
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2011

Hyfs: design and implementation of a reliable file
system
Jianqiang Luo
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Luo, Jianqiang, "Hyfs: design and implementation of a reliable file system" (2011). Wayne State University Dissertations. Paper 319.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/319?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages

HYFS: DESIGN AND IMPLEMENTATION OF A RELIABLE

FILE SYSTEM

by

JIANQIANG LUO

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

© COPYRIGHT BY

JIANQIANG LUO

2011

All Rights Reserved

DEDICATION

Dedicated to my family

ii

ACKNOWLEDGMENTS

I am deeply grateful to my advisor, Dr. Lihao Xu. Over the past five years, he let me know what research

is about and how to do it. He guided me through such a wonderful experience. Besides that, he also taught

me to have a deep understanding of a problem and then have a good solution for it. Every time when we

have a discussion, I am always inspired by his insightful views. I believe all these things I learned from him

would be of great help for my future career. Of course, it is really fun to work with him.

I should express my sincere thanks for Mochan Shrestha, my lab mate. He created a friendly lab en-

vironment, so that we can freely discuss immature ideas. His mathematics background also impressed me.

From him, I learned how mathematics is useful for research.

I am indebted to Dr. Cheng Huang and Dr. Philip Shilane, who offered me opportunities to work for

Microsoft Research and Data Domain as an intern. Through the internship, I learned not only about doing

research to solve practical problems, but also developing my coding skills.

I wish to thank Dr. James S. Plank of University of Tennessee, and Dr. Alina Oprea and Mr. Kevin D.

Bowers of RSA Laboratories. Parts of this work are the collaboration results with them.

I would also like to thank Dr. Hongwei Zhang, Dr. Nathan W. Fisher, and Dr. Cheng-Zhong Xu for

serving on my dissertation defense committee.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Tables . ix

List of Figures . x

Chapter 1 Introduction . 1

1.1 Introduction . 1

1.2 Contribution . 4

1.3 Organization . 6

Chapter 2 Efficient Encoding for Erasure Codes . 7

2.1 Introduction . 7

2.2 Background . 8

2.2.1 Erasure Codes . 10

2.3 CPU Cache . 11

2.4 XOR-Scheduling Algorithms . 12

2.4.1 Traditional XOR-scheduling Algorithm . 12

2.4.2 Parity Words Guided (PWG) XOR-scheduling . 14

2.4.3 Data Packets Guided (DPG) XOR-scheduling . 15

2.4.4 Data Words Guided (DWG) XOR-scheduling . 16

2.4.5 Implementation Details . 18

2.5 Performance Evaluation . 19

2.5.1 Experiment Setup . 19

2.5.2 Experiments on the Liberation Codes . 20

2.5.3 Performance Profiling for the Liberation Code . 24

2.5.4 Experiments on Other Erasure Codes . 26

iv

2.5.5 Encoding Performance of RDP . 29

2.6 Summary . 29

Chapter 3 Efficient Erasure Decoding for RAID-6 Codes . 31

3.1 Introduction . 31

3.2 Related Work . 33

3.2.1 Coding Theory . 33

3.2.2 Decoding Algorithms for Complete Disk Failures 33

3.2.3 Decoding Algorithms for Sector Failures . 34

3.3 ED-2 Codes . 35

3.3.1 Lemma . 35

3.3.2 ED-2 Codes . 36

3.3.3 Recovery Theorem . 37

3.3.4 SCAN Algorithm . 39

3.4 SCAN for EVENODD . 39

3.4.1 EVENODD Description . 41

3.4.2 Tanner Graph of EVENODD . 41

3.4.3 Recovery Theorem of EVENODD . 42

3.4.4 SCAN Algorithm for EVENODD . 44

3.5 SCAN for RDP . 44

3.5.1 RDP Description . 45

3.5.2 Tanner Graph of RDP . 45

3.5.3 Recovery Theorem of RDP . 46

3.5.4 SCAN Algorithm for RDP . 46

3.6 Performance Evaluation . 47

3.6.1 Experiment Setup . 47

3.6.2 Sector Failures . 48

3.6.3 Complete Disk Failures . 50

3.7 Summary . 52

Chapter 4 Efficient Error Decoding for the STAR Code . 53

4.1 Introduction . 53

v

4.2 Related Work . 55

4.3 Basics of the STAR Code . 55

4.3.1 Notations . 55

4.3.2 STAR code: A Brief Description . 56

4.4 Error Detection for the STAR code . 57

4.5 A Naive Decoding Algorithm: Try-and-Test . 59

4.6 The EEL Algorithm . 59

4.6.1 A Basic Error-Locating Algorithm . 60

4.6.2 Syndrome Computation . 61

4.6.3 Locating the Error Column . 62

4.6.4 Recovering Erasure and Error Columns . 66

4.7 Performance Evaluation . 67

4.7.1 XOR Numbers . 67

4.7.2 Measured Decoding Performance . 70

4.8 Further Discussions . 71

4.9 Summary . 72

Chapter 5 Efficient Implementations of Large Finite Fields GF (2n) 73

5.1 Introduction . 73

5.2 Related Work . 74

5.3 Arithmetic Operations in Finite Fields . 76

5.3.1 Binary Polynomial Method . 77

5.3.2 Table Lookup Methods . 79

5.3.3 Hybrid of Computational and Table Lookup Methods 81

5.4 Efficient Implementation of Operations in Extension Fields 84

5.4.1 Irreducible Polynomials . 84

5.4.2 Multiplication Implementation . 86

5.5 Performance Evaluation . 89

5.5.1 Experiment Setup . 89

5.5.2 Comparison of All Implementations Using Table Lookups 90

5.5.3 Comparison of binary and gf16 (log) . 95

vi

5.6 Summary . 101

Chapter 6 HyFS: A Highly Reliable File System . 102

6.1 Introduction . 102

6.2 Related Work . 104

6.3 Design Goals . 105

6.4 Overview of HyFS . 107

6.4.1 Architecture . 107

6.4.2 Components of HyFS . 108

6.4.3 Component: File System Interface . 108

6.4.4 Component: Single File Operation . 110

6.4.5 Component: Erasure Codes . 111

6.4.6 Component: Network Storage Servers . 113

6.5 Critical Designs . 114

6.5.1 Hierarchical Structure . 114

6.5.2 Efficient Read and Write . 116

6.5.3 Load Balancing . 118

6.5.4 Failure Detection . 119

6.6 Performance Evaluation . 120

6.6.1 Overhead of FUSE . 120

6.6.2 Micro Benchmark . 122

6.6.3 Real Applications . 124

6.7 Summary . 125

Chapter 7 Conclusions and Future Directions . 127

7.1 Conclusions . 127

7.2 Future Directions . 128

7.2.1 Erasure Codes . 128

7.2.2 File Systems on Storage Servers . 129

7.2.3 Scalability . 129

References . 131

vii

Abstract . 142

Autobiographical Statement . 143

viii

LIST OF TABLES

2.1 Encoding the toy example when the packet size is two. 12

2.2 The traditional algorithm on the toy example. 13

2.3 Parity Words Guided XOR-scheduling on the toy example. 14

2.4 Data Packets Guided XOR-scheduling on the toy example. 15

2.5 Data Words Guided XOR-scheduling on the toy example. 17

2.6 Test machine configurations. 19

2.7 Comparison of peak encoding performance of Liberation codes for k = w = 11 and m = 2. 22

2.8 Encoding parameters of various codes. 29

2.9 Encoding performance of RDP for k = w = 10 and m = 2. 29

3.1 ED-2 codes . 36

4.1 Notations Defined . 56

4.2 Error Column Location v and the Syndromes . 58

4.3 Error Column Location v and Simplified Syndromes . 59

4.4 Decoding cost comparison (in XORs). 68

5.1 Multiplication complexity in GF ((28)4) when using two different irreducible polynomials. . 84

5.2 Irreducible polynomials for extension fields GF (2n) over base field GF (28) and GF (216) . 86

5.3 Platforms under test. 89

5.4 Evaluated implementations for GF (2n) . 90

5.5 Table lookup number and memory needed of various implementations. 91

5.6 Multiplication performance comparison with existing implementations for GF (2n) 100

ix

LIST OF FIGURES

1.1 Data redundancy implementation layers . 2

2.1 A typical storage system with erasure coding. 8

2.2 An example of one stripe where k = 4, m = 2 and w = 4. 9

2.3 A toy example code construction. 12

2.4 Encoding performance of Liberation codes, k = w = 11 and m = 2. 21

2.5 Encoding performance of Liberation codes for k = w = 5 and m = 2. 23

2.6 Encoding performance of Liberation codes for k = w = 17 and m = 2. 23

2.7 Performance profiling results of Liberation codes for k = w = 11 and m = 2 on machine

Pc2q. 25

2.8 Encoding performance of EVENODD for k = 11, w = 10 and m = 2. 27

2.9 Encoding performance of RDP for k = w = 10 and m = 2. 27

2.10 Encoding performance of X-code for k = 11, w = 13, and m = 2. 28

2.11 Encoding performance of the STAR code for k = 11, w = 10, and m = 3. 28

3.1 X-Code (5, 3) construction . 37

3.2 An erasure pattern of X-code. 38

3.3 An erasure pattern of X-code. 38

3.4 EVENODD (7, 5) construction. 41

3.5 An example of new Tanner graph for EVENODD. 41

3.6 RDP (6, 4) Construction . 45

3.7 An example of new Tanner graph for RDP. 45

3.8 The Gilbert Model . 48

3.9 Decoding performance comparison for sector failures . 48

3.10 Decoding performance comparison for one complete disk failure 49

3.11 Decoding performance comparison for two complete disk failures 50

4.1 Construction of the STAR code . 56

x

4.2 Locating error column in the EEL algorithm. 61

4.3 Comparison of throughput. 68

5.1 Multiplication performance of GF (2n) on various platforms. 92

5.2 Division performance of GF (2n) on various platforms. 93

5.3 Multiplication performance of binary and gf16 (log) on various platforms. 96

5.4 Division performance of binary and gf16 (log) on various platforms. 97

5.5 Throughput comparison on platform Pc2d. 98

5.6 Normalized division performance on various platforms. 99

6.1 A Cluster of HyFS. 107

6.2 Components of HyFS. 108

6.3 Communication between applications and HyFS. 109

6.4 APIs of file operations. 110

6.5 Interfaces implemented by erasure codes. 112

6.6 An automata to handle sequential access pattern. 117

6.7 FUSE overhead measured on ext3 . 121

6.8 FUSE overhead measured on NFS . 122

6.9 Performance of different algorithms . 122

6.10 Performance of HyFS with (2,1) or (4,1) . 123

6.11 Performance of HyFS with various erasure codes . 124

6.12 Performance of Apache on various file systems . 125

6.13 Performance of SysBench on various file systems . 126

xi

1

CHAPTER 1 Introduction

1.1 Introduction

Data reliability is a crucial issue to any commercial or scientific applications, which heavily depend on

accessing data constantly to run businesses or conduct researches. In a computer system, data is stored on

data storage systems, and then data reliability is essentially determined by the reliability of data storage

systems. However, modern storage systems are complicated. A storage system is typically comprised of

many components, from hardware to software, and a problem can occur in any component. When it happens,

a storage system may stop working and needs time to be repaired. A worse consequence could be the stored

data is permanently lost due to unrecoverable errors. This would be a disaster for companies offering online

services, such as Google or Amazon, because such a failure may cause large revenue loss or even trust

loss from customers. Therefore, it is critically important to build reliable storage systems to ensure data

reliability.

A key technique to achieve high data reliability is by data redundancy. The basic idea is that for a piece of

data, we first generate another piece of redundant data by a certain redundancy scheme. Then, we distribute

the original data and the redundant data to multiple storage nodes. Note that storage node is an abstract

concept, which could be a local hard disk or a remote storage server. After a period, if a failure happens to

a storage node and prevents its stored data from accessing, we can reconstruct the data from other surviving

storage nodes. Therefore, data redundancy provides the capability of fault tolerance. There are various

redundancy schemes. A simple one is replication, which creates mirrors of the original data. More general

term referring to redundancy scheme is erasure code [79], which defines mathematics means of computing

redundant data.

A general erasure code can be represented by a notation of (n, k). A (n, k) code breaks a piece of user

data into k symbols called data symbols, and encode it into n symbols by some mathematical means. If

an erasure code is a systematical code [80], the k symbols of original data remain the same in the encoded

n symbols, and we call the added n − k symbols parity symbols. Systematical codes are mostly used in

practice as there is no decoding cost when the part of user data is not lost. An interesting type of erasure

codes is maximum distance separable (MDS) codes [80]. For a (n, k) MDS code, it can tolerate the loss of

2

any n − k symbols without losing user data, and thus it imposes minimum storage overhead to achieve the

same data reliability.

There are two categories of erasure codes that are mostly used in storage systems: XOR-based erasure

codes and Reed-Solomon Codes [96]. XOR-based erasure codes perform only binary exclusive-or operation

in both encoding and decoding, and hence they are efficient in terms of computation. This category of erasure

codes include B-Code [117], X-Code [115], the WEAVER codes [47], EVENODD [20], RDP [31], and the

STAR code [54]. However, these codes suffer from the restriction of (n, k) combinations. For example,

EVENODD and RDP require n−k = 2. This constraint greatly limits the usage of XOR-based erasure codes.

Another category is Reed-Solomon codes or its variants, such as Cauchy Reed-Solomon Codes [94]. Reed-

Solomon codes uses those finite fields other than GF (2) to perform encoding and decoding. Although the

computation of Reed Solomon codes is not as fast as that of XOR-based codes, the code has two significant

advantages. First, it provides flexible choices of (n, k), so that most environments can find their needed (n,

k). Second, Reed-Solomon codes allows adding extra parity data when a system is running. For instance, if

the original code used in a system is (n, k), it would be easy to extend the code to (n+ 1, k) for the system.

This property is particularly useful when data reliability needs to be dynamically enhanced.

In a reliable storage system, data redundancy can be implemented on different layers, which is described

in Figure 1.1.

File System

Applications

RAID Contoller

A virtual disk

File System

Applications

Library

Applications

File System

Figure 1.1: Data redundancy implementation layers

First, data redundancy can be implemented at hard disk layer. An example is Redundant Array of Inde-

pendent Disks (RAID) [85]. A RAID system consists of a RAID controller and multiple hard disks. The

overall RAID system is treated as a virtual single disk by operating systems. In the internal, the controller

3

serves all data access requests, including writing data and reading data. User data is then stored across mul-

tiple disks. When one disk or more fails to work, the failure event can be detected by the RAID controller.

On one hand, the RAID controller continues providing normal data services by using other surviving disks;

on the other hand, the controller restores the data stored in the failed disks at background. Therefore, RAID

maintains its data service and data reliability. RAID has several categories. RAID-5 [85] can tolerate a single

disk failure, while RAID-6 [20, 31] can tolerate up to two. Recent studies [70] have shown that RAID-6 is

not able to provide needed data reliability as hard disk capacity grows dramatically, and it suggests that triple

parity codes [54] should be used instead.

Besides hard disk layer, data redundancy can be implemented at file system layer. In this implementation,

a reliable file system is like a RAID controller, which stores data across multiple storage nodes. If the storage

nodes are local hard disks, the file system is also referred to as software RAID. However, the storage nodes

can also be distributed on multiple sites. This can bring higher data reliability than RAID as it can tolerate

a site failure. A common practice is that storage nodes are connected in a network. The network can be in

a local area or in a wide area. During the system running, the client machines which are running user appli-

cations are connected to the network. When an application issues a data access request, the request will be

received by the reliable file system. Then, the file system will communicate with storage servers to process

it. After the process, the requested data will be returned to clients. The whole process is completely trans-

parent to applications. Obviously, such an implementation makes the reliable system easily integrated into

an existing system. Storage systems implemented in this way include HA-NFS [18], Zebra [52], Coda [97],

Scotch [41], RAIF [65], HydraFS [106], PVFS [27], Panasas parallel file system [110], GlusterFS [43], and

Lustre [58].

Besides file system layer, data redundancy can also be implemented at application layer. The difference

from file system layer is that the data reliability services is provided by a library. Then, applications have

to call a certain set of APIs to access the services. In the implementation of such a library, user data is also

stripped to multiple storage nodes for high data reliability. The major benefit of this layer is simplicity. This

layer does not need to provide full file system services, but only a portion of them, and hence the library

can be developed quickly and easily. Furthermore, a wrapper implementation can be based on the library

and work as a file system, and the data services can be supported by the file system. This can ease the

integration of the library. Although the file system may not be POSIX compatible, it may be sufficient for

a wide range of applications. The examples of storage systems implemented in this way are RAIN [25],

Harp [72], HYDRAstor [33], Google File System (GFS) [40], and Hadoop [103].

4

The main topic of this dissertation is about how to efficiently implement a reliable file system by using

erasures codes. We focus on several relevant problems. Firstly, as the use of erasure codes may cause

significant performance overhead to storage systems, we studied how to improve both encoding and decoding

performances for erasure codes. Then, we discussed how to leverage the inherent error correction capability

of erasure codes to further improve data reliability for storage systems. Next, besides dealing with data

reliability, we also presented an efficient algorithm for large finite fields so as to improve data security in a

cloud storage system. Lastly and most importantly, we describe the design and implementation of a reliable

file system, called HyFS. HyFS is capable of using general erasure codes and distributed storage servers to

achieve high data reliability.

1.2 Contribution

The contributions of this dissertation contain five parts, which are summarized as follows.

This dissertation first proposes several algorithms to perform encoding operations efficiently for XOR-

based erasure codes. When erasure codes are used in a storage system, encoding is an operation performed

constantly when new data is written to the system, and hence it greatly impacts the storage system’s perfor-

mance. XOR-based erasure codes are described by equations that specify how parity symbols are calculated

from data symbols, and existing implementations are constructed directly and naively from this specification.

We found that the order of XOR operations is flexible and can greatly impact the encoding performance. Us-

ing this observation, we propose three new XOR-scheduling algorithms. The optimizations are based on

understanding the semantics of erasure encoding and cannot be achieved by simple code transformations by

a compiler.

An efficient decoding algorithm for RAID-6 erasure codes is presented. If a RAID system meets a disk

failure, decoding operation has to be performed to reconstruct the failed data. One view of disk failures for

RAID-6 is stop-and-fail error model, i.e., a disk either functions normally, or fails totally. This is called

complete disk failure. However, some sectors or blocks of a disk can fail or corrupt because of various

reasons, which is the so-called sector failures. As a RAID-6 system contains several disks, and each disk

may encounter entire disk failure or sector failures, disk failures in a real system could become complicated.

Then, we studied how to efficiently and uniformly decode all disk failure cases for RAID-6 codes. In theory,

we first present the sufficient and necessary conditions to determine if a disk failure is recoverable or not by

using Tanner graph. Practically, a universal decoding algorithm named SCAN is designed and evaluated.

5

This dissertation provides an efferent error correction algorithm for the STAR code. When data loss

happens in a storage system, it can be either failure or silent error. Here a failure refers to a data loss with

explicit error report from a disk drive. In contrast to failures, silent errors are less well-understood and not

as sufficiently accounted for. Checksum at disk sector or block level is an effective and the most common

technique. Unfortunately, checksum is not sufficient by itself. From a different perspective, however, redun-

dancy is already in place introduced by error correcting codes to cope with failures at system level. Thus

we advocate using error correcting codes to overcome both failures and silent errors simultaneously as a

more unified and systematic mechanism. Specifically, we recommend the STAR code [54] as a very suitable

candidate for such purpose. We propose an efficient error decoding algorithm named EEL (Efficient Error

Locating) for the STAR code. The performance of EEL is evaluated against a naive one.

This dissertation introduces an efficient implementation of arithmetic operations for large finite fields.

Most storage systems today employ erasure coding based on small finite fields (e.g., GF (28) or GF (216))

to provide fault tolerance in case of benign failures (for instance, drive crashes). They achieve efficiency

through the use of small finite fields, but they have not been designed to sustain adversarial failures. With

the advent of cloud storage, offered by providers such as Amazon S3 and others, a whole host of new

failure models need to be considered, e.g., mis-configuration, insider threats, software bugs, and even natural

calamities. Accordingly, storage systems have to be redesigned with robustness against adversarial failures.

we provide efficient implementations of arithmetic operations for finite fields of characteristic two, ranging

from GF (232) to GF (2128). The main reason is that finite fields within this range are very suitable for secure

data storage applications and systems. The new implementations achieve much more high performance than

others.

Lastly and most importantly, this dissertation presents the design and implementation of a reliable file

system, named HyFS, an essential component of a data storage system called Hydra [116]. HyFS is capable

of employing general erasure codes and distributed storage servers to achieve high data reliability. When

HyFS detects storage servers’ failures, it will hide the failure from applications and continue its data service

without any interruption. Then, at an appropriate time later, HyFS will automatically restore the data stored

on the failed storage servers. As a result, data reliability is achieved. Furthermore, HyFS is implemented

at file system layer so that the adoption of HyFS in a real system is easy and without any great effort. We

believe that data reliability service is best to be implemented at file system layer and be full POSIX com-

patible. Regarding to data redundancy, HyFS supports a wide range of erasure codes, which can be simple

replication scheme or complicated Reed-Solomon codes [96]. All these codes can be used simultaneously

6

in a HyFS system. Hence, HyFS can be easily configured to meet different data reliability requirements. For

performance, a data request is served by multiple storage servers in parallel, which allows HyFS deliver high

performance. Due to above reasons, we believe HyFS is an attractive solution for building reliable storage

systems.

1.3 Organization

The rest of the dissertation is organized as follows. Chapter 2 discusses several efficient encoding al-

gorithms for XOR-based erasure codes. Chapter 3 introduces an efficient decoding algorithm for RAID-6

erasure codes. Chapter 4 provides an efferent error correction algorithm for the STAR code. Chapter 5

presents an efficient implementation of arithmetic operations for large finite fields. Chapter 6 introduces a

reliable file system called HyFS. Chapter 7 concludes the dissertation and outlines future research directions.

7

CHAPTER 2 Efficient Encoding for Erasure Codes

2.1 Introduction

As the amount of data increases exponentially in large distributed data storage systems, it is crucial to

protect data from loss when storage devices fail to work. Recently, both academic and industrial storage sys-

tems have addressed this issue by relying on erasure codes to tolerate component failures. Examples include

projects such as OceanStore [68], RAIF [65], and RAIN [25], and companies like Network Appliance [84],

HP [114], IBM [47], Cleversafe [30], employing erasure codes such as RDP [31], the B-Code [117] and

Reed-Solomon Codes [24, 96].

In an erasure coded system, a total of n = k + m storage devices are employed, of which k hold

data and m hold coding information. The act of encoding calculates the coding information from the data,

and decoding reconstructs the data from surviving storage devices following one or more failures. Storage

systems typically employ Maximum Distance Separable (MDS) codes [23], which ensure that the data can

always be reconstructed as long as there are at least k storage devices that survive the failures.

Encoding is an operation performed constantly as new data is written to the system. Therefore, its

performance is crucial to overall system performance. There are two classes of MDS codes – Reed-Solomon

codes [96] and XOR codes (e.g. RDP [31] and X-code [115]). Although there are storage systems based

on both types of codes, the XOR codes outperform the others significantly [92] and form the basis of most

recent storage systems [25, 30, 65, 94].

This chapter addresses the issue of optimizing the encoding performance of XOR codes that are specif-

ically tailored for data storage systems. XOR codes are described by equations that specify how the coding

information is calculated from the data, and most implementations are constructed directly and naively from

this specification. We call this naive implementation the traditional XOR-scheduling algorithm. The tra-

ditional algorithm is used in open source software such as Cleversafe’s Information Dispersal implementa-

tion [30], Luby’s Cauchy implementation [75], and Jerasure [89]. However, the order of XOR operations is

flexible and can impact cache memory behavior of the codes significantly. Using this observation, we analyze

the encoding process of XOR codes and propose three new XOR-scheduling algorithms. These algorithms

employ different ways to improve the cache behavior of the XOR operations. The optimizations are based

8

on understanding the semantics of erasure encoding and cannot be achieved by simple code transformations

by a compiler.

In this chapter, we focus on raw encoding performance just as in [92, 31]. We give a comprehensive

demonstration of how two proposed new XOR-scheduling algorithms improve encoding performance on a

variety of XOR codes and processing environments. Two of the new algorithms, called Data Words Guided

(DWG) and Data Packets Guided (DGP), outperform the others. DWG improves the raw performance of

encoding by 23% to 36% on various machines. Moreover, the improvement applies to all XOR codes and is

therefore not code specific. DPG performs slightly worse than DWG scheduling, but its performance is more

stable across different running environments. We perform a profiling analysis of our tests with the VTune

Performance Analyzer [63] to illuminate the different cache effects that impact these scheduling algorithms.

2.2 Background

A storage system is composed of an array of n disks, each of which is the same size. Of these n disks, k

hold data information and the remaining m hold coding information, often termed parity, which is calculated

from the data. We label the data disks D0, . . . ,Dk−1 and the parity disks P0, . . . , Pm−1. A typical system is

pictured in Figure 2.1.

Figure 2.1: A typical storage system with erasure coding.

When encoding, one partitions each disk into strips of a fixed size. Each strip for a parity disk is encoded

using one strip from each data disk, and the collection of k +m strips is called a stripe. Thus, as in Fig-

ure 2.1, one may view each disk as a collection of strips, and one may view the entire system as a collection

of stripes. The stripes are each encoded independently, and therefore if one desires to rotate the data and

parity among the n disks for load balancing, one may do so by switching the disks’ identities for each stripe.

Let us focus on a single stripe. Each XOR code has a parameter w, often termed the word size that further

defines the code. This parameter is typically constrained by k and by the code. For example, for RDP [31],

w + 1 must be a prime number, while for the X-codes [115] and Liberation codes [90], w must be a prime

9

number.

Each strip is partitioned into exactly w contiguous regions of bytes, called packets, labeled Di,0, . . . Di,w−1

and Pj,0, . . . Pj,w−1 for data and parity disks Di and Pj respectively. Each packet is the same size, called the

packet size. Strip sizes are therefore defined by the product of w and the packet size. An example of a stripe

where k = 4, m = 2 and w = 4 is displayed in Figure 2.2.

Figure 2.2: An example of one stripe where k = 4, m = 2 and w = 4.

For the purpose of defining a code, a packet size of one bit is convenient – parity bits are defined to

be the XOR of collections of data bits. For example, in Figure 2.2, when the packet size is one, we can

define the bit P1,3 as being the XOR of bits D0,3, D1,2, D2,1 and D3,0, as it is in RDP [31]. However, for

real implementations, packet sizes should be at least as big as a machine word, since CPUs can XOR two

words in one machine instruction. Moreover, to improve CPU cache behavior, larger packet sizes are often

preferable [92].

Codes are defined by specifying how each parity packet is constructed from the data packets. This may

be done by listing equations, as in RDP [31], EVENODD [20], and X-code [115], or it may be done by

employing a generator matrix [79]. To describe a code with a generator matrix, let us assume that the packet

size is one bit. Therefore each data and parity strip is a w-bit word and their concatenation, which we

label (D|P), is a wn-bit word called the codeword. The generator matrix G has wk rows and wn columns

and a specific format: G = (I|H), where I is a wk×wk identity matrix. Encoding adheres to the following

equation:

(D|P) = D ∗G = D ∗ (I|H)

Thus, specifying the matrix H is sufficient to specify the code. Codes such as Liberation codes [90],

Blaum-Roth codes [22] and Cauchy Reed-Solomon codes [24] are all specified in this manner.

Regardless of the specification technique, XOR codes boil down to lists of equations that construct parity

packets as the XOR of collections of data packets. To be efficient, the total number of XOR operations should

be minimized. Some codes, like RDP and X-code, achieve a lower bound of (k − 1) XOR operations per

10

parity word, while others like Liberation codes, EVENODD and the STAR code are just above this lower

bound [90, 92, 94].

2.2.1 Erasure Codes

We do not attempt to summarize all research concerning XOR codes. However, we detail the codes

that are relevant to this chapter. We focus on MDS codes. Cauchy Reed-Solomon codes [24] are general-

purpose XOR codes that may be defined for any values of k and m. The word size w is constrained such

that w ≥ 2n, and the resulting generator matrix is typically dense, resulting in a large number of XOR

operations for encoding. Plank and Xu describe how to produce sparser matrices [94], and these represent

the best performing general-purpose erasure codes.

When m is constrained to equal two, the storage system is a RAID-6 system. There are many XOR

codes designed for RAID-6, and these outperform Cauchy Reed-Solomon codes significantly. As stated

above, RDP [31] achieves optimal encoding performance, and Liberation codes [90], Blaum-Roth codes [22]

and EVENODD [20] are slightly worse. The STAR code extends EVENODD for m = 3 and like EVEN-

ODD greatly outperforms Cauchy Reed-Solomon coding. The X-codes [115] and B-Codes [117] are RAID-

6 codes that also achieve optimal encoding performance, but require the parity information to distributed

evenly across all (k +m) storage devices, and are therefore less flexible than the others.

Both Huang [55] and Hafner [49] provide techniques for grouping common XOR operations in certain

codes to reduce their number. These techniques are especially effective for decoding Liberation and Blaum-

Roth codes. In contrast to this work, we do not improve performance by reducing the number of XOR

operations, but instead by improving how the order of XOR operations affects cache behavior.

Finally, in 2007, Plank released an open source erasure coding library called Jerasure [89] which imple-

ments both Reed-Solomon and XOR erasure codes. The XOR codes must use a generator matrix specifi-

cation, with Cauchy Reed-Solomon, Liberation and Blaum-Roth codes included as basic codes. The XOR

reduction technique of Hafner [49] is included to improve the performance of decoding. The library is im-

plemented in C and has demonstrated excellent performance compared to other open-source erasure coding

implementations [92].

11

2.3 CPU Cache

All modern processors have at least one CPU cache that lies between the CPU and main memory. Its

purpose is to bridge the performance gap between fast CPUs and relatively slow main memories [69]. Caches

store recently referenced data, and when working effectively, reduce the number of accesses from CPU to

main memory, each of which takes several instruction cycles and stalls the CPU. When an access to a piece

of data is satisfied by the cache, it is called a cache hit; otherwise, it is called a cache miss. Many algorithms

that optimize performance do so by reducing the number of cache misses.

There are three types of cache miss: compulsory miss, capacity miss, and conflict miss [53]. Compul-

sory misses happen when a piece of data is accessed for the first time. Capacity misses occur because of

Least Recently Used (LRU) replacement policies on limited-size caches, and conflict misses occur in A-way

associative caches when two pieces of data map to the same cache line.

To reduce cache misses, an algorithm needs to have enough data locality in time, space, or both. Temporal

locality is when the time period between two consecutive accesses to the same data is very short. Spatial

locality is when the space difference between the data in a series of accesses is very small. Good temporal

locality reduces capacity misses, and good spatial locality reduces both compulsory and conflict misses.

Section 2.2 mentions that large packet sizes are desirable. This is to reduce compulsory misses: when the

first byte of a packet is read into the cache, its following bytes are also read into cache because of standard

cache prefetch mechanisms. Then, when these bytes are used sequentially, their compulsory misses are

avoided.

In this chapter, we propose several algorithms to improve data locality for XOR-based erasure codes, so

that encoding can be performed efficiently. We observed that encoding operation needs to access a lot of data

when performing encoding computation. As the computation of XOR-based erasure codes involves only fast

bitwise exclusive-or operation, how the encoding data is accessed now becomes an important performance

factor. Furthermore, as we would demonstrate later, the data access order indeed greatly affects the encoding

performance. We explored different data access orders for the same encoding computation, and we found

that each order has its own benefits and disadvantages of CPU cache utilization. During the optimization,

we used several well known techniques, such as loop transformation [69, 7, 109].

12

2.4 XOR-Scheduling Algorithms

We motivate our scheduling algorithms with a toy example erasure code for k = 2,m = 2, and w = 2.

Although this code is simply a toy example, it is close to a real MDS code, namely, the EVENODD code.

The code is described by Figure 2.3. In the figure, there are two data columns and two parity columns. A

parity symbol with a shape is the bitwise XOR sum of data symbols with the same shape.

(a) parity I (b) parity II

Figure 2.3: A toy example code construction.

Now, assume when implementing this code, the packet size is two machine words. Let the two words on

one data packet D[i,j] (at row i and data column j) be d[i,j],0 and d[i,j],1, similarly for the parity words. The

encoding of the entire system is in Table 2.1. Throughout this section, we will stick to this toy example to

demonstrate how various XOR scheduling algorithms work.

p[0,0],0 = d[0,0],0 + d[0,1],0
p[0,0],1 = d[0,0],1 + d[0,1],1
p[1,0],0 = d[1,0],0 + d[1,1],0
p[1,0],1 = d[1,0],1 + d[1,1],1
p[0,1],0 = d[0,0],0 + d[1,1],0
p[0,1],1 = d[0,0],1 + d[1,1],1
p[1,1],0 = d[1,0],0 + d[0,1],0
p[1,1],1 = d[1,0],1 + d[0,1],1

Table 2.1: Encoding the toy example when the packet size is two.

2.4.1 Traditional XOR-scheduling Algorithm

Traditional XOR-scheduling performs the encoding in the order of how each parity symbol is calculated.

In the toy example, the parity symbol p[0,0], p[1,0], p[0,1] and p[1,1] are performed in that order. To ease the

explanation, we are going to assume that each parity word starts with a value of zero, and its calculation

requires two XORs to update it. It will be clear how to remove this assumption later.

The schedule of XOR operations generated by the traditional algorithm on the toy example is listed

in Table 2.2. Table 2.2 has two columns and each column contains multiple XOR operations. During the

execution, the operations are performed in column order. Each XOR operation is followed by its ID. In this

13

case, the ID number indeed shows the execution order. Throughout our examples, the same XOR operation

may appear in different positions in different scheduling algorithms, but its ID will remain constant.

parity column 0 parity column 1

p[0,0],0+ = d[0,0],0 [1] p[0,1],0+ = d[0,0],0 [9]

p[0,0],1+ = d[0,0],1 [2] p[0,1],1+ = d[0,0],1 [10]

p[0,0],0+ = d[0,1],0 [3] p[0,1],0+ = d[1,1],0 [11]

p[0,0],1+ = d[0,1],1 [4] p[0,1],1+ = d[1,1],1 [12]

p[1,0],0+ = d[1,0],0 [5] p[1,1],0+ = d[1,0],0 [13]

p[1,0],1+ = d[1,0],1 [6] p[1,1],1+ = d[1,0],1 [14]

p[1,0],0+ = d[1,1],0 [7] p[1,1],0+ = d[0,1],0 [15]

p[1,0],1+ = d[1,1],1 [8] p[1,1],1+ = d[0,1],1 [16]

Table 2.2: The traditional algorithm on the toy example.

The first characteristic of the traditional algorithm is that it processes parity packets one by one, to

completion. In the toy erasure code, there are four parity packets: P[0,0], P[1,0], P[0,1] and P[1,1]. In the

traditional algorithm, the contents of one parity packet will not be calculated until all of its previous packet

is finished. The second characteristic of the traditional algorithm is that when calculating a parity packet,

each related data packet is accessed in its entirety before the next data packet is accessed. In other words,

the encoding proceeds packet by packet. For example, in Table 2.2, parity packet P[0,0] is computed from

data packets D[0,0] and D[0,1], and all of D[0,0] is accessed before any of D[0,1]. Thus, we summarize the

characteristics of this algorithm as follows:

1. XOR operations are guided by the order of parity packets.

2. The innermost iteration is performed at the packet level.

Due to the above characteristics, this algorithm is termed Parity Packet Guided (PPG) XOR-scheduling.

A pseudocode description of PPG XOR-scheduling is shown in Algorithm 1.

Algorithm 1 Parity Packet Guided (PPG) XOR-scheduling

INPUT: Data columns D, each one is a byte array

OUTPUT: Parity columns P , each one is a byte array

1: for each parity column Pj do

2: for each parity packet Pi,j in column Pj do

3: for each data packet Du,v needed by Pi,j do

4: for t=0; t<packet size; t++ do

5: p[i,j],t += d[u,v],t;
6: end for

7: end for

8: end for

9: end for

14

In Algorithm 1, the input is data columns and the output is parity columns. In practice, each column is one

byte array, so that the data of one column can be written to one storage device by a single write request. The

memory layout of the data is an important consideration on designing efficient XOR-scheduling algorithm.

We will use the same input and output format for all algorithms introduced in this chapter.

Cache behavior analysis: PPG XOR-scheduling has good spatial locality because it accesses both the

packets in one column and words in a packet sequentially.

2.4.2 Parity Words Guided (PWG) XOR-scheduling

A variant of PPG XOR-scheduling is Parity Words Guided (PWG) XOR-scheduling, and its character-

istics are listed below:

1. XOR operations are guided by the order of parity packets.

2. The innermost iteration is performed at the word level.

The first characteristic of PWG XOR-scheduling is the same as that of PPG XOR-scheduling, and thus

parity packets are also computed one by one in PWG XOR-scheduling. The two algorithms differ in their

second characteristic. In PWG XOR-scheduling, the innermost iteration is at word level, while it is at packet

level in PPG XOR-scheduling. Because of this reason, PWG XOR-scheduling generates a different schedule,

shown in Table 2.3.

parity column 0 parity column 1

p[0,0],0+ = d[0,0],0 [1] p[0,1],0+ = d[0,0],0 [9]

p[0,0],0+ = d[0,1],0 [3] p[0,1],0+ = d[1,1],0 [11]

p[0,0],1+ = d[0,0],1 [2] p[0,1],1+ = d[0,0],1 [10]

p[0,0],1+ = d[0,1],1 [4] p[0,1],1+ = d[1,1],1 [12]

p[1,0],0+ = d[1,0],0 [5] p[1,1],0+ = d[1,0],0 [13]

p[1,0],0+ = d[1,1],0 [7] p[1,1],0+ = d[0,1],0 [15]

p[1,0],1+ = d[1,0],1 [6] p[1,1],1+ = d[1,0],1 [14]

p[1,0],1+ = d[1,1],1 [8] p[1,1],1+ = d[0,1],1 [16]

Table 2.3: Parity Words Guided XOR-scheduling on the toy example.

In PWG, each parity word of a packet is calculated in its entirety before moving onto the next word.

This is demonstrated in Table 2.3 where p[0,0],0 is calculated before p[0,0],1 is touched, resulting in the access

sequence {p[0,0],0, p[0,0],0, p[0,0],1, p[0,0],1} for parity packet P[0,0]. A pseudocode description of this algorithm

is shown in Algorithm 2.

Cache behavior analysis: PWG XOR-scheduling reverses the innermost two loops of PPG XOR-scheduling.

On one hand, this loop transformation improves the temporal locality of p[i,j],t because now p[i,j],t is accessed

15

Algorithm 2 Parity Words Guided (PWG) XOR-scheduling

INPUT: Data columns D, each one is a byte array

OUTPUT: Parity columns P , each one is a byte array

1: for each parity column Pj do

2: for each parity packet Pi,j in column Pj do

3: for t=0; t<packet size; t++ do

4: for each data packet Du,v needed by Pi,j do

5: p[i,j],t += d[u,v],t;
6: end for

7: end for

8: end for

9: end for

repeatedly in the innermost iteration (in line 5). On the other hand, it may lose the spatial locality of d[u,v],t

because it accesses d[u,v],t in a less sequential way than PPG XOR-scheduling. Thus, the overall data locality

may become worse since the loss of spatial locality could be greater than the gain of the temporal locality.

This effect will be measured experimentally in Section 2.5.

2.4.3 Data Packets Guided (DPG) XOR-scheduling

The above two XOR scheduling algorithms (PPG and PWG XOR-scheduling) follow the intuitive idea

that parity packets should be produced one by one. However, the schedule can be reordered so that the data

packets are consumed one by one. An algorithm named Data Packets Guided (DPG) XOR-scheduling is

based on this idea, and its characteristics are as follows:

1. XOR operations are guided by the order of data packets.

2. The innermost iteration is performed at data packet level.

The result of DPG XOR-scheduling on the toy example is shown in Table 2.4. Similar to Table 2.2

and 2.3, the XOR operations are executed in column order here

data column 0 data column 1

p[0,0],0+ = d[0,0],0 [1] p[0,0],0+ = d[0,1],0 [3]

p[0,0],1+ = d[0,0],1 [2] p[0,0],1+ = d[0,1],1 [4]

p[0,1],0+ = d[0,0],0 [9] p[1,1],0+ = d[0,1],0 [15]

p[0,1],1+ = d[0,0],1 [10] p[1,1],1+ = d[0,1],1 [16]

p[1,0],0+ = d[1,0],0 [5] p[0,1],0+ = d[1,1],0 [11]

p[1,0],1+ = d[1,0],1 [6] p[0,1],1+ = d[1,1],1 [12]

p[1,1],0+ = d[1,0],0 [13] p[1,0],0+ = d[1,1],0 [7]

p[1,1],1+ = d[1,0],1 [14] p[1,0],1+ = d[1,1],1 [8]

Table 2.4: Data Packets Guided XOR-scheduling on the toy example.

16

This algorithm is similar to PPG XOR-scheduling in that their innermost iterations are both performed

at packet level. Their difference is in type of packets guiding the XOR operations: in PPG XOR-scheduling,

it is the parity packets; while in this algorithm, it is the data packets. Therefore, Table 2.4 shows that

the contents of D[1,0] will not participate in computation until all of D[0,0] is finished, and when D[0,0] is

processed, the access sequence for it is {d[0,0],0, d[0,0],1, d[0,0],0, d[0,0],1}, where {d[0,0],0, d[0,0],1} is followed

by another {d[0,0],0, d[0,0],1}. A pseudocode description of this algorithm is shown in Algorithm 3.

Algorithm 3 Data Packets Guided (DPG) XOR-scheduling

INPUT: Data columns D, each one is a byte array

OUTPUT: Parity columns P , each one is a byte array

1: for each data column Dj do

2: for each data packet Di,j in column Dj do

3: for each parity packet Pu,v that needs Di,j do

4: for t=0; t<packet size; t++ do

5: p[u,v],t += d[i,j],t;
6: end for

7: end for

8: end for

9: end for

Cache behavior analysis: Different from PPG XOR-scheduling which follows directly how parity symbols

are constructed, DPG XOR-scheduling calculates parity symbols from another perspective based on the

participation order of data symbols in encoding. The purpose is to improve the locality of data symbols.

Now, in DPG XOR-scheduling, the outermost loop is on data columns, and the access to data packets is in a

more sequential way than that of PPG XOR-scheduling. In a typical RAID-6 system, m = 2 and k ≥ 10,

so m is much smaller than k. Thus, the locality of data packets is more important than that of parity packets.

Hence, this transformation should improve the overall data locality of DPG and may lead to higher encoding

performance.

2.4.4 Data Words Guided (DWG) XOR-scheduling

Following the approach of constructing PWG XOR-scheduling from PPG XOR-scheduling, an variant

of DPG XOR-scheduling is developed. We call the variant Data Words Guided (DWG) XOR-scheduling,

and its characteristics are listed below:

1. XOR operations are guided by the order of data packets.

2. The innermost iteration is performed at data word level.

17

data column 0 data column 1

p[0,0],0+ = d[0,0],0 [1] p[0,0],0+ = d[0,1],0 [3]

p[0,1],0+ = d[0,0],0 [9] p[1,1],0+ = d[0,1],0 [15]

p[0,0],1+ = d[0,0],1 [2] p[0,0],1+ = d[0,1],1 [4]

p[0,1],1+ = d[0,0],1 [10] p[1,1],1+ = d[0,1],1 [16]

p[1,0],0+ = d[1,0],0 [5] p[0,1],0+ = d[1,1],0 [11]

p[1,1],0+ = d[1,0],0 [13] p[1,0],0+ = d[1,1],0 [7]

p[1,0],1+ = d[1,0],1 [6] p[0,1],1+ = d[1,1],1 [12]

p[1,1],1+ = d[1,0],1 [14] p[1,0],1+ = d[1,1],1 [8]

Table 2.5: Data Words Guided XOR-scheduling on the toy example.

The result of DWG XOR-scheduling on the toy example is shown in Table 2.5.

In Table 2.5, all of the equations involving data packet D[0,0] appear before those involving D[1,0], fol-

lowing the first characteristic. By the second characteristic, each data word is used for all parity calculations

before moving onto the next data word in the same packet. This is shown in Table 2.5 where d[0,0],0 is

used to calculate both p[0,0],0 and p[0,1],0 before d[0,0],1 is touched. Then, the access sequence for D[0,0]

is {d[0,0],0, d[0,0],0, d[0,0],1, d[0,0],1}, where all the access of d[0,0],0 appears ahead of d[0,0],1. A pseudocode

description of this algorithm is shown in Algorithm 4.

Algorithm 4 Data Words Guided (DWG) XOR-scheduling

INPUT: Data columns D, each one is a byte array

OUTPUT: Parity columns P , each one is a byte array

1: for each data column Dj do

2: for each data packet Di,j in column Dj do

3: for t=0; t<packet size; t++ do

4: for each parity packet Pu,v that needs Di,j do

5: p[u,v],t += d[i,j],t;
6: end for

7: end for

8: end for

9: end for

Cache behavior analysis: DWG XOR-scheduling differs with DPG XOR-scheduling in the conversion of

the innermost two loops. This transformation is to improve temporal locality of d[i,j],t. Note that DWG

XOR-scheduling may reduce some spatial locality of p[u,v],t and d[i,j],t, but our observation is that the gain

of temporal locality of d[i,j],t brought by the transformation is usually greater than the loss of spatial locality,

and thus the overall data locality is better. Again, this is because in most storage systems, m is a small value,

such as m = 2 in RAID-6 systems, and most data and parity words will remain in the cache across iterations

of the innermost loop (in line 4 of Algorithm 4).

18

It is further worth noting that these loop transformations employed in the four algorithms cannot be

simply achieved by a compiler. There are three reasons contributing to that:

1. Each algorithm contains four nested loops. Such a complicated loop structure makes it hard for a

compiler to optimize if possible.

2. For easy explanation, the presented pseudocode is a simplified version of its source code. In fact, a

real implementation is filled with many more details. The details may obscure the loop structure and

complicate the optimization of a compiler.

3. Although Algorithm 3 and 4 look like Algorithm 1 and 2, they are significantly different: for a given

data packet, Algorithm 3 and 4 need to identify the parity packets it is involved; however, Algorithm 1

and 2 have to find the data packets a particular parity packet is computed from. Obviously, they are

two very different functions. A compiler has no way to derive one from another.

Our observation is also consistent with the results from Lebeck et al. [69], who found that manual opti-

mization is still needed to improve an algorithm’s performance.

2.4.5 Implementation Details

Generating and using schedules that are as detailed as those in Tables 2.2-2.5 takes too much space, but

is not necessary because a list of each data packet’s associated parity packets may be constructed simply

from the packet’s row of the generator matrix. Once that list is generated, it may be used for every word in

the packet.

Another important detail of the DPG and DWG XOR-schedulings is how to initialize parity packets.

They cannot be simply initialized to zero, since that increases the number of XOR operations. Instead, we

copy the first data packets that are used for each parity packet, instead of XOR-ing them. Implementationally,

this is simple in the PPG and PWG XOR-scheduling, where the first data packets can be easily identified at

the beginning. In the DPG and DWG XOR-scheduling, it is more complex, since for a data packet, we need

to know whether it is the first data packet of one parity packet. Fortunately, all the codes addressed in this

chapter have regular structures which makes this determination straightforward.

A final detail involves the codes that have extra information in addition to their generator matrices—

EVENODD, the STAR code, and RDP. EVENODD employs a temporary packet S, which must be calcu-

lated as an intermediate sum for every packet in parity column P1. To handle this, all the XOR-scheduling

algorithms perform two passes. In the first pass, the data packets are used to calculate P0, P1 and S, and then

19

a second pass XOR’s S with the packets of P1. The STAR code, an extension of EVENODD, is handled

similarly. In RDP, all but one of the packets in P1 are calculated using packets in P0 in addition to data

packets. For that reason, two passes are also performed in RDP: a first one that calculates P0 and P1 without

the P0 packets, and a second one that XOR’s the P0 packets into P1.

2.5 Performance Evaluation

To compare the four XOR-scheduling algorithms, we have conducted experiments that apply each algo-

rithm to many popular XOR-based erasure codes: the Liberation codes [90], EVENODD [20], RDP [31],

X-code [115], and the STAR code [54]. All are RAID-6 codes (m = 2), with the exception of the STAR

code which tolerates three failures (m = 3).

We have conducted two sets of experiments. The first set is from a system practitioner’s point of view.

We treat CPU cache as a black box and we measure the encoding performance without examining the de-

tailed interactions of the scheduling algorithms with caches. The corresponding results are presented in Sec-

tions 2.5.2 and 2.5.4. The second set is to further examine the interactions of the scheduling algorithms with

the memory hierarchy of test machines. This verifies that the encoding performance gains of the scheduling

algorithms do indeed come from their effective use of CPU caches. Instead of simulations or simplistic mod-

eling, we choose to perform profiling CPU events to truly reflect real cache behavior. The profiling results

are presented in Sec. 2.5.3.

2.5.1 Experiment Setup

Since CPU cache behavior is complicated, we have run experiments on various machines to get a com-

prehensive view of all algorithms. The experiments in this section use four different machines, all with Intel

processors. The configuration of these machines is shown in Table 2.6.

Machine CPU Model Speed L1 Cache L2 Cache Memory gcc

P4 Pentium 4 3.0GHz 28KB 2MB DDR 533MHz 4.4.1

Pd Pentium Dual Core 2.8GHz 2 · 16KB 2 · 1MB DDR2 533MHz 4.2.1

Pc2d Pentium Core 2 Duo 2.1GHz 2 · 32KB 3MB DDR2 667MHz 4.1.3

Pc2q Pentium Core 2 Quad 2.4GHz 4 · 32KB 2 · 4MB DDR2 800MHz 4.3.2

Table 2.6: Test machine configurations.

All machines run 64-bit processors, and they are installed with 64-bit version of Linux. Since 64-bit

machines perform XOR operations on 64-bit words, their encoding performance is as much as a factor of

20

two faster than their 32-bit counterparts [92]. The implementations of all algorithms do not use complicated

performance enhancement techniques, such as SIMD (single instruction multiple data) instructions [60] or

software prefetching [74]. These techniques may speed up XOR operations or improve CPU cache behavior,

and they are currently being explored by other researchers.

Our source code is written in C and compiled using gcc. We tried both -O2 and -O3 optimization flags,

of which -O2 is recommended for most applications while -O3 is the highest level of optimization [39]. No

other optimization flags are set, such as prefetch-loop-arrays [83]. Since the performance results of them are

similar, we only present the results for -O2 here. Each machine’s gcc version is listed in the last column of

Table 2.6. As single-threaded program is easy to implement and optimize, the code runs only on one thread,

and thus does not take advantage of multiple cores.

For the Liberation codes, we use the Jerasure open source coding library [89] as the implementation for

PPG XOR-scheduling, since that is exactly what Jerasure implements. For the other codes and algorithms,

we used Jerasure as our base and crafted custom code from it.

Our experimental framework is very similar to that in [92]. All tests are performed in main memory,

without actual disk I/O, because that introduces a great deal of variability. We encode totally a gigabyte

of data, which is randomly generated. We evaluate encoding performance using the metric of encoding

throughput, calculated with the equation below:

Encoding throughput =
Total user data size

Encoding time

Encoding throughput represents how quickly one can turn user data into parity data with a given code,

algorithm and machine. The encoding time is calculated by the gettimeofday() system call. Each data point

is the average of 30 test runs. The data plotted is all within a confidence interval of 95%.

2.5.2 Experiments on the Liberation Codes

This section focuses on a performance comparison of the Liberation codes, because it is the one code for

which an open source implementation is available.

Parameters k = w = 11,m = 2

The parameters of the first experiment for the Liberation code are k = w = 11, and m = 2, as these

represent a typical RAID-6 system. We vary the packet size because it can impact performance greatly [92].

21

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(a) P4, k = w = 11

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(b) Pd, k = w = 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(c) Pc2d, k = w = 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)
Packet Size (bytes)

PPG
PWG
DPG
DWG

(d) Pc2q, k = w = 11

Figure 2.4: Encoding performance of Liberation codes, k = w = 11 and m = 2.

Figure 2.4(a) compares the algorithms’ performance on machine P4. The results can be summarized as

follows:

1. As packet sizes increase from a small value, the performance of all scheduling algorithms improves

significantly. This mirrors the observations by Plank et al. [92].

2. For all packet sizes, DWG and DPG XOR-scheduling achieve much better encoding performance than

the other two algorithms. It is because DWG and DPG XOR-scheduling have better data locality than

the other two, matching the analysis given in Section 2.4.

3. DWG XOR-scheduling has the highest peak performance, and DPG XOR-scheduling performs second

best. PPG XOR-scheduling is the next one, and PWG XOR-scheduling is the last one.

4. DWG XOR-scheduling and DPG XOR-scheduling achieve their peak encoding performance with a

relatively small packet size. This is useful because it provides real systems more flexibility on choosing

packet sizes for high performance.

Figure 2.4(b) displays the results on the Pd machine. The performance is very similar to P4, so the four

above observations on P4 also apply to Pd.

Figure 2.4(c) shows the results for machine Pc2d. This machine shows a new performance feature—

after reaching the peak performance with a small packet size, the performance of DWG XOR-scheduling

22

becomes unstable, and at some points it performs worse than DPG and PPG XOR-scheduling. This will be

analyzed further in Section 2.5.3. Nonetheless, the two most important observations still hold: 1) the peak

performance of DWG XOR-scheduling is higher than all others; 2) the peak performance is obtained with

small packet size. Compared to DWG XOR-scheduling, although DPG XOR-scheduling has lower peak

performance, it achieves more stable performance and its performance is always higher than that of PPG and

PWG XOR-scheduling.

Figure 2.4(d) shows the results on machine Pc2q. These are very similar to Pc2d, and the observations

for Pc2d are also valid for Pc2q.

The peak performance of DWG and PPG XOR-scheduling (the traditional one) on the four machines are

summarized in Table 2.7. It clearly displays that DWG XOR-scheduling achieves significant performance

improvement over PPG XOR-scheduling, from 23% to 36%.

Machine DWG PPG Improvement

P4 2.207 GB/s 1.616 GB/s 36%

Pd 2.174 1.64 32%

Pc2d 3.243 2.607 24%

Pc2q 3.479 2.824 23%

Table 2.7: Comparison of peak encoding performance of Liberation codes for k = w = 11 and m = 2.

Modifying k and w

In the Liberation codes, the number of parity devices is fixed at two. However, systems may range in

size from small k to large.

To observe potential sensitivity to the number of data devices k and the number of packets per stripe

w, Figure 2.5 and Figure 2.6 display the encoding performance of the Liberation codes for k = w = 5

and k = w = 17. The results mirror the results for k = 11, and the observations that held for k = 11 also

hold for the smaller and larger values of k. Thus, all scheduling algorithms are stable for this code among

this range of parameters.

It is worth noting that the values of k are prime numbers in above experiments. In practice, this is not

required. A well known technique called shortening [79, 94] can be applied to produce a shorter code but

with a certain efficiency loss in space utilization.

23

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(a) P4, k = w = 5

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(b) Pd, k = w = 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(c) Pc2d, k = w = 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240
E

n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(d) Pc2q, k = w = 5

Figure 2.5: Encoding performance of Liberation codes for k = w = 5 and m = 2.

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(a) P4, k = w = 17

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(b) Pd, k = w = 17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(c) Pc2d, k = w = 17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(d) Pc2q, k = w = 17

Figure 2.6: Encoding performance of Liberation codes for k = w = 17 and m = 2.

24

2.5.3 Performance Profiling for the Liberation Code

To better understand the interactions of XOR-scheduling algorithms and the memory hierarchy of test

machines, we performed a profiling experiment with the Liberation Codes with k = w = 11. We used

the Intel VTune performance Analyzer [63], which leverages performance counting registers available on

certain Intel processors. The event-based sampling (EBS) profiler of VTune allows one to register certain

events for monitoring, and then VTune samples the number of these events during live runs of programs

on the processor. For each event, one specifies a sample-after-value (SAV). VTune maintains a hardware

counter of the event, and when the counter reaches the SAV value, VTune increments a user-specified value

and resets the counter. Thus, one may trade off the precision of sampling with the invasiveness of VTune.

This profiling approach differs from those based on simulation, such as Cachegrind [26]. Its main ad-

vantage is that it profiles real executions on the processors, and thus is not limited by assumptions made by

a simulator. Its main disadvantage is the tradeoff between sampling granularity and profiling invasiveness.

A second disadvantage is the fact that while one can count certain events, it may be hard to interpret why

those events are happening. Regardless, the various event counts can give us insight into how a program is

behaving.

For the XOR-scheduling algorithms, we chose to monitor the events which we summarize below. One

measures instruction counts, while the remaining three assess different parts of the memory hierarchy. For

complete descriptions, please see the Intel software developer’s manual [61].

• INST RETIRED: This counts the number of instructions that are retired. On processors with spec-

ulative execution, this is a measure of the instructions that have completed successfully and had their

results written to the cache.

• MEM LOAD RETIRED.L1D LINE MISS: This is a measure of how many load operations miss

the L1 data cache and send a request to the L2 cache to satisfy the load operation.

• MEM LOAD RETIRED.L2 LINE MISS: This is a measure of how many L2 cache requests are

unsatisfied and must be reloaded from main memory.

• RESOURCE STALLS.LD ST: This is an event when the processor stalls because the load and store

buffers used for pipelined and out-of-order execution become full.

For the INST RETIRED event, we set the SAV value to 100,000. For all others, we set it to 10,000.

25

10
8

10
9

10
10

 8 32 128 512 2048 10240

E
v
e
n
t
N

u
m

b
e
r

Packet Size (bytes)

PPG
PWG
DPG
DWG

(a) INST RETIRED Event

10
4

10
5

10
6

10
7

10
8

 8 32 128 512 2048 10240

E
v
e
n
t
N

u
m

b
e
r

Packet Size (bytes)

PPG
PWG
DPG
DWG

(b) MEM LOAD RETIRED.L1D LINE MISS

Event

10
4

10
5

10
6

10
7

 8 32 128 512 2048 10240

E
v
e
n
t
N

u
m

b
e
r

Packet Size (bytes)

PPG
PWG
DPG
DWG

(c) MEM LOAD RETIRED.L2 LINE MISS

Event

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 8 32 128 512 2048 10240

E
v
e
n
t
N

u
m

b
e
r

Packet Size (bytes)

PPG
PWG
DPG
DWG

(d) RESOURCE STALLS.LD ST Event

Figure 2.7: Performance profiling results of Liberation codes for k = w = 11 and m = 2 on machine Pc2q.

We show the results of the profiling tests in Figure 2.7. The machines Pc2d and Pc2q support the profiling

of the above events. Their profiling results are similar, so we only display Pc2q in Figure 2.7. It is worth

noting that one cannot derive actual performance from the various event counts. Instead, the profiling helps

us to gain insight into why the performance of the various algorithms is as it is. We evaluate each of the

events below.

INST RETIRED (Figure 2.7(a)): For all algorithms, as the packet size increases, the instruction counts

decrease, becoming roughly constant for packet sizes greater than 512 bytes. This is because fewer loop

iterations are required as the packet size increases. Of the four algorithms, the PWG algorithm retires the

most instructions and DWG the least. The other two exhibit similar performance.

MEM LOAD RETIRED.L1D LINE MISS (Figure 2.7(b)): This measures the number of processor

stalls due to L1 cache misses. As the packet sizes increase, these values increase too, because fewer packets

fit into the L1 cache. The PWG algorithm displays significantly more stalls due to L1 cache misses than the

others, which exhibit similar numbers as the packet sizes grow to 1K and beyond.

MEM LOAD RETIRED.L2 LINE MISS (Figure 2.7(c)): This measures the number of processor

stalls due to L2 cache misses. Since these misses must be satisfied from main memory, the impact of these

26

stalls is greater than for L1 misses. The DWG and DPG algorithms exhibit stable performance with respect

to L2 cache misses, and this performance is independent of the packet size. Moreover, they are better than

the PPG and PWG algorithms for all packet sizes. This is the main contributing factor to the DWG and DPG

algorithms’ superior performance in Figure 2.4(d). The PPG and PWG algorithms have fewer L2 cache

misses as their packet sizes increase.

RESOURCE STALLS.LD ST (Figure 2.7(d)): In this figure, the PPG and DPG algorithms exhibit the

fewest stalls due to the load and store buffers being full. The DWG algorithm shows the greatest variability

here, especially for large packet sizes. This is reflected in its variable overall performance in Figure 2.4(d).

As in the other figures, the PWG algorithm exhibits the worst overall performance.

In summary, while the DWG algorithm achieves the best performance for each code and machine, it

is more sensitive to having the packet size impact the cache behavior. This is most pronounced in Fig-

ures 2.7(b)) and 2.7(d)). On the other hand, the DPG algorithm achieves a nicer blend of performance and

stability. The PWG algorithm achieves the worst performance, as reflected in every event measured in our

profiling experiments. It is worth noting that the DPG and DWG algorithms have fewer L1 and L2 cache

misses at lower packet sizes, and thus both algorithms achieve their peak performance at smaller packet sizes

than PPG and PWG.

It is interesting to observe that although DPG and DWG were originally designed to reduce the number

of cache misses, the profiling results show that they also effectively decrease the number of executed instruc-

tions. Regardless, it is significant to note that the scheduling of XOR operations indeed affects all of these

performance events.

Finally, we did profile the other erasure codes that are discussed below. However, since their results were

very similar to the Liberation code profiling, we omit their presentation here.

2.5.4 Experiments on Other Erasure Codes

To compare the algorithms on other codes, this section tests EVENODD, RDP, X-code, and the STAR

code. Again, all but the STAR code are RAID-6 codes. Among them, EVENODD and RDP have efficient

decoding algorithms, while RDP has better encoding performance and EVENODD has better update perfor-

mance [94]. X-code has good encoding/decoding/update performance; however, it is a vertical code and has

limitations on the choice of the value of k. Lastly, the STAR code can tolerate up to 3 disk failures. These

various codes impose different constraints on k and w, so we selected values that would match most closely

with the Liberation codes example. The values are summarized in Table 2.8.

27

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(a) P4, EVENODD, k = 11

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(b) Pd, EVENODD, k = 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(c) Pc2d, EVENODD, k = 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240
E

n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(d) Pc2q, EVENODD, k = 11

Figure 2.8: Encoding performance of EVENODD for k = 11, w = 10 and m = 2.

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(a) P4, RDP, k = 10

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(b) Pd, RDP, k = 10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(c) Pc2d, RDP, k = 10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(d) Pc2q, RDP, k = 10

Figure 2.9: Encoding performance of RDP for k = w = 10 and m = 2.

28

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(a) P4, X-code, k = 11

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(b) Pd, X-code, k = 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(c) Pc2d, X-code, k = 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 32 128 512 2048 10240
E

n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(d) Pc2q, X-code, k = 11

Figure 2.10: Encoding performance of X-code for k = 11, w = 13, and m = 2.

 0

 0.5

 1

 1.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(a) P4, STAR, k = 11

 0

 0.5

 1

 1.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(b) Pd, STAR, k = 11

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(c) Pc2d, STAR, k = 11

 0

 0.5

 1

 1.5

 2

 2.5

 8 32 128 512 2048 10240

E
n
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t
(G

B
/s

)

Packet Size (bytes)

PPG
PWG
DPG
DWG

(d) Pc2q, STAR, k = 11

Figure 2.11: Encoding performance of the STAR code for k = 11, w = 10, and m = 3.

29

Code k w m

EVENODD 11 10 2

RDP 10 10 2

X-code 11 13 2

STAR 11 10 3

Table 2.8: Encoding parameters of various codes.

The results are in Figure 2.8 to Figure 2.11. In terms of peak performance, the codes match expectations.

When k = w, the Liberation codes’ performance is theoretically identical to EVENODD [90], and this

is reflected in the results. RDP and X-code should encode the fastest, and they do. The STAR code’s

performance is worse than the others because it encodes an extra parity device.

In terms of the trends, the codes’ performance matches the Liberation codes, and all the observations for

the Liberation codes hold for these codes as well. The results show that the performance comparison of the

scheduling algorithms is consistent for a wide variety of codes.

2.5.5 Encoding Performance of RDP

In [31], Corbett et al. provide encoding performance of RDP code, and it is the best reported result of

RDP in the literature. The machine used in [31] contains two Pentium 4 CPUs of 2.8GHz, and one CPU is

dedicated for RDP encoding. They do not report the machine word size and the cache sizes of the CPU. The

most similar machine in our tests is machine P4, but P4 only has one CPU. The performance comparison of

DWG XOR-scheduling with their reported performance is given in Table 2.9.

Machine DWG XOR-scheduling Reported in [31]

P4 2.186 GB/s 1.55 GB/s

Table 2.9: Encoding performance of RDP for k = w = 10 and m = 2.

Table 2.9 shows that the encoding performance achieved by DWG XOR-scheduling is much higher than

their reported performance. Without knowing their exact implementation details, the reasons can be many-

fold. However, a simple conclusion to draw is that DWG XOR-scheduling, an algorithm proposed in this

chapter, can achieve much higher performance than existing reported results.

2.6 Summary

This chapter studies efficient XOR-scheduling algorithms to improve the encoding performance of XOR-

based erasure codes. For these erasure codes, the encoding performance is determined by two primary

30

factors: the number of XOR operations and the cache behavior. Two new proposed algorithms, named

Data Words Guided XOR-scheduling and Data Packets Guided XOR-scheduling, are able to efficiently uti-

lize CPU cache and thus achieve much better encoding performance than the traditional algorithm. In a

performance evaluation on some widely known erasure codes on a variety of machines, we show that the

encoding performance obtained by Data Words Guided XOR-scheduling considerably outperforms that of

the traditional algorithm; although Data Packets Guided XOR-scheduling improves the performance less sig-

nificantly than Data Words Guided XOR-scheduling, it has more stable performance across various packet

sizes on different machines.

31

CHAPTER 3 Efficient Erasure Decoding for RAID-6

Codes

3.1 Introduction

Reliable storage systems are essential for most data related applications. Yet virtually every component

in a storage system can fail, from hard disk drives to various cables. Most recent studies show hard disks,

the core component of storage systems, fail much more often in real systems than specified in their data-

sheets [86, 98]. Inevitably, data redundancy needs to be introduced to ensure intact recovery of lost data

caused by disk failures. A quite common practice is to use mirroring by maintaining multiple copies of a

data on different disks or storage nodes. As storage systems expand and use more and more commodity

components, it is common nowadays to employ triplication or more in storage systems, such as the Google

File System (GFS) [40]. It is arguable, however, if such a practice uses system resources in a most effective

and efficient way. GFS uses not just the triple number of disks, but also consumes other expensive resources,

including network components, power and physical spaces, let alone a great deal of man power to manage

and maintain the system.

On the other hand, RAID-5 [85], another commonly adopted data redundancy architecture that uses

one parity disk/node to tolerate one disk/node failure, may not have high enough reliability in real systems.

Schroeder et al. observed that disks fail in a more correlated fashion [98], and thus theoretical reliability

of RAID-5 derived on the assumption that disks fail independently may be very far from reality. A natural

extension to provide higher data reliability is to use more redundancy, and RAID-6 which employs two parity

disks/nodes is a good starting point. Here RAID-6 is used as a general data redundancy architecture, not

necessary limited to disk arrays with a RAID controller: the same data placement schemes can be certainly

extended to clustered or distributed storage systems. In fact, this is true for any RAID-n architecture. For

discussion simplicity, the term RAID will be used throughout this chapter, but by no means any results

hereafter are limited to disk arrays.

One view of disk failures for RAID-6 is stop-and-fail error model. Under this model, a disk either

functions normally - all data stored on it is accessible; or fails totally - none of its stored data is accessible,

32

which is called complete disk failure. In a practical storage system, disk failures are certainly more complex.

In general, some sectors or blocks of a disk can fail or corrupt because of various reasons [13]. This is

the so-called sector failures. Prabhakaran et al. gives a discussion on the common factors resulting in

sector failures [95]. Very recent study shows that actual sector failures occur much more frequently than

an complete disk failure in real storage systems [13], and sector failures become a significant threat to data

reliability [14]. As modern disks exponentially increase their storage capacity by increasing their areal

density, it is anticipated that sector failures will occur more often. To avoid the data lost due to sector

failures, Schwarz et al. proposed a technique called disk scrubbing [101], which runs a background process

and proactively scans disk sectors masking failed ones.

Now let’s consider the complexity of disk failures in RAID-6 storage systems. As a RAID-6 system

contains several disks, and each disk may encounter entire disk failure or sector failures, disk failures in the

whole system could become complicated. Here, we only focus on recoverable disk failures, for which lost

data can be completely reconstructed from surviving disks. We distinguish four different types of recoverable

disk failures in RAID-6 systems, and they are: 1) sector failures (sector failures could spread out on multiple

disks), 2) one complete disk failure, 3) one complete disk failure with sector failures on other disks, 4)

two complete disk failures. Then, to protect data from disk failures, it is crucial for a RAID-6 system

to use a decoding algorithm that can reconstruct data from all the four disk failure types. Moreover, the

decoding algorithm should perform in an efficient manner, for two purposes. First, during data reconstruction

process, the whole system may not allow data access, and hence the faster data reconstruction, the shorter

downtime of the system. Second, when disk failure happens, a storage system’s reliability is more subject to

be compromised than normal because it is in the window of vulnerability (WOV) [14]. As a result, efficient

decoding can help to reduce WOV and improve storage systems’ reliability.

In this chapter, we study how to efficiently decode disk failures for RAID-6 codes. The contributions of

the chapter are both theoretical and practical. In theory, we present the sufficient and necessary conditions to

determine if a disk failure is recoverable or not. The conditions are valid for many well known codes, such

as X-code [115], EVENODD [20], RDP [31], and WEAVER codes [47]. Practically, a universal decoding

algorithm named SCAN is designed. The SCAN algorithm can efficiently correct all theoretically recoverable

disk failures. An implementation of the SCAN algorithm is also provided to cover all different types of disk

failures. In addition, we evaluated the performance of the SCAN algorithm for X-code, EVENODD, and

RDP. The performance results show the SCAN algorithm significantly outperforms an existing approach

called Matrix Method [49].

33

3.2 Related Work

In this section, we introduce related coding theory and decoding algorithms for RAID-6 codes.

3.2.1 Coding Theory

An (n, k) erasure code uses mathematical means to transform a user data of k data symbols into a block

of n (same size) symbols by adding (n − k) parity symbols. Each parity symbol is computed using a parity

constraint (usually a linear equation) from the k data symbols. The resulting n-symbol block is called a

codeword. This computation process of obtaining a codeword from k data symbols is called encoding.

Similarly, the process of retrieving k data symbols from a codeword is called decoding. In a codeword,

symbol is a logical unit; it can be a bit, a byte, or multiple bytes. Previous work has shown that large symbol

size is likely to achieve high encoding/decoding performance [77, 92].

With respect to encoding/decoding, erasure codes have two basic matrices: generator matrix and parity

check matrix [79]. A generator matrix defines how parity symbols are computed from data symbols. A

parity check matrix is derived from generator matrix, and it can verify the parity constraints of data and

parity symbols in a codeword. If a codeword is treated as a symbol vector c and parity check matrix as

matrix P , then we have c · P = 0 if the codeword has no error. In this chapter, we focus on XOR-based

RAID-6 erasure codes, whose encoding/decoding contains only binary exclusive-or computation, and hence

the element value in their parity check matrices is 0 or 1.

When using coding technology to build RAID storage systems, user data received from applications

is encoded to form codewords, and the codewords are striped to multiple disks. For an (n, k) code, each

codeword contains n symbols and they are distributed on different disks. When disk failure happens, the

symbols stored on the failed disks or failed sectors are all lost, and these lost symbols have to be reconstructed

from surviving disks. If there are k surviving disks, the lost symbols can be recovered and no data is lost.

The lost symbols are called erasures, and the reconstruction process is an erasure decoding operation.

3.2.2 Decoding Algorithms for Complete Disk Failures

When introducing a new RAID-6 code, the code inventors often provide a decoding algorithm for it.

This is the case of X-code [115], EVENODD [20], and RDP [31]. In general, these decoding algorithms

are designed to reconstruct data for only complete disk failures. Usually, they are not compatible with each

other. This is because the decoding algorithm designed for one code is optimized and aims for best decoding

34

performance for that particular code. This type of algorithms is referred to as decoding algorithms for entire

disk failures in this chapter.

The decoding algorithms for entire disk failures, however, commonly suffer from two limitations. First,

they can not efficiently deal with sector failures. When encountering sector failures, this type of algorithms

has to treat the disks containing the failed sectors as entire failed disks and then decode. Hence, besides real

erasures, this approach also recover those normal sectors which fall on the assumed failed disks, resulting

in unnecessary computation. Second, they may fail to reconstruct data for a disk failure event even when

it is recoverable. For example, if a failure event contains only sector failures but they are spread over three

disks, this type of decoding algorithms will assume that there are three entire failed disks and declare it not

recoverable. However, this kind of failure events may be still recoverable. We will show such an example in

Section 3.4.2. Therefore, the above two shortcomings limit the usage of this type of decoding algorithms in

practical RAID-6 systems considering sector failures.

3.2.3 Decoding Algorithms for Sector Failures

This section describes general decoding algorithms that can recover any type of disk failures. These

algorithms treat complete disk failures as a special case of sector failures, and then they use same approach

to deal with all disk failure types.

Iterative Decoding

RAID-6 codes can be represented as Low-Density Parity-Check (LDPC) codes [37] at symbol level.

LDPC codes are erasure codes that are constructed from sparse parity check matrix, and they can be decoded

by using Tanner graph [105, 91]. A Tanner graph is a bipartite graph. The nodes in the graph are partitioned

to two disjointed groups. One group contains erasure nodes denoting erasures, and the other group only

contains parity constraint nodes. Then, the two groups are connected according to their parity constraints,

which are derived from the code’s parity check matrix. From linear algebra perspective, each erasure node

stands for a variable and each parity constraint node represents a linear equation, and decoding operation is

essentially a linear equation solving process.

Iterative decoding is a simple decoding algorithm using Tanner graph. It works as follows. It first builds

a Tanner graph for a codeword with erasures. Then, it finds a constraint node of degree 1, uses this constraint

node to recover its connected erasure node, and removes the two nodes from the graph. This step is repeated

until no constraint node of degree 1 is left. At the end, if there are no erasures left, all erasure are recovered;

35

otherwise, some erasures are not recoverable. The main drawback of this algorithm is that it may not be

able to decode a codeword even when it is recoverable. To the best of our knowledge, no previous work

has discussed this problem before, i.e., what kind of codewords can be decoded by iterative decoding. In

this chapter, we partially address this issue. We identify a family of RAID-6 codes that can be completely

decoded by iterative decoding.

Matrix Method

Hafner et al. proposed a general decoding approach, called Matrix Method [49]. When decoding a

codeword, the Matrix Method first builds a matrix called workspace matrix based on the code’s parity check

matrix. Then, it processes the codeword’s erasures one by one. For each erasure, it first removes the erasure

from the workspace matrix and then transforms the matrix so that the processed erasures can be reconstructed

from surviving symbols. After all erasures are processed, the workspace matrix turns out to be a recovery

matrix, which instructs how the erasures can be reconstructed. Based on the above basic algorithm, Hafner

et al. also provided several optimization techniques to improve time and space efficiency for the Matrix

Method [28, 49].

The Matrix Method is a general decoding algorithm for XOR-based erasure codes; however, it has the

following limitations: 1) deciding when to properly use the optimization techniques proposed for the Matrix

Method is a challenge. These techniques presented in [49, 28] are not stated clearly when they should

be applied, and their inappropriate use may even worsen the performance, 2) because Matrix Method is a

general decoding approach and not designed specially for RAID-6 codes, the Matrix Method can not work

efficiently for all possible disk failures even with its various optimization techniques, which will be shown

in Section 3.6.

3.3 ED-2 Codes

Now we introduce a family of RAID-6 codes, which is called ED-2 codes.

3.3.1 Lemma

An erasure pattern identifies the set of erasures in a codeword. Then, we have the following definition

for the recoverability of an erasure pattern.

36

Definition 1. If all erasures in an erasure pattern can be uniquely recovered, then this erasure pattern is

recoverable.

If the erasures in erasure pattern A are all contained in erasure pattern B, then B is called a superset of

A. It is easy to see that an erasure pattern and any of its supersets have the following relation:

Lemma 1. If an erasure pattern is not recoverable, then any of its supersets is not recoverable.

Lemma 1 implies that an erasure pattern is irrecoverable if it contains an irrecoverable subset. Though

simple, this lemma gives a necessary condition for a recoverable erasure pattern.

For the rest of this chapter, we focus on RAID-6 codes, a type of erasure codes capable of tolerating

any two complete disk failures. If a code can tolerate the failure of more than two disks, we simply uses its

derived code with the capability for two disks.

3.3.2 ED-2 Codes

Definition 2. Given a code, for an arbitrary erasure pattern, if every erasure node in its Tanner graph has

degree of at most 2, then this code is an ED-2 (Erasure Degree 2) code.

First, we give a sufficient condition to determine if a code is an ED-2 code. For a code, if the number

of 1s in any row of its parity check matrix is no more than 2, then this code is an ED-2 code. Recall that in

parity check matrix, one column represents a parity constraint, and one row contains the parity constraints

one symbol is involved. Then, if the number of 1s in any row is no more than 2, for any erasure pattern, any

erasure node has at most degree of 2 in the Tanner graph. Therefore, this code must be an ED-2 code. From

this sufficient condition, we find several ED-2 codes and list them in Table 3.1. It is worthy noting that an

ED-2 code does not have to be a maximum distance separable (MDS) code.

RAID-6 Code ED-2 Code MDS

B-code YES YES

X-code YES YES

BCP code [15] YES YES

ZZS code [119] YES YES

WEAVER codes YES NO

LSI code [112] YES NO

EVENODD NO YES

RDP NO YES

Table 3.1: ED-2 codes

Example 1: X-code [115] is a MDS RAID-6 code, and it has optimal encoding/decoding/update effi-

ciency. A codeword of X-code can be represented by an n×n array, where n is a prime number. For n = 5,

37

the construction of X-code is shown in Figure 3.1. In Figure 3.1, the top three rows contain data symbols,

and the bottom two rows contain parity symbols. A parity symbol with a shape is the bitwise XOR sum of

data symbols with the same shape.

parity I

(a) parity I (b) parity II

parity II

Figure 3.1: X-Code (5, 3) construction

Table 3.1 shows that X-code is an ED-2 code. Now, we use X-code as an example to describe which

erasure patterns of ED-2 codes are recoverable and which are not.

3.3.3 Recovery Theorem

Theorem 1. For an ED-2 code, if an erasure pattern is irrecoverable, then its Tanner graph must have one

of the following subgraphs:

1. A cycle;

2. A path staring from an erasure node of degree 1 and ending at another erasure node of degree 1.

Proof. First the sufficient condition part: if an erasure pattern has any subgraph given in this theorem, this

pattern is irrecoverable. If we can prove that the erasure pattern characterized by either subgraph is not

recoverable, then we can show that the original erasure pattern is not recoverable according to Lemma 1.

Below we consider the two subgraphs one by one.

1. A cycle: it implies that the number of erasure nodes is the same as that of constraint nodes. As a

result, the equations represented by the constraint nodes are linearly dependent, and thus the solutions

to the erasures in the cycle are not unique. Hence, the erasures in the subgraph are irrecoverable by

Definition 1.

Figure 3.2 shows such an example. In this example, a cross sign (X) denotes an erasure. Erasure

node ei,j represents an erasure at row i and column j, and constraint node Ei,j represents the parity

constraint imposed by the parity symbol at row i and column j. These nodes are connected according

to the parity check matrix of X-code.

38

0 1 2 3 4

0

1

2

3

4

e00

e11

e20

e14

E33

E44

E31

E42

Erasure Pattern Tanner Graph

Figure 3.2: An erasure pattern of X-code.

2. A path staring from an erasure node of degree 1 and ending at another erasure node of degree 1: as

a Tanner graph is a bipartite graph, then in this path, the number of erasure node is one greater than

the number of constraint nodes. From equation solving perspective, it implies that the number of

variables is one greater than the equation number, and hence the solutions for the erasures are not

unique. Therefore, the erasures in this subgraph are also irrecoverable by Definition 1. Figure 3.3

shows such an example.

0 1 2 3 4

0

1

2

3

4

e00

e11

e42

e44

E33

E42

E44

Erasure Pattern Tanner Graph

Figure 3.3: An erasure pattern of X-code.

Now the necessary condition part: if an erasure pattern is irrecoverable, it must contain one subgraph

listed in the theorem. Assume there is an irrecoverable erasure pattern of an ED-2 code. Then, we use

iterative decoding [105] to decode it. When iterative decoding can not proceed, we randomly pick up a

connected component to observe. We can find this component must belong to one of the following two

cases:

1. it contains a cycle: it is the first subgraph.

2. it does not contain a cycle: then there must be a path staring from a node of degree 1 and ending

at another node of degree 1; otherwise there exists a cycle. Either of these two nodes can not be

constraint nodes because iterative decoding has processed all constraint nodes of degree 1. Hence,

these two nodes must be erasure nodes, and this path is exactly the second subgraph.

39

In fact, the above proof of the necessary condition part infers the following corollary.

Corollary 1. For an ED-2 code, iterative decoding is able to recover any recoverable erasure pattern.

Furthermore, from Theorem 1, we can deduce the following theorem concerning recoverable erasure

patterns:

Theorem 2. For an ED-2 code, if an erasure pattern is recoverable, then its Tanner graph does not contain

any of the following subgraphs:

1. A cycle;

2. A path staring from an erasure node of degree 1 and ending at another erasure node of degree 1.

3.3.4 SCAN Algorithm

Now we turn to an erasure decoding algorithm, called SCAN algorithm. The SCAN algorithm is essen-

tially an iterative decoding algorithm, so it can decode ED-2 codes. However, it differs from general iterative

decoding in two aspects. First, the SCAN algorithm adopts the Zig-Zag approach [20, 57]. For an ED-2 code,

as any erasure node in Tanner graph has no more than degree 2, the Zig-Zag approach is highly efficient in

performing iterative process. Second, the SCAN algorithm is not only applicable to ED-2 codes but also to

two other codes, EVENODD and RDP, which can not be decoded by general iterative decoding. This will

be shown later.

A pseudocode of the SCAN algorithm is shown in Algorithm 5. The SCAN algorithm consists of two

operations: Check operation and Recover operation. Loosely speaking, the Check operation builds a recov-

ery plan for an erasure pattern, and then the Recover operation proceeds to correct the erasure pattern if it

is recoverable. If an erasure pattern is partially recoverable, i.e., not all the erasures can be recovered, the

Recover operation will be skipped. (Note: The SCAN algorithm is able to recover all recoverable erasures

for an irrecoverable erasure pattern. The current choice is made in order to be consistent with our defi-

nition of recoverable erasure pattern.) In Algorithm 5, the Check operation collects the list of erasures in

ERASURE LIST, and the Recover operation recovers the erasures in the list one by one.

3.4 SCAN for EVENODD

This section presents how to determine if an erasure pattern is recoverable for EVENODD, and it pro-

vides a variant of SCAN algorithm for the code.

40

Algorithm 5 The SCAN Algorithm

procedure SCAN()

1: Check();

2: Recover();

procedure Check()

1: Build Tanner graph;

2: for each constraint node CN do

3: if the degree of CN is 1 then

4: ZigZag(CN);

5: end if

6: end for

procedure ZigZag(CN)

1: Get CN ’s connected erasure node eN ;

2: if eN does not exist then

3: return;

4: end if

5: Add eN to ERASURE LIST list;

6: Find the other constraint node CN2 connecting to eN ;

7: Remove CN and eN from the graph;

8: if CN2 exists and its degree is 1 then

9: ZigZag(CN2);

10: end if

procedure Recover()

1: Recover eN in ERASURE LIST one by one;

41

3.4.1 EVENODD Description

EVENODD [20] is an MDS RAID-6 code. It uses 2 parity columns together with p data columns, where

p is a prime number. In EVENODD, the 1st parity column is in column p, which is computed as the XOR

sum of all data symbols in the same row. This parity column is called horizontal parity column. The 2nd

parity column is in column (p + 1), which takes the following steps to compute: first, the XOR sum of

all data symbols along the same diagonal (indeed a diagonal of slope 1) is computed and assigned to their

corresponding parity symbols in column (p+ 1) except the main diagonal value called the adjuster; second,

the adjuster is added (XOR addition) to all parity symbols in column (p+1), which is adjuster complement.

We then call parity column (p + 1) diagonal parity column. For p = 5, the construction of EVENODD is

shown in Figure 3.4.

parity I parity II

(b) diagonal parity(a) horizontal parity

adjuster

Figure 3.4: EVENODD (7, 5) construction.

0 1 2 3 4

0

1

2

3

Erasure Pattern

5 6

e00

e01

e02

e03

E05

E06

E16

Original Tanner Graph

E26

e04 E36

New Tanner Graph

(a) (b) (c)

e00

e01

e02

e03

E05

E06

E16

E26

e04 E36

E46

(adjuster)

(adjuster)

(adjuster)

(adjuster)

(adjuster)

Figure 3.5: An example of new Tanner graph for EVENODD.

3.4.2 Tanner Graph of EVENODD

We first show EVENODD is not an ED-2 code through an example. Figure 3.5(a) is an erasure pattern of

EVENODD, and Figure 3.5(b) is its Tanner graph. In this Tanner graph, erasure node e04 has a degree of 5,

which is more than 2, and thus EVENODD does satisfy to the definition of ED-2 codes. Here, the distinction

42

of erasure node e04 from other erasure codes is that it is an erasure positioned at the main diagonal. Due to

the computation of adjuster complement, the erasure nodes representing the erasures in the main diagonal

need to connect to all diagonal parity constraint nodes. Hence, in this case, the degree of e04 is 5. Note that

although this erasure pattern is recoverable, it can not be decoded by iterative decoding because there is no

parity constraint node of degree 1 to start with.

Here, we present an approach to modify the construction of the Tanner graph so that EVENODD can

become an ED-2 code. In the Tanner graph of EVENODD, we classify the constraint nodes to two types:

horizontal constraint nodes and diagonal constraint nodes. They represent the parity constraints imposed

by horizontal parity symbols and diagonal parity symbols respectively. Then, we construct the new Tanner

graph as follows:

1. Add a new diagonal constraint node to represent the constraint imposed by the main diagonal;

2. If a data symbol is an erasure, its erasure node only connects to its horizontal constraint node and

diagonal constraint node.

The new Tanner graph for the erasure pattern of Figure 3.5(a) is shown in Figure 3.5(c). Figure 3.5(c)

differs from Figure 3.5(b) in: 1) a new constraint node E46 is added, 2) four edges in Figure 3.5(b) are

removed, 3) a new edge (e04, E46) is added. Now, e04 connects only to E05 and E46, and its degree reduces

to 2. It is worth noting that in the figure, the adjuster is placed at the right side of all diagonal constraint nodes.

This is because now the adjuster is an implicit variable and it occurs at all equations represented by diagonal

parity constraint nodes. For example, in Figure 3.5(c), we have e00 = adjuster, and e01 = adjuster etc.

From equation solving perspective, the new Tanner graph is equivalent to the original Tanner graph, but

the new graph is much simpler and easier to process. Next section will show how to compute the adjuster

from the new graph. After the adjuster is computed, EVENODD becomes an ED-2 code, and all previous

results of ED-2 codes can be applied to it. Actually, the decoding with the new Tanner graph shares the

similar way with encoding process. In encoding process, the adjuster is first computed to improve encoding

performance; in this decoding approach, the adjuster is first recovered for better decoding performance.

3.4.3 Recovery Theorem of EVENODD

Recovery of the adjuster

Theorem 3. For an arbitrary erasure pattern, if the adjuster is recoverable, its new Tanner graph must have

a connected component satisfying the following conditions:

43

1. the degree of each erasure node is 2;

2. the number of diagonal constraint nodes is odd.

Proof. First the sufficient condition part: if a connected component satisfies the two conditions, the adjuster

can be recovered. When we have such a connected component, we add (XOR) all the equations represented

by this component and get a single equation. We can find that this equation has two properties: 1) at the left

side, there is no variable left, because the degree of each erasure node is 2 and their corresponding variables

are all canceled by XOR operation; 2) at the right side, there is only one variable left and it is the adjuster

due to the number of diagonal constraint nodes being odd. As a result, the adjuster can be computed from

this equation.

Now the necessary condition part: if no component satisfies the two conditions, the adjuster is not

recoverable. As such, any component must be one of the following cases:

1. The first condition is not satisfied. It means this component contains some erasure nodes of degree 2

and some others of degree 1. Suppose there are totally m erasure nodes in this component. Then, the

number of constraint nodes is at most m. Therefore, this component contains m + 1 variables repre-

sented by m erasure nodes plus the implicit variable (the adjuster) but there are at most m equations,

and thus the solutions are not unique for these variables. As a result, the adjuster is not recoverable.

2. The first condition holds, but the second condition is not satisfied. It implies the degree of each erasure

node is 2 but the number of diagonal constraint nodes is even. Suppose there are m erasure nodes in

this component. Then, there are at most m+1 constraint nodes in the component. Now we have at most

m+1 equations, and we can add (XOR) all these equations to get one equation. In the final equation,

all variables are canceled since each variable occurs twice, so there are actually at most m independent

equations. Thus, the component has m + 1 variables but there are at most m independent equations.

Again, the solutions to the equations are not unique, and hence the adjuster is not recoverable.

Recovery Theorem

Lemma 2. A necessary condition for a recoverable erasure pattern of EVENODD is that the adjuster is

recoverable.

44

Proof. Recall that the adjuster is the XOR sum of all the data symbols along the main diagonal, so when an

erasure pattern is recoverable, all the data symbols along the main diagonal are recoverable, and the adjuster

is certainly recoverable then.

By combining Theorem 2 and 3, and Lemma 2, we can get the following theorem for EVENODD.

Theorem 4. For EVENODD, if an erasure pattern is recoverable, its new Tanner graph must satisfy the

following conditions:

1. one connected component satisfies the conditions given in Theorem 3;

2. all connected components satisfy the conditions given in Theorem 2.

3.4.4 SCAN Algorithm for EVENODD

The decoding algorithm for EVENODD is a variant of the SCAN algorithm for ED-2 codes. The variant

contains the following two changes:

1. In the Check operation: a new Tanner graph is built, and we need to determine whether the adjuster is

computable according to Theorem 3;

2. In the Recover operation: the adjuster should be recovered first before any diagonal constraint node is

used to recover an erasure node.

When implementing the Check operation, determining whether the adjuster is computable can be piggy-

backed in the ZigZag process. This makes the Check operation for EVENODD have similar time complex-

ity to that for ordinary ED-2 codes. In the Recover operation, when a parity constraint node is used, the XOR

number to recover one erasure is exactly (p − 1). As the cost of computing the adjuster can be amortized

to all the erasures, it is not significant though. Since for a general (p + 2, p) MDS code, the lower bound

of XOR number needed to recover one erasure is (p − 1), the time complexity in the Recover operation of

SCAN algorithm is close to the lower bound.

3.5 SCAN for RDP

Like EVENODD, RDP is not an ED-2 code. In this section, we present a new way to construct the

Tanner graph for RDP. Based on the new graph, we develop a variant of the SCAN algorithm for RDP.

45

3.5.1 RDP Description

RDP [31] is a (p + 1, p− 1) MDS code, where p is a prime number. RDP has two parity columns. One

parity column is called horizontal parity column which stores horizontal parity symbols, and another parity

column is called diagonal parity column storing diagonal parity symbols. The diagonal parity column in

RDP is close to that in EVENODD. The difference is that RDP uses horizontal parity symbols to compute

diagonal parity symbols. For p = 5, the construction of RDP is shown in Figure 3.6. Again, a parity symbol

with a shape is the XOR sum of other symbols with the same shape.

(a) horizontal parity (b) diagonal parity

parity I parity II

Figure 3.6: RDP (6, 4) Construction

0 1 2 3 4

0

1

2

3

Erasure Pattern

5

Original Tanner Graph New Tanner Graph

(a) (b) (c)

e20

e24

e30

e33

E15

E24

E25

E34

e35 E35

e20

e24

e30

e33

E15

E24

E25

E34

e35 E35

Figure 3.7: An example of new Tanner graph for RDP.

3.5.2 Tanner Graph of RDP

RDP is not an ED-2 code, which can be shown by an example in Figure 3.7. Figure 3.7(a) is an erasure

pattern, and Figure 3.7(b) is its Tanner graph. In the graph, erasure nodes e20, e30, and e33 all have degree 3,

demonstrating that RDP is not an ED-2 code.

Similar to EVENODD, the original Tanner graph of RDP can be modified so that RDP can become an

ED-2 code. First, we define two terms. In Figure 3.7(b), E25 is defined as the direct diagonal constraint

node of e20 because parity symbol p25 is computed from data symbol d20 during encoding process. E15 is

46

the associated diagonal constraint node of e24 because parity symbol p25 is computed from parity symbol

p24 in encoding. Now, the tanner graph can be constructed as follows:

1. If a data symbol is an erasure, its erasure node only connects to its horizontal constraint node and

direct diagonal constraint node;

2. If a horizontal parity symbol is an erasure, its erasure node connects to its horizontal constraint node

and its associated diagonal constraint node.

Figure 3.7(c) is the new Tanner graph. From equation solving perspective, the new Tanner graph is

equivalent to the original Tanner graph but much simpler. Compared to Figure 3.7(b), Figure 3.7(c) removes

three edges and adds a new edge (e24, E15). Now the degree of all erasure nodes is no more than 2, and the

new Tanner graph satisfies the conditions of ED-2 codes. It can be seen that the construction of new Tanner

graph of RDP shares the same manner with its encoding process on using horizontal parity symbols. It

suggests that observing a code’s encoding process may be helpful to design an efficient decoding algorithm.

3.5.3 Recovery Theorem of RDP

Different from EVENODD, the new Tanner graph of RDP has no implicit variable, and then its recovery

theorem (shown in Theorem 5) is simpler than that of EVENODD. The proof of this theorem is almost the

same as that for ED-2 codes (presented in Theorem 2), so it is skipped here.

Theorem 5. If an erasure pattern of RDP is recoverable, its new Tanner graph does not have any of the

following subgraphs:

1. A cycle;

2. A path staring from an erasure node of degree 1 and ending at another erasure node of degree 1.

3.5.4 SCAN Algorithm for RDP

The SCAN algorithm for RDP is almost the same as that for ED-2 codes, and the only change is in the

Check operation, a new Tanner graph has to be built. Regarding to the complexity of the SCAN algorithm,

the Check operation needs a small factor of p to generate a recovery plan for a (p + 1, p − 1) RDP, and

the Recover operation uses only (p − 2) XOR operations to recover each erasure. This number is the lower

bound for a (p + 1, p− 1) RDP.

47

3.6 Performance Evaluation

Now we evaluate the decoding performance of the SCAN algorithm for three codes: X-code, EVENODD,

and RDP.

3.6.1 Experiment Setup

Evaluated Algorithms

Matrix Method [49] is another general decoding algorithm for RAID-6 codes. This algorithm has a

basic algorithm and several optimization techniques. The basic algorithm, called Column-Incremental Con-

struction, generates a recovery matrix for an erasure pattern. As the number of 1s in the recovery matrix

determines the number of XOR operations, several techniques are proposed to reduce this number [49].

One technique is called Reversing The Column Incremental Construction. Simply put, after an erasure is

recovered, this technique treats the recovered erasure as a normal symbol and updates the recovery matrix

accordingly, and then this symbol can be used to recover the left erasures. Like the SCAN algorithm, the

Matrix Method also contains two steps, Check operation and Recover operation.

We implement both the SCAN algorithm and the Matrix Method. For the Matrix Method, we implement

its basic algorithm (Column-Incremental Construction) and call it Basic Matrix Method. We also implement

the basic algorithm with the optimization technique (Reversing The Column Incremental Construction) and

call it Matrix Method (Reverse). All implementations are in C language and compiled by gcc with −O2

optimization flag, recommended for most applications running in real environments [39].

Experiment Environment

We run experiments for three codes: X-code representing ED-2 codes, EVENODD, and RDP. All test

data is loaded into main memory, so no real file I/O is involved. For each code, several typical pairs of (n, k)

are tested. In all pairs, we have n = k + 2. Symbol size is fixed to be 512 bytes in all codewords, and hence

one symbol corresponds to one disk sector.

All experiments are conducted on a HP dc7600 workstation with following relevant hardware and soft-

ware configurations: a) CPU: Intel Pentium D 2.8GHz; b) Memory: DDR2 533MHz, 1GB; and c) Kernel:

Linux 2.6.18.2-34-default X86-64. Each experiment is repeated 30 times to measure the average value of

decoding performance. The test results show the margin of error to the average value is no more than 5%,

and thus error bars are skipped in the following figures.

48

3.6.2 Sector Failures

Failure Model

We first show the results for sector failures. Here, we use the Gilbert model [42] to characterize sec-

tor failures. The Gilbert model is a common finite-state Markov model for bursty failures, as depicted in

Figure 3.8.

1-u G B 1-v

u

v

Figure 3.8: The Gilbert Model

For a hard disk, the same factors causing one sector failure may very likely affect a few neighboring

sectors and thus cause those sectors to fail as well, as observed by L. Bairavasundaram et al. [13]. Hence,

the Gilbert model closely captures the characteristics of sector failures. Using this model, a disk sector is

either in state G (good or normal) or state B (bad or failure). Assume s1 and s2 are two consecutive sectors

and s2 follows s1. If s1 is in state G, then s2 is in state B with a probability of u and in state G with a

probability of 1 − u. State B has the transition probability of v. The stationary failure rate - the overall

sector failure rate or probability - is u/(u + v) when the disk failure becomes stable. For a group of disks,

we assume each disk independently follows the Gilbert model but with the same (u, v) [98]. This is a simple

but yet reasonable model.

Based on previous research on sector failure probability [13], we choose 10−9 for the value of u and 0.5

for v. Then, we generate totally 100, 000 erasure patterns to decode. Each one contains at least 1 erasure,

and all of them are recoverable.

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 7 11 13 17 19

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(a) X-code

 0

 0.5

 1

 1.5

 2

 2.5

 3

7 9 13 15 19 21

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(b) EVENODD

 0

 0.5

 1

 1.5

 2

 2.5

 3

6 8 12 14 18 20

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(c) RDP

Figure 3.9: Decoding performance comparison for sector failures

49

 0.6

 0.8

 1

 1.2

 1.4

5 7 11 13 17 19

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(a) X-code

 0.6

 0.8

 1

 1.2

 1.4

7 9 13 15 19 21

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(b) EVENODD

 0.6

 0.8

 1

 1.2

 1.4

6 8 12 14 18 20

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(c) RDP

Figure 3.10: Decoding performance comparison for one complete disk failure

Performance Comparison

For sector failures, we measure the total time consumed in decoding. Here, we don’t use the absolute

decoding time to compare the performance of decoding algorithms; instead, we present the comparison of

normalized performance, calculated as below equation:

Norm. Perf. =
Decoding Time of Basic Matrix Method

Decoding Time of a decoding algorithm

Thus, the higher normalized performance is, the better decoding performance is achieved. The normal-

ized performance of the decoding algorithms are presented in Figure 3.9. Following observations can be

made from this figure:

1. For all n values, the SCAN algorithm performs better than Basic Matrix Method. The performance

improvement of the SCAN algorithm over Basic Matrix Method ranges from 20% to 80%.

2. When n grows, the performance of the SCAN algorithm also increases. It implies that when the number

of disks in RAID-6 system increases, the SCAN algorithm scales better than Basic Matrix Method.

3. In all cases, Matrix Method (Reverse) performs at least 20% worse than Basic Matrix Method.

For each algorithm, we can break down it to two operations – Check operation and Recover operation.

We can find that the Check operation essentially dominates the decoding performance in this case. This is

because when sector failure happens, there are only a few failed sectors due to the low probability of sector

failures. Hence, in one codeword, there are only a few erasures, and the cost of the Recover operation is very

small compared to the overall decoding cost. This is true for all decoding algorithms. It also explains why

Matrix Method (Reverse) performs worse than Basic Matrix Method. Compared to Basic Matrix Method,

Matrix Method (Reverse) has less efficient Check operation.

50

3.6.3 Complete Disk Failures

Different from sector failures, the decoding performance for complete disk failures is determined by the

Recover operation rather than the Check operation. The reason is when complete disk failures happen, a great

number of codewords share the same erasure patterns, and thus the Check operation needs to be performed

only once, but the Recover operation has to be performed repeatedly for different codewords. Therefore, for

this type of disk failures, the Recover operation dominates the decoding performance.

Since XOR is the main computation in the Recover operation, we use the number of XOR operations as

the performance metric. We define normalized performance for complete disk failures as below:

Norm. Perf. =
XOR number of Basic Matrix Method

XOR number of a decoding algorithm

Again, the higher normalized performance is, the better decoding performance is achieved. We consider

two cases for complete disk failures: one complete disk failure, and two complete disk failures. As more

than two complete disk failures are beyond the recoverability of RAID-6 codes, they are ignored here.

 0

 1

 2

 3

 4

 5

 6

 7

5 7 11 13 17 19

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(a) X-code

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

7 9 13 15 19 21

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(b) EVENODD

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

6 8 12 14 18 20

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

The value of n

SCAN Algorithm
Basic Matrix Method
Matrix Method (Reverse)

(c) RDP

Figure 3.11: Decoding performance comparison for two complete disk failures

One Complete Disk Failure

When there is one entire disk failure, there could be sector failures in other disks. However, as sector

failure is a low probability event, the decoding process will take most time to reconstruct data from one

single disk failure without sector failures. Hence, here we only consider one pure complete disk failure.

To measure the decoding performance of one complete disk failure, we assume that each disk has the

same failure probability, and thus the decoding performance is the average value of all possible single disk

failures. The decoding performance is displayed in Figure 3.10, from which we can have the following

observations:

51

1. For X-code, three decoding algorithms have the same decoding performance.

2. For EVENODD and RDP, Basic Matrix Method and Matrix Method (Reverse) achieve the same per-

formance, but the SCAN algorithm obtains better performance and the performance improvement is

about 5% to 15%.

Two Complete Disk Failures

When we consider two complete disk failures, we assume that the two disks are distributed to any two

disks in a RAID-6 system with the same probability. Then, the decoding performance is the average value

of all cases. Figure 3.11 displays the performance results, and we can observe:

1. For X-code, the SCAN algorithm performs 40% to 360% better than Basic Matrix Method. The per-

formance improvement is even more for EVENODD and RDP.

2. The SCAN algorithm performs similarly to Matrix Method (Reverse) for X-code, but it obtains much

better performance for EVENODD and RDP. The performance improvement range is 30-50% is for

EVENODD, and it is 15% for RDP. The reason of why The SCAN algorithm outperforms Matrix

Method (Reverse) is as follows. Matrix Method (Reverse) employs a technique called Reversing The

Column Incremental Construction to determine if the erasure just processed should be used as inter-

mediate results to recover the next unprocessed erasure. However, this is a greedy algorithm, and it can

not always determine it correctly. But the SCAN algorithm is able to find all necessary intermediate

results because when an erasure is processed, it automatically becomes an intermediate result and can

be used to help recover unprocessed erasures. Therefore, the SCAN algorithm is more efficient than

Matrix Method (Reverse).

As a matter of fact, for two complete disk failures, the SCAN algorithm is reduced to decoding algo-

rithms for entire disk failures, because both algorithms need the same number of XOR operations in

decoding. As the XOR number of decoding algorithms for entire disk failures is optimal, then that of

the SCAN algorithm is also optimal.

3. Matrix Method (Reverse) obtains significantly better performance than Basic Matrix Method for all

three codes. For instance, the performance improvement of Matrix Method (Reverse) over Basic Ma-

trix Method ranges from 40% to 360% for X-code. It indicates the optimization technique utilized in

Matrix Method (Reverse) is effective for this failure type.

52

In summary, for two complete disk failures, the SCAN algorithm improves the decoding performance

over Matrix Method (Reverse) by up to 50% and over Basic Matrix Method by 40-500%. The reason of

significant performance improvement is because the SCAN algorithm leverages the geometric structure of

RAID-6 codes.

3.7 Summary

This chapter studies efficient decoding algorithms for RAID-6 codes, with contributions in both the-

ory and practice. Theoretically, we introduce ED-2 codes, a family of RAID-6 codes. Then, we derive

the sufficient and necessary conditions to determine the recoverability of erasure patterns for ED-2 codes,

EVENODD, and RDP. Practically, we propose an efficient decoding algorithm called SCAN algorithm to

correct any erasure patterns for these codes.

The SCAN algorithm consists of two steps, Check operation and Recover operation. The Check operation

efficiently determines the recoverability of an erasure pattern and builds recovery plan. Inheriting the result

from the Check operation, the Recover operation recovers all erasures by performing only XOR operation.

Hence, the SCAN algorithm does not perform any unnecessary operations for failure recovery.

The decoding performance of the SCAN algorithm is evaluated by comparisons with another generic de-

coding algorithm Matrix Method. The evaluation is performed on three erasure codes: X-code, EVENODD,

and RDP, and it covers all possible disk failure types. Extensive experiments and analysis show that the

SCAN algorithm outperforms the Matrix Method for all disk failure types and on all evaluated erasure codes.

Therefore, the SCAN algorithm has a great potential to be integrated into practical RAID-6 arrays/clusters.

A possible future research direction is to extend these results for RAID-6 to RAID-n (n ≥ 7) systems.

53

CHAPTER 4 Efficient Error Decoding for the STAR

Code

4.1 Introduction

As storage systems grow in size and complexity, various hardware and software component failures

inevitably occur [86, 98, 12, 67], which often result in various user data losses and errors [14, 13, 12]. From

an application’s point of view, a data loss can be either failure or silent error. Here a failure refers to a data

loss with explicit error report from a disk drive to the whole system or application. The simplest and most

common one is an entire disk drive failure in a fail-and-stop fashion, resulting in whole data loss on the

disk. Another failure case is the latent sector failure within a disk drive [13], which can also be detected and

reported during the scrubbing process using a disk driver’s internal error correcting codes. A silent error,

however, refers to a data corruption without any error indication from the disk drive itself to the system. This

type of error includes corrupted data, torn writes, lost writes, misdirected writes and wrong reads, which

usually results from various bugs in the firmware on disk controllers and various other related software in

the storage stacks along a data I/O path [95, 12, 67, 48, 34].

Failures have been known for a long time, and various techniques have been developed to cope with them,

from data mirroring to simple replication to more advanced error control code based RAID-5 and RAID-6

type of data protection schemes [85, 25, 40, 20, 31]. In contrast, silent errors are less well-understood and

not as sufficiently accounted for. By detecting and converting silent errors into failures, checksum at disk

sector or block level is an effective and the most common technique to combat silent errors. Unfortunately,

checksum is not sufficient by itself. For example, a silent error from a write to a wrong sector or block due

to a firmware bug cannot be detected by the checksum on the very sector or block at all. As a result, various

bandits using file system level information have been proposed as additional measures to deal with silent er-

rors. These proposals include write verification, physical and logical identity, and version mirroring [12, 67].

Seemingly different individually, these techniques are common in their implicit premise – adding redundant

information can help detect errors.

From a different perspective, however, redundancy is already in place introduced by error correcting

54

codes to cope with failures at system level. From coding theory point of view, a disk failure corresponds to

an erasure in corresponding codeword, while a silent error corresponds to an error. A proper error correcting

code can correct certain numbers of both erasures and errors at the same time. Thus we advocate using error

correcting codes and overcome both failures and silent errors simultaneously as a more unified and systematic

mechanism to simplify storage system design. Specifically, we recommend the STAR code [54] as a very

suitable candidate for such purpose. The STAR code was recently introduced to tolerate three simultaneous

disk failures in a storage system. While initially designed to tolerate only disk failures, as an MDS code

with minimum distance of 4, it can also protect simultaneous failures on one disk and silent errors in another

disk [79]. While any MDS code with minimum distance of 4 can achieve this goal, the STAR code is unique

in its geometric structure, which allows us to design a special decoding algorithm that can recover failures

and errors very efficiently. Therefore, the very focus of this chapter is to provide such a decoding algorithm

so that the STAR code can be used to effectively and efficiently deal with failures and silent errors at the

same time, and thus significantly improve the data reliability of storage systems.

In a storage system, the decoding algorithm can be used in two situations. One situation is during an

inter-disk scrubbing process. Different from intra-disk scrubbing process which uses checksums at sector

or block level to detect disk errors, an inter-disk scrubbing process collects data from multiple disks and

check the data consistency according to certain constraints, such as the parity constraint imposed by the

STAR code. In this situation, even if failures are present, the decoding algorithm can still detect silent

errors and correct them. The second situation is in a data reconstruction process. When one disk completely

fails, temporal correlations can result in the probability of silent errors in other similar disks used in the

same system much higher than normal [12, 67]. Hence, when recovering the disk failure, using the decoding

algorithm to perform error detection and correction at the same time can achieve much higher data reliability.

The main contributions of this chapter include: 1) the design of an efficient decoding algorithm named

EEL (Efficient Error Locating) for the STAR code to tolerate one failure and one silent error at the same time;

2) a rigorous correctness proof of the decoding algorithm; and 3) performance evaluation of the decoding

algorithm with thorough comparisons to a naive try-and-test decoding algorithm for the same purpose.

The rest of the chapter is organized as follows: Section 4.2 discusses related work; Section 4.3 lists

related coding theory terms and results, and gives a brief description of the STAR code; Section 4.4 then dis-

cusses how to detect errors for the STAR code; a naive try-and-test approach for the STAR code is then de-

scribed in Section 4.5; Section 4.6 presents this chapter’s main result: a new efficient algorithm for the STAR

code to decode simultaneous failures and errors, with its computation performance evaluated in Section 4.7;

55

Some broader applications of the STAR code together with the new decoding algorithm are discussed in

Section 4.8; and Section 4.9 concludes the chapter.

4.2 Related Work

Directly related to this work is certainly the STAR code design [54]. The STAR code is designed to

tolerate three disk failures, and it has shown to have much better encoding/decoding performance than other

similar codes [54]. The decoding algorithm presented in [54], however, can only correct up to three disk

failures (erasures). Similarly, only erasure decoding algorithm has been presented for the recently introduced

generalized RDP code, another MDS code with minimum distance of 4 [19]. In general coding theory,

though, various decoding algorithms have been designed to correct erasures and errors at the same time

for certain codes, such as the BCH code and the Reed-Solomon code [79, 111]. However, there is no

general erasure-and-error decoding algorithm for any code, except the naive one which will be described and

compared later in Section 4.5.

From the storage system point of view, various techniques and systems have been developed to combat

disk failures [85, 25, 40, 20, 31]. Also as already described and discussed in [101, 95, 12, 67], various

techniques and schemes have been developed to cope with silent errors. The results presented in this chapter

complement all these techniques and schemes at the disk and system levels, including intra-disk scrubbing.

In fact, use of the STAR code with our 1-erasure-and-1-error decoding algorithm will address the parity

pollution issue as raised in [67], where a silent error in a data block spreads to other data blocks through

various parity (checksum) calculations. With the STAR code, silent errors can be corrected within their data

blocks without further spreading to other blocks.

4.3 Basics of the STAR Code

In this section, we give a brief description of the STAR code. It is an array code, which is easier to be

described in a two-dimensional array rather than a one-dimensional vector. First we define some notations

for an array code.

4.3.1 Notations

Table 4.1 lists all the notations to be used in the rest of the chapter. A letter in lower case denotes a

symbol or a value, such as ai,j , and a letter in upper case denotes a column, such as Cj . All the symbols are

56

parity I parity II

(b) 1st diagonal parity(a) horizontal parity

1st adjuster

parity III

(b) 2nd diagonal parity

2nd adjuster

Figure 4.1: Construction of the STAR code

within one codeword.

Notation Definition

〈x〉p x mod p
ai,j original symbol at row i and column j
ci,j symbol read at row i and column j
Cj column read (of symbols) at index j
ei,j error symbol at row i and column j
Ej column (of error symbols) at index j
Sj column (of syndromes) at index j
⊕

i ai XOR all symbol ai’s (return one symbol)
⊕

j Cj XOR all column Cj’s (return one column)

C
⊕

a XOR each symbol in column C with symbol a
(return one column)

Ci

⊕

Cj XOR column Ci and Cj (return one column)

f↓(C, i) cyclic shifting column C downward by i
positions

Table 4.1: Notations Defined

Note that ai,j denotes an original symbol. It is the correct value in a codeword. ci,j denotes the symbol

read from a disk. It may be unknown due to a disk failure or incorrect due to a silent error. ei,j denotes the

error symbol causing ai,j flip to ci,j . If it is 0, then there is no error; otherwise, the read symbol is corrupted

with ci,j = ai,j ⊕ ei,j .

4.3.2 STAR code: A Brief Description

The STAR code can be described by a (k − 1) × (k + 3) 2-dimensional array. For best storage and

computation performance, k = p, where p is a prime number, though a general STAR code for arbitrary

k can be easily derived from its closest p [54, 92]. For simplicity, we only limit our discussion for k = p

throughout the chapter.

57

A STAR codeword consists of p user data columns and 3 parity columns. The 1st parity column is a

horizontal parity column, which is calculated by XORing all the data symbols in the same row. The 2nd

parity column is a diagonal parity column. Its computation is as follows. First, an adjuster is computed

from the data symbols along the main diagonal of slope 1. Second, the data symbols along other slope 1

diagonals are computed as diagonal parity symbols. Third, the adjuster is complemented to all the diagonal

parity symbols. The 3rd parity column follows a similar construction as the 2nd parity column, except that

it is computed along diagonals of slope -1.

Figure 4.1 shows the construction of the STAR code for p = 5. Together with the (5− 1)× (5 + 3) two

dimensional array, the figure also contains an imaginary 5th row, where all the data symbols are set to 0. It is

shown only to help understand the adjuster and parity calculation. Without the 3rd parity column, the STAR

code reduces to the (p+ 2, p) EVENODD code [20]. The algebraic construction of the three parity columns

is defined as follows (0 ≤ i < p− 1):

ai,p =

p−1
⊕

j=0

ai,j ;

ai,p+1 = t1 ⊕

p−1
⊕

j=0

a<i−j>p,j

 ,where t1 =

p−1
⊕

j=0

a<−1−j>p,j ;

ai,p+2 = t2 ⊕

p−1
⊕

j=0

a<i+j>p,j

 ,where t2 =

p−1
⊕

j=0

a<−1+j>p,j .

Here, t1 and t2 are the adjusters for the 1st and 2nd diagonal parity columns, respectively.

When a column is treated as a super symbol, the STAR code is a (p + 3, p) code, and its minimum

(column) distance is four [54]. (When used in storage systems, a column usually is mapped to a disk drive.)

An efficient decoding algorithm for recovering three erasures for the STAR code was presented in [54]. In

this chapter, however, our focus is on how to simultaneously correct one erasure and one error for the STAR

code.

4.4 Error Detection for the STAR code

In general, correcting a codeword with errors involves two steps: error detection and error correction.

The error detection step determines whether there is any error in a codeword, and, if so, the error correction

step is invoked to correct the error. Depending on the positions of erasure and error, both the detection and

58

correction algorithms vary slightly. Nevertheless, the essence stays the same. Hence, for illustration purpose,

we first focus on one single error type here, namely, both the erasure and error columns are among the data

columns. A complete decoding algorithm will be provided later in Sec. 4.6 to deal with all possible erasure

and error locations.

Assume the erasure column is Cu. Let R0
u denote the column recovered from the horizontal parity

column, R1
u from the 1st diagonal parity column and R2

u from the 2nd diagonal parity column. R0
u, R1

u and

R2
u can be calculated as follows:

R0
u =

p
⊕

j=0,j 6=u

Cj ;

R1
u = f↓(Cp+1

⊕

p−1
⊕

j=0,j 6=u

f↓(Cj , j)

⊕

r1u,−u),

where r1u =

p−1
⊕

j=0

c<−1−j+u>p,j

⊕

c<−1+u>p,p+1;

R2
u = f↓(Cp+2

⊕

p−1
⊕

j=0,j 6=u

f↓(Cj ,−j)

⊕

r2u, u),

where r2u =

p−1
⊕

j=0

c<−1+j−u>p,j

⊕

c<−1−u>p,p+2.

Although R0
u, R1

u and R2
u are computed from different parity columns, they represent the same data

column. Hence, we can simply compare them to detect whether there is an error in the codeword. If they

are all equal, then there is no error. The erasure column can be simply recovered by setting it to R0
u, and the

decoding process completes. Otherwise, there must exist at least one error column.

no error v = p v = p+ 1 v = p+ 2 0 ≤ v ≤ p− 1

S0(α) u(α) u(α) + v(α) u(α) u(α) u(α) + v(α)
S1(α) αuu(α) αuu(α) αuu(α) + v(α) αuu(α) αuu(α) + αvv(α)
S2(α) α−uu(α) α−uu(α) α−uu(α) α−uu(α) + v(α) α−uu(α) + α−vv(α)

Table 4.2: Error Column Location v and the Syndromes

59

no error v = p v = p+ 1 v = p+ 2 0 ≤ v ≤ p− 1

SS1(α) 0 v(α) α−uv(α) 0 v(α) + αv−uv(α)
SS2(α) 0 v(α) 0 αuv(α) v(α) + αu−vv(α)

Table 4.3: Error Column Location v and Simplified Syndromes

4.5 A Naive Decoding Algorithm: Try-and-Test

As there is no published erasure-and-error decoding algorithm to compare with, we first describe a simple

decoding algorithm. The idea is straightforward: simply use a try-and-test approach – whenever an error is

detected, the algorithm tests each of the survival columns sequentially until the error column is found. For

each column being tested, the algorithm first treats it as another erasure column and then checks parity

consistency of the remaining columns.

The parity consistency is checked as follows. Assume both u and v are data columns. u denotes the

original erasure column and v denotes the tested error column. Then, all the three parity columns are avail-

able. The Try-and-Test approach uses the first two parity columns to decode column u and v, following the

erasure decoding algorithm of the STAR code [54]. It then re-encodes the 3rd parity column from all the

data columns, and compares it with the original one. If they are equal, then column v is indeed the error

column, and as a byproduct, both columns u and v are recovered during this process. Otherwise, test the next

column similarly until the error column is found or all the columns are tested. If all the columns are tested,

but none of them can be deemed as an error, then there are more than one error column, and the decoding

algorithm declares a decoding failure event.

The above parity consistency check can be readily generalized to other cases, where both column u and v

are parity columns, or one is a data column while the other is a parity column. In addition, interested readers

can easily prove that the Try-and-Test approach can indeed correct one erasure column and one error column

for the STAR code. we simply skip these simple but tedious discussions here.

4.6 The EEL Algorithm

Now we propose a new decoding algorithm - the EEL (Efficient Error Locating) algorithm. The key is to

locate the error column efficiently. The EEL algorithm leverages the unique intrinsic geometric structure of

the STAR code and locates the error column without performing the Naive algorithm’s try-and-test operation

in locating the error column, which in turn greatly improves the decoding efficiency. Although the EEL

60

algorithm presented here is for 1-erasure-and-1-error case, the algorithm can be simplified for 1-error case.

The details are left to interested readers again. First we show a basic error-locating algorithm and then we

present a complete decoding algorithm with further improved computation performance.

4.6.1 A Basic Error-Locating Algorithm

Similar to the EVENODD code [21], let A = [ai,j] be a (p− 1)× n binary array, with ai,j as defined in

Section 4.3.1. Each column aj (0 ≤ j ≤ n − 1) then can be viewed as a polynomial aj(α) modulo Mp(α)

[21, 54], where

aj(α) = ap−2,jα
p−2 + · · · + a1,jα+ a0,j

and

Mp(α) =
αp − 1

α− 1
= αp−1 + αp−2 + · · · + α+ 1

Adopting the notation in [21], let B = [ai,j] be the error-corrupted array of A. Assume B has one erasure

at column u, and at most one error at column v with the error value being v(α). (Note here u is known, but

v is unknown.) Write

B = (b0(α), b1(α), · · · , bn−1(α))

then for the STAR code, its three syndromes can be computed as follows:

S0(α) =

p
⊕

i=0

bi(α)

S1(α) = bp+1(α)⊕

(

p−1
⊕

i=0

αibi(α)

)

S2(α) = bp+2(α)⊕

(

p−1
⊕

i=0

α−ibi(α)

)

It is not hard to derive the relation between the error column location v and the above three syndromes,

as shown in Table 4.2.

We further define two simplified syndromes as

SS1(α) = S0(α) + α−uS1(α)

SS2(α) = S0(α) + αuS2(α)

and Table 4.2 can then be simplified to Table 4.3, from which the error column location can be easily

61

deduced by comparing the two simplified syndromes. Just note, when 0 ≤ v ≤ p − 1, i.e., the error is in a

data column, the error location v is the first v satisfying the equation αu−vSS1(α) = SS2(α).

From the above observations, an efficient erasure-and-error decoding algorithm can be readily derived

for the STAR code. It is worthy noting, however, that all the above polynomial operations are performed

using modulo Mp(α), which forces a multiplication by α take the complement of the shifted column of size

p− 1 [21, 54], just as the adjusters t1 and t2 computation in Sec. 4.3.2.

A natural question to ask is then: can this complement operation be avoided to further improve the

decoding performance? Fortunately, the answer is positive. Through the rest of this section, we present a

more efficient decoding algorithm, in which all the polynomial operations are performed over modulo αp−1

instead, thus avoiding all the complement operations. To make the implementation of this algorithm more

straightforward, vectors will be used hereafter, following the notations in Table 4.1.

0

1

2

3

4

0 1 2 3 4 S0 S1 S2

u0

u1

u2

u3

v0

v1

v2

v3

u0+v0

u1+v1

u2+v2

u3+v3

v3+u3+v2

u0+u3+v2

u1+v0+u3+v2

u2+v1+u3+v2

u1+v2+u0+v1

u2+v3+u0+v1

u3+u0+v1

v0+u0+v1

(a) Step 1: compute syndrome

0

1

2

3

4

0 1 2 3 4 S0 S1 S2

u0

u1

u2

u3

v0

v1

v2

v3

u0+v0

u1+v1

u2+v2

u3+v3

v3+u3+v2

u0+u3+v2

u1+v0+u3+v2

u2+v1+u3+v2

u1+v2+u0+v1

u2+v3+u0+v1

u3+u0+v1

v0+u0+v1

u3+v2 u0+v1

(b) Step 2: compute adjuster syndrome

0

1

2

3

4

0 1 2 3 4 S0 S1 S2

u0

u1

u2

u3

v0

v1

v2

v3

u0+v0

u1+v1

u2+v2

u3+v3

v3

u0

u1+v0

u2+v1

u1+v2

u2+v3

u3

v0

u3+v2 u0+v1

(c) Step 3: cancel adjuster syndrome

0

1

2

3

4

0 1 2 3 4 S0 S1 S2

u0

u1

u2

u3

v0

v1

v2

v3

u0+v0

u1+v1

u2+v2

u3+v3

v0

v0+v1

v1+v2

v2+v3

v0+v1

v1+v2

v2+v3

v3

v3 v0

(d) Step 4: cancel erasure symbols

Figure 4.2: Locating error column in the EEL algorithm.

4.6.2 Syndrome Computation

The EEL algorithm consists of three steps: computing syndrome, locating error column, and recovering

erasure and error columns. Recall from Section 4.3.2, as it has three parity constraints, the STAR code has

three syndromes, and they can be computed as follows, where syndrome S0 represents the horizontal parity

constraint, S1 the 1st diagonal parity constraint, and S2 the 2nd parity constraint.

S0 =

p
⊕

j=0

Cj ;

62

S1 = Cp+1

⊕

p−1
⊕

j=0

f↓(Cj , j)

⊕

t1,

where t1 =

p−1
⊕

j=0

c<−1−j>p,j ;

S2 = Cp+2

⊕

p−1
⊕

j=0

f↓(Cj ,−j)

⊕

t2,

where t2 =

p−1
⊕

j=0

c<−1+j>p,j.

We note that the syndrome computation is time consuming, as its complexity is in the order of p2.

Fortunately, it is possible to leverage the results produced in the error detection step and thus greatly speedup

this computation. In the rest of this section, we focus on the most common and hardest erasure and error

pattern, where both the erasure and error are data columns. Again, u denotes the index of the erasure column,

and no data is available from column u. Hence, we set Cu = 0.

We obtain the following relationship between the syndromes Sj’s and Rj’s, the results from the error

detection step:

S0 = R0
u;

S1 = f↓(R
1
u

⊕

r1u
⊕

t1, u);

S2 = f↓(R
2
u

⊕

r2u
⊕

t2,−u).

Here, t1, t2, r1u, and r2u are calculated similarly as in the syndrome computation.

4.6.3 Locating the Error Column

An Example

Locating the error column is the key step in our decoding algorithm. It is instructive to use an example

to demonstrate how this step works.

Again the erasure u and error v are both data columns. For the error column v, we know that each symbol

equals the XOR sum of the corresponding original data symbol and error symbol; that is, ci,v = ai,v ⊕ ei,v.

For simplicity, denote ei,v by vi. For the erasure column u, we set Cu = 0, so ai,u = ei,u since ai,u =

ei,u ⊕ ci,u and ci,u = 0. Similarly, denote ai,u by ui. In the example shown in Figure 4.2, u = 1 and v = 2;

+ denotes the XOR operation. Note here ui’s, vi’s (the values of the erasure and error columns) and v (the

63

error column location) are unknown, but u = 1 (the erasure column location) is known.

The error column can be located in the following five steps with explanations:

Step I – compute syndrome. We first show the relationship between symbols in the syndromes and the

erasure/error columns. Using the first symbol of S0 as an example (denoted as S0,0). From Section 4.6.2,

we know that S0,0 = ⊕5
j=0c0,j . For columns j = 0, 3, 4, 5 (neither erasure nor error), c0,j = a0,j . On the

other hand, from the STAR code’s encoding rule, a0,5 = ⊕4
j=0a0,j . Thus, by simple substitution, we get

S0,0 = u0 ⊕ v0. The rest of the syndrome symbols can be derived similarly, as shown in Figure 4.2(a).

Step II – compute adjuster. Now we simplify the syndromes for further calculation. In particular,

the adjuster for the 1st diagonal parity column can be computed by XORing all the symbols in syndrome

column S0 and S1, as shown in [20, 54]. We place the adjuster for S1 at the last row in S1. The adjuster for

the 2nd diagonal parity column can be computed similarly. The results are shown in Figure 4.2(b).

Step III – complement adjuster. Then, we XOR the adjuster in S1 with the rest of the symbols in S1.

This cancels the adjuster from the rest of the syndrome column S1. The same operation is applied on S2.

Figure 4.2(c) shows the results.

Step IV – cancel erasure symbols. Now we cancel the symbols of the erasure column from S1 and S2,

respectively. For S1, this is achieved by shifting S1 downwards by −u (or 4) positions and XORed with S0.

For S2, it is shifted downwards by u = 1 positions before XORed with S0. All shifts are cyclic modular 5.

The results are shown in Figure 4.2(d).

Step V – locate error column. The last step is to locate the error column. We observe that, if S1 is

cyclically shifted downwards by 4 positions, it matches S2 exactly. In fact, the number of shifts (denoted

as shift down position or h) is completely determined by the positions of the erasure and error column. It

satisfies the following equation:

h = −v (error position) + u (erasure position) (mod p)

In this example, u = 1, h = 4 and p = 5, so v = (u − h) = (1 − 4) (mod 5) = 2 and the error column

is finally located!

The Error Locating Algorithm

The above example illustrates how to locate the error column. The error locating algorithm follows the

same steps as those given in the example. Thus, the algorithm is quite straightforward. Below provides a

64

formal description of the algorithm together with its correctness proof.

Algorithm 6 Locating Error Column

/*Step 1: Compute syndromes S0, S1, S2*/

S0 = R0
u;

S1 = f↓(R
1
u

⊕

r1u
⊕

t1, u);
S2 = f↓(R

2
u

⊕

r2u
⊕

t2,−u);

/*Step 2: Compute adjusters t1, t2*/

t1 =
⊕

(S0
⊕

S1);
t2 =

⊕

(S0
⊕

S2);

/*Step 3: Complement adjusters to the syndromes*/

S1 = S1
⊕

t1;
S2 = S2

⊕

t2;

/*Step 4. Cancel erasure symbols in the syndromes*/

S1 = S1
⊕

t1;
S2 = S2

⊕

t2;

/*Step 5. Compute the error column location*/

f↓(S1,−v + u) = S2.

In Algorithm 6, Step 1 uses some notations defined in Sec. 4.3.1 and Sec. 4.6.2. Note R1
u, r1u, R2

u and r2u

are from the error detection process in Sec. 4.6.2.

To compute the error column location, Step 5 shifts S1 down until S1 = S2. Again, shifts are cyclic

modular p.

Let the number of shifts be h, then h = −v + u (mod p). Solve v and it is the error column location.

If after p shifts, no S1 matches S2, then declare a decoding failure, indicating there are more than one

error columns.

Now we prove the correctness of this error locating algorithm.

Proof. In the above algorithm, after Step 1, from Sec. 4.6.2 and Sec. 4.6.2, the following equations hold:

S0 = Eu

⊕

Ev, (4.1)

S1 = f↓(Eu, u)
⊕

f↓(Ev, v)
⊕

ep−1−u,u

⊕

ep−1−v,v,

S2 = f↓(Eu,−u)
⊕

f↓(Ev,−v)
⊕

ep−1+u,u

⊕

ep−1+v,v.

65

After Step 2, the following then becomes true by the definition of the adjusters:

t1 =
⊕

(S0

⊕

S1) = ep−1−u,u

⊕

ep−1−v,v,

t2 =
⊕

(S0

⊕

S2) = ep−1+u,u

⊕

ep−1+v,v.

Hence after Step 3, combining the results from Step 1 and Step 2, we get

S1 = f↓(Eu, u)
⊕

f↓(Ev, v),

S2 = f↓(Eu,−u)
⊕

f↓(Ev,−v).

Then with Step 4, we have

S1 = S0

⊕

f↓(S1,−u)

= S0

⊕

f↓(Eu, 0)
⊕

f↓(Ev, v − u)

= S0

⊕

Eu

⊕

f↓(Ev , v − u)

= Eu

⊕

Ev

⊕

Eu

⊕

f↓(Ev, v − u)

= Ev

⊕

f↓(Ev , v − u). (4.2)

S2 = S0

⊕

f↓(S2, u)

= S0

⊕

f↓(Eu, 0)
⊕

f↓(Ev ,−v + u)

= S0

⊕

Eu

⊕

f↓(Ev,−v + u)

= Eu

⊕

Ev

⊕

Eu

⊕

f↓(Ev ,−v + u)

= Ev

⊕

f↓(Ev,−v + u). (4.3)

For the right part of Eq (4.2) and (4.3), we have:

f↓(Ev

⊕

f↓(Ev , v − u),−v + u)

= Ev

⊕

f↓(Ev ,−v + u)

Hence f↓(S1,−v + u) = S2.

66

4.6.4 Recovering Erasure and Error Columns

After the error column is located, the next step is to correct both erasure and error columns. An intuitive

approach is to treat the error column as another erasure column, then recover them using the STAR erasure

decoding algorithm [54]. This naive approach, however, is not efficient as it does not utilize the intermediate

results produced during the above error locating process. Now we present a much more efficient algorithm

which can correct the erasure and error columns directly by fully utilizing those intermediate results. We

first illustrate the algorithm by completing the previous example and then give a formal description of the

algorithm itself.

An Example

We continue the example in Section 4.6.3 to demonstrate how the correcting algorithm works. In Fig-

ure 4.2(d), there are 5 rows in syndrome S1. We can treat each row as an equation and each error symbol as

a variable. Thus, there are totally 5 equations and 4 variables. In row 4, there is only one variable v3, so we

can compute v3 from the equation represented by row 4. In row 3, there are two variables v3 and v2. After

v3 is solved, we can calculate v2. Following the similar steps, we can solve v1 from row 2 and v0 from row

1. Now, all the error symbols in error column 2 are corrected.

The next step is to recover the erasure column 1. In syndrome S0, there are four rows, and each row is

the XOR sum of the symbols from erasure column 1 and error column 2. Each row is again treated as an

equation. Since all the error symbols of column 2 are now known, we can compute u0 from row 0 of S0, u1

from row 1, u2 from row 2, and u3 from row 4. All the erasure symbols of column 1 are thus recovered.

Finally, the error correction process completes by XORing the error symbols of column 2 with C2 to

recover the original data column 2.

The Erasure and Error Recovery Algorithm

Now we present a formal description of the erasure and error recovery algorithm. The pseudocode of the

algorithm is described in Algorithm 7.

In Step 1, we solve p variables vi’s (0 ≤ i ≤ p− 1) from a group of p linear equations. Observe that

1. each equation is the XOR sum of two variables, one from Ev and the other from f↓(Ev, v − u);

2. each variable vi appears exactly twice in the equations;

3. v<−1>p
= 0, since it is in the imaginary row p− 1.

67

Algorithm 7 Recovering erasure and error columns.

/*Step 1: Solve Ev, the error symbols*/

Ev

⊕

f↓(Ev , v − u) = S0
⊕

f↓(S1,−u);

/*Step 2: Recover Eu, the erasure column*/

Eu = S0
⊕

Ev;

/*Step 3: Recover the original data column Cv*/

Cv = Cv

⊕

Ev.

Hence the above equations in turn can be efficiently solved in a zig-zag fashion just as in the erasure

decoding for the EVENODD code [20] by the following 3 steps:

1. Step 1a: start from the last row of Eq (4.2), which contains two variables v<−1>p
from Ev and

v<−1−1∗(v−u)>p
from f↓(Ev, v − u). Since v<−1>p

= 0, then the only one unknown variable

v<−1−1∗(v−u)>p
is solved. And now we are at row 〈−1− l ∗ (v − u)〉p (l=0). Go to Step 1b.

2. Step 1b: row 〈−1 − l ∗ (v − u)〉p of Eq (4.2) consists of two variables v<−1−l∗(v−u)>p
from Ev

and v<−1−(l+1)∗(v−u)>p
from f↓(Ev, v − u). Since variable v<−1−l∗(v−u)>p

is known, the only one

unknown v<−1−(1+1)∗(v−u)>p
can be recovered.

3. Step 1c: in step 1b we are at row v<−1−l∗(v−u)>p
. If l = p − 2, this process stops; otherwise, go to

the next row 〈−1− (l + 1) ∗ (v − u)〉p and repeat step 1b.

4.7 Performance Evaluation

Now we evaluate the computation performance of our decoding algorithm by comparing it with the naive

decoding algorithm described in Section 4.5. We first count the number of XOR needed for both algorithms,

since XOR is the most frequent operation in decoding and thus dominates decoding performance. Then we

measure the wall time of the decoding algorithms through experiments.

4.7.1 XOR Numbers

There are six possible erasure and error pattern combinations, as listed in the first two columns in Table

4.4. For both decoding algorithms, the XOR number needed to correct different pattern is different. There-

fore, we first compute the number of XORs needed for each pattern. Then, by assuming each column has

68

Erasure Error Error Detection Correction (EEL) Total (EEL) Correction (Naive) Total (Naive)

Data No 3p2 − 3p 0 3p2 − 3p 0 3p2 − 3p
Parity No 2p2 − 2p p2 − p 3p2 − 3p p2 − p 3p2 − 3p
Data Data 3p2 − 3p 21p− 16 3p2 + 18p− 16 6.5p2 − 6.5p 9.5p2 − 9.5p
Data Parity 3p2 − 3p 20p− 15 3p2 + 17p− 15 13p2 − 22p 16p2 − 25p
Parity Data 2p2 − 2p p2 + 14p− 13 3p2 + 12p− 13 4.5p2 − p 6.5p2 − 3p
Parity Parity 2p2 − 2p p2 + 4p− 5 3p2 + 2p− 5 8p2 − 8p 10p2 − 10p

Table 4.4: Decoding cost comparison (in XORs).

the same probability to be an erasure or an error column, we calculate the average number of XORs as the

cost for a decoding algorithm.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20

N
o
rm

a
liz

e
d
 C

o
rr

e
c
ti
o
n
 T

h
ro

u
g
h
p
u
t

p

Estimated throughput by XOR number
Measured throughput on Pd
Measured throughput on Pc2q

(a) Correction throughput of the EEL algorithm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20

N
o
rm

a
liz

e
d
 D

e
c
o
d
in

g
 T

h
ro

u
g
h
p
u
t

p

Estimated throughput by XOR number
Measured throughput on Pd
Measured throughput on Pc2q

(b) Overall decoding throughput of the EEL algorithm

Figure 4.3: Comparison of throughput.

XOR number for the EEL algorithm

Table 4.4 shows that there are four possible erasure and error patterns when there is an error. We stick

to the most common one - an erasure and an error in two data columns - to demonstrate how to count the

number of XORs needed for decoding. The XOR numbers for the other patterns can be counted similarly.

Recall that there are in total four steps in our EEL decoding algorithm: 1) error detection, 2) syndrome

computation, 3) error locating and 4) erasure and error recovery.

1. As shown in Section 4.4, the error detection step computes R0
u, R1

u and R2
u, each costing p ∗ (p − 1)

XORs. Hence the total cost for this step is 3p2 − 3p. Note the symbols in the last imaginary row are

not involved in computation.

2. As discussed in Section 4.6.2, the syndrome computation step computes syndromes S0, S1 and S2

from R0
u, R1

u and R2
u obtained in the error detection step. S0 needs p − 1 XORs, and S1 and S2 each

need 4p − 2 XORs. Hence the total cost of this step is 9p − 5.

69

3. The error locating step first simplifies syndromes S1 and S2; each computation needs 4p − 3 XORs.

Then vector equivalence test is conducted using shift and compare. In the test, however, no XOR

operation is needed. As a result, the total cost for this step is only 8p− 6 XORs.

4. The erasure and error recovery step needs 2p − 3 XORs in solving the erasure symbol Eu and the

error symbol Ev, and then 2p − 2 XORs for recovering the erasure column Eu and error column Ev;

hence, 4p − 5 XORs in total.

Adding all the XOR numbers in the above steps, we get the decoding cost, which is 3p2 + 18p − 16

XORs. Similar analysis can be conducted for the other erasure and error patterns, as listed in details in

Table 4.4. If a number contains a constant value less than 5, the constant value is ignored. In Table 4.4, The

first two columns specify an erasure and error pattern. In the second column, a no means there is no error.

The 3rd column is the XOR numbers needed in the error detection step; the 4th column is the number of

XORs for the erasure and error correction step; the 5th column is the total number of XORs performed in

decoding process.

XORs Needed for the Naive algorithm

The Naive algorithm also consists of two steps, the error detection and the error correction. The error

detection step is exactly the same as in our decoding algorithm, so we just focus on the error correction step.

We observe that as in the EEL algorithm, the Naive algorithm can greatly reduce XORs needed in the

error correction step by utilizing the results from the error detection step. When the erasure column is a

data column, the cost to test whether a data column is an error or not is 13p − 13 when the results from the

error detection step are used. Otherwise that cost would be 3p2 − 3p. So the cost reduction is significant.

Assume that the average number of try and test is p/2 since there are in total p data columns, then the total

average cost is (13p − 13) ∗ p/2 = 6.5p2 − 6.5p XORs for correcting when both the erasure and error are

data columns. When the error is a parity column, (13p − 13) ∗ (p − 1) XORs are needed on the p − 1

data columns, and 4p tests on the parity columns, hence the total cost is then 13p2 − 22p XORs. Costs for

correcting other erasure and error patterns can be counted similarly, as again listed in details in Table 4.4.

Comparison

When there is one erasure but no error, Table 4.4 shows that the EEL algorithm performs the same as the

Naive algorithm, since both only conduct the same error detection step without invoking error correction.

70

The real comparison is when there is one error. The table shows that the EEL algorithm greatly outperforms

the Naive algorithm.

4.7.2 Measured Decoding Performance

Experiment Setup

We have implemented both decoding algorithms in C language. We then measure their decoding times

with random codewords. Codewords are kept in main memory, so there is no disk I/O involved. For a (p+3,

p) STAR code, there are in total p+3 columns in a codeword. There are thus p+3 possible locations for an

erasure or an error, and (p + 3)2 combinations for one erasure and one error to occur in a codeword. Note

here if the error and the erasure occur on the same column, then that column is treated as an erasure column.

In each test, all the (p + 3)2 possible erasure-error patterns are decoded to measure the average decoding

time, where the value of an error is randomly generated. Such tests are repeated 3,000 times to get stable

decoding times to experimentally compare the performance of the two algorithms.

The experiments are conducted on two platforms, one with Intel Pentium Dual Core CPU (named Pd)

and the other with Intel Pentium Core 2 Quad CPU (named Pc2d). Both platforms run 64-bit Linux. On

both platforms, the decoding algorithms are compiled by gcc with −O2 flag, a common choice for the

optimization flag [77]. We use gettimeofday system call to capture the time consumed in decoding, and

the time elapsed in the decoding process is used as the decoding time. The ratio of the standard deviation to

the average decoding time is at most 5%.

We use an optimization technique employed in [92, 77], where a large packet size can greatly improve

encoding/decoding performance. Packet size means how many bytes in one symbol, and large packet size

provides good data locality when performing XOR operation. In our experiments, the packet size is set to be

512 bytes so that one symbol naturally maps to one sector in a hard disk.

Decoding Throughput Comparison

Instead of comparing absolute values of XOR numbers and decoding throughput, we normalize the per-

formance of the EEL Algorithm by that of the Naive Algorithm. The throughput is defined as the reciprocal

of the decoding time or the XOR number. Note that both algorithms employ the exact same error detection

process, and both algorithms include two steps: error detection and error correction. The error correction

step is invoked only when error is detected, which is the focus of this chapter.

71

The decoding throughput in the error correction step measured from experiments are plotted in Fig-

ure 4.3(a), together with their corresponding XOR numbers, where the X-axis is the parameter p of a (p+3, p)

STAR code, and the Y-axis is the normalized decoding throughput for the error correction step of the corre-

sponding STAR code. On both test platforms, the throughput estimated by the XOR number nicely matches

the measured ones in the experiments. As p increases, the normalized throughput of the EEL Algorithm also

increases.

Finally the overall decoding throughput of the EEL Algorithm is shown in Figure 4.3(b), again normal-

ized by that of the Naive Algorithm, together with the corresponding XOR number. The overall decoding

operation includes both the error detection step and the error correction step. Again the normalized overall

decoding throughput of the EEL Algorithm is always greater than one, and also increases as p increases.

4.8 Further Discussions

First of all, it is easy to see that a similar erasure-and-error decoding algorithm can be designed for the

generalized RDP code with minimum distance of 4 [19], as they have very similar geometric structures. The

details are left to interested readers.

It is then worth noting that even though our erasure-and-error decoding algorithm for the STAR code is

presented in the context of hard disk drives, it can certainly be extended from disk drives to storage nodes in a

cluster or cloud system. More importantly, the STAR code and our decoding algorithm can certainly be used

in other storage media, such as the DRAMS (dynamic random access memory). A very recent study [99]

shows memory error rates are much higher than previously reported, and errors include permanent and soft

ones. A permanent error can be detected but cannot be recovered without replacing the memory itself, while

soft errors are transient and hard to detect without using error correcting codes. It is easy to see that they

are just like disk failures and silent disk errors. Error control codes are already existing in a single memory

chip to cope with bit errors. If the STAR code together with our decoding algorithm is applied to a group of

memory chips in a system, the uncorrectable error rate [99] in a memory system can be greatly reduced, and

hence severe consequences on a system resulting from memory errors, such as system crashes and service

disruptions, can be significantly mitigated. Looking forward, the same technique can also be applied to solid

state disks (SSD) which consist of multiple flash memory chip packages [29].

Also as already mentioned, it is easy to see that our decoding algorithm can be used to correct only one

error (without any erasure) for the STAR code. Details for this simpler case are left to the readers interested

72

in this topic.

4.9 Summary

This chapter presents an efficient decoding algorithm for the STAR code to simultaneously tolerate one

whole disk failure and another silent disk error in a storage system. In addition to a correctness proof

of the algorithm, both theoretical analysis and experimental measurement show our decoding algorithm

can outperform the best naive decoding algorithm we can think of by large factors in overall decoding

throughput, and more in the error correction process. With this decoding algorithm, the STAR code can be

used to significantly improve a storage system’s reliability by effectively and efficiently coping with whole

disk failure and silent errors at the same time.

Our future work is to improve error detection performance. Although the EEL algorithm achieves much

better error correction performance than the naive algorithm, the need of performing error correction is

relatively rare given that the probability of silent disk errors is low. (Certainly, error correction performance

is very important when errors are detected.) A more general operation in a storage system is error detection

since it is on regular I/O path and performed more often. Therefore, improving error detection performance

would have higher impact in storage system’s performance.

73

CHAPTER 5 Efficient Implementations of Large Finite

Fields GF (2n)

5.1 Introduction

Finite fields are widely used in constructing error-correcting codes and cryptographic algorithms. For

example, Reed-Solomon codes [96] are based on arithmetic operations in finite fields. Various cryptographic

constructions, including the Diffie-Hellman key exchange protocol [32], discrete-log based cryptosystems

(e.g., El-Gamal encryption [35], DSA signatures [66]), and schemes based on elliptic curves [82] are imple-

mented in finite fields of large prime order. While practical implementations of error-correcting or erasure

codes use small finite fields to achieve high-throughput encoding and decoding, cryptographic systems need

considerably larger finite fields for high security guarantees.

In this chapter, we provide efficient implementations of arithmetic operations for finite fields of char-

acteristic two, ranging from GF (232) to GF (2128). The main reason is that finite fields within this range

are very suitable for secure data storage applications and systems. Most storage systems today employ era-

sure coding based on small finite fields (e.g., GF (28) or GF (216)) to provide fault tolerance in case of

benign failures (for instance, drive crashes). They achieve efficiency through the use of small finite fields,

but they have not been designed to sustain adversarial failures. With the advent of cloud storage, offered by

providers such as Amazon S3 and others, a whole host of new failure models need to be considered, e.g.,

mis-configuration, insider threats, software bugs, and even natural calamities. Accordingly, storage systems

have to be redesigned with robustness against adversarial failures.

One direct consequence is that reasonably larger finite fields are needed to realize both fault tolerance

and security of storage systems. In general, the larger a finite field is, more security it offers. Compared

to general cryptographic operations, though, for data storage applications, a finite field of size GF (264) or

GF (2128) is considered to be large enough to achieve desired security degree, while not imposing too much

computational cost for other operations, such as erasure coding for data reliability. Thus throughout this

chapter, our focus will be on finite fields up to GF (2128).

To efficiently implement operations over finite fields of the form we are interested in, we combine well

74

established techniques with novel optimizations. Currently, several methods are most commonly used for

implementing finite field arithmetic. The binary polynomial method represents finite field elements as poly-

nomials and translates field arithmetic operations into corresponding operations on polynomials. While

addition and subtraction are extremely fast (as they can be implemented with exclusive-or operations), poly-

nomial multiplication and division involve operations known to be inefficient in fields of large order (e.g.,

modular reduction modulo an irreducible polynomial or finding polynomial inverses). With additional op-

timizations (precomputation of lookup tables), the binary polynomial method is nevertheless very efficient

in small fields. For operations on larger finite fields, the extension field method [113] uses precomputed

tables in the base field and several techniques [56, 113] for extending small field arithmetic into larger field

operations.

In our algorithms, we use the extension field arithmetic method together with novel optimizations for

operations in the base field (of small size). We propose to use certain irreducible polynomial patterns that

reduce the complexity of modular reduction, and then we specifically design an efficient division algorithm

for those polynomial patterns in the base field. We also use precomputed log and antilog tables and a new

method of caching table lookup results for optimizing the multiplication operation in the base field. Using

these techniques, we provide several optimized implementations of multiplication and division operations in

such fields, compare their performance on various platforms with that of best known arithmetic operations,

and show the practical benefits of our optimizations.

To summarize, the contributions of this chapter include:

1. We survey the major efficient algorithms that could be used for implementing arithmetic operations

over reasonably large finite fields, as needed by secure storage applications.

2. We provide several implementations of arithmetic operations in large finite fields of characteristic two

by extending existing methods with newly proposed optimizations.

3. We extensively evaluate and compare different implementations on multiple platforms and show which

ones perform best under specific conditions.

5.2 Related Work

A lot of cryptographic algorithms are based on finite field arithmetic [32, 35, 82, 66]. Finite fields used

in the design of cryptographic primitives can be classified into three types: prime fields, binary fields, and

75

optimal extension fields. Prime fields can be represented by Fp, where p is a prime number. Binary fields are

fields of characteristic two F2n or GF (2n), where n is an integer number greater than 0. Optimal extension

fields are fields of the form Fpn, where p is a prime number and n is an integer number that has to satisfy

some restrictions with respect to p [11]. Due to differences in the algebraic structure of these finite fields, the

arithmetic operations in different types of fields are also implemented differently. Guajardo et al. presented

a survey of efficient software implementations for general field arithmetic [46]. In this chapter, we focus on

binary fields.

There are efficient multiplication and division approaches for general binary fields. Lopez et al. [73]

introduced several multiplication algorithms for GF (2n). The algorithms include the right-to-left comb

method, the left-to-right comb method, and the left-to-right comb method with windows of width w. These

algorithms have been shown to greatly outperform the traditional shift-and-add method [50], and they are

among the fastest existing multiplication algorithms. Widely used efficient algorithms for division include

the Extended Euclidean Algorithm and its two variants: the Binary Extended Euclidean Algorithm [81] and

the Almost Inverse Algorithm [100]. These algorithms are adapted from the classical Euclidean algorithm.

We will compare our newly proposed algorithms in this chapter with the above algorithms.

DeWin et al. [113] presented a fast software implementation of arithmetic operations in GF (2n). In

their fast implementation, large finite fields are viewed as extensions of base field GF (216). In [51], similar

algorithms with base field GF (28) were developed. As the fast implementation was proposed before the

algorithms of right-to-left comb method and its variants, DeWin et al. did not compare their performances.

Additionally, the DeWin implementation was evaluated on a single finite field GF (2176), and it is unknown

how the presented performance results translate to other fields. This chapter tries to address these limitations,

by evaluating the proposed algorithms in a more extensive way.

The previous work most relevant to this chapter is by Greenan et al. [44, 45]. Greenan et al. [44, 45]

described a variety of table lookup algorithms for multiplication and division operations over GF (2n), and

evaluated their performance on several platforms. They concluded that the performance of different imple-

mentations of finite field arithmetic highly depends on the underlying hardware and workload. Our work

differs from theirs in two aspects. First, their table lookup algorithms were implemented in small finite

fields, up to GF (232). Second, they did not perform a comparison with the right-to-left comb method or

its variants, currently the fastest known algorithms for multiplication. In our work, we study finite fields

from GF (232) to GF (2128), and we compare the performance of our algorithms with the left-to-right comb

method with windows of width w.

76

For small finite fields, the result of an arithmetic operation could be directly looked up from pre-computed

tables [87]. The number of lookups depends on the table lookup algorithm. Huang et al. introduced a

couple of efficient table lookup implementations [56]. Their implementations do not contain any conditional

branches and modular operations. This way greatly improves the performance of table lookup. Although

their algorithms are designed for finite fields up to GF (216), they are also useful for implementing large

finite fields. We incorporate some of their techniques in our proposed algorithms introduced in Section 5.4.

Besides targeted for a general platform, an implementation can be developed for a particular platform.

Then, the implementation can take advantage of the instructions available at that platform to achieve high

performance [59, 62]. For example, Aranha et al. [9] introduced a new split form of finite field elements, and

presented a constant-memory lookup-based multiplication strategy. Their approach made extensive use of

parallel table lookup (PTLU) instructions to perform field operations in parallel. They have shown that their

implementation is effective for finite fields from GF (2113) to GF (21223) on the platforms supporting PTLU

instructions. In this chapter, we have a different focus. We aim to optimize the performance of a general

software implementation for finite fields.

There are several open source implementations for finite fields. One implementation is relic-toolkit

provided by Aranha et al. [8]. relic-toolkit is a cryptographic toolkit that emphasizes efficiency and

flexibility. It provides a rich set of functionalities, including prime and binary field arithmetic. Another

library is Jerasure, implemented by Plank [93]. Jerasure supports erasure coding in storage applica-

tions. It implements finite fields from GF (24) to GF (232), but it does not support larger ones. Nevertheless,

Jerasure provides a good framework for finite field arithmetic, and we utilize it to develop our code for

larger finite fields.

5.3 Arithmetic Operations in Finite Fields

In this chapter, we focus on arithmetic operations for large finite fields of characteristics two GF (2n),

with n = 16 ∗m, such as GF (264) or GF (2128), where field elements can be byte aligned. Most techniques

presented in this chapter, however, can be readily applied to general finite fields GF (2n). In this section,

we briefly introduce several well-known algorithms for arithmetic operations in finite fields, as well as their

complexity analysis.

77

5.3.1 Binary Polynomial Method

According to finite field theory [46], elements of a finite field have multiple representations. In standard

basis (or polynomial basis), an element of GF (2n) can be viewed as a polynomial a(x) = an−1x
n−1 +

an−2x
n−2+ · · ·+a1x+a0 of degree n−1 with coefficients in GF (2). The same element can be represented

with a bit vector (an−1, an−2 . . . , a1, a0) of length n. To generate efficient machine representations, bit

vectors are grouped into multiple machine words. For instance, in a 64-bit machine, a single long value

holds an element of finite field GF (264). Elements of larger fields are represented with multiple long values,

e.g., two long values are used for one element in GF (2128).

There are other field representations, e.g., using a normal basis [71]. A normal basis of GF (2n) is a

basis of the form (β, β2, . . . , β2n−1

), for some β ∈ GF (2n). An element in normal basis is represented as

bn−1β
2n−1

+ bn−2β
2n−2

+ . . . b1β
2 + b0β, where bi ∈ GF (2). The normal basis representation is efficient

for speeding up exponentiations used in some cryptographic algorithms. In this chapter, however, we focus

on the standard basis representation.

In the standard basis representation, addition and subtraction in GF (2n) can be simply implemented

using bitwise XORs of bit strings of length n. To implement multiplication and division, we need to consider

first an irreducible polynomial f(x) of degree n over GF (2) [71]. Then multiplication and division are

defined as follows:

Multiplication of two polynomials a(x) and b(x): A simple multiplication algorithm is the classical shift-

and-add method [100]. This method, however, is efficient in hardware, but not in software [46]. An efficient

software implementation is the left-to-right comb method with windows of width w [73]. This algorithm

first multiplies a(x) and b(x), resulting in a polynomial of degree at most 2n − 2. Then, the multiplication

result is reduced modulo the irreducible polynomial f(x) to obtain a polynomial in GF (2n). More details

on this method are provided below. Other similar methods include the right-to-left comb method and the

left-to-right comb method [73], but these methods have been shown to be slower than the left-to-right comb

method with windows of width w [73].

We give now some details on the left-to-right comb method with windows of width w for multiplication.

This method computes the multiplication of two polynomials a(x) and b(x) of degree at most n − 1 over

GF (2). It is intuitively based on the observation that if b(x) · xk is computed for a k ∈ [0,W − 1], where

W is the machine word size, then b(x) · xWj+k can be computed by simply appending j zero words to the

right of b(x) · xk ([50, 73]). Furthermore, this method is accelerated significantly at the expense of a little

78

storage overhead. It first computes b(x) · h(x) for all polynomials h(x) of degree at most w − 1, and then

it can process w bits of a(x) at once rather than only one bit at a time. The pseudocode of this method is

shown in Algorithm 8. In Algorithm 8, a, b, and c are coefficient vectors representing polynomials a(x),

b(x) and c(x). a is a vector of words of the form (a[s − 1], a[s − 2], · · · a[1], a[0]), where s = ⌈n/W ⌉.

Similar notations are used for b and c. One thing to note is that as Algorithm 8 runs, the length of c is 2s,

while the length of a and b is constant at s. More details of this method are available in [50, 73].

Algorithm 8 Left-to-right comb method with windows of width w

INPUT: Binary polynomials a(x) and b(x) of degree at most n − 1 represented with vectors a and b, and

s = ⌈n/W ⌉
OUTPUT: c(x) = a(x) · b(x) represented with vector c

1: Precompute bh = b(x) · h(x) for all polynomials h(x) of degree at most w − 1
2: c← 0;

3: for k from W/w − 1 to 0 do

4: for j from 0 to s− 1 do

5: Let h = (hw−1, hw−2, ..., h1, h0), where ht is bit (wk + t) of a[j]
6: for i from 0 to s− 1 do

7: c[i+ j]← bh + c[i+ j]
8: end for

9: end for

10: if k 6= 0 then

11: c← c · xw;

12: end if

13: end for

In the multiplication operation, the left-to-right comb method with windows of width w is followed by a

modular reduction step in which the degree of c(x) is reduced from at most 2n−2 to at most n−1. Generally,

modular reduction for a random irreducible polynomial f(x) is performed bit by bit, i.e., the degree of c(x)

is reduced by one in each step. However, if f(x) is a trinomial or pentanomial (i.e., it has three or five non-

zero coefficients, recommended by NIST in the standards for public key cryptography [36]), the reduction

step can be efficiently performed word by word [46]. Then, the degree of c(x) is reduced by W in one step,

and the modular reduction of c(x) is greatly sped up. In this chapter, we only use trinomial or pentanomial

irreducible polynomials for finite fields ranging from GF (232) to GF (2128), and therefore we perform the

modular reduction of the multiplication result one word at a time.

Division of two polynomials a(x) and b(x): There are several different ways to implement the division

operation. One method computes the inverse polynomial of b(x) in GF (2n), denoted by b−1(x), and then

multiplies a(x) with b−1(x). Other methods directly compute the division result. Several of the popular

division algorithms include the Extended Euclidean Algorithm, the Binary Extended Euclidean Algorithm

79

and the Almost Inverse Algorithm [50, 100]. These algorithms are adapted from the classical Euclidean

algorithm [16].

Efficient division algorithms, including the Extended Euclidean Algorithm, the Binary Extended Eu-

clidean Algorithm, and the Almost Inverse Algorithm, are all based on the Euclidean algorithm. Here, we

briefly describe the idea behind the Extended Euclidean Algorithm. Assume f(x) is an irreducible polyno-

mial of degree n over GF (2). For any a(x) with coefficients in GF (2), the Euclidean algorithm computes

gcd(a(x), f(x)) = 1 (since f(x) is irreducible). Then, according to algebra theory [16],

∃ b(x), c(x) s.t. a(x) · b(x) + f(x) · c(x) = 1 mod f(x) (5.1)

The Extended Euclidean Algorithm computes both b(x) and c(x) in equation (5.1) when calculating

gcd(a(x), f(x)). It is easy to see that a−1(x) mod f(x) = b(x). Hence, the Extended Euclidean Algorithm

computes a−1(x) mod f(x), the inverse of a(x). Moreover, for fields of base 2, the Extended Euclidean

Algorithm can be used to directly compute division without first obtaining a−1(x). The other two algorithms,

the Binary Extended Euclidean Algorithm and the Almost Inverse Algorithm, are variants of the Extended

Euclidean Algorithm optimized for GF (2n) [46].

As it is difficult to precisely analyze the time complexity of division, we instead provide the measured

performance of division in Section 5.5. Interested readers can find the theoretical analysis of the Binary

Extended Euclidean Algorithm in [107].

Using the standard basis representation, we implement the left-to-right comb method with windows of

width w for multiplication and the Binary Extended Euclidean Algorithm for division. We refer to the use

of these algorithms for implementing finite field arithmetic as the binary polynomial method.

5.3.2 Table Lookup Methods

There are various table lookup methods that precompute and store results of arithmetic operations in

tables with the goal of speeding up evaluation of multiplication and division operations. These methods

achieve tradeoffs between the amount of storage for precomputed tables and operation speed.

Full Multiplication and Division Tables

One simple table lookup method uses full multiplication and division tables. This algorithm precomputes

the multiplication and division results for all element pairs in the field (by using, for instance, the binary

80

polynomial method described in Section 5.3.1) and stores the results in tables. The tables are kept in main

memory for small fields. To perform a multiplication or division operation, this algorithm quickly looks up

the result from the tables with no computation.

While this algorithms involves only one table lookup for both multiplication and division, its space

complexity is quadratic in the size of the field. For GF (2n), its storage complexity is (n/8) ∗ 22n+1 bytes.

For most off-the-shelf machines, this memory requirement is acceptable for GF (28), but not for larger finite

fields. For example, full multiplication and division tables for GF (216) would already need 234 bytes, i.e.,

16GB. Therefore, in this chapter, we only use this table lookup algorithm for GF (28).

Log and Antilog Tables

Since all non-zero elements in a finite field form a cyclic group under multiplication [16], there exists a

primitive element α in the field so that any non-zero element in the field is a power of the primitive element:

for any g ∈ GF (2n), there exists an 0 ≤ ℓ < 2n − 1 such that g = αℓ. ℓ is called the discrete logarithm of

element g with respect to α in field GF (2n).

Based on this observation, a table lookup algorithm can be constructed [87]. This algorithm builds two

tables called log and antilog. The log table records the mapping from an element g to its discrete logarithm ℓ.

Conversely, the antilog table records the mapping from power ℓ to a unique element g in the field. These two

tables can be built with the binary polynomial method for implementing exponentiation. After pre-computing

these two tables, field operations can be performed as follows:

Multiplication of two elements g1 and g2: If g1 or g2 is 0, multiplication returns 0. Otherwise, do a

lookup in the log table and get the discrete logarithms ℓ1 and ℓ2 for g1 and g2, respectively. Then, compute

ℓ3 = (ℓ1 + ℓ2) mod (2n − 1). Finally, use the antilog table to find the field element g3 corresponding to

power ℓ3 and return g3 as the multiplication result.

Division of two elements g1 and g2: If g1 is 0, division returns result 0. Otherwise, use the log table to

lookup the discrete logarithms ℓ1 and ℓ2 for g1 and g2, respectively. Then, compute ℓ3 = (ℓ1−ℓ2) mod (2n−

1). Finally, use the antilog table to find the field element g3 corresponding to power ℓ3 and return g3 as the

division result.

Both multiplication and division involve four similar steps: (1) determine whether one element is 0; (2)

perform a lookup in the log table; (3) compute the modular addition or subtraction; (4) use the antilog table

81

to lookup the final result. Steps (1) and (3) could be optimized. Jerasure, for example, expands the storage

of antilog tables by a factor of three to avoid step (3), which results in improved performance [93]. Huang

et al. expand the antilog table by a factor of four to be able to remove both steps (1) and (3), and improve

computation performance by up to 80% [56].

In this chapter, we make use of the optimizations in [56] to implement this algorithm. The time com-

plexity for both multiplication and division is then one addition (or subtraction) operation with three table

lookups. The space complexity is 5 · (n/8) · 2n+1 bytes. Hence, this algorithm is applicable only to GF (28)

and GF (216) before memory demands become unreasonable.

5.3.3 Hybrid of Computational and Table Lookup Methods

The binary polynomial method evaluates the result of an arithmetic operation each time it is invoked. On

the other hand, table lookup methods pre-compute and store all the results of arithmetic operations, resulting

in very fast response time when an operation is invoked. In this section, we explore hybrid approaches that

combine ideas from both methods to achieve computation efficiency for large finite fields with reasonable

memory consumption.

Split Tables

The split table algorithm has been proposed by Huang and implemented in Jerasure by Plank [88]. This

algorithm is designed to optimize multiplication. To perform multiplication of two elements g1 and g2, this

algorithm breaks each n-bit element in the field into n/8 units of size one byte. Then, it computes the result

of multiplication by combining multiplication results of all unit pairs containing one byte from each operand.

An example is shown below.

Multiplication of two elements g1 and g2: Suppose, for simplicity, that g1 and g2 are in GF (216). We

represent g1 as [a1, a0], where a1 is the high-order byte of g1 and a0 is the low-order byte of g1. Similarly,

we represent g2 as [b1, b0]. By the distributive property of multiplication over finite fields, we can write:

g1 ∗ g2 = [a1, a0] ∗ [b1, b0]

= [a1, 0] ∗ [b1, 0] + [a1, 0] ∗ [0, b0]

+ [0, a0] ∗ [b1, 0] + [0, a0] ∗ [0, b0] (5.2)

82

To perform the above multiplication efficiently, we can first use the binary polynomial method to build

three multiplication tables called split tables [88]. The tables store the multiplication results of all pairs of

the form [a1, 0] ∗ [b1, 0], [a1, 0] ∗ [0, b0], and [0, a0] ∗ [0, b0]. To evaluate g1 ∗ g2, the results of multiplication

for the four pairs in Equation (5.2) are looked up in split tables, and combined by bitwise XORs.

Division: This algorithm proceeds as in the binary polynomial method, which uses the Extended Euclidean

Algorithm or its variants.

In general, for GF (2n), one multiplication needs (n/8)2 table lookups. In terms of the space complexity,

we need to build n/4 − 1 split tables for GF (2n), and the size of each table is (n/8) ∗ 216 bytes. Thus, the

total amount of storage needed is (n/4 − 1) ∗ (n/8) ∗ 216 = 2n(n − 4) KB. For GF (264), this results in

7.5MB storage, an acceptable memory requirement. Therefore, this algorithm can be considered for large

finite fields.

Extension Field Method

A more scalable algorithm to support large finite fields is the extension field method. This method makes

use of precomputed tables in a smaller finite field, and several techniques for extending small field arithmetic

into larger field operations.

Extension field theory. Section 5.3.1 describes the standard basis representation for elements of finite field

GF (2n). In general, a finite field can use any of its proper base fields to represent its elements [16, 71].

For example, if n = k ·m, then field GF (2n) is isomorphic to GF ((2k)m). An element in GF (2n) can be

represented as a polynomial am−1x
m−1 + am−2x

m−2 · · · + a1x + a0 of degree m− 1 with coefficients in

GF (2k). We can use an irreducible polynomial of degree m over GF (2k) to define the field arithmetic for

GF (2n). With this representation, GF (2k) is named a base field of GF (2n), and GF (2n) an extension field

of GF (2k).

For clarity, let us give an example for GF (216). If we consider it an extension field of GF (28), then

it becomes isomorphic to GF ((28)2). We need to find two irreducible polynomials: one for the arithmetic

in the base field GF (28) (for instance f(x) = x8 + x4 + x3 + x2 + 1), and the second for generating the

extension field GF ((28)2) from base field GF (28) (for instance p(x) = x2 + x+ 32).

Multiplication of two elements g1 and g2: Suppose that g1 = (a1, a0) and g2 = (b1, b0) are two elements

83

in GF ((28)2), with a0, a1, b0 and b1 in GF (28), and p(x) is an irreducible polynomial of degree 2 over

GF (28). Multiplication of g1 and g2 is performed as follows:

(a1x+ a0) ∗ (b1x+ b0)

= (a1 ∗ b1)x
2 + (a1 ∗ b0 + a0 ∗ b1)x+ a0 ∗ b0 mod p(x)

= (a1 ∗ b0 + a0 ∗ b1 + 32 ∗ a1 ∗ b1)x

+ (a0 ∗ b0 + 32 ∗ a1 ∗ b1)

As all coefficients of g1 and g2 are from GF (28), the multiplications and additions of coefficients in

the above computation are performed in base field GF (28). Addition is implemented as bitwise XOR, and

multiplication in GF (28) as table lookup.

For a general GF (2n), the time complexity of multiplication depends on the base field and the irreducible

polynomial p(x). One multiplication in the extension field GF ((2k)m) needs at least m2 multiplications in

the base field GF (2k). Let us give a justification for this theoretical lower bound. There are two steps

involved in the multiplication of two elements in the extension field: multiplication of two polynomials

of degree m − 1 (resulting in m2 multiplications in the base field), and reduction modulo the irreducible

polynomial generating the extension field. If the irreducible polynomial used for generating the extension

field has coefficients of only 0 or 1, no additional multiplications are needed in the second step. In practice,

this bound may not be reachable since such an irreducible polynomial may not exist for some combinations

of GF (2k) and m. More discussion on how to choose an irreducible polynomial p(x) that reduces the

number of multiplications in the base field is given in Section 5.4.

The space complexity for multiplication in extension field GF (2n) with n = k ·m is exactly the same

as that of base field GF (2k), and is thus independent from the extension field.

Division of two elements g1 and g2: Division in the extension field contains two steps: finding the inverse

of g2, and multiplying g1 with g−1
2 . Computing the inverse of an element in the extension field can be

implemented with the Extended Euclidean Algorithm. The Binary Extended Euclidean Algorithm and the

Almost Inverse Algorithm used in the binary polynomial method are not applicable for extension fields.

84

5.4 Efficient Implementation of Operations in Extension Fields

In this section, we describe the main contribution of the chapter, consisting of efficient implementation

techniques for the extension field method.

5.4.1 Irreducible Polynomials

When implementing the extension field method, one important factor that impacts the performance of

arithmetic operations is the choice of the irreducible polynomial used to construct the extension field. The

irreducible polynomial determines the complexity of polynomial modular reduction and hence greatly affects

multiplication and division performance. In general, there are multiple choices for irreducible polynomials,

and our goal is to find those that optimize the performance of arithmetic operations.

Impact of Irreducible Polynomials

We give an example to demonstrate the great impact of irreducible polynomials on multiplication per-

formance. Consider the extension field GF ((28)4). When using f(x) = x8 + x4 + x3 + x2 + 1 as the

irreducible polynomial over GF (2) for GF (28), there are two irreducible polynomials of degree 4 over

GF (28): p1(x) = x4+x2+6x+1 and p2(x) = x4+2x2+5x+3. Either of them can be used to construct

GF ((28)4). The multiplication complexity in GF ((28)4), however, is significantly different for these two

irreducible polynomials and is shown in Table 5.1.

Irreducible polynomial Multiplication Addition

x4 + x2 + 6x+ 1 16+3 18

x4 + 2x2 + 5x+ 3 16+9 18

Table 5.1: Multiplication complexity in GF ((28)4) when using two different irreducible polynomials.

In Table 5.1, the second column shows the number of multiplications in the base field, and the third

shows the number of additions in the base field. As multiplication is a much slower operation than addition,

the number of multiplications in the base field dominates the performance.

In the second column, each number consists of two terms: the first term is the number of multiplications

in the base field when multiplying two polynomials, and the second term is the number of multiplications

performed when reducing the multiplication result modulo the irreducible polynomial. In our example, when

multiplying two polynomials in GF ((28)4), the cost of the first term is fixed, i.e., 42 = 16 multiplications in

85

GF (28) (in this chapter, we exclude the low probability of having the same multiplication pairs in the base

field when performing a single multiplication for the extension field.) This number is independent of the

irreducible polynomial p(x) we are using. The cost of the second term, however, is determined by p(x), and

it can vary dramatically. In Table 5.1, this cost is 3 multiplications for p1(x), but 9 multiplications for p2(x).

Hence, the multiplication complexity for using p1(x) is 19 multiplications compared to 25 multiplications

for p2(x), resulting in a 24% improvement in performance.

For larger finite fields, such as GF (2128), the difference in performance between using a carefully chosen

irreducible polynomial and a random one would be even more significant. Therefore, it is important to find

efficient irreducible polynomials for optimizing performance.

Test of Irreducible Polynomials

There are many efficient irreducible polynomials over base field GF (2) listed in the literature [102].

However, for an arbitrary field, we have to search for good irreducible polynomials. During the search

process, one key step is testing whether a polynomial is irreducible or not. A fast test algorithm is the

Ben-Or algorithm [17, 38]. With the Ben-Or algorithm, we developed a test program using the NTL library

[108]. Our experience shows that combing the Ben-Or algorithm with NTL leads to an efficient algorithm

for testing polynomial irreducibility.

Efficient Irreducible Polynomial Patterns

Section 5.4.1 shows that the choice of irreducible polynomial greatly affects modular reduction effi-

ciency. Particularly, it determines the number of multiplications in the base field. There is one key parameter

of the irreducible polynomial that decides the number of multiplications performed in the base field: the

number of coefficients not in GF (2) (i.e., the number of coefficients different from 0 and 1, the only ele-

ments in GF (2)). We develop heuristics to search for irreducible polynomials that have the least number

of coefficients not in GF (2). In addition, we try to reduce the number of coefficients of 1 to decrease the

number of additions during modular reduction.

We present some efficient irreducible polynomial patterns that we found through our search heuristics in

Table 5.2.

The 1st column of Table 5.2 is the value of n in extension field GF (2n). The 2nd column is irreducible

polynomials over base field GF (28) for GF (2n), and the 3rd column is over base field GF (216). The

irreducible polynomial used to construct GF (28) is f(x) = x8 + x4 + x3 + x2 + 1 over GF (2), and it is

86

n GF (28) GF (216)

32 x4 + x2 + 6x+ 1 x2 + x+ 8192
48 x6 + x2 + x+ 32 x3 + x+ 1
64 x8 + x3 + x+ 9 x4 + x2 + 2x+ 1
80 x10 + x3 + x+ 32 x5 + x2 + 1
96 x12 + x3 + x+ 2 x6 + x3 + 8192
112 x14 + x3 + x+ 33 x7 + x+ 1
128 x16 + x3 + x+ 6 x8 + x3 + x+ 8

Table 5.2: Irreducible polynomials for extension fields GF (2n) over base field GF (28) and GF (216)

f(x) = x16 + x12 + x3 + x+ 1 for GF (216).

It can be proved that above irreducible polynomials are optimal in terms of the number of coefficients

not in GF (2). We consider two cases. 1) When constructing GF (2k)m, k and m are relative prime. For

such k and m, the presented irreducible polynomials in Table 5.2 only contain coefficients in GF (2), so they

are optimal. 2) k and m are not relative prime. A fact is that if a polynomial of degree m that is irreducible

over GF (2), is also irreducible over GF (2k), then gcd(m,k)=1 [71, ch. 3.3]. Thus, when k and m are

not relative prime, equation gcd(m,k)=1 does not hold, and then any irreducible polynomial with degree m

over GF (2k) must have at least one coefficient not in GF (2). In this case, because the presented irreducible

polynomials in Table 5.2 contain only one coefficient not in GF (2), they are also optimal.

With the above irreducible polynomials, one multiplication in GF ((2k)m) can be performed with m2

or m2 + m − 1 multiplications in base field GF (2k). If k and m are relative prime, the multiplication

number is m2; otherwise, it is m2 +m − 1. As explained in Section 5.3.3, there are two steps involved in

the multiplication of two elements in the extension field. The first is the multiplication of two polynomials

of degree m− 1 (resulting in m2 multiplications in the base field), and the second is the modular reduction

modulo the irreducible polynomial generating the extension field. If the irreducible polynomial only contains

coefficients in GF (2), the second step needs 0 multiplication; otherwise, if there is one coefficient not in

GF (2), the second step results in m− 1 multiplications.

5.4.2 Multiplication Implementation

This section presents the multiplication implementation for the extension field method. For simplicity,

we focus on the implementation for extension fields GF ((2k)m) where gcd(m,k) 6=1. The implementation

for the simpler case where gcd(m,k)=1 can be easily derived.

In Section 5.4.1, we gave an example showing how the choice of the irreducible polynomial generating

87

an extension field affects the efficiency of multiplication. Table 5.1 shows that with polynomial p1(x), we

need to perform 19 multiplications in the base field GF (28) for each multiplication in the extension field

GF ((28)4). If multiplication in the base field is implemented with full multiplication and division tables,

this corresponds to 19 table lookups in the base field GF (28) as one multiplication needs only one table

lookup.

However, if log and antilog tables are used for multiplication in the base field, the number of lookups

increases by a factor of three. This is because one multiplication now involves three table lookups, two to

the log table and one to the antilog table. In this section, we provide an efficient multiplication algorithm

for using log and antilog tables in the base field. The implementation greatly decreases the number of table

lookups from 3(m2 +m− 1) to m2 + 4m− 1 for fields of the form GF ((28)m) and GF ((216)m). This is

achieved by caching table lookup results and using them repeatedly.

The implementation contains two algorithms: the multiplication algorithm using log and antilog tables

and the modular reduction algorithm specifically designed for the irreducible polynomials presented in Sec-

tion 5.4.1. In the multiplication algorithm given in Algorithm 9, we multiply two polynomials a(x) and b(x)

of degree at most m− 1 with coefficients in the base field and output as a result a polynomial c(x) of degree

at most 2m− 2.

In Algorithm 9, a, b, and c are coefficient vectors of polynomials a(x), b(x), and c(x), respectively.

Each element of these vectors represents a single coefficient in the base field. The variables logtable and

antilogtable are lookup tables in the base field. They are built in advance.

Algorithm 9 Multiplication using log and antilog tables

INPUT: Polynomials a(x) and b(x) of degree at most m− 1
OUTPUT: Polynomial c(x) = a(x) · b(x) of degree at most 2m− 2

1: c← 0;

2: for k from 0 to m− 1 do

3: alog[k] = logtable[a[k]];
4: blog[k] = logtable[b[k]];
5: end for

6: for k1 from 0 to m− 1 do

7: for k2 from 0 to m− 1 do

8: c[k1 + k2] ⊕= antilogtable[alog[k1] + blog[k2]];
9: end for

10: end for

As the output c(x) of Algorithm 9 may have degree more than m, it has to be modularly reduced. Here,

we provide an efficient modular reduction algorithm. Suppose the irreducible polynomial is of the form

88

p(x) = xm + x3 + x+ v. The powers x2m−2, . . . , xm can be reduced modulo p(x) as follows:

x2m−2 ≡ (x3 + x+ v) · xm−2 mod p(x)

x2m−3 ≡ (x3 + x+ v) · xm−3 mod p(x)

x2m−4 ≡ (x3 + x+ v) · xm−4 mod p(x)

. . .

xm+1 ≡ (x3 + x+ v) · x mod p(x)

xm ≡ x3 + x+ v mod p(x)

Our developed reduction method is presented in Algorithm 10, which is similar to the modular reduction

approach in [113]. In Algorithm 10, c and d are coefficient vectors of input polynomial c(x) of degree 2m−2

and output polynomial d(x) of degree m− 1, respectively. Similarly efficient algorithms could be given for

other patterns of p(x). Note that this algorithm reduces the degree of c(x) by one each time the loop is

executed (lines 2-6).

Algorithm 10 Modular reduction

INPUT: Polynomial c(x) of degree at most 2m− 2
OUTPUT: Polynomial d(x) = c(x) mod p(x) of degree at most m− 1

1: vlog = logtable[v];

2: for k from 2m− 2 to m do

3: c[k − (m− 3)] ⊕ = c[k];
4: c[k − (m− 1)] ⊕ = c[k];
5: c[k −m] ⊕ = antilogtable[logtable[c[k]] + vlog];

6: end for

7: d← 0;

8: for k from 0 to m− 1 do

9: d[k] = c[k];
10: end for

We proceed to analyze the complexity of our multiplication method. In Algorithm 9, 2m table lookups

are performed in lines 2-5, and m2 table lookups are performed in lines 6-10. In Algorithm 10, 2m − 1

table lookups are performed in lines 1-6. Adding all operations in Algorithms 9 and 10, we obtain the

multiplication complexity: m2 + 4m− 1 table lookups.

Similar multiplication and modular reduction algorithms can be derived by using full multiplication and

division tables to implement operations in the base field. The corresponding time complexity is m2 +m− 1

table lookups.

89

5.5 Performance Evaluation

In this section we evaluate the algorithms described above for large finite fields ranging from GF (232) to

GF (2128). We present performance results for different multiplication and division algorithms within a field.

We evaluate its performance improvement from the use of our newly implemented algorithms compared to

previous implementations.

5.5.1 Experiment Setup

Platforms

The multiplication and division tests were run on a variety of platforms in order to observe how their

performances vary on different processors. We tested our implementations on four platforms, all using Intel

64-bit processors, spanning their current offering from low to high-end. Table 5.3 details the specifications

of each platform.

Platform CPU speed L2 cache Model

P4 3.0GHz 2MB Pentium 4

Pd 2.8GHz 2 · 1MB Dual Core (D820)

Pc2d 2.1GHz 3MB Core 2 Duo (T8100)

Pc2q 2.4GHz 2 · 4MB Core 2 Quad (Q6600)

Table 5.3: Platforms under test.

All tests were run on a 64-bit version of Linux. As a result, one int value represents one element in

GF (232); one long value, i.e., a computer word, holds an element in GF (248) and GF (264); two long

values represent an element in fields from GF (280) up to GF (2128).

Implementations

We evaluated five implementations listed in Table 5.4, representing three distinct methods. Throughout

the rest of the chapter, we simply use the names in the first column of Table 5.4 to refer to various imple-

mentations. binary is based on the binary polynomial method from Section 5.3.1; specifically, it uses the

left-to-right comb method with windows of width w (w = 4) [73] for multiplication and the Binary Extended

Euclidean Algorithm [81] for division. Similar to [73, 10, 8], we chose width w = 4, which we expect pro-

vides optimum performance. split uses the split table method for multiplication from Section 5.3.3 and the

same division algorithm as binary. gf8 (full), gf8 (log) and gf16 (log) are based on the extension field method

90

from Section 5.3.3. gf8 (full) uses base field GF (28), with arithmetic operations based on full multiplication

and division tables. gf8 (log) also uses base field GF (28), but it implements arithmetic operations in GF (28)

by log and antilog tables. gf16 (log) is based on GF (216) with operations implemented using log and antilog

tables.

Implementation Method

binary binary polynomial

split split table

gf8 (full) extension field

gf8 (log) extension field

gf16 (log) extension field

Table 5.4: Evaluated implementations for GF (2n) .

We developed all implementations for finite fields of interest, and borrowed the implementations of

arithmetic operations in GF (28) and GF (216) from Jerasure. The code is written in C and compiled using

gcc with the -O2 optimization flag, which is recommended for most applications [39]. The code is single-

threaded, and thus does not take advantage of multiple cores when present.

In addition to compiler optimizations, many manual optimizations are applied to each individual imple-

mentation for best performance. One common optimization is that we do not use one general multiplication

or division function for all tested finite fields, but instead develop specific implementations for each field.

This allows us to determine the size of data structures at compile time, rather than runtime, which improves

performance significantly. Another two important optimizations are performed in the implementation of the

left-to-right comb method with windows of width w (w = 4) for implementation binary. First, in Algo-

rithm 8, we manually unroll the loop from line 6 to line 8. Second, line 11 is actually an iteration. We

also manually unroll this loop. We found that these two optimizations greatly improve multiplication perfor-

mance. For instance, we achieve an improvement of 20% for GF (296) and 35% for GF (2128) on platform

Pc2q.

5.5.2 Comparison of All Implementations Using Table Lookups

This section compares the performance of all implementations heavily using table lookups. Regarding

these implementations, table lookup is a dominant performance factor, so we first present table lookup num-

bers of each implementation in Table 5.5. The table lists the number of table lookups needed for one multipli-

cation (column 2). Table 5.5 shows that gf16 (log) performs the least number of table lookup operations and

91

is followed by split. gf8 (full) and gf8 (log) need more table lookups than the previous two. It is worth noting

that for implementation gf16 (log), if gcd(n/16, 16)6=1, the table lookup number is n2/256 + 4n/16 − 1;

otherwise, it is n2/256 + 2n/16.

The space complexity of each implementation is given in the 3rd column of Table 5.5. The size listed

here is the combined space needed for both the multiplication and division algorithms. Note that the imple-

mentations based on the extension field method (gf8 (full), gf8 (log), and gf16 (log)) all use one int value

to represent an element in GF (28) or GF (216), which over-estimates the minimum space requirement, but

leads to faster arithmetic operations. The table shows that the memory requirements for implementations

based on the extension field method are independent of the size of the finite field. However, split consumes

memory quadratic in n, limiting its practicality for large finite fields.

Implementation Table lookups Memory needed

split n2/64 2n(n− 4) KB

gf8 (full) n2/64 + n/8− 1 0.5 MB

gf8 (log) n2/64 + 4n/8− 1 5 KB

gf16 (log) n2/256 + 4n/16− 1 (or n2/256 + 2n/16) 1.25 MB

Table 5.5: Table lookup number and memory needed of various implementations.

We now compare the measured performance of all these implementations. To measure the raw perfor-

mance of an implementation, we randomly pick 36,000,000 element pairs from a finite field. The values

of all element pairs are generated randomly. We then either multiply the pair, or divide one element by the

other, and measure the elapsed time through the use of the gettimeofday() system call. Finally, we

calculated how many operations are performed per second (operations per second). Each experiment is run

30 times and the average result is plotted in the graphs that follow. When the confidence level is set at 95%,

the margin of error to the average value is less than 5% for all data points. As the margin of error is so small,

we do not display error bars in the following figures.

Multiplication

Figure 5.1 displays the absolute multiplication performance on all four platforms. In the figure, the X-

axis is the value of n. The Y-axis is the number of multiplications performed in one second, in base-10 log

scale. Below are some observations that can be drawn from the data.

1. Among table lookup intensive implementations, gf16 (log) outperforms all other implementations in

most cases. The reason is that gf16 (log) performs about a quarter of the table lookups compared to

92

10
5

10
5.5

10
6

10
6.5

10
7

10
7.5

10
8

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

split
gf8 (full)
gf8 (log)
gf16 (log)

(a) Multiplication performance on P4

10
5

10
5.5

10
6

10
6.5

10
7

10
7.5

10
8

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

split
gf8 (full)
gf8 (log)
gf16 (log)

(b) Multiplication performance on Pd

10
5.5

10
6

10
6.5

10
7

10
7.5

10
8

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

split
gf8 (full)
gf8 (log)
gf16 (log)

(c) Multiplication performance on Pc2d

10
5.5

10
6

10
6.5

10
7

10
7.5

10
8

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

split
gf8 (full)
gf8 (log)
gf16 (log)

(d) Multiplication performance on Pc2q

Figure 5.1: Multiplication performance of GF (2n) on various platforms.

93

10
5

10
5.5

10
6

10
6.5

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf8 (full)
gf8 (log)
gf16 (log)

(a) Division performance on P4

10
5

10
5.5

10
6

10
6.5

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf8 (full)
gf8 (log)
gf16 (log)

(b) Division performance on Pd

10
5

10
5.5

10
6

10
6.5

10
7

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf8 (full)
gf8 (log)
gf16 (log)

(c) Division performance on Pc2d

10
5

10
5.5

10
6

10
6.5

10
7

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf8 (full)
gf8 (log)
gf16 (log)

(d) Division performance on Pc2q

Figure 5.2: Division performance of GF (2n) on various platforms.

94

other implementations, as shown in Table 5.5. The performance gap is not significant in platform P4

and Pd due to their small L2 caches.

2. gf8 (full) performs better than gf8 (log), but the difference depends on platforms. gf8 (full) needs less

table lookups than gf8 (log), but its greater memory needed result in higher CPU cache miss ratio on

platforms with small CPU cache, and thus these two implementations achieve similar performance on

platforms P4 and Pd. However, on other two platform Pc2d and Pc2q, gf8 (full) outperforms gf8 (log)

due to their large CPU caches.

3. split has the worst performance of all the implementations in most cases. Although it uses a similar

number of table lookups as gf8 (full) and gf8 (log), it uses memory quadratic in n. This causes a large

number of cache misses in larger fields, resulting in much worse performance.

4. As the size of our finite fields grows, the absolute performance of all table lookup intensive implemen-

tations decreases due to the increasing number of table lookups. All these implementations heavily

depend on table lookups, and thus, their performance degrades almost linearly as the number of table

lookups increases.

Division

Figure 5.2 displays the absolute division performance for all implementations except split. We omit split

here as it uses the same division algorithm as binary. We observe the following:

1. gf16 (log) performs best among table lookup intensive implementations. As with multiplication, the

performance advantage is highlighted on platforms with larger L2 caches.

2. gf8 (full) performs worse than gf8 (log) on platforms with small L2 caches, but they perform similarly

on platforms with large L2 caches.

3. As with multiplication, as finite field size increases, the division performance of table lookup inten-

sive implementations also decreases. However, the rate of decrease in division is slower than that

of multiplication. For example, in platform Pc2q, the division performance of gf16 (log) on finite

field GF (232) is 7% of its performance on finite field GF (2128), while this number of multiplication

performance is 10%.

95

Summary

The above results show that, among table lookup intensive implementations, gf16 (log) performs best and

in most cases, by a large margin. This observation is consistent with the analysis shown in Table 5.5, which

indicates that gf16 (log) performs about a quarter of the table lookups and bitwise operations compared to

other multiplication implementations. The memory requirements for split cause it to perform the worst,

while the performances of gf8 (full) and gf8 (log) are between that of split and gf16 (log).

5.5.3 Comparison of binary and gf16 (log)

This section focuses on comparing the multiplication and division performance of binary and gf16 (log),

the best one among table lookup implementations.

Multiplication

In Figure 5.3, graphs 5.3(a) - 5.3(d) display the multiplication performance comparison of binary and

gf16 (log). We have the following observations:

1. gf16 (log) performs better than binary from GF (232) to GF (248) on platforms P4 and Pd which only

have at most 2MB L2 caches; on platforms Pc2d and Pc2q that have at least a 3MB L2 cache, gf16

(log) performs better from GF (232) to GF (2112). For example, on Pc2q, the performance of gf16

(log) is higher than that of binary by 200% for field GF (232) and 35% for field GF (2112).

2. gf16 (log) outperforms binary for finite field GF (232) in all platforms, but as the finite field size grows,

the performance gap between gf16 (log) and binary gradually decreases, with binary eventually outper-

forming gf16 (log). This transition occurs in all graphs. We could explain this effect using the analysis

in Table 5.5. The performance of gf16 (log) is dominated by table lookups, which is quadratic in the

value of n, and thus its performance greatly decreases when n grows. The binary implementation,

however, is a computation intensive implementation and thus degrades less significantly.

3. gf16 (log) starts performing slower than binary from finite field GF (264) on platforms P4 and Pd,

while the starting field is GF (2128) on platforms Pc2d and Pc2q. This is because P2d and Pc2q

contains much larger CPU caches than P4 and Pd, and large cache size improves the performance of

gf16 (log), a table lookup intensive implementation. As L2 caches are currently increasing in size

faster than CPU speed, gf16 (log) has the potential to surpass binary, for larger finite fields, in the near

96

10
6

10
6.5

10
7

10
7.5

10
8

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf16 (log)

binary

(a) Multiplication performance on P4

10
6

10
6.5

10
7

10
7.5

10
8

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf16 (log)

binary

(b) Multiplication performance on Pd

10
6

10
6.5

10
7

10
7.5

10
8

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf16 (log)

binary

(c) Multiplication performance on Pc2d

10
6

10
6.5

10
7

10
7.5

10
8

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf16 (log)

binary

(d) Multiplication performance on Pc2q

Figure 5.3: Multiplication performance of binary and gf16 (log) on various platforms.

97

future. Nonetheless, the performance trend of binary makes it the best choice for extremely large finite

fields for the foreseeable future.

Division

Graphs 5.4(a) - 5.4(d) display the division performance comparison. The figure shows that in all cases,

gf16 (log) greatly outperforms binary. For example, on platform Pc2q, the performance of gf16 (log) is

100% higher than that of binary for field GF (2128) and 300% for field GF (232). Similar performance

improvement can be observed on all other platforms. The reason is that the division algorithm of binary i.e.,

Binary Extended Euclidean Algorithm, works on one bit at a time since its base field is GF (2). The division

algorithm of gf16 (log), however, works on 16 bits at a time due to its base field being GF (216). Hence, gf16

(log) is much more efficient than binary on division.

10
5

10
5.5

10
6

10
6.5

10
7

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf16 (log)

binary

(a) Division performance on P4

10
5

10
5.5

10
6

10
6.5

10
7

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf16 (log)

binary

(b) Division performance on Pd

10
5

10
5.5

10
6

10
6.5

10
7

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf16 (log)

binary

(c) Division performance on Pc2d

10
5

10
5.5

10
6

10
6.5

10
7

32 48 64 80 96 112 128

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

n

gf16 (log)

binary

(d) Division performance on Pc2q

Figure 5.4: Division performance of binary and gf16 (log) on various platforms.

98

Throughput Comparison

To better understand the performance of finite fields from application perspective, we compared the

performance of gf16 (log) with binary by throughput, i.e., how much data can be processed per second. As

throughput is visible to applications, the performance comparison would be more useful in practice. The

multiplication/division throughput is calculated as:

Throughput =
Operations per second * n

8
(5.3)

This is derived as follows. Let O be Operations per second. Then, On is how many bits processed per second

for multiplication or division, and On
8 is bytes processed per second, or Equation 5.3 for throughput.

The throughput comparison is presented in Figure 5.5. Here, we only show comparison results on plat-

form Pc2d. Interested readers can easily do the same conversions for other platforms from Equation 5.3.

As for each finite field GF (2n), n is the same to gf16 (log) and binary, operations per second determines

the throughput of the implementations. Hence, Figure 5.5(a) shows the same performance comparison re-

sults of the two implementations as Figure 5.3(c). This also applies to the division performance shown in

Figure 5.5(b) and 5.4(c). However, Figure 5.5(a) and 5.5(b) display different performance trends from their

counterparts. In both figures, gf16 (log) degrades as n grows, but binary keeps almost constant for all n.

Because gf16 (log) achieves much higher performance than binary for GF (232), gf16 (log) can keep its

performance advantage over GF (232) for a wide range of n values. But for multiplication, binary performs

better when n starts from 128.

 0

 50

 100

 150

 200

 250

32 48 64 80 96 112 128

M
u
lt
ip

lic
a
ti
o
n
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

gf16 (log)

binary

(a) Multiplication performance

 0

 5

 10

 15

 20

 25

 30

32 48 64 80 96 112 128

D
iv

is
io

n
 t
h
ro

u
g
h
p
u
t
(M

B
/s

) gf16 (log)

binary

(b) Division performance

Figure 5.5: Throughput comparison on platform Pc2d.

99

Comparison of Division and Multiplication

Because of the use of the Euclidean algorithm and its variants for implementing division, it is difficult to

analyze the exact theoretical complexity of division. Here we focus on comparing the measured performance

of division relative to that of multiplication. Figure 5.6 shows the normalized division performance for binary

and gf16 (log), computed as the division throughput divided by the multiplication throughput for each finite

field. We make the following observations:

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

32 48 64 80 96 112 128

N
o
rm

a
liz

e
d
 d

iv
is

io
n
 p

e
rf

o
rm

a
n
c
e

P4
Pd

Pc2d
Pc2q

(a) binary implementation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

32 48 64 80 96 112 128

N
o
rm

a
liz

e
d
 d

iv
is

io
n
 p

e
rf

o
rm

a
n
c
e

P4
Pd

Pc2d
Pc2q

(b) gf16 (log) implementation

Figure 5.6: Normalized division performance on various platforms.

1. For binary, the normalized division performance decreases from about 0.08 to 0.03 across all test

platforms. This is because the Binary Extended Euclidean Algorithm used in binary contains several

conditional branches and iterations, and these greatly affect the division efficiency. The left-to-right

comb method with windows of width w (w = 4), however, has few conditional branches and only one

iteration, allowing it to scale better as field size increases. This effect can be observed in Figure 5.3

too, which shows that the multiplication performance of binary degrades slower than that of division

on all platforms.

2. For gf16 (log), the normalized division performance is fairly constant at about 0.15, regardless of finite

field size. As table lookup operations dominate the multiplication and division performance, this result

suggests that the table lookup complexity for division is Θ(n2).

Comparisons with Existing Implementations

We compared the multiplication performance (in operations per second) observed from our implementa-

tions with the performance reported in existing literature. The comparison results are presented in Table 5.6.

100

n gf16 (log) LD-lcomb(w) n
LD-lcomb(w) LD-lcomb(w)

[Avanzi 2007] [8]

48 39,820,605 12,149,787 47 15,625,000 2,969,642

64 16,375,242 10,579,802 59 8,547,009 2,836,374

80 12,889,563 7,328,084 79 5,847,953 1,981,301

96 7,340,030 5,474,563 89 4,830,918 1,946,795

112 6,883,625 5,073,405 109 3,649,635 1,902,230

128 4,440,471 5,046,587 127 3,278,689 1,958,632

Table 5.6: Multiplication performance comparison with existing implementations for GF (2n)

In Table 5.6, column 1 to column 3 shows the performance results from our experiments on platform

Pc2d. The 1st column is the value of n in finite field GF (2n). The 2nd column and the 3nd column are

the implementations performance of gf16 (log) and LD-lcomb(w), i.e., left-to-right comb method with win-

dows of width w (w = 4). The 5th column is the performance of LD-lcomb(w) reported in [10] for fi-

nite fields listed in 4th column. The 6th column is our measured performance of the open source library

relic-toolkit [8], a cryptographic library with emphasis on both efficiency and flexibility [8]. The

tested field sizes for this library are in column 4.

First we compare our performance results with those in [10]. Avanzi et al. reported the performance of

finite fields from GF (243) to GF (2283), but we only list here their results for finite fields whose sizes are

close to the ones we tested. As the performance presented in [10] is given in timing units, we translate their

results to operations per second for comparison. Table 5.6 shows that our implementation of LD-lcomb(w)

achieves much higher performance (column 3) than those reported in [10] (column 5) in most cases. While

we employ a slightly faster platform (Core 2 Duo with 2.1 GHz CPU compared to Core 2 Duo with 1.83

GHz CPU used by Avanzi et al.), we believe that the improvement is mainly due to our optimizations.

We also compare the performance of our implemented LD-lcomb(w) with that developed in relic-

toolkit [8]. relic-toolkit is a general library, which supports arithmetic operations for any finite

field when its irreducible polynomial is specified. We collected the performance of relic-toolkit by

running it on platform Pc2d. Although relic-toolkit provides a framework to measure performance

of field operations, we did not use their framework. Instead, we used our test framework and measured

the performance of their implementation of LD-lcomb(w). Column 3 of Table 5.6 shows that our imple-

mentation of LD-lcomb(w) greatly outperforms relic-toolkit (column 6). By looking into the source

code of relic-toolkit, we found that relic-toolkituses a general multiplication function, named

fb mul lodah, to perform multiplication for all finite field sizes. The generality of this solution unavoid-

101

ably sacrifices performance as it is not optimized for specific field sizes. In contrast, in our implementation

the multiplication operation is tailored for different size fields. This confirms that manual optimizations are

still necessary to optimize performance, as observed in [10].

Again, Table 5.6 shows that the performance of gf16 (log) (column 2) is much higher than that of LD-

lcomb(w) (column 3) in finite fields with sizes between GF (248) and GF (2112).

5.6 Summary

This chapter provides new optimizations and efficient implementations of arithmetic operations for large

finite fields GF (2n), ranging from GF (232) to GF (2128) tailored for secure storage applications. We con-

sider five different implementations based on three general methods for field arithmetic. We analyze the time

and space complexity for these implementations, showing tradeoffs between the amount of computation and

amount of memory space they employ. We also evaluate the raw performance of these implementations on

four distinct hardware platforms, and present an application of our large field arithmetic implementation for

distributed cloud storage.

Among the table lookup intensive implementations, we show that an implementation called gf16 (log),

based on the extension field method, achieves the best performance. The implementation uses precomputed

log and antilog tables in GF (216) to speed up multiplication. We also compare the performance of gf16 (log)

with that of the computation intensive implementation based on the binary polynomial method, called binary.

The binary implementation uses the left-to-right comb method with windows of width w for multiplication

and the Binary Extended Euclidean Algorithm for division. We show that in platforms with small CPU

cache, multiplication in gf16 (log) outperforms binary up to finite field GF (248). In platforms with large

CPU cache, the range extends to GF (2112). For division, gf16 (log) performs best in all cases. We conclude

that gf16 (log) is an efficient implementation for large finite fields, particularly for modern CPUs with large

CPU caches.

102

CHAPTER 6 HyFS: A Highly Reliable File System

6.1 Introduction

Data reliability is a crucial issue to any commercial or scientific applications, which heavily depend on

accessing data constantly to run businesses or conduct researches. In a computer system, data is stored on

data storage systems, and then data reliability is essentially determined by the reliability of data storage

systems. However, modern storage systems are complicated. A storage system is typically comprised of

many components, from hardware to software, and a problem can occur in any component. When it happens,

a storage system may stop working and needs time to be repaired. A worse consequence could be the stored

data is permanently lost due to unrecoverable errors. This would be a disaster for companies offering online

services, such as Google or Amazon, because such a failure may cause large revenue loss or even trust

loss from customers. Therefore, it is critically important to build reliable storage systems to ensure data

reliability.

In a reliable storage system, data redundancy can be implemented on different layers. First, data re-

dundancy can be implemented at hard disk layer. An example is Redundant Array of Independent Disks

(RAID) [85]. A RAID system consists of a RAID controller and multiple hard disks. The overall RAID

system is treated as a virtual single disk by operating systems. In the internal, the controller serves all data

access requests, including writing data and reading data. User data is then stored across different disks.

When one disk or more fails to work, the failure event can be detected by the RAID controller. On one

hand, the RAID controller continues providing normal data services by using other surviving disks; on the

other hand, the controller restores the data stored in the failed disks at background. RAID suffers several

limitations. Firstly, RAID is a hardware solution, and thus it lacks of flexibility of configuring or upgrading

the system easily during the system running. Secondly, all disks in a RAID have to be placed in a machine

or a rack, which renders RAID unable to tolerate the failure of the machine or the rack. Thirdly, a typical

RAID supports up to 36 disks, and it limits the scalability of a RAID.

Besides hard disk layer, data redundancy can be implemented at file system layer. In this implementation,

a reliable file system is like a RAID controller, which stores data across multiple storage nodes. If the storage

nodes are local hard disks, the file system is also referred to as software RAID. However, the storage nodes

103

can also be distributed on multiple sites. This can bring higher data reliability than RAID as it can tolerate

a site failure. A common practice is that storage nodes are connected in a network. The network can be in

a local area or in a wide area. During the system running, the client machines which are running user appli-

cations are connected to the network. When an application issues a data access request, the request will be

received by the reliable file system. Then, the file system will communicate with storage servers to process

it. After the process, the requested data will be returned to clients. The whole process is completely trans-

parent to applications. Obviously, such an implementation makes the reliable system easily integrated into

an existing system. Storage systems implemented in this way include HA-NFS [18], Zebra [52], Coda [97],

Scotch [41], RAIF [65], HydraFS [106], PVFS [27], Panasas parallel file system [110], GlusterFS [43], and

Lustre [58].

Besides file system layer, data redundancy can also be implemented at application layer. The difference

from file system layer is that the data reliability services is provided by a library. Then, applications have

to call a certain set of APIs to access the services. In the implementation of such a library, user data is also

stored across multiple storage nodes for high data reliability. The major benefit of this layer is simplicity.

This layer does not need to provide full file system services, but only a portion of them, and hence the library

can be developed quickly and easily. Furthermore, a wrapper implementation can be based on the library

and work as a file system, and the data services can be supported by the file system. This can ease the

integration of the library. Although the file system may not be POSIX compatible, it may be sufficient for

a wide range of applications. The examples of storage systems implemented in this way are RAIN [25],

Harp [72], HYDRAstor [33], Google File System (GFS) [40], and Hadoop [103].

This chapter presents the design and implementation of a reliable file system, named HyFS, an essential

component of a data storage system called Hydra [116]. HyFS is capable of employing general erasure

codes and distributed storage servers to achieve high data reliability. When HyFS detects storage servers’

failures, it will hide the failure from applications and continue its data service without any interruption.

Then, at an appropriate time later, HyFS will automatically restore the data stored on the failed storage

servers. As a result, data reliability is achieved. Furthermore, HyFS is implemented at file system layer

so that the adoption of HyFS in a real system is easy and without any great effort. We believe that data

reliability service is best to be implemented at file system layer and be full POSIX compatible. Regarding

to data redundancy, HyFS supports a wide range of erasure codes, which can be simple replication scheme

or complicated Reed-Solomon codes [96]. All these codes can be used simultaneously in a HyFS system.

Hence, HyFS can be easily configured to meet different data reliability requirements. For performance, a

104

data request is served by multiple storage servers in parallel, which allows HyFS deliver high performance.

Due to above reasons, we believe HyFS is an attractive solution for building reliable storage systems.

6.2 Related Work

Parallel Virtual File System (PVFS) [27] is a parallel system developed for high performance computing.

PVFS is a cluster system containing both client and server side. PVFS can support multiple clients accessing

the system simultaneously. At the server side, there are a manager server and multiple data servers. The

manager server handles only metadata relevant requests, such as permission checking for open files. It

does not participate in the normal data access operations. The data of a file is stored across multiple data

servers. When a client issues a read/write request, it will directly communicate with those data servers.

Then, the request will be served by the servers in parallel. This is a commonly used parallel access approach.

PVFS is able to high performance and functionality for I/O-intensive applications, particularly for scientific

applications. As the target of PVFS is high performance computing, PVFS does not implement any functions

for data reliability.

Lustre [58] is another widely used high performance parallel file system. Lustre cluster has three kinds

of systems: file system clients, object storage servers (OSTs), and metadata servers. The data of a file is

stored on different OSTs, and then a data request is served in parallel by multiple OSTs. To achieve high

performance, Lustre is implemented as a kernel space file system. This is different from PVFS, which is

implemented as a user space file system. For high performance, Lustre even creates patches for ext3 file

system. On one hand, these approaches greatly improve the performance of Lustre. On the other hand, they

need nontrivial effort on installing Lustre. Lustre can support various protocols. For example, the storage

servers can be over Fibre Channel (FC) or Serial Attached SCSI (SAS) connections. Lustre is a highly

scalable file system. According to [78], Lustre can scale up to 25,000 clients. Regarding data reliability,

Lustre does not provide rich functionalities. It depends on the underlying hardware or software RAID.

Panasas parallel file system [110] is a proprietary high performance file system. The file system contains

storage nodes and manager nodes, and the ratio is about 10 storages nodes to 1 manager node. One distinction

of the file system is the storage nodes implement an object store. An object contains both data and the data

attributes. The storage nodes called Object Storage Devices (OSD) stores objects in a local OSDFS file

system. The OSD is accessed through OSD specialized APIs. Besides high performance, the file system also

provides high data reliability through a tiered parity architecture [64]. Horizontal Parity computes parity for

105

each object and writes the data and parity across multiple disks. If there is a failed disk, only the stored files

need to be reconstructed from the remaining disks. Vertical parity is complementary to horizontal parity. It

improves the internal ECC capabilities of the disk itself. Network parity can further detect errors in the data

path between storage nodes and the client nodes. However, if a storage node fails, there could be data lost

due to no protection on machine level.

Hadoop [103] is a popular cloud storage system. It is developed for the situations of massive amounts of

data need to be processed. It contains several components. Two of them are Hadoop file system (HDFS) and

Hadoop MapReduce. HDFS is a distributed file system that provides high throughput access to the stored

data. Hadoop MapReduce is a software framework for distributed processing of large amount of data stored

on HDFS. HDFS is a highly scalable distributed file system. It targets to store 10PB file data on 10,0000

storage nodes, and serve 100,000 clients. In the meantime, HDFS is also a reliable file system. For each

piece of data, it stores three replicas of the data on three different storage nodes. In HDFS, the basic data unit

is called block. Each file is divided into a number blocks with the same size. The typical block size is 64MB

or 128MB. All metadata of files and blocks are managed by a server called master server. There are also

several limitations on HDFS. HDFS is not suitable for a primary storage system due to high latency. HDFS

needs to create three replicas for each block, resulting in high cost for hardware purchase and maintenance.

Last, HDFS does not efficiently support several important functionalities, such as snapshot.

6.3 Design Goals

We have set multiple goals for HyFS. These goals guide through the design and implementation of HyFS.

They are summarized below.

High Reliability To tolerate component failures, HyFS employs erasure codes to provide high data relia-

bility. HyFS supports MDS erasure codes, as they use minimum storage overhead to provide the maximum

reliability. Once HyFS detects a component failure, HyFS will hide the failure information and maintain the

data availability as if the failure does not happen. During the failure recovery period, the data reliability level

of HyFS decreases, but after the failure is recovered, the data reliability level is restored. Besides failure

recovery, HyFS also uses erasure codes to perform error detection and correction, which further improves

the system’s reliability.

106

High Flexibility HyFS is designed to support any erasure code to be used. There are many erasure codes

proposed and they mostly differ in three characteristics: reliability level, cost, and performance. In general,

high redundancy means high reliability level, high cost, and low performance. On the other hand, low

redundancy usually indicates low reliability level, low cost, and high performance. As a result, different

erasure codes have different trade-offs, and there is no such a code that can fit into all environments. A

developer of a reliable storage system should choose a code which best satisfies his requirements. To provide

the flexibility of using any erasure code, HyFS offers a framework that allow any code to be easily plugged

into the system.

File System Interface HyFS is a POSIX compatible file system. HyFS can be mounted on any Linux

system and running as a native file system. This is different from other systems running at application layer.

Running at file system layer brings significant advantages: 1) it facilitates developing new applications. As

HyFS runs as a native file system, application developers can use their familiar file system calls to access

files; 2) it makes legacy applications easy to run on HyFS. As legacy application have been developed for a

long time, it becomes hard or even impossible to change them. But because HyFS is a native file system, any

application running on existing Linux file systems can be seamlessly ported to run on HyFS; 3) it allows any

applications to run on HyFS, even when its source code is not available. This is particularly useful for many

valuable tools on Linux because their binary files can directly run on HyFS. Note that different from other

highly available file systems, HyFS was targeted as a native file system when it was designed. Hence, many

optimizations are implemented in HyFS so that file access requests can be served efficiently.

High Performance Performance is a critical consideration in HyFS. The traditional view of storage sys-

tems using erasure codes is that they cannot achieve comparable performance to others using replication

scheme. Actually this point of view is arguable, because there is no any previous work quantitatively com-

paring the performance of these two different systems. Even though it is possible that there is performance

gap between the two types of storage systems, their performance difference may not be significant. There-

fore, we hope to address this issue by HyFS. As HyFS supports replication and other erasure codes, HyFS

provides a platform to measure the performance of the two different systems and gives them a comparison.

Easy Deployment There are two aspects of easy deployment of HyFS. One aspect is HyFS is expected

to be running on commodity hardware. This would allow building a reliable storage system with low cost.

However, as commodity hardware is not as reliable as enterprise hardware, this imposes more challenges for

107

HyFS to provide high data reliability. The other aspect is that HyFS can leverage existing software to quickly

build a reliable file system. For example, NFS is a popular network file system in a local area network. To

protect the cost invested on NFS, HyFS can be configured to run on top of NFS, and furthermore, HyFS takes

account of properties of NFS and contains implementations especially tailed for NFS.

File system layer

HyFS

Client 1

...

Network

...

HyFS

Client 2

HyFS

Client m

Data Server 1 Data Server 2 Data Server nMetadata server

File system layer File system layer

ApplicationsShell ApplicationsShell ApplicationsShell

Figure 6.1: A Cluster of HyFS.

6.4 Overview of HyFS

6.4.1 Architecture

Figure 6.1 shows a cluster of HyFS. HyFS is a distributed storage system, which contains client side and

server side. In the client side, HyFS is mounted as a file system, and applications on client machines can

access HyFS just like other file systems. With this way, applications are completely transparent to the data

reliability services provided by HyFS. In the server side, HyFS contains multiple storage servers, and they

can be classified to two different types: metadata server and data servers. Regarding data communication,

HyFS uses a simple protocol. That is, there is only data communication between clients and servers.

In HyFS, the metadata server contains the metadata information of the whole file system. There are two

parts of metadata. The first part is the metadata of the hierarchical structure of the file system. The second

part is the metadata of file, which includes the permissions of owner/group/others, the file size, the address

of data servers, and etc. When an application initiates accessing a file and provides the file path, HyFS parses

the path and locates the metadata of the file. Next, HyFS reads the file’s metadata and obtains the file layout

information. Hence, given a file path, HyFS contains the enough information to serve a file access request.

From application perspective, a user file is a logical file visible to applications. In HyFS, a user file is

108

comprised by multiple file fragments, and they are distributed on several data servers. Then, if an application

issues a write request to a user file, HyFS will strip the file data to data servers and update the file’s metadata

accordingly. For a read request, HyFS will retrieve file fragments from data servers and assemble them

together and then return the file data to the application. As a cluster of HyFS may contain hundreds of data

servers, HyFS can aggregate the space of all data servers to provide a large capacity file system. Note that a

file is not distributed to all data servers, but only on a handful of them. This depends on how the metadata

server does the allocation.

As most part of HyFS is in the client side, we focus on this part in the rest text.

6.4.2 Components of HyFS

In the client side, HyFS consists of four major components, which are described in Figure 6.2. The

components are discussed in details from Section 6.4.3 to Section 6.4.6.

File System Interface

Single File Operation

Network Storage Servers

Erasure
Codes

Figure 6.2: Components of HyFS.

6.4.3 Component: File System Interface

File System Implementation

FUSE As developing a stable file system at kernel space demands a great amount of time, we quickly

implement a prototype of HyFS by using FUSE [104]. FUSE provides a framework to facilitate the develop-

ment of a user space file system. It has been used in many well known file systems, such as SSHFS (based

on SSH File Transfer Protocol) [1] and NTFS-3G (to access NTFS partition [2]). FUSE contains one module

running in kernel space. This module deals with all complicated interactions with operating system at kernel

space, so that the development of HyFS becomes relatively easy.

Figure 6.3 demonstrates how applications communicate with HyFS. Suppose an application issues a file

109

Applications

VFS
FUSE

Ext3

Ext2

...

Network Storage System

HyFS

kernel space

user space

control flow

Figure 6.3: Communication between applications and HyFS.

access request through a system call (such as read or write). The system call would be caught by virtual

file system (VFS), a core operating system component of Linux. Then, VFS finds which file system should

process this request according to the file path; in our case, this is FUSE. As FUSE is working on behalf of

HyFS, FUSE forwards the request to HyFS. Next, HyFS performs file operation for the request and returns

the result to FUSE, and FUSE forwards the result to VFS, which passes it to the application. As such, The

whole process for the request completes.

Performance Overhead The use of FUSE in HyFS may cause nontrivial performance overhead. One

overhead is from mode switch between user space and kernel space. Serving one file request involves totally

six mode switches. As mode switch is a time consuming operation, it may cost a few thousands of CPU

cycles. Another overhead is from data copy. To respond to either a write request or a read request, there

need four data copies: 1) one is between applications and VFS, 2) one is between VFS and FUSE, 3) one

is between FUSE and HyFS, 4) the last one is between HyFS and network storage servers. The overhead of

data copy may be significant, particularly when large files are accessed. Therefore, it is important to quantify

the two overheads and measure their impacts. We present our experiment results in Section 6.6. A simple

conclusion is that we may have to implement HyFS at kernel space for better performance.

Important Issues

Security HyFS is a secure file system. It can protect the stored files from unauthorized access. Each

directory or file in HyFS has ownership and permission control. HyFS implements it by taking advantage of

the file system in the metadata server. For any file, HyFS stores its metadata as a regular file in the metadata

server, and HyFS relies on the local file system of the metadata server to grant a permission or deny a file

request.

110

Data Corruption A robust file system should maintain file system consistency even if the system crashes

during performing writing operations. A common approach is using journal. HyFS implements this function

by relying on the journal support of metadata and data servers, which can run local file systems with journal

functionality. Hence, journal would be provided by HyFS for free. Furthermore, as HyFS uses erasure codes

for data reliability, HyFS can leverage the inherent error detection and correction of erasure codes to perform

data corruption test and recovery. This would bring even higher data reliability.

6.4.4 Component: Single File Operation

In HyFS, a basic question is how to support operating a single file. This question is addressed by two

components: Single File Operation and Erasure Codes. We discuss the former component in this section.

Overview

This component supports all regular file operations, including opening/reading/writing/seeking/closing a

file. We define a set of APIs in Figure 6.4. Obviously, they are very similar to their counterparts in C library.

// correspond to open function

HFILE *hopen(

const char *pathname, int flags, mode_t mode);

// correspond to read function

ssize_t hread(

HFILE *h_file,

void *buf, size_t count);

// correspond to write function

ssize_t hwrite(
HFILE *h_file,
const void *buf, size_t count);

// correspond to lseek function

off_t hlseek(

HFILE *h_file,

off_t offset, int whence);

// correspond to close function

int hclose(

HFILE *h_file);

Figure 6.4: APIs of file operations.

HFILE is a file handle of HyFS. It is like a file descriptor. The file handle contains all necessary in-

formation to access a file, such as erasure code, and data server locations etc. HFILE has to be initialized

by hopen and then passed to all other APIs. hread collects file fragments from multiple data servers and

combines them together. Then, it returns the data requested by applications. If a failure occurs to one data

111

server or more, hread will perform decoding operation and hide the failure. Similarly, hwrite performs write

operations, and hclose closes the file handle and frees all allocated resources.

Important Issues

Data Buffer For most high performance file systems, data buffer is necessary to bridge performance gap

between main memory and persistent storage. Currently, HyFS does not implement data buffer in itself;

instead, it relies on the file system exposed by network storage servers, such as NFS. That means, hwrite

will write data to those file systems immediately when it accepts data and hread will read out only the

minimal data that is requested. The assumptions is that those file systems, such as NFS, should efficiently

manage data buffer just like they are supposed to do. Hence, any additional data buffer in HyFS seems

unnecessary. In a rare case, if the performance of such a file system is poor, we may add a buffer layer for

that file system, but may not for general ones.

Concurrent Access In practice, when a file is opened by multiple applications, they may issue file access

requests at the same time. This situation is concurrent access. As the requests could be interleaved, they

may result in inconsistency to the file. HyFS deals with this issue by following the convention of Linux file

system. That is, HyFS leaves the work of maintaining consistency to the application developers. This choice

is based on two reasons. First, we have tested ext3 file system, and we found that if multiple applications

write a single file simultaneously, there could be inconsistency in the file. Hence, we believe that this is a

convention of Linux file system, and this behavior should be familiar to experienced application developers.

Second, HyFS can not fully understand the intention of applications but their developers do. Therefore, the

best place to do the concurrent access control is at application layer.

6.4.5 Component: Erasure Codes

The Erasure Codes component implements all functions relating to the use of erasure codes. This com-

ponent provides two basic services, encoding and decoding. When HyFS responds to a write request, the

data to be written goes through an encoding procedure; conversely, after data is read out for a read request,

decoding will be performed. Note that if there is no any erasure, decoding will be skipped because user data

can be directly read out for systematic erasure codes. To support various erasure codes within HyFS, this

component defines a set of interfaces, shown in Figure 6.5. The interfaces have to be implemented for an

erasure code before it is used in HyFS.

112

// perform init operation

void code_init(

code_data_t *data,

int n, int block_size);

// perform encoding operation

int code_encode(

code_data_t *data,

char *msg, char *parity);

// perform decoding operation

int code_decode(

code_data_t *data,
char *msg, char *codeword, int *lost);

// perform close operation

void code_close(

code_data_t *data);

Figure 6.5: Interfaces implemented by erasure codes.

Overview

Currently, we have implemented several erasure codes in HyFS. This is to demonstrate that it is easy to

add an erasure code to HyFS. The implemented codes include replication scheme, the STAR code [54, 76],

and Reed-Solomon Codes. Thus, the defined interfaces provide an open framework to support any erasure

code in HyFS. We discuss each interface briefly as follows:

code init This function contains three parameters. The first one is a pointer, where an erasure code can

perform any necessary initialization and fill it with any content. The other two parameters are the number of

data servers and the block size of a symbol in each codeword.

code encode It performs encoding operation. The input parameter msg specifies the input data for encoding.

Parameter parity points to the encoded parity data. The msg data and the parity data form a complete

codeword.

code decode This function performs decoding operation, the inverse operation of code encode. This func-

tion is invoked when a failure is detected. Among the parameters, codeword is the pointer of a codeword,

and msg is the pointer of decoded data. erasure indicates which symbols of codeword are erasures.

code close When an erasure code is not used any more, this function should be called to free all allocated

resources.

113

Efficient Encoding and Decoding

In HyFS, one performance overhead of erasure codes comes from encoding and decoding. Encoding is

performed constantly when new data is written to the system, and decoding is only invoked when data is

read out and erasures exist. Because these two operations bring extra overhead to HyFS, their performances

have to be optimized to avoid being performance bottleneck.

Compared to decoding, encoding is a more frequent operation as it takes place whenever new data is

written. We have proposed an efficient encoding algorithm named DWG algorithm for XOR-based erasure

codes [77]. This algorithm schedules the XOR operation for erasure codes, so that the encoding can be

performed more efficiently than that of the traditional algorithm. We are going to apply DWG algorithm to

HyFS and see how this algorithm helps HyFS to achieve high performance.

Although decoding is not as frequent as encoding, its performance is still critical for HyFS. Decoding is

invoked when any failure happens. This is the time of HyFS in performance and reliability degraded period.

If decoding is slow, the system throughput is low, and more time has to be taken to restore data reliability.

Hence, decoding efficiency affects both system performance and data reliability. For RAID-6 codes, we have

proposed an algorithm, named SCAN algorithm for efficient decoding. We plan to apply this algorithm to

HyFS as well.

6.4.6 Component: Network Storage Servers

At the bottom of Figure 6.2 is the component of Network Storage Servers. In fact, HyFS supports storing

data on different types of storage nodes. A storage node could be a hard disk, a flash drive, or a storage

server. Here, we simply use storage servers in a network to illustrate this component.

Overview

This component is delegated to access network storage servers for writing and reading data. It can be

based on the locally mounted file systems exposed by network storage servers. This allows use standard file

system calls to communicate with network storage servers. Then, HyFS can access metadata servers and data

servers as if it accesses local file system, so that the implementation of this component is easy. For example,

if NFS is exposed at each data server, we will setup mount it client on client machines, and this component

will be running on top of NFS. However, if there is no such a facility provided by storage servers, we may

have to develop a file system interface to wrap the data services of storage servers.

114

Variety of Network Storage Servers

HyFS can run on top of various types of network storage servers. On one hand, HyFS can utilize existing

network storage servers in local area network, such as NFS and AFS servers. In this respect, HyFS is a

stackable file system [118] as it is built upon other file systems. The benefit is that HyFS can leverage

existing mature network file systems. On the other hand, HyFS can be based on storage servers in wide area

network, such as storage servers accessible through HTTP, FTP, or GridFTP. This allows HyFS to run on

Internet and access storage servers geographically distributed. It greatly improves data reliability, because

even a catastrophe takes place at one site, user data can still be reconstructed from servers at other surviving

sites.

Important Issues

Because storage servers in local area network and those in wide area network have different charac-

teristics of latency and throughput, these differences may result in different performance concerns in this

component. An example is when using remote Web servers as storage servers, the throughput cannot be

comparable to that of servers in local area network. In this case, employing a large buffer is likely to be

necessary to hide the high latency and low throughput of the Web servers. Our purpose here is to provide

high performance for HyFS even when slow storage servers are used.

6.5 Critical Designs

In HyFS, there are several critical designs, which are discussed as follows.

6.5.1 Hierarchical Structure

For applications, HyFS presents a hierarchical structure of directories and files. In the internal of HyFS,

we have several options to implement it.

Metadata Server

We term the hierarchical structure visible to users as logical structure. HyFS represents the logical

structure by the structure of metadata files on metadata server. The metadata files are stored in local file

system of the metadata server, and HyFS uses that file system to manage the logical structure. Hence, for

each directory or file in logical structure, there is a corresponding directory or file in the metadata files

115

structure. For instance, to server a request of creating a directory in logical structure, a real directory will be

created in the metadata server.

Data Servers

Different from metadata files, data files stored on data servers may not have the same hierarchical struc-

ture as logical structure. Instead, as metadata server contains all metadata of the file system, data servers

have more flexibility on the structure of data files. Here, we present three mapping options from logical

structure to the structure of data files. The three options differ in the costs of mapping a file and updating the

structure.

Identical mapping On all data severs, the structure of data files is completely identical to logical structure.

Then, when a user file is accessed, the location of its data files can be easily found as their structures are

identical, and hence this mapping approach has minimum mapping cost. However, it may cause high cost

of updating the structure. For instance, when a user directory is renamed, the directory on data servers

also needs to be renamed. Furthermore, the file paths of the data files under that renamed directory are

changed, and thus all relevant metadata files have to be updated so that they can point to the new data file

paths. Such an update may result in a significant performance overhead when the directory to be renamed

contains many subdirectories and files. Nonetheless, due to its simplicity, this approach is used in the current

implementation of HyFS.

Random mapping Compared to identical mapping, this approach goes to another extreme. In this approach,

the structure of data files has no fixed relationship with logical structure. For example, creating a directory

in logical structure does not indicate creating a directory in the structure of data files. Nonetheless, one

logical file still corresponds to one data file in one data server. This approach intends to minimize the cost

of structure update. For example, renaming a logical directory could only need an update to the metadata

server and no other operation is required on data servers. However, this approach needs to have a table to

maintain the mapping between the two structures, which increase the mapping cost.

Isomorphic mapping This approach stays in the middle of above two approaches. It keeps the structure on

data servers isomorphic to logical structure. That is, there still exists one-to-one correspondence between the

structures for directories and files, but they are not required to have exactly same names. This approach could

balance the structure mapping cost and structure update cost. For example, To serve a directory renaming

116

request, HyFS only needs to update the mapping rule for that directory.

6.5.2 Efficient Read and Write

For any single file, HyFS presents its content to applications as a byte stream, but in the internal imple-

mentation, a file is treated as a codeword stream. Such a difference makes it difficult to efficiently support

read, write, and seek operations. This section describes how HyFS addresses this issue.

Overview

Due to the use of erasure codes, a codeword is the smallest data unit in HyFS, and a file is considered

as a codeword stream. The codeword size depends on several parameters, including erasure code, n, k, and

ps (packet size). However, for applications, HyFS presents a file as a byte stream like a conventional file

system. This raises a couple of challenges. First, HyFS has to support byte stream operations based on code-

word stream. Secondly, HyFS cannot assume any file access pattern from applications, and read/write/seek

requests could randomly occur in a file request sequence. Lastly, HyFS should support file operations effi-

ciently for performance reason. All these factors complicate the implementation of HyFS.

In HyFS, we classify file access patterns into two categories: sequential access and random access. We

first introduce the two patterns, and later we give a simple heuristic to determine which one is the most likely

pattern for a workload. Note that the pattern is detected for one file handle, not for one file.

Sequential Access Pattern

When an application accesses a file, the application may issue a sequence of file access requests. If

the requests show a strong spatial locality in terms of their accessing positions in the file, this sequence is

considered to have a sequential access pattern. For example, when we issue a cp command, cp accesses the

file content of both files sequentially to copy data, and hence the file requests have sequential access pattern.

We propose using an automata to handle this pattern. The automata is shown in Figure 6.6.

In the automata, there are three states: write, read, and seek. At one time, HyFS is in one state. The initial

state is seek, and the state change is decided by the type of file request. For example, suppose the current

state is write. If the next file request is read, then the state would be changed to read. For write and read

state, we keep a write and read buffer. The buffer size is exactly one codeword size. The write or read buffer

stores the most recently accessed codeword. As sequential pattern demonstrates strong spacial locality, all

content of the codeword in the buffer is likely to be used. If we don’t have such a buffer, then even when we

117

WriteWrite

Read

Seek

Read

Seek

Write

Read

Seek Write

Write

Seek

Figure 6.6: An automata to handle sequential access pattern.

write/read a byte, we have to perform a write/read operation. This would be inefficient.

The state of seek is important in the automata. This is used to invalidate buffer content. As write/read

and seek requests can be randomly issued by applications, HyFS does not have any assumption of the request

sequence. For example, if an application reads file content in one file offset, and then it moves to another file

offset to perform read. Consequently, the read buffer for the first read cannot be used for the second read.

Then, HyFS uses state seek to invalidate the read buffer when it finds that file offset is changed across file

requests. For performance reason, not every seek request has to cause state change. For example, if a seek

request only moves the file offset within a codeword, then the state is not changed.

Random Access Pattern

Different from sequential access pattern, random access pattern does not show any spacial locality. For

two consecutive read or write requests, the file offsets could be far away from each other. Then, if HyFS

writes or reads a complete codeword and uses a buffer to hold it, the performance may be low because only

part of a codeword is used. To address this type of pattern, we use a different approach to handle it. The idea

is each request is processed stateless. There is no buffer or state to be maintained across different requests.

Rather, for one request, we only perform minimal and necessary work. For example, if a file request intends

to read 5 bytes, HyFS will read exactly 5 bytes regardless of the codeword size. The similar operation is

performed for a write request. Although this approach looks simple, we find it is highly effective for random

access pattern.

Compared to the approach for sequential access pattern, the approach for random access pattern uses a

118

different set of APIs provided by the component of Erasure Codes. This is because the approach for random

access pattern works on writing or reading partial codeword. For a read request, HyFS simply goes to read

the data that are requested. However, for a write request, the process becomes complicated. When a new

piece of data is written to a user file, the parity data has to be updated. As this approach performs minimal

write on user data, it also tries to minimize the update to the parity data. Hence, HyFS needs to calculate

carefully that which part of parity data should be modified. Such a calculation depends on the component of

Erasure Codes.

Pattern Determination

For a file handle, HyFS constantly keeps track of the file requests issued on it and then determines the

most likely access pattern. Currently, HyFS uses a simple method to do the determination. This method

maintains a window that saves most recently 100 file requests. If within the window, HyFS finds that there is

less than 20% of seek requests that move file offset across different codewords, the requests are considered to

have the sequential access pattern; otherwise, they follow random access pattern. This is a simple heuristic,

and we believe that there is still great potential to improve it.

6.5.3 Load Balancing

Load balancing is about how to evenly distribute file access requests to data servers, so that all of them

receive similar amount of work. This is to improve system throughput. Here, we focus on load balancing

for a single file, not system wide though. We use a technique called rotation [85]. Rotation means that

different codewords may have different layout on data servers. The purpose of rotation is to make a data

server contain both data and parity data of a file so that each server has the same probability to serve an

arbitrary file request. Hence, file access requests are likely to be evenly distributed to data servers.

In HyFS, we implement rotation in component File System Operation. This choice has two advantages.

One is such a rotation is completely transparent to component Erasure Codes, and thus it only needs to be

implemented once but can be used for all erasure codes. The other one is the flexibility of rotation. Although

round-robin is a commonly used rotation approach, other approaches may be preferred for a specific envi-

ronment. As rotation is implemented in one place, component File System Operation, adopting a different

rotation approach is easy.

119

6.5.4 Failure Detection

As HyFS runs on commodity hardware, storage servers may fail at anytime, and then it is important for

HyFS to detect a failure event. By breaking down this issue, we find there are three relevant problems: 1)

how to detect a failure, 2) when to perform failure detection, and 3) what to do with failed storage servers.

We discuss them in details.

In HyFS, storage severs may expose various types of file systems, which makes it hard to find a general

way to detect failures efficiently. There could be two different approaches to do it. One approach is to use

open file system call to open files in the storage servers. If the return value is 0, then the storage server is

alive; otherwise, the storage server is considered as a failure. This is a simple method, but it has drawbacks.

For instance, if an NFS server is hard mounted (this is a usual way) and the server fails accidently, open

will be blocked and the whole file system will hang there. Another approach can solve this problem. That

approach explicitly implements failure detection rather than depends on open. It first gets file system’s types

provided by each storage server. Then when it needs to detect an NFS server, it initiates a socket connection

with the server. If the connection can be established, then there is no failure with the server. Otherwise, the

server is treated as a failure.

Another problem is when to perform failure detection. One choice is doing it in a fixed interval. A

thread can be generated when HyFS is stared. Then, the thread connects all storage servers regularly and

finds those failed ones. However, one shortcoming of this approach is that if a storage server fails during two

consecutive intervals, the failure will not be detected when it happens and any issued file access requests may

be blocked. To solve this problem, another approach performs failure detection whenever there is access to

storage servers. If a failure happens, the failure will be detected during the access and propagated to HyFS.

One main concern of this approach is performance. As every access has to perform failure detection, the

cost may be high, and thus this approach should be implemented efficiently. Therefore, a complete solution

should combine the above two approaches, so that it can detect failure timely and efficiently.

The last problem is what to do with failed storage servers. If a storage server is detected as a failure,

there could be different causes behind it. If it is because this server meets a permanent failure, then the data

stored on the storage server should be recovered. This may result in long failure repair time. However, if

this failure is caused by power outrage or network card malfunction, the failure could be fixed quickly by

replacing power outlet or network card. In this case, the failure repair time is relatively short. One issue is

when the storage server comes back, the data in the server may be stale and cannot be used anymore. In

120

current implementation of HyFS, if a server failure is detected, it always considers the server as a permanent

failure, and the failed server will be recovered in background.

6.6 Performance Evaluation

This section presents performance results of HyFS.

6.6.1 Overhead of FUSE

As mentioned in Section 6.4.3, FUSE allows quick development of a file system, but it also incurs extra

performance overhead. We conducted several experiments to quantify the overhead. Here, we use a file

system, called fusexmp. fusexmp is a file system provided by FUSE installation package [104]. fusexmp

is a stackable file system. It has to run on top of another local file system, which is referred to as the host

file system of fusexmp. Then, for any file access request, fusexmp simply forwards it to the host file system

without any process.

The overhead of FUSE is measured as follows. We run two different types of tests. The first type of

test runs a benchmark software on a host file system directly. Another type of test runs on fusexmp. Hence,

by comparing the performance results from the two type of tests, we are able to measure the performance

overhead caused by FUSE. It is worth noting that the performance overhead is affected by many factors, such

as the host file system, the workload, etc. Because of it, we run several tests to get a comprehensive view of

the overhead.

We employ a widely used benchmark software Iozone [3]. Iozone can measure the throughput of a

variety of single file operations, including write, rewrite, read, reread, random read, random write, backward

read, record rewrite, stride read, fwrite, frewrite, fread, and freread.

Ext3

This experiment uses ext3 as the host file system for fusexmp. To simulate different workloads, the

experiment uses two size pairs: [20MB, 100KB], and [200MB, 100KB]. In the bracket, the first number is

the file size, and the second one is the record size. Because we focus on the performance overhead of FUSE,

we don’t present the absolute throughput values; rather, we give the comparison of normalized throughput.

The normalized throughput of ext3 is set as 1, and the normalized throughput of fusexmp is calculated

accordingly. The performance results are shown in Figure 6.7.

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

w
rite

rew
rite

read
reread

rand_read

rand_w
rite

bkw
d_read

record_rew
rite

strided_read

fw
rite

frew
rite

fread

freread

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

FUSE on ext3 NFS

(a) ext3 with fs=20M, rs=100K

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

w
rite

rew
rite

read
reread

rand_read

rand_w
rite

bkw
d_read

record_rew
rite

strided_read

fw
rite

frew
rite

fread

freread

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

FUSE on ext3 NFS

(b) ext3 with fs=200M, rs=100K

Figure 6.7: FUSE overhead measured on ext3

We can make the following observations from Figure 6.7.

1. For all operations, the performance of FUSE on ext3 is much worse than that of native ext3. This

indicates the performance overhead of FUSE is not trivial, but significant.

2. The overhead is different across operations. Commonly, the overhead on write operations is greater

than that on read operations. For example, the performance overhead on write is two times of that on

read.

3. The performance of most operations under workload [200M, 100K] is lower than that under workload

[20M, 100K]. It means the overhead is sensitive to the workload. In fact, workload [200M, 100K]

invokes more disk I/Os than workload [20M, 100K], and then the performance overhead of FUSE on

this workload should be less obvious considering the overhead of FUSE only relates to CPU cycles

and data copy. But we observed the different thing. We’ll take more time to investigate this issue.

NFS

The next experiment uses NFS as the host file system for fusexmp. As NFS is a network file system, all

file requests are actually served across network. Hence, this measures how network affects the performance

overhead of FUSE. In the experiment, there is one NFS client and one dedicated NFS server. Both are

running NFS V3. The two machines are connected in a 100Mb/s network. The performance results are

displayed in Figure 6.8.

Figure 6.8 shows two trends. First, the performance of fusexmp on NFS is worse than that on ext3.

It implies the performance overhead is also sensitive to the host file system besides workload. Second,

all write performances of fusexmp on NFS are extremely low. The reason could be that FUSE may cause

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

w
rite

rew
rite

read
reread

rand_read

rand_w
rite

bkw
d_read

record_rew
rite

strided_read

fw
rite

frew
rite

fread

freread

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

FUSE on NFS NFS

Figure 6.8: FUSE overhead measured on NFS

performance overhead other than that from mode switches and data copy. This observation is related to the

third observation we found for fusexmp on ext3. We will investigate the two issues together in future.

6.6.2 Micro Benchmark

Now we present the micro benchmark of HyFS using Iozone. In the following experiments, the cluster

of HyFS contains five machines, including one client machine and four delegated data servers. The metadata

server is running at the client machine. The network bandwidth is 100Mb/s.

Read and Write

The first experiment measures the performance of read and write. As mentioned in Section 6.5.2, file

requests could have sequential access pattern or random access pattern. To efficiently handle the two patterns,

this chapter proposes three algorithms. The first one (algorithm seq) is designed to process sequential pattern,

and the second one (algorithm rand) processes random pattern. The last one (algorithm auto) is a hybrid,

which dynamically determines the pattern and then applies the proper algorithm to handle it. It uses a simple

pattern determination method mentioned in Section 6.5.2. We present their performances in Figure 6.9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

w
rite

rew
rite

read
reread

rand_read

rand_w
rite

bkw
d_read

record_rew
rite

strided_read

fw
rite

frew
rite

fread

freread

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

seq rand auto

Figure 6.9: Performance of different algorithms

123

There are several observations made from Figure 6.9. First, for most write operations, algorithm auto

is the fastest one followed by algorithm rand, and algorithm seq is the slowest one. Second, for most read

operations, algorithm auto is still the best one, and the next one is algorithm seq followed by algorithm

rand. As a result, algorithm auto is the most efficient one among all three algorithms. It is worth noting that

algorithm rand outperforms algorithm auto for fwrite operation. This implies that the pattern determination

approach of algorithm auto can be improved further.

Scalability

The second experiment considers the scalability of HyFS. Here, scalability means how the system per-

formance scales as the number of data servers increase. We did two tests. Both of them are using single

parity code. One test is (2, 1), which uses two data servers. Another one is (4, 3), which uses four data

servers. The performance result is shown in Figure 6.10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

w
rite

rew
rite

read
reread

rand_read

rand_w
rite

bkw
d_read

record_rew
rite

strided_read

fw
rite

frew
rite

fread

freread

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

(2, 1) (4, 3)

Figure 6.10: Performance of HyFS with (2,1) or (4,1)

Figure 6.10 shows that the performance of (4, 3) is much better than (2, 1) for all write operations. This is

expected as (4, 3) has double number of data servers. However, the read performance of both configurations

is similar. The reason could be Iozone writes a file first, and then uses the file for read test. Then, the content

read by Iozone is mostly from cache, and hence it does not scale with the number of data servers.

Erasure Codes

The next experiment measures how various erasure codes impose different performance overhead on

HyFS. We have three configurations in the experiment. rs (4, 3) uses Reed-Solomon code (4, 3), and parity

(4, 3) uses parity code. Both can tolerate one data server failure. dist (4, 4) uses distribution code, without

any fault tolerance. The performance is shown in Figure 6.11.

124

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

w
rite

rew
rite

read
reread

rand_read

rand_w
rite

bkw
d_read

record_rew
rite

strided_read

fw
rite

frew
rite

fread

freread

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

rs (4, 3)
parity (4, 3)

dist (4, 4)

Figure 6.11: Performance of HyFS with various erasure codes

Figure 6.11 shows for all write operations, dist (4, 4) achieves the best performance followed by parity

(4, 3) and rs (4, 3). This is expected. The worse performance of parity (4, 3) and rs (4, 3) attributes to

the additional parity data written by them. When it comes to the performance gap between parity (4, 3)

and rs (4, 3), although they have the same amount of data to write, the computation of parity code is more

efficient than Reed-Solomon codes, and hence parity (4, 3) outperforms rs (4, 3). Another observation is for

all read operations, the performances of the three configurations are similar. This is because in this case, the

performance is determined by the amount of data to read. As there is no failure, erasure nodes do not bring

any performance overhead.

6.6.3 Real Applications

To have a more comprehensive view of HyFS, we run several real applications on HyFS. There are two

purposes of doing it. On one hand, it shows that HyFS runs as a file system, which can support existing

applications without any effort. On the other hand, it measures the performance of HyFS from application

perspective.

Apache HTTP Server

In this experiment, there is a machine running Apache HTTP server. The root directory of the virtual host

contains three directories, and they are on three different file systems: ext3, NFS, and HyFS. Each directory

contains a file with the same content. The file size is 2GB. Then, we use two benchmark tools – ab [4] and

httperf [5] – to measure the time of retrieving a file from the Apache server to another machine. For each

tool, we access the files in the three different directories and compared the time of accessing the file. Hence,

this workload represents downloading a large file from a Apache HTTP server.

Figure 6.12 shows that the transfer rates of all file systems are close for both benchmark tools. Actually,

125

 0

 2000

 4000

 6000

 8000

 10000

 12000

ab httperf
F

ile
 t
ra

n
s
fe

r
ra

te
 (

K
B

/s
)

ext3 NFS HyFS

Figure 6.12: Performance of Apache on various file systems

the performance bottleneck is in the network. As the network bandwidth is 100Mb/s, the transfer rate of

12000KB/s indicates the network is almost saturated. Therefore, this experiment shows that HyFS provides

high performance for Apache HTTP server when it accesses large files. Regarding small files, we found

that they are cached in memory after they are accessed once, and hence the performance of file systems is

relatively unimportant in this case.

MySQL Server

We did another experiment using MySQL. MySQL stores user data, and hence data reliability of MySQL

is critically important. To achieve high reliability, the database files of MySQL can be stored in HyFS. Due

to the fault tolerance capability of HyFS, the data reliability of MySQL is ensured. Like what we did in the

above experiment, we create three databases, and they are on ext3, NFS, and HyFS respectively. Then, we

use two benchmark tools –SysBench [6] – to measure the performance of MySQL when it is running on

different databases.

SysBench SysBench [6] provides an impression of OLTP performance of a database server. Figure 6.13

displays the measured results in our experiment. The figure shows that the performance of OLTP on three

file systems are close. This indicates that HyFS can provide high performance for OLTP of MySQL.

6.7 Summary

This chapter proposes a file system called HyFS. HyFS employs erasure codes and network storage

severs to build a reliable file system. As HyFS distributes data to storage severs with redundancy, HyFS can

tolerate a certain number of servers failures. When a failure event happens, HyFS hides this information and

126

 0

 5

 10

 15

 20

 25

 30

 35

 40

OLTP
A

v
g
 t
im

e
 p

e
r

re
q
u
e
s
t
(m

s
)

ext3 NFS HyFS

Figure 6.13: Performance of SysBench on various file systems

continues providing data service. In a proper time later, HyFS will recover the failed data and restores the

system’s data reliability.

In this chapter, we first described the architecture of HyFS. HyFS is a cluster system, which contains

client side and server side. In the client side, HyFS is running as a regular file system, which greatly facilitates

the adoption of HyFS in a real system. Then, we briefly introduced the components in HyFS. We provided a

framework to support various erasure codes to be used in HyFS. Next, we presented several critical designs in

HyFS. Particularly, we introduced two different file access patterns and addressed how to efficiently support

file operations for the two patterns. Lastly, we presented the results of performance evaluation.

127

CHAPTER 7 Conclusions and Future Directions

7.1 Conclusions

This dissertation studies how to implement a reliable file system by using erasures codes. It focuses on

five relevant problems.

This dissertation first proposes several algorithms to perform encoding operations efficiently for XOR-

based erasure codes. We observed that the order of XOR operations is flexible and can significantly impact

encoding performance . Using this observation, we proposed three new XOR-scheduling algorithms that

have different characteristics in the XOR scheduling. We have shown that the new algorithms greatly out-

perform the traditional algorithm, and they are applicable to multiple erasure codes.

Then, an efficient decoding algorithm for RAID-6 erasure codes is presented. A RAID-6 system can

tolerate up two entire disk failures. In such a system, each disk may encounter entire disk failure or sector

failures. Consequently, disk failures in a RAID-6 system could become complicated. We present a general

decoding algorithm named SCAN, which can recover all disk failure cases efficiently. Different from another

well known algorithm called Matrix Method, SCAN uses Tanner graph on decoding. We conducted exper-

iments on various RAID-6 codes, and shown that SCAN achieves much better decoding performance than

Matrix Method in all failure cases.

Next, this dissertation provides an efferent error correction algorithm for the STAR code. The motivation

is to combat disk errors by using error correcting codes. This is because redundancy is already in place

introduced by error correcting codes to cope with failures at system level, and then we advocate using error

correcting codes and overcome both failures and silent errors simultaneously. We propose an efficient error

decoding algorithm named EEL (Efficient Error Locating) for the STAR code, which can tolerate up to

three disk failures. The EEL algorithm leverages the geometric structure of the STAR code to obtain high

performance. The performance results show that the decoding performance of EEL algorithm is significantly

better than that of a naive algorithm.

Besides dealing with data reliability, this dissertation introduces an efficient implementation of arithmetic

operations for large finite fields. With the advent of cloud storage, a whole host of new failure models

need to be considered, e.g., mis-configuration, insider threats, software bugs, and even natural calamities.

128

Accordingly, storage systems have to be redesigned with robustness against adversarial failures. Finite fields

are widely used in constructing error-correcting codes and cryptographic algorithms. To build secure storage

systems, we have most interest on the finite fields from GF (232) to GF (2128). We are concerned with two

arithmetic operations: multiplication and division. By using extension field method, we develop efficient

implementations for large finite fields.

Lastly, this dissertation presents the design and implementation of a reliable file system, named HyFS.

HyFS employs general erasure codes and distributed storage servers to achieve high data reliability. When a

failure happens to storage servers, HyFS will detect the failure timely and hide the failure from applications.

The data service will be continued without any interruption. Then, at an appropriate time later, HyFS will

restore the data stored on the failed storage servers. Furthermore, HyFS is implemented as a native file

system so that the adoption of HyFS in a real system is easy. Regarding to data redundancy, HyFS supports

a wide range of erasure codes running simultaneously, and hence HyFS can be easily configured to satisfy

data reliability requirements of different environments. In terms of performance, HyFS serves a data request

by multiple storage servers in parallel, leading to high relievable performance.

7.2 Future Directions

We found that there is still a lot of future work to do with HyFS. Here we only list three important things:

the design of a new set of erasure codes, the development of new file systems for storage servers, and the

scalability to support a cloud storage system.

7.2.1 Erasure Codes

When an application issues write requests to a file, HyFS has different behaviors for sequence access

pattern and random access pattern. If write requests show sequential pattern, HyFS will read out the affected

codewords and perform update operation. As HyFS has complete codewords in main memory, the encod-

ing operation is easy. Furthermore, as the updated codewords are in main memory, the update to the file is

also simple. However, for random access, both operations of encoding and file update become complicated,

because it can only touch the part of codewords that has to be updated. In this case, as HyFS aims to per-

form minimum update for the write requests, then HyFS needs to calculate precisely which part of symbols

should be touched. This involves non trivial implementation complexity for most existing erasure codes. In

addition, updating parity symbols in a minimal way is also hard to implement. For example, if the code used

129

in HyFS is EVENODD, an update to consecutive data symbols within a codeword may result in multiple

scattered updates to parity symbols. If the code is Reed-Solomon codes, then the update may also not be

minimal due to the computation of Reed-Solomon codes on finite fields different from GF (2). Therefore,

we may need new erasure codes that can efficiently support write requests with random access pattern and

the implementation should also be easy.

7.2.2 File Systems on Storage Servers

In a network environment, HyFS uses NFS to build a cluster system. As NFS is a popular network file

system, this is a quick way to develop HyFS. However, we found that this way has several limitations. Firstly,

NFS servers are recommended to be hard mounted for critical data because this way makes sure that each

write operation succeeds after write returns. However, if a hard mounted NFS server meets a failure, the

NFS server will hang and cause HyFS to freeze. To solve this issue, HyFS pings an NFS server regularly

to detect the server is accessible. Although this approach works for NFS servers, it is not a general way to

perform failure detection. Secondly, if an NFS server meets a temporary failure and comes back later, HyFS

has no way to be automatically notified. This is obviously an inefficient approach. Thirdly, as HyFS uses

NFS, there is no any HyFS daemon running on storage servers, and thus HyFS cannot fully take advantage

of the resources of storage servers to perform any background operations, such as data scrubbing, or data

migration. Due to the above reasons, we believe that a better approach is to implement a new network file

system for HyFS. The new network file system does not have to be a general file system; rather, it could

be tailored only for HyFS. We have to find what file services should be provided by this file system, so that

HyFS can easily access and manage storage servers.

7.2.3 Scalability

The current HyFS can efficiently support up to 50 machines. This is a small environment. As a cloud

storage system may contain thousands of machines, HyFS cannot work in this system with high performance.

The problem lies in that the current HyFS uses all storage nodes to form a redundant group. Then, each

codeword is stored across all nodes in the group. Although HyFS can use thousand machines for a group, the

data write/read or reconstruction performance will be dramatically low because too many machines would

be involved in serving one write or read request. There could be two solutions to improve the scalability of

HyFS. One solution is to partition the machines to multiple separately groups. One user file is limited to be

stored in one group. Because we can always keep a small number of machines in one group, HyFS will be

130

able to scale to a large amount of machines. The second approach is to have a configuration of stripe length.

Stripe length means the number of consecutive stripes that are stored continuously at the same machines.

The default stripe length of HyFS is unlimited, and thus a file is stored across a fixed number of machines in

the system regardless of the machine number. With the configuration of stripe length, HyFS can distribute

the data of a file on many machines rather than a fixed number of ones. For stripe width, we can use a small

number, and then the write/read performance for a stripe can be independent from the machine number.

131

REFERENCES

[1] http://fuse.sourceforge.net/sshfs.html.

[2] http://www.tuxera.com/community/ntfs-3g-download/.

[3] http://www.iozone.org/.

[4] http://httpd.apache.org/docs/2.0/programs/ab.html.

[5] http://www.hpl.hp.com/research/linux/httperf/.

[6] http://sysbench.sourceforge.net/.

[7] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kaufmann,

October 2001.

[8] Diego F. Aranha. RELIC is an Efficient Library for Cryptography, version 0.2.3, 2010.

http://code.google.com/p/relic-toolkit/.

[9] Diego F. Aranha, Julio López, and Darrel Hankerson. Efficient Software Implementation of Binary

Field Arithmetic Using Vector Instruction Sets. In LATINCRYPT ’10: The First International Con-

ference on Cryptology and Information Security in Latin America, August 2010.

[10] Roberto Avanzi and Nicolas Thériault. Effects of Optimizations for Software Implementations of

Small Binary Field Arithmetic. In WAIFI ’07: International Workshop on the Arithmetic of Finite

Fields, pages 21–22, September 2007.

[11] Daniel V. Bailey and Christof Paar. Optimal Extension Fields for Fast Arithmetic in Public-Key

Algorithms. In CRYPTO ’98: Proc. of the Annual International Cryptology Conference, 1998.

[12] Lakshmi Bairavasundaram, Garth R. Goodson, Bianca Schroeder, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. An Analysis of Data Corruption in the Storage Stack. In FAST ’08: Proc.

of the 6th USENIX Conference on File and Storage Technologies, February 2008.

132

[13] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri Schindler. An Analysis

of Latent Sector Errors in Disk Drives. In SIGMETRICS ’07: Proc. of ACM International Conference

on Measurement and Modeling of Computer Systems, June 2007.

[14] Mary Baker, Mehul Shah, David S. H. Rosenthal, Mema Roussopoulos, Petros Maniatis, TJ Giuli,

and Prashanth Bungale. A Fresh Look at the Reliability of Long-term Digital Storage. In EuroSys

’06: 1st ACM SIGOPS/EuroSys European Conference on Computer Systems, April 2006.

[15] Sandra Johnson Baylor, Peter Frank Corbett, and Chan ik Park. Efficient method for providing fault

tolerance against double device failures in multiple device systems. U. S. Patent 5,862,158, January

1999.

[16] John A. Beachy and William D. Blair. Abstract Algebra. Waveland Press, Inc., 2006.

[17] Michael Ben-Or. Probabilistic Algorithms in Finite Fields. In Symposium on Foundations of Compu-

tational Science, pages 394–398, 1981.

[18] Anupam Bhide, Elmootazbellah N. Elnozahy, and Stephen P. Morgan. A Highly Available Network

File Server. In Proc. of the Winter 1991 USENIX Conference, January 1991.

[19] Mario Blaum. A Family of MDS Array Codes with Minimal Number of Encoding Operations. In

ISIT ’06: Proc. of IEEE International Symposium on Information Theory, July 2006.

[20] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. EVENODD: An Efficient Scheme for Tol-

erating Double Disk Failures in RAID Architectures. IEEE Transactions on Computers, 44 (2):192–

202, February 1995.

[21] Mario Blaum, Jehoshua Bruck, and Alexander Vardy. MDS Array Codes with Independent Parity

Symbols. IEEE Transactions on Information Theory, 42(2), March 1996.

[22] Mario Blaum and Ron M. Roth. New Array Codes for Multiple Phased Burst Correction. IEEE

Transactions on Information Theory, 39 (1):66–77, January 1993.

[23] Mario Blaum and Ron M. Roth. On Lowest Density MDS Codes. IEEE Transactions on Information

Theory, 45(1):46–59, January 1999.

133

[24] Johannes Blomer, Malik Kalfane, Richard Karp, Marek Karpinski, Michael Luby, and David Zucker-

man. An XOR-based Erasure-Resilient Coding Scheme. Technical Report TR-95-048, International

Computer Science Institute, August 1995.

[25] Vasken Bohossian, Chenggong C. Fan, Paul S. LeMahieu, Marc D. Riedel, Lihao Xu, and Jehoshua

Bruck. Computing in the RAIN: A Reliable Array of Independent Nodes. IEEE Transaction on

Parallel and Distributed Systems, 12(2):99–114, 2001.

[26] Cachegrind. Cachegrind: a cache and branch-prediction profiler, 2010.

http://valgrind.org/docs/manual/cg-manual.html.

[27] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS: A Parallel File

System For Linux Clusters. In Proc. of the 4th Annual Linux Showcase and Conference, October

2000.

[28] Bruce Cassidy and James Lee Hafner. Space Efficient Matrix Methods for Lost Data Reconstruction

in Erasure Codes. IBM Research Report, rj10415, September 2007.

[29] Feng Chen, David Koufaty, and Xiaodong Zhang. Understanding Intrinsic Characteristics and System

Implications of Flash Memory based Solid State Drives. In Proc. of ACM SIGMETRICS/Performance

conference, June 2009.

[30] Cleversafe Inc. Cleversafe Dispersed Storage, 2008. http://www.cleversafe.org/downloads.

[31] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong, and Sunitha

Sankar. Row-Diagonal Parity for Double Disk Failure Correction. In FAST ’04: Proc. of the 3rd

USENIX Conference on File and Storage Technologies, March 2004.

[32] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, 22 (6):644–654, November 1976.

[33] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kilian, Przemyslaw

Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu, and Michal Welnicki. HYDRAstor: A Scal-

able Secondary Storage. In FAST ’09: Proc. of the 7rd USENIX Conference on File and Storage

Technologies, February 2009.

[34] Jon G. Elerath and Michael Pecht. Enhanced Reliability Modeling of RAID Storage Systems. In DSN

’07: International Conference on Dependable Systems and Networks, June 2007.

134

[35] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[36] National Institute for Standards and Technology. FIPS 186-3: Digital Signature Standard (DSS),

2009. http://www.itl.nist.gov/fipspubs/by-num.htm.

[37] Robert G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, Cambridge, MA, 1963.

[38] Shuhong Gao and Daniel Panario. Tests and constructions of irreducible polynomials over finite fields.

In FoCM’97: Foundations of Computational Mathematics, 1997.

[39] gentoo wiki, 2010. http://en.gentoo-wiki.com/wiki/CFLAGS.

[40] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In SOSP ’03:

Proc. of the 19th ACM Symposium on Operating Systems Principles, 2003.

[41] Garth A. Gibson, Daniel Stodolsky, Fay W. Chang, William V. Courtright, Chris G. Demetriou, Eka

Ginting, Mark Holland, Qingming Ma, LeAnn Neal, R. Hugo Patterson, Jiawen Su, Rachad Youssef,

and Jim Zelenka. The Scotch Parallel Storage Systems. In COMPCON ’95: Proc. of 40th IEEE

Computer Society International Conference, March 1995.

[42] Edgar Nelson Gilbert. Capacity of a Burst-Noise Channel. Bell System Technical Journal, 39:1253–

1266, September 1960.

[43] Gluster Inc., 2011. http://www.gluster.org/.

[44] Kevin M. Greenan, Ethan L. Miller, and Thomas J. E. Schwarz. Analysis and Construction of Galois

Fields for Efficient Storage Reliability. In Technical Report UCSC-SSRC-07-09, August 2007.

[45] Kevin M. Greenan, Ethan L. Miller, and Thomas J. E. Schwarz. Optimizing Galois Field Arithmetic

for Diverse Processor Architectures and Applications. In MASCOTS ’08: International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, September 2008.

[46] Jorge Guajardo, Sandeep S. Kumar, Christof Paar, and Jan Pelzl. Efficient Software-Implementation of

Finite Fields with Applications to Cryptography. Acta Applicandae Mathematicae, 93:3–32, Septem-

ber 2006.

[47] James Lee Hafner. WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage Systems. In

FAST ’05: Proc. of the 4th USENIX Conference on File and Storage Technologies, December 2005.

135

[48] James Lee Hafner, Veera Deenadhayalan, Wendy Belluomini, and KK Rao. Undetected Disk Errors

in RAID Arrays. IBM Journal of Research and Development, 52(4/5):413–425, July/September 2008.

[49] James Lee Hafner, Veera Deenadhayalan, KK Rao, and John A. Tomlin. Matrix Methods for Lost

Data Reconstruction in Erasure Codes. In FAST ’05: Proc. of the 4th USENIX Conference on File and

Storage Technologies, December 2005.

[50] Darrel Hankerson, Julio López Hernandez, and Alfred Menezes. Software Implementation of Elliptic

Curve Cryptography Over Binary Fields. In CHES ’00: Workshop on Cryptographic Hardware and

Embedded Systems, 2000.

[51] Greg Harper, Alfred Menezes, and Scott Vanstone. Public-Key Cryptosystems with Very Small Key

Lengths. In Eurocrypt ’92: Proc. of the Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, 1992.

[52] John H. Hartman and John K. Ousterhout. The Zebra Striped Network File System. ACM Transactions

on Computer Systems, 13:274–310, August 1995.

[53] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach, chapter

Appendiex C. Morgan Kaufmann, May 2002.

[54] Chen Huang and Lihao Xu. STAR: An Efficient Coding Scheme for Correcting Triple Storage Node

Failures. In FAST ’05: Proc. of the 4th USENIX Conference on File and Storage Technologies, De-

cember 2005.

[55] Cheng Huang, Jin Li, and Minghua Chen. On Optimizing XOR-Based Codes for Fault-Tolerant

Storage Applications. In ITW ’07: Proc. of IEEE Information Theory Workshop, September 2007.

[56] Cheng Huang and Lihao Xu. Fast Software Implementation of Finite Field Operations. Technical

report, Washington University, 2003.

[57] Cheng Huang and Lihao Xu. Study of A Practical FEC Scheme for Wireless Data Streaming. In

IASTED ’05: Proc. of Internet and Multimedia Systems and Applications, February 2005.

[58] Cluster File Systems Inc. A Scalable, High-performance File System. http://www.lustre.org, 2006.

[59] Intel. Intel SSE4 Programming Reference, 2007. http://software.intel.com/file/18187/.

136

[60] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manuals, Volumn 1, 2010.

http://www.intel.com/Assets/PDF/manual/253666.pdf.

[61] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manuals, Volumn 3B, 2010.

http://www.intel.com/Assets/PDF/manual/253669.pdf.

[62] Intel. Intel Advanced Encryption Standard (AES) Instructions Set, 2011.

http://software.intel.com/file/24917.

[63] Intel VTune, 2010. http://software.intel.com/en-us/intel-vtune/.

[64] Larry Jones, Matt Reid, Marc Unangst, Garth Gibson, and Brent Welch. Panasas

Tiered Parity Architecture. Panasas white paper: http://storage-brain.com/wp-

content/uploads/papers/Tiered Parirty Arch-May2010.pdf, May 2011.

[65] Nikolai Joukov, Arun M. Krishnakumar, Chaitanya Patti, Abhishek Rai, Sunil Satnur, Avishay

Traeger, and Erez Zadok. RAIF: Redundant Array of Independent Filesystems. In MSST ’07: Proc.

of the 24th IEEE Conference on Mass Storage Systems and Technologies, pages 199–212, September

2007.

[66] David W. Kravitz. Digital signature algorithm, 1993. U.S. Patent 5,231,668.

[67] Andrew Krioukov, Lakshmi Bairavasundaram, Garth R. Goodson, Kiran Srinivasan, Randy Thelen,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Parity Lost and Parity Regained. In FAST

’08: Proc. of the 6th USENIX Conference on File and Storage Technologies, February 2008.

[68] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ra-

makrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao.

OceanStore: An Architecture for Global-scale Persistent Storage. In ASPLOS ’00: Proc. of the 9th

International Conference on Architectural Support for Programming Languages and Operating Sys-

tems, December 2000.

[69] Alvin R. Lebeck and David A. Wood. Cache Profiling and the SPEC Benchmarks: A Case Study.

IEEE Computer, 27 (10):15–26, 1994.

[70] Adam Leventhal. Triple-Parity RAID and Beyond. http://queue.acm.org/detail.cfm?id=1670144.

[71] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, 1997.

137

[72] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and Michael Williams.

Replication in the Harp File System. In SOSP ’91: Proc. of the 13th ACM Symposium on Operating

Systems Principles, October 1991.

[73] Julio López and Ricardo Dahab. High-speed Software Multiplication in F2m . In INDOCRYPT ’00:

Proc. of the Annual International Conference on Cryptology in India, 2000.

[74] Jiwei Lu, Howard Chen, Rao Fu, Wei-Chung Hsu, Bobbie Othmer, Pen-Chung Yew, and Dong-Yuan

Chen. The Performance of Runtime Data Cache Prefetching in a Dynamic Optimization System. In

MICRO’03: 36th Annual International Symposium on Microarchitecture, December 2003.

[75] Michael Luby. Code for Cauchy Reed-Solomon Coding, 1997.

http://www.icsi.berkeley.edu/~luby/cauchy.tar.uu.

[76] Jianqiang Luo, Cheng Huang, and Lihao Xu. Decoding star code for tolerating simultaneous disk

failure and silent errors. In DSN ’10: The International Conference on Dependable Systems and

Networks, June 2010.

[77] Jianqiang Luo, Lihao Xu, and James S. Plank. An efficient XOR-Scheduling algorithm for erasure

codes encoding. In DSN ’09: The International Conference on Dependable Systems and Networks,

June 2009.

[78] Lustre File System. High-Performance Storage Architecture and Scalable Cluster File System. Lustre

white paper: http://wiki.lustre.org/index.php/Lustre Publications, December 2007.

[79] Florence Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error Correcting Codes. Amster-

dam: North-Holland, 1977.

[80] Florence Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes. Northol-

land, Amsterdam, The Netherlands, February 1977.

[81] Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied Cryptography. CRC

Press, 1997.

[82] Victor S. Miller. Use of Elliptic Curves in Cryptography. In CRYPTO 85’: Proc. of the Annual

International Cryptology Conference, 1986.

138

[83] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and Evaluation of a Compiler Algo-

rithm for Prefetching. In ASPLOS’92: 5th International Conference on Architectural Support for

Programming Languages and Operating Systems, October 1992.

[84] Brad Nisbet. FAS storage systems: Laying the foundation for application availability. Network Appli-

ance white paper: http://www.netapp.com/us/library/analyst-reports/ar1056.html, February 2008.

[85] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of Inexpensive

Disks (RAID). In SIGMOD ’88: Proc. of the 1988 ACM SIGMOD International Conference on

Management of Data, 1988.

[86] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso. Failure Trends in a Large Disk

Drive Population. In FAST ’07: Proc. of the 5th USENIX Conference on File and Storage Technolo-

gies, February 2007.

[87] James. S. Plank. A Tutorial on Reed-Solomon Coding for Fault Tolerance in RAID-like Systems.

Software – Practice and Experience, 27 (9):995–1012, September 1997.

[88] James. S. Plank. Fast Galois Field Arithmetic Library in C/C++, 2007.

http://www.cs.utk.edu/~plank/plank/papers/CS-07-593/.

[89] James S. Plank. Jerasure: A Library in C/C++ Facilitating Erasure Coding for Storage Applications.

Tech. Rep. CS-07-603, University of Tennessee, September 2007.

[90] James S. Plank. The RAID-6 Liberation Codes. In FAST ’08: Proc. of the 6th Usenix Conference on

File and Storage Technologies, February 2008.

[91] James S. Plank, Adam L. Buchsbaum, Rebecca L. Collins, and Michael. G. Thomason. Small Parity-

Check Erasure Codes - Exploration and Observations. In DSN ’05: Proc. of the International Confer-

ence on Dependable Systems and Networks, June 2005.

[92] James S. Plank, Jianqiang Luo, Catherine D. Schuman, Lihao Xu, and Zooko Wilcox-O’Hearn. A

Performance Evaluation and Examination of Open-Source Erasure Coding Libraries For Storage. In

FAST ’09: Proc. of the 7th Usenix Conference on File and Storage Technologies, February 2009.

[93] James. S. Plank, Scott Simmerman, and Catherine D. Schuman. Jerasure: A Library in C/C++ Fa-

cilitating Erasure Coding for Storage Applications. Technical Report CS-08-627, University of Ten-

nessee, August 2008.

139

[94] James S. Plank and Lihao Xu. Optimizing Cauchy Reed Solomon Codes for Fault-Tolerant Network

Storage Applications. In NCA ’06: Proc. of the 5th IEEE International Symposium on Network

Computing and Applications, July 2006.

[95] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C.

ArpaciDusseau, , and Remzi H. ArpaciDusseau. IRON File Systems. In SOSP ’05: Proc. of the 20th

ACM Symposium on Operating Systems Principles, October 2005.

[96] Irving S. Reed and Gustave Solomon. Polynomial Codes over Certain Finite Fields. Journal of the

Society for Industrial and Applied Mathematics, 8 (10):300–304, 1960.

[97] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H. Siegel, and

David C. Steere. Coda: A Highly Available File System for a Distributed Workstation Environment.

IEEE Transactions on Computers, 39, April 1990.

[98] Bianca Schroeder and Garth A. Gibson. Disk Failures in the Real World: What Does an MTTF of

1,000,000 Hours Mean to You? In FAST ’07: Proc. of the 5th USENIX Conference on File and

Storage Technologies, February 2007.

[99] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in the wild: A Large-

Scale Field Study. In Proc. of ACM SIGMETRICS/Performance conference, June 2009.

[100] Richard Schroeppel, Hilarie Orman, Sean O’ Malley, and Oliver Spatscheck. Fast Key Exchange with

Elliptic Curve Systems. In CRYPTO ’95: Proc. of the Annual International Cryptology Conference,

1995.

[101] Thomas J. Schwarz, Qin Xin, Ethan L. Miller, Darrell D. Long, Andy Hospodor, and Spencer Ng.

Disk Scrubbing in Large Archival Storage Systems. In MASCOTS ’04: Proc. of the 12th Annual

Meeting of the IEEE International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, October 2004.

[102] Gadiel Seroussi. Table of Low-Weight Binary Irreducible Polynomials, 1998.

http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf.

[103] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop Distributed

File System. In MSST ’10: Proc. of the 26th IEEE Symposium on Massive Storage Systems and

Technologies, 2010.

140

[104] Miklos Szered. FUSE: Filesystem in Userspace. http://fuse.sourceforge.net, 2007.

[105] R. Michael Tanner. A recursive approach to low complexity codes. IEEE Transactions on Information

Theory, 27 (5):533–547, September 1981.

[106] Cristian Ungureanu, Benjamin Atkin, Akshat Aranya, Salil Gokhale, Stephen Rago, Grzegorz

Calkowski, Cezary Dubnicki, and Aniruddha Bohra. HydraFS: A High-Throughput File System

for the HYDRAstor Content-Addressable Storage System. In FAST ’10: Proc. of the 8th USENIX

Conference on File and Storage Technologies, Feburary 2010.

[107] Brigitte Vallée. The Complete Analysis of the Binary Euclidean Algorithm. In ANTS ’98: Proc. of

the Third International Symposium on Algorithmic Number Theory Symposium, 1998.

[108] Victor Shoup. A New Polynomial Factorization Algorithm and Its Implementation. Journal of Sym-

bolic Computation, 20:363–397, 1996.

[109] Joe Warren. A Hierarchical Basis for Reordering Transformations. In POPL ’84: Proc. of the 11th

ACM SIGACT-SIGPLAN symposium on Principles of Programming Languages, January 1984.

[110] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Jim Zelenka,

and Bin Zhou. Scalable Performance of the Panasas Parallel File System. In FAST ’08: Proc. of the

6th USENIX Conference on File and Storage Technologies, February 2008.

[111] Stephen B. Wicker. Error Control Systems for Digital Communication and Storage. Prentice Hall,

1994.

[112] Alden Wilner. Multiple Drive Failure Tolerant RAID System. U. S. Patent 6,327,672, December

2001.

[113] Erik De Win, Antoon Bosselaers, Servaas Vanderberghe, Peter De Gersem, and Joos Vandewalle. A

Fast Software Implementation for Arithmetic Operations in GF (2n). In ASIACRYPT ’96: Proc. of the

Annual International Conference on the Theory and Application of Cryptology Information Security,

1996.

[114] Jay J. Wylie and Ram Swaminathan. Determining Fault Tolerance of XOR-Based Erasure Codes

Efficiently. In DSN ’07: Proc. of the 37th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, June 2007.

141

[115] Lihao Xu. X-Code: MDS Array Codes with Optimal Encoding. IEEE Transactions on Information

Theory, 45 (1):272–276, January 1999.

[116] Lihao Xu. Hydra: A Platform for Survivable and Secure Data Storage Systems. In StorageSS ’05:

International Workshop on Storage Security and Survivability, November 2005.

[117] Lihao Xu, Vasken Bohossian, Jehoshua Bruck, and David G. Wagner. Low Density MDS Code and

Factors of Complete Graphs. IEEE Transactions on Information Theory, 45:1817–1826, 1999.

[118] Erez Zadok, Rakesh Iyer, Nikolai Joukov, Gopalan Sivathanu, and Charles P. Wright. On Incremental

File System Development. ACM Transactions On Computer Systems, 2 (2), May 2006.

[119] G. V. Zaitsev, V. A. Zinovev, and N. V. Semakov. Minimum-check-density codes for correcting bytes

of errors. Problems of Information Transmission, 19 (3):197–204, 1983.

142

ABSTRACT

HYFS: DESIGN AND IMPLEMENTATION OF A RELIABLE FILE SYSTEM

by

JIANQIANG LUO

AUGUST 2011

Advisor: Dr. Lihao Xu

Major: Computer Science

Degree: Doctor of Philosophy

Building reliable data storage systems is crucial to any commercial or scientific applications. Modern

storage systems are complicated, and they are comprised of many components, from hardware to software.

Problems may occur to any component of storage systems and cause data loss. When this kind of failures

happens, storage systems cannot continue their data services, which may result in large revenue loss or even

catastrophe to enterprises. Therefore, it is critically important to build reliable storage systems to ensure data

reliability.

In this dissertation, we propose to employ general erasure codes to build a reliable file system, called

HyFS. HyFS is a cluster system, which can aggregate distributed storage servers to provide reliable data

service. On client side, HyFS is implemented as a native file system so that applications can transparently

run on top of HyFS. On server side, HyFS utilizes multiple distributed storage servers to provide highly

reliable data service by employing erasure codes. HyFS is able to offer high throughput for either random or

sequential file access, which makes HyFS an attractive choice for primary or backup storage systems.

This dissertation studies five relevant topics of HyFS. Firstly, it presents several algorithms that can

perform encoding operation efficiently for XOR-based erasure codes. Secondly, it discusses an efficient

decoding algorithm for RAID-6 erasure codes. This algorithm can recover various types of disk failures.

Thirdly, it describes an efficient algorithm to detect and correct errors for the STAR code, which further

improves a storage system’s reliability. Fourthly, it describes efficient implementations for the arithmetic

operations of large finite fields. This is to improve a storage system’s security. Lastly and most importantly,

it presents the design and implementation of HyFS and evaluates the performance of HyFS.

143

AUTOBIOGRAPHICAL STATEMENT

Jianqiang Luo received M.S. degree of Computer Application Technology from Shanghai Jiao Tong

University, Shanghai, China, in 2004. During the Ph.D program, he worked in Network and Information

Systems Lab (NISL) in the Department of Computer Science, Wayne State University, Detroit, Michigan.

His research interests are in the areas of error correcting codes, reliable storage systems, and large scale

distributed systems.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2011

	Hyfs: design and implementation of a reliable file system
	Jianqiang Luo
	Recommended Citation

