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Chapter 1 Iron, sulphur and iron-sulphur cluster 
biogenesis 

1.1 Introduction 

Trace elements constitute only 0.15% of the mass of the human body; yet, 

more than a dozen of them are indispensable for sustaining life in a cell. Iron is one 

such vital trace element. In humans, approximately 50-60% of this iron is a 

constituent of haemoglobin. The remaining iron is incorporated in the cell’s ferritin 

reserves by means of haemoglobin recycling and distributed intracellularly when 

required [2]. Iron, being a natural electron acceptor or electron donor, is highly 

reactive and hence, in its free form is extremely toxic to the cell. Any imbalance in 

human iron metabolism leads to iron deficiency or iron overload and triggers the 

release of free iron. These possibilities are witnessed through the pathophysiology of 

diseases like Friedreich’s ataxia, ISCU myopathy, a rare form of sideroblastic anemia 

and Respiratory complex I-associated encephalomyopathy (where iron accumulation 

is a common feature) and, Anemia (where iron deficiency is the cause) [3].  

Another reactive species critical for the survival of a human cell is sulfur and 

it is of significance because it readily forms bonds with iron and other trace 

elements. Sulfur reserves in the body are slightly higher than iron reserves as it 

constitutes the list of elements that make up 0.85% of the human body mass. Of the 

available non-metals in the body, sulfur is only next to phosphorus in its versatility of 

reactivity. This makes sulfur an integral part of many vital proteins, carbohydrates, 

cofactors and metabolites. Consequently, sulfur needs to be regulated through 

sulphur metabolism. A human cell acquires sulphur in the form of the amino acids - 
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cysteine and methionine, and any imbalance in sulphur metabolism would lead to 

sulphur overload or sulphur deficiency. However, the effects of sulphur overload are 

not prominent in any diseased state because the human body has an efficient 

mechanism to excrete sulfur in the form of sulphate through urine, unlike iron that 

does not have a physiological mechanism to eliminate excess iron[4]. In contrast, 

sulfur deficiency has multiple side effects on human physiology. When methionine is 

depleted, the transsulfuration pathway for cysteine biosynthesis and 

transmethylation pathway for homocysteine biosynthesis is affected[5]. Cysteine’s 

bioavailability depends entirely on methionine intake, the depletion of which causes 

oxidant stress due to glutathione (a tripeptide antioxidant containing cysteine) and 

taurine (antioxidant) inadequacy[6]. Intestinal villus atrophy and low intestinal crypt 

depth due to limited cell proliferation and high apoptosis (oxidant stress-associated) 

are therefore, symptoms of methionine deficiency [6].  

Owing to the reactivity of these two chemical species, one would be tempted 

to wonder what they could form in each other’s company and whether this 

complexation would be beneficial to the human cell in any way. This brings us to the 

exciting field of iron-sulfur cluster chemistry. Infact, it appears as though nature has 

evolved an elegant mechanism, by allowing iron sulfur cluster (or Fe-S clusters) 

formation, to circumvent the problems arising from free iron and free sulfur 

reactivity in the cell.    
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1.2 Background 

Until the mid-60s iron was believed to be a cofactor in all iron-containing 

proteins. Simple spectral studies which were performed previously had 

demonstrated that some of these proteins had extinction coefficients lower than 

heme proteins at around 400nm[7]. With the development of Infrared spectroscopy, 

Mossbauer spectroscopy, EPR and ENDOR spectroscopy, these intriguing iron-

containing proteins were found to be actually iron-sulfur proteins[8], and they 

constituted such a vital cohort of proteins that they could not be ruled out as 

‘exceptions’. Structurally, these proteins could accommodate clusters in the form of 

2Fe-2S, 3Fe-3S, 3Fe-4S, 4Fe-4S, 8Fe-7S and 8Fe-8S. To add to their diversity, these 

clusters could exhibit different redox states like [2Fe-2S]2+, [2Fe-2S]+, [3Fe-4S]2+, 

[3Fe-4S]+, etc.[8] Some of these proteins were found to house more than one type of 

cluster; others could house one Fe-S cluster and metal ions. This structural diversity 

constituted by diverse Fe-S protein folds and its link with protein stability is an 

emerging field in coordination chemistry[9].    

Individually, these iron sulfur clusters could be produced in vitro and like their 

precursors were found to be extremely versatile. They were originally thought to be 

“sensitive” molecules as they degraded in the presence of dioxygen. This notion 

changed when methods using mild denaturants and carrier thiols were designed to 

extrude these clusters from different apoproteins[10]. They were also remarkably 

capable of conversion and interconversion in both the free and protein-bound 

conditions [10].This meant that they could swap cysteine ligands in proteins with or 

without cluster conversion. In the protein-bound form, they could facilitate substrate 
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activation (Aconitase), electron transfer (Respiratory complexes I, II, III), 

environmental oxygen sensing (Fumarate-Nitrate Reduction protein), DNA repair 

(Base excision repair glycosylases), ribosome assembly (ABCE1 protein), DNA-RNA 

processing (helicases, DNA polymerases, telomere length regulator proteins), tRNA 

thiolation and even, iron regulation (iron regulatory protein). This exemplifies their 

usefulness in most of the life sustaining phenomena inspite of constituting only a 

tiny fraction of the human body mass. Researchers have also identified diseases 

associated with Fe-S clusters. A list of diseases for Fe-S clusters is provided in Table 

1. For its tremendous influence on myriad pathways, it would be surprising if we did 

not witness these iron-sulfur clusters in the most primitive life forms on earth. 

Today, they offer excellent cues to predict the molecular basis of the origin of life 

and reaffirm the concepts of evolution[11].  

Despite these major breakthrough discoveries about their nature, their 

reactivity, their distribution and their usefulness, one prominent question remained, 

‘Were these clusters made in the cell or were they acquired from the external 

environment?’. It took the scientific community another thirty years for this question 

to be answered when Dean and co-workers identified a set of nif genes whose 

proteins were found to participate in cluster formation for the Nitrogenase enzyme 

in A.vinelandii[12]. The puzzle was solved and slowly key players of this process were 

uncovered one by one!   

1.3 Cell-specific differentiation of the pathway 

Today, we know that prokaryotes have three different pathways for iron 

sulfur cluster biogenesis; whereas, eukaryotes have two different iron-sulfur cluster  
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Human protein Function Associated disease 

Biogenesis components 

Mitoferrin Putative iron 
transporter 

Erythropoietic protoporphyria 

ISCU Mitochondrial 
scaffold 

Myopathy with exercise intolerance 

Frataxin Iron donor for ISCU 
scaffold 

Friedreich’s ataxia 

GLRX5 Transfer of Fe-S 
cluster from ISCU to 
apoprotein 

Microcytic anaemia 

ADR Electron transfer Tumor suppressor 

ABCB7 (Atm1 
homolog) 

ISC export machinery 
component, ABC 
transporter 

X-linked sideroblastic anaemia and 
cerebellar ataxia 

Fe-S proteins 

Complex I Complex I of 
respiratory chain 

Various mitochondrial diseases such as 
LHON, MELAS and Leigh syndrome 

Complex II Complex II of 
respiratory chain 

Tumor suppressor 

XPD  Fe-S protein involved 
in nucleotide excision 
repair 

Xeroderma pigmentosum, Cockayne 
syndrome, trichothiodystrophy 

FANCJ Fe-S protein involved 
in nucleotide excision 
repair 

Fanconi anaemia 

MUTYH Fe-S 
protein(glycosylase) 
involved in DNA 
repair 

Colon cancer 

Table 1: Diseases associated with Iron-sulfur cluster biogenesis and Fe-S 

proteins 
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biogenesis pathways. In prokaryotes, the pathways are distinguished based on 

functional significance into the Isc (Iron sulfur cluster) system, Nif (Nitrogen fixation) 

system and the Suf (Sulfur formation) system. The NIF system is exclusively for iron 

sulfur cluster maturation for the nitogenase enzyme in nitrogen fixing bacteria. The 

SUF system is exhibited under conditions of iron depletion in a cell. The pathway that 

closely resembles the eukaryotic pathways is the ISC pathway. However, the 

phylogenetic distribution of these pathways is complicated.  For example, organisms 

such as Mycobacterium tuberculosis and few archaea, appear to have the Suf system 

alone; whereas, in Escherichia coli the Isc system is more important than the Suf 

system[13]. 

In eukaryotes, however, the pathway is classified into cytosolic and 

mitochondrial based on subcellular compartmentalization. The cytosolic pathway is 

known as the CIA machinery. So far, its mitochondrial counterpart – the ISC 

biogenesis pathway, is regarded as the main pathway for iron sulfur cluster 

biogenesis in eukaryotes. Interestingly, the human mitochondrion that is believed to 

have only 13 mitochondrial proteins[14], imports nuclear proteins for the fulfilment 

of iron sulfur cluster maturation. Figure 1.1 and 1.2 highlight all the key proteins of 

both the eukaryotic pathways.  

Our understanding of all these pathways is very primitive as can be seen from 

the relaxation in classification strategy for prokaryotes and eukaryotes; while the 

former is functionally distinguished, the latter is subcellular distribution-based. [No 

correlation has been postulated between the subcellular occurrence of proteins that 

are benefited from the pathways and the subcellular predominance of the pathways  
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FIGURE 1.1: Key players of the Eukaryotic mitochondrial ISC biogenesis 

pathway  

Iron (red circle) is first transported into the mitochondrion with the help of 
monothiol glutaredoxins and inner membrane transport proteins, Mrs 3-Mrs4. 
This iron is presumably collected by Frataxin which binds to Isu1 in an iron-
dependent manner where its role is either to donate iron or to allosterically 
regulate Nfs/Isd11 activity. Nfs/Isd11 is the sulphur (yellow circle) donor for the 
assembly step. An electron transfer unit comprising ferrerdoxin (Yah1), 
ferredoxin reductase (Arh1) and NAD(P)H is also needed to accomplish Fe-S 
cluster assembly. In the second step, transiently-bound 2Fe-2S cluster is 
removed from Isu1 by a chaperone system of ATP-dependent Hsp70 chaperone 
Ssq1, its co-chaperone Jac1 and nucleotide exchange factor Mge1 and 
transported either by a Grx5-Glutathione complex or by a Ferredoxin complex to 
target apoproteins. In the third step, these 2Fe-2S clusters are differentiated 
into 4Fe-4S clusters with the help of Iba57, Isa1 and Isa2 and supplied to specific 
proteins like Lipoate synthase and Aconitase. Simultaneously, a Fe-S cluster 
intermediate is transported through transporter Atm1 to the cytosol for the CIA 
machinery. The CIA machinery uses 7 proteins to accomplish Fe-S cluster 
biogenesis for some cytosolic and nuclear proteins.   
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FIGURE 1.2: Key players of the eukaryotic CIA machinery and the physical link 

between ISC biogenesis pathway and the CIA machinery 

A Fe-S intermediate from the mitochondria is transported through the ABC 

transporter Atm1 to the cytosol. This step is aided by sulfhydryl oxidase Erv1 

and Glutathione. The source for Fe is still not known. In the first step, Fe-S 

cluster is assembled on the P-loop NTPase complex Cfd1-Nbp35. This 

transiently-bound Fe-S cluster is transferred to specific apoproteins by 

proteins Nar1 and Cia1.   
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Function Bacterial 
NIF 

Bacterial 
SUF 

Bacterial 
ISC 

Mitochondrial 
ISC 

Eukaryotic 
CIA 

Cysteine 
desulphurase, 
sulphur 
donor 

NifS SufS-SufE IscS Nfs1-Isd11 Mitochondrial 
Nfs1-Isd11 

U-type 
scaffold for 
assembly 

NifU (N-
terminal 
domain) 

SufU IscU Isu1 - 

A-type 
scaffold for 
assembly 

IscA SufA IscA, ErpA Isa1, Isa2, 
Iba57?  

- 

NFU-type 
scaffold for 
assembly 

NifU(C-
terminal 
domain 

- NfuA Nfu1 - 

P-loop 
NTPase 
scaffold for 
assembly* 

- - - Ind1? Cfd1-Nbp35 

Electron 
transfer 

NifU(middle 
domain) 

- Fdx Yah1-Arh1 - 

Iron donor - - CyaY Yfh1 - 

Transfer of 
Fe-S cluster 
from scaffold 
to target 
apoproteins 

- SufC? HscA, 
HscB 

Ssq1, Jac1, 
Mge1, Grx5 

Nar1, Cia1 

* - Phosphate-binding-loop Nucleoside triphosphatases 

Table 2: Comparison of prokaryotic and eukaryotic proteins involved in the iron 

sulfur cluster biogenesis pathways 
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themselves.] This permits us to look at the similarities in the proteins involved in 

prokaryotic and eukaryotic ISC biogenesis pathways. Table 2 lists the prokaryotic 

proteins in the pathways and its eukaryotic counterparts. The mitochondrial ISC 

biogenesis pathway in eukaryotes will be the focus of this manuscript. 

1.4 General mechanism of mitochondrial Iron Sulfur Cluster biogenesis 

The eukaryotic mitochondrial iron sulfur cluster biogenesis pathway is called 

the ISC biogenesis pathway. The pathway takes place in the mitochondrial matrix 

and is understood in three major steps – iron-sulfur cluster assembly, iron-sulfur 

cluster transfer and iron-sulfur cluster delivery. Seventeen proteins have been 

identified so far in this pathway [15] and a detailed account of the general 

mechanism of the pathway is required for further discussion. The steps involved are 

outlined below. 

Firstly, Cysteine desulfurase and its accessory protein, Isd11, in a PLP-

dependent mechanism, deliver sulfur to a scaffold protein, Isu1. Simulatenously, iron 

loaded-Frataxin is believed to deliver iron to the same scaffold protein. It is not yet 

known whether sulfur delivery or iron delivery is the rate-limiting step in iron-sulfur 

cluster assembly [16]. Once the precursors arrive at Isu1 and are brought into each 

other’s vicinity, through elegant conformational changes of the entire Cysteine 

desulfurase-Isd11-Isu1-Frataxin complex, the genesis of 2Fe-2S clusters occurs. 

These events involved in the formation of a 2Fe-2S cluster, also known as ‘iron-sulfur 

cluster assembly’ constitute the first step of the pathway.  

After assembly of 2Fe-2S clusters on Isu1, these clusters that are transiently 

bound to Isu1 are first removed, then transported and finally, assembled on target 
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apoproteins by Cluster Transfer Proteins. Although these three partial steps are 

difficult to isolate experimentally, iron-sulfur cluster dissociation from Isu1 is 

believed to occur through the ATP-hydrolysis dependent complexation of an ATPase 

chaperone, Ssq1 and its co-chaperone Jac1 on the PVK domain of Isu1[1]. The rate-

limiting step in the entire pathway is believed to be the cluster transfer step from 

IscU (bacterial homolog of Isu1) [17]. Apart from these three steps, there is an 

additional step when some of these 2Fe-2S clusters are differentiated into 4Fe-4S 

clusters for specific apoproteins. Isa1, Isa2 and Iba57 are few proteins involved in 

this additional step[1]. This entire event is broadly categorized as the second major 

step – the ‘iron-sulfur cluster transfer’ step.  

In the final step, iron-sulfur cluster-bound proteins are transported outside 

the mitochondria with the help of ATP transporters and other proteins. Also, some 

Fe-S cluster intermediate alone is believed to be transported outside the 

mitochondria probably, to aid the cytosolic pathway.   

1.5 The organic half of the pathway – Sulfur delivery 

Bacterial NifS was the first protein of the ISC biogenesis pathway that was 

identified and biochemically characterized[13]. Subsequently, two other cysteine 

desulfurases IscS and SufS were discovered. All three proteins are similar in 

sequence and structure and follow a similar persulfide formation strategy to extract 

sulfur [13]. Biochemical studies suggest that their eukaryotic homologs like Nfs1 

(yeast), NFS1 (human-mitochondrial) and ISCS (human-cytosolic) also follow a similar 

strategy. Figure 1.3 shows the crystal structure of bacterial IscS. Some significant 

facts derived from the crystal structure of bacterial IscS are [18]: 

1. L-Cysteine is its reactive substrate. 
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2. They are homodimers with a Pyridoxal-5’ phosphate (PLP) group attached at 

the dimer interface.  

3. Each monomer has two domains. The larger domain has the conserved active 

site lysine residue and the smaller C-terminal domain houses a reactive 

cysteine residue. 

4. The reactive cysteine is easily blocked by alkylating agents like N-ethyl 

maleimide (NEM) and this renders the enzyme inactive.  

5. Substitution of this reactive cysteine by alanine also renders this enzyme 

inactive.  

The general steps involved in sulfur delivery by cysteine desulfurase are as 

follows[19]:  

1. First, PLP binds to an active site, lysine rearranges and forms a ketimine 

adduct with the substrate L-cysteine. 

2. Next, the thiolate group of the reactive cysteine residue in the smaller C-

terminal flexible loop of the enzyme attacks the PLP-bound cysteine by 

nucleophile chemistry.   

3. A series of bond shifts between the reactive cysteine residue and the PLP-

cysteine adduct leads to the extraction of the thiolate group of the substrate 

by the reactive cysteine to form an enzyme-bound persulfide intermediate.  

4. The substrate cysteine devoid of its SH group results in the formation of an 

alanine-PLP adduct.  

5. The mechanism by which alanine is released from PLP is not known yet.  

6. Once persulfide is formed, the proximal sulfur/sulfide group is transferred to 

conserved cysteine residues on Isu1.   
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7. Latest evidence shows that this transfer of persulfide to Isu1 occurs only in 

the presence of iron and nucleotides like ATP and GTP[20]. 

8. The mechanism of this PLP-mediated sulfur extraction reaction of cysteine 

desulfurase is called beta-elimination. 

9. Lastly, the eukaryotic homolog of this enzyme is inactive in the absence of an 

accessory protein named Isd11. 

1.6 Other roles of cysteine desulfurase and subcellular distribution 

Apparently, cysteine desulfurase is not an enzyme used exclusively by the 

cytosol or mitochondria for Iron sulfur cluster biogenesis. The enzyme is also found 

to play a major role in tRNA thiolation [21]. Moreover, it is involved in the 

biosynthesis of major cellular cofactors like thiamin, biotin, lipoic acid and 

molybdenum cofactor[1]. These additional attributes can be considered as the 

enzyme’s moonlighting functions in other cellular processes[1]. Thus, a defect in 

cysteine desulfurase can have a major impact on multiple pathways within a cell. An 

alternative viewpoint that was suggested previously was that cysteine desulfurase 

plays a major role in intracellular sulfur trafficking[13].  

With their involvement in multiple cellular processes it would be reasonable 

to assume that this enzyme is present in all three compartments of the cell – the 

cytosol, the nucleus and the mitochondrion. Although in humans this is the case, in 

yeast, the enzyme is found only in the mitochondria and is believed to shuttle 

between the cytosol and mitochondria for their respective iron sulfur cluster 

biogenesis pathways[22]. This could possibly mean that in higher eukaryotes the 

enzyme is more widespread as opposed to the lower eukaryotes like yeast. 
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Figure 1.3: Ribbon-shaped diagram showing the Crystal structure of IscS  

The diagram shows the dimeric subunits of cysteine desulfurase with an 

active site PLP (pyridoxal 5’ phosphate) at its dimeric interface.  Figure taken 

from [18] 
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1.7 Cysteine desulfurase’s accessory protein - Isd11 and other LYR proteins 

The only major anomaly in the assembly step of eukaryotic Fe-S cluster 

biogenesis pathways is the presence of an 11kDa protein named Isd11. Isd11 is 

found exclusively in eukaryotes [23] and is an ancient protein. Homologs are found in 

the mitosomes of Microsporidia and the hydrogenosomes of Trichomonads, which 

are organelles that originated before the mitochondrion[11]. Different experimental 

approaches on cell viability have suggested that yeast Isd11 is a strictly essential 

protein for the cell [23]. Hence, Isd11 belongs to the small fraction (18%) of cellular 

proteins that are strictly essential for yeast cell viability [24]. The reason for its 

indispensable role in the cell can be attributed to its association with cysteine 

desulfurase and its unique ability to activate the protein. Latest evidence suggests 

that persulfide formation in the active site of cysteine desulfurase occurs only in the 

presence of Isd11 [25]. This is one of the main features that distinguishes eukaryotic 

iron sulfur cluster assembly from its prokaryotic counterpart. 

Although Isd11 has no mitochondrial signal sequence, it exists primarily in the 

mitochondrial matrix and is loosely connected with the inner membrane [23]. Recent 

evidence suggests that a nuclear version of the protein also exists, consistent with 

the subcellular distribution of cysteine desulfurase [26]. This finding is consistent 

with the observation that Isd11 is essential for the biogenesis of mitochondrial and 

nuclear Fe-S clusters [23], although its involvement in cytosolic Fe-S cluster 

formation still needs to be addressed.  

A notable feature of Isd11 is that it belongs to the poorly conserved LYR 

family of proteins [27]. Interestingly, a common functional trait for this family of 

proteins has not been found yet [23]. Other members of this family of proteins 
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include Mzm1, SDHAF1 (Respiratory Complex II subunit), NDUFA6 (Respiratory 

Complex I subunit) and NDUFB9 (Respiratory Complex I subunit). The functional 

significance of few of these LYR proteins like Mzm1, SDHAF1, NDUFA6 and NDUFB9 

suggest that the LYR motif and Fe/S cluster metabolism have some correlation. 

1.8 Cysteine desulfurase – Isd11 complex 

Some information on the Isd11-Nfs complex is available today. Co-

purification of the complex using size-exclusion chromatography has shown that it 

exists as a 180-200kDa protein complex [27]. In-vivo studies have shown that Isd11 

binding on cysteine desulfurase is independent of substrate cysteine binding [17]. In 

addition, inactivation of cysteine desulfurase by the alkylating agent NEM is not 

possible at low concentrations. The same group also found that the LYR motif of 

Isd11 is essential for Isd11 binding and subsequent activation of cysteine desulfurase 

[17]. Finally, as stated above, recent evidence suggests that Isd11 binding is a 

prerequisite for eukaryotic cysteine desulfurase activity and persulfide formation 

[25].  

A lot has been known in the past six years about the coordinated functioning 

of the Isd11-Nfs complex. Still, a lot of questions remain unanswered. Some of the 

questions are: Why is Isd11 exclusively found in eukaryotes? Why does the 

eukaryotic system need an extra protein for sulfur extraction? What changes occur 

in the Iron sulfur cluster biogenesis pathway if methionine or cysteine is depleted? 

Does Isd11 play a role in other pathways without the involvement of cysteine 

desulfurase? With steady developments in this field every year, we can remain 

hopeful that the entire mechanism will be deciphered to a large extent in the near 

future.    
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Chapter 2 Characterisation of DIsd11 

2.1 Prelude 

Isd11 is a nuclear-encoded, 11kDa mitochondrial protein that localizes in the 

mitochondrial matrix after its biosynthesis [1]. Surprisingly, the protein has no 

mitochondrial targeting sequence and yet, enters the matrix of the organelle [1, 2]. 

Another notable feature of this protein is that it has no cysteines and no tryptophans 

in its protein sequence. This eliminates the possibility of performing a fluorescence 

spectroscopy experiment on this protein. Also, every spectroscopic technique that 

majorly relies on light absorption by the tryptophan residues of proteins to 

quantitatively estimate its biochemical properties would be inaccurate for Isd11. 

However, there are certain intrinsic benefits as well. The lack of cysteine residues in 

the protein eliminates the possibility of a Fe-S cluster binding within it and also, 

allows us to eliminate the empirical errors that can cause unfolding of the protein by 

disulfide bond breakage.  

Isd11 has been found to activate eukaryotic cysteine desulfurase both in vivo 

and in vitro. This was accomplished by A. Dancis et al. and D. Pain et al. [3] through 

two elegant experiments. Before this study, other research groups claimed that 

Isd11 has no effect on cysteine desulfurase activity. However, the activity assay used 

for the earlier claims were highly insensitive as it detected the overall microsulfide 

concentrations in the mitochondria on Isd11 depletion. The basis for following such a 

strategy was that Nfs1 is the only known eukaryotic cysteine desulfurase in the 

mitochondrion [4] and hence, any sulphide produced could be only from cysteine 

desulfurase. When a radioactive assay that specifically detects persulfide formation 
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was developed, these assumptions were proven wrong. In the first experiment, a 

yeast mitochondrion expressing Nfs1p was depleted of Isd11p and tested for 

persulfide formation and later, purified Isd11 was imported into the same depleted 

mitochondrion to test if this effected a change. In the first case, no persulfide 

formed; whereas, in the second case, persulfide appeared and increased in intensity 

over time. To test the same phenomenon in vitro, purified Nfs1p was incubated with 

S35-cysteine and tested with and without Isd11. The results of the in vivo experiment 

correlated with the in vivo experiment. This confirmed that Isd11p is a prerequisite 

for yeast Nfs1p activation and persulfide formation and at the same time was not 

required for binding of substrate cysteine with Nfs1p.   

Biochemical characterization of Isd11 is critical for understanding the 

protein’s activity. Like the experiments discussed above, more biochemical 

experiments are required for further characterization of the protein. Simultaneously, 

it is also important to perform biophysical characterization of Isd11 to predict the 

structure of the protein. Prediction of a protein’s structure is the ultimate milestone 

in understanding a protein’s functionality. Presently, the crystal structure of Isd11 is 

not known. Preliminary biophysical characterization before solving Isd11’s crystal 

structure involves studying the folded state of the protein, its oligomeric properties 

and its thermal stability. To accomplish these tasks, Drosophila melanogaster was 

chosen as a model organism in our lab.  
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2.2 Materials and Methods 

2.2.1. Cloning of DIsd11 
 
  DIsd11 cDNA was obtained in a pFLC1 vector, from the Drosophila Genomic 

Research Center (FlyBase ID: FBcI0223918). DIsd11 cDNA was PCR amplified and sub-

cloned into a pET14b vector (Novagen) which has a (His)6 tag and an Ampicillin 

resistance ‘bla’ gene. The cloned plasmid was amplified by transforming into DH5α 

cloning strain (Invitrogen). The DIsd11 sequence represents 107-385bp of the 

complete 705bp open reading frame. Positive clones were verified by DNA 

sequencing (Genewiz facility). Recombinant plasmid was transformed into BL21 

(DE3)-RIL (Stratagene), BL21 (DE3)–Rossetta (Novagen) and BL21 (DE3) E.coli 

competent cell lines for protein expression.  

2.2.2. Optimization of soluble protein expression 

The cell line with best soluble protein expression was identified as BL21 (DE3) 

by growing at 37°C till an OD of 0.8 and then inducing with 0.4mM IPTG for ca. 2 

hours. The next step was to optimize protein expression in the selected cell line, 

BL21 (DE3). DIsd11 soluble protein expression was optimized by varying IPTG 

concentrations, post-induction time intervals, pre-induction OD and Temperatures. 

Optimum protein expression was obtained when BL21 (DE3) was grown at 37°C till 

an OD of 0.8-0.9 and then induced with 0.2mM IPTG for ca. 2.5 hours before 

harvesting by centrifugation.  

2.2.3. Soluble DIsd11 protein purification 

Protein isolation steps were all performed at 4° C. Cells were resuspended in 

50 mM Na3PO4 (pH 7.4), 300 or 500mM NaCl, 20 mM Imidazole and 5 mM β-Me in 

the presence of Complete EDTA-free Protease inhibitor cocktail (Roche). Cells were 
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then lysed by two passes through a French Press cell at high pressure (1100 psi), and 

centrifuged at high speed (21000 rpm) for 1 hour. Crude soluble fraction was filtered 

(0.20 μm) and loaded onto a HisPur Cobalt column (Thermo Scientific) using an 

Imidazole gradient in the range of 0 – 500 mM (DIsd11 protein elutes between 260 

and 380mM). DIsd11 containing fractions were pooled and concentrated to ca. 1mL 

by centrifugation using 3kDa Molecular Weight Cut Off (MWCO) centricons 

(Millipore) spun at 5000 rpm. The concentrated retentive solution was run over a 

HiLoad 16/10 Superdex 75 size exclusion column (General Electronics) equilibrated 

with 50mM Na3PO4 buffer (pH 7.4), 500 mM NaCl. Following this protocol, DIsd11 

monomer and oligomers were obtained based on SDS-PAGE gel analysis (Bio-Rad). 

The obtained protein concentration was 0.5 – 0.6 mg/mL and could be stored 

anaerobically at -20° C, for several weeks and slight degradation appeared only after 

three months. 

2.2.4. Western Blot using Anti-His antibody and Anti-Isd11 antibody 

The western blot experiment was done over two days. On day 1, protein 

samples were run on SDS-PAGE gels, stained in Coomassie Blue and checked for 

purity of loaded samples. Simultaneously, another gel containing the same protein 

samples was left unstained and blotted on a 0.2μm Nitrocellulose membrane (Bio-

Rad). Blotting was performed in three steps: firstly, the Mini Trans-Blot filter paper 

(Bio-Rad), Mini Trans-Blot filter pads (Bio-Rad), the nitrocellulose membrane and the 

unstained gel were soaked in Transfer Buffer (60.5g Tris base , 288g Glycine, 10g SDS 

dissolved in 2L water and further diluted with 600mL methanol and 2.16L of water) 

for 15 minutes. In the second step, all the above-mentioned blotting components 

were stacked on a gel plate and placed in a plastic cassette with the gel facing the 
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black side of the cassette. After assembly, this cassette was placed inside a plastic gel 

frame with the black side of the cassette facing the black side of the frame. The gel 

frame was then almost completely immersed in Transfer buffer and allowed to run 

at 22V overnight in the cold room. 

On day 2, the transfer cassette was pulled out of the chamber and a Ponceau 

red dye staining of the blotted membrane was performed. This was followed by 

washing the membrane in water and blocking the membrane with blocking buffer [5 

%(w/v) non-fat dry milk dissolved in 1X TBST buffer – 50mM Tris-HCl(pH8.0), 150mM 

NaCl and 0.05% Tween20] for 30 minutes to prevent non-specific binding of the 

primary antibody. The Ponceau staining step was optional and was only used to 

check the proper transfer of proteins to the membrane. The blotted nitrocellulose 

membrane was then incubated in a 1:3000 dilution of primary Anti-His antibody or 

Anti-Isd11 antibody in blocking buffer for 3 hours. After the three-hour incubation 

period, the membrane was washed 3 times with 1X TBST buffer. After this step, the 

membrane was incubated in a 1:5000 dilution of secondary antibody in blocking 

buffer (Non-fat dry milk dissolved in 1X TBST) for 1 hour. Following secondary 

antibody incubation, the membrane was again washed 3 times with 1X TBST buffer. 

The membrane was developed using a mixture of Luminol and Peroxidase (1ml each 

for 1min.) and analysed using a CCD camera. 

2.2.5. Circular Dichroism of DIsd11 oligomer-monomer mixture    

Purified DIsd11 protein was completely dialysed into degassed 1mM NaPO4. 

Protein concentration was estimated using Advanced Protein Assay and Lowry Assay. 

The dialysed protein was then degassed for 15 minutes using a Thermovac degassing 

system. A Camphor Sulfonic acid control was performed to check the proper 
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functioning of the UV lamp of the Applied Photophysics CD instrument. After testing 

the lamp, a 1mM NaPO4 buffer absorbance spectrum and CD spectrum were taken 

using π*180 software from 340nm to 180nm. Then, six CD spectra of the DIsd11 

protein in 1mM NaPO4 buffer were collected using the same program. Each DIsd11 

CD spectrum was buffer-subtracted and the six scans were averaged to obtain an 

averaged CD profile. The resulting profile was smoothed, saved and then processed 

using ProData viewer and CDNN softwares.  

2.3 Results and Discussion 

2.3.1. Cloning of DIsd11  

DIsd11 was successfully cloned into pET14b (Figure 2.1), restriction digested 

after cloning (Figure 2.2) and sequence analysed to confirm the presence of the 

DIsd11 gene in the vector (Figure 2.3). This confirmed that the selected DH5α cloning 

strain transformants and the selected BL21(DE3) expression strain transformants had 

the right clone.  

2.3.2. Optimization of soluble protein expression 

The purified plasmid was transformed into three expression strains – 

BL21(DE3), BL21(DE3)-RIL and BL21(DE3)-Rossetta (Figure 2.4). The protein 

expression from BL21(DE3) alone was optimal. Hence, BL21(DE3) was used for 

subsequent expression tests. After a series of expression tests it was found that 

soluble DIsd11 is obtained in high yields when BL21(DE3) is grown at 37ᵒC at a pre-

induction OD of 0.8-0.9 and induced with 0.2mM IPTG for 2 hours (Figure 2.5). Figure 

2.6 shows a flowchart for all the expression conditions tried out. The condition for 

best soluble protein expression was used for large scale protein expression and  
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Figure 2.1: Restriction site map of vector pET14b 

The vector has an Ampicillin resistance gene and a (His)6 tag 

that attaches to the N-terminus of any protein expressed from 

the gene inserted into its Multiple Cloning Site. 
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 Lanes            1                      2                    3                     4       

         Marker           DIsd11           DIsd11           DIsd11 

Figure 2.2: Agarose gel showing the DIsd11 gene after cloning into pET14b 

vector 

A Restriction digestion analysis of the newly cloned pET14b was done to see if 

the DIsd11 gene was correctly inserted into the vector. Lanes 2 and 4 show that 

in colonies 1 and 3 the DIsd11 gene was cloned into the vector. Lane 3 shows 

that in colony 2, DIsd11 gene was not cloned into the vector. 
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Figure 2.3: Protein sequence alignment of DIsd11 with the protein sequence 

available on Pubmed 

The DIsd11 gene was sent to the Genewiz facility for sequence verification. The 

obtained gene sequence was translated into its protein sequence using the 

Expasy translate program and aligned with the available Pubmed protein 

sequence for DIsd11 (RE5789) using the ClustalW2 program. The sequence 

alignment shows 100% identity. 
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Lanes     1        2        3         4         5        6         7        8       9       10      11       12       13 

Figure 2.4: SDS-PAGE gel showing DIsd11 protein expression after transforming 

into three different E.coli strains 

The newly cloned DIsd11 gene was transformed into three E.coli strains – 

BL21(DE3) RIL, BL21(DE3) Rossetta and BL21(DE3). ‘P’ stands for Pre-induced and 

‘I’ stands for Induced. Lanes 2-11 are Pre-induced and Induced samples for 

DIsd11-transformed BL21(DE3)-Rossetta strain. Lanes 12 and 13 are Pre-induced 

and Induced samples for DIsd11-transformed BL21(DE3) strain.  
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Lanes      1           2            3          4          5          6          7           8          9         10      11       

Figure 2.5: Optimization of soluble DIsd11 protein expression 

DIsd11 was best expressed at 0.2mM IPTG, 0.9OD, 37ᵒC, 2 hours. Lanes 2-5 

correspond to samples from the best expressed condition. Lane 4 shows best 

soluble protein expression. ‘PI’ – Pre-induced, ‘I’ - Induced, ‘S’ – Supernatant and ‘P’ 

– Pellet.  
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   Variable:       IPTG        Temperature               Time                   OD 

Figure 2.6: Flowchart of different expression conditions for DIsd11 

protein expression in BL21(DE3) 

The boxes marked in red highlight the condition for best soluble protein 

expression.  
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harvesting. A vital point to be noted is that in every SDS-PAGE gel the Isd11 

monomer ran at ~15kDa instead of 13.5kDa (with the tag). This was confirmed by 

comparing the target samples with the induced samples of Isd11. 

2.3.3. Protein purification of soluble DIsd11 

Protein purification was the next step and after two rounds of purification 

through HisPur Cobalt and HiLoad 16/10 Superdex 75 columns, DIsd11 monomer 

could not be isolated. The protein consistently eluted out with four other proteins of 

higher molecular weights (Figures 2.7). On increasing the pH to 9.14 there seemed to 

be no difference in the purity of the protein (Figures 2.8). Multiple other strategies 

were adopted for solving the problem of co-elution. In one strategy, a nutrient-rich 

growth medium, Terrific broth (Mo Bio Laboratories) was used for cell growth. 

Although the overall soluble protein expression was high, the co-eluted proteins 

could not be separated effectively (Figure 2.9). There appeared to be some DIsd11 

monomer, but this was not sufficient for the proposed experiments. The co-eluted 

proteins were assumed to be oligomers of DIsd11 monomer because literature 

suggests that Isd11 has a tendency to exist as oligomers with cysteine desulfurase in 

the cell. In a second strategy, the purified protein was dialysed using a Micro Bio-spin 

6 column into 7 different co-solvents, each of which was dissolved in a 1mM ZnSO4, 

50mM Tris-HCl (pH 8.0) and 150mM KCl buffer. The co-solvents used were 1M Urea, 

10mM DTT, 1%TFA, 1M Cysteine, 10%DMSO, 40%Methanol, 5% α-D-glucose (Table 

3). None of the samples showed a significant difference suggesting that the 

supposed oligomers were probably not reversible after purification (Figure 2.10). 

However, a limitation to this conclusion could be that Zinc was a constituent of the  
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   A.            B.  

Lanes  1      2       3      4      5      6      7         Lanes     1       2        3         4       5       6   

Figure 2.7: Soluble DIsd11 protein purification using His-Co column affinity 

chromatography and S75 Size-exclusion chromatography at pH 7.4 

In Figure A., lanes 2-7 correspond to different fractions from His-Co affinity 

chromatography purification at a pH of 7.4. Lanes 3, 4 and 5 show that the DIsd11 

monomer protein co-eluted with four other proteins after His-Co affinity 

chromatography between a gradient of 296mM and 386mM Imidazole. Lanes  3-7 

were concentrated and loaded onto an S75 size-exclusion chromatography column.  

In Figure B., lanes 2-6 correspond to serially diluted fractions of DIsd11 protein after 

S75 size-exclusion chromatography. Lane 2 is a highly concentrated DIsd11 protein. 

Lanes 3-6 are serially diluted fractions of the Lane 2 sample. 
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    A.            B.   

Lanes   1  2  3 4  5  6  7 8  9 10 11 12  13   Lanes   1    2    3  4    5   6    7  8   9 

Figure 2.8: Soluble DIsd11 protein purification using His-Co column affinity 

chromatography and S75 Size-exclusion chromatography at pH 

9.14 

In Figure A., lanes 2-14 correspond to different fractions from His-Co affinity 

chromatography purification at a pH of 9.14. As shown in lanes 9-14, DIsd11 

monomer protein primarily co-eluted with two other proteins after His-Co 

affinity chromatography between a gradient of 110mM and 373mM 

Imidazole. Lanes 9-14 and lanes 7-8 were separately concentrated and loaded 

onto an S75 size-exclusion chromatography column.  

In Figure B., lanes 2-9 correspond to serially diluted fractions of DIsd11 

protein after S75 size-exclusion chromatography. Lanes 2 and 6 correspond to 

highly concentrated DIsd11 protein. Lanes 3-5 are serially diluted fractions of 

the Lane 2 sample. Lanes 7-9 are serially diluted fractions of the Lane 6 

sample. 
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A.         B.  

   Lanes     1       2   3    4     5     6     7     Lanes   1     2    3    4     5    6    7    8 

Figure 2.9: Terrific broth-grown soluble DIsd11 protein purification using His-Co 

column affinity chromatography and S75 Size-exclusion 

chromatography 

In Figure A. lanes 2-7 correspond to different fractions from His-Cobalt affinity 

chromatography purification. In lanes 5, 6 and 7, DIsd11 monomer co-elutes with a 

lesser amount of the other higher molecular weight proteins. There also appears to 

be some degradation of DIsd11 monomer. Lanes 4-7 were concentrated and loaded 

on a Sephadex 75 column to see if the higher molecular weight bands can be 

separated.  

In Figure B. lanes 2-8 correspond to different fractions from Sephadex 75 column 

chromatography purification. In lanes 7 and 8, ca. 80% pure DIsd11 monomer could 

be recovered. However, this was not sufficient for the proposed experiments.  
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     A.        B.  

Lanes  1    2    3   4   5   6    7   8   9  10   Lanes  1   2   3   4   5   6    7  8   9  10 

Figure 2.10: Effect of co-solvents on DIsd11 oligomeric state after two rounds of 

purification 

In Figure A. lanes 2-10 correspond to different fractions dialysed into buffer 

containing various co-solvents. Lanes 2-10 are also labelled A-I on the top of the 

gel, where each letter corresponds to the co-solvent used as shown in Table 5. No 

major difference was seen in the supposed oligomeric state of the protein.  

In Figure B. lanes 2-10 correspond to different fractions dialysed into buffer 

containing various co-solvents that were loaded on an SDS-PAGE gel after 48 hours 

of incubation at 4ᵒC. 
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Buffer  Co-solvent   

50mM Tris-HCl, pH 8.0, 

1mM ZnSO4, 100mM 

KCl    

A  5M Urea (Denaturant)  

B  10mM DTT (Reducing agent)  

C  1% TFA (Stabilizes α helices)  

D  1M Cys (DNfs Reaction substrate)  

E  10% DMSO (Denaturant)  

F  40% Methanol (Salting out)  

G  5% Glucose (Reduces aggregation)  

H  Control  

Table 3: Co-solvent categorization for oligomer stability experiment 
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buffer. Many Fe-S cluster assembly proteins are known to bind to Zinc and if this 

happens with Isd11 as well, the oligomer stability maybe increased by Zinc. 

2.3.4. Western Blot using Anti-His antibody and Anti-Isd11 antibody 

The purification results hinted at the immediate need for a Western blot of 

the purified Isd11 protein fractions. Two blotting experiments were performed. In 

the first experiment, an anti-His primary antibody was used and in the second 

experiment, an anti-Isd11 primary antibody was used. The rationale for performing 

two blots was preceded by our hypothesis that the four proteins that co-eluted 

could be oligomers of Isd11 and that if oligomerized, the His-tag maybe difficult to 

detect by the primary anti-His antibody. The anti-His blot revealed only the 

monomer of Isd11. However, the anti-Isd11 blot revealed all four co-eluted proteins 

in addition to the monomer of Isd11 (Figure 2.11). This confirmed our hypothesis 

that the co-eluted proteins are indeed, oligomers of Isd11. However, an alternative 

explanation could also mean that the four proteins are cross-reactive proteins of the 

anti-Isd11 polyclonal primary antibody. 

2.3.5. Circular Dichroism of DIsd11 oligomer-monomer mixture 

Once the identity of the purified Isd11 fraction was confirmed, our next aim 

was to characterize the folded state of the protein. The averaged CD spectra from 

340nm to 180nm (Figure 2.12) suggested that the protein was primarily alpha-helical 

in nature (Table 4). However, the saturation of the UV lamp at the end of 180nm 

slightly distorted the values to favour beta strands over alpha-helices. This could be 

rectified if the saturation can be avoided by identifying the right protein 

concentration. Another variable associated with the performed experiment was that  
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      A.                                                    B.       

Lanes           1             2                                   Lanes       1                2 

        C.                                                   D.  

Lanes           1               2                                                     Lanes       1              2 

Figure 2.11: Western Blot film and SDS-PAGE gel showing presence of 

oligomers in DIsd11 purified fractions 

Figure A. is the Anti-His antibody-tagged Western Blot for the purified DIsd11 

protein. Figure B. is the Anti-Isd11 antibody-tagged Western Blot for the 

purified DIsd11 protein.  

Figure C. is the SDS-PAGE gel corresponding to the Anti-His antibody-tagged 

Western Blot. Figure D. is the SDS-PAGE gel corresponding to the Anti-Isd11 

antibody-tagged Western Blot.  

In all figures, lane 1 is the marker and lane 2 is the DIsd11 protein sample.  
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                                                               A.     

                                                       Lanes         1           2      3 

                   B.   

Figure 2.12: SDS-PAGE gel and CD spectrum of DIsd11 oligomer and 

monomer protein mixture 

In Figure A. Lane 2 corresponds to Pre-S75 DIsd11 sample and Lane 3 

corresponds to the protein used for the Circular Dichroism experiment. 

Figure B. is the averaged CD spectrum of the DIsd11 protein mixture.  
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Secondary structure 190-260nm Standard deviation 

α helices 19 % 2 % 

Antiparallel β 24 % 1 % 

Parallel β 9 % 1 % 

β-turn 17 % 1 % 

Random coil 31 % 1 % 

Table 4: Secondary structure content of DIsd11 protein oligomer-monomer     

mixture  
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the profile reflects only the folded state of the protein mixture and not the folded 

state of the oligomer or monomer individually. 

2.4 Future directions 

Drosophila Isd11 is an interesting protein that is ca. 40% soluble when grown 

in BL21 (DE3) strains of E.coli cell lines. The soluble protein is however, difficult to 

purify in any one of its oligomeric states. Another notable feature is that the protein 

runs at a molecular weight 4kDa higher than its original molecular weight. This is 

consistent with comparisons to induced samples and also from a western blot 

experiment. This strange trait could be because of zinc binding to the protein or 

some other metabolite from the growth media. None of these possibilities have 

been testified and hence, requires further characterization of the protein.  

The limited purity of one state of the protein also makes it difficult to predict 

the secondary structure of DIsd11 monomer or one oligomer alone using Circular 

dichroism. Although we have not been able to isolate one form of the protein from 

the soluble fraction in our lab, we have been able to purify the monomer of Isd11 

using 8M Urea (data not shown). This rigorous method usually interferes with the 

folded state of the protein. Methods to dialyse out the urea using 3kDa MWCO 

Centricons or 3kDa MWCO Dialysis bags have not been successful. Interestingly, 

dialysis of Urea-purified Isd11 into Urea-free buffer has been successful in the yeast 

system when passed through a desalting column and the protein did not oligomerise 

on Urea removal. A limitation to this method is however, the limited recovery of 

protein as most of the Isd11p (yeast system) precipitates after dialysis. Yet, enough 

protein could be recovered for a Circular dichroism experiment. Nevertheless, Urea-

purified DIsd11 awaits the same desalting buffer-exchange treatment.  
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One useful technique for characterising protein-protein interactions is 

Isothermal Titration Calorimetry (ITC). In one of the several ITC experiments 

performed in our lab using Urea-purified DIsd11 and Urea-purified DNfs, DIsd11 was 

found to interact with DNfs (Drosophila cysteine desulfurase) with μM to nM affinity 

in a two-site binding model (data not shown). It was interesting to see an 

endothermic profile during the binding event. In addition, DIsd11 showed no binding 

if left in Urea for 5-7 days and more. Following ITC, both the proteins were tested 

using a cysteine desulfurase activity assay and this revealed that Urea-purified DNfs 

was inactive. These results hinted at the limited usefulness of Urea-purified DIsd11 

and DNfs for binding characterization and therefore, the ITC experiments were not 

pursued further. If a definitive solution is found to remove Urea from the two 

proteins, there could be some success in following this strategy for binding 

characterization.   

In-vivo studies have not yet revealed the exact binding motif of Isd11 with 

cysteine desulfurase, Isu[5] and Frataxin[6]. In future, experiments should be 

directed towards creating deletion mutants of Isd11 to understand the binding event 

in the Fe-S cluster biogenesis complex. The mystery surrounding the functionality of 

the Isd11 LYR motif could also be resolved.  
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Chapter 3 Characterisation of DNfs 

3.1 Prelude 

Cysteine desulfurase was the first protein identified and characterised in the 

Iron sulphur cluster biogenesis pathway. In every pathway dedicated for iron-sulfur 

cluster biogenesis cysteine desulfurase is a common factor and plays the same vital 

role of providing sulphur equivalents from cysteine. There is no substitute for 

cysteine desulfurase in this pathway and therefore, an abrogation of cysteine 

desulfurase is lethal for cell viability [1]. The enzyme is notated in many ways 

depending on the pathway or cell-type under consideration. For example, the 

enzyme is called NifS (in the NIF pathway), SufS (in the SUF pathway), IscS (in the ISC 

pathway), Nfs1p (in yeast) and NifS (in humans)[2]. For convenience, the enzyme will 

be called Nfs for the rest of the discussion.  

Nfs has been identified in the nucleus, cytosol and mitochondrial matrix. The 

enzyme’s localisation in three distinct parts of a cell is concordant with its functional 

diversity. This ‘moonlighting’ property of the enzyme is witnessed in tRNA thiolation 

and cofactor thiamine biosynthesis[3]. So much has been known about Nfs due to its 

structural characterisation. A crystal structure of the bacterial isoform of the 

enzyme, IscS was determined in 2001[4]. This led to a greater understanding of many 

pathways including the iron-sulfur cluster biogenesis pathway. Structural details 

show that Nfs is a homodimeric, PLP-dependent enzyme and each subunit can be 

divided into a small domain and a large domain. This feature is characteristic of α-

family type IV aminotransferases of PLP-dependent enzymes. The relevant features 

of Nfs with reference to its function are that the large domains of the Nfs dimer 
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house the PLP cofactor at the dimer interface. The PLP cofactor is held in place by 

the formation of an internal aldimine Schiff base with a lysine residue in the active 

site. A reactive cysteine residue present in the small domain of Nfs initiates PLP-

mediated catalysis. However, the cysteine residue and the PLP cofactor are ~17Aᵒ 

apart and require the enzyme to undergo a major conformational change. This is 

believed to occur with the help of a flexible loop that connects the large and small 

domain. The entire reaction is believed to take place in a β-elimination fashion.  

All these facets are true for a prokaryotic system. Although IscS shares a 60% 

sequence identity and an 80% sequence similarity with human NifS[4], it remains to 

be seen whether the eukaryotic enzyme shares structural similarity with its 

prokaryotic isoform. This is important because latest evidence suggests that 

eukaryotic cysteine desulfurase is inactive in the absence of an accessory protein 

named Isd11, found exclusively in eukaryotes [5]. This intriguing attribute 

necessitates biochemical and biophysical characterisation of eukaryotic cysteine 

desulfurase. Drosophila cysteine desulfurase was chosen as a model enzyme for 

eukaryotes in our lab and will be notated as DNfs in the following discussion. 

3.2 Materials and Methods 

3.2.1. Cloning of DNfs 

DNfs cDNA was obtained in a pOT2 vector, from the “Drosophila Genomic 

Research Center” (FlyBase ID: FBgn0032393). The DNfs sequence represents 72bp to 

1457bp of the complete 1533bp open reading frame. The first 102bp of the DNfs 

cDNA were truncated to improve protein expression and solubility. The truncated 

cDNA with 1284bp was PCR amplified, sub-cloned into a pENTR/SD/D-TOPO vector 
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(Invitrogen) and then, recombined into pDest15 and pDest17 vectors (Invitrogen) 

using the Gateway Recombination Cloning technology (Invitrogen). The pDest17 

vector has a (His)6 tag and pDest15 has a GST tag to enhance protein expression and 

purification. The pDest clones were first transformed into DH5α cloning strain 

(Invitrogen) for amplification and later transformed into BL21-AI E.coli competent 

cells. Positive clones were verified by DNA sequencing (Genewiz facility). The 

recombinant plasmid was transformed into BL21-AI (Invitrogen) and BL21 (DE3) 

E.coli competent cell lines for protein expression.  

Alternatively, a DNfs cDNA clone with 1284bp cloned by a previous graduate 

student, Dr. Swati Rawat, was also available. The truncated cDNA was cloned into 

pET151/D-TOPO vector (Invitrogen) and transformed into BL21 (DE3) cell line.  

3.2.2. Optimization of soluble protein expression 

The truncated DNfs protein (Δ1-34 DNfs) was expected to have 429 amino 

acids and a molecular weight of 47.46kDa (minus the expression tag). None of the 

clones created by Gateway Recombination cloning technology could be expressed in 

the transformed BL21 cell lines. The next step was to optimize protein expression 

using the alternative DNfs clone in pET151/D-TOPO vector (Invitrogen). For 

convenience, this clone will be referred to as Δ1-34 DNfs2 for the rest of the 

discussion.  Soluble protein expression from Δ1-34 DNfs2 could not be optimized by 

varying IPTG concentrations, post-induction time intervals, pre-induction OD and 

temperatures. Based on the overall protein expression (despite the fact that the 

yield of soluble protein was extremely low), few conditions could be chosen for large 

scale protein expression and purification. For subsequent Δ1-34 DNfs protein 
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expression, Δ1-34 DNfs2 in BL21 (DE3) was grown at 37°C till an OD of 0.8-0.9 and 

then induced with 0.2mM IPTG for ca. 3-4 hours before harvesting by centrifugation.  

3.2.3. Protein purification of soluble Δ1-34 DNfs2  

Protein isolation steps were all performed at 4° C. Cells were resuspended in 

50 mM Na3PO4 (pH 7.4), 300 or 500mM NaCl, 20 mM Imidazole and 5 mM β-Me in 

the presence of Complete EDTA-free Protease inhibitor cocktail (Roche). A 20μg/mL 

of DNase and 5mM MgCl2 were added before lysis to reduce viscosity of the medium 

at the time of filtration. Cells were then lysed by two passes through a French Press 

cell at high pressure (1100 psi), and centrifuged at high speed (21000 rpm) for 1 

hour. Crude soluble fraction was filtered (0.20 μm) and loaded onto a HisPur Ni-NTA 

column (Thermo Scientific) using an Imidazole gradient in the range of 0 – 500 mM. 

The available soluble Δ1-34 DNfs2 containing fractions were pooled and 

concentrated to ca. 1mL by centrifugation using 10kDa Molecular Weight Cut Off 

(MWCO) centricons (Millipore) spun at 5000 rpm. The concentrated retentive 

solution was run over a HiLoad 16/10 Superdex 75 size exclusion column (General 

Electronics) equilibrated with 50mM Na3PO4 buffer (pH 7.4), 500 mM NaCl. The 

fractions obtained were analysed on 10% or 4-20% SDS-PAGE gels (Bio-Rad).  

3.2.4. Auto-induction protocol for soluble Δ1-34 DNfs2 expression 

For the Auto-induction protocol, fresh media was prepared using 5g 

BactoTryptone, 2.5g Bacto-Yeast extract, 1M MgSO4, 50X 5052 (0.5% Glycerol, 0.05% 

Glucose and 0.2% α-lactose), 20X NPS (0.5M Ammonium sulphate, 1M Potassium 

phosphate dibasic and 1M Sodium phosphate monobasic) and 100mg/mL Ampicillin. 

The medium was inoculated with a starter culture and allowed to grow at 27ᵒC for 
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24 hours. After 24 hours, the cultures were harvested by centrifugation. Protein 

purification was then performed by the already described protocol.  

3.2.5. Double-colony selection for soluble Δ1-34 DNfs2 expression 

The Δ1-34 DNfs2 gene in pET151/D-TOPO was first transformed into 

BL21(DE3) competent cell lines and positive clones were selected. One half of the 

selected colonies were grown at 37ᵒC till an OD of 0.8-0.9 and then induced with 

0.2mM IPTG for ca. 3-4 hours. The other half was then re-plated on a fresh LB agar 

plate coated with Ampicillin. Fresh positive clones were selected and expressed 

again at the above-mentioned conditions.  

3.3 Results 

3.3.1. Cloning of DNfs 

N-terminal truncation of proteins is a common strategy used in labs to 

improve solubility of proteins. Experimental evidence in the yeast model suggests 

that Nfs is insoluble in its native form. Therefore, the same strategy was used for our 

Drosophila model. Using ‘Mitoprot’ software the first 34 amino acids at the N-

terminus were found to be the mitochondrial targeting sequence (MTS) and could be 

safely removed without altering the functionality of the protein. Truncated DNfs (Δ1-

34) was successfully cloned into pENTR/SD/D-TOPO vector, recombined into pDest15 

and pDest17 vectors, restriction digested after cloning and sequence analysed to 

confirm the presence of the gene in the vector (Figure 3.1). The sequence analysis of 

the pDest15 clone required further verification as the T7 forward primer could not 

detect the first part of the gene due to the large GST tag sequence. On sequence 

verification of the gene in pDest17, it was confirmed that the selected DH5α cloning 
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Figure 3.1: Sequence verification of pDest17 Δ1-34 DNfs clone 

‘DNfspmd’ is the DNfs sequence available in Pubmed and ‘Nfsp17C2’ is the 

sequence of the newly cloned DNfs gene. 
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strain transformant and the BL21-AI expression strain transformant had the right 

clone. The pDest17 positive clones were selected and also transformed into 

BL21(DE3) expression strain for protein expression. The Δ1-34 DNfs2 clone was also 

transformed into BL21(DE3) for protein expression. 

3.3.2. Optimization of soluble protein expression 

Different expression conditions were tried and yet, none of the colonies with 

positive clones expressed Δ1-34 DNfs (Figure 3.2). The reason for the lack of protein 

expression could not be tracked. Contrary to these unexpected results, the Δ1-34 

DNfs2 clone was able to express protein in the BL21(DE3) expression strain. 

However, ca. 95% of the protein expressed from BL21(DE3) was insoluble (Figure 

3.3B). The clone was also transformed into BL21(DE3)-RIL and BL21(DE3)-Rossetta 

expression strains; but the results did not vary (Figure 3.3A). Based on overall 

protein expression the Δ1-34 DNfs2 clone in BL21(DE3) was used for subsequent 

large scale protein expression and purification and was grown at 37ᵒC at a pre-

induction OD of 0.8-0.9 and induced with 0.2mM IPTG for 3-4 hours. The protein 

with its His6 tag was expressed at a molecular weight corresponding to ca. 48kDa.  

3.3.3. Protein purification of soluble Δ1-34 DNfs2 

Protein purification was the next step and after two rounds of purification 

through HisPur Ni-NTA and HiLoad 16/10 Superdex 75 columns, no pure protein 

could be isolated. The protein consistently eluted out with ca. 80% of bacterial 

proteins (Figure 3.4). A possible reason for the inability to purify Δ1-34 DNfs2 could 

be the drop of protein pI from 8.40 in its native form to 6.58 in its Δ1-34 truncated 
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      A.        B.  

Lanes  1   2   3    4   5   6   7    8   9   10  11  Lanes  1    2    3     4     5    6    7     8    9 

Figure 3.2: SDS-PAGE gel showing Δ1-34 DNfs expression of pDEST15 and 

pDEST17 clones in BL21(DE3) cell lines 

 Figure A. shows DNfs expression from the pDEST15 clone in a BL21(DE3) cell 

line. Lanes 2-5, 6-8 and 9-11 correspond to different expression conditions. 

Figure B. shows DNfs expression from the pDEST17 clone in a BL21(DE3) cell line. 

Lanes 2-5 and 6-9 correspond to different expression conditions. Both gels 

indicate that there is no protein expression under standard expression 

conditions for both the clones.  

In both figures, ‘PI’ stands for Pre-induced, ‘I’ stands for Induced, ‘S’ stands for 

Supernatant and ‘P’ stands for Pellet. 

 



53 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    A.          B.    

Lanes   1    2    3     4    5    6    7    8    9        Lanes  1  2   3   4   5  6  7  8  9  10 11 12 13 

Figure 3.3: SDS-PAGE gel showing Δ1-34 DNfs2 protein expression from a 

pET151-D-TOPO clone in BL21(DE3), BL21(DE3)-RIL and 

BL21(DE3)-Rosetta cell lines 

Lanes 2-5 in Figure A. corresponds to Δ1-34 DNfs2 protein expression in 

BL21(DE3)-RIL cell line. Lanes 6-9 in Figure A. corresponds to protein 

expression in BL21(DE3)-Rossetta cell line.  

Lanes 2-13 in Figure B. corresponds to Δ1-34 DNfs2 protein expression in 

BL21(DE3) cell line. 

In both figures, ‘PI’ stands for Pre-induced, ‘I’ stands for Induced, ‘S’ stands 

for Supernatant and ‘P’ stands for Pellet. 
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form. With repeated attempts at large scale protein expression and purification we 

concluded that it was not worth pursuing the large scale expression the truncated 

form of DNfs using conventional strategies.   

3.3.4. Auto-induction for soluble Δ1-34 DNfs2 expression 

The Auto-induction protocol caused lesser bacterial protein expression than 

Δ1-34 DNfs2 (Figure 3.5). This was an improvement from the conventional strategy 

of IPTG-induced expression. However, on lysis and protein purification sufficient 

soluble protein could not be recovered and purified. This suggests that although the 

overall protein expression is high, most of the protein is insoluble. 

3.3.5. Double colony selection for soluble Δ1-34 DNfs2 expression     

By the end of the second round of colony selection and expression, the 

intensity of a lower band ca. 30kDa in size was much more than the first round of 

selection and expression (Figure 3.6). This lower band is speculated to be a 

degradation product of the truncated protein when expressed in BL21(DE3). 

However, this hypothesis can be confirmed only if a Western Blot of the expressed 

protein sample is carried out. 

3.4 Future Directions 

DNfs is an extremely insoluble protein and could not be purified with a 

conventional strategy of IPTG induction or even, auto-induction. 26.4% of amino 

acids in the native state of the protein are positively and negatively charged 

residues. In the truncated form of the protein as well, 26.57% of amino acids are 

positively and negatively charged residues (ExPASy ProtParam program). A key point  
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     A.          B.  

Lanes     1      2    3    4    5    6    7    8     9   10     Lanes    1       2    3      4      5       6       7       8 

Figure 3.4: Soluble Δ1-34 DNfs2 protein purification using His-Co column     

affinity chromatography and S75 Size-exclusion chromatography  

In Figure A., lanes 2-10 (or E1-E9) correspond to different fractions eluted 

from a HisPur Ni-NTA column at a pH of 7.4. Lanes E3-E9 show that the Δ1-34 

DNfs monomer protein (ca. 48kDa with the His tag) was hardly expressed in 

the soluble form and co-eluted with many bacterial proteins after this affinity 

chromatography purification step. Lanes E5-E9 were concentrated and 

loaded onto a HiLoad 16/10 Superdex 75 size-exclusion chromatography 

column.  

In Figure B., lanes 2-10 (or E1-E7) correspond to different fractions from S75 

size-exclusion chromatography. Soluble protein could not be purified even 

after the second stage of purification. 
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A.    B.  

Figure 3.5: Auto-induction of Δ1-34 DNfs2 protein expression 

Figure A. shows Δ1-34 DNfs2 protein expression after induction and at different 

stages of lysis. ‘R’ stands for Resuspension, ‘L’ stands for Lysate, ‘S’ for 

Supernatant and ‘P’ for Pellet. 

Figure B. shows different fractions after His Ni-NTA affinity purification. Two 

bench-type columns were used for this task. A1-A7 represent fractions from one 

column and B1-B5 represent fractions from the second column. So, essentially 

both columns had the same soluble Δ1-34 DNfs2 extract after cell lysis.  
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A.          B.  

Figure 3.6: Δ1-34 DNfs2 protein expression after Double colony selection 

Figure A. shows protein expression after the first round of colony selection. 

Lanes represent protein expression in 5 different colonies. The numbers 

corresponding to each lane represent the colony identity. Figure B. shows 

protein expression after the second round of colony selection. Four colonies 

were selected for protein expression. There was no improvement in protein 

expression. 

In both gels, ‘PI’ stands for Pre-induced and ‘I’ stands for Induced.  
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to be noted is that the theoretical pI of the protein drops from 8.40 in its native state 

to 6.58 in its truncated form. The impact of this change in pI could influence 

solubility. After cloning the truncated form of the gene, one feature was noted on 

close observation. In both the Δ1-34 DNfs-pDest17 clone and the Δ1-34 DNfs2-

pET151/D-TOPO clone, a substitution mutation occurred at exactly one amino acid 

after cloning. In the first clone, the last amino acid histidine was substituted to 

glutamine and in the second clone, the 384th amino acid, arginine was substituted to 

cysteine. It is interesting to see if the mutation occurs due to the genetic machinery 

of the DH5α cloning strain. Whether this single amino acid mutation causes a major 

change in expression and solubility is a question that needs to be addressed.  

The lack of soluble protein expression in few conventional E.coli expression 

systems renders Δ1-34 DNfs2 an unfit clone to work with unless a novel strategy is 

identified. An alternative strategy could involve creating different truncations of the 

gene like Δ1-37 DNfs, Δ1-60DNfs or any other truncation before the 70th amino acid. 

The reason for restricting truncations to the 70th amino acid originates from a 

comparison with the crystal structure of IscS, E.coli cysteine desulfurase. Recent 

evidence in the yeast model suggests that mitochondrial cysteine desulfurase 

undergoes two truncations at its N-terminal sequence by two different processing 

enzymes – MPP (Mitochondrial Processing peptidase) and Icp55[6]. The second 

truncation apparently occurs after the Mitochondrial Targeting Sequence (MTS) is 

cleaved off. The Mitoprot program does not account for the second truncation while 

calculating the MTS. In yeast Nfs1p, Icp55 cleaves off three amino acids after the 

MTS. The same rationale has been used to suggest a Δ1-37 DNfs truncation. 
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Evidence in the human and yeast systems suggest that different isoforms of cysteine 

desulfurase arise from a single transcript by alternative utilisation of in-frame AUGs 

[7]. This means that the mitochondrial and nuclear forms of the protein arise from 

the same transcript. Therefore, creating a Δ1-60DNfs truncation would be another 

useful strategy.  
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Chapter 4 Summary 

4.1 Characterisation of DIsd11 

Drosophila was chosen as our model organism for two main reasons. Firstly, 

many geneticists have used Drosophila to study neurodegenerative disorders and 

the organism seems to be an excellent model for these. Secondly, previous studies in 

our lab with Drosophila proteins like Dfh (Frataxin) and DIsu (Isu homolog), both of 

which are involved in iron-sulphur cluster biogenesis pathway have shown that the 

proteins are more stable when purified. Such a stable system was required for our 

characterisation of Isd11 and Nfs, as proteins that form a complex are known to be 

labile in the absence of its partner. Yeast-based studies have shown signs of 

degradation or aggregation of Nfs in the absence of Isd11, so there is a question of 

extended sample integrity for the yeast proteins. Our first protein characterised in 

this research project was DIsd11.  

DIsd11 could be expressed well in an E.coli expression strain BL21(DE3). The 

solubility of the protein improved only at low IPTG concentrations and could be 

stably expressed at 37ᵒC. The induction time was also lowered to reduce 

precipitation and the insoluble form of the protein. This observation was consistent 

even on a large scale. Once soluble DIsd11 was obtained, the next step was to purify 

the protein, which proved to be a challenging task. Two rounds of purification 

involving His-Co purification in the first step and Superdex 75 Size exclusion 

chromatography in the second step were used, and yet pure protein could not be 

obtained. Several different strategies were adopted and repeated failed attempts 
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suggested to us that we need to perform a Western Blot to identify the nature of the 

rest of the co-eluted proteins. Surprisingly, all the major co-eluted proteins were 

detected on an Anti-Isd11 Western Blot. This gave us increasing confidence to use 

the protein mixture containing possible oligomers and the monomer of DIsd11 for 

Circular Dichroism. However, such a CD experiment could only detect the overall 

secondary structure of DIsd11 and lacked specificity. 

Latest developments in our lab using Desalting columns for buffer-exchange 

have allowed YIsd11 recovery from Urea-solubilised insoluble YIsd11. CD profiles of 

the so-obtained re-folded protein show a high degree of proper folding. This strategy 

needs to be followed in future for proper secondary structure characterisation of 

DIsd11 as well. Interestingly, YIsd11 does not oligomerise on re-folding. Future 

characterisation of the Isd11 protein should focus on the reasons for Isd11 

oligomerisation in vitro. In addition, the function of the LYR motif needs to be 

predicted and also, the exact binding sites of Isd11 on Nfs for cysteine desulfurase 

activity.   

4.2 Characterisation of DNfs 

Simultaneously, DNfs needed to be characterised for any subsequent 

biophysical characterisation of the Cysteine desulfurase complex with Isd11. DNfs 

offered a bigger challenge than DIsd11. The protein showed signs of expression but 

almost 95% of the protein accumulated in the insoluble fraction. Insoluble proteins 

normally assemble in a cell as inclusion bodies and are difficult to re-fold back to the 

native state. However, in a series of purification protocols, DNfs was extracted from 

inclusion bodies using 6 - 8M Urea. All refolding attempts culminated in the 
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precipitation of the protein and loss of activity. So, expression conditions and 

purification protocols had to be designed to produce large amounts of soluble 

protein.  

All proteins targeted for the mitochondria show a high degree of floppiness in 

its N-terminal Mitochondrial Targeting Sequence (MTS) and surprisingly, MTS 

removal is found to improve protein solubility. So, the first 34 amino acids of DNfs 

were removed and the newly cloned gene had only 429 amino acids. Expression 

tests suggested that the protein could be expressed well; but, the issue of solubility 

persisted even after truncation.   

Various expression protocols like the auto-induction protocol and double-

colony selection were performed in addition to the conventional method of IPTG 

induction. None of these protocols showed promising results. With the little protein 

available, protein purification was also tried. Protein solubility tremendously 

influenced the outcome of purification and hence, yielded no pure protein. It 

appears as though the native form of DNfs and its truncated version are poor models 

for DNfs characterisation using E.coli. Site-directed mutagenesis experiments need 

to be performed to recreate the original DNfs gene from the single amino acid 

mutated DNfs clones to verify the above conclusion. If mammalian cell lines or other 

eukaryotic cell lines are not used, DNfs characterisation may continue to pose 

problems in future. However, this does not mean that alternative truncations of the 

protein like Δ1-37 or Δ1-60 DNfs would not improve expression and solubility in 

E.coli. Comparisons with the crystal structure of the bacterial counterpart, IscS allow 
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us to truncate amino acids till the 60th residue without altering the function of the 

protein. Hence, these strategies are also worth exploring.  

4.3 Characterisation of both the proteins 

Simple ITC experiments have been performed in our lab using Urea-purified 

Δ1-34 DNfs2 and DIsd11. One of the trials showed a high endothermic heat 

absorption when Urea-purified DIsd11 was titrated into Urea-purified Δ1-34 DNfs2. 

Unfortunately, these experiments were not pursued further because the enzyme 

appeared to be thoroughly unfolded. A binding event alone was not enough for our 

hypothesis. Our aim was to use the native state of both proteins and predict the 

binding event as well as conformational changes during persulfide formation. The 

results from this strategy would be more conclusive when coupled with the cysteine 

desulfurase activity assay as opposed to using Urea-denatured proteins.   

A simple remedy to the problem of expressing both the proteins separately 

and then allowing complexation would be co-expression of both proteins on one 

vector. This would enable characterisation of the oligomeric state of the Isd11-

cysteine desulfurase complex. Other important features of the entire Iron-sulfur 

cluster assembly complex can also be studied. There are still certain features of the 

complex that can be estimated only if both the proteins are expressed and purified 

individually, unless one figures out how to separate both proteins from the complex. 

One such important study would be an isothermal titration calorimetry experiment 

which estimates the binding affinity of both proteins for each other. This can also 

roughly predict the number of binding sites on Nfs for Isd11. This technique is also 

useful to predict the ability of any of these proteins to bind to metals like zinc or 
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nickel, which is a quality commonly found among proteins involved in Fe-S cluster 

biogenesis.      

Until a crystal structure is obtained, it would be worthwhile trying to predict 

the exact binding motifs within Nfs on which Isd11 monomer units bind. For this 

approach, multiple segments of Nfs will have to be dissected and cloned separately. 

Following this step, protein pull-down assays can be performed to estimate the exact 

binding motif. It is interesting to see where exactly Nfs incorporates Isd11 in its 

dimeric structure because the protein is already known to bind to five other 

proteins.          
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Iron-sulfur clusters are cofactors with evolutionary origins that date back to 

the pre-biotic world. Ever since life originated, these cofactors have intermingled 

with proteins to play vital roles in sustaining life. My research focuses on one such 

protein, the cysteine desulfurase (Nfs) that has the PLP cofactor incorporated in its 

active site and avails of the catalytic property of PLP to provide sulphur for Iron-

sulfur cluster biogenesis and assembly in a cell. Interestingly, in a eukaryotic cell, 

despite the versatility of PLP, cysteine desulfurase’s role as a “sulphur-extractor” is 

incomplete without another protein named Isd11. This interesting piece of evidence 

led us to perform basic protein characterisation of both the proteins so as to 

biophysically study the binding event and conformational changes during persulfide 

formation in future. We chose Drosophila as our model organism. We have been 

able to successfully create a working model for further characterisation of the 

binding event during persulfide formation.  
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