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Bayesian Regression Analysis with Examples in S-PLUS and R 
 

S. P. Ahmad A. A. Khan A. Ahmed 
University of Kashmir, 

Srinagar, India 
Aligarh Muslim University, 

U.P, India 
 

 
An extended version of normal theory Bayesian regression models, including extreme-value, logistic and 
normal regression models is examined. Methods proposed are illustrated numerically; the regression 
coefficient of pH on electrical conductivity (EC) of soil data is analyzed using both S-PLUS and R 
software. 
 
Key words: Bayesian regression, extreme-value model, S-PLUS, R. 
 
 

Introduction 
In statistics, regression analysis includes many 
techniques for modeling and analyzing several 
variables, when the focus is on the relationship 
between a dependent variable and one or more 
independent variables. In practice, many 
situations involve a heterogeneous population 
and it is important to consider the relationship of 
response variable y on concomitant variable x 
which is explicitly recognized. 

One method to examine the relationship 
of a concomitant variable (or regressor variable) 
to a response variable y is through a regression 
model in which y has a distribution that depends 
upon the regressor variables. This involves 
specifying a model for the distribution of y given 
x, where ),...,,( 21 pxxxx =  is a p×1  vector of 

the regressor variables for an individual. 
Let the distribution of y given x be 
 

1
( | , , ) ,

− =  
 

y xf y x f ββ σ
σ σ

     )1.1(  

 
where  β   is  a   1×p    vector   of   regression  
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Coefficients, T
p ),...,,( 21 ββββ =  

and ββ xxyE =],|[ . The alternative form of 
(1.1) is 
 

zxy σβ +=                 )2.1(  
where 

σ
βxyz −=  

 
has the standardized distribution with density 
function f(z). The family of models for which 
f(z) has a standard normal distribution is 
common in statistical literature (Searle, 1971; 
Rao, 1973; Seber, 1977; Draper & Smith, 1981; 
Weisberg, 1985 ) but models in which z has 
other distributions belonging to location-scale 
family (1.2) are also important. For example, 
extreme value regression models are employed 
in applications ranging from accelerated life 
testing (Lawless, 2003; Zelen, 1959) to the 
analysis of survival data on patients suffering 
from chronic diseases (Prentice, 1973; Feigl & 
Zelen, 1965; Krall, et al., 1975). 

Furthermore, if data is contaminated 
with outliers, then the normal distribution can be 
replaced with Student’s t distribution (with small 
degrees of freedom) to have a better fit (e.g., 
Lange, et al., 1989). Model (1.2) has the ability 
to accommodate linear as well as non-linear 
models for the various functional forms of βx . 
None of the above authors present a Bayesian 
approach. Box and Tiao (1973) and Gelman, et 
al. (1995) discuss this approach of regression 
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analysis to deal with normal linear as well as 
non-linear non-normal models. Zellener (1971) 
describes Bayesian inference in reference to 
econometrics, but the discussion is mainly 
confined to normal linear models. The general 
framework used for casual inference is presented 
in Rubin (1974b, 1978a). Bayesian approaches 
to analyzing regression residuals appear in 
Zellener (1976), Chaloner and Brant (1988) and 
Chaloner (1991). 
 
Joint inference for β and logσ  with Non-
informative Prior p(β, logσ) 
 Suppose ),( ii xy for ni ,,2,1 =  is 

assumed to be a random sample from location-
scale family of models in (1.1) and likelihood is 
 

∏
=

n

i
ii xyf

1

),,|( σβ  

 
This implies that  
 

σσβ log)(log)log,(
1

nzfl
n

i
i −=

=

 

(2.1) 
where 

σ
βii

i
xy

z
−

= . 

 
Consider the non-informative prior 
 

1)log,( =σβp                  (2.2) 
 
The joint posterior density of β and logσ given 

data vector ),...,,( 21 n
T yyyy = is 

 

∏
=

n

i
ii pxyfyxp

1

)log,()log,,|(),|log,( σβσβασβ

(2.3) 
 

where T
nxxxx ),...,,( 21= is a pn ×  matrix of 

covariates (or regressors) corresponding to 
response vector y. Now joint inference for β and 
logσ can be made from posterior (2.3). 

 Posterior mode T)log,(
∧∧
σβ  of 

),|log,( yxp σβ  serves as a point estimate of 

β and logσ. Its calculations require partial 
derivatives of log posterior 
 

l ( , log ) l( , log ) log p( ,log )

l( , log )

∗ β σ = β σ + β σ
= β σ

 

(2.4) 
 

Defining partial derivatives as 
ββ ∂

∂=
∗

∗ ll , a 

vector of )1( ×p  partial derivatives, 

φφ ∂
∂=

∗
∗ ll , a scalar and σφ log=  

 

φββφ ∂∂
∂=

∗
∗ ll

2

, a )1( ×p  vector, 

 

βφφβ ∂∂
∂=

∗
∗ ll

2

, a )1( p× vector, 

 

T

ll
ββββ ∂∂

∂=
∗

∗
2

, a )( pp × matrix, and 

 
2

T

l
l .

∗
∗
ϕϕ

∂=
∂ϕ∂ϕ

 

 
These derivatives can be defined more explicitly 
as: 

ββ ll =∗

 
 

φφ ll =∗

 
 

βφβφ ll =∗

 
 

φβφβ ll =∗

 
 

ββββ ll =∗  and 

 

φφφφ ll =∗ . 
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Consequently, score vector ),( φβU  and 

Hessian matrix ),( φβH  are a 1)1( ×+p  
vector 
 












=

∗

∗

φ

βφβ
l

l
U ),( , 

 
and a )1()1( +×+ pp  matrix 
 












=

∗∗

∗∗

φφφβ

βφββφβ
ll

ll
H ),( , 

 
therefore, making use of Newton-Raphson 
iteration scheme, results in posterior mode 

vector T),(
∧∧
φβ  as 

 












−








=















∗

∗
−

∧

∧

φ

βφβ
φ
β

φ

β
l

l
H ),( 00

1

0

0  

(2.5) 

where 
∧∧

= σφ log . 
 
The asymptotic posterior covariance matrix of 
(2.3) can be obtained as 
 

1 1I ( , ) H ( , )

( , ).

∧ ∧ ∧ ∧
− −

∧ ∧

β ϕ = − β ϕ

= β ϕ
 

 
More clearly, posterior density  
 











+








≅

−∧∧
−

∧∧

+ )(1),(,),(

),|,(

2

1
1

1 nOIN

yxp

T
p φβφβ

φβ
 

(2.6) 
 
where ),( baNr  is the r-variate normal 
distribution with mean vector a and a covariance 
vector b. This is a first order approximation of 
the posterior density (e.g., Berger, 1985). An 

equivalent version of this approximation is the 
Chi-square approximation, i.e., 
 

2
1),(),(2),( +

∧∧
∗∗ ≈



 −−= pllW χφβφβφβ . 

 
A more accurate approximation, Laplace’s 
approximation (Tierney & Kadane, 1986; Reid, 
1988) can be also used, i.e., 
 

( ))(1),(
2

1
exp|),(|)2(

),|,(

12

1

2

1
−

∧∧∧∧+
−

+



−

≅

nOWI

yxp
p

φβφβπ

φβ

(2.7) 
 
Any of the approximations can be used both for 
hypothesis testing and construction of credible 
regions. 
 
The Marginal Inference for β and φ (φ = logσ) 
 The marginal densities for β and φ are 
 

p( | x, y) p( , | x, y)d .β = β ϕ ϕ  

(3.1) 
 
Similarly, marginal posterior of φ can be 
obtained by 

p( | x, y) p( , | x, y)d .ϕ = β ϕ β  

(3.2) 
 
 Bayesian analysis is to be based on these 
two posteriors. For the normal model, 

),|( yxp β  and ),|( yxp φ  can be obtained in 
closed form (e.g., Zellener, 1971). However, for 
non-normal members of location-scale family, 
these marginals can be obtained through 
numerical integration only (e.g. Naylor & Smith, 
1982). The alternative approach is to deal with 
asymptotic theory approach (e.g., Tierney, Kass 
& Kadane, 1989a; Leonard, et al., 1989). 
Normal and Laplace’s approximations can be 
written directly for posterior densities 

),|( yxp β  and ),|( yxp φ  as under: 
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a) Normal Approximation: 
Marginal posterior density of β can be 

approximated by normal distribution, i.e., 

),(),|( 1
11
−

∧
≅ INyxp p ββ )3.3(  

where 
∧
β is the posterior mode and 1

11
−I  is a 

pp ×  matrix defined as 
 












=

−−

−−∧∧
−

1
22

1
21

1
12

1
111 ),(

II
II

I φβ  

 

where 
∧∧

= σφ log  and  suffixes 1 and 2 to I stand 

for 
∧
β  and 

∧
φ , respectively. This approximation 

is equivalent to the Chi square approximation 
defined as: 

2
11 )()( p

T I χββββ ≈−−
∧∧

. 

 
Corresponding approximations for 

),|( yxp φ can be written as:  

),(),|( 1
221
−

∧
= INyxp φφ           (3.4) 

 
This is equivalent to the Chi square 
approximation, i.e., 

T 2
22 1( ) I ( ) .

∧ ∧
ϕ − ϕ ϕ − ϕ ≈ χ  

 
b) Laplace’s Approximation: 
 Laplace’s approximation can also be 
used to approximate marginal density of β , 
i.e., 
 

)],())(,(exp[
|))(,(|2

|)),((|

)|(

2

1

∧∧
∗

∧
∗

∧

∧∧

−














≅

φββφβ
βφβπ

φβ

β

ll
I

II

yp

(3.5) 

where )(βφ
∧

 is the posterior mode of φ for a 

fixedβ. 
 Corresponding approximation for 

),|( yxp φ  can also be written as 

)],()),((exp[
|))(,(|

|),(|
)2(

),|(

2

1

2
∧∧

∗
∧

∗
∧

∧∧
−

−














≅

φβφφβ
βφβ

φβπ

φ

ll
I

I

yxp

p

(3.6) 

where )(φβ
∧

 is the posterior mode of β for a 

fixedφ. 
 

Bayesian Regression Analysis of the Extreme-
Value Model 

Let y be the response vector and xi be 
the vector for the ith observation. Assume that 
 

fxyz
T
ii

i ~
σ

β−
=                 (4.1)  

 
for some f (extreme value distribution). 
Consequently, in terms of general notation 

,),( Tσβθ =  a vector of length )1( +β  and 
likelihood is given by: 

∏
=

n

i
ii xyf

1

),,|( σβ . 

 
This implies that 
 

1

1

( , ) log ( | , , )

log ( ) log

=

=

=

= −

∏



n

i i
i

n

i
i

l f y x

f z n

β σ β σ

σ
 

(4.2) 
 
where iz  is defined in (4.1). 

Taking partial derivatives with respect 
to μ and σ results in 
 

T
i

n

i

z xe

ll

i
=

−−=

∂
∂=

1

)1(
1

σ

ββ
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i xeez
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1

σ
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=

−=

∂∂
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n

i
i

T
i

z

T

xxe
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i

1
2

2

1

σ
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and 
 

i i

2

T

n
z z2

i i i2 2
i 1

l
l

1 n
(z e 2z e 2z ) .

σσ

=

∂=
∂σ∂σ

= − + − +
σ σ

 

 
Following the standard approach of Box 

and Tiao (1973) and Gelman, et al. (1995), 
assuming the prior 
 

)()(),( σβσβ ppp ≅             (4.3) 
 
where )(βp  and )(σp  are priors for β  and 

.σ  Using Bayes theorem obtain the posterior 
density )|,( yp σβ  is obtained as 
 

1

( , | , )  ( | , , ) ( , )
=

∏
n

i i
i

p x y f y x pβ σ α β σ β σ  

(4.4) 
 
The log-posterior is given by 
 

1

log ( , | , )

        log ( | , , ) log ( ) log ( )
=

=

+ +∏
n

i i
i

p x y

p y x p p

β σ

β σ β σ
 

or 
 

)(log)(log),(),( σβσβσβ ppll ++=∗ . 
(4.5) 

 
For a prior 1)()(),( =≅ σβσβ ppp , 

ββ ll =∗ , σσ ll =∗ , βσβσ ll =∗ , σβσβ ll =∗ , 

ββββ ll =∗  and σσσσ ll =∗ . The posterior mode is 

obtained by maximizing (4.5) with respect to β 
and σ. The score vector of the log posterior is 
given by 

TllU ),(),( ∗∗= σβσβ  

 
and the Hessian matrix of log posterior is 
 












=

∗∗

∗∗

σσσβ

βσββσβ
ll

ll
H ),( . 

 

Posterior mode ),(
∧∧
σβ  can be obtained from 

iteration scheme 
 












−








=















∗

∗
−

∧

∧

σ

βσβ
σ
β

σ

β
l

l
H ),( 00

1

0

0 . 

(4.6) 
 
Consequently, the modal variance Σ can be 
obtained as 
 

),(),( 11
∧∧

−
∧∧

− −= σβσβ HI . 
 
Using the normal approximation, a bivariate 
normal approximation of ),|,( yxp σβ  can be 
directly written as: 
 

1
1 2

1( , | ) ( , ) , ( , ) 1 ( ) .
∧ ∧ ∧ ∧ −−

+

  ≅ +  
  

T
pp y N I O nβ σ β σ β σ

(4.7) 
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Similarly, a Bayesian analog of likelihood ratio 
criterion can be written as: 
 

2
1)],(),([2),( +

∧∧
∗∗ ≈−−= pllW χσμσμσβ  

(4.8) 
 
Using Laplace’s approximation, ),|,( yxp σβ  
can be written as: 
 

( )
1 1

12 2

( , | , )

   (2 ) | ( , ) | exp[ ( , ) ( , )] 1 ( ) .
− ∧ ∧ ∧ ∧− ∗ ∗ −

≅

− +
p

p x y

I l l O n

β σ

π β σ μ σ μ σ

(4.9) 
 

The marginal Bayesian inference about 
β and σ is based on the marginal posterior 
densities of these parameters. Marginal posterior 
for β can be obtained after integrating out 

),|,( yxp σβ  with respect to σ, 
 

= σσββ dyxpyxp ),|,(),|( . 

(4.10) 
 
Similarly, the marginal posterior of σ can be 
obtained by: 
 

= βσβσ dyxpyxp ),|,(),|( . 

(4.11) 
 

The normal approximation for marginal 
posterior ),|( yxp β  can be written as: 
 

),(),|( 1
11
−

∧
= INyxp p ββ          (4.12) 

 

where 
∧
β  is the posterior mode and 1

11
−I  is a 

)( pp ×  matrix defined as 
 












=

−−

−−∧∧
−

1
22

1
21

1
12

1
111 ),(

II
II

I σβ . 

 
The Bayesian analog of likelihood ratio criterion 
can also be defined as a test criterion as: 
 

2
11 )()( p

T I χββββ ≈−−
∧∧

.       (4.13) 

 
Laplace’s approximation of marginal posterior 
density ),|( yxp β  can be given by: 
 

1

2

( | , )

| ( , ) |
  exp[ ( , ( )) ( , )].

2 | ( , ( )) |

∧ ∧
∧ ∧ ∧

∗ ∗
∧

≅

 
  −
 
 

p x y

I l l
I

β

β σ β σ β β σ
π β σ β

(4.14) 
 
Similarly, ),|( yxp σ  can be approximated and 
results corresponding to normal and Laplace’s 
approximation can be written as 
 

),(),|( 1
221
−

∧
= INyxp σσ          (4.15) 

 
or equivalently, 
 

2
122 )()( χσσσσ ≈−−

∧∧
IT       (4.16) 

 

1

2

2

( | , )

| ( , ) |
  (2 ) exp[ ( ( ), ) ( , )].

| ( ( ), ) |

∧ ∧
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∧

≅

 
  −
 
 

p

p x y

I l l
I

σ

β σπ β σ σ β σ
β σ σ

(4.17) 
 
Numerical Illustrations 

Numerical illustrations are implemented 
in S-PLUS software for Bayesian regression 
analysis. These illustrations are show the 
strength of Bayesian methods in practical 
situations. Soil samples were collected from rice 
growing areas as well as fruit orchids of 
Kashmir valley and were analyzed for some 
relevant parameters. In our work, we studied pH 
and E.C in the soil of Kashmir valley. The 
functions survReg and cendnsorReg were used 
for Bayesian analysis of various regression 
models with non-informative prior. S-PLUS has 
a function censorReg for regression analysis; 
this has a very substantial overlap with survReg 
but is more general in that it allows truncation as 
well as censoring (Venables & Ripley, 2002). 
The usage of survReg and censorReg are: 



BAYESIAN REGRESSION ANALYSIS WITH EXAMPLES IN S-PLUS AND R 

274 
 

survReg(formula, data, dist) 
 

censorReg(formula, data, dist) 
 
where 
• formula: a formula expression as for other 

regression models;  
• data: optional data frame in which to 

interpret the variable occurring in the 
formula; and 

• dist: assumed distribution for y variable. 
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Table 1: A Summary of Derivatives of Log-Likelihoods 
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Table 2: A Summary of Prior Densities for Location Parameter β 
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identity )( pp ×  matrix and c is the normalizing constant. 
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Table 3: Regression Coefficient of pH on EC for Various Models 
 

Regression Model 

∧
β  (Intercept) Posterior Std. 

0

∧
β  1

∧
β  0

∧
β  1

∧
β  

Extreme-Value 6.71 2.32 0.0447 0.2881 

Logistic 6.29 2.41 0.0365 0.2332 

Normal 6.33 2.00 0.0335 0.1890 

 
 

Table 4: Approximate Normal Posterior Quantiles for Regression Coefficient of Various Models 
 

Model Posterior 
Posterior Quantile 

0.025 0.25 0.50 0.75 0.95 0.975 

Extreme-Value Normal 6.63 6.68 6.72 6.75 6.79 6.80 

Logistic Normal 6.16 6.20 6.23 6.25 6.29 6.30 

Normal Normal 6.26 6.31 6.33 6.35 6.39 6.40 
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