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CHAPTER 1 

INTRODUCTION 

Currently the fields of nanotechnology and nanomachining are advancing at a rapid pace. 

With an emphasis on looking for novel materials with the desired properties as well as making 

things more portable and public demand for more features to be packed into their devices, 

fabrication of nanoscale structures is becoming an important field of research. [1]   

A two-dimensional (2D) nanostructure is a structured surface which has very different 

properties when compared to their bulk counterparts. 2D nanostructures typically have feature 

sizes smaller than 200 nm. The scale and structure of these artificial materials allow for some 

unique and useful applications of the technology. One example is the creation of a material with 

a very low and specified optical refractive index. Another related application would be the 

enhanced transmittance of glass and antireflection coatings for displays on various types of 

functional surfaces. There are also applications in bio-mimicry and artificial nanomaterials. 

Because of the many useful and interesting properties and applications, the study of 2D 

nanostructures is a very important research project. 

Existing technologies for the fabrication of 2D nanostructures requires exorbitant 

amounts of time and/or are extremely expensive to create large areas of patterned features. One 

prominent technology, for example, is electron beam lithography, which, although is versatile for 

creating various nanoscale patterns over a small area, is forbiddingly expensive and slow for 

making large-area nanostructures. On the other hand, glass materials that are optically 

transparent are difficult to machine, and there are a limited number of ways to modify them. This 

project is to study a feasible process and develop low-cost techniques for fabricating 2D 

nanostructures on optical glass using nanosphere lithography.  
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1.1 Purpose 

The primary impetus behind this research is to create fast and inexpensive technology 

that can be used on most glass materials (such as crown and soda-lime glass). This will allow 

surface modifications in bulk quantities that would be required for various applications and mass 

production. The creation of nanostructures over large areas within a short amount of time would 

make this a viable and preferable process compared to existing technologies. 

1.2 Review of Methods for Creating 2D Nanostructures 

Various methods of creating microstructures have emerged in the past century. Most of 

these methods have limited success in creating 2D nanostructures. A brief review is given here. 

1.2.1 Photolithography 

Photolithography is a common technology that can be found in cleanrooms around the 

world. Using an optical beam, light is used to create masks in polymer that are later used to etch 

into micro-structures on substrate.  

The resolution of the features within a structure created using photolithography is determined by 

the following equation: 

      
 

  
 

Where CD is the minimum feature size, k1 is a process-related coefficient, λ is wavelength of the 

light used, and NA is the numerical aperture. By decreasing the wavelength and increasing the 

numerical aperture, the minimum features on a substrate can be decreased. Typical feature size 

limit of optical lithography using visible light is 250-300 nm. This is given by the ideal equation 

for resolution of feature sizes: 



3 

 

 

 

       
 

  
 

Where R is the radius of the feature size (nm) and the 0.61 is obtained from the Rayleigh-Abbe 

limit. However, due to system imperfections this limit is likely to be larger.  

To make structures with feature sizes less than 250 nm, visible light is no longer a viable source 

of illumination. The solution was to use deep ultraviolet light and increasingly shorter 

wavelengths of laser. [2] [3] [4] The equipment to make smaller than 250 nm feature sizes 

becomes expensive to purchase and install. In addition, new material for masks and projection 

system would be required. 

For feature sizes below 50nm, substrates can no longer be processed in air, and require liquid 

immersion techniques to be combined with excimer lasers. This creates more complex steps, 

training, and more cost as companies continue to use optical lithography to pattern nanoscale 

features.  

1.2.2 Electron Beam Lithography 

Electron beam lithography is a very accurate and precise method for creating 

nanostructures with a resolution of a few nanometers. Many samples of 2D nanoscale structures 

have been fabricated using this technology, but the area of these features is usually very small. 

This is because the technology a very time-intensive scanning process. [5] [6] [7] While the 

structures that are created can be extremely accurate, using electron beam lithography, the time 

required for its creation is enormous. The entire pattern for the structure is not written at once by 

projection, as in photolithography. Instead the electron beam moves one location at time in a line 

and scans the pattern into the substrate. The time for exposure is given by the following formula: 

        [8] 
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Where D is the dose, A is the area exposed, T is the time to expose the substrate, and I is the 

beam current. This equation only considers the exposure time and none of the other mechanical 

requirements that may be a factor during writing of a pattern. In order to create a nanostructure 

that is 1 cm² using an electron dose of 10
-3

 Coulombs/cm² and beam current of 10
9
 Amperes it 

would take 12 days. This is not practical for large areas of nanostructures. [9] 

1.2.3 Nanosphere Lithography 

Nanospheres have only recently been introduced into the scientific community. It is a 

new technology compared to the above mentioned methods. For lithography, the nanospheres of 

uniform size are assembled into a monolayer of spheres to be used as a mask. To create the 

mask, the first step is to have the nanospheres self-assemble themselves into a uniform 

monolayer. This allows for the fabrication of arrays with very precisely controlled spacings 

based on the nanosphere diameters and packing efficiency. The holes between the particles 

create the mask for etchants or other patterning technologies to reach the substrate. After the 

mask is made, depending on the substrate, different methods can be used to etch away the 

substrate to create a uniform, honeycomb spike structure. Based on the size of the nanospheres, 

the structure of the resulting mask can change dramatically for various applications. There are 

several methods for the creation of nanoparticles, and their size can be tailored to the customer 

that orders them.  

The resolution of nanosphere lithography (NSL) is limited by the size of the nanosphere particles 

used for the mask. The smallest size of polymer nanospheres is approximately 20 nm, whereas 

uniform gold particles can be as small as a few nanometers. Through the mechanism of self-

assembly, nanosphere masks can be created over a large area from a few minutes to a few hours.  
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After reviewing these other technologies, it appears that using nanosphere lithography is 

the best choice for creating 2D nanostructures with desired feature size and area. [10] [11] [12] 

[13] 

1.2.4 Nanoimprinting 

Another method for patterning 2D nanoscale structures is nanoimprint lithography. This 

is a mechanical process for creating nanoscale patterns through deformation of resist and 

associated processing steps. While the process is low cost with high throughput and resolution, 

the stamp needed to create the pattern is very expensive, especially for large stamps, and usually 

involves one of the processes mentioned in the above sections. 

Another problem with nanoimprinting is the quality of the lithography pattern. Material 

transport from substrate to mask is very different for positive and negative stamps. When the 

pattern is small and periodic this method is very effective, however as soon as there are large 

differences in the pattern, material transport of the process limits the quality of the final pattern.  

[14] [15] [16] [17] [18] [19] 

1.3 Two-Dimensional Nanostructures on Glass 

There are many reasons to study and create 2D nanostructures on glass. First, glass is a 

very commonly used optical material for substrates or windows. This is because it is cost-

effective, transparent to visible light, and chemically stable. There are many applications using 

nanostructures to modify the surface material properties of a glass substrate.  

One of the main motivations for creating 2D nanostructures on glass is the ability to 

create tunable refractive indices in the surface of a glass substrate. This would allow related 

applications such as the enhanced transmittance of glass and antireflection coatings and cladding 
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material for optical waveguides. Using these methods, it is also possible to create artificial 

nanomaterial as well as applications involving bio-mimicry. 

1.3.1 Common Optical Glass 

Glass is chemically a very stable material. While most glass is amorphous, the crystalline 

structures formed by the silicon di-oxide allows for very stable and durable materials. With 

commercial glass, there are usually impurities introduced into the glass to reduce cost. Soda-lime 

glass and crown glass are two very common types of glass available commercially. Soda-Lime 

glass is typically constituted of 73% SiO2, 14% Na2O, 9% CaO, 4% MgO, 0.15% Al2O3, 0.03% 

K2O, 0.02% TiO2, and 0.1% Fe2O3. All these impurities will affect how easily the glass is 

manipulated with chemicals.  

Soda-Lime glass is a very common material that is used in a multitude of applications. It is a 

common material for windows, sensors, solar cells, display devices, and anything requiring 

optical translucency. Being able to modify glass surface via nanosphere lithography, it can lead 

to many other applications of a popular and inexpensive optical material.  

1.3.2 Fabrication of Two-Dimensional Nanostructures on Glass 

1.3.2.1 Nanosphere Lithography 

Using nanosphere masking, a uniform monolayer of particles resembling a honeycomb 

was created. The size of the particles determined the parameters of the mask. The packing 

efficiency and size of the particles allowed for small gaps in the layer that would become the 

mask pattern for etching the substrate.  
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This procedure for creating a self-assembled nanosphere mask has been performed 

before. [20] [21] [22] [23] [24] [25] [26] [27] [28]  This process relies heavily on attractive 

capillary force because of the size of the spheres that are being used.  

Because glass is a very stable and hard to affect material, there are very few chemical 

compounds that are able to etch glass and otherwise modify its structure. Fortunately, 

Hydrofluoric Acid has been used for decades to modify glass substrate. Though this has been 

used for glass in bulk, there has been little research done on creating structures with nanoscale 

features. This will be the first systematic research effort to study the etching of 2D structures on 

glass using nanosphere lithography. [29] [30] [31] [32] [33] [34] 

1.3.2.2 Hydrofluoric Acid Etching 

Hydrofluoric acid (HF) is the most common chemical used to etch glass. The etching 

process is characterized by the following two equations: 

SiO2 + 4 HF -> SiF4 (g) + 2 H2O 

SiO2 + 6 HF -> H2SiF6 + 2 H2O 

As the glass interacts with HF, the HF will release water and SiF4 in a gaseous form and remove 

parts of the glass that is in contact with the HF. Usually glass is masked and submerged into 

liquid HF so that the HF is only in contact with the surfaces that require etching. As the HF 

interacts with the glass, any water byproduct is just mixed into the HF solution which keeps the 

water from blocking the glass surface from being etched further. This becomes a concern when 

we apply the vapor phase of hydrofluoric acid. 
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1.3.2.3 Vapor Phase Hydrofluoric Acid 

Using liquid hydrofluoric acid is a very common practice when it comes to oxides; 

however HF vapor etching is far less common, has a slower etch rate, and is more difficult to 

control. [35] However, the vapor form of hydrofluoric acid is an effective tool in NSL for 

etching glass over large areas. The gas interacts with the glass in a way that doesn’t cause the 

nanoparticles to be moved or otherwise disordered. If we used the liquid phase of hydrofluoric 

acid, the nanoparticles would be washed off and there would be no mask preserved to etch a 

nanostructure into. The vapor pressure of hydrofluoric acid [30.7 mbar (23 mmHg) at 20°C 

(68°F)] allows it to convert to vapor form from liquid at room temperature. This makes it ideal 

for etching glass without any special equipment. 

While not much research has been done with vapor phase etching in nanostructure 

fabrication, the research herein demonstrates that it is a feasible solution.  This technology 

appears to be the most effective and inexpensive way to etch glass without damaging the 

nanosphere mask.  

1.4 Applications 

1.4.1 Anti-Reflection Coating 

Many electronics and other devices require the use of optics. One major problem that has 

plagued the design of optical components is the unwanted reflection off the surface of the optical 

elements. The primary solution has been to coat the surface with a layer of intermediate thin film 

to enhance the transmission of the light through the optical element. The index of refraction that 

is chosen is governed by the equation:  

   √     (Eq. 1.1) 
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where nf is the index of refraction of the thin film, no is the index of refraction of the incident 

medium, and ns is the incident of the substrate the film is applied to. This equation determines 

how to completely cancel out the reflected light wave through the use of 
 

 
 thickness coatings. 

[36] In the case of ordinary glass, it has an index of refraction       and air has an index 

   . Following Eq. 1.1, we can see that the ideal film index would be       . Unfortunately 

there is no material in nature that has this value. The closest and most practical substance is 

MgF2, and it has an index of       . Techniques have been developed in order to further 

reduce reflection, such as using multi-layer anti-reflection coatings where additional coatings of 

 

 
 thickness material have a high index, followed by a low-index to further improve transmission.  

 By using nanoparticles to mask the surface of a substrate (in this case ordinary glass) and 

etching the material a surface modification is created that causes the surface of the substrate to 

behave as an anti-reflection coating. The benefit of using this type of technology to the coatings 

is the ability to tune the index of refraction of the etched nanostructured layer that has been 

created. [37] [38] [39] [40] [41] [42] In preliminary tests using silicon, it has been shown that the 

layer being etched can reach an index of refraction of about n=1.27. This reflective index can 

also be tuned further by manipulating the nanosphere mask and etching amount. The effective 

refractive index at normal incidence of the surface modification can be calculated by using a 

simplified approach derived from the equation of a one-dimensional subwavelength grating 

structure – 

  
     

 (   )    
   

 
  

Where n1 is the refractive index of air, n2 is the refractive index of polystyrene, and F is the fill 

factor of polystyrene nanoparticles, which is the volume percentage of nanoparticles in the film. 

[43] This demonstrates that an artificial reflective index can be created to completely cancel out 



10 

 

 

 

a reflected wave. This idea has already been used in diffractive optics and on semiconductor 

substrates. [44] [45] [46] [47] By applying this same principle to glass, we hope to create a 

similarly tunable layer of modified material. [48] [49] [50] [51] [52] [53] [54] [55]  

1.4.2 Bio-mimicry 

Bio-mimicry is the process by which researchers create structures or products that mimic 

those that exist naturally in animals and plants. Using principles from bio-mimicry we are able to 

reproduce the benefits of this nanostructure for non-organic products. The moth eye and the lotus 

leaf are two examples of what the results of this research on surface modification imitate. A 

moth’s eye is typically a 300nm hexagonal nanostructure of photoreceptors. This unique 

structure gives it anti-reflection properties in order to obscure itself from predators. The eye is 

typically a compound eye and has larger viewing angles.  

 

Figure 1: (left) Moth Eye, (right) SEM of Moth Eye 

 

The lotus leaf exhibits a non-periodic nanostructure on its leaves that create a hydrophobic effect 

for self-cleaning. [56]  
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Figure 2: SEM of Lotus Leaf 

These formations in nature are essentially the negative imprint of the mask that was created in 

this research project.  

1.4.3 Waveguides & Cladding Material 

In optical waveguide applications, cladding for the waveguide has to be a low refractive 

index. This is usually done via another coating or by drawing two separate materials together. 

This process can be simplified by surface modification of the waveguide itself. This is 

accomplished by creating a low refractive index layer on the waveguide material using the 

results of this research. 
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CHAPTER 2 

Methods and Techniques 

2.1 General Procedure 

The first objective of this research was to create a uniform mono-layer of, approximately 

200 nm, polystyrene nanoparticles on glass substrate. This would provide the mask that would be 

used for etching the surface modification. Various methods of creating a nanoparticle coat were 

researched in order to find the most effective way to coat a substrate with a nanoparticle mask. 

Slide-coating was the first approach studied, followed by drop-slide coating, and then wedge-

coating. It was determined that slide-coating was most consistent. This method was selected 

because of its simplicity and quality for creating a monolayer coat with 200 nm nanoparticles. 
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Figure 3: Flow chart of slide coating procedure 

Figure 3 is showing the flow chart of the slide coating procedure used in this research. Section 

2.2 describes each of these steps in detail. After a successful coat, the sample was placed above a 

petri dish of hydrofluoric acid (HF). HF is one of the few chemicals that can etch SiO2. Instead 

of applying the HF directly to the glass, as is typical, it was applied via the vapor phase. This 

method allows for the use of HF without washing off the particle coat. It also creates a more 

controllable etch rate than that of liquid HF etching. 

Dilute nanoparticle 
colloid to specified 

concentration 

Place glass slide on 
translation table 

Place cover slide at 60° 
angle above the glass 

substrate 

Lower the cover slide 
until it touches the 

substrate 

Raise the cover slide 
slightly to allow a 200nm 
gap for the nanoparticles 

to fit through 

Add a drop of the 
nanoparticle solution to 

the slide at the cover 
slide 

Start the translation 
table to move the cover 

slide across the 
substrate 
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2.2 Nanoparticle Mask 

There are multiple methods available to create 2D monolayer nanoparticle coats on 

substrates. One of the popular methods is spin coating. This approach was considered, but the 

process of spin-coating would be an inefficient use of the nanoparticle solution. Spin coating 

would reliably produce a consistent coat, but a majority of the nanoparticle solution would 

become waste as it is spun out to the sides and unable to be reclaimed.  

 

Figure 4: Diagram of the Wedge Method [57] 

Another method that was implemented involved creating different profiles for the 

solution between a ceiling slide and the substrate – the Wedge method (Fig. 4). The gap between 

these two slides and how it’s implemented would create different evaporation profiles. The 

profile of the solution and its evaporation speed would determine how well ordered the particles 

would become coated. This method was tried for 50 slides with various angles and offsets for the 

top slide in order to create slightly different meniscus profiles. This method was much slower 

than the others, but since no special equipment was used, it was possible to run multiple trials 
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simultaneously. This method was dropped in favor of slide-coating because of the difficulty of 

controlling evaporation rates without specialized humidity and temperature equipment. 

Slide-coating was chosen as the method for creating 2D nanoparticle masks and the 

process of slide-coating is as follows. The substrate was placed on a motorized translation stage 

(MC1000e-1), and a cover slip angled at 45° from the substrate was used to spread nanoparticles 

into a monolayer mask.  

 

Figure 5: Slide-coating. Top: Diagram of Setup. Bottom: Picture of actual set-up. 

The cover slip is positioned with a gap slightly more than a 200 nm between it and the 

substrate, this allows nanoparticles to pass through the gap with only one layer. A drop of the 

solution would then be placed behind the cover slide, and the translation stage would move so 

that the cover slide would be spreading the solution of nanoparticles across the slide. The 
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capillary action would keep the water behind the cover slide while the nanoparticles would 

escape and align themselves via the gap created by the cover slide and the substrate. 

Table 1: Settings for slide coat 

Slide #

Method for 

Coating

Speed 

Setting

Actual 

Speed

Dilution 

Concentration

96 Slide Coating Slow 26 µm/s 1/100

97 Slide Coating Slow 26 µm/s 1/100

98 Slide Coating Slow 26 µm/s 1/100

99 Slide Coating Slow 26 µm/s 1/100

100 Slide Coating Slow 26 µm/s 1/100  

Table 1 presents the conditions for which monolayer coatings for slides was created. 

Polymer nanospheres were purchased from Bangs Laboratories with a 10% solid in colloid 

concentration and mean diameter of 200nm. Here the speed of the slide movement is 26 µm/s, 

and the diluted concentration is 1% of original colloid concentration (10%). Most of the slides 

ended up with good quality coating, but there were a few that contained less than one layer of 

coating, or had overlapping layers. This method was the most consistent to reproduce a 

successful coat. It took approximately 5-45 minutes per slide, and could be run with minimal to 

no supervision. The best quality coatings were produced at 45 minutes per slide.  

After the slides were coated, the atomic force microscope was used in order to examine 

the structure that resulted from each coating run. Below in Fig. 6 is a 2x2 µm AFM picture that 

was taken. 
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Figure 6: 3D render of a uniform nanostructure. 

In Figure 6, the nanoparticles form a nice ordered structure after the slide coat. This is the 

basis for our mask. In Figure 7, a line profile is taken to demonstrate that the spacing is logical. 

With each nanoparticle being ~205 nm, we expect approximately 5 particles per 1 µm; the line 

profile demonstrates that.  There is a slight variation in height, but this is likely due to uneven 

manufacturing on the nanoparticles themselves, a calibration error with the AFM, or the 

slide/slide platform is not 100% level, and so the AFM would pick up the minute change in 

height for the profile. 
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Figure 7: Line profile of Figure 6 

Figure 8 conveys the structure of the nanoparticle mask on a larger scale. This particular 

scan was done near the edge of the deposit to make sure the edges of a particular mask section 

was not piling up and thus becoming more than 1 layer. Figure 9 shows a 3D representation of a 

more centrally located mask section. It should be noticed that there is a variation in striations that 

seem to make some horizontal sections of the area look as though they have a different height. 

But, as stated above, this can be accounted for by uneven slide placement on the equally uneven 

slide platform.  
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Figure 8: 10x10 µm scan of a uniform nanoparticle structure 

 

Figure 9: 5x5 µm of a nanoparticle mask 

 

All these examples have been for slides that were covered almost fully. The other acceptable 

outcome of a slide coat was a slide that was covered by less than 1 layer. Figures 10, 11, and 12 

illustrate how some of these slides appeared under the AFM examination. 
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Figure 10: Profile of a 3x3 µm AFM scan 

 

 

Figure 11: 3D view of another <1 layer of nanoparticles 

By observing Figures 10 & 11, it is clear that the slide is not as fully coated as they were in 

Figures 6, 7, 8, and 9. The nanoparticle coating process while consistent does not always produce 

a perfect coat. Having less than 1 layer of particles may still work, as there are areas of the slide 

that are still masked that can still be experimented on. Through examination of the line profiles 

in Figure 10 and 12 it is shown that they are correctly spaced for a uniform nanoparticle mask, 

where the particles are actually conglomerated. This is much clearer in Fig. 10, whereas Fig. 12 
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exhibits some effects of ghosting. This ghosting of the image is likely due to mechanical 

vibrations during the scanning process. Even the slightest vibration can be picked up by the 

AFM. But by examining the major peaks of the scan, it is plain to see that the nanoparticles are 

spaced the correct distance.  

 

Figure 12: Edge of a deposit of nanoparticles; 3x3µm scan 

In many of these AFM pictures, the valleys of the profiles never go all the way to zero. This is 

because of the mechanical limitations of the tip of the AFM. 

2.3 Hydrofluoric Acid Vapor Etching 

Hydrofluoric acid is the most common chemical used to etch glass. For this application, we want 

to use the vapor form of hydrofluoric acid since using the liquid form would wash off the 

nanoparticle mask that was created in the last step. The vapor phase is just as effective as the 

liquid form when etching glass. The etching process is characterized by the following two 

equations: 

SiO2 + 4 HF -> SiF4 (g) + 2 H2O 

SiO2 + 6 HF -> H2SiF6 + 2 H2O 
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When HF is placed in a reservoir it passively generates into its vapor phase. 20 mL of HF was 

poured into a petri dish and left for 5 min to let the vapors begin to form. If etching is started 

immediately after pouring the HF, the sample will become over-etched because the vapors that 

are generated are too concentrated. 

The setup for the etching process involves a computer controlled arm that will alternate the 

position of the sample. Figure 8 shows how all the components were positioned for the etching 

process. On the two ends of the arc of the arm are a hot plate and the petri dish with HF in it. The 

hot plate is to evaporate the H2O byproduct of the glass etching. If excess H2O accumulates on 

the sample, a thin film of H2O will prevent the HF vapors from reaching their intended target. 

The substrate is placed 11.5 cm above the hot plate that has been set to 200° C. Since the 

substrate is in a fume hood and is a considerable distance away from the hot plate, the 

temperature is elevated to account for the heat lost. The petri dish at the other end of the path is 

placed so that the substrate is approximately 1.2 cm from the surface of the acid.  

 

Figure 13: Setup for etching glass slides 

The procedure for etching involved setting the time spent above the acid, the time spent above 

the hot plate, and then the number of cycles of hot plate and acid interaction there would be. The 

amount of time spent above the acid varied while maintaining a constant hot plate exposure of 30 

seconds per cycle. HF acid is very potent, and even in vapor form the substrate only had to be 

exposed for ten seconds or less before the risk of over-etching became a concern. When the 
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etching cycles were completed, the substrate would rest over the hot plate and then removed to 

be examined under the AFM with the nanoparticle mask still on. Then the mask would be 

washed off and examined by AFM again. Examining the substrate with the mask still on the 

substrate under the AFM would allow inspection to see if the H2O that formed from the etching 

process had manipulated the structure of the nanoparticle mask. 

Figures 14-21 are examples of what the slide looks like after it has been etched. The 

nanoparticles have remained on the slide in order to ensure that their structure has remained 

intact during the etching process. Since H2O is a product of HF etching of glass, the 

nanoparticles have the possibility of shifting and thus changing the uniform structure and, 

consequently, the mask mid-etch. Figure 14 and 15 are from the same slide. The line profile 

demonstrates that there is some degradation on the nanoparticle, but not enough to deform the 

overall mask. Also there are 5 humps for approximately every 1 µm. The profile’s slight 

deviation is due to human error while drawing the measuring line, since the line isn’t going 

through the center of every single particle. It can be seen from both figures, the surrounding glass 

around the nanoparticles has been etched and been chemically machined. This similar roughness 

can be seen in figures 16 and 17. Even on a 10x10 µm square the roughness of the glass can be 

seen and also the linearity of the nanoparticles. Figure 17’s line profile shows that the particles 

are still all approximately the same height barring a vertical gradient that is likely caused by an 

unsmooth platform. The line profile would reflect the correct spacing if the nanoparticles were 

all together, but this is <1 layer of mask and thus some non-uniformity is to be expected between 

or near the spaces where there is a void of particles.  



24 

 

 

 

 

Figure 14: 3D representation of 3x3 µm area 

 

Figure 15: Line profile of 3x3 µm area scan 

 

Figure 16: 3D representation of 10x10 µm scan 
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Figure 17: 10x10 µm line profile 

 

Figure 18: 10x10 µm 3D topography 
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Figure 19: 10x10 µm line profile 

 

Figure 20: 5x5 µm 3D representation of Etched slide 
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Figure 21: Line profile of 5x5 µm etched sample 

2.3.1 Etching Rates of Vapor HF for Nanostructures 

It is interesting to study the etching rate of vapor phase HF for nanostructure and compare it to 

that of liquid HF and for bulk material.  

Table 2 demonstrates the time over the vapors versus the depth from etching. The data for this 

was gathered via the horizontal line profile between the highest point and the lowest point on 

particular slides and averaged. The reason for taking multiple data points on a horizontal line 

profile accounts for the vertical imbalance that has been observed on the AFM.  
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Table 2: Etching data 

Slide 

#

Distance from 

Acid (cm)

Distance from 

Heater (cm)

Time over 

Acid (s)

Time Over 

Heat (s)

# of 

Cycles

Total Time 

over Acid (min)

Average 

Etching 

Depth

89 1.2 11.5 5 30 12 1 70

92 1.2 11.5 5 30 24 2 123.3333

87 1.2 11.5 5 30 60 5 186.6667

88 1.2 11.5 5 30 120 10 266.6667

91 1.2 11.5 5 30 180 15 282.5

90 1.2 11.5 5 30 240 20 591.6667

93 1.2 11.5 5 30 36 3 N/A

96 1.2 11.5 5 30 12 1 65

97 1.2 11.5 5 30 15 1.25 60

98 1.2 11.5 5 30 18 1.5 82.5

99 1.2 11.5 5 30 21 1.75 121.25

100 1.2 11.5 5 30 24 2 225  

 

Figure 22: Depth vs. time over acid 

From the data in Figure 22, the depth starts to asymptote. This is because the measurements that 

are being taken by the AFM are relative depths. At some point, the mask formed by the 
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nanoparticles becomes etched underneath from the sides - undercut. The pillars that are 

originally formed from the initial etching start disappearing as the undercutting becomes more 

severe. The longer this happens the smoother the peak gets, and the smoother the contours to the 

original design become. 

The following figures are AFM scans from a typical slide that has been selected (Slide #99). 

These pictures exhibit the slide with particles prior to etching and after etching has occurred. The 

slides are presented in 3x3µm, 5x5µm, and 10x10µm scans. The structure of the nanoparticle 

mask after etching can be clearly seen. The mask was successfully created and the etching 

reflects the negative imprint of it.  

 

Figure 23: 3x3µm AFM Scan Pre-Etching 
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Figure 24: 5x5µm AFM Scan Pre-Etching 

 

Figure 25: 10x10µm AFM Scan Pre-Etching 
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Figure 26: 3x3µm AFM scan after etching 

 

 

Figure 27: 3x3 AFM scan 3D view 
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Figure 28: 5x5µm AFM line depth 

 

Figure 29: 5x5µm AFM Scan 
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Figure 30: 3D topography 10x10µm 

 

 

Figure 31: Topography of 10x10 µm 

There are many approaches to etching silicon oxide with wet HF. There is a good study done to 

compare wet HF etching and vapor HF etching for silicon oxide removal in micro electro 

mechanical systems (MEMS). [35] The etching rates in that study are compared with the results 

from this research. The comparison is done using their data for thermal oxide (as deposited). 

This oxide is a wet thermal oxide grown at 975°C and 1200nm thick on a silicon substrate. 



34 

 

 

 

 

Figure 32: Etching rate of Silicon Oxide and Optical Glass 

For comparison with wet etching, we used the data from Figure 22 and the results from [35]. The 

wet etching uses an HF:H2O solution with a ratio 24.5%:75.5% or 14.2 mol/L. Figure 32 shows 

that the etch rate of vapor HF is much slower than wet HF, but more controllable. It should be 

noted that wet etching is not applicable in this research because it would damage the nanoparticle 

mask. 
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Figure 33: Vapor phase HF etching rate comparison 

 Comparing the data from figure 22 and the data in [35], it can be seen that the etch rate is 

much slower than the findings in this research. The etch rate of HF vapor is affected by the 

temperature of the substrate. The colder the substrate, the faster the etch rate. The etch rate from 

the paper was determined with a 10 min wait time over the heater stage and includes a N2 flow 

for delivery of HF vapor. This dilutes the concentration per cm³ of HF vapor per second 

compared to a direct delivery over HF that is vaporizing. This can be one of the main reasons 

why the etching performed in this research is at a more rapid rate. 

Our etching rate is consistent with the results from micromachining processing (Kirt Williams, 

1996) of vapor HF etching of Silicon Oxide. Their results how a 66nm/min etch rate which is 

almost the same as the results produced in this research.  
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CHAPTER 3 

Testing & Measurements 

3.1 Testing Procedure 

 In order to verify the results from etching of optical glass substrate, an optical 

microscope, an atomic force microscope, and a spectrometer for measuring reflectivity and 

transmittivity of the resulting samples were used. Using these tools, the depth of the etching, the 

roughness of the surface, as well as the reflectivity and transmission percentages was recorded.  

3.2 Optical Microscope and Visual Analysis  

 After the completion of nanoparticle coating, the slide is examined through the use of an 

optical microscope. Although no quantitative data can be gathered from this method of testing, a 

preliminary qualitative examination can be done at this phase.  

Using the optical microscope, the coating of nanoparticles is inspected in order to determine the 

uniformity of the application. Using this method, we can also observe whether or not the layer of 

nanoparticles is monolayer or not. If the coating is not adequate enough to be examined under 

the atomic force microscope, it is set aside and another slide is created in order to obtain better 

results. 

Visual inspection is also performed by seeing changes in reflection or glare of the glass substrate 

with and without surface modifications. Substrates that have been modified have greatly reduced 

reflection and glare. Substrates that have been over etched demonstrate strong scattering 

properties and can be easily diagnosed with a visual inspection. 
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Figure 34: Pre-Etching 

 

3.3 Atomic Force Microscope 

 Atomic force Microscopy is a very high resolution method of microscopy. It is capable of 

measuring and imaging objects on a nanoscale. The main component of the microscope is a 

cantilever that contains a tip that is manufactured using Microelectromechanical Systems 

(MEMS) technology. A laser is pointed at the tip of the cantilever and the basis for measurement 

is comprised of the interaction between these two parts. The cantilever taps the surface of the 

sample and the deflection of the tip from its home position is measured to determine the height. 

This is coupled with a piezoelectric scanning stage to acquire a three-dimensional image. 

The atomic force microscope is the primary method that is used to determine the quantitative 

measurements of the experiment. The image processing tools associated with the AFM allow us 

to see the height profile, and roughness of the sample that we measure. This is combined with a 

qualitative three-dimensional rendering of the measured area for analysis. All the pictures 

acquired from the AFM are presented in Chapter 2. 
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3.4 Reflectivity and Transmission Tests 

As a final test, a spectrometer is employed in order to measure how well light travels 

through the etched sample. A spectrometer is an instrument that implements various optical 

components in order to isolate specific parts of the electromagnetic spectrum. This is commonly 

done with mirrors and a grating that can be tilted or moved to change the specific frequency that 

is being isolated. After isolation, that particular wavelength of the electromagnetic spectrum can 

be subjected to various measurements and tests such as reflection, transmission, intensity, 

polarization, etc. 

A Perkin Elmer Lambda900 UV/VIS/NIR spectrometer was used to test the reflectivity 

and transmission of the nano-optical structures within the visible spectrum of light. Transmission 

tests were not measured in absolute transmission, instead a baseline reading was taken from an 

untreated microscope slide for transmission measurements. Reflectivity measurements were not 

taken with an integrating sphere and so scattering losses were not accounted for. The results can 

be seen in the figures below: 
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Figure 35: Reflectivity of 6° Angle of Incidence 

 

Figure 36: Relative Transmittance at 6° AoI 

 Figures 35 and 36 demonstrate the transmission and reflection properties of the surface 

modifications. Slide 99 shows enhanced transmission and reduced reflectivity over a broad 
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spectrum, whereas slide 98 demonstrates these qualities at longer wavelengths. All slides 

demonstrate anti-glare properties.   

3.5 Reflectivity Simulations 

The theoretical equations for single-layer optical coating have been well-developed. 

Reflectivity equations are well documented in standard optics books. These are referred to as 

Fresnel coefficients of optical interfaces. Reflectivity of the interface can be calculated from 

these coefficients as given by the formulas:  
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β is the phase difference (in radians) in the external medium between waves reflected from the 

first and second surfaces of the coating and h is the thickness of the modified surface layer. The 

first four r equations are the reflectance of each interface at a given incidence angle. The R is the 

average reflectance of the s and p polarizations and  ̅ is the average reflectance.  

Here the novel part is the coating layer is an artificially modified surface layer. The refractive 

index of this layer can be calculated via:  

  
     

 (   )    
   

 
  

Where n1 is the refractive index of air, n2 is the refractive index of the substrate, and F is the fill 

factor of the modified surface layer, which is the volume percentage of substrate material in the 

layer. [49] 

As you can see, the effective refractive index can be controlled by changing the size of 

the nanoparticles (thereby affecting the filling factor). In addition to this index, the reflectivity 

can further controlled by modifying the thickness of the etched layer. Figure 37 and 38 

demonstrate the effect on the reflectivity when the filling factor and thickness of the composite 

layer is changed. The calculations are done using MATLAB and the formulas described above. 

The code can be located in Appendix I.  



42 

 

 

 

 

Figure 37: Theoretical Reflectivity at Incidence with given thickness of 120 nm 

As you can see from figure 37, for a given thickness h = 120 nm, as the filling factor increases 

from 0.15 to 0.45, reflectivity decreases. Figure 38 demonstrates the effect of changing thickness 

on the reflectivity. For a given filling factor F=0.25, as the thickness increases the overall 

reflectivity increases and the shape of the curve changes (the shorter wavelengths become more 

reflective). Both of these figures are simulated for a single interface. 



43 

 

 

 

 

Figure 38: Reflectivity Curves with given Fill Factor F=0.25 

These simulation results can be compared to the experimental measurements. Two curves are 

shown in Figure 39. Please note that the experimental measurement include reflections from two 

surfaces, one with the surface modification layer; the other is a glass and air interface. The 

simulations in Figure 39 have been adjusted to accommodate two surfaces. There are differences 

between these two curves, which are attributed to calibration error and scattering loss.  
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Figure 39: Comparison of simulated and experimental data 
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CHAPTER 4 

Summary and Conclusion 

4.1 Summary and Conclusion 

Through the use of hydrofluoric acid vapors, fabrication of 2D nanostructures was achieved on 

the surface of common microscope slide glass. Nanoparticles were used as a mask for etching the 

structures on the slide. The mask was created via slide coating wherein capillary force was used 

to distribute nanoparticles as a uniform monolayer on the substrate. The resulting structure 

provided a pattern for HF vapors to etch the glass substrate. Nano-machining of optically 

transparent materially through the use of a nanoparticle mask and hydrofluoric acid vapors is a 

novel and successful method.   

The etching rate (nm/s) of dry vapor HF etching for NSL employing less than one layer of 

nanoparticle mask follows a power function of       where A is constant based on process, x 

is time in seconds, and b is a constant around ½. The etching rate (nm/s) of dry vapor HF etching 

for NSL employing one layer of nanoparticle mask is essentially linear. These formulas are valid 

for etching depths of less than 300 nm. The etching rate for dry vapor HF etching of microscope 

slides in nanosphere lithography is compared with wet HF etching of glass. Wet HF etching is 

shown to have an etching rate that is twenty-four times faster than the vapor HF etching of the 

microscope slide.  The etching rate is also compared to that of dry vapor HF etching of silicon 

dioxide in MEMS systems. The etching rate of nanosphere lithography was shown to be faster.  

The etching showed signs of a successfully transferred pattern onto the glass substrate. The 

modified glass substrate showed improved transmittivity and reduced reflectivity. This is a very 

useful property for anti-reflection and anti-glare applications. The index of refraction can be 
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controlled by modifying the nanosphere sizes and also the etching depths. This allows the ability 

to manipulate the transmission and reflection properties of the etched surface modification. 

The reflectivity of the modified surfaces is calculated using MATLAB based on formulas for 

Fresnel coefficients and effective refractive index. Effects of the filling factor and thickness of 

the composite layer were studied on the reflectivity. The results were found to be in agreement 

with experimental measurements.  

4.2 Recommendations 

Creating the nanoparticle mask is a critical step for nanosphere lithography. There are a few 

factors affecting the quality of the mask. Temperature and humidity should be controlled in order 

to create a high quality slide coat over a larger area. Another factor is that the gap must be 

constant with the size of the nanoparticle with tolerance ±10% of the particle size between the 

spreader and the substrate. This affects the uniformity of the monolayer – if the gap is too big, 

the monolayer becomes multiple layers; if the gap is too small, the mask becomes less than one 

layer.  

Although we present quantitative information of the etching rate, the material we used for this 

research is soda-lime glass and the rates will vary based on a chosen glass or pure quartz. It 

should also be noted that in vapor HF etching, a system with a N2 flow to direct the HF vapors to 

the workpiece would allow for better control of the etching rate.   
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APPENDIX 

I. MATLAB code to determine theoretical reflectivity  

lambda = linspace(380,1000,621); %nm 
n1 = 1.0; 

  
F=0.25;%Fill Factor 
h = 120; %nm 
lambda_sq = power(lambda/1000,2); %µm 
n2 = 1.5130-(0.003169*lambda_sq)+(0.003962./lambda_sq); 

  
nf = power(((power(n1,2)*(1-F))+(power(n2,2).*F)), 0.5); 

  
r12p = (nf-n1)./(nf+n1); 
r23p = (n2-nf)./(n2+nf); 
r12s = (n1-nf)./(n1+nf); 
r23s = (nf-n2)./(nf+n2); 

  
B = ((2*pi())./lambda).*n2*h; 

  
Rp = (power(r12p, 

2)+power(r23p,2)+(2.*r12p.*r23p).*cos(2*B))./(1+(power(r12p,2).*power(r23p,2)

)+(2*r12p.*r23p.*cos(2*B))); 
Rs = (power(r12s, 

2)+power(r23s,2)+(2.*r12s.*r23s).*cos(2*B))./(1+(power(r12s,2).*power(r23s,2)

)+(2*r12s.*r23s.*cos(2*B))); 

  
R = 0.5*(Rp+Rs)*100; 
plot(lambda, R); 
xlabel('Wavelength (nm)'); 
ylabel('% Reflectivity'); 
axis([480 850 0 15]); 
title('Theoretical Reflectivity at Incidence'); 
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It is desired to have artificial optical materials with controllable optical properties. One 

approach is to create composite materials with nanomachining and nanostructures. In this 

research, two-dimensional (2D) nanostructures were created on the surface of optical glass using 

nanosphere lithography. In comparison with conventional techniques, this approach is more 

efficient and cost-effective for the creation of large areas of thin surface layers as an artificial 

material. A uniform monolayer of 200 nm polystyrene nanospheres was deposited on soda-lime 

glass slides. Deposition was performed via a slide-coating technique to take advantage of 

capillary forces. The slides were etched with vapor-phase hydrofluoric acid (HF) to create 2D 

structures. Vapor-phase etching was selected in order to etch the substrate without disturbing the 

monolayer nanoparticle mask. The etching rate of nanostructures was studied. An atomic force 

microscope (AFM) was used to monitor the nanosphere monolayers and etching analysis. It was 

shown that the nanoparticle pattern was successfully transferred to the surface of the substrate. 

The resultant thin-layer of modified substrate serves as an artificial material with a desired 

refractive index which modifies the surface reflection and transmission properties. The effective 
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refractive index of the artificial layer is smaller than the refractive index of the substrate and can 

be varied by changing the size of the nanoparticles and depth of etching. The substrate with the 

created artificial material layer demonstrated reduced reflectivity in optical wavelengths. 
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