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Maximum Likelihood Solution for the Linear Structural Relationship 
With Three Parameters Known 

 
Androulla Michaeloudis 

Middlesex University Business School 
London, England 

 
 
A maximum likelihood solution is obtained for the simple linear structural relation model where the 
underlying incidental distribution and one error variance are assumed known. Expressions for the 
asymptotic standard errors of the maximum likelihood estimates are obtained and these are verified using 
a simulation study. 
 
Key words: Maximum likelihood estimates, linear structural relation, errors-in-variables model, 

asymptotic standard errors, simulation. 
 
 

Introduction 
A biochemical assay is a procedure used to 
measure an unknown quantity ( )η  of a specified 

substance (analyte) present in a biological 
material, such as blood, obtained in the form of a 
test specimen. Biochemists are often faced with 
the problem of assessing the comparative 
performance of a new assay method with a well 
established reference assay method (method 
comparison study). An important aspect of this 
assessment is an examination of the degree of 
agreement between the results produced. 
Inaccuracy is unavoidable due to the 
complexities surrounding the measurement 
process. The so-called true value of the quantity 
of analyte can never be known in any absolute 
sense as the result of the test sample’s 
composition. For example, non-analyte 
components present in a biological material can 
either enhance or inhibit the response of the 
analyte. These lead to what is referred to as 
interference biases (Strike, 1981). Different 
models and statistical methods have been 
employed  as  well  as  criticized  in  assessing 
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method comparison studies (Bland & Altman, 
1986; Stockl, Dewitte, & Thienpont, 1998; 
Linnet, 1999). This article proposes a method 
comparison study for the linear structural 
relation of an errors-in-variables model which 
takes into account the presence of random errors 
in assays and in the recalibration effect, as well 
as interference effects in the biological test 
material. The model is complicated, but in 
simplified form is given by the simple errors-in-
variables model as: 
 

= +
= +
= + ,

X U

Y V

V U

δ
ε

α β
                       (1) 

 
where α  and β  are constants defining a linear 
structural relation between the unobserved 
variables U  and V . The latter are known 
functions of the unknown quantity of analyte of 
interest, that is ( )U f η=  and ( )V g η= , δ  and 

ε  are the errors associated with the reference 

( )X  and new ( )Y  assay methods respectively. 

It is assumed that δ  and ε  are normally and 

independently distributed ( )20,N δσ  and 

( )20,N εσ  respectively, and are independent of 

.U  The random variable U  is normally 
distributed with mean μ  and variance 2σ , that 
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is ( )2,N μ σ . Thus, ( ) ( )1 1, , ... ,  ,  n nx y x y  are 

n  independent observations of a bivariate 
normal variable ( ),X Y , 

( )2 2 2 2 2, , , ,N δ εμ α βμ σ σ β σ σ ρ+ + + , where 

( ) ( )}{
1
22 2 2 2 2 2

ε δρ βσ β σ σ σ σ
−

= + + . 
Birch (1964) and Barnett (1967) have 

obtained maximum likelihood solutions to 

model (1) for the cases where one ( )2
δσ  and 

both error variances ( )22 , εδ σσ  are known. Note 

that in both cases the likelihood function has 
never been provided; this is provided in this 
article. The strengths and weaknesses of the 
reference method should be well-known to the 
analysts from their own direct experience and 
from nationally organized quality control 
schemes (Strike, 1981): thus, the distribution of 
U  in the population under study should be 
known from extensive data for the reference 
method when this is used on the same 
population. 

Under these conditions a maximum 
likelihood solution for the linear structural 
relation of the simple errors-in-variables model 
(1) with three parameters known, namely μ , 2σ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and 2
δσ , is considered herein. The information 

matrix for this case will be derived and, upon 
inverting this, expressions for the asymptotic 
standard errors of the derived maximum 
likelihood estimates will be obtained. These 
derived expressions will be verified by a 
simulation study. The effect, if any, of the 
knowledge of μ  and 2σ  on the estimates, in 
particular the estimate of the slope of the linear 
structural relation, will be examined and will be 
compared with the derived maximum likelihood 
solution where only 2

δσ  is known. 

 
The Problem 

Assuming knowledge of μ , 2σ , and 
2
δσ  the structural errors-in-variables model (1) 

has three unknown parameters and a set of 
minimal sufficient statistics of dimension five 
and as such the model is expected to be 
identifiable. For a given set of real observations 

( )YXX ,= , the likelihood function for all real 

α , β , and 02 ≥εσ , where the set of unknown 

parameters is ( )2, , εα β σΨ = . The likelihood 

function is a continuous function; it tends to zero 
as   | |β    or   εσ    become   infinite   and   is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Formulas (2), (3) and (4) 
Formula 2: 

( )
( )

( )
( ) ( ) ( ) ( )

( ) ( )

22 2 2 2 2 2

22 2 2

2 2 2 2 2 2 22 2

2
1

2

Ψ = ×
 + + 

   + − − + − − −   −    ×  
  + +     + + + − −      

 2

constant,  

exp.   

n

n n

xx
i i

yy

l X

X nS Y X

n S Y

δ ε δ ε

ε

δ ε δ ε
δ

σ β σ σ σ σ

β σ σ μ βσ α βμ μ

σ β σ σ σ σ σ σ α βμ

 

Formula 3: 
2 2

2 2
ˆˆ X

Y δ

δ

σ μσα β
σ σ

 +
= −  + 

 

 

Formula 4: 

( )2 22
3 2

2 4 2 4

ˆ ˆˆˆ ˆ ˆ 0yyxy xyxx
SS SS ε εε

δ δ δ δ

λ σ λσσβ β β
σ σ σ σ

−   + + − − =  
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differentiable everywhere (see formula (2) in 
Figure 1). By partially differentiating the log-
likelihood function with respect to the three 
unknown parameters and equating to zero, three 
equations are obtained which can be rearranged 
to give formulas (3) and (4) (also shown in 
Figure 1). 
 

2 22
2

2

ˆ ˆˆ 2
ˆ xyxx

yy

SS
S δ

ε

β β σβσ
λ λλ

= + − − ,     (5) 

 
where    xyyyxx SSS ,,  are the sample statistics 

and 
( )2 2

2
δσ σ

λ
σ
+

= . 

The monotonicity of the likelihood 
function (2), and the fact that the likelihood 
tends to zero as 2

εσ  tends to ±∞, implies that 

there is only one value for 2ˆεσ  for which the 

likelihood function is a maximum. Therefore, 
the log-likelihood is maximized either when 

2ˆ 0εσ >  or when 2ˆ 0εσ = ; these cases are 

considered next, but the case 2ˆ 0εσ =  is not a 

practical case in a method comparison study. 
 
Case 1: 2ˆ 0εσ >  

In this case the maximum likelihood 
estimates of α , β  and 2

εσ  are given by the 

solutions of likelihood equations (3) – (5). By 
substituting for 2ˆεσ  in (4), the following cubic 

equation for β̂  is obtained 
 

2
3 2 2 2 31 1

1 1
2 2

ˆ ˆ ˆ3 2 0b b
b b

b b
β λ β λ β λ

 
− + + − = 

 
, 

(6) 
 
which factorizes to 
 

( ) 2 2 1
1 1

2

ˆ ˆ ˆ2 0b
b b

b
β λ β λ β λ

 
− − + = 

 
,      (7) 

 

where 1b  and 2b  are the two sample regression 

coefficients, that is 1
xy

xx

S
b

S
=  and 2

xy

yy

S
b

S
= . The 

cubic equation (6) yields one real root 
 

1
ˆ bβ λ= ,                          (8) 

 
and two complex roots 
 

( )
1
2

21
1

2

ˆ 1b
b r

b
β λ

 
 = ± −    

,              (9) 

 
where r  is the sample correlation coefficient 

( )
1
2

1 2b b . Substituting the real root for β̂  in (5) 

yields the following equation 
2

2 2
1ˆ 1yy xx

xx

S b S
S

δ
ε

λσσ
 

= − + 
 

.          (10) 

 
Case 2: 2ˆ 0εσ =  

Placing 2ˆ 0εσ =  in cubic equation (4) 

leads to 
 

2
2 2

ˆ ˆ ˆ 0xy yyS S

δ δ

λ
β β β

σ σ
 

+ − = 
 

:        (11) 

 

this implies that either ˆ 0β =  or 
 

2
2 2

ˆ ˆ 0xy yyS S

δ δ

λ
β β

σ σ
   

+ − =   
   

.          (12) 

 

The case ˆ 0β =  is excluded because, at this 
point, the likelihood function is undefined. 
Equation (12) factorizes to yield two real roots 
 

( ) }
1

2 2 2
2

1ˆ 4
2 xy xy yyS S Sδ

δ

β λσ
σ

 
= − ± + 

  
, 

(13) 
 
where the one with same sign as xyS  is the 

maximum likelihood estimator of β . 
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Maximum Likelihood Solution 
The complete maximum likelihood 

solution of the linear structural errors-in-
variables model for μ , 2σ , and 2

δσ  known is as 

follows. If 
 
1.  

( )2 2 22

21xy
yy

xx xx

S
S

S S
δ δσ σ σ

σ

 + > + 
   

then 

( )2 2

2
ˆ xy

xx

S

S
δσ σ

β
σ
+

= , 

 
2 2

2 2
ˆˆ X

Y δ

δ

σ μσα β
σ σ

 +
= −  + 

 , 

and 

( )2 2 22
2

2ˆ 1xy
yy

xx xx

S
S

S S
δ δ

ε

σ σ σ
σ

σ

 + = − + 
 

; 

 
otherwise 
 
2.  

( ) ( )  +  = − ± +    

2 2 2
2

2 2

41ˆ ,
2

yy

xy xy

S
S S

δ δ

δ

σ σ σ
β

σ σ

(14) 
2 2

2 2
ˆˆ X

Y δ

δ

σ μσα β
σ σ

 +
= −  + 

, 

and 
2ˆ 0εσ = . 

 
Because the sample statistics xyS , xxS , and yyS  

converge in probability to 2βσ , ( )2 2
δσ σ+  and 

( )2 2 2
εβ σ σ+  respectively, the derived 

maximum likelihood estimates (14) are 

consistent estimates of α , β  and 2
εσ . If 2

δσ  is 

set equal to zero ( )02 =δσ  so that the errors-in-

variables model (1) reduces to the simple linear 
regression model, the derived results are in 

agreement with the established results applicable 
to the latter model (that is, ˆOLSα  and ˆ

OLSβ ). 

It is also noted that further knowledge of 
the specific values of μ  and 2σ  are relevant to 

the estimation of the scale parameter α . This is 
in contrast to all other solutions obtained where 
μ  and 2σ  were unknown, that is, in all previous 

solutions with μ  and 2σ  unknown, 

( )ˆˆ , ˆfα β μ= (Birch, 1964 & Barnett, 1967), 

while with μ  and 2σ  known, 

( )2 2ˆˆ , , ,f δα β μ σ σ=  where f  denotes a function. 

It is worth noting that the derived 
solution can lead to the maximum likelihood 
solution when only 2

δσ  is known, and when μ  

and 2σ  are substituted by their corresponding 
estimates. This establishes the compatibility of 
the derived solution with the maximum 
likelihood solution where only one error 
variance is known. 

Note that condition (1) of (14) forces the 
estimate for 2

εσ  to be positive, that is, the first 

expression for β̂  applies if the likelihood does 
not reach its maximum in a boundary point 
owing to a positivity constraint of 2

εσ . Because 

the probability of this to be true tends to one as 
the number of observations increases, it follows 

that β̂  is asymptotically equivalent to 
 

( )2 2

2
ˆ xy

A
xx

S

S

δσ σ
β

σ
+

= .                  (15) 

 
Hence, the maximum likelihood estimates of 

β and ˆ
Aβ  have the same limiting distribution 

and their asymptotic standard errors are 
identical. 
 
Asymptotic Variances 

Expressions for the asymptotic 
variances of the maximum likelihood estimates 

of ( )2, , εψ α β σ=  can be obtained directly from 

the inverse information matrix, ( ) 1
I ψ

−
 
  . The 

information matrix is derived by calculating the 
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expected values of the second order derivatives 
of the log-likelihood function. 
 

( )

( )

( ) ( ) ( )

( ) ( )

=

 
 + +
 
 +
 + + +
 
 + + 
 
 

2 2 2 2

2 2 2 2
2 2 2 2 2

22 2 2 2 2 2

0

0
2

I

n
M

T T

T T

δ δ

δ δ
δ δ

δ δ δ

ψ

σ σ μ σ σ

βσ σ σ σ
μ σ σ μ σ σ

βσ σ σ σ σ σ

(16) 
 
where 
 

( )2 2 2 2 2 2T δ ε δ εσ β σ σ σ σ= + +  

and 

( ) ( )
( )

 + + =  
+ +  

22 2 2 2 2 24

2 4 2 2 2 2

2
.

2
M

T

δ ε δ

δ ε ε δ

σ β σ σ σ σσ

σ σ σ β σ
 

 
The inverse of this ( )3 3×  asymptotic 

covariance matrix of the maximum likelihood 

estimates α̂ , β̂  and 2ˆεσ  is: 

 

( )

( ) ( )

( )

( ) ( ) ( )

−
  = 

 
 + −
 + +
 
 

− − 
+ 

 
 − + + + 

1

2 24
2

2 2 2 2

2 2

4 2 2

2 2 2 2

22 2 2 2 2 2

2

21

2 2 2

I

T

n

MT

δ

δ δ

δ

δ

δ δ

δ δ δ

ψ

βμσ σσμ μ
σ σ σ σ

βσ σμ
σ σ σ

βμσ σ βσ σ
σ σ σ σ σ σ

(17) 
 

From (17), the asymptotic variances of β̂ , α̂  

and 2ˆεσ  are obtained as: 

 

( ) ( ) }{ 2 2 2 2 2 2
4

1ˆvar
n δ ε δ εβ σ β σ σ σ σ
σ

= + + , 

(18) 
 

( ) ( ) ( )
4

2
2 2

ˆˆvar var
δ

σα μ β
σ σ

  = + 
+ 

,   (19) 

 
and 

( )
( ) ( )2

22 2

2 ˆvar ˆ varMT
ε

δ

σ β
σ σ

 
 =  

+ 

.    (20) 

 
A comparison of the above expressions (18 and 

19) with the asymptotic variances of β̂  and α̂ , 

where only 2
δσ  is known, shows that the further 

knowledge of 2σ  leads to smaller variances for 
the maximum likelihood estimates. 
 

Methodology 
Simulation Study 

A simulation study was carried out 
using R statistical software to investigate the 
effect of sample size on the accuracy of the 
derived maximum likelihood estimates of α , β  

and 2
εσ  (14) and their corresponding asymptotic 

variances (18 – 20). Taking into account 
examples of data used for method comparison 
studies and the fact that, depending on the type 
of analyte considered, the sample size of a 
method comparison study will vary from a 
minimum of 17 to more than 500 (Bland & 
Altman, 1986; Stockl, Dewitte & Thienpont, 
1998; Linnet, 1999), this simulation study 
considered sample sizes ranging from a 
minimum of 20 to a maximum of 1,000. This 
was also done in order to assess the effect of a 
sample size on the accuracy of the derived 
estimates. Ten thousand simulations have been 
considered in this study and particular attention 
was given to the estimates of α  and β  because 
the values of these can allow for the estimation 
of possible constant and proportional 
interference biases in a biological test material. 
In all cases considered an interference bias of 
10% was allowed so that 0 10.α =  and 

1 10.β = . 
Because there is a tendency for 

practitioners to use methods with which they are 
more familiar, such as the ordinary least square 
(OLS) estimation for the simple linear 
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regression model (Westgard & Hunt, 1973), the 
simulation study also compared the OLS 
estimates with the derived MLEs (14). The 
accuracy of these estimates is based on the mean 
squared error (MSE) criterion; some of the 
obtained results are presented in Tables 1 – 3 
below. 
 

Results 
The results are in agreement with what was 
expected, namely: 
 
1. Increasing the sample size leads to a 

decrease in the bias of the maximum 
likelihood estimates and - as expected in 
such cases - the mean squared error reduces 
to the variance of the estimate. 

 
2. The mean squared errors of the maximum 

likelihood estimates are less than the mean 
squared errors of the least squares estimates 
irrespectively of the sample size. It is clear 
that the OLS are inappropriate to use in a 
method comparison study where errors are 
assumed in both assays. 

 
3. The accuracy of the maximum 

likelihood estimates particularly for β̂  and 

α̂  can be achieved with samples as small as 
20. 

 
4. The expressions for the asymptotic 

variances have been verified for samples 
greater than 100 with biases less than 
0.0001. 

 
Conclusion 

Under the assumption that the parameters 
specifying the underlying incidental distribution 

( )2,μ σ , the maximum likelihood estimates of 

the unknown parameters α , β  and 2
εσ  are 

obtained: these are consistent, asymptotically 
normal and efficient. The asymptotic variances 
of the estimates were obtained by the inversion 
of the information matrix. It has been shown that 
the asymptotically equivalent estimator of the 
slope is a function of 2σ  and 2

δσ  thus utilizing 

the known information about the variances. The 
derived solution is in agreement with the case 

where only 2
δσ  is known. In the latter case the 

asymptotically equivalent estimator of the slope 
is a function of the known variance 2

δσ  

(Ketellapper, 1983). A simulation study verified 
the accuracy of the maximum likelihood 
estimates with samples as small as 20. This 
study also verified the accuracy of the 
asymptotic variances with biases less than 
0.0001. 
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Table 1: MLEs and OLS Estimates and Their Corresponding Mean Squared Errors; Simulated Variances {.} and 
Derived Asymptotic Variances of the MLEs [.] ( 3μ = , 0 45.σ = , 0 4.δσ = , 0 6.εσ = ) 

Parameter 
Sample Size 

( )n  

Estimate MSE 
MLE 
{var} 
[var] 

OLS MLE OLS 

β  

20 
1.1017 

{0.2381} 
[0.2069]

0.6201 0.2381 0.3095 

40 
1.0956 

{0.1106} 
[0.1035]

0.6122 0.1107 0.2727 

100 
1.0999 

{0.0435} 
[0.0414]

0.6144 0.0435 0.2493 

500 
1.0989 

{0.0086} 
[0.0083]

0.6139 0.0086 0.2390 

1,000 
1.1009 

{0.0042} 
[0.0041]

0.6150 0.0042 0.2366 

α  

20 
0.0965 

{2.1723} 
[1.8857]

1.5414 2.1723 2.8173 

40 
0.1127 

{1.0052} 
[0.9429]

1.5627 1.0054 2.4631 

100 
0.0997 

{0.3958} 
[0.3771]

1.5562 0.3958 2.2472 

500 
0.1036 

{0.0778} 
[0.0754]

1.5587 0.0778 2.1526 

1,000 
0.0975 

{0.0380} 
[0.0377]

1.5551 0.0382 2.1297 

2
εσ  

20 
0.2937 

{0.0272} 
[0.0299]

- 0.0325 - 

40 
0.3279 

{0.0147} 
[0.0150]

- 0.0156 - 

100 
0.3464 

{0.0061} 
[0.0060]

- 0.0063 - 

500 
0.3575 

{0.0012} 
[0.0012]

- 0.0012 - 

1,000 
0.3587 

{0.0006} 
[0.0006]

- 0.0006 - 
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Table 2: MLEs and OLS Estimates and their Corresponding Mean Squared Errors; Simulated Variances {.} and 
Derived Asymptotic Variances of the MLEs [.] ( 3μ = , 0 35.σ = , 0 4.δσ = , 0 6.εσ = ) 

Parameter 
Sample Size 

( )n  

Estimate MSE 
MLE 
{var} 
[var] 

OLS MLE OLS 

β  

20 
1.0890 

{0.4603} 
[0.4179]

0.4792 0.4605 0.4799 

40 
1.1017 

{0.2274} 
[0.2089]

0.4782 0.2274 0.4299 

100 
1.0958 

{0.0844} 
[0.0836]

0.4752 0.0844 0.4063 

500 
1.0992 

{0.0168} 
[0.0167]

0.4766 0.0168 0.3918 

1,000 
1.1013 

{0.0083} 
[0.0084]

0.4776 0.0083 0.3890 

α  

20 
0.1318 

{4.1787} 
[3.7831]

1.9609 4.1797 4.3437 

40 
0.0950 

{2.0645} 
[1.8916]

1.9656 2.0645 3.8840 

100 
0.1124 

{0.7643} 
[0.7566]

1.9743 0.7645 3.6603 

500 
0.1026 

{0.1517} 
[0.1513]

1.9701 0.1517 3.5267 

1,000 
0.0961 

{0.0749} 
[0.0757]

1.9674 0.0749 3.5017 

2
εσ  

20 
0.2880 

{0.0268} 
[0.0294]

- 0.0323 - 

40 
0.3236 

{0.0147} 
[0.0147]

- 0.0164 - 

100 
0.3451 

{0.0059} 
[0.0059]

- 0.0061 - 

500 
0.3570 

{0.0012} 
[0.0012]

- 0.0012 - 

1,000 
0.3581 

{0.0006} 
[0.0006]

- 0.0006 - 
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Table 3: MLEs and OLS Estimates and their Corresponding Mean Squared Errors; Simulated Variances {.} and 
Derived Asymptotic Variances of the MLEs [.] ( 3μ = , 0 4.σ = , 0 4.δσ = , 0 6.εσ = ) 

Parameter 
Sample Size 

( )n  

Estimate MSE 
MLE 
{var} 
[var] 

OLS MLE OLS 

β  

20 
1.0850 

{0.3085} 
[0.2855]

0.5473 0.3087 0.3878 

40 
1.1003 

{0.1511} 
[0.1428]

0.5505 0.1511 0.3401 

100 
1.0999 

{0.0591} 
[0.0571]

0.5500 0.0591 0.3173 

500 
1.0997 

{0.0112} 
[0.0114]

0.5499 0.0112 0.3055 

1,000 
1.0996 

{0.0059} 
[0.0057]

0.5498 0.0059 0.3042 

α  

20 
0.1443 

{2.7914} 
[2.5923]

1.7575 2.7934 3.5080 

40 
0.0982 

{1.3767} 
[1.2962]

1.7477 1.3767 3.0720 

100 
0.0999 

{0.5366} 
[0.5185]

1.7497 0.5366 2.8593 

500 
0.1011 

{0.1023} 
[0.1037]

1.7507 0.1023 2.7511 

1,000 
0.1014 

{0.0532} 
[0.0518]

1.7509 0.0532 2.7390 

2
εσ  

20 
0.2948 

{0.0265} 
[0.0297]

- 0.0559 - 

40 
0.3233 

{0.0146} 
[0.0149]

- 0.0155 - 

100 
0.3468 

{0.0061} 
[0.0059]

- 0.0062 - 

500 
0.3571 

{0.0011} 
[0.0011]

- 0.0012 - 

1,000 
0.3589 

{0.0006} 
[0.0006]

- 0.0006 - 
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