factors will help to better understand the 

axon-glial communication in both development and diseases. In this thesis work, I will 

specifically focus on the in vivo roles of reciprocal signaling between soluble NRG1 and 

BDNF in regulating Schwann cell early development including their survival, 

differentiation and proliferation at axoglial interface. 
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CHAPTER II 

DEVELOPMENT OF A NOVEL ANTAGONIST FOR SOLUBLE NEUREGULIN-1 

 

SUMMARY 

A major goal of this project is to develop a potent antagonist of soluble NRG1 

signaling for its functional studies in vivo, and challenge the limitation of selectively 

targeting drugs to diseased tissues in the current biopharmaceutical development that 

has been solved by growth factors and viruses through targeting tissue-specific 

cell-surface heparan-sulfates. Neuregulin-1 (NRG1), as a growth factor important in both 

nervous system development and cancer, has a unique heparin-binding domain (HBD) 

that targets to cell surfaces expressing its erbB2/3/4 receptors. We have harnessed this 

natural targeting ability of NRG1 by fusing NRG1’s HBD to soluble ectodomain of human 

erbB4 (HER4/H4). This fusion protein retains high-affinity heparin binding to heparin and 

to cells that express heparan sulfates resulting in a more potent NRG antagonist.  In 

vivo, it is targeted to peripheral nerve segments where it significantly blocks the activity 

of NRG1 as a Schwann cell survival factor. This novel antagonist not only provide a new 

way to block NRG1 signaling and allows us to directly study its function in vivo, but also 

demonstrates the utility of NRG’s heparin-binding domain in biopharmaceutical targeting 

with enhanced specificity.  
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METHODS 

Construction of fusion proteins  

All fusion proteins were derived entirely from human sequences. The extracellular 

domain of HER4 receptor (H4) corresponds to 99-2042bp of the human HER4 

NM_005235 mRNA. The sequence from 99-173bp encodes a 25 amino acid signal 

sequence that was incorporated onto the N-terminus of all constructs for secretion and 

protein expression. H4 was amplified by PCR and then inserted into pMH vector 

(Boehringer Mannheim) between KpnI and EcoRI to generate the H4-HA construct. The 

HBD (532-849bp) and HBD-S (532-1023bp) domains of NRG β1 form (NM_013964) 

were amplified from the plasmid HARIA PATH2 (gift of Dr. Tejvir Khurana, University of 

Pennsylvania). Either HBD-S or the HBD domain alone was inserted into pMH-H4-HA in 

the KpnI site to generate HBD-S-H4-HA and HBD-H4-HA, respectively. H4-HBD-HA was 

subcloned by inserting the HBD domain into pMH-H4-HA between the EcoRI and BamHI 

sites. For the HBS-S-H4 and H4 fusion proteins, the HA-tag in both constructs was 

replaced by a His-tag using PCR and they were subcloned into pMH between Ndel and 

BamHI site. 

 

Expression and purification of fusion proteins  

HEK293 cells were transfected with the four recombinant constructs using 

lipofectamine 2000 according to the manufacturer (Invitrogen). The G418 geneticin 

(Invitrogen) was then added at a concentration of 400μg/ml to the HEK293 cells to select 

the positive transfected cells. Stable cell lines were selected following three weeks of 
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G418 selection. Stably transfected HEK293 cells were diluted and plated in 96 well 

plates to yield single positive clones. The single clones that expressed the highest level 

of each fusion proteins (confirmed by western blot using HA antibody) were then 

maintained in culture media with 200μg/ml geneticin. To express and purify His-tagged 

HBS-S-H4 and H4 proteins, HEK293 freestyle suspension cell line was transfected with 

both constructs by 293fectin reagent (Invitrogen) following manufacturer’s instruction. 

Media from 7-8 day old transfected cell culture was then collected by centrifugation and 

fusion proteins were purified using a nickle column (Qiagen) for His-tagged proteins, 

followed by a heparin-Sepharose column (Sigma) for HBD-S-H4 or a second nickle 

column for H4. Purity was assessed by silver stained gels and protein quantification was 

determined using the Bradford Assay (Pierce). 

 

Silver staining  

Purity of recombinant proteins was assessed by resolving 250ng of HBD-S-H4 and 

H4 fusion proteins on a 7.5% reducing SDS-polyacrylamide gel followed by silver 

staining using the SilverSNAP Stain Kit (Pierce) following manufacturer’s instruction. 

 

L6 assay  

Fusion proteins were pre-mixed with 75pM NRG at room temperature for 30 minutes 

and then applied to L6 myotubes in 48-well plates for 45 minutes at 37°C. In some cases, 

HBD-S-H4 or H4 was added to L6 myotubes first, incubated for 45 minutes, then washed 

with medium 3 times, and challenged with 75pM NRG for 45 minutes. The erbB receptor 

phosphorylation (p185) assay was performed as described previously (Esper and Loeb, 
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2004) using the phosphotyrosine antibody (pY, 4G10; Upstate Biotechnology). The blot 

was stripped and reprobed with erbB2 and erbB3 (Neomarkers) antibodies for the 

quantitation of total erbB proteins present in the lysate. Band intensity was quantified 

with Metamorph Image analysis software (Universal Imaging) (Li et al., 2004a). 

Recombinant NRG protein, corresponding to amino acids 14-276, was purchased from 

R&D Systems. 

 

CHO cell binding assay and immunofluorescent staining 

HBD-S-H4 and H4 were conjugated with biotin by a biotin protein labeling kit 

(Solulink) following the manufacturer’s instructions. 1x104 wild-type CHO or 

CHO-pgsD677 cells that lack heparan sulfate (ATTC#: CRL-2244) were plated in each 

well of 96-well plate or chamber-slide and cultured for 3 days. Some cells were treated 

with 2 units/ml heparinase (Sigma) or media for 3 hours and then incubated with 50nM 

biotin-conjugated HBD-S-H4 or H4 at room temperature for 2 hours. Cells were washed 

with PBS for three times. For the cell binding assay, strepavidin-horseradish peroxidase 

(HRP) was added to live cells in 96 -well plate and incubated for 30 minutes. Signals 

were measured by addition of chemiluminescence reagents (Perkin-elmer) and using a 

microplate luminometer. For staining, cells were fixed in 4% paraformaldehyde for 30 

minutes and strepavidin-HRP and tyramide-alexa fluor 647 (Invitrogen) were used to 

visualize the signal. 

 

Heparin binding assay  

Optimem I (Invitrogen) was incubated with transfected HEK293 cell lines for 2 days 
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before the conditioned media containing each of four recombinant HA-tagged constructs 

were collected and passed through a heparin-Sepharose column (Sigma). The 

flow-through was collected and the column was washed with PBS. The binding proteins 

were then eluted with increasing concentrations of NaCl (0.25, 0.3, 0.4, 0.5, 0.6 and 1M). 

The flow-through and elution fractions were analyzed by western blotting with an anti-HA 

antibody (Covance) to determine the extent of heparin binding for each protein. 

 A heparin-binding plate (BD bioscience) was coated with 150μl/well of 100μg/ml 

heparin (Sigma) overnight at room temperature (Mahoney et al., 2004). Wells were 

blocked with 0.2% gelatin/PBS for 1 hour at 37°C. Biotin-conjugated HBD-S-H4, H4 or 

IgG was added to each well at the concentration from 0 to 150nM and incubated for 2 

hours at 37°C. Wells were then washed three times with PBS and incubated with 

avidin-HRP (Sigma) for 30 minutes. Binding was detected by adding substrate 

p-nitrophenyl phosphate (pNPP) and the absorbance was measured at 405nm. 

Dissociation constant (Kd) of the saturation curve was calculated by a online Kd 

calculator: 

www.invitrogen.com/site/us/en/home/support/research-tools/kd-calculator.html 

 

Chicken eggs and in ovo treatment  

Fertilized chicken eggs were obtained from Michigan State University Poultry Farms 

(East Lansing, MI) and incubated at 37°C in a Kuhl rocking humidified incubator 

(Flemington, NJ) at 50% humidity. Chicken embryo experiments were performed with 

approval of Institutional Animal Care and Use Committee at Wayne State University. 

Either HBD-S-H4 or H4 proteins were dissolved in sterile saline containing 0.2% BSA to 
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prepare 600nM concentration in total volume of 200μl solution, and applied daily to 

embryos at E5 and E6 through a small hole on choroallantoic membrane (Winseck et al., 

2002). Treatment with the identical volume of saline without recombinant proteins was 

used as a control. The eggs were sealed after each treatment with clear packing tape 

and embryos were sacrificed at E7 for immunostaining as described below. 

 

Immunostaining  

Chicken embryos were fixed with 4% paraformaldehyde overnight. After washing 

briefly with PBS, embryos were placed in 30% sucrose and cut transversely at 12μm on 

a cryostat. Immunofluorescence was performed as described previously (Ma et al., 

2009). Sections were incubated with antibodies to chicken NRG 183N (Loeb et al., 

1999)(1:100) or human NRG AD03 (Pankonin et al., 2009) (1:300, Assay Designs) and 

Schwann cells 1E8 (1:10, Developmental Studies Hybridoma Bank) or  6xHis-tag 

(1:100, Abcam) in blocking solution (10% normal goat serum, 0.2% TritonX-100 in PBS) 

for overnight at 37°C, followed by the incubation with goat anti-mouse or anti-rabbit 

alexa-fluor 546 (1:250, Invitrogen). For AD03 or His-tag immunostaining, biotin 

conjugated goat anti-rabbit (1:500, Perkin-elmer) or HRP conjugated goat anti-mouse 

(1:100, Invitrogen) was used as secondary antibody and signal was detected using a 

tyramide signal amplification kit (Invitrogen) following the manufacturer’s instructions. 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were 

performed with in situ cell death kit (Roche) after the incubation of secondary antibodies 

for AD03 and 1E8 double-labeling. Some sections were treated with 1M NaCl/PBS at 

37°C for 90 minutes as described previously to disrupt ionic interactions before the 
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immunostaining procedure. 

 

Quantitative analysis 

Digital images were obtained with a Nikon Eclipse 600 epifluorescent microscope 

with a Princeton Instruments Micromax 5 MHz cooled CCD camera. Metamorph Image 

analysis software (Universal Imaging) was used to quantify the percentage of apoptotic 

Schwann cells in the area of ventral nerve root at the lumbar level of spinal cord. 

Regions of interests were first defined using a Schwann cell marker staining for a 

non-biased selection of ventral nerve regions.  These nerve segments were further 

divided in half at the midpoint between the spinal cord and the union of the motor and 

sensory axons. The total number of Schwann cells in each nerve segment was 

quantified by counting the number of full nuclei in each of these regions of interest using 

the nuclear dye DAPI. This was achieved by dividing total pixel area of signal 

thresholded for the nuclear signal by the average pixel area for an individual Schwann 

cell nucleus. Manual counts were used to validate this method. The number of TUNEL 

positive Schwann cell nuclei was then counted in both proximal and distal nerve areas. 

12-20 sections for each animal, and at least 5 animals for each condition were quantified. 

Statistical significance was defined as p < 0.05 using a two-tailed student’s t test. 
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RESULTS 

Optimal fusion of neuregulin’s heparin-binding domain (HBD) to the human erbB4 

receptor (HER4/H4) 

As the first step, fusion proteins were generated (performed by my colleague, 

Qunfang Li & Mark Pankonin) to determine the optimal arrangement of the HBD to retain 

high affinity heparin-binding (Fig. 3A). The HBD was inserted either C-terminal (H4-HBD) 

or N-terminal (HBD-H4 and HBD-S-H4) to H4. The HBD-S-H4 contains the 

natural-occurring glycosylated spacer domain (S) from NRG placed between the HBD 

and H4 domain (Fischbach and Rosen, 1997). Heparin-sepharose chromatography was 

used to compare the heparin binding ability of each relative to the H4 protein alone by 

determining the salt concentration required to elute it from the column. While the 

HBD-S-H4 and H4-HBD proteins bind the heparin column, the H4 and HBD-H4 

constructs did not (Fig. 3A). Interestingly, the construct with the spacer, that most closely 

resembles native NRG (HBD-S-H4), had the highest heparin binding affinity requiring 1M 

NaCl for elution. This may be due to the physical separation of the HBD from H4 that 

could either allow an optimal protein conformation necessary for heparin binding or 

prevent steric inhibition between the two domains. The ability of each construct to block 

NRG-induced receptor activation was then determined based on its ability to block NRG 

induced erbB receptor tyrosine phosphorylation (p185) in rat L6 cells (Fig. 3B). 

Consistent with the heparin binding results, antagonist potency paralleled their 

heparin-binding activities. While H4 and HBD-H4 had little effect on reducing receptor 

phosphorylation, HBD-S-H4 and H4-HBD significantly inhibited erbB receptor activation. 
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The quantification of phosphorylated erbB protein normalized to total erbB2 protein, 

revealed that HBD-S-H4, is the most potent antagonist to block NRG1-induced erbB 

activation with the reduction of the p185 signal by approximately 80%. These 

pre-screening results demonstrate that the isolated HBD retains high-affinity heparin 

binding activity, even when fused to another protein, resulting in a NRG antagonist with 

significantly improved blocking potency.   

 

HBD-S-H4 is targeted to cell surface heparan sulfates.  

Based on the above pre-screening results, my colleague, Haiqian An, has generated 

highly purified HBD-S-H4 and native H4 His-tagged fusion proteins in HEK293 

suspension cells (Fig. 4A), and then, in this part of my thesis work, I continure to 

characterize biochemical properties of the fusion proteins as well as their cell/tissue 

binding ability and in vivo blocking activity.  

In order to demonstrate the enhanced blocking activity of HBD-S-H4 is due to its 

ability to concentrate on cell surfaces, I pre-treated L6 cells with either HBD-S-H4 or H4 

and then vigorously washed to remove any antagonist not bound to the cell surface. 

They were then challenged with soluble NRG as shown in Fig. 4B. Cells pre-treated with 

HBD-S-H4 were resistant to NRG activation, whereas no effect was observed with H4 

treatment.  

To further confirm that the accumulation of HBD-S-H4 protein on cell surface is 

mediated by the interaction of HBD and HSPGs, CHO cells that do and do not express 

heparan sulfates on their surfaces, are used to compare the binding of biotinylated 

HBD-S-H4 onto wild-type CHO cells without and with heparinase treatment and to 
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pgsd677 mutant CHO cells that lack the ability to synthesize heparan sulfate (Lidholt et 

al., 1992). While the HBD-S-H4 construct adhered to the wild type CHO cells, the H4 

construct without heparin-binding domain did not. Similarly, the absence of heparan 

sulfate in mutant cells or heparinase treatment of wild type cells significantly decreased 

HBD-S-H4 binding with minimal fluorescence intensity (Fig. 5A). Similarly, 

chemiluminescence assay after adding the fusion proteins to these cells shows that 

HBD-S-H4 has significantly enhanced binding ability to wild type CHO cells, compared to 

either the treatment on mutant CHO cells or the H4 treatment (Fig. 5B). Finally, a binding 

assay was used to determine the affinity of HBD-S-H4 to heparin. While both H4 and IgG 

had minimal binding, HBD-S-H4, bound to heparin-coated plates saturating at 60nM and 

a calculated dissociation constant (Kd) of 14.7nM (Fig. 5C). All these results 

demonstrate that the increased potency of HBD-S-H4’s cell-surface binding is in part due 

to its ability to specifically interact with heparan sulfate and concentrate on cell surfaces 

where it exhibits sustained activity. 

 

In vivo targeting to peripheral nerve segments induces Schwann cell apoptosis  

Within the developing spinal cord, NRG1 isoforms are highly expressed in motor and 

sensory neurons and have critical functions in peripheral nerve development, including 

Schwann cell proliferation, survival and myelination (Jessen and Mirsky, 2005; Nave and 

Salzer, 2006; Birchmeier and Nave, 2008). In order to determine if HBD-S-H4 targets the 

same regions of the developing nervous system as endogenous NRG1, we compared 

the tissue distribution of exogenously added HBD-S-H4 in chicken embryos to the 

endogenous expression pattern of chick NRG1 during embryonic development (Fig. 6, 7). 
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HBD-S-H4 was localized on tissue sections of these embryos using an antibody (AD03) 

that only recognizes the human extracellular domain of NRG (huNRG) and does not 

cross-react with endogenous chicken NRG (chNRG) (Pankonin et al., 2009). Within the 

spinal cord, HBD-S-H4 became concentrated in the same region of the spinal cord and 

peripheral nerve as endogenous chNRG. The fusion protein also accumulated outside 

the nervous system in regions that do not normally express NRG1. This distribution 

outside the nervous system is likely due to its adherence to developmentally-expressed 

HSPGs (Fig. 6). In peripheral nerve area, no huNRG immunoreactivity was present in 

the saline or H4 treated animals, while double-labeling the ventral nerve root shows that 

the same regions of peripheral nerve where chNRG was concentrated, bound high levels 

of HBD-S-H4 (Fig. 7). Slight differences in patterns may reflect mild protein sequence 

differences between the human and chicken HBD. High salt treatment, which interrupts 

NRG1-HSPG ionic interactions in the extracellular matrix, removed the HBD-S-H4 

immunoreactivity suggesting the interaction of the fusion protein’s HBD with HSPGs is 

important for the HBD-S-H4’s accumulation on the specific cell surface in vivo (Fig. 7). 

Consistently, immunostaining with a His-tag antibody shows that only HBD-S-H4, but not 

H4 became concentrated in this nerve area, although both fusion proteins have His-tag 

on their C-terminus (Fig. 8). All these results demonstrate that systemically administered 

HBD-S-H4 is targeted to and concentrated on the same regions of the developing 

nervous system as endogenous NRG1 through its heparin-binding domain, thereby 

making it a useful tool to study the roles of matrix-bound NRG1 in peripheral nerve 

development.  

Previous studies have shown that NRG1 signaling is critical for Schwann cell survival 
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during early embryonic development (Winseck et al., 2002; Jessen and Mirsky, 2005). 

Given its ability to concentrate in these developing nerves, the in vivo efficacy of 

HBD-S-H4 was determined by counting apoptotic Schwann cell number in the ventral 

nerve root. HBD-S-H4 treatment significantly increased the number of apoptotic 

Schwann cells, while H4 had no effect (Fig. 9A, B). Analysis of distal nerve regions with 

maximal HBD-S-H4 staining shows maximal Schwann cell apoptosis, corresponding to 

the regions rich in endogenous chNRG1. In comparison, much less dying Schwann cell 

number was found in the proximal nerve regions that also shows low level of both 

HBD-S-H4 and chNRG1 accumulation. Taken together, these findings demonstrate that 

HBD specifically targets HBD-S-H4 to the same nerve segments as endogenous chick 

NRG1 where it effectively antagonizes NRG’s actions as a Schwann cell survival factor 

in vivo. 



25

 

DISCUSSION 

In this chapter, I characterized the heparin-binding ability and blocking activity of 

HBD-S-H4, a novel potent NRG1 antagonist, providing both in vitro and in vivo evidence 

that NRG1’s HBD can retain heparin-binding specificity when fused to other polypeptides 

and demonstrating the efficacy of a novel and highly effective way, not only to block 

soluble NRG1 signaling, but also to enhance the protein drug’s tissue/cell-targeting 

specificity. The fusion protein that we generated and purified, not only targets the same 

regions of the developing nervous system where endogenous NRG1 binds, but also 

effectively blocks NRG1 activity leading to excessive Schwann cell apoptosis. This result 

affirms NRG1’s in vivo role as a Schwann cell survival factor and provides a new reagent 

to examine the roles of released forms of NRG1 in both development and diseases.. 

Although HBD-S-H4 was designed to block the activity of soluble NRG1 by taking 

advantage of its natural targeting system, we can not exclude the possibility that it also 

could block erbB2/3 activation induced by membrane-bound, CRD form of NRG1 when 

the fusion protein gets into the extracellular space of Schwann cells that closely contact 

with axons at the axoglial interface after systematically treatment. So, the precise, 

developmentally specific in vivo functions of soluble NRG1 will be further studied and 

discussed in the following Chapter III, by using the combination of this novel antagonist 

and other genetic tools.  

Previously, similar efforts have been made to generate fusion proteins with 

heparin-binding domains. Fusion of the heparin-binding domain of vascular endothelial 

growth factor A (VEGF-A) and heparin-binding epidermal growth factor (HB-EGF) to 
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VEGF-E and insulin-like growth factor-1 (IGF-1), respectively, can maintain their 

biological activities with less unwanted side effects by increasing the binding specificity 

on the cell surfaces (Heil et al., 2003; Tokunou et al., 2008). However, these HBDs are 

relatively simple with short stretch of positive-charged amino acids in the domain, and 

thus containing not much information about binding specificity. In comparison, NRG1’s 

HBD has a unique disulfide-linked C2 immunoglobulin loop capable of maintaining a 

structure necessary for tissue/cell type specific heparin binding with high affinity leading 

to precise protein tissue distribution during both development and diseases (Loeb, 2003). 

This key feature of the domain has set NRG1 apart from other growth factors and viral 

heparin-binding proteins in the ability of heparin-binding.  

Interestingly, in the fusion protein, a glycosylated spacer peptide that also exists in 

natural soluble NRG1 structure appears to be required to keep the HBD away from the 

HER4 domain and maintain maximal biological activity of both domains. Fusion of 

NRG1’s HBD to a soluble HER4 receptor not only converts it into a heparin-binding 

protein, but also dramatically potentiates its ability to block soluble NRG1 signaling 

through the binding of specific HSPGs in the extracellular matrix and the concentration 

on cell surface. This concentration not only provides sustained antagonist activity, but 

also targets the antagonist to the same tissues where the agonist is expressed, thus 

placing it on a more equal footing. Recently, in collaboration with others, we have 

successfully shown that the intrathecal injection of HBD-S-H4 is able to block NRG1 

signaling and reduce microglial cell proliferation and chemotaxis that directly contribute 

to the development of neuropathic pain after sciatic nerve injury, and thus lead to the 

improvement of pain-related behaviors including mechanical pain hypersensitivity and 
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cold allodynia in the rat model (Calvo et al., 2010; Calvo et al., 2011). Therefore, this 

novel entirely “humanized” fusion protein is a powerful targeted antagonist that could be 

a useful research tool to study NRG1’s multiple in vivo critical functions during 

development, as well as be used in disease states where NRG1 signaling is deleterious 

(Ma et al., 2009).  
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CHAPTER III 

RECIPROCAL AXON-GLIAL SIGNALING THROUGH SOLUBLE NEUREGULIN-1 
AND BDNF REGULATES EARLY SCHWANN CELL DEVELOPMENT 

 

SUMMARY 

During peripheral nervous system development, successful communication between 

axons and Schwann cells is required for proper function of both myelinated and 

non-myelinated nerve fibers. Alternatively-spliced proteins belonging to the neuregulin1 

(NRG1) gene family of growth and differentiation factors are essential for Schwann cell 

survival and peripheral nerve development. While recent studies have strongly 

implicated membrane-bound NRG1 forms (type III) in the myelination at late stages, little 

is known about the role of soluble, heparin-binding forms of NRG1 in regulating early 

Schwann cell development in vivo. These forms are rapidly released from axons in vitro 

by Schwann cell-secreted neurotrophic factors, and, unlike membrane-bound forms, 

have a unique ability to diffuse and adhere to heparan sulfate-rich cell surfaces. Here, we 

show that axon-derived soluble NRG1 translocates from axonal to Schwann cell 

surfaces in the embryonic chick between days 5-7, corresponding to the critical period of 

Schwann cell precursor’s survival and differentiation. Down-regulating endogenous type 

I/II NRG1 signaling either with a targeted NRG1 antagonist or by HBD-specific shRNA, 

blocks their differentiation from precursors into immature Schwann cells and increases 

programmed cell death, while up-regulating NRG1 rescues Schwann cells. Exogenous 

BDNF also promotes Schwann cell survival through promoting the local release of 

axonal NRG1. Consistently, increased Schwann cell death occurs both in trkB knock-out 
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mice and after knocking-down axonal trkB in chick embryos, which can then be rescued 

with soluble NRG1. These findings suggest a localized, axoglial feedback loop through 

soluble NRG1 and BDNF critical for early Schwann cell survival and differentiation.  
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METHODS 

Chick eggs and in ovo treatment  

Fertilized chicken eggs were obtained from Michigan State University Poultry Farms 

(East Lansing, MI) and incubated in a Kuhl rocking incubator (Flemington, NJ) at 50% 

humidity. Daily treatments of recombinant human NRG1-β1 extracellular domain (aa 

2-246, #377-HB, R&D systems), recombinant human BDNF (aa 129-247, #248-BD, R&D 

systems) or the recombinant NRG1 antagonist (HBD-S-H4) on chick embryos were 

performed as described previously (Loeb et al., 2002; Winseck et al., 2002; Ma et al., 

2009). In brief, 5μg NRG1, 1μg BDNF, 10 or 20μg HBD-S-H4 were each prepared in 

saline containing 0.2% BSA, and added onto the chorioallantoic membrane through a 

small hole in the air sac without damaging underlying blood vessels for two consecutive 

days. Staging of chick embryos was determined according to Hamburger-Hamilton (HH) 

stage series (Hamburger and Hamilton, 1951): E4 (stage 24); E5 (stage 26-27); E6 

(stage 28-29); E7 (stage 30-31).   

 

TrkB Mice  

TrkB-heterozygous mice were generously provided by M. Barbacid (Klein et al., 

1993). Homozygous timed-pregnant mutant embryos of either sex were obtained by 

heterozygous mating and harvested at E12.5 or E13.5 (the day when the vaginal plug 

was observed, is designated as embryonic day 0). 4-5 separate litters were collected at 

each stage. Mouse embryo experiments were performed with approval of Institutional 

Animal Care and Use Committee at Wayne State University. 
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Chick in ovo electroporation and shRNA knockdown  

Type I proNRGβ1a cDNA with a myc-tag at the C-terminus was subcloned into the 

pMES vector downstream from the chick β-actin promoter with IRES-EGFP (Krull, 2004). 

shRNA for the heparin-binding domain of chick NRG1 and chick trkB were designed and 

cloned into the pSilencer 1.0-U6 expression vector (Ambion) according to 

manufacturer’s instructions. Three shRNAs against different regions of each cDNA were 

tested and the shRNA with the best efficacy in vitro was selected for in ovo 

electroporation. The target sequence selected for chick heparin-binding domain (HBD) of 

soluble NRG1 was AAGCTAGTGCTAAGGTGTGAA, and for chick trkB was 

AAGGAGCTATATTGAATGAGT. The pCAX vector expressing EGFP was used for 

co-electroporation with other plasmids to visualize electroporated cells (George et al., 

2007). The final concentration of each plasmid was 3μg/μl. The plasmid DNA was 

electroporated unilaterally into the ventral part of the neural tube at the lumbar level at 

E2.5 (HH stage 15-16) as previously described (Eberhart et al., 2002). Electrodes were 

placed ventral-dorsal across the neural tube and pulsed for five times at 35V for 50ms 

with a square-wave pulse generator (Intracept TSS10, Intracel Ltd.). Embryos were 

collected from E5 to E7, and only those with strong GFP expression were processed for 

further analysis. 

 

Immunostaining, TUNEL and BrdU 

Chicken and mouse embryos were fixed with fresh 4% paraformaldehyde overnight. 

Embryos were then equilibrated in 30% sucrose after rinsing quickly with PBS and 
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mounted in OCT (Tissue-Tek). Frozen sections were cut transversely at 14μm and 

placed on Superfrost slides (Fisher). Immunofluorescence was performed at the lumbar 

level as described previously (Loeb et al., 1999; Ma et al., 2009). Sections were 

incubated with antibodies at the following dilutions: chicken soluble NRG1 ectodomain 

(183N, rabbit polyclonal, 1:200) (Loeb et al., 1999); P0 (1E8,1:5), AP2α (3B5, 1:10), 

BrdU ( G3G4, 1:100), and neurofilament (3A10,1:10) (Developmental Studies Hybridoma 

Bank, University of Iowa); GFP (ab6662 1:100) and p75 (ab70481, 1:100) (Abcam); 

myc-tag (2272, 1:100 Cell Signaling); trkB (sc-12, 1:200, Santa Cruz Biotechnology). 

Sections were incubated with antibodies in blocking solution (10% normal goat serum, 

0.2% TritonX-100 in PBS) overnight at 4 °C, followed by incubation with the 

corresponding goat anti-mouse or anti-rabbit IgG alexa-fluor antibodies (1:250, 

Invitrogen) for visualization. O4 (MAB345, 1:100, Millipore) and the trkB antibody were 

prepared in a blocking solution containing 5% fetal bovine serum in PBS and after 

overnight incubation, goat anti-mouse IgM secondary antibody was used for O4 

detection. For BrdU staining, chick embryos were given 10μg BrdU through the air sac 

for 3 hours before harvest. Sections were pretreated with 2N HCl to denature DNA for 

the exposure of BrdU antigen, followed by incubation with blocking solution for 1 hour. 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were 

performed with the in situ cell death-TMR kit (Roche) following the manufacturer’s 

instructions (Ma et al., 2009). Some sections were first treated with 1M NaCl/PBS at 37 

°C for 90 minutes as described previously to disrupt ionic interactions between NRG1 

and HSPGs (Loeb et al., 1999).  
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shRNA testing 

105 COS7 cells were seeded in each well of 8-well chamber slides (BD Bioscience) 

and co-transfected with type I proNRG1 and EGFP cloned in the pTriex vector (Novagen) 

together with a given shRNA in pSilencer vector using Lipofectamine 2000 (Life 

Technologies). The next day, cells were fixed in 4% paraformaldehyde for 30 min and 

stained for NRG1 (sc-348, 1:100, Santa Cruz Biotechnology) as described above. Nuclei 

were counter-stained using 4', 6-diamidino-2-phenylindole (DAPI).  

 

Immunoblotting and Quantitative real-time PCR 

 Spinal cords were harvested from BDNF/saline treated chick embryos or 

electroporated embryos at E5.5 (HH stage 27), and then processed for protein or RNA 

extraction. A 5-6 somite-long segment at the lumbar level with high levels of GFP 

expression was isolated from each embryo as described previously (Liu, 2006) and total 

protein was extracted separately from the electroporated and control sides, using RIPA 

lysis and extraction buffer containing 25 mM Tris pH 7.6, 150 mM NaCl, 1% NP40, 1% 

sodium deoxycholate, 0.1% SDS, and protease inhibitors (Thermo Scientific). Protein 

samples from 3 animals were used for immunoblotting using antibodies at the following 

dilutions: NRG1 (sc-348, 1:500, Santa Cruz Biotechnology), β-Actin (A5441, 1:1,000, 

Sigma), Neurofilament (AB1987, 1:2,000, Millipore), and GFP (ab6556, 1:2,500, Abcam). 

SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) was used for 

signal detection and each blot was stripped and reprobed with different antibodies. Cos7 

cells after transfection were harvested by passive lysis buffer (Promega) and sc-348 

antibody was used to detect the expression of exogenous NRG1 (this will detect all 
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forms of NRG1 with a cytoplasmic tail). Quantification of band intensity was performed 

using Metamorph image analysis software (Universal Imaging) as described previously 

(Li and Loeb, 2001; Esper and Loeb, 2004).  

 For quantitative RT-PCR, total RNA from chick spinal cords after in ovo treatment or 

electroporation, was collected using the RNeasy kit (Qiagen). SuperScript™ First-Strand 

Synthesis System for RT-PCR (Invitrogen) was used for reverse transcription. Chick 

HBD-NRG1 transcripts (type I and II) were detected by using the following 

oligonucleotides directed at the HBD: forward 5’-GACGGACGTCAACAGCAGTTAC; 

reverse 5’-CAACCTCTTGGTTTTTCATTTCCT; and taqman probe 

6FAM-ACACAGTGCCTCCC.  For detecting CRD-NRG1 (type III) transcripts, the 

primers were forward: 5’-ACGGCATCTCAGGCACAAG, reverse: 

5’-AAGTGGAAAGTTTTGGAGCAGTTT, and taqman probe: 

6FAM-AACAGAAACCAATCTC (ABI). Chicken glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (Gg03346990_g1, ABI) was used for normalization. 

Quantitative PCR data were collected from 5 biological replicates and ΔΔCt was used for 

calculations. 

 

Imaging and Quantitative analysis 

Digital fluorescent images were obtained with a Nikon Eclipse 600 epifluorescence 

microscope. Confocal stacks of images were acquired from 14μm thick sections with a 

z-step of 1.05μm using a D-Eclipse C1 confocal system (Nikon), and all representative 

images are shown as single confocal planes for more precise determination of 

co-localization. At least 5 sections for each animal (total 5 animals) were used for each 
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embryonic stage. Metamorph image analysis software (Molecular Devices) was used to 

quantify co-localization. Quantification of TUNEL positive Schwann cell nuclei was 

performed as described previously (Ma et al., 2009). 12-20 sections (around 1500 

Schwann cell nuclei) at the lumbar level were used to analyze each condition in each 

animal. shRNA knockdown of trkB was quantified by measuring the intensity of trkB 

staining divided by the total cell number in the ventral horn that were counted by DAPI 

staining. At this stage of development the ventral horn consists almost entirely of motor 

neurons. Statistical significance was defined as p < 0.05 using either a one-way ANOVA 

or a two-tailed student’s t-test. All data are presented as the mean ± SEM.  
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RESULTS 

Soluble, matrix-bound NRG1 transitions from axons to Schwann cells 

Once released from neurons, soluble forms of NRG1 adhere to heparan sulfate rich 

surfaces through the developmental expression of HSPGs (Loeb et al., 1999).  To 

examine the spatial distribution of soluble NRG1 during early chick axon-glial 

interactions in the ventral nerve root, we performed confocal microscopy using specific 

antibodies against the extracellular domain of soluble type I/II NRG1 together with either 

Schwann cell (P0 protein) (Bhattacharyya et al., 1991) or axonal (neurofilament) markers 

from E5 to E7 (Fig.10). While at E5, soluble NRG1 is concentrated along motor axons 

and is not associated with Schwann cells, between E6 to E7, NRG1 becomes 

progressively localized to Schwann cells (Fig.10A, B). Quantitative analysis shows that 

co-localization of NRG1 immunoreactivity on Schwann cells significantly increases from 

25% to 75% between E5 and E7 (Fig.10C), with a corresponding decrease in NRG1 

axonal localization (Fig.10D). In order to show that the NRG1 immunoreactivity seen is 

indeed due to soluble forms of NRG1 bound to the ECM, we used high salt treatment to 

disrupt NRG1-HSPGs ionic interactions (Fig.11) (Loeb et al., 1999). This treatment 

significantly reduced soluble NRG1 immunoreactivity suggesting the protein is bound to 

developmentally-expressed heparan sulfates along both axons and Schwann cells. 

 

Soluble NRG1 regulates Schwann cell survival in vivo 

During early peripheral nerve development, an excess number of Schwann cells are 

born than are ultimately needed, and their survival has been shown to depend on 
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axon-derived NRG1 signaling both in vitro and in vivo during normal development and 

after axon denervation (Dong et al., 1995; Wolpowitz et al., 2000; Winseck et al., 2002). 

To investigate further soluble NRG1’s functions on Schwann cell survival during this 

transition of NRG1’s localization from axonal to Schwann cell surfaces, we used the 

novel NRG1 antagonist (HBD-S-H4) that has described in the Chapter II of this 

dissertation. It can specifically targets the heparan sulfate-rich surfaces that NRG1 binds, 

by fusing NRG1’s heparin-binding domain to a soluble ‘decoy’ erbB4 receptor with high 

affinity for NRG1’s EGF-like domain (Ma et al., 2009). Treatment with this antagonist 

results in a dose-dependent increase in Schwann cell death at E7 along both motor and 

sensory axons (Fig. 12A, B). Consistent with previous studies (Winseck et al., 2002), 

exogenous soluble NRG1 significantly rescues normal-occurring Schwann cell death at 

both E5 and E6 (Fig.12C).  

In order to be certain that these survival effects are due to endogenous type I/II 

NRG1 isoforms, we used chick in ovo electroporation to modulate the expression of 

soluble isoforms unilaterally in the motor axons at lumbar level spinal cord, which has 

been approved to be feasible approach by comparing GFP expression pattern at the 

electroporated side to the contralateral side (Fig.13A, B). Down-regulation of only soluble 

NRG1 isoforms in motor neurons using an heparin-binding domain (HBD)-specific 

shRNA, effectively reduces NRG1 expression at protein level by over 95% in vitro 

(Fig.14A, B). Knocking down endogenous soluble NRG1 significantly increased 

Schwann cell death at E7 (Fig.14C). In contrast, over-expression of full-length type I 

NRG1 with a C-terminal myc-tag in motor neurons rescued Schwann cells from 

apoptosis at E6, but not E5 (Fig.15B). Over-expression of NRG1 was confirmed by 
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myc-tag staining at the electroporated side (Fig. 15A). These results demonstrate that 

axon-derived, soluble NRG1 isoforms mediate Schwann cell survival in vivo in a 

stage-dependent manner that parallels the expression of developmentally timed NRG1 

deposition on Schwann cells.  

 

Soluble NRG1 promotes differentiation of Schwann cell precursors to immature 

Schwann cells  

Schwann cell precursors (SCPs) differentiate into immature Schwann cells that 

elongate along axons and can then further differentiate into myelinating or 

non-myelinating Schwann cells, depending on instructions provided by the axon 

(Taveggia et al., 2005). While type III NRG1 forms contribute to Schwann cell 

development in vivo (Wolpowitz et al., 2000), they are not essential for Schwann cell 

survival and early differentiation, suggesting a important role for other types of NRG1. 

Previous in vitro studies have shown that SCP survival is more critically dependent on 

soluble NRG1 signaling than are immature Schwann cells (Jessen and Mirsky, 2005). 

Given that peak Schwann cell death occurs at E5-E6 in the chick (Ciutat et al., 1996), it 

seems likely that the in vivo survival effects we and others have observed with NRG1 are 

on SCPs rather than on immature Schwann cells. To confirm this, we measured the 

transition of SCPs to immature Schwann cells from E4 to E7. While AP2α, a transcription 

factor marker for SCPs (Jessen and Mirsky, 2005), was down-regulated in motor axon 

Schwann cells between E4 to E7, it remained highly expressed in the DRG Schwann 

cells that mature more slowly (Fig.16). S100β is often used as a marker of immature 

Schwann cells in other species, however, in the chick embryo, it is not expressed until 
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E13 when the myelination process is initiated (Bhattacharyya et al., 1992). We therefore 

used an antibody against the lipid antigen O4 as a marker for immature Schwann cell 

differentiation (Dong et al., 1999). Fig.16 shows that O4 expression turns on rather 

abruptly in Schwann cells of motor axons at E7, suggesting the normal transition of 

SCPs to Schwann cells occurs between E6 and E7. When we blocked NRG1 activity 

using the targeted NRG1 antagonist between E5 and E6, O4 expression at E7 was 

prevented in both motor and sensory axons, while AP2α expression was not affected 

(Fig.17). These findings suggest that soluble NRG1 signaling is not only critical for SCP 

survival, but also for their differentiation into immature Schwann cells.  

Soluble NRG1 was formerly called glial growth factor because of its strong mitogenic 

effect on Schwann cells in vitro (Dong et al., 1995; Morrissey et al., 1995). However, its 

effects on proliferation in vivo are less clear with some data suggesting anti-proliferative 

effects that are stage dependent (Winseck et al., 2002). We therefore next measured 

Schwann cell proliferation in the presence and absence of the NRG1 antagonist using 

BrdU labeling. The density of BrdU positive Schwann cells along motor axons in E7 

animals treated with the antagonist from E5-E6 in fact is slightly increased, suggesting 

that NRG1 has a much stronger differentiation rather than proliferation effect on SCPs in 

vivo (Fig.18). This small increase in proliferation rate could be simply due to the 

presence of more SCPs, even in the presence of increased apoptosis. Thus when 

NRG1-induced differentiation is disrupted, proliferation is higher from these more 

mitogenically active SCPs. 

 

Axonal trkB signaling regulates Schwann cell survival through localized soluble NRG1 
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release   

The results above suggest that the number of Schwann cells that survive and 

differentiate is directly regulated by the amount of soluble NRG1 released during this 

critical period of development, producing a precise matching of Schwann cells needed 

for each axonal segment. One way for this matching process to occur is through 

Schwann cell-derived factors that regulate NRG1 release from axons. We have 

previously shown that Schwann cell-derived neurotrophic factors, including BDNF and 

GDNF, promote the rapid release of soluble NRG1 from both motor and sensory axons 

(Esper and Loeb, 2004). To explore the possibility that BDNF/trkB signaling indirectly 

modulates Schwann cell survival in vivo by promoting the release of soluble NRG1 from 

axons, we treated embryos with exogenous BDNF. As shown in Fig. 20A, this treatment 

significantly promoted SCP survival at E5. To determine whether this BDNF effect was 

on axons versus Schwann cells, we determined the location of trkB and p75 receptors 

(low affinity receptor) in the developing nerve by confocal microscopy (Figs. 19A, B). We 

found that BDNF the receptors trkB and p75 are localized specifically on axons, not 

Schwann cells. When we down-regulated soluble NRG1 (type I/II) by electroporation, 

BDNF no longer demonstrated any survival effects (Fig.20B), suggesting that BDNF 

regulates Schwann cell survival indirectly through promoting the axonal release of 

soluble NRG1. 

To investigate further as to whether endogenous trkB signaling is required, we 

examined the effect of disrupting axonal trkB signaling on Schwann cell survival both by 

shRNA in ovo electroporation in the chick as well in trkB knockout mice. In the 

electroporation experiments, the opposite side of the spinal cord and GFP 
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electroporation alone were used as controls (Fig. 21A). The shRNA against chick trkB 

produced a significant reduction of trkB immunoreactivity in GFP-positive cells in the 

ventral horn (Fig.21A, B) and was associated with an increase in Schwann cell death at 

E7. This effect could be rescued with exogenous soluble NRG1 (Fig.21C), suggesting 

that endogenous axonal trkB signaling supports Schwann cell survival through 

axon-derived soluble NRG1.  

Since shRNA knockdowns are never 100% complete, we also examined the effect of 

the complete absence of trkB at E13.5 in trkB knock-out mice. Knockout mice show a 

significant increase Schwann cell apoptosis at lumbar level motor axons compared to 

wild-type littermates (Fig.22A, B). E13.5 in the mouse corresponds to the same stage in 

the chick where the SCP-immature Schwann cell transition occurs (E13-E15) (Jessen 

and Mirsky, 2005). Prior to this transition, at E12.5, we found no significant difference in 

Schwann cell death (data not shown), suggesting that Schwann cell survival during this 

important transition period is selectively regulated by trkB signaling. Taken together, 

these results support the presence of a positive feedback loop mediated by local 

signaling of Schwann cell-derived BDNF on axonal trkB that promotes NRG1 release 

from axons that, in turn leads to the survival of properly positioned Schwann cells.             

    

Modulation of BDNF signaling has no effect on NRG1 expression in motor neurons  

The above results suggest that BDNF-trkB signaling regulates Schwann cell survival 

by promoting the localized release of soluble NRG1 forms, but cannot rule out additional 

effects of neurotrophic factor signaling on NRG1 synthesis (Loeb and Fischbach, 1997). 

To determine whether BDNF-trkB signaling in vivo also directly affects NRG1 expression 
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in motor neurons, we first compared NRG1 expression at mRNA level for both HBD (type 

I/II) and CRD (type III) forms, after either BDNF treatment or electroporation with 

shRNA-trkB (Fig.23A, 24A). Transcriptions of both NRG1 isoforms were not significantly 

affected by the modulation of BDNF-trkB signaling. Similarly, neither BDNF treatment nor 

trkB knockdown significantly changed the expression of total NRG1 protein in the spinal 

cord (Fig.23B, C; 24B, C), suggesting that BDNF-trkB signaling is working locally at the 

axoglial interface to modulate the release of NRG1 in vivo.       
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DISCUSSION 

Although there are extensive in vitro and in vivo studies that implicate both NRG1 

and neurotrophic factor signaling in Schwann cell development and myelination (Chan et 

al., 2001; Cosgaya et al., 2002; Nave and Salzer, 2006; Ng et al., 2007; Birchmeier and 

Nave, 2008), in this chapter, I provided the first direct in vivo evidence, showing that 

axon-derived soluble NRG1 is critical for the Schwann cell precursors’ survival and their 

differentiation into immature Schwann cells. Moreover, it has been linked with 

neurotrophic factor signaling to build a developmental, stage-dependent model of 

positive feedback loop through soluble NRG1 and BDNF during axon-glial 

communication that is involved in the regulation of early Schwann cell development 

(Fig.25).  

The NRG1 gene is perhaps one of the largest and most complex growth factor 

signaling genes by virtue of the multiplicity of its alternatively spliced form (Falls, 2003). A 

given neuron can express both membrane-bound (type III) as well as secreted soluble 

forms (types I/II). Previous studies have shown that soluble heparin-binding forms of 

NRG1 are highly expressed by both motor neurons in the ventral horn of the spinal cord 

and sensory neurons in dorsal root ganglia during early embryonic development (Meyer 

et al., 1997). Our domain-specific antibodies further revealed that neuron-derived 

proNRG1 can transport along nerves and be presented on the axon membrane, while 

released soluble NRG1 is accumulated at specific sites through the interaction with 

HSPGs in the developing nervous system (Loeb et al., 1999). Here, with the antibody 

that specifically targets soluble NRG1’s extracellular domains, we have shown that at 
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specific developmental stage (after E5), soluble NRG1 translocates and concentrates on 

the Schwann cell surface by binding to HSPGs in extracellular matrix. A similar role for 

soluble NRG1 has been proposed for neuromuscular junction development, where 

presynaptically released soluble NRG1 can promote postsynaptic AChR expression 

(Sandrock et al., 1997). Once synapses have matured and passed the competitive 

survival stage of synapse elimination, NRG1 becomes highly concentrated in the 

synaptic basal lamina through the concentration of agrin and other HSPGs (Li and Loeb, 

2001; Loeb et al., 2002; Li et al., 2004b). This process also appears to be controlled by a 

feedback loop between presynaptic NRG1 and postsynaptic neurotrophic factors. 

Furthermore, it is also interesting that after sticking to Schwann cells, soluble NRG1 

immuno-reactivity is gradually reduced from E6 to E7 in the ventral nerve area, followed 

by the further decrease to the background level after E9 (Loeb et al., 1999), which could 

be due to the endocytosis of ligand-receptor complex after NRG1-induced erbB 

activation and the following degradation of NRG1 in lysosome (Waterman et al., 1998; 

Carpenter, 2000; Citri et al., 2003). 

The current data demonstrates the timing for the normal transition of soluble NRG1 

localization at axoglial interface, however, it is still not clear that how efficiently NRG1 

precursors will be cleaved in vivo once they are presented on the axon membrane during 

normal development. It could be very quick process, because high salt treatment has 

reduced the soluble NRG1 immuno-reactivity in ventral nerve area as early as E4 (Loeb 

et al., 1999), suggesting that the significant portion of soluble NRG1 has been released 

and associate with extracellular matrix at the early developmental stages. Actually, after 

proteolytic cleavage, soluble NRG1 could remain localized to the releasing sites by 
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binding to HSPGs expressed along developing nerves and has been found to be 

coincident accumulation with HSPGs at neuromuscular synapses (Loeb et al., 1999). So 

it is possible that the structural change of Schwann cell matrix that becomes more 

adherent to soluble NRG1 at the later stages may be involved in the NRG1 translocation 

process. It has been supported partially by double-labeling of agrin, a core protein of 

HSPG, with soluble NRG1 showing that agrin was highly expressed and co-localized 

with NRG1 on Schwann cells only after E6, implicating that developmental expressed 

specific HSPGs in cell matrix may be important to attract and concentrate released 

NRG1 on the Schwann cell surface for sustaining its signaling during development, just 

as what we have previously found in vitro (Li and Loeb, 2001; Pankonin et al., 2005).  

In the developing peripheral nerves, soluble forms of NRG1 are initially associated 

with axons. Schwann cell precursors migrate along axons intimately and undergo 

intensive proliferation, producing much more cells than ultimately needed (Winseck et al., 

2002; Winseck and Oppenheim, 2006). So their survival is highly dependent on 

axon-derived trophic factors including NRG1 (Jessen and Mirsky, 2005). Only those cell 

that are close enough to axons can receive sufficient soluble NRG1 and survive to 

become immature Schwann cells. Otherwise, they would be eliminated by programmed 

cell death (PCD). Soluble NRG1 treatment successfully rescued normal-occurring 

Schwann cell death at both E5 and E6 in this study. However, overexpression of soluble 

NRG1 precursors on axons could promote SCP survival at E6, but not E5. Together with 

the developmental deposition of soluble NRG1 at axoglial interface, it suggests that the 

releasing event is critical for the soluble NRG1’s functions on Schwann cell development, 

and also demonstrate that a potential stage-dependent mechanism by which 
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axon-derived NRG1 precursors could be efficiently proteolytic cleaved from axon 

membrane, may only be available after E5. Consistently, knocking-down of endogenous 

soluble NRG1 signaling with either specific shRNA or NRG1 targeted antagonist, could 

significantly increase SCP death. Since membrane-bound NRG1 are also expressed in 

motor neurons and shown to regulate SCP survival in vivo (Wolpowitz et al., 2000), 

SCPs undergoing apoptosis induced by insufficient soluble NRG1 signaling in this study 

probably are ones not associated with axons. Without the chance to get trophic factors 

by directly contacting with axons, these cells only can depend on axon-derived soluble 

NRG1 for survival in a paracrine manner that actually contribute to the rescue of at least 

50% of those cells in our data.  

Part of the complexity in understanding the functions of various alternatively spliced 

forms of NRG1 during development comes from having many diverse roles at many 

different stages. The chick system has a unique advantage that enables the modulation 

of specific forms of NRG1 in specific regions at specific stages of development.  

Knockout studies in mice, while sometimes more difficult to interpret, have also lead to 

significant insights. Knocking out all NRG1 isoforms and their receptors leads to a 

dramatic loss of neural crest cell-derived Schwann cell precursors (Meyer and 

Birchmeier, 1995; Meyer et al., 1997; Riethmacher et al., 1997; Morris et al., 1999; 

Woldeyesus et al., 1999). In contrast, mice specifically deficient in the type III NRG1 

isoform show a milder phenotype with the presence of a reduced number of SCPs that 

still differentiate to Schwann cells and line up along growing axons (Wolpowitz et al., 

2000), which supports our observations here that soluble NRG1 isoforms are required for 

SCP survival.  
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Our findings in this chapter also suggest that soluble NRG1 regulates both the 

survival and the differentiation of SCPs. Although it has been well-defined that the 

transition stage of SCPs to Schwann cells in mice is between E13 and E15 (Jessen and 

Mirsky, 2005), the timing has not been established in chick embryos. Here we have 

found that the normal differentiation of SCP to immature Schwann cells happened 

between E6 and E7 during chick embryonic development, which is paralleled with the 

timing of soluble NRG1’s concentration on Schwann cells. Perhaps one of the most 

dramatic findings of our targeted NRG1 antagonist was the complete inhibition of O4 

expression as a marker of immature Schwann cell differentiation. This effect on 

differentiation is consistent with previous in vitro experiments showing NRG1 signaling 

accelerates the SCP-Schwann cell transition (Brennan et al., 2000). The developmental 

down-regulation of AP2α, a marker of SCPs, was not affected by the NRG1 antagonist, 

suggesting that SCP differentiation to immature Schwann cells is regulated by multiple 

steps and that NRG1 does not appear to be required for its down-regulation. Given that 

membrane-bound, CRD form of NRG1 is also essential for SCP development, the 

differentiation of SCPs that directly contact with axons is probably regulated by both 

soluble NRG1 and CRD-NRG1 that functions in a juxtacrine manner.  

Given the known mitogentic effects of NRG1 on cultured Schwann cells (Dong et al., 

1995), one surprising result from the analysis of Schwann cell proliferation measured by 

BrdU labeling, shows that during the transition of SCPs to immature Schwann cells, 

NRG1 is anti-proliferative. Treatment with the NRG1 antagonist in fact produced a slight 

increase, rather than a decrease in Schwann cell proliferation in the developing motor 

axons. Actually, normal proliferation rate of Schwann cells decreases from SCP to 
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Schwann cell stage (Winseck et al., 2002), and myelinating Schwann cells’ mitogenic 

activity increases when they are de-differentiated to immature stage after nerve injury or 

degeneration (Fawcett and Keynes, 1990). The increased proliferation may be 

attributable to an indirect effect of the strong anti-differentiation effect of the antagonist 

leading to higher numbers of proliferating SCPs, rather than to the direct regulation of 

Schwann cell proliferation. Meanwhile, the cancer literature similarly shows both 

proliferation and differentiation effects of NRG1 on breast epithelial cells that vary as a 

function of their level of malignant transformation. For example, as breast epithelial cells 

become more malignant, NRG1 signaling changes from an anti-proliferative to a 

proliferative effect (Li et al., 2004a). 

In this study, we have shown that knocking-down of soluble NRG1 signaling totally 

blocks the survival effect of BDNF ectopic expression, and soluble NRG1 is able to 

rescue the Schwann cell death induced by the down-regulation of endogenous axonal 

trkB signaling. It strongly suggests that endogenous BDNF signaling through axonal trkB 

receptors regulates SCP survival and differentiation indirectly through modulating the 

amount of soluble NRG1 released at the axon-glial interface. This finding is consistent 

with our previous in vitro observations showing that BDNF and other neurotrophic factors 

rapidly promote soluble NRG1 release from axons in neuron culture through protein 

kinase C-delta (PKC-δ) induced phosphorylation on proNRG1’s cytoplasmic tail (Esper 

and Loeb, 2004,2009). This reciprocal regulatory pathway is stage-dependent and 

occurs after the period of maximal naturally-occurring SCP death at E5. A key advantage 

of this localized communication system is that it does not require communication back to 

the motor neuron cell body to optimize axoglial interactions. Consistently, we found that 
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the modulation of BDNF-trkB signaling did not significantly change NRG1 mRNA or 

protein expression in the spinal cord, and may just lead to the improvement of efficiency 

in NRG1’s proteolytic cleavage as what we have found previously. SCPs that survive 

from programmed cell death, differentiate into immature Schwann cells and receive 

sustained NRG1 signaling through the deposition of developmentally regulated HSPGs 

on their cell surface (Fig.25). At later developmental stages, those axons that produce 

sufficient levels of the type III, membrane-bound CRD-NRG1 are then utilized required to 

promote axonal myelination (Taveggia et al., 2005). 
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CHAPTER IV 

CONCLUSIONS AND SIGNIFICANCE 

 

The body of work in this dissertation has attempted to develop an understanding of 

the critical role of reciprocal signaling through soluble neuregulin-1 (NRG1) and 

brain-derived neurotrophic factors (BDNF) in the regulation of early Schwann cell 

development in vivo. In addition, attempts were also made to develop a novel potent 

NRG1 antagonist with enhanced targeting specificity through the interaction between 

heparin-binding domain (HBD) and specific heparan-sulfate proteoglycans (HSPGs) in 

the extracellular matrix, so that the precise functional roles of soluble NRG1 could be 

elucidated in both development and diseases.  

HSPGs give tissue surfaces a unique molecular signature due to their tremendous 

diversity, yet specificity in both core protein and glycosaminoglycan (GAG) structures 

including sulfation patterns (Turnbull et al., 2001; Esko and Selleck, 2002; Kramer and 

Yost, 2003; Pankonin et al., 2005). This diversity is regulated by highly specific enzymes 

that regulate their synthesis and modifications through post-translational processing, 

which results in a spatially- and temporally-regulated means for a given cell surface 

region to become receptive to specific growth and differentiation factors as well as 

viruses that have evolved to use of this natural delivery system with the emergence of a 

number of structurally–distinct heparin-binding domains. The ‘barcode’ provided by 

HSPGs in the extracellular matrix is often used as low-affinity targeting system that often 

requires a second, more highly specific receptor-ligand interaction to exert its biological 
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effects. In the Chaper II, we have taken advantage of growth factor’s heparin-binding 

motifs that are widely used in nature as a source of tissue-specific targeting, to develop a 

novel NRG1 antagonist by fusing its HBD to soluble HER4 receptor. NRG1’s HBD is 

unique in that it is an easily detachable, stand-alone C2 immunoglobulin domain that can 

retain its targeting specificity both in vitro and in vivo when fused to another polypeptide. 

We found that one of fusion protein constructs originally generated by my colleagues, 

HBD-S-H4, could work as potential NRG1 signaling blocker. In this thesis work, both in 

vitro and in vivo evidence about the characterization of this fusion protein’s 

heparin-binding ability and NRG1 blocking activity, are provided to demonstrate that this 

completely humanized fusion protein has enhanced tissue-targeting specificity through 

the concentration on cell surfaces in the same tissue regions as endogenous soluble 

NRG1, and could be promising as a tool for NRG1’s functional studies in development 

and an anti-NRG1 biopharmaceutical in diseases ranging from chronic pain to cancer 

(Ma et al., 2009; Calvo et al., 2010; Calvo et al., 2011). 

Since this new regent is derived entirely from natural human polypeptide sequences, 

to test the potential therapeutic effect, we have started to take look at its in vitro efficacy 

of blocking NRG1-induced HER2 receptor activation in some types of human breast 

cancer cells that are highly proliferative in response to NRG1 (Krane and Leder, 1996; 

Lupu et al., 1996; Tsai et al., 2003). Previously, we have found that as some human 

breast epithelial cells become more malignant, they develop autocrine NRG signaling 

that promotes proliferation (Li et al., 2004a; Yao et al., 2004). The treatment of 

HBD-S-H4 in MCF10CA1 breast cancer cells effectively blocked both autocrine and 

paracrine NRG1-induced receptor phosphorylation and thus significantly reduced their 
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proliferation rate, suggesting that this fusion protein could be useful therapeutically in 

breast and other cancer cells that proliferate in response to autocrine and paracrine 

NRG1 signaling (Ma et al., 2009). Actually, a number of efforts have been made to block 

NRG1-erbB signaling, including the FDA approved humanized monoclonal antibody drug 

against erbB2 receptor called Trastuzumab (Carter et al., 1992). It have become a 

clinically effective adjuvant therapy for human breast cancers (Slamon et al., 2001; Vogel 

et al., 2002), but has to be used at extremely high concentrations that have been linked 

to cardiac side effects and only works effectively on a subgroup of breast cancer patients 

that overexpress HER2 receptor (Krauss et al., 2000; Untch et al., 2004). In our 

experiments, the inhibition level of breast cancer cell growth achieved by HBD-S-H4 

treatment was comparable to this currently approved therapeutic antibody (Ma et al., 

2009). Further in vivo efficacy studies will be needed to determine the therapeutic 

potential of our novel NRG1 antagonist in human breast cancers. 

One of the most important obstacles in the development of biological therapeutics is 

getting a therapeutic agent to diseased tissues without causing undue toxicity in normal 

tissues. Recent clinical trial with promising neurotrophic factors, BDNF and GDNF, failed 

in part because of poor targeting (Thoenen and Sendtner, 2002). Potential protein drugs 

that delivered to all cells are not helpful, even potentially dangerous for the treatment of 

human diseases. Here, we have tried to develop a better tissue-specific targeting system 

for biopharmaceutical development to enhance tissue-specific delivery and produce 

sustained efficacy by using NRG1’s heparin-binding domain. The natural ability of NRG’s 

HBD to concentrate on cell surfaces in a tissue-specific manner may help overcome 

some of these obstacles for biopharmaceuticals that might otherwise fail due to poor 
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efficacy and excessive toxicity. GAG diverse structures of HSPGs in the extracellular 

matrix maintain tissue-specific heterogeneity through highly regulated enzymes that 

modify the sugar and sulfation patterns needed for the selective targeting of a number of 

growth factors and viruses, which is critical for the normal development and could be 

affected by human diseases (Fuster and Esko, 2005; Bishop et al., 2007; Gorsi and 

Stringer, 2007). Therefore, not only could NRG1’s native HBD be a useful targeting 

vector for tissues that express and/or bind NRG1, but also the subtle modifications in this 

HBD sequence and other potential HBD sequences could be sufficient to change the 

tissue-specific targeting specificity in many diseases including neurodegenerative 

diseases and cancers. So the usage of NRG1’s HBD as a novel strategy for selective 

tissue-targeting with minimal systematic side effects at the same time, could serve a 

good example on how it is possible to improve therapeutics by targeting 

biopharmaceuticals to where they are needed with minimal toxicity to other tissues and 

thus resolves one of the most important obstacles in the development of biological 

therapeutics. 

In chapter III, we provided in vivo evidence from the novel NRG1 antagonist 

treatment and further genetic and biochemical experiments in both chick and mouse 

embryos, showing that Schwann cell-derived BDNF through axonal trkB receptors 

stage-dependently induce the axonal release of soluble NRG1 to the developing 

Schwann cells, and the signaling is stabilized and sustained through the accumulation on 

the cell surface at the specific developmental stages, which is critical to regulate the 

survival of Schwann cell precursors as well as their differentiation into immature 

Schwann cells. So here we have linked together with the functions of neuro-trophic 
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factors like BDNF and glial-trophic factors like NRG1 on the regulation of Schwann cell 

development, providing the first in vivo evidence for a positive feedback loop between 

axonal NRG1 and Schwann cell-derived neurotrophins that may not only be important for 

the axoglial communication, but also be helpful in understanding nervous system 

diseases that involve the axoglial interface. Figure 25 builds a developmental, 

stage-dependent model of Schwann cell development that incorporates our findings 

about soluble NRG1 together with other known roles of membrane-bound NRG1 in 

regulating the development process of Schwann cell lineage. 

To make this model of axoglial signaling complete, some key issues remain to be 

tested. First, we do not know if any other neurotrophic factors could be also involved in 

this model and stimulate NRG1 axonal release at the specific developmentally critical 

period for Schwann cell development. It is necessary to check the potential involvement 

of GDNF in this stage-dependent axon-glial communication to regulate early Schwann 

cell development, because it is one of potent Schwann cell-derived neurotrophic factors 

that can effectively promote soluble NRG1 release form axons in both motor and sensory 

neuron cultures (Esper and Loeb, 2004). Actually, at the later stage, GDNF can be 

secreted by immature Schwann cells and support their own survival through autocrine 

signaling (Jessen and Mirsky, 2005). Second, so far, little is known about the exact 

mechanisms by which NRG1 precursors can be efficiently cleaved from axon membrane 

in response to axonal trk receptor activation induced by Schwann cell-derived 

neurotrophic factors. Although our previous in vitro study have shown that the activation 

of PKC-δ signaling pathway after neurotrophic factor treatment promote NRG1 precursor 

release and is responsible for the phosphorylation of proNRG1 cytoplasmic tail, it is still 
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not clear if this phosphorylation event is necessary for the protein conformation change 

and thus facilitate its cleavage by some protease in the extracellular matrix. It could be 

elucidated by the further identification of specific phosphorylated residues on proNRG1 

cytoplasmic tail combined with three-dimentional structures revealed by x-ray 

crystallography, and the establishment of the differential expression or activation pattern 

of PKC-δ at axoglial interface during normal development as well as after the modulation 

of neurotrophic factor signaling. 

Since NRG1 has wide range of functions in both neural development and diseases 

(Mei and Xiong, 2008), our findings would have implications for better understanding of 

the mechanisms during axoglial communication that may lead to the development of 

potential treatments for neurological diseases including demyelinating disease. While in 

some disease situations it may be advantageous to increase NRG1 signaling, in others, 

NRG1 signaling may be detrimental and needs to be blocked, which has been achieved 

by our novel potent targeted NRG1 antagonist. Previous studies have shown that type III 

NRG1 remains membrane-bound, even after proteolytic cleavage from its precursor 

(Wang et al., 2000), which make it ideally positioned to determine the ensheathment fate 

of axons and regulate myelin sheath thickness in peripheral nerves (Michailov et al., 

2004; Taveggia et al., 2005). Interestingly, while high concentrations of soluble NRG1 

inhibit Schwann cell myelination, low concentrations that switch from Erk to 

phosphatidylinositol 3-kinase (PI3K) - Akt activation actually promote myelination 

(Zanazzi et al., 2001; Syed et al., 2010). It seems that the balance between two signaling 

pathways for myelination is controlled by one molecule. Specific heparan-sulfates in the 

extracellular matrix may be involved in this process by concentrating small amount of 
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soluble NRG1 to sustain the signaling and activate the same signaling pathway as 

membrane-bound NRG1 during the initiation of myelination process. It is really 

interesting to check the in vivo roles of soluble NRG1 and the reciprocal signaling 

through neurotrophic factors in regulating Schwann cell maturation and myelination at 

the later developmental stages. So, given the the amount of NRG1 and the intensity of 

NRG1 signaling are critical for the Schwann cell development, the modulation effect of 

neurotrophic factor signaling on soluble NRG1 concentration at axoglial interface may 

have potential for the future therapeutics of demyelinating diseases. 

Many evidence have suggested that both NRG1 and neurotrophic factors signaling 

are important for the peripheral nerve repair (Esper et al., 2006). After axon damage, 

Schwann cells undergo multiple changes at both molecular and cellular level, and 

secrete specific neurotrophic factors that could promote axon regrowth (Carroll et al., 

1997). Administration of exogenous neurotrophic factors has been used as a potential 

therapeutic strategy to treat chronic peripheral neuropathies in which the natural repair 

process can not be achieved (McMahon and Priestley, 1995). Alternatively, manipulation 

of NRG1 signaling can stimulate nerve regeneration by promoting Schwann cell 

proliferation and protecting nerves against toxin-induced nerupathy (Oka et al., 2000; ter 

Laak et al., 2000). Furthermore, it has recently been suggested that once the peripheral 

nerve forms, NRG1 is dispensable under normal conditions, but critical for nerve repair 

after injury (Fricker et al., 2011). So the fully understanding of normal axoglial interaction 

through axon-derived NRG1 and Schwann cell-secreted neurotrophic factors, especially 

in vivo condition, may be important to develop more effective treatment for peripheral 

neuropathy induced by injury or diseases. 
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Taken together, our data in this work demonstrated that during the critical period for 

Schwann cell development, the reciprocal signaling through axonal NRG1 and Schwann 

cell-derived neurotrophins such as BDNF, is critical for the regulation of Schwann cell 

precursors’ survival and differentiation. Importantly, it suggests that factors that modify 

the localization and concentration of NRG1 can dramatically alter the biological functions 

of the ligand. Control of NRG1 signaling through both alternative splicing of 

membrane-bound and secreted forms, the expression patterns of adherent HSPGs, and 

local gradients of neurotrophic factors from surrounding cells can thus fine tune NRG1 

signaling to achieve its many goals in both development and diseases. A clear 

understanding of these variables and NRG1 functions during normal development of 

nervous systems could have important therapeutic implications in a variety of human 

diseases such as peripheral neuropathy and demyelinating disorders (Loeb, 2007). 

Therefore, the work presented in this dissertation significantly expands our knowledge 

and understanding of bidirectional axon-glial communication in vivo and may have 

potential impact on the development of therapeutic strategies for neurological disorders 

that involve axoglial interface. 
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APPENDIX A 

FIGURES 

 

Figure 1. Molecular structures of NRG1 isoforms 

  

 

 

   



59

 

Figure 2. Soluble NRG1 signaling activates erbB receptors through the interaction 

between HBD and HSPGs 
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Figure 3. The HBD of NRG1 retains heparin-binding ability and potentiates an 

HER4 antagonist.  
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Figure 4. Purified HBD-S-H4 blocks NRG1 induced erbB phosphorylation by 

concentrating on cell surface. 
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Figure 5. NRG1’s HBD targets HBD-S-H4 to cell surfaces through heparan sulfate 

interactions. 
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Figure 6. HBD-S-H4 targets to the same regions of the developing spinal cord 

where NRG1 accumulates 
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Figure 7. HBD-S-H4 is concentrated in the ventral nerve area through the 

interaction with HSPGs 
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Figure 8. Immunostaining with an antibody against His-tag present in both 

HBD-S-H4 and H4 constructs. 
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Figure 9. HBD-S-H4 induces Schwann cell apoptosis in the ventral nerve root. 
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Figure 10. Transition of matrix-bound NRG1 from axons to Schwann cells. 
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Figure 11. Release soluble NRG1 binds to heparan sulfates at axoglial interface. 
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Figure 12. NRG1 signaling promotes Schwann cell survival in vivo. 
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Figure 13. Chick in ovo electroporation can be used to modulate gene expression 

unilaterally in the ventral nerve roots.  
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Figure 14. Specific knock-down of soluble NRG1 increases Schwann cell death.  
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Figure 15. Over-expression of soluble NRG1 promotes Schwann cell survival. 
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Figure 16. Schwann cell differentiation during normal development of chick 

embryos. 
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Figure 17. NRG1 signaling is required for Schwann cell differentiation. 
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Figure 18. NRG1 signaling is not required for Schwann cell proliferation. 
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Figure 19. BDNF’s receptors are exclusively localized on axons. 
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Figure 20. BDNF promotes Schwann cell survival through axon-derived soluble 

NRG1. 
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Figure 21. Axonal trkB signaling promotes Schwann cell survival through soluble 

NRG1. 
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Figure 22. Schwann cell death is increased at E13.5 in TrkB knockout mice. 
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Figure 23. Over-expression of BDNF-trkB signaling does not significantly affect 

NRG1 expression in spinal cord. 
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Figure 24. Knocking-down of BDNF-trkB signaling does not significantly affect 

NRG1 expression in spinal cord. 
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Figure 25. A stage-dependent model for axoglial NRG1 signaling. 
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APPENDIX B 

FIGURE LEGENDS 

 

Figure 1. Molecular structures of NRG1 isoforms. Over 30 protein isoforms are 

produced by NRG1 gene, and mainly divided to two groups, soluble form and 

membrane-bound form. They are first expressed as trans-membrane precursors and 

then undergo proteolytic cleavage by specific proteinases in the extracellular matrix. 

Most of soluble form of NRG1 has heparin-binding domain (HBD) that is also called 

Ig-like domain (IG), and will be released from membrane after the cleavage. In contrast, 

membrane –bound form of NRG1 has cysteine-rich domain (CRD) that could work as the 

second trans-membrane domain and keep the protein tethered on the membrane even 

after the cleavage. 

 

Figure 2. Soluble NRG1 signaling activates erbB receptors through the interaction 

between HBD and HSPGs. The heparin-binding domain (HBD) targets the released 

soluble NRG1 proteins to the cell surface that is rich in specific heparan-sulfate 

proteoglycans (HSPGs) in the extracellular matrix. The interaction of HBD and HSPGs 

not only facilitate the deposition of soluble NRG1 proteins, but also potentiate the NRG1 

signaling through erbB receptor activation via the formation of hetero-/homo-dimers such 

as erbB2-erbB3, erbB2-erbB4 and erbB4-erbB4, on the cell membrane. Because erbB3 

has inactive tyrosine kinase domain, it has to be coupled with erbB2 or erbB4 that has 

active kinase function so that the down-stream signaling pathways can be activated. 

Soluble NRG1-erbB signaling has been shown to regulate acetylcholine receptor 
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expression and insertion in neuro-muscular junction, glial cell development including 

proliferation, survival, differentiation and migration, as well as the pathogenesis of some 

cancer cells. 

 

Figure 3. The HBD of NRG1 retains heparin-binding ability and potentiates an 

HER4 antagonist. A. Schematic diagram of secreted NRG1 and four antagonist 

constructs. The heparin-binding domain (HBD) was fused N-terminal or C-terminal to 

extracellular binding domain of HER4 receptor (H4) with or without a spacer domain(S). 

H4 alone was made as a control. Each was applied to a heparin column. The 

flow-through and successive elutions with increasing concentrations of NaCl were 

measured by immunoblotting with an anti-HA antibody. The HBD-S-H4 protein had the 

highest affinity for heparin compared to other constructs. B. Comparable amounts of 

each fusion protein were premixed with 50pM recombinant NRG1 protein and applied to 

L6 muscle cells to determine the effect of each protein on the phosphorylation of erbB 

receptors (p185) normalized to erbB2 levels (bottom gel). This experiment was repeated 

for 3 times. 

 

Figure 4. Purified HBD-S-H4 blocks NRG1 induced erbB phosphorylation by 

concentrating on cell surface. A. Silver stained gel of purified HBD-S-H4 and H4 

fusion proteins.  The predicted molecular weight of HBD-S-H4 and H4 is around 88kd 

and 70kd respectively. The higher apparent molecular weight on the gel reflects that both 

fusion proteins are glycosylated during expression in mammalian cells. B. L6 cells were 

treated with either purified HBD-S-H4 or H4 as a control at 1 and 10nM for 1 hour.  The 
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cells were washed for several times to remove any unbound fusion proteins and then 

challenged with 75 pM recombinant NRG1 protein. While H4 alone had no residual 

effects, HBD-S-H4 had sustained effects completely blocking NRG-induced erbB 

receptor phosphorylation (p185). This experiment was repeated for 3 times. 

 

Figure 5. NRG1’s HBD targets HBD-S-H4 to cell surfaces through heparan sulfate 

interactions. A. CHO-wt and CHO-pgsd677 (deficiency in heparan-sulfate synthesis) 

cells were incubated with biotinylated HBD-S-H4 or H4 (50 nM) with or without 

heparinase treatment. Compare to other conditions, HBD-S-H4 treated CHO-WT had the 

brightest green fluorescence intensity that appeared to concentrate in extracellular 

matrix between cells. The absence of heparan-sulfate in mutant cells and the heparinase 

treatment dramatically reduce the fluorescence to the level similar to H4 treatment. Scale 

bar is 50μm. B. A binding assay of protein constructs to CHO cells shows the 

significantly enhanced binding ability of HBD-S-H4 to wild type CHO cells (CHO-wt), but 

not to mutant cells with deficient heparan sulfate synthesis (CHO-pgsd677). The H4 

construct did not bind to these cells. Error bars represent standard error of four 

experiments. * and ** indicate significant differences and p <0.001 and <0.002 

respectively, using a student’s t-test comparing the indicated conditions. C. Increasing 

concentrations of biotin-conjugated HBD-S-H4, H4 or IgG were added to heparin coated 

96-well plates to produce a saturation binding curve. The amount of HBD-S-H4 bound to 

heparin increased until the saturation of all binding sites. Data points are shown as mean 

+ SEM of quadruplicate wells. 
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Figure 6. HBD-S-H4 targets to the same regions of the developing spinal cord 

where NRG1 accumulates. 20μg of HBD-S-H4 was added onto the chorioallantoic 

membrane of embryonic chicken embryos. Tissue transverse sections at lumbar level of 

spinal cord at E7 show a comparison between endogenous chicken NRG1 expression 

(green, left) and HBD-S-H4 distribution (green, right) at low power (top). Higher power 

Images (bottom panel) focusing on the spinal cord show that HBD-S-H4 adhered to the 

same regions as endogenous NRG1 along axonal tracts in the spinal cord (arrows) and 

along the ventral root (arrowhead). Sections were counterstained for nuclei with DAPI 

(blue). Scale bars are 200μm. 

 

Figure 7. HBD-S-H4 is concentrated in the ventral nerve area through the 

interaction with HSPGs. Both endogenous chicken NRG1 (chNRG, green) and 

HBD-S-H4 (huNRG, green) were concentrated in the ventral nerve root identified by a 

Schwann cell marker (red). High salt (1M NaCl for 2 hours at 37°C) treatment on 

sections of HBD-S-H4 removed the fluorescent signal in the ventral root. Control 

treatments with saline did not reveal any immunoreactivity with the same antibody in the 

ventral nerve root. Scale bar is 50μm. 

 

Figure 8. Immunostaining with an antibody against His-tag present in both 

HBD-S-H4 and H4 constructs. Immuno-staining with an antibody against His-tag 

present in both HBS-D-H4 and H4 constructs shows that His-tag immunoreactivity 

(Histag, green) was only present in the HBD-S-H4 treated embryo and concentrated in 

the same ventral nerve region as endogenous chicken NRG1 (chNRG, red). Scale bar is 
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50μm. 

 

Figure 9. HBD-S-H4 induces Schwann cell apoptosis in the ventral nerve root. A. 

Chicken embryos were treated with HBD-S-H4, H4, or saline from E5-E7. Increased 

numbers of TUNEL positive Schwann cells (green, arrows) were seen in ventral root 

regions (highlighted with dashed lines) that were stained positively for HBD-S-H4 (red) 

with the human NRG1 antibody (huNRG). Each section was also stained with DAPI to 

show cell nuclei (blue). The ventral root was divided equally into proximal and distal 

regions (solid line) showing increased HBD-S-H4 accumulation in the distal versus 

proximal nerve segments. Scale bar is 50μm. Bottom panel is high power images of 

TUNEL positive Schwann cells in each condition. Scale bar is 5μm. B. Quantification of 

apoptotic Schwann cells shows significantly more apoptotic Schwann cells in the distal 

nerve root regions with higher levels of HBD-S-H4 accumulation, compared to proximal 

nerve root regions. Results are expressed as mean + SEM with n=5, 7, and 6 for each, 

respectively. * and ** indicate significant differences and p < 0.0001 and <0.00005 

respectively. 

 

Figure 10. Transition of matrix-bound NRG1 from axons to Schwann cells. 

Representative confocal images show the co-localization of soluble NRG1 (green) and 

Schwann cells (P0 protein, Red) (A), or axons (neurofilament, Red) (B) between E5 and 

E7. Scale bar = 50μm, upper panel. Lower panel shows high power images of area from 

the dashed-line square, scale bar = 20μm. The percentage of pixel overlapping between 

NRG1 immunoreactivity and Schwann cells (C) (n = 9, 9, 5 for each stage, respectively) 
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or axons (D) (n = 7, 4, 4 for each stage, respectively) was measured in the ventral root 

(*p < 0.0001 for E5 versus E6). 

 

Figure 11. Release soluble NRG1 binds to heparan sulfates at axoglial interface. 

Matrix-bound soluble NRG1 signal (green) was dramatically reduced after high salt (1M 

NaCl) treatment compared to a PBS control at E6, while axon immunoreactivity (red) 

was intact . Scale bar = 50μm. 

 

Figure 12. NRG1 signaling promotes Schwann cell survival in vivo. A. A significant 

increase in TUNEL positive cells (red, arrows) were detected in motor axons after 

treatment with a targeted NRG1 antagonist compared to a saline control (Schwann cells: 

green, DAPI stained nuclei: blue). Scale bar = 50μm. B. Dose-dependent increase in 

apoptotic Schwann cells treated with the antagonist in both motor and sensory axons (n 

= 7, 6, 7 for each condition, respectively; **p < 0.0001 for both axon regions using 

one-way ANOVA). C. Addition of soluble type I NRG1 rescues Schwann cells from cell 

death at both E5 and E6 (n = 4 for each stage; *p < 0.001, **p < 0.0001, for saline versus 

NRG1 treatment). 

 

Figure 13. Chick in ovo electroporation can be used to modulate gene expression 

unilaterally in the ventral nerve roots. A. Top view of whole chick embryo after in ovo 

electroporation shows that GFP (green) is highly expressed only in one side of spinal 

cord, and can be transported along spinal nerves at lumbar level (arrows). B. Transverse 

sections of the electroporated animal shows selective expression of GFP (green) in the 
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ventral spinal cord of the electroporated side (EP) as well as in the exiting motor axons 

surrounded by Schwann cells (red) that are also shown at the contralateral side (CON) 

without GFP expression. DAPI stains cell nuclei (blue). Scale bar = 50μm. 

 

Figure 14. Specific knock-down of soluble NRG1 increases Schwann cell death. A. 

Efficacy of shRNA in down-regulating soluble NRG1 in COS7 cells was measured by 

co-transfection of full-length NRG1 type I (proNRG1) together with a shRNA-HBD 

specific for NRG1’s heparin-binding domain. Both no shRNA and a scrambled shRNA 

(shRNA-con) were used as controls. Transfection efficiency was tracked by GFP (green) 

expression from a third plasmid. DAPI stains cell nuclei (blue). Scale bar = 50μm. B. 

proNRG1 expression in COS7 cell lysates was significantly reduced with shRNA-HBD 

transfection showing both the un-cleaved (~75kDa) and the cleaved (cytoplasmic tail) 

fragment (~50kDa) of proNRG1 by immunoblot analysis. C. Increased number of 

apoptotic Schwann cells was seen at E7 after electroporation with shRNA-HBD 

compared to either shRNA-con or GFP alone (n = 7, 4, 6 for each condition, respectively; 

**p < 0.0005, for shRNA-HBD versus control or shRNA-con). 

 

Figure 15. Over-expression of soluble NRG1 promotes Schwann cell survival. A. 

Overexpression of soluble NRG1 (type I) in ventral spinal cords in vivo using a 

C-terminal myc-tagged proNRG1 shows myc expression (red) in GFP-positive cells 

(green). DAPI stains cell nuclei (blue). Scale bar = 20μm. B. Overexpression of 

proNRG1 in motor axons significantly promotes Schwann cell survival at E6, but not at 

E5 or control (pMES empty vector alone) (n = 4, 6, 4 for each condition, respectively; *p 
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< 0.005, for proNRG1 at E6 versus vector control; **p < 0.0005, for proNRG1 at E6 

versus E5). 

 

Figure 16. Schwann cell differentiation during normal development of chick 

embryos. Schwann cell precursors differentiate into immature Schwann cells between 

E6 and E7 as evidenced by the down-regulation of AP2α and up-regulation of O4 

antigens. AP2α (green) or O4 (green) were used to label SCPs and immature Schwann 

cells, respectively, from E4 to E7 in the ventral root (VR) labeled by a trkB antibody (red). 

DRG denotes dorsal root ganglia. DAPI stains cell nuclei (blue). Scale bar = 50μm. 

 

Figure 17. NRG1 signaling is required for Schwann cell differentiation. Treatment 

with the NRG1 antagonist at days E5 and E6 prevented the expression of O4 at E7 

(bottom, green) in both the ventral root (VR) and the dorsal root (DR) highlighted by the 

dashed lines. The normal developmental loss of AP2α (top, green) expression in the 

ventral root (VR) was not affected by the antagonist treatment. DAPI staining shows cell 

nuclei (blue). Scale bar = 50μm. 

 

Figure 18. NRG1 signaling is not required for Schwann cell proliferation. A. BrdU 

incorporation (green) in Schwann cells at E7 in the ventral root (VR, dash lines) 

counterstained with trkB antibody (red) is slightly increased after 2-day treatment with the 

NRG1 antagonist compared to a saline control. DAPI staining shows cell nuclei (blue). 

Scale bar = 20 μm. B. Quantification of the percentage of BrdU positive Schwann cells in 

motor axons at E7 shows a small increase in proliferation rate with antagonist treatment 
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(n = 5, 4 for each condition, respectively; *p < 0.002). 

 

Figure 19. BDNF’s receptors are exclusively localized on axons. A, B. Confocal 

microscopy of the ventral root at E5 with trkB (green) in (A), or p75 (green) in (B), 

together with Schwann cells (P0 protein, red, left panel) or neurofilament (red, right panel) 

demonstrate the axonal localization of both BDNF receptors. The bottom panels in each 

show high power images of corresponding areas highlighted by the dashed lines. Scale 

bars = 20μm. 

 

Figure 20. BDNF promotes Schwann cell survival through axon-derived soluble 

NRG1. A. BDNF in ovo treatment significantly decreased Schwann cell death compared 

to a saline control at E5. (n = 5, 8 for saline and BDNF, respectively; **p < 0.0005). B. 

Knocking-down soluble NRG1 with shRNA-HBD electroporation on one side of the spinal 

cord abolished BDNF’s survival effect seen on the opposite side without shRNA 

electroporation (n = 5, *p < 0.005). 

 

Figure 21. Axonal trkB signaling promotes Schwann cell survival through soluble 

NRG1. A. Electroporation (EP) of a shRNA against trkB together with GFP reduced trkB 

staining (red) in the ventral horn (circle), relative to both the contralateral side of the 

spinal cord (CON) and GFP electroporation alone. DAPI staining shows cell nuclei (blue). 

Scale = 50μm. B. Quantification of the ratio of relative trkB fluorescence between the 

electroporated versus control side of the spinal cords shows that the shRNA-trkB 

knocked-down trkB expression by 60% per cell in the ventral horn (n = 5, 3 for each 



92

group, respectively; *p < 0.005). C. While Schwann cell death at E7 significantly 

increased after knocking-down trkB, adding back soluble NRG1 to these embryos 

rescued Schwann cells on both electroporated and control sides. (n = 3, 7, 6 for each 

group, respectively; *p < 0.02, for CON side of shRNA-trkB versus shRNA-trkB plus 

NRG1; **p < 0.0005, for EP side of shRNA-trkB versus shRNA-trkB plus NRG1, and 

versus CON side of shRNA-trkB). 

 

Figure 22. Schwann cell death is increased at E13.5 in TrkB knockout mice. A. 

TUNEL staining of motor axons (green) at E13.5 shows more TUNEL positive Schwann 

cells (red, arrows) in knockout (KO) compared to wild-type (WT) littermates. DAPI stains 

cell nuclei (blue). Scale bar = 20μm. B. Significantly increased numbers of apoptotic 

Schwann cells are seen in the knockout embryos. (n = 5 for each group; *p < 0.005). 

 

Figure 23. Over-expression of BDNF-trkB signaling does not significantly affect 

NRG1 expression in spinal cord. A. qPCR showed no significant changes in spinal 

cord mRNA levels for both type I HBD-NRG1 and type III CRD-NRG1 at HH stage 27 

after BDNF treatment (n = 5 for each group). B, C. NRG1 protein was also unchanged 

after BDNF treatment by Western blot. Quantification of the bands ranging from 

50-150kDa was done by normalization to actin after reprobing (n = 3, for each group). 

 

Figure 24. Knocking-down of BDNF-trkB signaling does not significantly affect 

NRG1 expression in spinal cord. A. Following electroporation with shRNA-trkB, the EP 

and CON side of lumbar level spinal cord were isolated based on GFP expression. 
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mRNA levels for both HBD-NRG1 and CRD-NRG1 were unchanged by qPCR (n = 5). B, 

C. NRG1 protein expression was also unchanged by Western blot and quantified as 

described above (n = 3) with normalization to both actin and neurofilament (NF). 

Reprobing with a GFP antibody shows the presence of GFP expression only in the 

electroporated side. 

 

Figure 25. A stage-dependent model for axoglial NRG1 signaling. From E5-E7 in 

chick embryos, Schwann cell precursor (SCP) survival is dependent on a concentration 

gradient of soluble NRG1 that can be increased at local axon segments through axonal 

trkB receptor activation (the red spheres represent the heparin-binding domain, while the 

blue spheres are the EGF-like domain of type I/II NRG1). Those SCPs that do not 

receive sufficient levels of NRG1 undergo apoptosis. Those that survive require further 

NRG1 signaling to differentiate into immature Schwann cells. The immature Schwann 

cells turn on the expression of cell-surface HSPGs (dashed lines) that act as a ‘sink’ for 

heparin-binding forms of NRG1, that in turn provides sustained NRG1 signaling at E7. 

Later, the ensheathment fate (myelination) of axons at E14 requires type III CRD-NRG1. 
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During peripheral nervous system development, successful communication between 

axons and glial cells including Schwann cells in peripheral nervous system and 

oligodendrocytes in central nervous system, is required for the proper functions of both 

neurons and glia. Three types of alternatively-spliced proteins belonging to the 

neuregulin1 (NRG1) gene family of growth and differentiation factors are essential for 

Schwann cell survival and peripheral nerve development. While membrane-bound 

NRG1 forms (type III) has been strongly implicated in the regulation of myelination 

process at late stage of Schwann cell development, little is known about the role of 

soluble, heparin-binding forms of NRG1 (type I/II) in regulating early Schwann cell 

development in vivo. These forms are rapidly released from axons in vitro by Schwann 

cell-secreted neurotrophic factors, and, unlike membrane-bound forms, have a unique 

ability to diffuse and adhere to heparan sulfate-rich cell surfaces. We harness this natural 

targeting ability of soluble NRG1 to develop a novel antagonist by fusing its 

heparin-binding domain (HBD) to the soluble human epidermal growth factor receptor 4 
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(HER4). This fusion protein retains high affinity for heparin binding and to specific cell 

surface that express heparan sulfates resulting in a much more potent NRG1 antagonist 

than any other inhibitors for this molecule. In vivo, it is targeted to peripheral nerve 

segments where endogenous soluble NRG1 binds to and efficiently blocks the activity of 

NRG1 as a Schwann cell survival factor, leading to significant cell apoptosis in both 

motor and sensory axon area dose-dependently.  

In this thesis work, we also show that axon-derived soluble NRG1 translocates from 

axonal to Schwann cell surfaces in the embryonic chick between days 5-7, 

corresponding to the critical period of Schwann cell survival during the normal 

development of peripheral nervous system. Down-regulating endogenous soluble NRG1 

signaling with the targeted antagonist or shRNA via chick in ovo electroporation, blocks 

their differentiation from precursors into immature Schwann cells and increases 

programmed cell death, while up-regulating NRG1 rescues Schwann cells from 

normal-occurring apoptosis. Furthermore, exogenous BDNF also promotes Schwann 

cell survival through promoting the local release of axonal NRG1 by binding axonal trkB 

or p75 receptor. Consistently, increased Schwann cell death occurs both in trkB 

knock-out mice and after knocking-down axonal trkB in chick embryos, which can then 

be rescued with soluble NRG1. These findings suggest a localized, axoglial feedback 

loop through soluble NRG1 and BDNF critical for early Schwann cell survival and 

differentiation in vivo, which may not only be important for the axoglial communication, 

but may also be helpful in understanding nervous system diseases that involve the 

axoglial interface and the providing better therapeutic strategies for their treatments. 
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