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A Simulation Study of the Relative Efficiency of the Minimized Integrated Square 
Error Estimator (L2E) For Phase I Control Charting 
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Parameter estimates used in control charting, the sample mean and variance, are based on maximum 
likelihood estimation (MLE). Unfortunately, MLEs are not robust to contaminated data and can lead to 
improper conclusions regarding parameter values. This article proposes a more robust estimation 
technique; the minimized integrated square error estimator (L2E). 
 
Key words: Phase I control charting, SPC, L2E, MLE, parameter estimation. 
 
 

Introduction 
Process monitoring using control charts is the 
most common method used in statistical process 
control (SPC). In the literature two phases of 
control charting are distinguished: Phase I and 
Phase II control charting. Phase I control 
charting consists of two stages: Stage 1, the 
retrospective stage, and Stage 2, the prospective 
stage (Koning & Does, 2000). During Phase I, 
the appropriate control charting methods must 
be determined, and the appropriate process 
parameters estimated (Jones, 2002). 

The techniques associated with Phase I 
include analyzing sample data using gauge 
repeatability and reliability (GR&R) studies to 
investigate measuring system accuracy and 
variability, using capability indices to determine 
if a process is capable of producing within 
specification, using histograms and probability 
plots to verify distributional assumptions, using 
outlier detection tools (Ramsey & Ramsey, 
2007) to detect and remedy special causes of 
variation in the process, and obtaining reliable 
estimates of the process parameters 
(Montgomery, 1997). Thus, part of Phase I can 
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be considered a data editing process wherein 
outlying or contaminated data are removed from 
the sample to enable estimation of the 
appropriate process parameters. 

Phase II control charting is the actual 
use of the desired control chart to monitor and 
control a process in regards to changes in the 
process parameters (Woodall, 2000), 
distributional changes, and the randomness of 
the process. The construction of a Phase II 
control chart is based on the parameter estimates 
obtained in Phase I. Common Phase II control 
charts include the following (applied to either 
individual process observations or subgroups): 
the Shewhart-type, the exponential weighted 
moving average (EWMA), and the cumulative 
sum (CUSUM), among others (Dyer, Adams & 
Conerly, 2003). 

It is crucial that the data collected in 
Phase I are good data, meaning, free from 
outliers (contaminated data) and representative 
of typical process data with no special causes of 
variability. Contaminated data can lead to 
unreliable parameter estimates which, in turn, 
lead to improper conclusions regarding 
distribution assumptions, process capability and 
control chart design. The use of most control 
charts requires the estimation of the mean, µ, 
and standard deviation, σ (or a function thereof), 
of the in-control (IC) process. A process is said 
to be IC when only common cause variation is 
present, otherwise it is considered out-of-control 
(OC). 
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The estimates used for the true process 
mean, µ, and standard deviation, σ, are typically 
sample statistics, specifically, the sample mean, 
x , and the sample standard deviation, s, 
obtained from the good data. The sample 
statistics used in Phase I control charting are 
based on the principle of maximum likelihood 
estimation, that is, the sample mean and sample 
variance are maximum likelihood estimates 
(MLEs) of µ and σ2, respectively.  

Some of the practical deficiencies of 
MLEs are their lack of resistance to outliers and 
their general non-robustness with respect to 
model misspecification (Rudemo, 1982). For 
example, consider the following 5 data values: 4, 
5, 6, 7 and 100, and estimates based on MLEs 
(the sample mean and standard deviation). The 
sample mean and variance of all five data values 
are 24.4 and 1,781, respectively. If the data 
value of 100 is identified as an outlier and 
removed, then the new MLEs for the mean and 
variance are 5.5 and 1.69, respectively. 
Although the magnitude of the outlier is 
absurdly large, it is obvious that the MLEs 
cannot resist the influence of the large value. 
The values of the new MLEs are dramatically 
different, but they are more representative of the 
true nature of the data values. Recall, one 
emphasis of Phase I control charting is to 
identity and remove outliers, hence providing 
reliable estimates of the true process parameters. 
It should also be noted that, although MLEs are 
nonresistant to outliers, they are typically 
preferred because of their constructive nature as 
well as their asymptotic optimality properties. 

To overcome the deficiencies of MLEs 
and better enable the practitioner to obtain 
reliable parameter estimates, this article 
proposes the use of a specific nonparametric 
density estimation technique using a form of the 
integrated square error (ISE) estimator, also 
called L2E. Scott (2001) provides the theoretical 
construct of the L2E and the interested reader is 
encouraged to review the article. 

In this study, the L2E technique is 
shown to provide parameter estimates that are 
robust to contaminated data and to be 
constructive in nature. For example, considering 
the full data set previously discussed, the L2E 
estimates of the mean and variance (obtained 
through a simply executed Excel spreadsheet 

algorithm) are 5.5 and 2.25, respectively. Notice 
how the L2E estimates are robust to the 
inclusion of the outlier. 

Although Scott (2001) introduced the 
L2E as an estimator of process parameters, 
evidences the estimator’s robustness to outliers 
in large data sets, and shows its constructive 
nature, this research explores the properties of 
the L2E as an alternative estimator to MLE 
across a broad range of sample sizes and a broad 
range of data contamination affecting the mean 
alone, the variance alone, and the mean and 
variance together. This study also compares the 
absolute difference between MLE and L2E over 
the range of sample sizes and contaminations 
(mean, variance, and mean-variance), and shows 
that the L2E estimates are as good as MLE 
estimates in almost all cases. Additionally, the 
relative efficiency of MLE versus L2E estimates 
is compared across all cases and it is shown that 
the L2E estimates are more robust in most cases 
than MLE estimates. 

The literature related to Phase I control 
charting for univariate processes is limited. 
Readers are referred to Chou & Champ (1995), 
Koning & Does (2000), Newton & Champ 
(1997), Sullivan & Woodall (1996), and 
Woodall (2000). Surprisingly, the focus of the 
majority of the literature is devoted to methods 
for multivariate Phase I SPC (Alt & Smith, 
1988; Sullivan & Woodall, 1994; Sullivan, 
Barrett & Woodall, 1995; Woodall, 2000). 
 
Overview of the Phase I Environment 

During Phase I, process data are 
collected and analyzed to enable Phase II control 
charting. After the data are collected, the SPC 
method can be considered as the combination of 
Phase I and Phase II applications. The general 
SPC method can be thought of in terms of four 
design steps. The first three steps occur in the 
Phase I environment and step 4 occurs in the 
Phase II environment. 
 
Step 1: 

Identify the desired control chart (for 
monitoring individual observations or subgroup 
data), the required parameters, and the desired 
IC average run length (ARL). The IC ARL is the 
average number of samples taken until an IC 
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process indicates a statistic outside of the control 
limits. 
 
Step 2: 

Determine the subgroup size, n, and the 
number of subgroups, m, which will be used to 
estimate the parameters of the IC process. 
Obtain a reference sample of m subgroups of 
size n ≥ 1 observations. 
 
Step 3: 

Ensure that the reference sample is 
representative of the IC process, simultaneously 
estimating the required control chart parameters 
using a robust technique, such as, L2E 
(recommended herein) or an iteratively robust 
technique like MLE. 
 
Step 4: 

Apply the desired control chart to an 
ongoing process, monitoring, controlling and 
adjusting the process as it evolves. 
 

In Step 1, the typical choice of control 
chart is related to the desire for quick detection 
of extreme changes in process parameters versus 
eventual detection of minor changes in process 
parameters (Dyer, Adams & Conerly, 2003; Lin 
& Adams, 1996). The Shewhart-type control 
charts are commonly used for the former, and 
the EWMA and CUSUM control charts are used 
for the latter. The choice of the IC ARL in Step 
1 involves practical and economic 
considerations, depending largely on the costs 
associated with false alarms versus concealment 
of true process changes (Dyer, Adams & 
Conerly, 2003). 

In Step 2, the subgroup size (n) is a 
function of the sampling frequency, the process 
output rate, and practical considerations and 
limitations regarding time and costs. Marsaglie, 
Maclaren & Bray (1964) provide a discussion of 
the selection of an appropriate subgroup size (n) 
and sampling frequency to design control charts. 
The choice of the number of subgroups (m) is 
most likely an economic consideration (Jones, 
2002). If contaminated data exist in the 
reference sample, the parameter estimates 
obtained can be adversely affected if MLEs are 
used to obtain parameter estimates (L2E to a 
lesser degree). Small reference samples tend to 

magnify the adverse effects of estimation. A 
widely accepted heuristic is that m = 30 
subgroups from a process will provide 
reasonable estimates (Jones, 2002); Quesenberry 
(1993) suggests at least m = 100 subgroups of 
size n = 5 to estimate the parameters for the 
Shewhart-type control chart. Jones, Champ & 
Rigdon (2001) showed that an m much greater 
than 100, up to m = 400, is often required when 
designing an EWMA control chart. 

In Step 3, the reference sample obtained 
in Step 2 is analyzed in order to estimate the 
unknown parameters and to determine the state 
of the process (IC versus OC). This is also the 
stage when distributional and randomness 
assumptions are verified, as well as when 
GR&R and capability studies are conducted. 
Concerning parameter estimation, if MLEs are 
used, the resulting values are the estimates used 
to construct an initial control chart with limits 
set according to the desired IC ARL in Step 1. In 
Stage 2, the control charts are used for 
prospective monitoring of the reference sample 
to determine departures from the estimated 
parameters. The control charts are primarily 
used to detect contaminated data or nonrandom 
process output, that is, data resulting from 
special cause variation. 

Step 3 is often an iterative process, 
wherein contaminated data are identified (to the 
degree possible) and removed using a control 
chart based on the initial parameter estimates 
(MLEs). Any contaminated data identified are 
investigated and removed, new MLEs are 
obtained, a new control chart is constructed 
using the MLE values and more contaminated 
data are removed. 

The process of parameter estimation and 
control chart removal of contaminated data 
continues until sufficient experience has been 
accumulated so that the IC parameters are 
effectively considered to be known through 
estimation. It should also be noted that if a large 
degree of contaminated data exist in the 
reference sample (as a percent of the sample 
size), or the magnitude of contaminated data is 
large (measured in terms of shifts in the process 
mean or variability), then the initial control 
limits may be inflated to a point where the 
contaminated data are hidden and unidentifiable. 
If this is the case, the Phase II parameter 
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estimates will be unreliable. If L2E estimates are 
used instead, it will be shown that the iterative 
process in Step 3 might be minimized by 
providing a more robust set of parameter 
estimates in the first iteration, which will lead to 
a more robust set of control limits, thus enabling 
more efficient detection and removal of 
contaminated data. 
 

Methodology 
The L2E Estimation Technique 

The L2E estimation criterion for the 
two-parameter normal density technique 
requires the minimization of the L2E function 
with respect to the parameters µ and σ. (See 
Scott (2001) for the derivation of the general 
L2E criterion and specification of the two-
parameter normal density.) Suppose a sample of 
size n ≥ 1 is drawn from a normal distribution 
with mean, µ, and standard deviation, σ. Let the 
n sample data be represented by x1, x2,…, xn, 
and let the univariate normal density be denoted 
by φ(x|µ, σ). The minimization of the normal 
L2E function (equation 1) with respect to µ and 

σ produces the L2E estimates, ,μ  σ
∧ ∧

, that is, the 
estimation criterion is shown as: 
 

( )
n

i
μ,σ i=1

1 2
L2E μ ,σ =arg - |μ,σ .min

n2σ π
x

∧ ∧   
      

φ

(1) 
 

Observe that the L2E minimizes a 
function of the sum of the densities; however, 
the MLE can be shown to maximize a function 
of the product of the densities. For values of x 
extremely distant from µ, the density value 
approaches zero. As a result, the L2E utilizes 
only the largest portion of the data that matches 
the model (good data), that is, x values located 
within a reasonable distance of µ ± 3σ. In effect, 
the L2E criterion ignores contaminated data, 
hence generally providing more robust 
parameter estimates. Because MLE must 
account for all the data, the fits often blur the 
distinction between good data and contaminated 
data (Scott, 2001). In cases wherein there are no 
contaminated data, the L2E and MLE estimates 
are nearly equal. It can be shown through 
consistency theory that, for a large sample of 

uncontaminated data, MLE is a very good 
estimator (Mood, Graybill & Boes, 1970); other 
estimators, such as the L2E may be just as good, 
but not better. In this study the L2E is shown to 
be just as good when the reference sample is 
uncontaminated and better in almost all 
simulated cases when contamination exists. 
 

Results 
Comparison with MLEs 

Unfortunately there are few example 
data sets that cover the range of samples sizes 
and contamination types and levels described 
herein. Montgomery (1997) provides some of 
the most referenced data sets in SPC research, 
but unfortunately none of these have sufficient 
examples required to cover the 96 cases of 
sample sizes and contamination types and levels 
described in this article. Simulation results are 
therefore used to investigate the behavior of the 
L2E estimates across a broad range of sample 
sizes as well as types and levels of data 
contamination. In lieu of borrowing an example 
data set, the simulation results are used to reveal 
the behavior of the L2E estimates over a broad 
range of cases and an example application is 
provided to assist the user in applying the L2E 
technique. 

Regarding the simulation results, Tables 
1a and 1b reveal average L2E and MLE 
estimates for µ and σ2 (σ2 reported as σ) based 
on averaging 10,000 simulations of n = 100 
normal pseudo-random variables representing 
differing levels and degrees of good versus 
contaminated data. (A complete description of 
the simulation design is provided in the 
Appendix.) The good data (IC process) are 
random variables representing a normal (µ = 0, 
σ = 1) process, N(0, 1). The contaminated data 
are drawn from a normal process with 
parameters that vary from the IC process. Levels 
of contamination refer to the number of 
contaminated data values (cn) in a sample of 
size n = 100 and degrees of contamination refer 
to whether the contaminated data has 
experienced a mean shift alone, a shift in the 
standard deviation alone, or a shift in both the 
mean and standard deviation. Contamination 
levels in Tables 1a and 1b correspond to n = 5, 
15, 25 and 45. Degrees of contamination 
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correspond to the following shifts (for cn = 5, 
15, 25 and 45): 
 
• Mean shifts (alone) of µ = 0.5, 1.0, 2.0, and 

3.0 (16 cases) 
• Standard deviation shifts (alone) of σ = 1.5, 

2.0, 2.5, 3.0 (16 cases) 
• Simultaneous mean and standard deviation 

shifts representing combinations of all mean 
and standard deviation shifts alone (64 
cases). 

 
Tables 1a and 1b display simulation 

results providing 96 comparisons for average 
L2E versus MLE estimates of µ and σ. For the 
IC process data (n = 100 random variables 
generated from a N(0, 1) process, the resulting 

simulation based estimates are 
∧
μ (L2E) = 

0.0006, 
∧
μ (MLE) = 0.0007, 

∧
σ (L2E) = 0.9988, 

and 
∧
σ (MLE) = 1.0015. In Tables 1a and 1b the 

estimates of µ and µ are shown as 
∧
μ (L2E), 

∧
μ (MLE), 

∧
σ (L2E) and 

∧
σ (MLE). For all mean 

shifts and standard deviation shifts alone, the 
mathematical expectation and standard deviation 
(based on the levels and degrees of 
contamination) match the simulated MLE 
results. 

In deriving the expected value, let Xn be 
the mixture of two normally distributed samples 
of size n, where Xn-cn is the uncontaminated 
distribution with E(Xn-cn) = µn-cn, and Xcn is the 
contaminated distribution with E(Xcn) = µcn 
(recall, cn is the number of contaminated data 
values in the combined sample of size n). In this 
case, the E(Xn) is the weighted average 
expectation of each distribution of data, where 
the weights are the sample sizes from each 
distribution relative to the total sample size. 
Thus, 
 

( ) ( ) ( )n n cn cn
n cn cnE E EX X Xn n−

−= + . 

 
In the case where the uncontaminated data 
distribution has E(Xn-cn) = 0, 

the ( ) ( )n cn
cnE EX Xn

= . For example, for 

Xcn~N(3, 1) where n = 100 and cn = 45, the 
45

( ) (3) 1.35
100

nE X = = . This value matches 

the simulated value given by 
∧
μ  (MLE) in Table 

1b. 

All simulated values for 
∧
μ (MLE) (for 

both mean and standard deviation shifts alone) 
match the mathematical expectations. This is 

expected given that 
∧
μ (MLE) is location 

invariant to distributional changes due to shifts 
in either the mean or standard deviation. The 
same can be observed for the standard deviation 

estimates, σ
∧

(MLE), where 
 

( ) ( ) ( )n n nc nc
n cn cnVar VarX X Xn n

σ −
−= +  

 

when ( ) 0nE X =  and ( )n ncVar X − = 1. All 

simulated values for σ
∧

(MLE) (for standard 

deviation shifts alone) match ( )nXσ . This is 

expected because σ
∧

(MLE) is scale invariant to 
distributional changes due to shifts in the mean 
alone or the standard deviation alone. For cases 
where the mixed distribution has experienced 
both a mean shift and a standard deviation shift, 

σ
∧

(MLE) is not scale invariant; hence, the 
variance is not the weighted average of mixed 
variance components. 
 
Simulation Result Comparison with MLEs 

The simulation results reveal that in all 
cases 

{abs(
∧
μ (L2E) – µ) ≤ abs(

∧
μ (MLE) – µ)}, 

 
and in 95% of cases 

{abs(σ
∧

(L2E) – σ) ≤ abs(σ
∧

(MLE) – σ)}. 
 
That is, the L2E estimates in almost all cases are 
as good (and often much better) as the MLE 
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estimates. This attests to the contention that the 
L2E estimators are as robust, or more robust, 
than MLE estimators. 

Observe in Tables 1a and 1b that 
∧
μ (L2E) is robust for most shifts in µcn, for all 

.45
cn
n

≤ , and more robust than 
∧
μ (MLE) in all 

cases. The relative efficiency measures in Tables 
2a and 2b indicate that the worst cases are those 

with large
cn
n

, for µcn ≥ 2. When µn-cn = 0, the 

relative efficiency for either mean estimator is 

defined as REµ = 1- abs(
∧
μ ) where 

∧
μ  is the 

estimate of µn-cn and is the mean of the IC 
process. Table 3 displays the percent frequency 
distribution of relative efficiency measures for 
all cases simulated. Notice that, for mean shifts 

alone, 57% of 
∧
μ (L2E) have REµ > 0.80 versus 

44% of 
∧
μ (MLE).  
For shifts in the mean and standard 

deviation (simultaneously), the frequency of 

REµ > 0.80 is 81% for 
∧
μ (L2E) and only 43% for 

∧
μ (MLE). It appears that 

∧
μ (L2E) is most robust 

when both a mean and standard deviation shift 
has occurred. 

The relative efficiency for a standard 
deviation estimate is defined as 
 

REσ = 
( )

1 n cn

n cn

abs σ σ
σ

−

−

 
−  
  

−
, 

 

where σ
∧

 is the estimate of σn-cn, the standard 
deviation of the IC process. Because σn-cn= 1 in 

all simulation cases, REσ =1-abs(σ
∧

-1). Again, 

observe in Tables 1a and 1b that σ
∧

(L2E) is 

robust for most shifts in σcn, for all .45
cn
n

≤ , 

and particularly when µn-cn < 1. Notice also that 

σ
∧

(L2E) is more robust than σ
∧

(MLE) in 95% 

of all cases. It appears that σ
∧

(MLE) is less 

robust when all of µn-cn, σn-cn, and 
cn
n

 are large. 

The relative efficiency measures in Tables 2a 
and 2b also indicates that these are the worst 

cases for σ
∧

(L2E). Note in Table 3 that, for 

standard deviation shifts alone, 87% of σ
∧

(L2E) 

have REσ > 0.80 versus 50% of σ
∧

(MLE). For 
shifts in both the mean and standard deviation 
(simultaneously), the frequency of REσ > 0.80 is 

69% for σ
∧

(L2E) and only 31% forσ
∧

(MLE). It 

appears that σ
∧

(L2E) is more robust when only 
a shift in the standard deviation has occurred. 
 
L2E Application Example 

As noted, one advantage of using MLE 
is its constructive nature. In other words, it is 
simple to average a collection of data values or 
calculate the standard deviation. The L2E 
estimates are also constructive in nature, but 
require optimization techniques. Specifically, 
the L2E function given by equation 1 must be 
formulated and minimized subject to constraints. 
This can be readily accomplished in a 
spreadsheet environment with little or no 
knowledge of programming or minimization 
techniques. The authors suggest using Microsoft 
Excel and the spreadsheet add-in Solver. The 
data can be displayed in the spreadsheet, the 
L2E function can be formulated using the data 
and functions of the data as input, and the Solver 
function can be invoked to provide the L2E 
estimates via Solver’s built-in optimization 
algorithm.  

The data can represent individual 
observations or subgroup averages. If individual 
observations are used, then the resulting L2E 
estimates are those for process µ and σ. If 
subgroup averages are used, the resulting L2E 

estimates are those for µ and nσ  (standard 
error of the mean, SE). In the latter case, 

multiplying the estimate of SE by n  yields the 
estimate for σ. For practitioners familiar with 
optimization, the L2E estimation problem can be  
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viewed in the instructional form given by 
objective: minimize 
 

n

i
i=1

1 2
L2E = - |μ ,σ

n2σ π
xφ

∧ ∧

∧
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by changing the valuesμ,  σ
∧ ∧

 subject to 

constraints: σ
∧

> 0. 
Figure 1 displays the author’s 

spreadsheet in functional form, before using 

Table 1a: L2E and MLE Estimates of µ and σ 

CSS 
µ 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 

σ 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

5 

∧
μ  (L2E) 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00 0.04 0.02 0.01 0.01 0.00 

∧
μ  (MLE) 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.05 0.05 

σ
∧

 (L2E) 1.00 1.01 1.02 1.02 0.99 1.01 1.01 1.02 1.02 1.01 1.01 1.02 1.02 1.02 

σ
∧

 (MLE) 1.03 1.07 1.12 1.17 1.00 1.03 1.07 1.12 1.18 1.02 1.05 1.09 1.14 1.19 

15 

∧
μ  (L2E) 0.00 0.00 0.00 0.00 0.07 0.04 0.02 0.01 0.01 0.13 0.07 0.04 0.03 0.02 

∧
μ  (MLE) 0.00 0.00 0.00 0.00 0.08 0.08 0.08 0.08 0.08 0.15 0.15 0.15 0.15 0.15 

σ
∧

 (L2E) 1.04 1.07 1.08 1.09 1.00 1.05 1.07 1.09 1.09 1.05 1.07 1.08 1.09 1.10 

σ
∧

 (MLE) 1.08 1.20 1.33 1.47 1.01 1.10 1.21 1.34 1.48 1.06 1.14 1.25 1.37 1.51 

25 

∧
μ  (L2E) 0.00 0.00 0.00 0.00 0.12 0.07 0.04 0.03 0.02 0.23 0.14 0.08 0.05 0.03 

∧
μ  (MLE) 0.00 0.00 0.00 0.00 0.12 0.12 0.12 0.12 0.12 0.25 0.25 0.25 0.25 0.25 

σ
∧

 (L2E) 1.08 1.13 1.17 1.19 1.01 1.09 1.14 1.17 1.19 1.08 1.13 1.16 1.18 1.19 

σ
∧

 (MLE) 1.14 1.31 1.51 1.72 1.02 1.16 1.33 1.52 1.73 1.09 1.22 1.38 1.57 1.77 

45 

∧
μ  (L2E) 0.00 0.00 0.00 0.00 0.23 0.15 0.10 0.07 0.05 0.44 0.30 0.21 0.15 0.11 

∧
μ  (MLE) 0.00 0.00 0.00 0.00 0.22 0.22 0.22 0.22 0.22 0.45 0.45 0.45 0.45 0.45 

σ
∧

 (L2E) 1.16 1.16 1.39 1.47 1.01 1.19 1.31 1.40 1.48 1.12 1.26 1.36 1.43 1.49 

σ
∧

 (MLE) 1.24 1.53 1.82 2.13 1.02 1.26 1.54 1.84 2.14 1.11 1.34 1.60 1.89 2.19 
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Solver to minimize the L2E function. The data 
values 4, 5, 6, 7, 100 are input into column B, 
cells B11 to B15. The MLE sample mean and 
standard deviation, from the MLE variance, 
(24.4, 42.7) are calculated and displayed in 
column A, cells A5 and A6, respectively, using 
the built-in Excel function formulas shown in 
Figure 2. Figure 2 displays the same spreadsheet 
in formula/function view, allowing replication of 
cell formulas by the practitioner. Figure 1, 
column A, cells A11 to A15, contain the 
calculated normal probability density function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Npdf) values resulting from the built-in Excel 
function shown in Figure 2. Because the Npdf 
function requires input values for the mean and 
standard deviation, the MLE estimates are 
initially used, and these values are temporarily 
input into the L2E estimate cells, column B, 
cells B5 and B6. Cells B5 and B6 will 
eventually be overwritten and contain the L2E 
estimates, as provided by Solver. Figure 1, cell 
A2, displays the L2E function value that is to be 
minimized, and Figure 2 displays the formula 
given by equation 1 as a function of both the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1b: L2E and MLE Estimates of µ and σ 

CSS 
µ 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 

σ 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

5 

∧
μ  (L2E) 0.04 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.01 

∧
μ  (MLE) 0.10 0.10 0.10 0.10 0.10 0.15 0.15 0.15 0.15 0.15 

σ
∧

 (L2E) 1.04 1.02 1.02 1.02 1.02 1.04 1.03 1.03 1.02 1.02 

σ
∧

 (MLE) 1.09 1.12 1.15 1.20 1.25 1.19 1.22 1.25 1.29 1.34 

15 

∧
μ  (L2E) 0.16 0.10 0.07 0.04 0.03 0.09 0.08 0.07 0.05 0.03 

∧
μ  (MLE) 0.30 0.30 0.30 0.30 0.30 0.45 0.45 0.45 0.45 0.45 

σ
∧

 (L2E) 1.16 1.12 1.10 1.10 1.10 1.18 1.15 1.12 1.11 1.11 

σ
∧

 (MLE) 1.23 1.30 1.39 1.51 1.63 1.47 1.53 1.61 1.71 1.82 

25 

∧
μ  (L2E) 0.34 0.22 0.14 0.09 0.06 0.28 0.20 0.15 0.11 0.07 

∧
μ  (MLE) 0.50 0.50 0.50 0.50 0.50 0.75 0.75 0.75 0.75 0.75 

σ
∧

 (L2E) 1.30 1.24 1.21 1.21 1.21 1.46 1.33 1.26 1.24 1.23 

σ
∧

 (MLE) 1.32 1.43 1.57 1.74 1.92 1.64 1.73 1.85 1.99 2.16 

45 

∧
μ  (L2E) 0.86 0.61 0.42 0.30 0.21 1.24 0.95 0.66 0.44 0.31 

∧
μ  (MLE) 0.90 0.90 0.90 0.90 0.90 1.35 1.35 1.35 1.35 1.35 

σ
∧

 (L2E) 1.52 1.54 1.54 1.55 1.57 2.09 2.01 1.87 1.75 1.69 

σ
∧

 (MLE) 1.41 1.59 1.82 2.08 2.35 1.80 1.95 2.14 2.36 2.61 
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sample size (n) in cell B8 and the summed Npdf 
values. Prior to invoking the Solver function, the 
L2E function value (shown in Figure 1) is 
calculated using the MLE mean and standard 
deviation, but referencing the cells for the L2E 
mean and standard deviation. Figure 3 displays 
the Solver dialogue box referencing (1) the 
minimized L2E value cell (A2) as the target cell 
to minimize, (2) the cells to be changed to 
produce the minimum L2E value (B5 and B6), 
and (3) the constraint requiring the standard  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deviation to be non-negative. Selecting the Solve 
button invokes Solver to produce the L2E 
estimates of µ and σ whose values will 
overwrite the MLE values temporarily stored in 
cells B5 and B6. After solving for the L2E 
estimates, the actual value of the minimized L2E 
function is of no practical use and can be 
discarded. The L2E estimates of the mean and 
standard deviation (based on this example) are 
5.5 and 1.5, respectively. 
 

Table 2a: Relative Efficiency of L2E and MLE Estimates of µ and σ 
 

CSS 
µ 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 

σ 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

5 

∧
μ  (L2E) 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00 1.00 0.96 0.98 0.99 0.99 1.00

∧
μ  (MLE) 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.97 0.95 0.95 0.95 0.95 0.95

σ
∧

 (L2E) 1.00 0.99 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.98 0.98

σ
∧

 (MLE) 0.97 0.93 0.88 0.83 1.00 0.97 0.93 0.88 0.82 0.98 0.95 0.91 0.86 0.81

15 

∧
μ  (L2E) 1.00 1.00 1.00 1.00 0.93 0.96 0.98 0.99 0.99 0.87 0.93 0.96 0.97 0.98

∧
μ  (MLE) 1.00 1.00 1.00 1.00 0.92 0.92 0.92 0.92 0.92 0.85 0.85 0.85 0.85 0.85

σ
∧

 (L2E) 0.96 0.93 0.92 0.91 1.00 0.95 0.93 0.91 0.91 0.95 0.93 0.92 0.91 0.90

σ
∧

 (MLE) 0.92 0.80 0.67 0.53 0.99 0.90 0.79 0.66 0.52 0.94 0.86 0.75 0.63 0.49

25 

∧
μ  (L2E) 1.00 1.00 1.00 1.00 0.88 0.93 0.96 0.97 0.98 0.77 0.86 0.92 0.95 0.97

∧
μ  (MLE) 1.00 1.00 1.00 1.00 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.75 0.75 0.75

σ
∧

 (L2E) 0.92 0.87 0.83 0.81 0.99 0.91 0.86 0.83 0.81 0.92 0.87 0.84 0.82 0.81

σ
∧

 (MLE) 0.86 0.69 0.49 0.28 0.98 0.84 0.67 0.48 0.27 0.91 0.78 0.62 0.43 0.23

45 

∧
μ  (L2E) 1.00 1.00 1.00 1.00 0.77 0.85 0.90 0.93 0.95 0.56 0.70 0.79 0.85 0.89

∧
μ  (MLE) 1.00 1.00 1.00 1.00 0.78 0.78 0.78 0.78 0.78 0.55 0.55 0.55 0.55 0.55

σ
∧

 (L2E) 0.84 0.84 0.61 0.53 0.99 0.81 0.69 0.60 0.52 0.88 0.74 0.64 0.57 0.51

σ
∧

 (MLE) 0.76 0.76 0.18 -0.13 0.98 0.74 0.46 0.16 -0.14 0.89 0.66 0.40 0.11 -0.19
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Table 2b: Relative Efficiency of L2E and MLE Estimates of µ and σ 

CSS 
µ 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 

σ 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

5 

∧
μ  (L2E) 0.96 0.97 0.98 0.99 0.99 0.98 0.98 0.98 0.99 0.99 

∧
μ  (MLE) 0.90 0.90 0.90 0.90 0.90 0.85 0.85 0.85 0.85 0.85 

σ
∧

 (L2E) 0.96 0.98 0.98 0.98 0.98 0.96 0.97 0.97 0.98 0.98 

σ
∧

 (MLE) 0.91 0.88 0.85 0.80 0.75 0.81 0.78 0.75 0.71 0.66 

15 

∧
μ  (L2E) 0.84 0.90 0.93 0.96 0.97 0.91 0.92 0.93 0.95 0.97 

∧
μ  (MLE) 0.70 0.70 0.70 0.70 0.70 0.55 0.55 0.55 0.55 0.55 

σ
∧

 (L2E) 0.84 0.88 0.90 0.90 0.90 0.82 0.85 0.88 0.89 0.89 

σ
∧

 (MLE) 0.77 0.70 0.61 0.49 0.37 0.53 0.47 0.39 0.29 0.18 

25 

∧
μ  (L2E) 0.66 0.78 0.86 0.91 0.94 0.72 0.80 0.85 0.89 0.93 

∧
μ  (MLE) 0.50 0.50 0.50 0.50 0.50 0.25 0.25 0.25 0.25 0.25 

σ
∧

 (L2E) 0.70 0.76 0.79 0.79 0.79 0.54 0.67 0.74 0.76 0.77 

σ
∧

 (MLE) 0.68 0.57 0.43 0.26 0.08 0.36 0.27 0.15 0.01 -0.16 

45 

∧
μ  (L2E) 0.14 0.39 0.58 0.70 0.79 -0.24 0.05 0.34 0.56 0.69 

∧
μ  (MLE) 0.10 0.10 0.10 0.10 0.10 -0.35 -0.35 -0.35 -0.35 -0.35 

σ
∧

 (L2E) 0.48 0.46 0.46 0.45 0.43 -0.09 -0.01 0.13 0.25 0.31 

σ
∧

 (MLE) 0.59 0.41 0.18 -0.08 -0.35 0.20 0.05 -0.14 -0.36 -0.61 

 
Table 3: Percent Frequency of L2E and MLE Estimates of µ and σ within a Range of Relative Efficiency 

Range of Relative 
Efficiency 

µ Shifts Alone σ Shifts Alone µ and σ Shifts 
∧
μ (L2E) 

∧
μ (MLE) σ

∧
(L2E) σ

∧
(MLE)

∧
μ (L2E)

∧
μ (MLE) σ

∧
(L2E) σ

∧
(MLE)

0.90 1.00 38% 19% 56% 19% 67% 19% 47% 17% 

0.80 0.90 19% 25% 31% 31% 14% 25% 23% 14% 

0.70 0.80 19% 13% 6% 13% 6% 13% 9% 20% 

0.60 0.70 6% 6% 6% 19% 5% 6% 13% 19% 

0.50 0.60 6% 13% 0% 13% 3% 13% 5% 19% 

<0.50 12% 18% 0% 6% 5% 24% 3% 11% 
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Conclusion 
The importance of Phase I control charting was 
discussed, particularly the estimation of 
appropriate parameters to enable Phase II 
control charting. The general SPC method was 
shown to be a collection of steps that include 
both Phase I and Phase II control charting. For 
the Phase I environment, the minimized 
integrated square error estimator, L2E, was 
introduced as a robust parameter estimation 
technique and suggested as an alternative to 
MLEs. 

Regarding managerial implications, the 
L2E estimation technique was described and 
shown to be easily constructed and applied in a 
spreadsheet environment. It was also shown to 
be a robust alternative to MLE estimation and 
just as simple to apply. The study also provided 
insights to the importance of clean data when 
constructing control charts based off of the 
Phase I processes and how the L2E estimator 
can facilitate robust parameter estimation 
required in SPC applications. 

A simulation study revealed that the 
L2E estimates of µ and σ for a normal 
distribution are as good, and in most cases 
better, than MLE estimates when the reference 
sample is contaminated by shifts in the mean, 
the variance, or both the mean and variance. 
Tables based on the simulation results compare 
the absolute and relative performance of both the 
L2E and MLE estimators. Finally, an example 
was provided to enable an SPC practitioner, with 
little or no knowledge of programming or 
optimization, to readily apply the L2E 
technique. 

Although this article discussed the 
application of L2E estimators in the SPC 
environment (assuming a univariate normal 
distribution), the technique can also be adapted 
to enable robust parameter estimation when 
discrete (Poisson) or multivariate processes are 
to be monitored and controlled. Additionally, the 
L2E is only one of several nonparametric 
density estimators that can be considered in the 
Phase I environment. Other estimators that 
might be of research interest include M-
Estimators and estimators based on Hellinger’s 
distance criterion. 
 
 

Figure 1: Functional Form Excel Spreadsheet 
(Prior to using Solver function) 

 
 
 
 

Figure 2: Formula/Function View Excel Spreadsheet 

 
 
 
 

Figure 3: Solver Dialogue Box Referencing the 
Minimized L2E Value Cell 
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Appendix: Simulation Description 
The simulation program was designed and 
compiled using Microsoft Visual Basic 6.0, 
executed in Microsoft Excel 2000 using normal 
random variates generated and imported from 



EFFICIENCY OF MINIMIZED INTEGRATED SQUARE ERROR ESTIMATOR (L2E) 

312 
 

Microsoft FORTRAN PowerStation for 
Windows, Version 4.0, FORTRAN 90. Each 
simulation was conducted according to steps 
provided below. A series of 100 N(0, 1) random 
variates was generated by FORTRAN MSIMSL 
subroutine RNNOA.  

Routine RNNOA generates 
pseudorandom numbers from a standard normal 
(Gaussian) distribution using an 
acceptance/rejection technique due to 
(Kinderman & Ramage, 1976). In this method, 
the normal density is represented as a mixture of 
densities over which a variety of 
acceptance/rejection methods due to (Marsaglia, 
1964), (Marsaglia & Bray, 1964), and 
(Marsaglia, Maclaren & Bray, 1964) are applied. 
The final parameter estimates for each of the 96 
cases were based on 10,000 simulations, which 
provided a maximum margin of error of 0.02 in 
estimation of the MLE means, with 95% 
confidence. These variates were the simulated 
observations, Xi’s, for each of the cases 
investigated. 
 
Step 1: 

a. For estimation of the mean (the 16 cases 
of a mean shift only), a shift in the mean 
was induced in the simulated 
observations affecting cn of the n = 100 
variates. The values of cn = 5, 15, 25 
and 45 (levels of contamination), and 
the magnitudes of shifts were µcn = 1.50, 
2.00, 2.50 and 3.00 (degrees of 
contamination). Every combination of 
cn and σcn produced the 16 cases. 

 
b. For estimation of the standard deviation 

(the 16 cases of a standard deviation 
shift only), a shift in the standard 
deviation was induced in the simulated 
observations affecting cn of the n = 100 
variates. Again, the values of cn = 5, 15, 
25 and 45, and the magnitudes of shifts 
were σcn = 1.50, 1.00, 2.00 and 3.00. 
Every combination of cn and µcn 
produced the 16 cases. 

 
 
 
 
 

c. For estimation of the mean and standard 
deviation (the 64 cases of both a mean 
and standard deviation shift), a shift in 
each parameter was induced in the 
simulated observations affecting cn of 
the n = 100 variates. Again, the values 
of cn = 5, 15, 25 and 45, and the 
magnitudes of shifts were µcn = 1.50, 
2.00, 2.50, 3.00 and σcn = 1.50, 1.00, 
2.00 and 3.00. Every combination of cn, 
µcn, and σcn produced the 64 cases. 

 
Step 2: 

The individual L2E and MLE estimates of µ 
and σ (10,000 for each estimate, per case) 
were calculated using the procedures 
described in the article. 

 
Step 3: 

The average L2E and MLE estimates of µ 
and σ for each case was obtained by 
averaging over the 10,000 individual 
estimates for each estimator. 
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