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Chapter 1 

Introduction 

 
1.1 Introduction  (Bacteria, Friends and Foes) 

Bacteria are prokaryotic single-celled organisms that have a single molecule of DNA 

representing the nucleus with no membrane bounding the nucleus.
1
  Its name was devised from 

the Greek word bakterion which means small rod.
2,3

  Bacteria are widespread everywhere around 

us, in air, water, food, soil, and in all living bodies.  They are very different in their required 

growth conditions, but they are common in their need for sugar as food to survive.   

Despite the fact that the word bacteria is connected with infectious diseases; the vast 

majority of bacteria do not affect human health through an interaction with our immune system.  

Actually, some of them are important for human life, food industry, agriculture, and 

biotechnology.  For example, certain kinds of bacteria such as Escherichia coli are essential for 

the food digestion,
4,5

 some are used to prepare and preserve food,
6
 while others called 

decomposers are responsible for waste decay.
7
 Recently a soil bacterium known as 

Streptomycetes has been used to produce special kinds of antibiotics such as nocardicin and 

streptomycin.
8,9  

On the other hand, pathogenic bacteria can be very dangerous and are considered  life 

threatening microorganisms.  To give some examples of these pathogens, some species of 

Staphylococci bacteria cause food poisoning and toxic-shock syndrome,
10

 some species of 

Streptococci cause throat and middle ear infections
11

 and dental caries,
12

 a special strain of E. 

coli causes severe diarrhea, and Mycobacterium tuberculosis (the agent of tuberculosis) is 

considered to be one of the most dangerous pathogens with a high mortality,
13

 infecting one out 

of every three people globally.
14

   Since bacteria have a significant impact to our life in different 
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ways, we should think about how we can detect and characterize these microorganisms and 

control their activities to avoid their threats.  The methods that have been developed over 

decades to achieve this goal are illustrated in the following section. 

1.2 Bacteria Identification 

 
  Detection and identifying bacteria is of great importance in clinical medicine, food safety, 

and water contamination control purposes.  The early (same-day) in vitro identification of 

medically relevant microorganism can have a large impact on patients with infection.  It has been 

proven that overall health care costs and mortality rates were significantly reduced when rapid 

bacterial identification can be achieved.
15

  Many methods have been established for bacterial 

identification, below is a brief overview of some of them: 

1.2.1 Traditional Microbiological Methods  

Traditional methods of bacterial identification rely on the cultivation of bacteria from a 

pure culture.  By determining the response of the bacteria to the environmental growth 

conditions such as the required nutritional media or the pH value of the media and comparing 

their characteristics with known organisms, a trained microbiologist can identify an unknown 

specimen.  In this method, the sample is often cultured on different agar nutrition media and then 

a viable counting measurement is carried out by counting the number of visible colonies in each 

medium.
16

  In order to identify the bacteria, many other tests are often performed such as the 

Gram-stain reaction, morphology tests, and motility tests.
17

  These measurements are time 

consuming (they can take up to a few days depending on the time required to culture the 

specimen) and laborious with limited accuracy since the bacteria that are not cultivated are not 

counted.
18

 



3 

 

 

1.2.2  Genomic (nucleic acid-based) Methods 

In these techniques, the classification of bacteria is based on finding similarities between 

the DNA of two different bacteria (DNA-DNA hybridization) or by determining the sequences 

of bacterial nucleotide and comparing it with known sequences in a database; these processes are 

called sequence analysis of ribosomal DNA (16S rDNA) and ribosomal RNA (16S rRNA).  

DNA-DNA hybridization is mostly used for the classification of bacteria at the species level,
19

 

where the relationship between the organisms is determined by the degree of their DNA 

hybridization.  Two different strains will fall in the same species if their hybridization value is 

more than 70%.
18

  This method needs a specialist in bacterial taxonomy and requires a long time.  

Moreover it cannot help in bacterial identification due to the lack of characteristic information 

about the unknown bacteria.
20

 

It has been found that certain species could not be distinguished by 16S rRNA sequence 

comparison.
21

  Also 16S rDNA sequence data could not identify bacteria at the species level.
22

   

Recently a process called polymerase chain reaction (PCR) has been used to characterize 

bacteria by copying a particular nucleotides sequence of the DNA millions of copies in 

hours.
23,24,25

  PCR is useful for detecting bacteria that are hard to culture in vitro like 

Mycobacterium tuberculosis.
26

  This method is not as time consuming, but it requires a lot of 

processes that needs a specialist in this field.  

1.2.3 Spectroscopic Methods 

New approaches of bacterial identification have been considered recently due to the 

increasing needs for rapid and accurate identification of bacteria (without a lot of labor and 

without the need of a specialist).  Mass spectrometry (MS) has been successful in comparing 

inter-strains of various clinical bacterial samples.
27

  Also the matrix assisted laser 
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desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) technique has been 

used for the rapid identification of bacteria.
28,29 

  This technique provides highly reproducible 

measurements without laborious work, but it is a destructive and expensive method.  Recently 

laser-induced breakdown spectroscopy (LIBS) has been used for rapid bacterial identification 

and classification
30

 and to study the metabolic activity of bacteria.
31

  Similar to Raman 

spectroscopy, LIBS is an all-optical laser based spectroscopy that can provide a unique 

fingerprint of bacteria based on their atomic compositions. 

Vibrational spectroscopic techniques, infrared (IR) and Raman spectroscopy (RS), have 

been used extensively to identify bacterial samples by a careful investigation of the vibrating 

modes of the molecules in the bacteria.  Lately, Fourier transform infrared (FT-IR) spectroscopy 

has been accepted for microorganism characterization where an infrared light is absorbed by the 

bacterial sample when its frequency is matched with the natural vibrational frequency of the 

sample molecules.
32

  The absorbed radiation can be detected and transformed into a spectrum 

using Fourier transform mathematics.  This process will occur only if there is a net change in the 

molecules’ dipole moment.  Raman spectroscopy is used to characterize bacteria through the 

interaction of coherent light and the sample’s molecules.  This interaction is different than that of 

IR spectroscopy.  In Raman, an intense beam of laser in the visible or infrared or ultraviolet 

region is focused on the sample and the scattered beam is detected to get valuable information 

about the vibration modes of the sample molecules.  An excellent review of the uses of 

vibrational spectroscopy to identify bacteria was given by Maquelin et al. in 2002.
33

  In general, 

those methods are non-invasive and nondestructive and proven to provide rich information of 

bacteria at the strain level with less time and minimal effort. In the next section I will shed some 

light on the Raman spectroscopy technique and its specific application in bacterial systems.   
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  Raman spectroscopy has recently gained popularity as an attractive approach for the 

biochemical characterization, rapid identification, and accurate classification of a wide range of 

bacterial genre, species, and strains.
34,35,36,37,38,39,40,41,42,43

  Various experiments have been 

performed using different techniques of the Raman approach.  To list just a few examples, 

Fourier transform Raman spectroscopy was applied for the characterization of the bacterial cell 

wall,
44

 surface-enhanced Raman spectroscopy (SERS) experiments were performed to identify 

bacteria and discriminate between microorganisms at the strain level,
45

 ultraviolet resonance 

Raman spectroscopy was successfully used to discriminate very closely related strains of 

endospores-forming bacteria,
46

 and confocal Raman microscopy has been used to study the 

chemical composition of a single bacteria cell,
47

 and to study the bioavailability and toxicity of 

pollutants.
48

  I will now give a short summary of the important results that have been achieved 

previously using Raman spectroscopy to characterize, classify and identify bacterial specimens. 

1.3 Review of Previous Studies 

Goeller and Riley studied the discrimination of bacteria and bacteriophages (viruses that 

can infect the bacterial cells) by using Raman spectroscopy (RS) and surface-enhanced Raman 

spectroscopy (SERS).
49

  They observed that there are spectral peaks that appear in the 

bacteriophages’ spectra and not in the E. coli spectrum.  This significant difference can be used 

to distinguish between bacteria and bacteriophages.  On the other hand, the spectra of the 

bacteriophage had similar features but with different intensities in some peaks which revealed 

that the bacteriophages had similar compositions but with different proportions.  In these studies, 

glass slides coated with gold colloids were used for SERS measurements and an E. coli spectrum 

taken with SERS showed an increase in the intensity of Raman spectral features.  Unfortunately 

the location of the Raman peaks was also shifted, so no comparison could be done between RS 
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spectra and SERS spectra.  Overall this study showed that RS and SERS can both effectively 

discriminate between specific specie of bacteria and bacteriophages and the addition of gold 

colloids can increase the Raman signal intensity.  

In 2000, Maquelin et al. used the RS method for the identification of clinically relevant 

microorganisms grown on a solid culture medium.  They examined five different bacterial strains 

(Staphylococcus aureus ATCC 29213, Staphylococcus aureus UHR 28624, Staphylococcus 

epidermidis UHR 29489, E. coli ATCC 25922, and Enterococcus faecium BM 4147) using a 

Renishaw system 1000 Raman microspectrometer.  Raman spectra of the bacterial strains 

revealed spectral differences characteristic of different strains.
38

  To discriminate these types of 

spectra, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were 

performed.  These authors concluded that Raman microspectroscopy combined with the 

multivariate statistical techniques were able to discriminate between different bacterial strains 

and between the species level of Staphylococcus strains as well. 

UV Resonance Raman spectroscopy (UVRRS) was used by E. Consuelo and R. 

Goodacre to study different endospores-forming bacteria belonging to the genera Bacillus and 

Brevibacillus.
46

  The excitation wavelength was in the deep ultra violet region (244 nm).  In this 

case, resonance Raman will take place which leads to an enhancement in the weak Raman bands 

by blocking the fluorescence.  The spectra were analyzed by PCA, discriminant function analysis 

(DFA), and HCA.  The results showed that DFA and HCA could discriminate between the 

spectra representing the main groups of bacteria under investigation.  This study confirmed that 

UVRRS can be used as a tool for discriminating between very closely related endospore-forming 

bacteria. 
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Huang et al. have carried out Raman microscopic analysis of single microbial cells and 

demonstrated the utility of this approach in discriminating bacteria species.
50

  In their study, they 

used seven different species of Gram-positive and Gram-negative bacteria.  Raman spectra 

obtained from the seven bacteria species appear to have similar features with some differences in 

the intensity of some peaks.  In order to figure out if Raman spectroscopy could discriminate 

between the seven spectra, the multivariate statistical techniques of PCA, DFA, and HCA were 

used.  It was observed that Raman spectroscopy has the potential to discriminate between those 

bacteria species using only their single cell Raman spectrum which represents a “chemical 

fingerprint.”  

Harz et al. studied the identification of bacterial cells of the genus Staphylococcus using 

micro-Raman spectroscopy (where a high-quality optical microscope is coupled to the 

spectrometer to enable the excitation and collection of Raman spectra).
51

  Raman measurements 

of eight different strains of Staphylococci were recorded to get Raman spectra.  The spectra were 

analyzed by hierarchical cluster analysis (HCA) which revealed that the discrimination between 

different strains of bacteria can be achieved using micro-Raman spectroscopy.      

 Jarvis and Goodacre used surface-enhanced Raman spectroscopy (SERS) for rapid 

differentiation among bacteria that cause urinary tract infections (UTI).
45

  Bacteria species were 

isolated from UTI, and cultivated for 16 hr on a LabM blood agar base, then added to a silver 

colloid and spotted onto a CaF2 substrate until it dried to be ready for SERS measurements.  PCA 

followed by DFA were used repeatedly to analyze the SERS data.  To improve the 

discrimination between groups, HCA was also used.    
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1.4 Thesis Scope 
 

The overarching theme of this dissertation is to use Raman spectroscopy for the chemical 

characterization of microbiological targets, and to quantify the differences that exist between 

bacterial samples based on their inherent biochemical differences or based on specifically 

induced changes (e.g. in membrane chemistry due to growth conditions, changes due to various 

kinase introductions, etc.).  Furthermore, the potential of Raman spectroscopy as a new tool for 

bacterial discrimination at the strain level is studied.  In this way, new knowledge concerning the 

use of this spectroscopic technique on bacteriological samples and concerning the biochemical 

composition of intentionally altered bacterial samples will be obtained. 

First in Chapter 2 I will discuss the theoretical background of Raman spectroscopy, 

bacterial physiology, and the Raman instrumentation that has been used for this work.  The 

procedures of data collection will be described in Chapter 3. 

Specific projects were conducted to achieve those goals; first a series of experiments 

were performed to identify and discriminate between different bacterial strains of E. coli and 

Staphylococcus aureus bacterial species.  This study included discrimination between pathogenic 

and non-pathogenic strains as well and will be described in Chapter 4.    

Raman spectroscopy was used to characterize the uptake and metabolic activity of xylitol 

in pathogenic (viridans group Streptococcus) and nonpathogenic (E. coli) bacteria by taking their 

Raman spectra before xylitol exposure and after growing with xylitol and detecting any 

significant difference in the molecular vibrational modes during this process.  This will be 

described in Chapter 5. 

The effect of a key cell-division protein (Wag31) on the molecular structure of 

Mycobacterium smegmatis and on the biosynthesis of its cell wall was investigated by collecting 
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and analyzing Raman spectra of conditional mutants of bacteria expressing three different 

phosphorylation forms of Wag31.  This will be described in Chapter 6.  

The use of the SERS technique with our visible wavelength apparatus was investigated to 

improve the intensity and the reproducibility of the Raman spectra acquired from different 

species of bacteria and the resultant spectra were compared to RS spectra.  This will be described 

in Chapter 7.   Finally, in chapter 8 I will discuss the characterization of the outer cell surface 

and the inner cross-section of bacteria using scanning electron microscopy and transmission 

electron microscopy. 
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Chapter 2 

Theoretical Background and Experimental Instrumentation 

 
This chapter will begin with the theoretical background of Raman spectroscopy, then an 

overview of the Raman instrumentation that has been used for this work.  Afterward bacterial 

physiology, which represents the target material for all the Raman studies conducted in this 

work, will be reviewed.   

2.1 Raman Spectroscopy 

Raman spectroscopy (RS) is a powerful molecular fingerprinting technique which 

analyzes materials through the interaction of the material’s molecules with an incident laser 

beam.
1
  The applications of RS are incredibly diverse, from the study of minerals

2
 to the 

characterization of polymers
3
 to medicine.

4
  An exhaustive list of the uses and applications of RS 

is impossible to compile.  Although it has been used for a long time for the chemical 

characterization of different materials, it has just lately been applied to the study of biological 

samples in order to provide a rapid all-optical identification and discrimination of pathogenic 

organisms.  This is due to the development of increasingly sophisticated, powerful, fast, and 

portable Raman spectroscopy instrumentation and statistical techniques that are used to analyze 

the data.  The need for a robust detection technique of bacteria has become more important than 

ever due to the increase of potential bioterrorism threats
5
 and the high mortality rate of bacterial 

infections worldwide.  For example, in 2004 26% of the worldwide annual deaths were caused 

by infectious diseases.
6
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2.1.1 Theoretical Background 

The Raman effect has been known and exploited for many years, and the physics behind 

it are very well understood.
7
  In 1923 Smekal discovered the inelastic scattering theoretically

8
 

and in 1928 Raman and Krishnan reported the observation of this effect which has been called 

“Raman scattering” since then.
9
  Since the Raman scattering effect is very weak, its widespread 

applications did not appear until the 1960s after the laser invention.  By the 1980s Raman 

spectroscopy was being successfully used for materials characterization after the invention of 

sensitive detectors and optical components.
10

 

The Raman effect is caused by the inelastic scattering that occurs when incident light 

(assume monochromatic laser radiation) of wavelength 0  and frequency f0 is scattered from the 

vibrating molecules of the sample.  The displacement of the normal coordinates of those 

molecules about their equilibrium position due to a specific vibrational mode may be expressed 

in equation 1.1, 

 tfqq m2coso                                                                  1.1 

where fm is the frequency of the vibrational mode and q0 is the vibrational amplitude.  The 

electric field of the laser beam oscillates with time (t) and is given by equation 1.2, 

 tfEE 00 2cos                                                                    1.2 

where E0 is the amplitude of the oscillating electric field.  This electric field will induce an 

electric dipole moment P in the molecule which is given by equation 1.3. 

EP                                                                             1.3 
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The proportionality constant   is called the molecular polarizability and is a material property 

that depends on the material structure and bond nature.    can be expanded around the normal 

coordinate of the vibrating molecule for small amplitudes of vibration as given by equation 1.4, 

....q
q

0

0 














                                                       1.4 

where 0  is the polarizability of the molecular mode at equilibrium position.  Based on 

equations 1.1, 1.2, and 1.4, equation 1.3 becomes 

        t2cost2cosEq
q2

1
t2cosEP 00
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00 m0m00 fffff 











 


              1.5 

This equation represents an oscillating dipole which radiates photons with three different 

frequencies, namely f0 (elastic scattering) in the first term, (f0+fm) (inelastic scattering with 

shorter wavelength) in the second term, and (f0-fm) (inelastic scattering with longer wavelength) 

in the third term.  As can be observed in equation 1.5, the Raman effect which is associated with 

the inelastic scattering occurs only if 0
q

0













, which means that the polarizability must 

change with vibrational displacement to get what is called a “Raman active mode.”  The Raman 

active band intensity (I) is proportional to the square of the rate of change of the polarizability 

with respect to the change of the displacement 

2

0














q


.  The theoretical value of Raman 

scattering intensity will depend on the molecular composition of the sample, the molecule’s 

specific vibrational modes, the power of the excitation source (typically a laser), and on the laser 

wavelength since the intensity is proportional to the forth power of the laser frequency.
10

  Also, 
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the experimentally measured Raman intensity will depend not just on the Raman scattering 

intensity, but also on the experimental instrumentation such as the detector and optics efficiency.
 
   

The change in the frequency between the incident and emitted light (∆f) is called the 

Raman shift, and the magnitude of this change is determined by the various vibrational modes of 

the molecules in the sample.  The Raman shift is typically measured in units of cm
-1 

(although it 

is really a wavelength shift that is measured).  Equation 1.6 gives the value of Raman shift in 

terms of the incident and scattered photon wavelength. 

 
   

1 7

incident scattered

1 1
10f cm

nm nm 

 
 

     
 

                                     1.6 

Most of the incident photons will scatter elastically with no change in frequency (Rayleigh 

scattering), while a small portion of light (~10
-8 

of the incident beam) will scatter inelastically, 

which is called Raman scattering.  If the scattered light has more energy than the incident light,  

the difference in the energy will destruct a phonon which changes the vibrational state of the 

molecule and as a result we will observe anti-Stokes lines.  The anti-Stokes lines, having more 

energy than the incident light, will have a shorter or more blue wavelength.  Stokes lines occur 

when the scattered photons have less energy than the incident photons and the difference in the 

energy will create a phonon.  These Stokes lines will have a longer or more red wavelength than 

the incident light.
7 

  In general the Stokes lines are considerably more intense than the anti-Stokes 

lines at standard temperature, since the lowest vibrational states have more occupation 

probability.  Due to this fact, the Raman spectra shown in this dissertation will contain the Stokes 

lines only.  
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Figure 2.1: (A) Energy level diagram showing the states involved in Raman scattering,  
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Figure 2.1(A) shows a simple model of the light scattering mechanism where the incident 

photon puts the molecular system into a virtual energy state which is generally not equal to any 

electronic energy state (dashed lines located between the ground electronic state E0 and the first 

excited state E1) and has a very short lifetime, about 10
-14

 seconds.  A representative Raman 

spectrum (plot of the number of scattered photons (intensity) versus Raman shift) is shown in 

Figure 2.1(B) where the intensity of Rayleigh scattering is suppressed to show Stokes and anti-

Stokes lines.  Examples of actual Raman spectra are shown below. 

Si has a very simple Raman spectrum which consists of only one peak.  Figure 2.2(A) 

shows a full Raman scan.  Even after filtering the Rayleigh scattering out of the collected light 

with high extinction, the Rayleigh line still has a much bigger intensity than the Si Stokes line.  

Consequently, all measurements should start from a positive value of Raman shift (e.g. 100 cm
-1

) 

to avoid the appearance of this huge peak.  Figure 2.2(B) shows a more detailed view of the Si 

Raman peak located at 520 cm
-1

.   
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Figure 2.2: (A) Raman spectrum of Si wafer in the spectral range (-250-1200 

cm
-1

), (B) Si peak at 520 cm
-1

. 
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Because the Si line is so well isolated and its Raman shift is so well-measured, this peak 

is often used for spectral calibration.  Most substances do not give such a “clean” Raman 

spectrum.  Figure 2.3 shows a Raman spectrum of a kind of sugar called sucrose, it can be 

noticed that this spectrum consists of many complex features reflecting the complex structure of 

this sugar. 

2.1.2 Raman Signal Enhancement 

As mentioned earlier, Raman scattering is inherently a very weak or inefficient process 

since only 1 out of every 10
8
 photons is scattered inelastically.  Also, Raman spectra for 

biological samples typically suffer from high fluorescence backgrounds due to the presence of 

fluorophore molecules in biological macromolecules which have the ability to absorb light to be 

excited to a vibrational level located within an excited energy state and then re-emit it with 

different frequency (causing fluorescence).
11,12

  Figure 2.4 shows an example of a bacterial 
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Figure 2.3: Raman spectrum of sucrose. 
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Raman spectrum suffering from huge fluorescence (the large background upon which the smaller 

peaks are present). 

Many experimental techniques have been developed to address these problems.  One way 

to reduce the fluorescence is to choose the laser wavelength to be in the ultraviolet (UV) or 

infrared (IR) regions.  To do this one must take into consideration that the detector sensitivity 

would typically be less for IR Raman, while the high energy of UV laser could damage the 

biological samples.  On the other hand, the Raman signal intensity is proportional to the forth 

power of the laser frequency,
10

 so the use of a short wavelength laser (in the UV region) would 

help to enhance the signal considerably.  As a result UV resonance Raman spectroscopy has been 

used for microorganism identification since the late 1980s.
13,14,15,16 

Another technique used to enhance the Raman signal of a specific band that has received 

special interest is Coherent Anti-Stokes Raman spectroscopy (CARS).  In CARS, two coherent 

lasers are used to excite the sample.  One of them has a constant wavelength (frequency) while 
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Figure 2.4: Raman spectrum of bacterial sample. 
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the other has a changeable, or tunable frequency.  In order to enhance the intensity of the 

required Raman-active mode, the frequency of the band should match the difference between the 

frequencies of the two lasers.  The interaction of the two laser beams with the sample will lead to 

a strong anti-Stokes lines for the vibrational mode with a frequency equal to the frequency 

difference between the two beams.
17

  The main drawback of CARS is the dominant non-

resonance background contributed from the substrate or other vibrational modes.
18

  

2.1.2.1 Surface Enhanced Raman Spectroscopy (SERS)  

The most common and widely used way to amplify the weak Raman signal is to attach 

the sample to a metallic rough surface which can enhance the Raman signal greatly and quench 

the fluorescence.
19

  This technique is called surface enhanced Raman spectroscopy (SERS).
20

  

This technique was investigated to enhance the Raman intensity from the bacterial samples in 

this dissertation, therefore a thorough explanation of the technique is provided here. 

Since the signal intensity is proportional to the square of the induced dipole moment (P), 

the enhancement can be achieved by increasing the electric field (E) or the molecular 

polarizability ( ) or both of them.
7
  The electromagnetic field can be enhanced by using a rough 

surface of metal.  The incident laser will excite the conduction electrons of the surface and create 

a plasmon resonance (collective excitation of conductive electrons in small metallic structure) 

which makes the rough surface polarized and causes a large electromagnetic field.
21

  The second 

mechanism of enhancement is called “chemical enhancement” which is due to the charge 

transfer interaction between the metal and the adsorbed molecules or bond formation between 

the metal and adsorbate that causes an increase in the molecular polarizability.    

The enhancement effect depends on the physical properties of the substrate.  Rather than 

using a nano-roughened surface, the most common nanostructured substrates used for SERS are 
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actually suspensions of gold and silver nanoparticles, the attachment of these nanoparticles could 

enhance the signal by 10
3
-10

6
 fold and quench the fluorescence.

22,23,24
  The spectra obtained 

using SERS suffer from irreproducibility due to the inhomogeneity of the bacteria and colloidal 

suspension.  To address this problem, scanning electron microscope imaging can be used to 

locate the regions of bacteria and colloids together and strike the sample at those points.  An 

example of such SEM images showing the colloidal nanoparticles is shown in Figure 2.5.
24,25 

To show one example, the SERS spectra of bacteria was compared to its normal Raman 

spectra by Dutta et al. and an enhancement in Raman signal was reported.
26

   Figure 2.6 reveals 

the intensity enhancement caused by incorporation of ZnO nanoparticles (next page). 

 

 

 

 

Figure2.5: SEM images of the aggregated silver nanoparticles on E. coli bacteria. 
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2.2 Molecular Vibrations 

Molecules consist of atoms attached by chemical bonds.  The atoms experience a periodic 

motion even if the molecule has no translational or rotational motion.  This periodic motion is 

called molecular vibration and its frequency is called the vibration frequency or vibrational 

frequency.  In general, for each molecule with N atoms there are 3N degree of freedom for its 

translational, rotational, and vibrational motion.  Three of these degrees of freedom are for the 

molecular translation in the x, y, and z directions and three for the molecular rotation around 

these axes.  In the case of a linear molecule there are two rotational motions only.  The remaining 

degrees of freedom correspond to independent vibrational normal modes.  Namely, a non-linear 

molecule has 3N-6 normal modes and a linear molecule has 3N-5 normal modes.
27

  The 

frequency of a specific normal mode depends on the bond strength and the mass of the involved 

atoms.  The distinctive frequency of each Raman active vibrational mode is what is being 

Figure 2.6: Comparison of relative Raman spectra of (a) bulk Raman spectrum and (b) SERS 

spectrum of E. coli cells. 
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measured experimentally using Raman spectroscopy in units of wave number (cm
-1

).
28

  The 

vibrational modes represent complex changes of the atoms’ positions relative to each other, and 

some of them are described below.  

(1) Stretching modes: In this mode the bond length between two atoms will 

change in a symmetric or asymmetric way.  It has higher energy than the other 

modes since it harder to compress or stretch the bond than to bend it. 

(2) Bending mode: In this case the angle between two bonds will change 

periodically while the bond length stay unchanged; this includes in-plane and out-

of-plane bending.  In-plane bending includes “scissoring,” where the atoms move 

in opposite directions which leads to a change in the angle between them and 

“rocking,” where the atoms move in the same direction so the angle between them 

and the rest of the molecule will change.  The out-of-plane bending includes 

“wagging,” which represents the change of the angle between the plane of a 

certain group of atoms and a plane through the rest of the molecule and 

“twisting,” which represents the change of the angle between the planes of two 

groups of atoms. 

These vibrations can be difficult to visualize, so they are shown here for a given molecule.  For 

example the simple organic molecule (O=CH2) has 6 normal vibrational modes illustrated in 

Figure 2.7 (next page).  

 

 



27 

 

 

Due to the complex molecular structure of biological samples, their Raman spectra are 

composed of broad overlapping bands representing different vibrational modes of a multitude of 

different molecules.  This makes the identification of specific vibrational modes not so 

straightforward.  
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Figure 2.7: A simple model representing the vibrational modes of an organic molecule (O=CH2). 
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2.3 Raman Spectroscopy Instrumentation 

The main generic apparatus of a Raman spectroscopy experiment are: excitation source 

(laser), optical components, spectrometer, and the processing system (CCD detector and 

computer).  A typical Raman experimental setup is shown in igure 2.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Almost all experiments utilize some variation of this basic setup.
29

  The specific 

apparatus used in my experiments are described below. 

Single Frequency Laser 

Figure 2.8: A typical Raman spectroscopy setup. 
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2.3.1 Excitation Source 

 A laser is used to excite Raman spectra by supplying a coherent beam of a single 

wavelength of light that has sufficient power to produce Raman scattering.  We use a continuous-

wave argon-ion laser that operates in the visible region (514.5 nm).  Figure 2.9 shows a scheme 

of this laser contents (power supply, gain medium (Ar gas), and resonant cavity).  

  The energy source supplies power to the gain medium, which is an Ar gas plasma in a 

tube.  A high current ionizes the gas and provides the energy to excite Ar ions from the ground 

state to the upper laser level through the collisions between the current electrons and Ar gas 

atoms.  A schematic diagram of the relevant energy levels is shown in Figure 2.10.  The 

excitation process occurs in two steps, the first one removes one electron from an Ar atom in the 

3p
6
 ground state.  This leads to Ar

+
 ground state (Ar excitation).  The second process leads to a 

transition of another electron from 3p
5
 to 4s or 4p states (Ar

+
 excitation).  Also indirect process 

can lead to Ar
+
 excitation, such as the decay from upper excited levels and the excitation from 

metastable states.  An accumulation of Ar
+
 in the metastable 4p state will take place due to the 

Figure 2.9: A schematic diagram of an Ar-ion laser.   
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Figure 2.10: Energy level diagram of Ar-ion Laser.  

long lifetime of this state compared to that of 4s state and as a result a laser transition from 4p to 

4s state can be achieved.  The resultant laser will oscillate with different wavelengths since the 

4p and 4s states contains many sublevels.  The green laser transition at 514.5 nm wavelength is 

the most intense one.
30

  The resonant cavity surrounding the Ar tube contains a mirror with high 

reflectance (99.99%) and an output mirror which can transmit a part of the cavity energy.  The 

emitted photons will bounce back and forth between the mirrors and interact with the excited 

ions which cause photon amplification, and there is a prism located between the mirrors to select 

a desired wavelength for single-frequency operation.  
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The specific argon-ion laser used of the majority of the experiments in this dissertation was a 

STELLAR-PRO-L Modu-laser (pictured in Figure 2.11) with the specification given in table 2.1. 

 

 

Wavelength 514 nm 

Mode TEM00 

Maximum power 100 Mw 

Beam diameter 0.75 mm 

Beam divergence 0.95 mrad 

Beam amplitude noise < 1% RMS 

Warm-up time <15 min 

Start delay 30 sec 

Beam output power drift (after warm-up) < ±1% 

Beam height 2.375” 

AC line voltage 200-265 V 

Line frequency 50-60 Hz 

Case dimensions 7.6”×5.36”×19.18” 

Total weight 22.5 lbs 

Figure 2.11:  Picture of Modu-laser. 

Table 2.1: The specifications of the Modu-laser Ar-ion laser. 
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2.3.2 Optical Components  

 The optical components consist of a lens/optical fiber system to deliver the laser to the 

microscope, a commercial Raman-adapted microscope, and an optical fiber system to carry 

Raman scattered light to a spectrometer.  These are described here.  

A focusing lens focuses the laser beam coming from the laser into a jacketed optical 

fiber.  This fiber carries the argon-ion laser beam into the microscope.  Figure 2.12 shows this 

apparatus.  A horizontal-vertical translation stage holds the fiber end and this should be adjusted 

to position the fiber end in the laser focus to get the maximum amount of laser power into the 

fiber.  The fiber is a metal-jacketed single-mode optical fiber with TEM00 output (lowest order 

transverse mode with a small rounded spot size) which allows optimal focusing of the laser beam 

by the microscope objective.
31

   

An Raman-adapted optical microscope (Olympus BX41TF) with three objectives (10X, 

50X, and 100X) is used to focus the laser spot on the sample and collect the scattered light from 

Lens 

Fiber holder  

Optical fiber 

Figure 2.12: A picture of lens and optical fiber. 
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the sample (pictured in Figure 2.13).  The microscope is equipped with several custom optics, 

including a notch filter and a bandpass filter that are used to filter out the Rayleigh scattered light 

from the scattered light. 
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Figure 2.13: (A) a picture of the Raman microscope from outside, (B) a picture of 

the components inside the microscope.  The path of the laser is shown in green.  

The path of the Raman scattered light is shown in orange. 
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Lastly, another metal jacketed optical fiber carries the Raman scattered light from the 

microscope to a spectrometer, and the light from the fiber is focused into the spectrometer by an 

optical system built into the spectrometer.  This rigid design never requires adjustment by the 

user.  The optical fibers serve as a source and detector aperture with stable and robust laser 

alignment.  

2.3.3 Spectrometer 

 A TRIAX550 spectrometer (Jobin Yvon Horiba Inc.) is used to analyze the Raman 

spectrum.  Figure 2.14 (A) shows a picture of the spectrometer components and its schematic 

diagram is shown in Figure 2.14 (B) and figure 2.15 shows a picture of the whole unit (with 

camera).  The TRIAX spectrometer is equipped with motorized entrance and exit slits, toroidal 

mirror, large exit focusing mirror, and three different diffraction gratings of 2400, 1800, and 

1200 groves/mm mounted on an on-axis turret (just one of them is used during each scan).  The 

availability of triple gratings provides the best compromise for the required spectral range and to 

get the best resolution (the ability of the spectrometer to resolve two close wavelengths).  

Another way to improve the resolution of the spectrometer is to increase the focal length of the 

instrument, the distance between the focusing mirror and the focal plane (exit slit).  As the name 

implies, the TRIAX550 possesses a 0.55 m (550 mm) focal length optical system.   

Light from the microscope is focused onto the entrance slit and is focused onto a 

diffraction grating by a curved mirror.  The diffraction grating diffracts the scattered light into its 

various wavelength components with light of different wavelengths diffracting at different 

angles.  This diffracted light is focused at different points at the exit slit using a large focusing 

mirror.  
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In our experiments the 1200 grooves/mm diffraction grating was mostly used.  This 

Figure 2.15: Picture of TRIAX550 spectrometer. 
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mirror 

Focusing 
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Figure 2.14: (A) a picture of spectrometer components, 

(B) a  Schematic diagram of TRIAX550 spectrometer. 
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grating has a scanning range 0-1500 nm, 500 nm blaze, 0.03 nm resolution and 1.55 nm/mm 

dispersion.  The typical size of the entrance slit was 250 µm with entrance aperture ratio F/6.4 

(called the F number, this represents the amount of light that can be collected).  

2.3.4 Detector/Analysis 

 The light dispersed by the diffraction grating is focused onto a charge-coupled device 

(CCD) detector which is read out by a computer.
32

  A CCD detector is a semiconductor that 

contains an array of photosensitive elements.  When the photons hit a CCD element, a charge 

(photoelectron) will be created and stored there as a function of the photon number (light 

intensity).  The amount of charge is counted and converted into a measurable analog voltage 

which is converted into a digital voltage and transferred to the memory of the computer.  Our 

CCD camera utilizes a 1024×128 pixels liquid nitrogen cooled CCD array detector mounted on 

tiltable flanges and attached at the exit slit of the spectrometer to detect the dispersed Raman 

light.  Computer software is used to control almost every aspect of acquiring the Raman 

Figure 2.16: A picture of the home-built Raman spectroscopy instrumentation. 
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spectrum, from grating selection, to CCD readout.  More details about this software will be 

discussed in the next chapter.  A picture of our home-built Raman spectroscopy instrumentation 

is given in Figure 2.16.  

Since Raman spectroscopy probes the molecular compositions of the bacterial cell, an 

overview of bacterial cell structure and its biochemical building blocks is needed for better 

understanding of the identification basis for this technique. 

 

2.4 Bacteria Physiology 

Although bacteria have different morphological forms such as rods (bacilli), spherical 

(cocci), spirals (spirilla), and chains (scanning electron microscopy pictures of these different 

morphologies are shown in Figure 2.17 A,B
33

 and C
34

), they have a general common structure 

that will be described below. 

2.4.1   Bacteria Cell Structure and Biochemical Constituents  

Figure 2.17: Scanning electron microscope (SEM) images of: (A) a rod-shaped bacterium, 

(B) a coccoid bacterium on a filter, (C) R. rubrum  (a spiral-shaped bacterium). 
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The main structure of bacterial cells consists of the cell envelope, cytoplasm, and 

nucleoid (DNA).  The cell envelope consists of the capsule, cell wall, and cell membrane and the 

cytoplasm contains the ribosomes (RNA and protein), enzymes, plasmid (DNA), and some 

inclusions which store nutrients and waste.  Some bacteria have pili and flagella attached to the 

outer surface.  Figure 2.18 shows the structure of a typical bacterial cell. 

 

2.4.1.1  Cell Envelope Structure 

The cell envelope is a very important part of the cell that keeps it alive, so it is often 

considered an important target for antibiotics and host defenses.  The contents of this part of the 

cell are described below: 

1: The capsule is composed of polysaccharide and it plays a main role in keeping the cell 

from drying out, helping the cells to stick on the surfaces to develop a colony, and 

protecting the cells from the destruction by the host’s defense system. 

Capsule 

Cell wall 

Flagellum 

Cell membrane 
Nucleoid 

Plasmid 

Pili 

Ribosome Cytoplasm 
Inclusion 

Figure 2.18: Bacteria Cell Structure 
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2: The bacterial cell wall is a unique complex rigid structure that gives the shape to the 

cell and provides the protection and support for the cell membrane.  The reason for the 

wall rigidity of the cell wall is the presence of a peptidoglycan layer which is a complex 

molecule of repeating units of two sugar derivatives (N-acetylmuramic acid (NAM) and 

N-acetylglucosamine (NAG) which are linked by peptide cross links and some amino 

acids.
35

3: The cell membrane consists of a phospholipid bilayer with protein and glycoprotein 

dispersed throughout (layers in between).  This membrane plays a significant role in cell 

functions such as the energy conservation in the cell, the cell biosynthesis, and as a 

permeability barrier.  The proteins in both structural and enzymatic forms are 

responsible for most of the membrane functions and the synthesis of the membrane 

lipids as well.
36

 

On the basis of the cell wall structure, bacteria can be divided into Gram-positive and 

Gram-negative bacteria.  For this classification a Gram staining procedure is carried out to test 

the ability of the bacteria cell wall to retain a crystal violet dye.  Bacteria that retain the crystal 

violet appear purple and are called Gram-positive, while bacteria that are not stained by crystal 

violet are referred to as Gram-negative.
35 

  Gram-positive bacteria have a cell wall of two layers; 

a thick peptidoglycan (90%) sheet and an internal membrane and Gram-negative bacteria have a 

multilayer-wall structure that has an internal membrane, a thin peptidoglycan (10%) sheet, 

periplasm, and outer membrane which is a lipid bilayer composed of phospholipids and 

lipopolysaccharide (LPS).  This difference is shown in Figure 2.19.  LPS contains two proteins 

(core polysaccharide and O-polysaccharide) and a lipid A tail, the core polysaccharide protein 

contain ketodeoxyoctonate (KDO), different carbon sugars, and phosphates.    
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2.4.1.2  Biochemical Constituents of the Cell 

Water is the main constituent of the living bacteria cell (about 70% of the total weight of 

a live cell); the remaining 30% represent the dry compositions of the cell which includes 

macromolecules and small amount of monomers and inorganic ions.
35 

  Macromolecules which 

represent 96% of the cell dry weight are polymers of small monomers.  Total monomers 

including amino acids, sugars, nucleotides, fatty acids and their precursors just amount to about 

3% of the dry cell weight, while inorganic ions that are required for many essential functions of 

the cell represent only the remaining 1%.  Table 2.2 lists the types of macromolecules, their 

subunits, location in the cell, and their percentage composition of dry cell weight.
35

   

 

Membrane 
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Membrane 
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Peptidoglycan 

Outer membrane 
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Figure 2.19: Composition of the cell wall of Gram-positive and Gram-negative bacteria 
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Table 2.2: The macromolecules in the bacterial cell and their subunits, location, and average 

percentage composition of the dry cell weight.
35

  

Macromolecule 
Primary subunit 

(monomer) 
Location in the cell 

Percentage of 

dry weight 

Proteins amino acids 

Cell wall, cell membrane, pili, 

flagella, ribosomes, as enzymes 

in the cytoplasm. 

55% 

Lipids fatty acids Membranes, storage depots 9% 

Polysaccharides 
sugars (carbohydrates 

molecules) 

Cell wall, capsule, inclusions 

(energy and carbon storage) 
5% 

Lipopolysaccharides Sugars and fatty acids Membranes 3.4% 

RNA Nucleotides Ribosomes  20.5% 

DNA Nucleotides nucleoid, plasmid 3.1% 

 

2.5 Raman Spectra Obtained From Macromolecules 

 Bacterial Raman spectra composed of a complex pattern of many bands represent a 

superposition of molecular vibrations contributed from different molecules inside the cell.  

Therefore, the assignment of each band to a specific molecule is not trivial and can be attributed 

to different molecular structure of the cell macromolecule.  An overview of the spectral patterns 

obtained from the individual macromolecules monomers will be helpful in the analysis of Raman 

spectra of the whole complex structure of the cell by providing a reference database of the 

different band assignments.  The main macromolecule structures and their Raman spectra are 

discussed below, 

2.5.1 Proteins 

 Proteins are polymers of amino acids that are linked by peptide bounds.  There are 20 

amino acids that differ considerably by their side chain which could be simple and small as in 

glycine and L-alanine, extended as in L-valine, L-serine and L-glutamate, or contain ring 

structures as in the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan.  Raman 

spectra of those amino acids are shown in Figure 2.20 and 2.21.
37
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Figure 2.20: Raman spectra of amino acids with non-cyclic side chain: (a) glycine, 

(b) L-alanine, (c) L-valine, (d) L-serine, (e) L-glutamate. 

Figure 2.21: Raman spectra of amino acids with a cyclic side chain: (a)L-

phenylalanine, (b) L-tyrosine, (c) L-tryptophan. 
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The strong bands in those amino acids and their assignments are given in table 2.3.  

 

 

Table 2.3: The band assignments for the main bands that appear in the amino acids Raman spectra.
38

 

Amino acid Band position (cm
-1

) Assignment 

Glycine 894 CNC symmetric stretch 

L-alanie 851 CNC symmetric stretch 

L-valine 524 

1351 

CC3 deformation 

CH deformation 

L-serine 813, 853 C-C-O in-phase stretch or C-N stretch 

L-glutamate 1401 CO2 symmetric stretch 

L-phenylalanine 1004 ring breathing 

L-tyrosine 828 ring breathing 

L-tryptophan 1009 ring breathing 
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2.5.2 Lipids 

Lipids represent the main structure of the cell membrane, lipopolysaccharide and the 

storage depot of carbon inside the cell.  Simple lipids such as triglycerides are made of three fatty 

acids and glycerol.  Complex lipids such as phospholipids consist of triglycerides and other 

elements like nitrogen or phosphorous.  The variation of lipids in the bacterial cell membrane has 

been used for bacteria identification and classification.
39

 

Raman spectra of different linear (unbranched) saturated fatty acids are shown in Figure 

2.22, the position of the main bands are at 1296 cm
-1

 assigned for CH2 twisting vibration, 1050-

1150 cm
-1

 attributed to C-C stretching vibration, and 1400-1500 cm
-1

 due to CH2 or CH3 

deformations.
37

  The unsaturated fatty acids Raman spectra showed an extra strong band located 

at 1655 cm
-1

 attributed to C=C stretching vibrations.
37  

 

Figure 2.22: Raman spectra of saturated fatty acids: (a) lauric acid, (b) myristic 

acid, (c) palmitic acid, (d) stearic acid. 
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2.5.3 Polysaccharides 

 Polysaccharides (as mentioned before) represent important components in the cell 

capsule structure and LPS which is characteristic of Gram-negative bacteria so they have been 

used for bacterial identification.
40

  The structure of polysaccharides which are made of different 

sugar monomers has been proven to be unique for closely related strains of some kinds of 

bacteria.
41

  Figure 2.23 shows Raman spectra of some saccharides. 

The bands located between 400-700 cm
-1 

are assigned for endocyclic and exocyclic 

deformations.
42

  Those located between 800-950 cm
-1

 are assigned for COH, CCH, and OCH 

deformation vibrations.  Those located in the region 1000-1200 cm
-1

 are assigned for C-O 

stretching vibrations, while CH2 and CH2OH deformation vibrations are represented by the 

bands in the region 1250-1500 cm
-1

.
43

 

Figure 2.23: Raman spectra of some saccharides: (a) β-D-glucose, (b) lactose, (c) 

D(-)-arabinose, (d) D(+)-xylose, (e) D(-)-fructose. 
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2.5.4 Nucleic Acids (DNA and RNA) 

 Nucleic acids are polymers of nucleotides, where the nucleotides are composed of a base 

attached to a sugar by a glycosidic linkage and phosphate.  The special sequence of the 

nucleotides in the nucleic acids represents the genetic information of the cell.  Even though its 

abundance in the bacterial cell is small, DNA is essential for cell reproduction and function.  

RNA converts the genetic information carried by the DNA into amino acid sequences in 

proteins.
35

  Raman spectra for the five different bases is shown in Figure 2.24.
37  

The observed strong band located between 600-800 cm
-1

 is due to ring breathing 

vibrations and for thymine there is a strong band located at 1671 cm
-1

 assigned to C=O stretching 

vibrations.
37 

 

Figure 2.24: Raman spectra of Nucleic acids bases: (a) adenine, (b) 

cytosine, (c) guanine, (d) thymine, (e) uracil. 
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2.6 Bacterial Classification 

As mentioned earlier, bacteria are classified based on their cell wall structure into Gram-

positive and Gram-negative.  The Gram-positive bacteria are divided into aerobic cocci and 

bacilli based on the cell shape while Gram-negative have four groups: cocci, enteric, non-

fomenters, and Pleomorphic bacteria.  Figure 2.25 reveals the flow chart of this classification.  

 

Here is a brief overview of the bacterial groups with the bacterial species and strains that 

were studied in this work indicated in bold. 

2.6.1 Gram-Positive Aerobic Cocci  

This group has a thick cell wall, aerobic action on glucose, and a spherical shape.  It 

includes many clinically relevant bacteria such as micrococcus, staphylococcus, and 

streptococcus.  Staphylococcus genus is a toxin-producing bacterium which can be divided into 

two main species, S. aureus and non-aureus species (such as S. epidermis.)  The most dangerous 

Figure 2.25: Bacteria classification flow chart. 

Bacteria 

Gram-negative Gram-positive 

Aerobic Cocci Aerobic Bacilli 
Aerobic Cocci 

Enteric Bacteria Pleomorphic Bacteria  

Non-Fomenters 
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pathogen of this group is S. aureus which causes food poisoning, tissue infections, and toxic 

shock syndrome which may lead to death.  Many S. aureus strains are resistant to different kinds 

of antibiotic, so differentiation between those strains is of great importance and that will be 

discussed in chapter four.  

  On the other hand streptococcus bacteria include four different groups: S. pyogenes 

which are responsible for throat infections that can be treated by penicillin, S. agalactiae which 

cause the urogenital infections, and type D streptococcus that are divided into two subgroups of 

enterococci such as E. faecalis (urinary tract infection pathogen) and non-enterococci.  The 

fourth group is called viridans group which includes S. mitis and S. mutans.  Those bacteria are 

found in the mouth and are responsible for tooth decay.  A comprehensive study of this group of 

bacteria was carried out in Chapter 5.  Finally Streptococcus pneumonia is a streptococcus 

species that does not belong to any of the discussed streptococcus groups.  This bacterium causes 

otitis media and pneumonia and its impact will be discussed also in chapter 5. 

2.6.2 Gram-Positive Aerobic Bacilli 

This group contains rod shaped bacteria with a thick cell wall and aerobic action on 

glucose.  It is classified into five groups: bacillis are endospores-forming bacteria with many 

harmless species that live in water, air, soil and the intestines of human.  The only pathogenic 

species of this group are B. cereus which causes food poisoning and the anthrax pathogen B. 

anthracis.  The second group is listeria which include pathogenic species as L. monocytogenes, 

the cause of many food poisoning epidemics and L. ivanovii.  A person who is infected with 

listeria suffers from severe nausea, vomiting, and diarrhea.  Lactobacillus group include non-

pathogenic bacteria that have the ability to derive glucose into lactic acids and so it is important 

for dairy products.  The fourth genus is called Erysipelothrix with one pathogenic species E. 
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rhusiopathiae (causes skin infection).  Finally, corynebacteria include many harmless genera and 

species and two harmful genera; Actinomyces and Corynebacterium that have some toxin-

producering species. 

2.6.3 Gram-Negative Enterobactericeae 

This group includes the most clinically relevant bacteria since they cause many diseases 

such as intestinal infections with almost the same symptoms.  The laboratory identification of 

different species and strains of this family is very crucial.  This family consists of 12 genera, 

escherichia, edwardsiella, citrobacter, enterobacter, proteus, providencia, shigella, salmonella, 

klebsiella, serratia, morganella, and yersinia.  A study of the first genera (Escherichia coli) will 

be discussed in chapter four. 
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Chapter 3 

Data Collection and Statistical Analysis Methods  

 
In this chapter I will discuss the procedures of data collection.  This discussion includes: 

sample preparation, the calibration process of the Raman instrument, acquisition of the Raman 

spectral data, data processing, and data analysis using the appropriate statistical methods. 

3.1 Sample Preparation for Raman Spectroscopy 

Different bacterial strains used in this study were cultured as shown in Figure 3.1A using 

different methodologies with specific conditions that will be discussed thoroughly later.  In all 

cases, dense pellets of bacteria (as shown in Figure 3.1B) were obtained from the bacterial 

culture for subsequent Raman spectroscopy.  10 µL of each of the suspensions was transferred to 

a low-fluorescence quartz microscope slide (shown in Figure 3.1C) using a micro-pipette and 

allowed to air-dry at room temperature for about two hours.  After each use, the slides were 

cleaned with deionized water, acetone, and methanol successively to remove any organic 

contaminants or residue from the tested bacteria. 

Figure 3.1: (A) Bacteria cultured on a plate, (B) a tube containing a dense pellet of 

bacteria, (C) bacterial suspensions smeared on a quartz slide. 

A 
B 

C 
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Quartz was chosen as a substrate material since the Raman spectrum obtained from a 

blank quartz microscope slide showed no significant features in the range under investigation 

(600-2000 cm
-1

) as compared to the bacterial samples as shown in Figure 3.2.  

 

3.2 Instrument Calibration and Spectrum Acquisition 

In order to ensure the repeatability of the data, an instrument calibration was done before 

each use.  The unique Raman peak of single crystal silicon located at 520 cm
-1

 was used as a 

calibration standard.  The detailed procedure that was used to operate the system and take the 

measurement is given below: 

1. Fill the liquid nitrogen Dewar and wait about 2 hours until the CCD temperature 

drops to about -130 C
o
. 

2. Turn on laser and let laser warm up. 
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Figure 3.2:  A comparison between Raman spectra obtained from quartz and 

bacteria. 
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3. When laser power is stable at 60 mW, let laser into microscope.  

4. Measure power after the 100X objective, it should be about 6 mW.  Otherwise a 

realignment of the optics should be done.  

5. Open the software program (Labspec) that is available in the computer (pictured in 

Figure 3.3) and turn on the camera. 

6. Focus the laser on the target using the microscope adjustment knobs to get the 

clearest image on the screen.   

7. Acquire a Si spectrum, setting the experimental parameters as: scan time = 10 sec, 

numbers of scans=3, with spectral range spanning 450-650 cm
-1

. 

8. If the Si peak position is shifted from 520 cm
-1

, a calibration is done by changing the 

zero of the instrument calibration that can be found under the setup category (shown 

in Figure 3.4) and repeat the scan to get the exact location of the peak.    

9. At this point we can take measurements for the bacterial samples; to avoid any spikes 

originating from room light, the measurements should be taken in a dark room with 

all lights off.  Different spots of the sample were scanned to obtain many spectra that 

represent the molecular composition of the sample, an example of bacteria spectra are 

shown in Figure 3.5.  Each spectrum was obtained from the average of three 

exposures with an exposure time of 10 s and the spectra were collected in the 

information-rich region between 600 and 2000 cm
-1

 with 2070 data points.  1200 

groves/mm grating and 100X microscope objective were chosen for all the 

experimental work. All the experimental parameters were controlled by the software 
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as appeared in Figure 3.3.  The spectral data should be saved in order to be processed 

and analyzed as will be discussed in the next section.   

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Labspec software home page. 

Start Run 

Scanning 

Time 

Number 

of Scans 

CCD temp. 

Start cam 

Select the 

scan range 

Grating Microscope 

Objective 



57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: (left) A spectrum of bacteria in the spectral range 600-2000 cm
-1

. (right) 

Multiple spectra obtained from different spots of the same sample. 

Figure 3.4: Calibration process of the Si Peak.  
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3.3 Data Preprocessing for Statistical Analysis 

Data processing of the spectra included baseline correction and normalization of the 

Raman spectra.  As discussed earlier, the spectra of biological samples suffer from a huge 

background (visible in Figure 3.5) due to fluorescence.  Many hardware techniques were 

developed to solve this problem, but recently the development of software routines have made 

mathematically-based procedures to correct the background much easier and cheaper.  Different 

numerical algorithms were used for this purpose.
1
  One of the most significant and accurate 

algorithms uses a polynomial fit to approximate the profile of the background and subtracts it 

without any loss of the spectral signatures.
2
   

A robust automated method using a custom Matlab program utilizing an adaptive 

minmax method was chosen to remove the background from each spectrum and normalize the 

spectral data by setting the max intensity to one.
3
  The background subtraction procedure in this 

method is based on the fluorescence-to-signal ratio (F/S) where a multiple polynomials fit with 

different orders have been used to fit across all F/S ratios instead of a single polynomial fit as 

adapted by other comparable methods.  F/S ratio is calculated by dividing the maximum 

fluorescence by the maximum Raman signal.  Cao et al. named this method “the adaptive 

minmax” method since the subtraction process is carried out in two algorithmic steps.  The 

adaptive part relates to the first step where two different polynomial fits (constrained and 

unconstrained) were performed with two different orders that were adapted based on the F/S 

ratio with the lowest RMS value.  The minmax related to the second step where „min‟ stand for 

taking the minimum point between the spectrum and the polynomial fit to prevent overfitting the 

data and „max‟ stand for taking the maximum value among all the fitting to avoid underfitting 

the data. 
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A Matlab program was used for the data processing where the adaptive fit parameters 

(such as the fitting polynomial orders) were determined.  Then a fourth-order polynomial fit was 

performed to estimate the spectrum F/S ratio which determined the order of the four polynomials 

that were used to get the best final fit for subtraction.  After the subtraction process the program 

also normalized the processed spectrum from 0-1 by setting the maximum intensity to 1.  Figure 

3.6 shows the subtraction procedure. 

 

 

Figure 3.6: (A) Raw Raman spectrum of bacteria in blue and the best polynomial fit of the 

background in black.  (B) The same Raman spectrum after processing (background 

subtraction and normalization). 

B 

A 
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3.4 Multivariate Statistical Methods 

Due to the complexity of the bacterial Raman spectrum, which consists of many 

overlapping features, and the subtle differences between the spectra obtained from different 

samples, extracting quantitative and qualitative information from the spectra is not straight 

forward.  Advanced statistical techniques are required to conveniently handle the huge amount of 

data and obtain the relevant results.  Many methods have been found to analyze a large number 

of multivariate data in which the data contains a number of objects (Raman spectra in our case) 

with a large number of variables (the Raman intensities of observed peaks) and analyze the 

simultaneous relationships among the variables.
4
  Principal component analysis (PCA)

5,6,7
 and 

discriminant function analysis (DFA)
8,9,10

 are powerful multivariate analysis strategies that can 

be applied successfully for this spectral data analysis.  PCA followed by DFA was used in this 

work to minimize the dimensions of the data and for discrimination and classification purposes. 

3.4.1 Principal Component Analysis (PCA)  

PCA is a statistical technique that is used to reduce the number of dimensions of data 

with a minimum loss of information.  The goal of PCA is to determine the data patterns and 

underlying factors that cause the similarities and differences of the original data without any 

prior knowledge.  These factors are called principal components (PCs).
11

   

Mathematically, the original data matrix with i objects (spectra) and j variables (intensity) 

is decomposed into two matrices, the scores matrix related to the object (and having the same 

dimensions of the data matrix (i,j)) and loadings matrix related to the variables with (j,j) rank.  

The PCs are the eigenvectors of the score matrix and the eigenvalues represent the data variance 

captured by the PCs.  The first PC is associated with the eigenvector of the highest eigenvalue so 

it has the largest variance and the following PCs follow the same order.  In general, the number 
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of PCs is equal to the number of variables, but we can ignore those of lesser significance in order 

to get a data set which maintains as much of the original variation as possible with fewer 

dimensions (n variables).  In other words, PCA not only reduces the number of variables from j 

to n but also makes the important features for classification easily predictable.  The grouping 

between the spectra (objects) can be observed by drawing a 2-dimensional plot of the first and 

second principal components scores for each spectrum and the relation between the original 

variables can be shown by constructing a plot of the loadings where the variables are plotted 

versus Raman shift.  In this case observed bands in this plot will represent the variables (Raman 

features) that are responsible for the discrimination.
12

  An example of the loadings plot is given 

in Figure 3.7.  PCA is often utilized as a first step for other multivariate analyses which will then 

use component scores instead of the original data.  This speeds up the subsequent analysis and 

makes it easier.
5
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Figure 3.7: Principal component loadings of the PCA performed on the Raman 

spectra acquired from three different bacterial samples.   
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3.4.2 Discriminant Function Analysis (DFA) 

DFA is a statistical tool which is used to classify the multivariate data into groups.  In our 

case the groups consist of spectra from identical types of bacteria and spectra from other bacteria 

strains or species.  DFA uses a set of independent variables from each spectrum (principal 

component scores) to predict the differences between groups with minimum misclassification 

error.
13

  This is done by minimizing the within-group-variance and maximizing the between-

group-variance.  The first step in DFA is to obtain linear combinations of the independent 

variables that best discriminate the groups, which are called canonical discriminant function 

scores.  If the number of groups (types of bacteria) is i, the number of objects (different Raman 

spectra obtained from the same bacterium) is j and the number of variables (principal component 

scores) is k, then the discriminant function scores for group i and object j (fij) is given by 

equation 3.1,
14

  

0 1 1 2 2i j i j i j k k ijf w w x w x w x    
                                   3.1 

where x1ij, x2ij, … xkij are the independent variables for object j in the known groups i, w0,… wk are 

the weight coefficients of the function (eigenvectors) which can be achieved by maximizing the 

difference between groups.  The total numbers of the discriminant functions should be less than 

the total number of groups by one (i-1).  

A test of “hypothesis for significance in the discriminant function” is performed by 

checking the differences between group means.  The null hypothesis means that all data are 

sampled from the same normal distribution with a single mean and variance, while significantly 

different groups will exhibit means that differs by an amount greater than the variance.  If a 

sample of data passes the significance test, the discriminant function scores will be calculated by 
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a vector product of the independent variables and the coefficients of the discriminant function.  

The first discriminant function score represents the most significant differences between groups 

and a spectrum‟s score can be used as the abscissa in a plot.  The second score is used as the 

ordinate, while the higher order scores do not perform much of the discrimination so usually they 

are not utilized.
10

  In the plot each spectrum represent a data point where the clustered data point 

represent related spectra, the centroid (group mean) is also calculated and plotted for each 

cluster. 

In order to calculate the weight coefficients of the discriminant function (wk), we must 

define two matrices, the within-group sums of squares and cross product matrix (W) and the 

between-groups sums of square and cross product matrix (B).  The matrix elements of W is given 

by equation 3.2, 

  
1 1

inm

ki likl kij lij

i j

W X X X X
 

                               (3.2) 

where m is the total number of groups, ni is the number of objects in group i, Xkij is the k
th

 

variable of object j in group i, and Xki is the average values of the k
th

 variables for all objects in 

group i.  In order to calculate B, we have to define the matrix of the total sums of squares and 

cross products (T), its elements given by equation 3.3. 

  
1 1

jnm

k lkl kij lij

i j

T X X X X
 

                                  (3.3) 

The matrix of between-groups sums-of-squares can be calculated from the difference between T 

and W:  



64 

 

B = T – W                                                 (3.4) 

The goal is to maximize the between-groups differences and minimize the within-group 

differences, this can be achieved by solving the eigenvalue problem which maximizing the value 

of {det(B)/det(W)}   The resultant eigenvalues   are given by equation 3.5,  

'

'

ˆ ˆ

ˆ ˆ

b Bb

bWb
                                                       (3.5) 

where b  represent the corresponding eigenvectors.  Equation 3.5 can be written as, 

(B – W) 0b                                                 (3.6) 

The solution of equation 3.6 leads to a set of eigenvalues   and eigenvectors b , the 

eigenvector corresponding to the highest eigenvalue represent the most significant discriminant 

function responsible for the major variations between the groups.  Then the discriminant function 

scores can be calculated easily from the equation  f = Xb 'ˆ , and so the location of all the objects in 

all groups in 2-dimensions can be determined by plotting the first and second discriminant 

function scores.  The DFA plot represent the classification of the spectra obtained from different 

bacterial samples based on the intensity of the Raman features that reflect the molecular 

compositions of the samples. 

To sum up, multivariate methods are important in analyzing Raman spectra because the 

spectra are high dimensional and contain many features, so the identification of the 

microorganisms cannot be achieved without those statistical tools.  Figure 3.8 shows a schematic 

diagram representing the procedure of multivariate statistical analysis performed on the Raman 

spectra in this dissertation.  PCA reduces the dimensionality of the processed data from 2070 
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down to approximately 13 uncorrelated PC scores.  A DFA is then performed on the PC scores to 

discriminate between groups based on the PC scores.
15

  As an example of the results of such an 

analysis, a PC/DFA plot of three different strains of bacterial spectra is shown in Figure 3.9.  

Again each colored data point represents the first two discriminant scores of a single spectrum in 

this 2-dimenstional plot.    

Figure 3.8: The procedure of multivariate analysis on Raman spectra.  

PCA Scores DFA plot 
Processed Raman data Raman spectra 

Figure 3.9: Example of DFA plot using two discriminant functions. 
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Chapter 4 

Raman Spectroscopy for the Discrimination of Bacterial Strains 

 
4.1  E. coli bacterial strains  

4.1.1  Introduction  

Escherichia coli is a Gram-negative bacterium named after the German bacteriologist 

Escherich who discovered it in 1885.
1
  This genera includes many non-pathogenic strains such as 

the useful strains that live in the gastrointestinal tract, it produces vitamin K2,
2

 and stops the 

growth of other pathogenic bacteria.
3
  Some pathogenic strains such as the O157:H7 strain can 

cause major public health concerns due to its ability to poison food.
4,5

   

The harmless strains of E. coli are also used as an indicator of water contamination in 

rivers and lakes.  Since they can survive for a short time outside the host intestine, their presence 

in a certain number (in Michigan 300 or more per 100 ml water) in the surface water of beaches 

indicates that there is a fecal contamination which requires a closure of that beach to avoid any 

disease risk in the region.
1
  

The fact that E. coli can be cultured and duplicated in vitro easily makes it a good model 

of bacteria to be studied using Raman spectroscopy.  Many strains were fully characterized 

genetically which allow a good comparison between the results.  

In this work Raman spectroscopy was evaluated as a sensitive identification tool of 

Escherichia coli at the strain level.  Four closely-related well-characterized strains of E. coli 

including an avirulent laboratory derivative of the pathogenic strain E. coli O157:H7, and three 

non-pathogenic laboratory strains (E coli C, E. coli Hfr K-12 and E. coli HF4714, a hybrid of 

http://en.wikipedia.org/wiki/Escherichia_coli_O157:H7
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strains K-12 and C), were selected for this study.  A previous study of the chromosome sequence 

of Hfr K-12 and E. coli O157:H7 revealed that E. coli O157:H7 has evolved from Hfr K-12 after 

the attack of a lysogenic bacteriophage.
6,7

  Many Raman spectra were obtained from multiple 

colonies of each strain to investigate the reproducibility of the spectra and to provide a large data 

base for this study.  Principal component analysis was used to
 
reduce the dimensionality of data 

from 2070 to 40 PCs and discriminant function analysis classified all the PCA-reduced-spectra 

into independent categories depending on similarities and differences in the molecular 

composition of the bacterial strains.   

Blind classification tests were performed using reference libraries composed of varying 

numbers of model spectra to determine if the Raman spectrum alone is sufficient to classify the 

bacteria by strain and to determine how large a pre-compiled reference library of model spectra 

needs to be (relative to the number of unknown spectra being identified) to insure accurate 

identification.  

4.1.2  Bacterial Strains and Culture Conditions 

All E. coli samples were prepared in a similar manner.  Bacterial cells were cultured 

overnight in a nutrient broth medium at 37 °C, then 1 µL of the suspension was streaked on a 

typticase soy agar TSA plates using a sterilized inoculating loop.  The plates were then incubated 

at 37 °C for 24 hours.  Single colonies of grown cells were harvested from the plates using an 

inoculating loop and suspended in 1.5 ml of deionized water.  These aliquots were centrifuged 

for 3 minutes at 5000 rev/min at room temperature to create a suspension.  The supernatant and 

traces of the media were discarded.  In all cases, a final bacterial titer of approximately 10
8
 cells 

was utilized.     
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4.1.3 Internal Validation 

Internal validation of our data was performed by constructing a PCA-DFA model from 

known bacterial strains and testing new unknown spectra from the same strains against the 

model.
8
  The complete dataset of 478 Raman spectra from all four strains was divided into two 

sets: a training set that contained model spectra whose identities were known and a test set that 

contained the rest of the spectra with their identities removed.  Determining the appropriate size 

of the training set relative to the test set was a key goal of this study.  The data sets were then 

input into the SPSS software as either “known” or “unknown” and PCA and DFA were 

performed.  Classifications of the unknown test set spectra were then made based on the 

similarities and differences between the test set spectra and the known training set spectra. 

4.2  E. coli Results and Discussion 

478 bacterial Raman spectra were acquired in the spectral region (600-2000) cm
-1

 from 

numerous aliquots isolated from multiple cultures to eliminate day-to-day variations, to reduce 

the effects of growth condition variability, and to ensure data reproducibility.  Figure 4.1 shows 

the average of all the processed Raman spectra acquired for each of the strains under 

investigation.  Bacterial Raman spectra consist of bands representing the cell contents, primarily 

proteins, lipids, carbohydrates and nucleic acids.  For example the peaks located at 1005 and 

1662 cm
-1

 were assigned for proteins,
9,10

  the peak at 1585 cm
-1 

assigned for lipids,
11

 the peak at 

1451cm
-1 

assigned for carbohydrates or lipids,
9,10

 the small peaks located at 1035 and 1128 cm
-1

 

were assigned for carbohydrates,
12

 while the peak at 784 cm
-1

 was assigned for nucleic acids.
9
  

These spectral bands were found to be consistent with those published previously.
13,12 
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The observed qualitative similarity of the spectra reveals the similarity of the biochemical 

compositions of the strains.  To evaluate the quantitative differences between these strains, the 

multivariate statistical methods of PCA and DFA were utilized, as explained above.  Figure 4.2 

shows the PC-DFA plot for the four E. coli strains.  Each colored point represents a spectrum 

which is plotted against its DF1 and DF2 scores.  The four main groups were recovered with 

high reproducibility and the avirulent pathogenic strain (E. coli O157:H7) was recovered in a 

cluster much separated from the other strains.  The classification accuracy of this PC-DFA as 

determined by a “leave one out” analysis was: 100% of E. coli O157:H7, 99.3% of E. coli C, 

99.4% of E. coli K-12, and 98.7% of E. coli HF4714 spectra were correctly identified. 
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Figure 4.1: A comparison of the normalized averaged Raman spectra of 

the four E.coli strains studied in this work: (a) E.coli C, (b) E. coli 

O157:H7, (c) E.coli K-12, (d) E.coli HF4714.  Spectra have been offset 

vertically for clarity.   
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In order to investigate the reason for the large difference between E. coli O157:H7 

spectra and the spectra from the non-pathogenic strains, we identified the spectral regions most 

important for discrimination by comparing the plot of the first PC loading with the spectral 

differences between the average spectra.  This difference was obtained by simply subtracting the 

spectra from each other.  Figure 4.3 reveals the similarity between the PC1 loading plot and the 

difference between the average spectra of E. coli O157:H7 and the average spectrum of E coli C.  

The differences in the intensities of the main strong peaks located at 1338, 1454, and 1658 cm
-1

 

represent the spectral features that possess the most variance in the data and are thus utilized as 

Figure 4.2: A PC-DFA plot showing the first two discriminant function scores of 

all the Raman spectra.  The clustering of the spectra about their respective centers 

of mass demonstrates the high-degree of reproducibility of the spectra and the 

ability to discriminate between the four strains. 

 



72 

 

the main basis for discrimination.  Those peaks are observed in all spectra and have been 

previously assigned for protein or DNA,
14,15

 carbohydrates, and protein respectively. 
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Figure 4.3:  The first principal component loading of the PCA (red) plotted 

with the difference of the average Raman spectrum of E. coli O157:H7 and E. 

coli C bacteria (black).  A strong correlation between these two shows that the 

difference between pathogenic E. coli O157:H7 and E. coli C particularly in 

the Raman bands at 1658, 1454, and 1338 cm
-1

 represents a significant amount 

of the overall variance in the data.   
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4.2.1  Blind Study: Internal Validation 

Internal validation was used to evaluate the ability of Raman spectroscopy to accurately 

differentiate closely related E. coli strains based on the strains’ biochemical variation.  In our 

initial study, of the 478 total Raman spectra, 161 spectra (1/3) were utilized in the model as a 

training set and 317 spectra (2/3) were used as a blind test set to be classified against the training 

set using the PC-DFA.  To do this, spectra from each of the strains were randomly selected such 

that 1/3 of the spectra from each strain were represented in the training set and 2/3 of the spectra 

from each strain were present in the test set.  The identities of the fours species in the training set 

were not provided, but they were classified generically as “Group 1,” “Group 2,” etc.  No 

information about the test set spectra was provided at all and the order of all the spectra in the 

test set was randomly shuffled in every analysis.  The PC-DFA was then performed on the test 

set using the model constructed by the training set and the unidentified test spectra were 

classified.  Only then were the identities of the test spectra revealed.   

This PC-DFA correctly identified 312 of the 317 spectra in the test set, yielding a 98.4% 

overall identification accuracy at the strain level.  Figure 4.4 shows the PC-DFA ordinate plot of 

all the spectra.  100% (66/66) of the E. coli O157:H7 spectra, 94% (47/50) of the HF4714 

spectra, 99% (106/107) of the K-12 spectra, and 98.9% (93/94) of the C spectra were identified 

correctly.  In this Figure solid symbols represent spectra in the training sets and open symbols 

represent the unidentified test sets. 
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To investigate the effect that the size of the training set relative to the size of the test set 

had on identification accuracy, this internal validation test was repeated with different numbers 

of model spectra in the training set relative to the size of the test set.  Table 4.1 shows the results 

for all the replicates.  In all cases, almost equal fractions of the spectra from all strains were used 

in the training sets rather than equal numbers of spectra.  For example in the replicate with the 

smallest number of model spectra in the training set, 12.6%, 11%, 11.3%, and 12% of the spectra 

Figure 4.4: PC-DFA plot of 478 spectra obtained from four E. coli strains.  The identified 

grouped cases (1 through 4) represent the 161 model spectra of the training set and the 

unidentified ungrouped cases represent the 317 spectra of the test set.  The ungrouped 

cases clustered around their respective model spectra as revealed after the identities of the 

unknown spectra were revealed. 
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obtained from the four strain groups was used in the training set.  When the smallest training set 

consisting of 56 model spectra was used, the correct identification accuracy of the 422 remaining 

spectra in the test set was lowest at 86%.  This indicated that the number of spectra in the 

training set (representing about 11% of the total data) was not enough for accurate identification.   

Table 4.1: Identification results of the internal validation test. 

E. coli strain 

# of Spectra in 

Training Set 

(percentage) 

# of Spectra  in 

Test Set 

(percentage) 

# of 

Misidentified 

Spectra 

% Correct 

Classification 

Rate 

E. coli C 18 (12.6%) 125 (87.4%) 18 85.6% 

33(23.1%) 110 (76.9%) 4 96.4% 

49 (34%) 94 (66%) 1 98.9% 

72 (50%) 71 (50%) 2 97.2% 

E. coli 

O157:H7 

11 (11%) 

22 (22%) 

34 (34%) 

50 (50%) 

89 (89%) 

78 (78%) 

66 (66%) 

50 (50%) 

0 

0 

0 

0 

100% 

100% 

100% 

100% 

E. coli K-12 

 

18 (11.3%) 

36 (22.5%) 

53 (33%) 

80 (50%) 

142 (88.7%) 

124 (77.5%) 

107 (67%) 

80 (50%) 

22 

0 

1 

0 

84.5% 

100% 

99% 

100% 

E. coli HF4714 9 (12%) 

18 (24%) 

25 (33%) 

37 (49.3%) 

66 (88%) 

57 (76%) 

50 (67%) 

38 (50.7%) 

19 

4 

3 

3 

71.2% 

93% 

94% 

92.1% 
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By increasing the size of the training set to include 109 spectra (representing about 22% 

of the total data) the accuracy of the unidentified test set spectra increased to 97.8% and it 

increased further to 98.4% for a training set containing 161 spectra (representing about 33% of 

the total data).  Beyond this point, the identification accuracy did not increase due to the addition 

of more spectra in the training set.  This established there is a minimum amount of data that must 

be used as a training set to construct a model, but that there is a diminishing return in accuracy as 

the size of the training set increases.  The general correlation between the size of the training set 

relative to the test set and the accuracy of identification is shown in Figure 4.5.   

Interestingly, the results revealed that the pathogenic strain (E. coli O157:H7) was 

correctly identified even when a low number of model spectra were used in the training set.  This 

indicated that the pathogenic E. coli spectra are identifiably distinct from the spectra of the other 

non-pathogenic strains.  For the other, more similar non-pathogenic E. coli, identification 

accuracy dropped considerably when only 12% of the available spectra were included in the 

training set.   
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4.2.2  E. coli Conclusions 

In this study Raman spectroscopy combined with the multivariate statistical techniques of 

PCA and DFA have been used to distinguish between four E. coli strains and to classify 

unknown Raman spectra for rapid, autonomous identification.  The spectra showed a high degree 

of reproducibility over days and months which can be noticed by visual inspection of the spectra.  

The results of the analysis showed that the Raman spectrum of the pathogenic strain E. coli 
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Figure 4.5: The general correlation between the size of the training set used in the model 

to identify the unknown spectra (as a function of percentage of the total number of 

spectra) and the accuracy of identification of the unidentified test spectra, by strain.  E. 

coli O157:H7 was always reliably identified in the PC-DFA, but accuracy dropped 

significantly for the other more similar strains when the trainings set consisted of only 

approximately 12% of the data.   
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O157:H7 was significantly different from the other non-pathogenic strains under investigation.  

Moreover, the identification results obtained by an internal validation test showed a high 

identification accuracy at the strain level that has never been achieved before.  Specifically, a 

100% discrimination ability was found for the pathogenic strain compared to three non-

pathogenic strains even when the number of model spectra included in the training set was 

relatively low. 

4.3  E. coli Summary 

Visible wavelength Raman spectroscopy has been used for the discrimination of four 

closely related Escherichia coli strains: E. coli O157:H7, E. coli C, E. coli Hfr K-12, and E. coli 

HF4714.  Raman spectra were acquired from live bacterial aliquots obtained from cultures grown 

on trypticase soy agar plates.  A principal component-discriminant function analysis of the full 

Raman spectra revealed robust, reproducible differences between these strains, allowing accurate 

identification of unknown bacterial spectra by comparison against a precompiled library of 

known spectra.  The laboratory avirulent strain of pathogenic E. coli O157:H7 possessed the 

most significant spectral differences and was easily discriminated from the other non-pathogenic 

E. coli strains.  A blind study approach was used to evaluate the potential of this technique to 

identify or classify unknown bacteria at the strain level.  The results of the test revealed a 100% 

correct identification for the E. coli O157:H7 strain, 98.9% for E. coli C, 99% for E. coli K-12, 

and 94% for E. coli HF4714 when the training set contained 1/3 of the total number of spectra 

taken and the other two-thirds of the data were used as unknown test spectra.  A correlation 

between the number of spectra present in the training set and the identification accuracy was 
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found.  This study suggests that non-surface-enhanced visible wavelength Raman spectroscopy is 

potentially useful for the identification and classification of bacteria at the strain level.  

4.4  Staphylococcus aureus Bacterial Strains 

4.4.1 Introduction 

Staphylococcus aureus is a Gram-positive pathogenic bacteria species responsible for a 

wide range of diseases like skin infections and pneumonia.  Many of its strains can cause food 

poisoning due to their production of toxins.  Hospital-acquired infections (HAI) and community-

acquired infections (CAI) due to Staphylococcus aureus is one of the leading concerns to public 

health.  For example, methicillin-resistant Staphylococcus aureus (MRSA) that is carried by 

about 60% of nurses nasally or on their skin
16

 is responsible for pneumonia and infections in 

open wounds, the respiratory tract, and the urinary tract which can lead to death in hospitalized 

patients.
17

  According to an estimation of the Centers for Disease Control and Prevention (CDC), 

MRSA infections doubled from 1999 to 2005 and the number of deaths increased significantly in 

this time period.
18

  Because the antibiotic resistance in this pathogenic strain is so commonly 

observed and so dangerous, there is a need for a system which can discriminate between the 

different strains rapidly in order to initiate the proper treatment in a timely fashion.  

Raman spectroscopy has already been presented as an efficient technique for 

discrimination between different Staphylococcus strains belonging to different species.
10

  Also, 

Raman spectroscopy has been used to characterize methicillin-resistant coagulase staphylococci 

(MR-CNS) isolates obtained from hospital patients’ skin.
19

  

In this study, the efficacy of Raman in differentiating the strains of S. aureus which were 

resistant to different classes of antimicrobials (β-lactam, macrolide, and tetracycline) was 
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evaluated.  The Raman instrumentation discussed previously was used to collect the data from 

bacterial colonies in the spectral region 600-2000 cm
-1

, PCA was performed to reduce the data 

dimension from 2070 to 13 PCs, and DFA was performed on the PCs to distinguish between the 

different spectra. 

4.4.2  Bacterial Strains and Culture Conditions  

Four different strains of Staphylococcus aureus were used in this study: methicillin 

resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), 

tetracycline resistant Staphylococcus aureus (TRSA), and multi-drug resistant Staphylococcus 

aureus (DRSA).  The isolates were isolated from retail meat and confirmed by PCR.  They were 

characterized by antimicrobial susceptibility testing. . 

The isolates were stored at −80°C in brain heart infusion broth containing 40% glycerol 

until they were used.  All isolates were grown overnight on trypticase soy agar (TSA).  These 

plates were incubated for 24 h at 35°C.  For sample preparation, a sterilized cotton swab was 

filled with biomass and suspended in 50 μl of sterlized demineralized water.  This was followed 

by centrifugation for 2 min at 13,000 × g.  The pellet was transferred to quartz slide and was 

allowed to dry. 
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4.5  S. aureus Results and Discussion 

 The collected Raman spectra from different bacterial samples were processed 

(background subtracted and normalized) and then the average spectra for the strains were 

calculated to represent the molecular changes between them.  Figure 4.6 shows the averaged 

spectra for the studied strains of S. aureus with the main peaks labeled from 1 to 9. 
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Figure 4.6: A comparison of the normalized averaged Raman spectra of 

the four S. aureus strains studied in this work, (a) MRSA, (b) MSSA, (c) 

TRSA, (d) DRSA.  Spectra have been offset vertically for clarity.   
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The peaks observed in Raman spectra represent the molecular composition of the dried 

bacterial cells which seems to be about the same for all the strains (the peak assignments are 

given in Table 4.2).  However, a careful look at the figure reveals some slight changes between 

the intensities of those peaks; the differences could be addressed by the application of PCA and 

DFA as will be discussed below.   

 
Table 4.2: Assignment of the Raman vibrational bands observed in S. aureus Raman spectra. 

δ: deformation vibration,  ν: stretching vibration,  ρ: rocking vibration; s: strong, m: medium, w: weak. 

 

 

Raman shift (cm-1) Assignments 

Label S. aureus Vibrational modes Location 

(1) 776 (w) 
Nucleotides (Cytosine, uracil) 

ring stretching10,20 
DNA/RNA  

(2) 998 (m) 
ν(C-C) aromatic ring breathing 

of phenylalanine10,20 
Protein 

(3) 1154 (s) ν(C-C)21,22,14 ,23 Protein 

(4) 1329 (w) δ(C-H)10,11 
Carbohydrate, 

protein 

(5) 1355 (w) C-H bend11  Protein 

(6) 1448(m) δ(C-H2) scissoring10,20,,24,25   
Carbohydrate, 

Lipid 

(7) 1518(s) ν(C=C) 21,22  Protein 

(8) 1580(s) ν(C=C)11  Lipid 

(9) 1653(m) 

Amide I and unsaturated 

lipids,20,24 amide I and ν(C=C) in 

lipid 14 

Protein, Lipid 
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Figure 4.7: A plot of first four PC loadings in the spectral 

region 600-2000 cm
-1

. (a) loads of PC1, (b) loads of PC2, (c) 

loads of PC3, and (d) loads of PC4. 

To quantify the spectral differences responsible for discrimination, I compared the plot of 

the PC loadings with the differences between the averaged spectra of the different strains.  13 

PCs were obtained from the PCA analysis, the first PC score included most of the data variance 

(76.8%) while the second PC included 13.1%, the third one included 3.2%, and the fourth PC 

just counted for 1.8% of the total variance of the data.  The plots of the loadings of those PCs 

(shown in Figure 4.7) consist of features that represent the data variance that is considered by the 

statistical analysis as the discrimination basis.  

 

 



84 

 

Figure 4.8 identifies the main features in the plot of the first PC loading which contains 

most of the data variance.  Those positive and negative peaks were related to the dominant 

features in the S. aureus strains’ Raman spectra. 

 

The first PC loadings plot was compared with the differences between the averaged 

spectra of different strains as shown in Figure 4.9.  The comparison revealed a similarity 

between the PC1 loads and the difference between DRSA and the other strains spectra in the 

spectral region 1300-1700 cm
-1 

as appeared in Figure 4.9(A) and 4.9(B).  A match between the 

PC1 peak located at 1152 cm
-1

 and the difference between MRSA and other strains spectra at this 

location was observed (Figure 4.9(C) and (D)).  This indicates that those spectral variations 
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Figure 4.8: The loadings of the first PC with the main spectral 

features identified. 
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associated with a variation in the corresponding molecular compositions of the different bacteria 

strains were used by the statistical techniques as a fingerprint to identify each strain. 
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Figure 4.9: Principal component loadings of the PCA performed on the Raman 

spectra acquired from four S. aureus strains, (A) The loadings of the first PC 

plotted with the difference of the average spectrum of DRSA and TRSA.  (B) 

PC1 loadings plotted with the difference of the average Raman spectrum of 

DRSA and MSSA. (C) PC1 loadings plotted with the difference of the average 

Raman spectrum of MRSA and MSSA. (D) PC1 loadings plotted with the 

difference of the average Raman spectrum of MRSA and TRSA. 
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To address the contribution of the second PC loadings, a correlation was found between 

the spectral variations between MRSA and DRSA and PC2 loading plot as shown in Figure 4.10. 

 

The 13 PC scores were used as input independent variables in a discriminant function 

analysis.  The classification results of this statistical analysis as determined by a “leave one out” 

analysis were: 100% of DRSA, 96% of MSSA, 96% of TRSA, and 88% of MRSA spectra were 

correctly identified.  The grouping of the spectra representing those strains is shown in the 

resultant PC-DFA plot (Figure 4.11). 
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Figure 4.10: The loadings of the second PC plotted with the 

difference of the average spectrum of DRSA and MRSA. 



87 

 

Figure 4.11: A PC-DFA plot showing the first two discriminant function 

scores of all the Raman spectra obtained from the four strains of S. aureus. 

  

4.6 S. aureus Conclusions and Summary 

In this study Raman spectroscopy combined with the multivariate statistical techniques of 

PCA and DFA have been used to distinguish between three antibiotic resistance S. aureus 

strains: MRSA, TRSA, DRSA, and one antibiotic sensitive strain MSSA.  Raman spectra were 

obtained from live bacterial aliquots obtained from cultures grown on trypticase soy agar plates.  

Reproducible variations between these strains were noticed utilizing the principal component-

discriminant function analysis of the full Raman spectra.  13 PC scores accounting for 97.83% of 

the data variation were obtained and used as the input independent variables in DFA.  The results 

of the analysis showed a 100% correct identification for the DRSA strain, 96% of MSSA, 96% 
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of TRSA, and 88% of MRSA strain spectra.  The main peaks that were responsible for the 

classification were identified.  These preliminary results are so encouraging since they verify the 

ability of Raman spectroscopy to differentiate those important strains.  In the long-term, many 

more spectra are required to confirm this result and more experiments should be conducted to see 

if there are any commonalties among all the resistant strains or are they all just randomly 

different, so the ultimate goal is to use Raman fingerprint of different strains of antibiotic 

resistant Staphylococcus aureus to cure the infections in hospitals by identifying the particular 

strain/antibiotic in a short time. 
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Chapter 5 

Raman Spectroscopy Study of Xylitol Uptake and Metabolism in 

Gram-Positive and Gram-Negative Bacteria and the Stability of 

Xylitol Metabolic Derivatives in Viridans Group Streptococci. 

 

5.1 Introduction 

 Xylitol is a natural five-carbon-sugar alcohol with molecular formula 

(CHOH)3(CH2OH)2.  Figure 5.1 shows the xylitol crystals and molecular structure. 

Although the exact mechanism of the efficacy of xylitol on pathogenic bacteria is not 

known, there is an impressive collection of clinical reports claiming its preventive action in a 

number of pediatric diseases.  Xylitol can be safely applied as a preventive measure for diseases 

like pneumonia, acute otitis media (AOM), dental caries, and meningitis.
1,2,3,4,5,6,7

  The causative 

pathogens of pneumonia in children are the Gram-positive Streptococcus pneumoniae and the 

Gram-negative Klebsiella pneumoniae with polysaccharide capsules.  Both classes of bacteria 

are morphologically diplococcic.
8
  The pathogens causing acute otitis media (middle-ear 

infection of children) are the Gram-positive S. pneumoniae (30% of cases), the Gram-negative 

Figure 5.1: Xylitol crystals (left) and xylitol molecular structure (right). 
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bacteria Haemophilus influenzae (25% of cases), and Moraxella catarrhalis (20% of cases).
9
  

They are also diplococcic.
10

  It remains to be seen if all these pathogenic organisms contain 

xylitol operons and if they are capable of utilizing xylitol even in the presence of other sugars or 

carbon sources.   

One likely explanation for xylitol efficacy involves the phosphotransferase system of 

streptococci and its ability to take in and metabolize different sugars depending on the current 

sugar environment.
11

  It has been hypothesized that xylitol is metabolized to xylitol-5-phosphate 

in a “futile cycle,” which mutans group streptococci cannot utilize further and which may even 

be toxic to bacteria.
12

  It has also been observed that exposure to low concentrations of xylitol 

results in a reduction of cell adherence to epithelial cells,
13

 perhaps due to a disruption of 

polysaccharide production in the xylitol-exposed bacteria.
14

  There is also evidence for 

significant ultrastructure alteration in xylitol-exposed S. mutans
15

 and S. pneumoniae.
4
  Careful 

Raman spectroscopic studies of the molecular alteration induced in xylitol-exposed streptococci 

may shed new light on one or more of these biomolecular processes. 

The four structurally related known pentitols (or C5 polyol epimers) are xylitol, ribitol, 

D-arabitol, and L-arabitol.  Only D-arabitol and ribitol are abundant in nature.
16

  D-arabitol 

which forms 10% dry weight of certain mushrooms is capable of binding to capsules and 

teichoic acids of several Gram-positive bacteria.  Ribitol is also present in free form in some 

higher plants.
17,18

  Most of the previous work on catabolism of these compounds was done with 

various Aerobacter aerogenes strains which are now classified as Klebsiella or Enterobacter 

species.
19,20 
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Reiner and Scangos have characterized the catabolism of ribitol (rtl+) and D-arabitol 

(atl+) in E. coli C and the disadvantages of a constitutive catabolite pathway.
21,22

  Briefly, each 

operon contains genes for a dehydrogenase and a kinase and is under negative control.  They 

have also shown that constitutive production of ribitol catabolic enzymes selected in response to 

xylitol render the same mutant more sensitive to certain other 5-carbon sugar alcohols.  The 

ribitol operon is inducible by ribitol and the D-arabitol operon is inducible by D-arabitol.  

Significantly, these two operons are very closely linked and located in the E. coli chromosome 

between metG and his (histidine) genes in a mirror image arrangement, rtlB-rtlA-rtlC-atlC-atlA-

atlB.
21

  The rtl and atl operons are well-characterized in E. coli C, Aerobacter aerogenes, and 

Klebsiella aerogenes.
23

  The species Proteus, Klebsiella and Enterobacter species are common 

urinary tract pathogens.  However, the two other extensively used E. coli strains, E. coli K-12 

and E. coli B, are genetically very close to E. coli C but surprisingly they lack the DNA region or 

xylitol operon (about 2.5 kb) loci involved in the utilization of ribitol (rtl) and D-arabitol (atl).  

The xylitol operon is located between his and metG loci and is genetically linked to the 

bacteriophage P2 attachment site.
24

  

In this Chapter, I will describe the use of Raman spectroscopy to analyze the uptake and 

retention of xylitol in E. coli and S. viridans.
25,26

  Also, the stability of xylitol inside S. viridans 

cells measured with Raman spectroscopy will be discussed.   

5.2 Materials and Methods 

5.2.1 Bacterial Strain Selection and Growth Conditions 

I have compared the uptake of xylitol by the four well characterized strains of E. coli: E. 

coli K-12, JW1881-1, E. coli C, E. coli HF4714, and an ATCC strain of Streptococcus viridans.  
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E. coli K-12 and its flagella- and pili-negative mutant strain JW1881-1 lacking the genes to 

ferment xylitol were used as xylitol non-fermenting Gram-negative controls.  E. coli C was 

chosen because it possesses the xylitol operon in a repressed state and E. coli HF4714 was 

chosen because it possesses the xylitol operon in a de-repressed state (operator constitutive).  

HF4714, as constructed by a genetic recombination between the E. coli K-12 donor and the E. 

coli C recipient, contains the xylitol operon in a functional state.  E. coli C is sensitive to a 

single–stranded DNA-containing semi-temperate bacteriophage X174 but produces very turbid 

plaques to its amber mutant of X174am3 while HF4714 is equally sensitive to both wild type 

X174 and Xam3.  E. coli K-12 is known to be resistant to these phages but sensitive to another 

temperate phage P2.  The attachment site of this phage is closely linked to the ribitol or xylitol 

operon in E. coli C.  Some of these characteristics are extremely useful to routinely test the 

genetic purity of all the E. coli strains used in our experiments.  

The selection of a well-characterized S. viridans strain for this study was predicated on 

several factors.  S. pneumoniae, on which the action of xylitol has previously been studied, is 

highly pathogenic and its inclusion in this study was not suggested for this reason.  The dental 

pathogen S. mutans is a better candidate to study, however it has a well-established growth 

problem in common laboratory nutrition media as it is multiply auxotrophic with numerous 

nutritional requirements for normal growth.
27

  S. viridans has several common characteristics 

with S. mutans and S. pneumoniae, both of which have already been shown to possess 

susceptibility to xylitol,
4
 and is known to cause a variety of infections commonly associated with 

dental caries.
28

  Using PCR technology with primers of 16s rRNA gene sequence, others in my 

research group have verified that S. viridans and S. mutans do not differ in DNA sequences.  

Since we are primarily concerned with the dental applications of prophylactic xylitol use, this 
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safe and relatively easy to grow bacterium was a very appropriate organism with which to 

initiate my Raman studies.     

The S. viridans and the above mentioned E. coli strains were grown in BHI or TSB broth 

(rich liquid medium) containing a minimal amount of dextrose together with xylitol (0 - 2%).  

Considerable dilution of the bacteria prior to growth in xylitol was very important in these 

experiments.  The titer was significantly reduced from 10
8
/ml to 10

4
/ml to make sure the 

population consisted only of planktonic cells, which ensured that the entire population attained 

log phase during growth in xylitol.  After growth for 24 hours, both aerobically and 

anaerobically at 37C, these bacterial cultures were used for Gram–staining.  Then the Gram-

positive S. viridans and the Gram–negative E. coli were spread respectively on two selective 

media, CNA and BHI, for a comparison of their purity and titer.  The BHI with 1.5% agar and 

TSA are rich nutrient agar media and the CNA is a differential blood-agar medium that contains 

two antibiotics, colistin (polymyxin B) and a quinolone drug (nalidixic acid).  The Streptococci 

pathogens were selectively grown on the CNA medium while the Gram-negative isolates were 

selected on bile-containing MacConkey-lactose media.  The blood agar medium without 

antibiotics was used to distinguish the alpha, beta, and gamma hemolysis.  S. viridans shows 

gamma hemolysis.    

To study the retention of xylitol as a function of time, specimens of S. viridans and E. 

coli obtained from the xylitol-containing broth cultures (grown in a CO2 jar) were diluted 1000-

fold and then spread on xylitol-free tryptic soy agar (TSA) plates and incubated for 24 hours both 

aerobically and anaerobically at 37C.  To study the stability of xylitol in S. viridans, the 

incubation time of the TSA plates was increased to 72 hours.  Colonies were collected every 24 

hours avoiding the transfer of agar media.  Bacteria were also obtained directly from the pellet 
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obtained by centrifugation of the xylitol-containing overnight cultures before they were spread 

on the TSA plates (“0 hr “).  Bacterial pellets were similarly obtained from the xylitol-free broth 

cultures, spread on xylitol-free TSA plates and harvested at 0 hr, 24hr, 48hr and 72 hours.  

In all cases, colonies were collected from these plates, suspended in 50 l of sterile 

distilled water, centrifuged, and the pellet was used for Raman spectroscopy.  10 l of the moist 

pellet was mounted on a low-fluorescence quartz microscope slide and allowed to dry in air prior 

to Raman spectroscopy.  In all cases, a final bacterial titer of approximately 10
8
 cells was 

utilized.     

5.2.2 Raman Data Collection 

Raman spectra were obtained using the same Raman instruments that were described 

earlier.  Bacterial Raman spectra were obtained from dense pellets obtained from multiple 

cultures grown on different days and these spectra were then averaged together to create 

“average” spectra.  The spectra averaged in this way were always 100% representative of the 

changes being measured.  No differences between spectra from bacteria prepared in a specific 

manner were ever observed.  This was confirmed in hundreds of spectra acquired from multiple 

aliquots.  Therefore the averaging of spectra, while not necessary, was a highly-effective way to 

reduce noise in the Raman spectrum while accentuating real changes in the spectrum.  Typically 

40-50 spectra from a single quartz slide were averaged.  Spectra were acquired from the bacteria 

prepared in three different ways as described in the materials and methods section: control (non-

xylitol exposed), xylitol-exposed (0-2% for 24-30 hours), and post-xylitol exposure (incubated 

for 24 hour in a xylitol-free medium subsequent to growth in xylitol).  To highlight and 

accentuate differences in the Raman spectra, the differences of the normalized averaged spectra 

were calculated so that deviations from zero (which would represent no significant change) could 
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be more easily identified.  In all of the Raman studies described here, we did not attempt to 

directly compare the absolute intensity of Raman signals by varying the bacterial titer.  Attempts 

were made to illuminate approximately equal numbers of cells for all bacterial specimens and 

species.   

Powdered dry xylitol was pressed and compacted to form a flat solid surface and Raman 

measurements were recorded and used for comparison purposes.  In addition, different xylitol 

concentrated solutions were prepared and tested using Raman spectroscopy.  

5.3 Results 

5.3.1 Differential Gram-Staining 

The results of the post-xylitol-exposure Gram-staining revealed that xylitol-exposed S. 

viridans behaved differently under differential Gram-staining than the non-exposed control.  The 

xylitol-exposed S. viridans populations appeared like Gram-negative or dead bacteria rather than 

Figure 5.2: Action of 2% xylitol on S. viridans ultrastructure as revealed by differential Gram-

staining imaged with the same magnification.  (A): Planktonic cells of S. viridans cultured in BHI 

medium, 0% xylitol, anaerobically for 24 hrs prior to growth in xylitol.  The titer has been reduced 

10,000 fold to ensure that all bacteria attain log-phase growth in the presence of the xylitol.  (B): 

Gram-stained S. viridans bacteria cultured in BHI medium, 2% xylitol, anaerobically for 24 hours.  

The xylitol-exposed (2% or higher) bacterial population demonstrated a remarkable change; 50% 

of them stained pink, appearing like Gram-negative or dead bacteria instead of purple. 

 

(A) (B) 



99 
 

retaining the crystal violet-iodine complex stain.  Figure 5.2(A) shows the low titer of the S. 

viridans population after 10,000-fold dilution prior to growth in xylitol.  Figure 5.2(B) shows the 

effect of the xylitol in the nutrient broth on the S. viridans Gram-staining after 24 hours of 

growth (approximately 13 generations).  All S. viridans control populations (not exposed to 

xylitol) stained purple, as expected (not shown).  Growth studies of S. viridans comparing the 

colony forming units (cfu) after 24-hours of growth at 37C under anaerobic conditions in BHI 

(blood-heart-infusion) medium with and without xylitol confirm the observations of others that 

xylitol affected the normal growth patterns.  Differential Gram-staining showed that xylitol 

disturbed the retention of the crystal violet in the S. viridans.  In rich-growth media (BHI or 

TSB) S. viridans appeared normally purple and in a population of diplococci while the xylitol-

exposed bacterial population demonstrated a remarkable change; 30-50% of them were in long 

chains and stained pink (appearing like Gram-negative or dead bacteria) instead of purple 

diplococci (Fig. 5.2).  As our control, after acetone alcohol wash, the Gram-positive bacteria 

retained the crystal violet-iodine complex (blue or purple), but the Gram-negative organisms 

usually lose this and the counter stain safranin adds its pink color.  
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5.3.2  Raman Spectroscopy of  Xylitol Powder and Solution 

Raman spectra from powdered xylitol and different concentrated solution (2%, 5%, and 

20%) were obtained in the spectral region 600-2000 cm
-1

.  Figure 5.3(A) shows a representative 

spectrum for each case.  Raman spectra obtained from low concentration samples (which 

represents the amont of xylitol that the bacteria were exposed to) showed the main features of 

xylitol only.  The main peaks of powdered xylitol were labled in Figure 5.3(B) and their 

assignments are given in table 5.1. 
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Figure 5.3:  (A) Raman spectra for different concentrated spots of xylitol, (B) The main peaks 

of xylitol Raman spectrum.  
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) 

                          Assignments 

                   (Vibrational modes) 

756 ν (CO) in Polysaccharides
29

 

862 ν (COC) 1,4-glycosidic link
30

, ν (CO)
29

 

893 CH2  out-of-plane wag,  ν (CO)
29

 

923 ν (CO)
29

 in Disaccharides 

1012 Out-of-phase  ν (CCO)
31

 

1068 δ( O-H)
29

 

1080 δ( O-H)
29

 

1100 ν (COC) 1,4-glycosidic link (carbohydrates)
30

,  

Out-of-phase  ν (CCO)
31

 

1117 Out-of-phase  ν (CCO)
31

 

1288 δ( CH2)
30

  

1325 δ(OH) ,δ( CH2)
30

 

1343 δ( CH)
32

 

1418 δ( CH3)
30

 

1471 δ( CH2)
25

 

Table 5.1: The band assignments for the main Raman peaks of 100% xylitol. 
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5.3.3 Raman Spectroscopy of the Uptake of Xylitol by E. coli K-12 (xylitol operon-

deficient), its Pili- and Flagella-Deficient Derivative E. coli JW1881-1, and E. coli C (xylitol 

operon-positive, but in a repressed state) 

Raman spectra in the spectral range from 600 to 2000 cm
-1

 obtained from E. coli K-12 

which does not possess the xylitol operon are shown in Figure 5.4.  Figure 5.4(A) shows the 

averaged Raman spectrum from the xylitol-exposed E. coli K-12.  Figure 5.4(B) shows two 

spectra, one is the difference of the xylitol-exposed and the control E. coli K-12 spectra (black) 

and the other is the difference of the post-exposure chase and the control E. coli K-12 spectra 
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Figure 5.4: Raman spectra of E. coli K-12 and xylitol.  (A) The averaged Raman spectrum 

from xylitol-exposed E. coli K-12.  (B) The difference of the xylitol-exposed spectra and the 

control E. coli K-12 (black) and the difference of the post-exposure chase spectra and the 

control E. coli K-12 (red).  Deviations from zero denote changes from the control bacteria and 

are observed strongly in the spectral regions located between the dashed lines in the xylitol-

exposed minus control spectra.  (C) Raman spectrum from 100% dried, powdered, and 

compacted xylitol.   
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(red).  Deviations from the zero-line indicate alterations of the Raman spectrum due to xylitol-

exposure.  Several significant new peaks appear in spectral regions corresponding to strong 

Raman bands in xylitol (which is shown in Figure 5.4(C) for comparison).  Specifically, a new 

broad Raman feature (not a narrow isolated peak) centered at 861 cm
-1

 was observed 

corresponding to the three xylitol Raman bands at 862, 893, and 923 cm
-1

.  A second very broad 

new feature between 1030 and 1140 cm
-1

 was observed in E. coli corresponding to the multiple 

Raman-peak band of xylitol between 1030 and 1140 cm
-1

 and a fairly sharp new feature at 1470 

cm
-1

 was correlated with a very sharp isolated Raman peak in xylitol at 1471 cm
-1

.  Taken 

together, we interpret these new features as direct observation of the xylitol molecule in a semi-

liquid/liquid environment that allows the xylitol to retain its molecular stoichiometery and 

structure but significantly reduces signal-to-noise and broadens Raman-active bands.  The 

spectrum in Figure 5.4(C) was obtained from 100% dried, crushed, and powdered xylitol, 

therefore it was not unexpected that the Raman spectrum from xylitol within the bacterial body 

would appear significantly altered.     

Conversely, the averaged spectrum of the E. coli K-12 grown for 24 hours in a xylitol-

free medium exhibited no Raman bands which are indicative of the presence of xylitol.  These 

data confirm a passive (unregulated) entry of xylitol into E. coli K-12 (black) and a silent exit 

(red) from the cell without affecting bacterial growth or metabolism.  However, we would 

conclude that the xylitol molecule is quite stable in the growing bacterial cell for the twenty four 

hours of their growth - the early log phase to the stationary phase.  Significantly, the xylitol pool 

of these bacteria is immediately depleted when they are re-grown in BHI agar medium without 

xylitol (chase) for approximately ten generations.    
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The Raman spectra of the E. coli C which carries the xylitol operon in a repressed state is 

shown in Figure 5.5.  Comparison of the spectra between 600 to 2000 cm
-1

 of the E. coli C with 

that of E. coli K-12 shows that these two strains of E. coli exhibited near-identical behavior both 

in their uptake of xylitol and in their inability to retain it during post-exposure growth.  No 

significant reproducible differences were observed in the Raman spectra obtained from the E. 

coli K-12 and E. coli C strains which thus indicated the passive uptake, stable presence, and 

passive exit of xylitol without any participation in bacterial metabolism.  

 

 

Figure 5.5: Raman spectra of E. coli C and xylitol.  (A) The averaged Raman spectrum from 

xylitol-exposed E. coli C.  (B) The difference of the xylitol-exposed spectra and the control E. 

coli C (black) and the difference of the post-exposure chase spectra and the control E. coli C 

(red).   Deviations from zero denote changes from the control bacteria and are observed strongly 

in the spectral regions located between the dashed lines in the xylitol-exposed minus control 

spectra.  (C) Raman spectrum from 100% dried, powdered, and compacted xylitol 
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Identical experiments were carried out with the pili- and flagella-negative E. coli mutant 

JW 1881-1.  The major peaks of xylitol were again observed in the Raman spectra and the 

intensity of those peaks showed no significant difference from the other strains.  The spectra of 

the JW1881-1 were very similar to that of K-12 and E. coli C as shown in Figure 5.6.  These data 

lead us to an important conclusion that the flagella or common pili (motility) apparently play no 

role either in the passive entry of xylitol into the bacterial cells or in the exit of xylitol from the 

bacterial pool. 
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Figure 5.6: Raman spectra of E. coli JW1881-1 and xylitol.  (A) The averaged Raman spectrum 

from xylitol-exposed E. coli JW1881-1.  (B) The difference of the xylitol-exposed spectra and 

the control E. coli JW1881-1 (black) and the difference of the post-exposure chase spectra and 

the control E. coli JW1881-1 (red).  Deviations from zero denote changes from the control 

bacteria and are observed strongly in the spectral regions located between the dashed lines in the 

xylitol-exposed minus control spectra.  (C) Raman spectrum from 100% dried, powdered, and 

compacted xylitol 
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5.3.4 Xylitol-Uptake and Stability in E. coli HF4714 

Experiments identical to those performed on the other E. coli strains were performed on 

E. coli strain HF4714 which contains the de-repressed xylitol operon.  The results are shown in 

Figure 5.7.  Contrary to the other E. coli strains, the peaks observed in E. coli HF4714 due to 

xylitol did not disappear from the progeny when chased in the absence of xylitol.  Specifically 

the very broad feature between 1030 and 1140 cm
-1

 was observed in both the xylitol-exposed 

mother cells and the progeny E. coli HF4714 with comparable intensity.  This band corresponds 

to the multiple Raman-peak pattern observed in xylitol between 1030 and 1140 cm
-1

.  The 

retention of this Raman feature attributed to xylitol is broadly indicative of the stable 

accumulation of xylitol in this E. coli strain with minimal or no catabolism of the xylitol.   

Figure 5.7: Raman spectra of E. coli HF4714 and xylitol.  (A) The averaged Raman 

spectrum from xylitol-exposed E. coli HF4714.  (B) The difference of the xylitol-

exposed spectra and the control E. coli HF4714 (black) and the difference of the post-

exposure spectra and the control E. coli HF4714 (red).  Deviations from zero denote 

changes from the control bacteria and are observed consistently in the spectral regions 

located between the dashed lines in the xylitol-exposed minus control spectrum and also 

in the chase minus control spectrum.  (C) Raman spectrum from dried, powdered, and 

compacted xylitol.   
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Figure 5.8:  Raman spectra of S. viridans and xylitol.  (A) The averaged Raman spectrum from 

xylitol-exposed S. viridans.  (B) The difference of the xylitol-exposed spectra and the control S. 

viridans (black) and the difference of the post-exposure spectra and the control S. viridans (red).  

Deviations from zero denote changes from the control bacteria.  New Raman peaks not observed 

at all in xylitol or the control S. viridans spectra are observed at 1165 cm
-1

 and at 1527 cm
-1

 in 

both spectra.  (C) Raman spectrum from dried, powdered, and compacted xylitol.  No xylitol 

Raman peaks appear in the spectral regions located between the dashed lines.   
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5.3.5 Xylitol Metabolism by Gram-Positive S. viridans 

To characterize the molecular changes responsible for the observed Gram-staining 

change observed in S. viridans as shown in Figure 5.2, Raman spectroscopy was performed on 

aliquots of the same bacterial samples.  Figure 5.8 shows the Raman spectra obtained from the S. 

viridans (control), from the S. viridans grown in 2% xylitol for 24 hours, and the same S. 

viridans washed of xylitol and re-grown in BHI-agar medium for an additional 24 hours without 

xylitol.  Comparison of the Raman spectra as presented in Figure 5.7 and Figure 5.8 show that 

the Raman spectra of the Gram-positive S. viridans are completely different from that of the 

Gram-negative E. coli.  Two new Raman features are observed in both the xylitol-exposed 

mother cells and the post-exposure progeny cells.  These two new features at 1165 cm
-1

 and at 

1527 cm
-1

 are not present at all in the xylitol spectrum or the spectrum of the control S. viridans 
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and could be assigned to a COO stretch vibration in sucrose
31

 and a protein NH/CH bend or C=C 

stretch vibration,
33

 respectively.  Biochemically, the xylitol is partially metabolized by such 

Streptococci bacteria resulting in insoluble intermediates.  Definitive assignment of these peaks 

at 1165 cm
-1

 and at 1527 cm
-1

 awaits further study and possibly the chemical purification of 

these xylitol intermediates and analysis by Raman spectroscopy.  Nonetheless, it is apparent that 

these peaks are evidence of the use of xylitol by the S. viridans bacteria.  These peaks either 

originate from smaller sugar by-product molecules resulting from xylitol catabolism or cellular 

proteins formed as a result of the xylitol catabolism.  In future experiments, further growth of S. 

viridans in a medium containing only xylitol as a sole carbon source, (after the complete 

utilization of dextrose) would confirm the relationship of these peaks at 1165 cm
-1

 and at 1527 

cm
-1

 with xylitol catabolism.  

5.3.6 The Stability of Xylitol Derivative(s) Formed in Xylitol-Grown S. viridans Measured 

by Raman Spectroscopy 

Raman spectra from 600 to 2000 cm
-1

 were acquired from slides of all S. viridans 

specimens prepared as described above.  Figure 5.9 shows the Raman spectra from the S. 

viridans cells directly after harvesting from the xylitol-fed bacterial cultures (marked “0 hours”) 

and collecting the progeny of these bacterial cells after 24 and 72 hours of growth in the xylitol-

free TSA solid media.  The three spectra have been offset vertically for clarity.  Agar media is 

preferred in order to avoid the lysis of the xylitol derivative borne bacteria population.    

Five significant Raman peaks were selected for investigation on the basis of their 

intensity and what appeared to be changes in their intensities as a function of time.  These five 

peaks  were labeled one through five and are identified in Table 5.2.  A 10-15 cm
-1

 shift in the 

Raman peak locations was observed between our previous study and this study due to a 
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recalibration of the linearity of the Raman spectrometer grating scan.  Thus the peaks previously 

identified at 1165 and 1527 cm
-1

 were measured at 1152 and 1517 cm
-1

, respectively, in this 

study.  This is a small wave number shift that is due only to the spectrometer calibration and a 

careful review of the literature of Raman spectroscopy on bacteria routinely reveals small shifts 

in the absolute measured wave number on the order of 10 cm
-1

.  It is the relative location of these 

peaks which is most important.  As well, a visual examination of the spectra leaves no doubts 

that these broad peaks are definitely the Raman features observed in our earlier study.  
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Figure 5.9: Raman spectra from the S. viridans cells directly after 

harvesting from the xylitol-fed bacterial cultures (0 hours) and after 24 and 

72 hours of growth in the xylitol. 
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Table 5.2: Assignment of the main Raman vibrational bands observed in S. viridans Raman spectra. 

Two smaller, but more constant peaks were selected for normalization of the five peaks 

under study.  Absolute Raman intensity measurements are often difficult to make, so to 

determine whether the peaks in each spectrum were increasing or decreasing in intensity as a 

function of time, the intensity of the five peaks relative to the smaller but constant normalization 

peaks was calculated.  Figure 5.10(A) shows the intensity of the five peaks relative to a 

normalization peak at 1000 cm
-1

 and 5.10(B) shows the intensities relative to a normalization 

peak at 1755 cm
-1

.  Use of either normalization peak yielded the same changes from 0 to 72 

hours: a strong increase was observed in the peak 1582 cm
-1

; no statistically significant change 

was observed in the peak at 1152 cm
-1

; and small increases in the peak intensities at 1305, 1356, 

and 1517 cm
-1

 were observed.   

 

Main peaks Assignments 

Label 
Raman shift 

(cm
-1

) 
Vibrational modes Location 

(1) 1152  C-C, C-N stretch
34,35 ,36

 Protein 

(2) 1305 CH2 twist in lipids
 36,37

 Lipid 

(3) 1356 C-H bend
 38

 Protein 

(4) 1517 ν(C=C)
 35

 Protein 

(5) 1582 ν(C=C)
38

, Nucleic acids (G,A)
 36

 Lipid, DNA/RNA 
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To insure that these observed spectral increases were due to the prior growth in xylitol 

and the presence of the xylitol time bomb, the same analysis was performed on xylitol-free 

bacterial colonies harvested from the TSA growth medium at 24, 48, and 72 hours (Figure 5.11).  

Figure 5.12 shows the intensity of the five important peaks relative to the two normalization 

peaks.  Due to the weakness of the peak at 1755 cm
-1

, as can be seen in Figure 5.11, a new 

normalization peak at 1392 cm
-1

 was utilized.  It can be seen that the peak at 1582 cm
-1

 again 

experienced some growth over the course of 72 hours incubation on the TSA; but its increase 

was not as significant as in the xylitol-exposed cultures.  All other peaks demonstrated no 

statistically significant change. 
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Figure 5.10: The intensity of the five labeled peaks as a function of time relative to a 

normalization peak at 1000 cm
-1

 (A), and relative to a normalization peak at 1775 cm
-1

 (B).  
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Figure 5.11: Raman spectra from the S. viridans cells harvested from the 

TSA growth media at 24, 48, and 72 hours. 

Figure 5.12: The intensity of the labeled five peaks as a function of 

time (A) relative to a normalization peak at 997 cm
-1

, (B) relative to 

a normalization peak at 1392 cm
-1
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5.4 Discussion 

I have compared the uptake of xylitol by four genetically well defined strains of E. coli: 

E. coli K-12, its pili- and flagella-deficient derivative JW1881-1, E. coli C and an E. coli C 

derivative HF4714 as well as a Gram-positive strain of Streptococcus viridans (ATCC 19950).  

It is known that the E. coli C contains a xylitol operon in a repressed state apparently to avoid the 

disadvantages of a constitutive catabolic pathway (toxicity to galactitol and arabitol).  What is 

more, the flagella and pili responsible for motility are conspicuously absent on the surface of the 

E. coli C as compared to E. coli HF4714 when visualized by scanning electron microscopy.  

Thus the E. coli C may have avoided a fatal pathway to chemo-attraction but this is not a very 

unusual occurrence in an aquatic environment.  These E. coli strains show comparable levels of 

xylitol uptake, despite their genetic differences.    

Significantly, the E. coli HF4714 which contains the xylitol operon in a de-repressed 

state is capable of xylitol metabolism whenever the other carbon sources are exhausted.  The 

preferred carbon source, dextrose in BHI-agar growth medium, is first utilized before the 

metabolic use of xylitol begins.  These experiments were conducted with a BHI medium 

containing a minimal amount of dextrose and 2% xylitol.  Because of the availability of dextrose, 

the HF4714 may have developed a metabolic imbalance resulting in an accumulation of xylitol 

that far exceeds the rate of its utilization (Fig. 5.7).  After growth in BHI-agar medium for two 

days, the E. coli C and E. coli K-12 stopped growing as evidenced by the colony size and 

bacterial titer, while the colonies of the HF4714 continued increasing in size.   

In a similar manner, the S. viridans which has an incomplete metabolic pathway of xylitol 

is not capable of growing into larger colonies in the presence of 2% xylitol.  The Gram-staining 

of these colonies picked up from CNA or BHI-agar plates with 2% xylitol demonstrates the 
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elongated shapes or the diplococcic bacteria in chains, an index of abnormality in bacterial 

septum formation or abnormality during stages of cell division or cytokinesis (Figure 5.2). 

5.4.1  Anti-Adhesion Effects of Xylitol 

It is known that pneumonia claims a considerable number of deaths worldwide in the 

very young and the elderly, especially given the rise of antibiotic- and/or immuno-resistant 

organisms.
39

  Billions of dollars are spent annually to treat these diseases, usually with antibiotics 

and surgical intervention, but the rise of bacterial resistance to conventional drugs has become a 

serious problem in infection control.  It seems logical to determine the efficacy of xylitol alone 

or in combination with other agents, such as fluoride, on such drug resistant pathogens.  My data 

support the work of others that it could be the anti-adherence effect of nasally administered 

xylitol which might lead to a significant reduction in the occurrence of AOM and pneumonia in 

children.
40

   

Alteration of surface structures after exposure to xylitol and a lessening of the bacterial 

adhesion to both biotic and abiotic surfaces have been reported
41,13,42

 as has a lessening of the 

bacterial adhesion of E. coli to uroepithelial cells subsequent to cranberry juice exposure
43

 and 

could probably minimize persistent urinary tract infections.  Significantly, it has been reported 

that xylitol can damage the ultrastructure of pneumococci, when compared to the effect of 

fructose or sucrose.
44

  Xylitol is a 5-carbon sugar and the Gram-positive diplococci are 

permeable to xylitol except there seems to be an antagonistic competition between fructose and 

xylitol
45

 at the initial stages of biochemical pathways.  The molecular basis of such competition 

has not been properly investigated although surface ultrastructure modification is indicated.  
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The observations of surface ultrastructure modification and reduction in adhesion are 

intriguing.  The majority of the Gram-negative bacteria have grown flagella and pili (or fimbriae) 

emerging out of the cell envelope but our data show that the presence of these fimbriae does not 

seem to affect xylitol uptake.  It remains to be seen if an adhesion change is measureable in 

xylitol-exposed pathogens and if this adhesion change is pili-motivated.
46,47,48,49

 

The change in adhesion of 2% xylitol-exposed S. viridans to abiotic surfaces was studied 

in our department utilizing atomic force microscopy (AFM).  These experiments were conducted 

by Dr. Michael Giangrande in the laboratory of Professor Peter Hoffmann.   

The results revealed a clear reduction in adherence to the abiotic AFM tip, probably 

caused by ultrastructure changes,.  The average force of adherence between the AFM tip and a 

single non-xylitol-exposed bacterial cell is approximately 80 pN.  The average force of 

adherence between the AFM tip and the xylitol-exposed S. viridans was measured to be 

approximate 35 pN in one set of measurements, and 38 pN in the second set of measurements.  

This reveals an approximately 50% reduction in the measured adherence force of xylitol-exposed 

Streptococci relative to the non-xylitol-exposed control.  We hope to correlate the appearance of 

the new Raman molecular peaks observed in Figure 5.8 with an alteration of surface 

ultrastructures responsible for adhesion changes.  It may also be possible to visualize such 

ultrastructure modification via AFM or STM.   

The second set of experiments confirms that the xylitol remains relatively stable in 

Streptococci viridans and interferes in bacterial cell division.  The results showed that the 

compounds formed in the Streptococci are the xylitol derivatives since they are only seen in the 
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bacteria with functional xylitol operons when they are grown for many generations in the TSA 

medium containing 2% xylitol.   

5.4.2  Bacterial Morphology and Physiology and Their Importance to Xylitol Treatment 

A remarkable coincidence is that the pathogens interacting with xylitol are all 

morphologically diplococcic organisms, regardless of their Gram-staining classification.
8 

 All 

possible structures of bacteria are well-characterized, but their specific interactions with different 

sugar and sugar-alcohol molecules have not been considered.  I believe that the morphological 

shapes of these bacteria may play a critical role in their effective interactions with specific 

structures of sugar molecules (five-carbon, six-carbon, or sugar alcohols) and subsequent uptake.  

Since Gram–positive S. pneumoniae cross-reacts with the capsular Gram-negative Klebsiella 

pnumoniae and both are morphologically diplococcic, the xylitol seems to be equally accessible 

to these pathogens.  In this work, the Gram positive pathogen S. viridans are not fully capable of 

metabolizing the five–carbon sugar alcohol xylitol, but intermediate chemical compounds are 

formed and continue to exist in the bacterial metabolic pool.  Such presence may adversely affect 

the thickness of peptidoglycan walls of bacteria.  This in turn probably weakens the stable 

stacking of crystal violet (CV) and therefore a confusion may arise in the identification of Gram-

positive bacteria by Gram-staining.
50

  Our data as shown in Figure 5.1, if proven, may challenge 

the century-old method of Gram-stain classification when the thickness of the Gram-positive cell 

wall is affected by xylitol or other adverse growth conditions.  

5.4.3  Fluoride and Xylitol 

It is already known that the use of 1 ppm fluoride is effective in minimizing dental 

decay.
51

  Furthermore, the simultaneous application of xylitol and fluoride produces a synergistic 

effect, but the precise mechanism of synergism is unknown.
52

  Analyses of intracellular 
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glycolytic intermediates have shown that the fluoride inhibits the lower part of the glycolytic 

pathway and that xylitol affects the upper pathway.  It is not known if fluoride affects the biofilm 

formation and or the growth of diplococci in chains.  Reversion of chains into single diplococci 

populations may allow a higher percentage of the bacterial population (or their receptors) to 

effectively interact with the xylitol molecules.  Thus the probability of success of the preventive 

therapy would highly increase and save many young lives.  This would provide us a molecular 

basis for the successful use of the synergistic approach towards a preventative therapy.  

5.5 Summary 

Visible wavelength Raman spectroscopy was used to investigate the uptake and 

metabolism and the stability of the five-carbon sugar alcohol xylitol by a Gram-positive 

Streptococcus viridans and the two extensively used strains of Gram-negative Escherichia coli, 

E. coli C and E. coli K-12.  The E. coli C, but not the E. coli K-12, contains a complete xylitol 

operon, and the Streptococci viridans contains an incomplete xylitol operon used to metabolize 

the xylitol.  Raman spectra from xylitol-exposed S. viridans exhibited significant changes that 

persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium 

for 24 hours.  This behavior was not observed in the E. coli K-12.  In both S. viridans and the E. 

coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in 

bacterial normal survival.  The uptake of xylitol by Gram-positive and Gram-negative pathogens 

occurs even in the presence of other high-calorie sugars and its stable integration within the 

bacterial cell wall may discontinue bacterial multiplication.  This could be a contributing factor 

for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce 

occurrences of persistent infection.  Specifically, these bacteria are causative agents for several 

important diseases of children like pneumonia, otitis media, meningitis, and dental caries.  If 
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properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction 

with fluoride, would pave the way to an alternative preventive therapy for these childhood 

diseases when the causative pathogens have become resistant to modern medicines like 

antibiotics and vaccine immunotherapy.  
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Chapter 6 

The Effect of Wag31 Phosphorylation on the Cells and the Cell 

Envelope Fraction of Wild-Type and Conditional Mutants of 

Mycobacterium Smegmatis Studied in Vivo by Visible-Wavelength 

Raman Spectroscopy 

 

6.1  Introduction 

Tuberculosis (TB) is a worldwide health problem with a high mortality, infecting one out 

of every three people globally.
1
  Latency, which creates a reservoir of persons with the potential 

to develop active tuberculosis, is especially important in the epidemiology and pathogenicity of 

tuberculosis.  Despite its importance, it is still not clear how M. tuberculosis controls the latent 

state in a human host.
2
  However, to achieve, maintain, or escape from the latent state, M. 

tuberculosis must carefully regulate cell division, requiring a wide variety of signaling 

molecules. 

Two protein kinases, PknA and PknB, are thought to be essential for signal transduction 

in this microorganism and have been shown to play an important role in regulating cell 

morphology and cell division.
3,4,5,6,7

  Wag31, a substrate of PknA and PknB, is a homolog of the 

Gram-positive cell division protein DivIVA that is localized in the cell poles in mycobacteria 

including M. smegmatis and M. bovis BCG and controls cell morphology.
8,9,10

    

The phosphorylation of Wag31 plays a key role in the cell division of mycobacterium.  It 

has previously been shown that the expression of phosphomimetic M. tuberculosis wag31 

(wag31T73EMtb) in the wag31 conditional mutant of M. smegmatis showed higher growth rate 
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than cells expressing wild-type wag31Mtb or phosphoablative wag31T73AMtb and that the 

phosphorylation of Wag31 regulates M. smegmatis peptidoglycan biosynthesis and growth of 

mycobacteria.
10,11

 

In this study, I attempt to quantify molecular differences in the three wag31 conditional 

mutants of M. smegmatis in vivo by using the visible-wavelength Raman spectroscopy apparatus.  

I also attempted to localize these molecular changes in the cell by performing experiments on the 

P60 cell envelope fraction of these cells. 

6.2 Materials and Methods 

6.2.1 Microorganisms and Growth Conditions 

M. smegmatis conditional mutant strains of wag31 containing tetracycline-inducible Ptet-

wag31, Ptet-wag31T73A or Ptet-wag31T73E at the attB locus were used in our study.
12,13

  All cells 

were prepared in the laboratory of Dr. Choong-Min Kang (WSU, Department of Biological 

Sciences) with the kind assistance of Charul Jani.  Cells were grown on 7H9-ADC agar plates 

containing 5 ng/ml tetracycline and 50 mg/ml hygromycin.  Well-isolated colonies from the plate 

were then inoculated in 7H9 liquid medium with 10 µg/ml hygromycin without inducer 

(tetracycline) and cultured overnight to deplete the residual cytosolic inducer and Wag31 inside 

the cells.  Cells from overnight culture were then reinoculated in fresh 7H9-ADC liquid medium 

supplemented with 20 ng/ml tetracycline as an inducer followed by OD600 measurement every 3 

hours.  M. smegmatis cells expressing wag31WT, wag31T73A and wag31T73E were harvested 

during log phase and cell pellets were washed once with 1X phosphate buffer (137 mM NaCl, 

2.7 mM KCl and 11.9 mM phosphates) to remove traces of the media. 
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6.2.2 Cell Envelope Isolation 

The cell envelope fraction (P60) was prepared as described in detail previously.
14

  

Briefly, the harvested cells with wag31T73A and wag31T73E allele were stored at -80°C, then 8 

g of harvested cells were resuspended in 30 ml of buffer A (50 mM MOPS (pH 8.0), 10 mM 

MgCl2, and 5 mM β-mercaptoethanol) and subjected to probe sonication using 10 cycles of 60 

sec with 90 sec cooling on ice between the cycles.  The cell lysates were centrifuged at 23,000 X 

g (Beckman, JLA10.500) at 4°C for 30 min. then the pellet was resuspended in buffer A and 

Percoll (GE Healthcare) was added to achieve a 60% final concentration.  The resulting mixture 

was centrifuged at 23,000 X g for 60 min at 4°C.  The upper, flocculent band was recovered and 

washed with buffer A three times to remove residual Percoll.  The pellet containing membranes 

and cell wall was then resuspended in buffer A using a Dounce homogenizer.  The final 

concentrations of total protein from cells expressing wag31T73E and wag31T73A were 10 and 8 

mg/ml, respectively.  

Raman measurements were performed on dried spots of cells and cell envelopes using the 

same Raman system described previously.  As mentioned earlier the data were processed using a 

Matlab program
15

 and analyzed using the multivariate techniques of PCA, which reduced the 

dimensionality of the spectra from 1993 channels into 13 PCs, and DFA, which uses the PCs to 

discriminate between the different groups of bacteria. 
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6.3 Results and Discussion 

6.3.1 Raman Spectra from Bacteria Cells 

To insure the reproducibility of the Raman spectra, approximately 100 spectra of each M. 

smegmatis mutant were obtained from suspensions of several cultures prepared over several 

Figure 6.1: Typical Raman spectra of M. smegmatis expressing phosphomimetic 

M. tuberculosis wag31 (wag31T73EMtb) (TE), wild-type wag31Mtb (WT), or 

phosphoablative wag31T73AMtb (TA).  Spectra were acquired in vivo with 514.5 

nm laser excitation. 
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weeks.  Figure 6.1 shows the average of the processed Raman spectra from cells expressing 

wag31WT (WT), wag31T73A (TA), and wag31T73E (TE).  The spectra obtained from WT cells 

and TA cells are reproducibly similar while there are considerable differences between them and 

the spectra obtained from TE cells.  The observed features in the Raman spectra reveal the 

composition of the bacterial cell namely protein, carbohydrates, lipid, and nucleic acids.  The 

major peaks and their assignments are listed in Table 6.1.  WT and TA spectra have significantly 

stronger protein peaks at 1518 cm
-1

 and at 1154 cm
-1

, which have the assignment of carbon-

carbon double-bond and single bond stretching mode vibration.  TE has significant features at 

1310, 1361, and 1396 cm
-1

 which have previously been attributed to D-glutamic acid, D-alanine, 

and N-acetylglucosamine; at 1448 and 1582 cm
-1 

tentatively assigned to lipid vibrations; and at 

1656 cm
-1

 which is a broad peak resulted from the overlapping of two peaks assigned for Amid I 

in protein and a carbon-carbon double bond stretching mode vibration in lipid. 

The most statistically significant differences were revealed by performing a Principal 

Component Analysis on all of the spectra together.  The original spectra consisted of 1993 

intensity channels which the PCA was able to reduce into 13 principal components (PCs) which 

maintained 99.3% of the variance in the data sets.  The first PC accounted for 70.9% of the data 

variation, while PC2 and PC3 accounted for 17.9% and 3.5%, respectively.  A plot of PC 

loadings (shown in Figure 6.2) can provide significant information about the biochemical basis 

of the mathematical discrimination.
16

  The loadings of PC1 are shown in Figure 6.2(A).  This 

plot has strong negative peaks at 1154, 1518, and 1182 cm
-1

 (assigned to proteins) which are 

associated with the dominant features in the spectra from TA and WT cells.  PC1 also has strong 
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positive peaks associated with the dominant features in the spectra from TE cells, which were 

discussed above.   

Table 6.1: Assignment of the Raman vibrational bands observed in this study. 

δ: deformation vibration,  ν: stretching vibration,  ρ: rocking vibration.  

b: broad, m: medium, s: strong, sh: shoulder, vs: very strong, vw: very weak, w: weak. 

 

 

Raman shift (cm
-1

) Assignments 

TA 

Envelope 

TE 

Envelope 

TA Cells 

WT Cells 
TE Cells Vibrational modes Location 

748(m) 747(m)  752(w) Ring I deformation in flavin
17

 
,18,19

  Vitamin 

  782(w) 782(w) 
Cytosine,

20,21,22 
 uracil,

20,22,23 
 ring 

stretching
21

 
DNA/RNA 

845(w) 845(w)   

ν(C-N) from tyrosine group in 

proteins,
18,19,24 

 

ν(C-C) ring breathing
21,25

  

Protein 

894(w) 894(w)   ν(C-O-C)
22

 in carbohydrates,
26

 ν(C-

N) in proteins
19

 

Carbohydrate, 

Protein 

931(m) 931(m)   

ν(C-O-C) 1,4-glycosidic link in 

carbohydrates,
25,27

  ν(C-C) in 

proteins,
27

  ρ(CH3) terminal
26

 

Carbohydrate, 

Protein 

1001(w) 1001(w) 1004(m) 1004(m) 
ν(C-C) aromatic ring breathing of 

phenylalanine
20,21,22,25,26,27,28

  
Protein 

1036(sh) 1036(sh)   
ν(C-C) skeletal,

26
 ν(PO2

-
),

24
  δ(CH) 

in-plane
27

 
Protein 

 1060(sh)  1064(sh) ν(C-N),
20,27

 ν(C-C)20 Protein 

1123(s) 1121(m) 1125(s) 1125(m) 

ν(C-C)
20,21,22

 skeletal
26

,  ν(C-N) in 

protein,
19,20,21,27

  ν(C-O) in 

carbohydrate,
27

 ν(C-C) in lipid,
22,27

 

=CC=  in lipids
19

 

Protein, 

Carbohydrate, 

Lipid 

1150(sh)  1154(s) 1154(w) ν(C-C)
25,26,27,28,29,30

 Protein 

 1170(sh)  1174(sh) 
Aromatic amino acids,

18,19,31
  δ(C-H) 

in tyrosine
25,27,32

 
Protein 

  1182(sh)   δ(C-H) in tyrosine
25,27

 Protein 

1228(m) 1227(m)    amide III
20,21,22,25

 Protein 

     1307(m) 1310(s) 
1296,1311(

w) 
1311(s) δ(CH2),

26
 twist in lipids,

25,27
 δ(OH)

26
 Lipid 

1363(m) 1360(m) 1361(w) 1361(m) C-H bend, amino acids
18,19,31

 Protein 

 1394(w) 1396(vw) 1396(m) ν (COO),
19

 amino acids
31

 Protein 

1447(s+b) 1447(vs+b) 1448(m+b) 1448(s+b) δ(C-H2) scissoring
20,21,22,23,24,26

 
Carbohydrate, 

Lipid 

1514(s) 1513(w) 1518(s) 1518(vw) ν(C=C)
29,30

 Protein 

1582(m) 1582(s) 1582(m)     1583(s) ν(C=C)
18,19

 Lipid 

1655(m+b) 1655(m+b) 1657(w+b) 1656(m+b) 
Amide I and unsaturated lipids,

20,23
 

amide I and ν(C=C) in lipid
25

 
Protein, Lipid 
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Figure 6.2 indicates that PC1 is constructed to maximize the spectral differences between 

TE cells and WT/TA cells and identifies the important biochemical components of these 

differences.  PC1 does not show a considerable difference between TA and WT bacteria.  To 

further highlight the significance of PC1, Figure 6.2(B) shows a plot of PC1 and the resulting 

difference spectrum when the average spectrum of TA cells is subtracted from the average 

spectrum of TE cells and Figure 6.2(C) shows a plot of PC1 and the resulting difference 

Figure 6.2: Principal component loadings of the PCA performed on the Raman 

spectra acquired from three mutants of M. smegmatis.  (A) The loadings of the 

first PC.  Prominent spectral features are identified.  (B) PC1 loadings plotted 

with the difference of the average Raman spectrum of TA cells and TE cells. (C) 

PC1 loadings plotted with the difference of the average Raman spectrum of WT 

cells and TE cells. (D) PC3 loadings plotted with the difference of the average 

Raman spectrum of TA bacteria and WT bacteria. 

 

(A) (B) 

(C) (D) 
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spectrum when the average spectrum of WT cells is subtracted from the average spectrum of TE 

cells.  The similarities in these plots reinforce the interpretation that the basis of discrimination 

between spectra is the change in the Raman spectral features of the cells expressing 

phosphomimetic wag31T73E.  It has been found that the third PC (PC3) is significant in the 

discrimination between TA and WT cells, based on the subtle differences in their spectra.  Figure 

6.2(D) shows the similarity between the PC3 loadings plot and the resulting difference spectrum 

when the average spectrum of WT cells is subtracted from the average spectrum of TA cells.  

The main changes were observed in protein peaks at 1518, 1125, and 1154 cm
-1

, although none 

of these are as large as the dominant features in 6.2(B) or 6.2(C).  

The thirteen PC scores were used as independent input variables in a discriminant 

function analysis (DFA), which further reduced the dimensionality of the spectra.  For 

discrimination among the three bacterial cell types, two discriminant function (DF) scores were 

calculated for each individual spectrum.  The DFA allows a rapid sorting or grouping of 

unknown spectra on the basis of the discriminant functions, and also gives an immediate 

measurement of the reproducibility of the spectra, as highly similar spectra should possess highly 

similar DF scores, and thus should be grouped closely in a DFA.  Figure 6.3 shows the DFA 

performed on the 316 Raman spectra from the three bacterial cell types.  In this figure, each 

colored point in the plot is a spectrum that is represented by the two scalar discriminant functions 

scores, DF1 and DF2.  All the spectra from Group 1 (TA cells) and Group 3 (WT cells) possess 

an almost identical DF1 score, indicating their high degree of similarity.  DF1 always accounts 

for a greater percentage of variance in the data then does DF2.  On the basis of their differing 

DF2 scores, we conclude that these two cell types are still reproducibly different, however.  All 
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Figure 6.3: A discriminant function analysis (DFA) of the Raman spectra from 

the three M. smegmatis cell types studied in this work.  13 principal component 

loadings from a PCA were used as the independent variables for each spectrum.  

The high similarity of discriminant function one scores indicates that the TA and 

WT cells are highly similar, yet still differentiable.  TE cells show the greatest 

biochemical difference.   

 

the spectra from Group 2 (TE cells) possess a very different DF1 score, indicating their high 

degree of difference from the other two groups.  In this analysis, 100% of the spectra obtained 

from the TE cells were correctly classified by the DFA, indicating that these bacteria are 

reproducibly molecularly distinct from the other two.  Only 69% of the TA bacteria and 88.9% 

of the WT bacteria were correctly classified, indicating that their spectra were similar due to an 

almost identical molecular composition.   
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6.3.2 Raman Spectra from Bacterial Cell Envelope 

In order to localize the molecular changes that occur between the bacteria with the 

phosphorylated form of Wag 31 and that with the non-phosphorylated form of Wag31 within the 

cell, the P60 cell envelope fraction was isolated and Raman measurements were performed on a 

dried suspension of the cell envelope.  Figure 6.4(A) shows the averaged Raman spectra for the 

P60 cell membrane fraction of bacteria with Wag31T73A (labeled “TA envelope” – top) and 

with Wag31T73E (labeled “TE envelope” – bottom).   

Ninety-nine TA envelope spectra and 101 TE envelope spectra were averaged to make 

these spectra.  Spectra of the P60 cell envelope fraction of the wild-type bacteria were not taken.  

Significant differences between TA cell envelope and TE cell envelope can be observed at the 

same locations as were measured in the bacterial cells, indicating that significant cellular changes 

occurred in the cell envelope.  Table 6.1 provides the detailed assignments for the main features 

which appeared in the cell envelope spectra.  It was observed that the lipid peaks which are 

located at 1448 and 1582 cm
-1

 seem to be stronger in the TE envelope spectrum than in the TA 

envelope spectrum indicating that TE cell envelope contains more lipid than the TA cell 

envelope.  Moreover, TE envelope spectra show an enhancement in the peaks assigned for amino 

acids in protein such as the peaks at 1311, 1361, and 1396 cm
-1

.  This result is consistent with the 

results of a study which revealed a higher enzymatic activity of peptidoglycan biosynthetic 

pathway (MurX and MurG) and a greater production of lipid II in cells expressing 

wag31T73EMtb than cells expressing wag31Mtb or wag31T73AMtb.
11

  These Raman spectroscopic 

results indicate that cells with the wag31T73EMtb allele produce more peptidoglycan precursor 

molecules than those expressing wag31Mtb or wag31T73AMtb.   
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To accentuate the differences in these spectra, in Figure 6.5 the average spectrum of the 

TA cell envelope has been subtracted from the average spectrum of the TE cell envelope and 

plotted with the PC1 loading from a PCA performed on these data.  This analysis demonstrates 

that the PCA classification of these data relies on the main spectral changes in the Raman spectra 

of the samples under investigation. 

Figure 6.4: The average Raman spectra of  P60 cell envelope fraction of 

the M. smegmatis cells expressing phosphoablative wag31T73AMtb (TA) 

and phosphomimetic M. tuberculosis wag31 (wag31T73EMtb) (TE). 
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Figure 6.6 compares the average spectrum of the whole bacteria cells with their 

corresponding average spectrum obtained from the cell envelope fraction.  Noticeably, 

considerable differences are observed between the spectra obtained from cells possessing the 

phosphoablative Wag31T73A and cells possessing the phosphomimetic Wag31T73E.  Strong 

similarities (with some slight differences) in the spectra obtained from bacterial cells and the 

spectra obtained from the corresponding bacterial cell envelope indicate that the significant 

spectral changes observed between cells with Wag31T73A and Wag31T73E are primarily due to 

biochemical changes localized in the cell membrane and wall.   

Figure 6.5:  The difference between the average spectrum of 

the TA and TE cell envelope fraction (black) plotted with the 

PC1 loadings (red). 
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Molecular identification of these differences suggests an increase in peptidoglycan 

biosynthesis and production of lipid II.  These results are consistent with previous enzymatic 

studies and reports of the differences observed in cell-division and multiplication between cells 

with the wag31T73EMtb allele and those expressing wag31Mtb or wag31T73AMt.  Raman spectra 

from cells expressing wag31Mtb or wag31T73AMt were almost identical.  Figure 6.6 shows the 

regions of the tentative assignments corresponding to the main components of the bacterial cells, 

namely, nucleic acids (A), proteins (B), carbohydrates (C), and lipids (D).  

Figure 6.6: A comparison of the average Raman spectra of the five 

classification groups studied in this work (the spectra of the cells of the three 

wag31 conditional mutants of M. smegmatis and the spectra of the cell 

envelope fraction of two of them). 
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All the 516 spectra obtained from the five different samples (TE cell and envelope 

fraction, TA cell and envelope fraction, and WT cells) were analyzed using PCA followed by 

DFA as described above.  The analysis resulted in the 100% correct classification of TE bacterial 

cell spectra, 99% correct classification of TE cell envelope spectra, 95% correct classification of 

TA cell envelope spectra, 67% correct classification of TA bacterial cell spectra, and 85.5% 

correct classification of WT bacterial cell spectra.  The resulting PC-DFA plot (Figure 6.7) 

demonstrates the power of non-surface-enhanced visible-wavelength Raman spectroscopy to 

easily reveal subtle molecular differences in bacterial cells expressing different alleles and to 

localize those molecular differences in a specific domain of the cell structure.  The clustering of 

data points around the group centroid in this graph which is composed of hundreds of spectra 

acquired from multiple cultures over an extended period of time also demonstrates that there is 

little variation in day-to-day measurements within the same group.  The residual scatter in the 

data is indicative of typical measurement noise and is relatively small for similar studies of this 

nature.  It is noticed that WT bacterial cells and TA bacterial cells are highly similar due to the 

similarity of the values of DF1 and DF2 for their spectra, while significant differences were 

observed between the other three classification groups (TE bacterial cells, as well as TA and TE 

cell envelopes).  This result is a statistical chemometric way of quantifying the similarities and 

dissimilarities between the average spectra shown in Figure 6.6. 
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The results presented here demonstrate that visible wavelength Raman-spectroscopy can 

be an effective tool to reveal the biomolecular differences in the wag31 conditional mutants of 

M. smegmatis, that this spectroscopy can be performed with excellent signal-to-noise on the cell 

envelope fraction of these cells, and that significant biochemical and/or structural changes in the 

cell envelope can be measured, indicating that wag31 and its phosphorylation play an important 

role in peptidoglycan synthesis and the growth of mycobacteria.    

Figure 6.7: A PCA-DFA plot of all the Raman spectra showing the high-degree 

of similarity between wild-type and TA cells, and the ability to easily distinguish 

spectra from other groups. 
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6.4 Raman Spectroscopy on Protein 

The next proposed step in this project is to study the three different forms of the wag31 

protein spectroscopically.  An effort to purify wag31T73EMtb and wag31T73EMtb proteins for 

Raman spectroscopy was carried out in the laboratory of Dr. Kang.  All Raman spectra collected 

from these proteins were dominated by the strong protein-fixing buffer features as can be seen in 

Figure 6.8. 
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Figure 6.8: A typical Raman spectra obtained from wag31T73EMtb and 

wag31T73EMtb protein compared with the Raman spectrum obtained from 

the protein-fixing buffer. 
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The ability to detect biomolecular conformation differences in different protein forms is 

very important, but the very small Raman differences expected between proteins with different 

conformations will require a high Raman signal to noise and no contribution from the buffer.  To 

begin this study, I investigated two easy to procure and produce proteins: lysozyme and BSA.  

First the powdered forms of the protein samples were tested using Raman spectroscopy.  Figure 

6.9 compares a typical spectrum for each one of these common proteins.  Considerable 

differences at 765 cm
-1

, 1557 cm
-1 

and after 1800 cm
-1

 were easily observed, indicating the 

ability of Raman spectroscopy to differentiate different solid protein samples. 
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Figure 6.9: A comparison between typical spectra obtained from powdered 

lysozyme and BSA proteins. 
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To further investigate the ability of Raman spectroscopy to detect these differences and to 

quantify the concentration of protein necessary for such an experiment, a solution of the 

powdered proteins using 1X PBS buffer was made with two different concentrations (15 mg/ml 

and 7.5 mg/ml).  10 µl of each solution was transferred to the quartz slide and left two hours to 

dry.  Figure 6.10 shows micrographs of the dried solution for BSA (to the right) and lysozyme 

(to the left) as they appeared under the 100X Raman microscope objective.   

Figure 6.11 shows typical Raman spectra obtained from each case.  A comparison 

between the three different spectra of each protein type (one powdered, two dried solutions) 

revealed no changes for the lysozyme case, but for BSA there were some differences due to the 

noise (Figure 6.12). 

 

Figure 6.10: Micrographs of dried protein residue from solutions of lysozyme (left) and BSA (right). 



142 

 

 

 

 

600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 I
n

te
n

si
ty

Raman Shift (cm
-1
)

 lysozyme (7.5 mg/ml)

 lysozyme (15mg/ml)

 lysozyme powder

600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 I
n

te
n

si
ty

Raman Shift (cm
-1
)

 BSA (7.5 mg/ml)

 BSA (15mg/ml)

 BSA (powder)

Figure 6.12: A comparison between Raman spectra obtained from 

lysozyme and BSA proteins with different concentrations. 
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Figure 6.11: Raman spectra obtained from lysozyme (top) and BSA (bottom) protein 

solutions with different concentrations (labeled for each graph). 
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Those figures prove that Raman spectroscopy could detect a good signal from the protein 

samples even in a low concentration solution.  The noise problem (which appeared in the BSA 

case) can be solved by drying multiple layers of the solution on the slide or increasing the scan 

time.  This result is encouraging and suggests the next step is to purify wag31 protein using a 

non-feature-fixing gel or buffer.   

6.5 Summary 

Non-surface-enhanced Raman spectroscopy using a 514.5 nm wavelength laser was used 

to measure in vivo the molecular difference of conditional mutants of Mycobacterium smegmatis 

expressing three different alleles: wild-type wag31Mtb, phosphoablative wag31T73AMtb, and 

phosphomimetic wag31T73EMtb.  This study demonstrated that the phosphorylation of Wag31, a 

key cell-division protein, caused significant differences in the quantity of amino acids associated 

with peptidoglycan precursor proteins and lipid II which are observable in the Raman spectra of 

these cells.   

Raman spectra were also acquired from the isolated P60 cell envelope fraction of the 

cells expressing wag31T73AMtb and wag31T73EMtb.  A significant number of the molecular 

vibrational differences observed in the cells were also observed in the cell envelope fraction, 

indicating that these differences are indeed localized in the cell envelope.  Principal component 

analyses and discriminant function analyses were conducted on these data to demonstrate the 

ease of spectral classification and the reproducibility of the data. 

The Raman spectra acquired from the wag31 proteins themselves were dominated by the 

signature of the protein-fixing buffer.  A Raman spectroscopy study was conducted on two 
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different easy to produce proteins, lysozyme and BSA, in both powdered and solution forms.  

The results revealed the ability to obtain good Raman signals from both cases with considerable 

differences between the different proteins, but almost no differences between the pure powdered 

forms and the solutions for a given protein.  This result indicates that a Raman study of the 

Wag31 proteins is possible, assuming the protein-fixing buffer can be eliminated. 
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Chapter 7 

Surface-Enhanced Raman Spectroscopy (SERS) Study of Bacteria 

7.1 Introduction 

As stated in Chapter 2, Raman signals obtained from bacterial samples suffer from 

weakness and a huge background.  Surface-enhanced Raman spectroscopy (SERS) is one of the 

most common methods used to overcome this issue.
1
  In 1974 for the first time, Fleischman et al. 

observed a large enhancement in the Raman spectra of pyridine adsorbed on a roughened  silver 

electrode
2
 and in 1977 the cause of such enhancement was explained by Jeanmaire and Van 

Duyne.
3
 

Since then Raman signal enhancement has been observed using suspensions of gold or 

silver nanoparticles and since 1979 they have been widely used for SERS measurements.  The 

shape and size of the nanoparticles is of great importance and should be specified.  Too small 

particles will not enhance the field due to the lack of electrical conductance and the too large 

particles will decrease the enhancement efficiency due to their ability to excite multipole 

transitions (Raman scattering is caused by the dipole transition only).
4
   

Despite the fact that SERS should provides the same signal features that RS does with 

great enhancement, there are always some changes observed in the SERS spectrum compared to 

the same sample’s Raman spectrum.  Some peaks will be shifted, some disappear, and others will 

be formed.  This irreproducibility of the spectra is affected by the inhomogeneity of the bacteria 

and colloidal suspension and the molecules’ symmetry where a very slight difference in the 

symmetry of the molecule will lead to a different vibrational mode.
5
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 The goal of this study was to evaluate the signal enhancement achieved by using surface-

enhanced Raman spectroscopy by comparing the resultant SERS spectra with the traditional 

Raman spectra.  SERS measurements were obtained from different bacterial strains which 

studied previously using traditional Raman spectroscopy.  Silver colloid nanoparticles were 

prepared and mixed with different bacteria suspensions and the resultant SERS spectra were 

compared to the original Raman spectra.  To evaluate the efficiency of colloidal nanoparticles 

and their stability, a SERS test on the molecular dye rhodamine 6G was performed.     

7.2 Materials and Methods 

7.2.1 Microorganisms and Growth Conditions 

Two E. coli strains, the pathogenic strain O157:H7 and the non-pathogenic strain Hfr K-

12 were selected for this study.  Their growth conditions were described in Chapter 4.  Also the 

three M. smegmatis conditional mutant strains of wag31 containing tetracycline-inducible Ptet-

wag31, Ptet-wag31T73A or Ptet-wag31T73E at the attB locus were used for the SERS study.  

Their growth conditions were discussed in Chapter 6.  

7.2.2  Silver Colloids Solution Materials and Preparation  

The SERS materials that were used in this study include silver nitrate (AgNO3), trisodium 

citrate (Na3C6H5O7), sodium borohydride (NaBH4), and Rhodamine 6G.  Mili-Q grade water 

(18.2 MΩ/cm) was used for all solution preparation.  
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The silver colloids were prepared using two different methods: 

1:  The first method was based on the Lee and Meisel method
6
 where 90 mg of 

AgNO3was dissolved in 500 mL of DI water to form 500 ml of a 1 mM AgNO3 

aqueous solution.  The solution was heated with stirring to reach the boiling point, 

meanwhile 10 mL of 1% trisodium citrate solution was prepared by dissolving 0.1 

g of Na3C6H5O7 in 10 mL DI water and added to the boiling solution and then the 

mixture was allowed to boil with stirring for one hour.  According to the method 

of Cyrankiewicz et al.
7
 a simple modification was made in the way of adding 

trisodium citrate solution; the addition was done in four portions (the first portion 

was 0.2 mL and the other three 0.6 mL each).  When the temperature of the 

AgNO3 solution reached 90°C, the first portion was added, the next portion was 

added at 95°C and then the third and forth portions were added after a time 

interval of 15 minutes.  After that the mixture was allowed to boil with stirring for 

30 minutes instead of one hour.  Finally the resultant dark grey color solution was 

left to cool down with stirring at room temperature.  

2:  The second method was based on the Creighton method
8
 where 2 mM NaBH4 

was prepared by dissolving 11.3 mg of NaBH4 in 150 mL of deionized water and 

allowed to cool down using ice with stirring for 10 minutes.  Meanwhile 1 mM 

AgNO3 was prepared by dissolving 8.49 mg of AgNO3 in 50 ml water and 

addding it in portions to the solution while cooling with stirring.  The brownish 

color solution was used for SERS measurements. 
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10
-2

 M solution of Rhodamine 6G (R6G) in ethanol was prepared by dissolving 0.479 mg 

R6G in 10 mL ethanol, then a 10
-4

 M solution of R6G was prepared by adding 10 mL of ethanol 

to 0.1 mL of the 10
-2

 M R6G solution.  Finally, the desired 10
-6

 M solution of R6G was prepared 

by adding 10 mL of ethanol to 0.1 mL of the 10
-4

 M R6G solution. 

7.2.3 Raman Data Collection 

  The Ag colloids solution was mixed with the R6G solution and the bacterial suspension 

with different ratios.  SERS measurements were acquired from dried spots of the samples using 

the Raman instrumentation previously described.  Each spectrum was obtained from 3 exposures 

with a scanning time of 10 seconds in the spectral region 600-2000 cm
-1

.   

7.3 Results and Discussion 

7.3.1 R6G results 

To evaluate the enhancement efficiency of the prepared silver colloids and the colloidal 

stability, a 1 µM solution of R6G dye was mixed with the silver colloids solution (prepared using 

the first method) in three different ratios.  SERS spectra of these ratios are shown in Figure 7.1.  

It can be noticed that the best enhancement occured when the same amount of R6G and the 

colloids solutions was mixed. 
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Figure 7.1: Raman spectra of R6G dye solution and silver colloids solution mixed 

with different ratios. 
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Figure 7.2 compare a spectrum obtained without using the colloids with a SERS spectrum of 

R6G dye.  Also a silver colloids spectrum is plotted for this comparison to insure that the 

colloids peaks are not included in the SERS specta of R6G.  The raw data plotted in Figure 

7.2(A) reveals the many-fold enhancement that occurred to the R6G Raman signal.  For a closer 

look at the R6G features in both cases, Raman and SERS spectra obtained from R6G were 

processed and normalized as appeared in Figure 7.2(B).  The spectra were shifted vertically for 

clarity.  All the peaks were recovered with an 11-21 cm
-1

 shift to lower wavenumber. 
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Figure 7.2: (A) A comparison between the spectra of R6G, Ag colloids and the 

mixture of equal amount of R6G and Ag colloids.  (B) A comparison between 

processed Raman spectra and SERS spectra of R6G dye. 

(A) (B) 
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7.3.2 Bacteria results 

Four different amounts of E. coli K12 bacterial suspension and silver colloids solution  

(prepared using the first method) were mixed to form four different ratios: 1:1, 1:5, 1:10 and 1:50 

and tested using Raman spectroscopy.  Figure 7.3 shows a typical SERS spectrum for each case.  

The best enhancement observed was for the samples with an E. coli to colloids ratio equal to 

1:10 and 1:50.  

Figure 7.3: SERS spectra of E. coli K12 and the silver colloids 

solution mixed with different ratios. 
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Figure 7.4 compares a typical Raman spectrum of K12 and its SERS spectra with 1:10 and 1:50 

ratios.  Raw data are on the left and processed data are on the right. 

When 10 µL of E. coli K12 suspension was mixed with 5 mL of colloids solution, the 

signal was considerably enhanced but this enhancement was dominated by a huge background in 

the spectral region from 1000-1700 cm
-1

.  Moreover, I observed considerable differences 

between the peaks of the Raman signal and SERS signal which indicated that SERS was not 

successfully able to reproduce the same signal obtained from the non-enhanced Raman 

spectroscopy.   

Figure 7.4: A comparison between SERS and Raman spectra of E. coli K12, 

(A) raw data shows the signal enhancement, (B) processed data compares 

the signal features.  

 

 

(A) 

(B) 
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Figure 7.5: (A) SERS spectra of TA, TE, and WT M. smegmatis and the silver colloids 

solution mixed with equal amounts. (B) SERS spectra of varying TA-colloids ratios. 
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SERS spectra were acquired also from the three M. smegmatis conditional mutant strains (TA, 

TE, and WT).  A mixture from the same quantity of bacteria and colloids was prepared and 

tested via Raman spectroscopy.  The resultant spectra (shown in Figure 7.5(A)) were dominated 

by huge humps without recovering any features or Raman peaks that had been observed earlier. 

Before drawing any conclusions, the experiment was repeated for different 

concentrations of bacteria in colloids solution and the Ag colloids solution was prepared eight 

different times and tested on R6G dye to be sure that it worked very well.  All SERS spectra 

obtained from different ratios of M. smegmatis bacteria revealed the same result (Figure 7.5(B) 
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shows an example), so I conclude that for these strains of bacteria, the silver colloids did not 

work as it should be.   

Ag colloids prepared using the second method were tested first using R6G dye to ensure 

the stability of the colloids and their ability to enhance the signal.  Again the best enhancement 

occurred when the same amount of the dye and colloids solutions were mixed together.  After 

that SERS spectra of M. smegmatis were obtained using this colloids solution.  One more time 

the resultant spectra revealed the negative result that Ag colloids are not good for the 

enhancement purpose when applied to this kind of bacteria.  Figure 7.6 shows an example of 

SERS spectra acquired from TA bacteria. 
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Figure 7.6: SERS spectra of TA, where the bacteria and the silver 

colloids solution mixed with different ratios. 
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7.4  Summary and Conclusions  

In this work, silver nanoparticle colloidal suspensions were prepared using two common 

methods and used to enhance the intensity of Raman signals obtained from bacteria.  One µM 

rhodamine 6G solution was used to test the stability of the colloids and the efficiency of the 

enhancement.  The results revealed that the colloids were efficient to enhance the intensity of the 

signal for both R6G and bacteria where the Raman signature of R6G was recovered with a 

consistent shift, while those for bacteria either disappeared or totally changed.  This indicated 

that the dilution of bacteria in the colloids solution made the detection of bacterial Raman signal 

very difficult due to the low number of bacteria in the solution.  That should be compensated by 

the great enhancement due to the presence of silver colloids which did not occur in this case.  

Also it was noticed that the enhancement of SERS varied with the concentration of the colloids. 
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Chapter8 

Bacterial Characterization Using Electron Microscopy 

 8.1 Introduction 

Electron microscopy is a very well-studied imaging technique that uses a beam of 

electrons to illuminate a target to create a highly magnified image of the target.  This technique 

can be used for imaging biological samples (including bacteria) but this requires extra 

procedures to solidify the bacteria target and make it easier to handle.
1,2

 Transmission electron 

microscopy provide a cross sectional image which can be used to detect any difference in the 

wall thickness of different bacterial samples.  On the other hand scanning electron microscopy is 

used to show the outer surface structure of bacterial cells. 

8.2 Transmission Electron Microscopy (TEM) 

  In this case, the sample will be hit by a high energy electron beam (100-400 keV), the 

direct beam will go through the sample, while the Bragg reflected beams will be scattered out of 

the sample.  The transmitted electrons will be detected using a fluorescent screen.  The electrons 

will scatter more from the massive regions of the sample and it will appear darker, while the 

areas with light atoms will allow more transmission of the electrons to come through and it will 

appear bright.  Thus image contrast depends on the atomic composition of the target and this 

image can be displayed on a monitor using a CDD camera. 

TEM was used for imaging the cross section of M. smegmatis bacteria to attempt to get a 

clear image of the cell wall thickness.  Many steps were performed to prepare the samples and 

many steps were required for sectioning the bacteria to get ultrathin slices for TEM imaging.  

These procedures included chemical fixation and dehydration of the specimens, and then a 
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polymer resin was used to stabilize them before sectioning them using a microtome.  The 

following is a detailed Protocol for sample preparation.
3
  

1. Fixation: 

 

1. Take 50 ml of cells, centrifuge and remove the supernatant. 

2. Add Fixative 1 ( 2% paraformaldehyde and 2.5 % glutaraldehyde in 0.2 M Sucrose (pH 

7.4)). Pour fixative through the wall of the tube, (do not vortex).  After 10 min dissolve 

the pellet by mixing.  

3. Incubate at 4 C overnight. 

4. Centrifuge and remove the supernatant. 

5. Add 1% solution of OsO4 in Na-Cacodylate buffer and incubate at 4 C for 2 Hr. 

6. Wash with Na-cacodylate 3 times 5 minutes (at this step sample can be stored up to a 

week at 4 C). 

    2. Dehydration: 

1. 30% Acetone 30 min 

2. 50% Acetone  30 min 

3. 70% Acetone 30min 

4. 95% Acetone  30min 

5. 100% Acetone 60 min 

3. Preparation of resin 

1. Warm the following items to 60°C for not less than 15 min.   

(Epon 812 resin (20 mL), DDSA (9 mL), and MNA (12 mL)). The stock components 

may be warmed many times over.   

2. Pour the required volume of Epon 812 resin into the tube or bottle, add the DDSA and 
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MNA and pour into the bottle. Mix gently by hand and place on rotator/ mixer for 10 

min.   

3. Add BDMA or DMP (1.2 mL) and mix as before.   

Complete resin can be frozen if necessary.  

    4. Infiltration: 

1. Mix 50:50 epoxy resin: acetone and bacterial pellet from dehydration step overnight on a 

rotating mixer.  

2. Centrifuge at highest rpm for 15 min and remove the supernatant. (You lose lots of cells 

at this stage and the supernatant is very sticky). 

3. Add fresh epoxy resin for 2–4 h on a rotating mixer with the caps off to allow excess 

acetone to evaporate.   

4. Centrifuge at highest rpm for 15 min remove the supernatant.  (You will lose lots of cells 

at this stage and the supernatant is very sticky).  

 

5. Add fresh epoxy resin for a further 2–4 h on a rotating mixer.  

Centrifuge at highest rpm for 15 min remove the supernatant. (You will lose lots of cells 

at this stage and the supernatant is very sticky).   

   5. Embedding: 

1. Embed in fresh epoxy resin. (Add DMP or BDMA only at this step)  

2. Label BEEM capsule. 

Transfer resin in to a beam capsule using a tip or wooden applicator stick and incubate at 

60 C for 48 hr. 
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6. Sectioning: 

Observe the thick section, and trim EM block further if needed. Then ultrathin sectioning 

and collection on grids. Sections less than 100 nm thick are good (gold color).  

7. Staining: 
 

1. Staining grids with uranyl acetate. Uranyl acetate: The uranyl acetate stains must be made 

fresh before use. Add 0.05 g-0.01 g of uranyl acetate powder to 10 mL distilled water and 

allow to dissolve. This is a radiochemical and must be handled appropriately 

2. On a dental wax sheet place a drop of uranyl acetate stain. Pick up a grid with the section 

and invert on top of the drop of the stain. Because of surface tension the grid will float on 

top of the drop. 

3. Cover the Petri dish and leave for the 30 min. 

4. Pour distilled water in a petri plate. Then pick the grid with a forceps and pass it through 

distilld water 4-5 times. 

5. Carefully dry the edge of grid using a filter paper. 

6. Lead stains are very sensitive and will precipitate quickly upon contact with CO2. To 

prevent this from happening either during preparation, storage, or staining. Prepare CO2 

free water: boil double distilled water and store it at once (while still hot) in tightly 

capped bottles or glass stop-pered bottles. When these bottles are opened you should hear 

a hissing sound, which indicates the bottles were sealed properly. Use this water for 

preparation of the stain. 

7. To prepare lead citrate stain add 0.01g - 0.04g Lead citrate to 10 ml CO2 free distilled 

water. Add 0.1 ml 10N NaOH. Cap the bottle and shake well until clear. 

8. In a large petri plate keep some NaOH pellet. Place a small petri plate at the centre and 
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pour some lead citrate stain in small petri plate. 

9. Using a forcep keep the pre-stained grid inverted on top of the stain. Because of surface 

tension the grid will float on top. 

10. Pour some water on NaOH pellet and cover the lid of he large petri plate. 

11. Incubate for 30 min. 

12. Wash the grid as in step 4. 

13. Air dry the section. 

The section is ready to observe under TEM.  Figure 8.1 shows a cross sectional image of M. 

smegmatis bacteria. 

8.3 Scanning Electron Microscopy (SEM) 

For SEM imaging, lower energy electrons (1-50 keV) are used to hit the sample and the 

backscattered electrons are collected.  These electrons have a broad energy distribution due to 

Figure 8.1:  TEM image of M. smegmatis.  We are trying to 

quantify variations in the cell membrane thickness. 

bacteria 

cell wall/membrane 
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the energy loss through the collisions with the target atoms.  The electrons will scatter more 

efficiently from heavier atoms and as a result a contrast can be observed from different atoms.  

To test if the phosphorylation of Wag31 caused changes in outer cell wall structure, I 

initiated Scanning Electron Microscopy (SEM) studies of mycobacterial cells containing 

phosphorylated (Wag31T73E) and non-phosphorylated (Wag31T73A).  The sample preparation 

start with fixation as stated before, then rinsing in distilled water several times to remove buffer.  

After that the samples were freeze-dried.  Finally, the dried cells were covered by an ultra-thin 

layer of gold to increase conductivity of the specimen so it will emit more secondary electrons 

and produce a higher contrast image.  The results showed a slight difference in the cell surface of 

these cells as seen in the following figure.   

 

 

 

 

 

 

 

 

 

Wag31T73A Wag31T73E 

Figure 8.2: SEM image of M. smegmatis  cells containing 

phosphorylated (Wag31T73E) and non-phosphorylated 

(Wag31T73A).  
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8.4 Conclusions 

SEM and TEM were used to characterize the outer cell surface (SEM) and the inner 

cross-section (TEM) of bacteria. The preliminary results showed a slight difference between 

different mutants of M. smegmatis bacteria and TEM image showed clearly the cell wall 

thickness of the cell, these results are promising and open the door for further investigation in 

order to connect the variations obtained using Raman spectroscopy with a real observed variation 

using electron microscopy technique. 
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The detection and identification of pathogenic bacteria has become more important than 

ever due to the increase of potential bioterrorism threats and the high mortality rate of bacterial 

infections worldwide.  Raman spectroscopy has recently gained popularity as an attractive robust 

approach for the molecular characterization, rapid identification, and accurate classification of a 

wide range of bacteria. 

In this dissertation, Raman spectroscopy utilizing advanced statistical techniques was 

used to identify and discriminate between different pathogenic and non-pathogenic bacterial 

strains of E. coli and Staphylococcus aureus bacterial species by probing the molecular 

compositions of the cells.  

The five-carbon sugar xylitol, which cannot be metabolized by the oral and 

nasopharyngeal bacteria, had been recognized by clinicians as a preventive agents for dental 
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caries and many studies have demonstrated that xylitol causes a reduction in otitis media 

(chronic inner ear infections) and other nasopharyngeal infections.  Raman spectroscopy was 

used to characterize the uptake and metabolic activity of xylitol in pathogenic (viridans group 

Streptococcus) and nonpathogenic (E. coli) bacteria by taking their Raman spectra before xylitol 

exposure and after growing with xylitol and quantifying the significant differences in the 

molecular vibrational modes due to this exposure.  The results of this study showed significant 

stable spectral changes in the S. viridians bacteria induced by xylitol and those changes were not 

the same as in some E. coli strains.   

Finally, Raman spectroscopy experiments were conducted to provide important 

information about the function of a certain protein (wag 31) of Mycobacterium tuberculosis 

using a relative non-pathogenic bacterium called Mycobacterium smegmatis.  Raman spectra of 

conditional mutants of bacteria expressing three different phosphorylation forms of wag31 were 

collected and analyzed.  The results show that that the phosphorylation of wag31 causes 

significant differences in the molecular structure, namely the quantity of amino acids associated 

with peptidoglycan precursor proteins and lipid II as observed in the Raman spectra of these 

cells.  Raman spectra were also acquired from the isolated cell envelope fraction of the cells 

expressing different forms of wag31 and the results showed that a significant number of the 

molecular vibrational differences observed in the cells were also observed in the cell envelope 

fraction, indicating that these differences are localized in the cell envelope. 

. 
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