

15

RAM Modeling Methods for Repairable Systems

In all studies mentioned above, non-reparable systems are considered. In order to

account for reparable systems, some extensions of Fault Trees are presented. In the paper

(Bobbio and Raiteri 2004), the authors propose the Dynamic Repairable Parametric Fault

Trees (DRPFTs), which implement DFTs in compact parametric form. By adding Repair

Boxes (RB), the DFT is extended to include dependencies arising from the repair process.

However, the RB semantics is investigated only in the special case of its application to a

dynamic gate. In the work(Raiteri, Fraceschinis et al. 2004), another extension of FTs

called Repairable Fault Trees (RFTs) is proposed; more generalized repair features are

introduced. Nevertheless, one limitation is that, both methods have to be solved by Petri-

net-based method eventually, and the RB introduced by DRPFTs/RFTs requires a

solution in the state spaces, which may be computationally very expensive. Thus in paper

(Raiteri, Fraceschinis et al. 2004), the authors seek for solutions by implementing the

modular multi-solution process. Namely classifying the RFT modules into two categories,

the sub-trees without RB actions are solved with the standard combinatorial method and

the sub-trees with RB actions are solved by Petri-net-based method. In spite of the

increased expressive power, RFTs feature the drawback of a lower solving efficiency,

due to the required state-based analysis. In the paper (Portinale, Raiteri et al. 2010),

Portinale shows how to take into account similar repair policies aforementioned during

the reliability analysis based on DBNs formalism. However, due to the limitation of

DBNs, all repair policies investigated in this paper assume unlimited repair crews, which

limit its application in real world.

16

In order to model repair actions with limited crews, one must have a center

process which can assign and reclaim repair crews. The time-slice-based modeling

method DBNs are out of capability for this situation. Continuous Time Bayesian

Networks (CTBNs), firstly presented by Nodelman (Nodelman 2007), are based on

Bayesian Networks, but with a continuous time representation of the temporal evolution.

They inherit all the advantages of BNs and are kind of event-based modeling methods,

which are more flexible to model repair process under different repair policies. The

technical report (Portinale and C. 2009) is the only work found to apply CTBNs in

reliability modeling. In the technical report, the authors present an extension to CTBNs

called Generalized CTBNs (GCTBNs) by adding immediate nodes. They claim that these

immediate nodes allow capturing the logical/probabilistic interaction among the model’s

variables. Actually, in this thesis (Section 3.2.2, Chapter 3), we will demonstrate it is

also possible to model this scenario just using the original definition of CTBNs. The

authors also outline a semantic model of GCTBN based on the formalism of Generalized

Stochastic Petri Nets (GSPN). In this study, we propose a CTBN framework for

reliability modeling, and extend it to an RAM modeling with considering various repair

policies, including the repair policy with limited repair crews. We validate the proposed

approach by applying it to an example taken from literature and show that the modeling

capability of CTBNs outperforms that of DBNs, which indicates the CTBN framework is

a good alternative for RAM modeling and analysis.

2.3 System Design Optimization: Literature Review

The design process of a reliable system is by nature, iterative. Traditional

approaches to the design process of a reliable system follow the system requirement

17

analysis, preliminary design, detail design, evaluation and redesign phases until a final

acceptable design is obtained. However, to achieve a shorter time-to-market, system

reliability concerns should be addressed at the design stage (“design for reliability”). The

design requirements have to consider reliability (availability), cost, weight, physical size,

power consumption, etc. The system design optimization problem can be formula as to

select components or redundancy-level to optimize some objective functions, given

system-level constraints on reliability (availability), cost, and/or weight.

The system design optimization problem consists of two parts: the system metrics

estimation and the optimization methods. The common system metrics are system

reliability (availability), cost and weight et al. The optimization methods in system design

optimization problem refer to multi-objective optimization methods or single-objective

optimization methods. In this study, we focus on multi-objective optimization methods.

Among these system metrics, reliability (availability) estimation is the most

important system metric. For different systems, the way to calculate reliability

(availability) is total different. For example, in a simple series or parallel system, the

reliability (availability) can be estimated by close-form mathematical formulas; however,

for a complex system with dynamic behaviors or various kind of repair policies, there are

not close-form mathematical formulas for its reliability (availability), the Markov chain,

Dynamic Bayesian Networks or CTBNs are the methods for the reliability (availability)

estimation in this kind of systems. From optimization standpoint, we put this kind of non-

close-form objective function problem as black-box optimization problem. The heuristics

methods (GA, Simulated annealing and Tabu search et. al) are the most efficiency way to

solve the black-box optimization problem.

18

Thus, in the proposed system design optimization framework, we treat the system

design optimization problem based on the difference of systems. For simple structure

(series/parallel) systems with close-form reliability (availability) mathematical formulas,

we propose a modified adaptive ϵ-constraint method to identify all Pareto-optimal

solutions. For systems with dynamic behaviors and various repair policies, we employ

CTBNs to estimate its reliability (availability) and treat it as a black-box optimization

problem; and NSGA-II is used to solve for its Pareto solutions.

2.3.1 System Metrics Estimation Methods

A large number of models and solution methods have been proposed to solve the

system design optimization problem especially the reliability optimization problem

(Redundancy Allocation Problem, RAP), such as dynamic programming, Lagrangean

multiplier (Misra 1972), heuristic approach (Ramirez-Marquez and Coit 2004) and

integer programming (Sharma and Misra 1990). As for the system involves active and

cold-standby redundancy, Tavakkoli-Moghaddam (Tavakkoi-Moghaddam, Safari et al.

2008) proposed a genetic algorithm for a redundancy allocation problem of the Series-

Parallel system with active and cold-standby redundancies. The similar jobs are done by

Coit in these papers (Coit and Smith 1996; Coit 2001). However, the above-mentioned

methodologies are not applicable to the kind of complex system with dynamic behaviors;

they mainly focus on simple system structure: series, parallel or k-out-of-n with/without

simple active or cold-standby redundancy strategy. The reliability of these simple

structure (series/parallel) systems can be estimated by close-form mathematical formulas.

There are few works about reliability (availability) optimization of complicated systems

with dynamic behaviors. The only one work related to this is done by Ren (Ren and

19

Dugan 1998). In her paper, she described a methodology for embedding a GA into an

existing fault-tree methodology to determine the heuristic optimal design configuration of

a reliable system. She used DFTs to model interactive actions between events. However,

she applied MCs-based method DIFtree SOLVER to solve the DFTs, which will have

state explosion problem if the system is too large. As we discussed in previous

subsection, the CTBN is a flexible tool for reliability (availability) estimation. It doesn’t

have the state explosion problem mentioned above, but it is more practical to model the

dynamic failure behaviors between components and various repair policies. In this study,

we will employ CTBNs to calculate system reliability (availability) of complex systems

with dynamic behaviors for the proposed system design optimization framework.

2.3.2 Optimization Methods

 In the past several decades, there have been a number of studies and approaches to

the RAP. Roughly, they can be grouped into three categories: single objective

optimization with constraints, aggregated objective function methods for multi-objective

optimization, and Pareto-based ranking methods for multi-objective optimization.

Single objective optimization methods

The first set of methods treat the RAP as a single objective optimization problem

(maximizing system reliability or minimizing cost) with constraints. Various single-

objective optimization approaches have been used to solve such formulations, including

dynamic programing (Bellman and Dreyfus 1958; Fyffe, Hines et al. 1968; Misra 1971),

integer programming (Bulfin and Liu 1985; Misra and Sharma 1991; Billionnet 2008),

meta-heuristics (Painton and Campbell 1995; Coit and Smith 1996; Ravi, Murty et al.

20

1997; Kulturel-Konak, Smith et al. 2003; Liang and Smith 2004; Rashika and Manju

2006), mixed integer and non-linear programming (Tillman, Hwang et al. 1977) and

column generation method (Zia and Coit 2010).

Multi-objective Optimization: Aggregation Objective Function Methods

These single-objective optimization techniques have their own advantages on

RAP. However, in practical applications, some researchers have realized that it should

take multiple considerations into account when determining the redundancy allocation of

the system. For example, they want to obtain a system with high reliability and at the

same time, they still want the design cost of the system to be low. The aggregation

objective function method is implemented to solve this problem. They weight sum the

multiple objective functions into a single objective function, and solve the new objective

function via single-objective optimization approaches. These studies (Dhingra 1992;

Busacca, Marseguerra et al. 2001; Marseguerra, Zio et al. 2004; Zafiropoulos and

Dialynas 2004; Tian and Zuo 2006) are belong to this category. In the paper (Dhingra

1992), the author presented a multi-objective reliability apportionment problem. The

problem is a multi-objective, nonlinear, mixed-integer mathematical programming

problem and is solved by sequential unconstrained minimization techniques in

conjunction with heuristic algorithms. The series system considered in this study is with

time-dependent reliability. The study (Zafiropoulos and Dialynas 2004) provided an

efficient computational method to obtain the optimal system structure of electronic

devices by using a single or a multi-objective simulated annealing algorithm based

optimization approach. Studies (Marseguerra, Zio et al. 2004; Zafiropoulos and Dialynas

2004; Tian and Zuo 2006) are multi-criteria formulations using genetic algorithm.

21

Approach in paper (Tian and Zuo 2006) is based on GA and Monte Carlo simulation;

while in paper (Marseguerra, Zio et al. 2004) GA and physical programming are

combined to solve the RAP.

Multi-objective Optimization: Pareto-based ranking methods

The above multiple objectives studies have taken important steps towards finding

more effective and efficient approaches for RAP. However, in order to obtain promising

results, how to aggregate multiple objectives into a single one is a sophisticated work;

besides, the aggregation of multiple objectives may eliminate the possibility of

identifying more non-dominated solutions. To cope with these drawbacks, people come

to some other multi-objective optimization approaches. Multi-objective optimization

refers to the solution of problems with two or more objective to be satisfied

simultaneously. Unlike single-objective optimization problem, the multi-objective

optimization problems usually have a set of solutions, which called Pareto-optimal

solutions or non-dominated solutions. There have been some studies in this field (Salazar,

Rocco et al. 2006; Taboada, Baheranwala et al. 2007; Kulturel-Konak, Coit et al. 2008;

Taboada, Espiritu et al. 2008). In the paper (Taboada, Baheranwala et al. 2007), the

authors formulated the redundancy allocation problem as a tri-objective problem

(maximize reliability, minimize cost and weight) and solve this problem using Non-

dominated Sorting Genetic Algorithm (NSGA-II) (Deb, Pratap et al. 2002). An

improving version NSGA-II was presented so called MOMS-GA (Taboada, Espiritu et al.

2008) to solve the tri-objective redundancy allocation problem in multi-state systems. In

the paper (Kulturel-Konak, Coit et al. 2008), Tabu search approaches with Monte-Carlo

simulation method are employed to solve a bi-objective (reliability and cost) redundancy

22

allocation problem. In this paper (Kulturel-Konak, Coit et al. 2008), a problem specific

MOEA is employed to solve the continuous reliability optimization problems where the

reliability of the components are variables to be optimized.

The meta-heuristic based multi-objective optimization approaches mentioned

above are very popular on RAP now. However, meta-heuristic based approaches have

several limitations: they do not guarantee that Pareto points are optimal; they may not

identify all the Pareto-optimal points and they may have computation burden problem

when the population size is large. Thus, in this study, from optimization standpoint, in

our proposed system design optimization framework, two cases are discussed. 1) For

systems with dynamic behavior and various repair policies, CTBNs is used to estimate

the system reliability (availability). The system design optimization is a black-box type

problem and the meta-heuristic based methods are best option for this kind of problem.

Thus in our framework, NSGA-II is employed to identify the Pareto solutions for this

problem. 2) For simple structure (series/parallel) systems with close-form reliability

(availability) mathematical formulas, a modified adaptive ϵ-constraint method is

proposed to identify all Pareto-optimal solutions for this problem. Compared with meta-

heuristic based method NSGA-II, the modified adaptive ϵ-constraint method could

identify all Pareto-optimal solutions, and guarantees that the identified solutions are

Pareto-optimal.

The %-constraint method (Chankong and Haimes 1983) is a traditional method to

generate all non-dominated solutions for multi-objective optimization problems. It works

by choosing one of the objective functions as the only objective and handling the

remaining objective functions in the form of constraints. Through systematic variation of

23

the objective constraint bounds, all non-dominated solutions can be obtained. To improve

the computational efficiency of the %-constraint method, an improved version of the %-

constraint method (Ozlen and Azizoglu 2009) was proposed. Instead of using a fixed	%,

the improved method updates the % value based on the location of the previous solution.

It uses an adaptive % value in each iteration, which explains its name, the adaptive %-

constraint method. This improves the efficiency of algorithm significantly. However,

there are two limitations ton this method. Firstly, the adaptive %-constraint method is

limited to linear objective functions and requires all coefficients of the objective function

terms and the decision variables to be integers. Secondly, this method identifies duplicate

solutions, affecting the efficiency of the algorithm. In this thesis, we propose efficient

solutions for addressing these two limitations.

In the RAP problems, the system reliability objective function is not a linear

integer function. In order to obtain a linear function, we make some mathematical

transformations to the reliability objective function. In addition, to cope with the non-

integral nature of the non-integer reliability objective function, we make necessary

modifications to the adaptive ϵ-constraint method so that it can account for at least one

non-integer linear objection function. To avoid solving for the duplicated solutions, two

search refinement strategies are added to the adaptive ϵ-constraint method which can help

to reduce the number of IPs solving solved significantly. Furthermore, a decomposition

scheme is employed to improve the algorithm efficiency. We decompose the original

problem into several sub-problems and solve each sub-problem for Pareto-optimal

solution sets with the modified adaptive ϵ-constraint method. By sequentially combining

24

and filtering each pair of Pareto-optimal solution sets from a pair of subsystems, finally

we can obtain the Pareto-optimal solutions set for the original problem.

2.4 Summary

We first introduce the concepts, definitions and assumptions of repairable systems.

Then we review the different quantitative RAM analysis methods being used currently

and present the relevant research on system design optimization methods. Furthermore,

the limitations of existing methods are highlighted and discussed.

25

Chapter 3 RAM Modeling using Continuous Time Bayesian Networks

As we discuss in Section 2.3 of Chapter 2, in RAM modeling, the existing

methods have limitations. Such as the traditional method Markov chains have state

explosion problem when the system is too larger; while the Dynamic Bayesian Networks

are incapable to model some repair policies especially the one with limited repair crews.

The CTBNs, firstly presented by Nodelman (Nodelman 2007), are based on Bayesian

Networks, but with a continuous time representation of the temporal evolution. They

inherit all the advantages of BNs and are kind of event-based modeling methods which

are more flexible to model repair process under different repair policies. In this chapter,

we propose CTBN formalism for RAM modeling. The proposed method doesn’t have the

state explosion problem. And within the flexible modeling ability, it is capable to cope

with various repair policies. The proposed approach is applied to three case examples,

one is taken from the literature and another two are original from practical problems of

our industrial partners. The experiment results are promising, which indicate that the

presented method is a good alternative for existing RAM modeling methods.

3.1 Introduction of CTBNs

In this subsection, we provide the background material about the Continuous

Time Bayesian Networks. We first introduce a continuous-time, finite-state, homogenous

Markov process, and then describe the Continuous Time Bayesian Networks, which use a

graphical representation to model multi-variable continuous-time stochastic process.

26

3.1.1 Continuous Time Markov Processes

Let & be a continuous-time, finite-state, homogenous Markov process. & has '

states {)*,)+, … ,)-}. &(�) is the (finite) state of the system at time �. The collection of

random variables {&(�)|� ∈ 	1} composes the process. & satisfies the Markov

assumptions.

The initial distribution 23� = 2()(0)) is a multinomial distribution over ' states

of & . The transient behavior of & is described by the initial distribution 23� and the

transition model which is often represented by the intensity matrix

45 = 6−75* 75859 ⋯ 7585;75958 −75+ … 7595;⋮ ⋮ ⋱ ⋮75;58 75;59 … −75->
where 75?5@is the intensity with which &transitions from)Ato)Band 75A = ∑ 75?5@ADB . The

diagonal element 7A and the off-diagonal elements 7ABdefine the instantaneous transition

probabilities of	&.

The intensity matrix 45 is time invariant. Given	45, the transient behavior of &

can be described as the following: & stays in state)A for an amount of time � and

transitions to state)B. � is exponentially distributed with parameter 75A. The expected time

of transitioning is	1/75. Upon transitioning, the probability that & transitions from state

)A to)B is	G5?5@ = 75?5@/75? . For example, assume that we want to model the changes of

weatherH(�) which has three values 	(IJKLH(�)M = {N� = O
''P, N* = QJR'P,N+ =
SKT
�P}). We could represent the behavior of H(�) using the intensity matrix

27

QV = W−1.6 1.3 . 3. 7 −1 . 3. 8 1.2 −2^
If we set the time unit to one day, this means that we expect the weather would change in

*+ = .5 day if currently it is cloudy. When the intensity is changing, with probability

.+̀ = .4 the new value will be sunny and with probability
*.++ = .6 the new value will be

rainy.

To model a multi-variable system, we first combine all variables into a single join

variable by enumerating all possible states of the variables. If the system has N

variables	&A(R = 1, … ,b), and each variable contain cA states, the total number of states

of the join process is ' = ∏ cAeAf* and the size of the intensity matrix for the join process

is ' by '. As the number of variables increases, the size of the intensity matrix grows

exponentially.

3.1.2 Continuous Time Bayesian Networks

A continuous-time Markov process suffers from state space explosion when

handling large dynamic systems. A structured representation is needed to deal with multi-

variable dynamic systems.

In order to decompose a multi-variable dynamic system, we introduce a

conditional intensity matrix (CIM) to describe the dynamics of local variables in a system.

Let & be all the variables of the dynamic system we are trying to model. Let) ∈ & be one

variable in the system and g ⊂ & be a set of other variables. The conditional intensity

matrix 45|i for variable) is defined as a set of intensity matrices	45|! , one for each

28

instantiation
	of the variable set	g. The evolution of &	depends instantaneously on the

values of the variables in	g . Using a CIM, we can model each local variable as an

inhomogeneous Markov process, whose intensities are a function of the current values of

a set of other variables

Example 3.1.2.1 Let us expand the weather example in the previous subsection to a

dynamic system with more than one node. Assume that we want to consider the effect of

the weather on the people’s outdoor exercise intensity, which has two

values	(IJKLj(�)M = {k� = KRlℎ�, k* = 'TQ�JK}). We can model the dynamics of each

local variable separately by utilizing the dependencies among the variables. Therefore,

the dynamics of the exercise intensity can be described using three CIMs.

4n|op = q−.1 . 1. 8 −.8r 		4n|o8 = q−.4 . 41.2 −1.2r,
		4n|o9 = q−.3 . 31 −1r

The behavior of variable j(�) is now represented as an inhomogeneous Markov

process, whose intensities depend on the current value of	H(�). When	H(�) = N�, the

behavior of j(�) is descried using	4n|op . When	H(�) = N*, it is described using	4n|o8 .

When	H(�) = N+, it is described using	4n|o9 .

The way the Markov chain models the dynamic of this system is total different.

We first have to list all the possible combinations of the joint

variable: {(N�, k�), (N�, k*), (N*, k�), (N*, k*), (N+, k�), (N+, k*)} . We then write the

transition intensity of each pair of values into the join intensity matrix. It is a 6 by 6

matrix.

29

Definition 3.1.2.1 A continuous time Bayesian Networks b over & consists of two

components: an initial distribution	23�, specified as a Bayesian Networks s over	&, and a

continuous transition model, specified using a directed (possibly cyclic) graph t whose

nodes are) ∈ &. Let g5 denote the parents of) in	t. Each variable) ∈ & is associated

with a conditional intensity matrix	45|iu .

Example 3.1.2.2 Assume we want to model how a person improves his health status via

doing outdoor exercise. When the weather is good, or his schedule is not tight, he may

exercise more. Increasing exercise intensity tends to make him more energetic and

healthy, which will allow him to work more efficiently. Such a dynamic system contains

four variables: Weather, Exercise, Schedule, and Body status. Each variable changes in

continuous time and its changing rate depends on the current value of some other

variables.

We can use a CTBN to represent such behavior. The dependencies of these four

variables are depicted using a graphical structure. As shown in Figure 3.1. The

quantitative transient dynamics for each variable are represented using CIMs. Let’s

assume all the four variables are binary. Let B(t) be the person’s body

status 	(IJKLs(�)M = {x� = ℎkJK�ℎ, x* = ORSy}) , E(t) be the exercise

intensity (IJKLj(�)M = {k� = KRlℎ�, k* = 'TQ�JK}) , S(t) be his daily

schedule (IJKLc(�)M = {O� = KTTOk, O* = �Rlℎ�}) , and H(�) be the

weather (IJKLH(�)M = {N� = O
''P,N* = QJR'R'l}) . The conditional intensity

matrices for the four variables can be specified as

30

Table 3.1: CIM for node Weather

State H(N�) H(N*) H(N�) -.5 .5 H(N*) .5 -.5

Table 3.2: CIM for node Exercise {H(N�), c(O�)} State j(k�) j(k*) {H(N*), c(O�)} State j(k�) j(k*) j(k�) -2 2 j(k�) -.6 .6 j(k*) .1 -.1 j(k*) .3 -.3 {H(N�), c(O*)} State j(k�) j(k*) {H(N*), c(O*)} State j(k�) j(k*) j(k�) -.5 .5 j(k�) -1 1 j(k*) 1.1 -1.1 j(k*) .1 -.1

Table 3.3: CIM for node Schedule s(x�) State c(O�) c(O*) s(x*) State c(O�) c(O*) c(O�) -.1 .1 c(O�) -.5 .5 c(O*) .5 -.5 c(O*) .8 -.8

Table 3.4: CIM for node Body status j(k�) State s(x�) s(x*) j(k*) State s(x�) s(x*) s(x�) -.2 .2 s(x�) -.1 .1 s(x*) 5 -5 s(x*) 10 -10

31

Figure 3.1: Healthy improvement example

If the person is in loose schedule, and the weather is sunny, the dynamic of his

exercise intensity is determined by the intensity matrix	4n|o|,,}p,. If the time unit is one

month, we can expect he will do normal exercise in
*+ = .5 month, conditioned on the fact

that he is currently doing light exercise, his schedule is loose and the weather is good.

The model contains double direction links, the dash line, indicating that whether a person

is doing normal exercise depends on his body status; while the body status also impacts

the exercise intensity of the person. For example, if he is sick, we would not do any

exercise.

3.1.3 Inference in CTBNs

Given a CTBN model, we would like to use it to answer queries conditioned on

observations, which is named evidence here. Evidence for a CTBN is usually a partial

trajectory, in which some values or transitions are missing for some variable during some

time intervals. It is also possible that the evidence has no observation; we name it as

empty evidence. In this study, we mainly focus on two kinds of queries. The first one is

32

to query the marginal distribution of some variable at a particular time, such as the

distribution of weight at	� = 10, which can answer the kind of question like what is the

probability of the person is overweight at the tenth month. In reliability analysis, this

inference enables us to query the reliability or point availability of a system at a particular

time. The second kind of inference is to query the expected total amount of time that a

variable spends in a state in a period of time like	[0	�]. For example, this inference can

answer the question like what is the expected total month the person is overweight for the

first ten months. In reliability analysis, we can apply this to calculate the expected total

amount of operational time for a repairable system so as to estimate its mean availability.

The reliability or availability estimation using a CTBN is a filtering task with empty

evidence for a particular node.

Inference algorithms

There are various inference algorithms available in the literature, such as the exact

inference method (Nodelman, Koller et al. 2005), the expectation propagation based

method (Nodelman, Koller et al. 2005; Saria, Nodelman et al. 2007), the mean field

variational based method (Cohn, El-Hay et al. 2009) and the sampling based method (Fan

and Shelton 2008). Next, we will give a brief introduction of the basic inference

algorithm in CTBNs, the exact inference. A more complete treatment of this method can

be found in Nodelman’ paper (Nodelman, Koller et al. 2005).

Assume that there is a partially observed trajectory ~ for a CTBN from time 0

to	�. The evidence ~ is divided into b interval [�A, �A1*)(R = 0,… ,b − 1) according to

the observed transition times. That is, each interval contains a constant observation of the

CTBN. We set �� = 0 and	�e = �.

33

To perform exact inference, the intensity matrix 4 for the join homogeneous

Markov process is generated using the amalgamation method. Then the evidence is

incorporated into 4 as following. The intensity matrix 4 is reduced to 4A for each interval

[�A, �A1*) by zeroing out the rows and columns of 4 which represent states that are

inconsistent with the evidence. And 4AB represents the matrix 4 with all elements zeroed

out except the off-diagonal elements that represent the intensities of transitioning from

non-zero rows in 4A to non-zero columns in4B . Exp	(4A(�A1* − �A)) is the transition

matrix for interval [�A, �A1*) and 4A,A1*coresponds to the transition probability density

between two consecutive intervals at time �A1*.

Next, the forward-backward algorithm for Markov processes is used to answer

queries. Let �� = �(&�, ~[�,�]) and �� = �(~[�,�)|&�) be the forward and backward

probability vector respectively, ~[�?,�@] be the trajectory during interval[�A, �B], �� be the

initial distribution 23� over the state at time 0 and �� be a vector of ones. The forward and

backward distribution vectors for each interval can be calculated recursively:

��?�8 = ��A expL4A(�A1* − �A)M4A,A1*

��A = 4A�*,A expL4A(�A1* − �A)M ��?�8

The distribution over the state of the CTBN at time � ∈ [�A, �A1*) given the evidence ~[�,�)
can be computed as

2L&� = �, ~[�,�)M = ��A expL4A(� − �A)M ∆�,� expL4A(�A1* − �)M ��?�8

34

where ∆A,B is an ' × ' matrix of zeros except for a single one in position R, � . The

expected total amount of time that the join Markov process spends in state � during

interval [�A , �A1*) given the evidence is a kind of expected sufficient statistics (Nodelman,

Koller et al. 2005) for CTBNs, which can be calculated as:

1� � ��? expL4A(� − �A)M ∆B,B expL4A(�A1* − �)M ��?�8���?�8
�?

where � is the normalization factor to guarantee that the summation of the total time the

process spends on each state during interval [�A, �A1*) is �A1* − �A.
3.2 FT(DFT) Gates and CTBN Modeling

Fault trees (FTs) are one of the most popular techniques for reliability analysis of

large, complex systems. The two most commonly used gates in a FT are the AND gate

and OR gate. Dynamic Fault trees are extensions of FTs, aimed at increasing the

modeling power of FTs by including new primitive gates, able to accommodate complex

kind of dependencies. DFTs introduce four basic (dynamic) gates: the warm spare gate

(WSP), the sequence enforcing gate (SEQ), the probabilistic dependency gate (PEDP)

and the priority AND gate (PAND). In the rest of this section, we propose to characterize

(Dynamic) Fault trees gates within the CTBNs framework, by translating all the basic

gates into the corresponding CTBNs models. We adopt the following convention. Given

a generic binary component � we denote with � = 1 the component failure and with

� = 0	 the component working. In the common hypothesis, component failures and

repairs are exponentially distributed with failure rate	�� and	��.

35

3.2.1 AND Gate and OR Gate

The AND gate represents that the output event occurs if all input events occur; the

OR gate represents that the output event occurs if at least one of the input events occurs.

The corresponding CTBN representations for AND gate and OR gate are shown in Figure

3.2. In the CTBN modeling, node A, B and C all have 2 states: state 1 means the

corresponding component fails and state 0 means it is working. Their initial states are 0,

which means that they are all working at the beginning. CIMs for node A and B are listed

in the left part of Table 3.5. For node A/B, its initial state is 0, the expected time of

transitioning from state 0 to state 1 is	 *�� or
*��. However, when it enters state 1, it will stay

in that state forever, because the expected time of transitioning from state 1 to state 0 is

infinity (1/0). In reliability, this means that the component is non-repairable. This is very

easy to be extended to model reparable case. For instance, suppose component A and B

both are reparable and subject to a CR policy with failure rate and repair rate �� and	��

respectively. When they are in state 1, they will return back to state 0 with expected time

*�� and		 *�� respectively. The detailed CIM for the reparable case is in the right part of

Table 3.5. For node C with OR gate, its initial state is 0. When node A and B are in state

0, node C always stays in state 0 (the expected transitioning time is infinity). However,

when at least one of A or B is in state 1, it transits into state 1 immediately (the expected

transitioning time is	0 = *�). The similar logic is applied to node C with AND gate.

36

Table 3.5: : CIMS for node A and B of OR gate

Node A,

non-

reparable

State A(0) A(1) Node A,

reparable

State A(0) A(1)

A(0) −�� �� A(0) −�� ��

A(1) 0 0 A(1) �� −��

Node B,

non-

reparable

State B(0) B(1) Node B,

reparable

State B(0) B(1)

B(0) −�� �� B(0) −�� ��

B(1) 0 0 B(1) �� −��

Table 3.6: CIMS for node C of OR gate

{A(0),B(0)}

State B(0) B(1)

B(0) 0 0

B(1) ∞ −∞

{A(0),B(1)}

{A(1),B(0)}

{A(1),B(1)}

State B(0) B(1)

B(0) −∞ ∞

B(1) 0 0

Table 3.7: CIMS for node C of AND gate

{A(0),B(0)}

{A(0),B(1)}

{A(1),B(0)}

State B(0) B(1)

B(0) 0 0

B(1) ∞ −∞

{A(1),B(1)} State B(0) B(1)

B(0) −∞ ∞

B(1) 0 0

Figure 3.2: The OR and AND gate in FT and CTBN representation

37

3.2.2 WSP Gate

The WSP is a dynamic gate modeling one or more main components that can be

replaced by one or more backups (spares). Spares can fail while they are dormant, but the

failure rate of the unpowered spare is αλ with 0≤α≤1 called the dormancy factor and λ is

the failure rate of an active spare. Spares are called “hot” if α=1 and “cold” if α=0. When

the main component fails, the switch will activate spare component to substitute the main

one with probability	�*; it fails to activate spare component with probability	�+(�+ = 1 −
�*). As an example, let us consider a situation where a single component P can be

substituted by a spare S. If any component (either main or spare) is failed or the switch

fails to active spare component, the gate produces a fault. The corresponding CTBN

nodes to this gate are shown in Figure 3.3. Node P has 3 states: 0, 11 and 12. State 0

means P is working; State 11 means P fails in failure modal 1, which means that the

switch activates the spare component successfully; State 12 means P fails in failure

modal 2, which means that the switch fails to activate the spare component. Node S and

Node WSP both have 2 states: 0 and 1. State 0 means it is working, while state 1 means it

fails. The CIMs for each node with different scenarios are listed in Table 3.8-3.10. For

node P, its initial state is 0, the expected time it goes out this state is	 *��. The probability it

enters state 11 is
"8���� = �* and the probability it enters state 12 is	"9���� = �+. If it transits

into state 11 or state 12, it will stay in that state forever. For node S, its initial state is 0.

However, the state transition depends on its parent P. If P is in state 0, then S is dormant

and evolves with failure rate	��}; If P is in state 11, which means P fails and the switch

activates S successfully, it will evolve with failure rate	�} ; If P is in state 12, which

38

means P fails and the switch fails to activate S, then S will stay in dormant state. S is non-

reparable; once it enters the failure state, it will not go out. For node WSP, it will stay in

state 0 if P is working or P is in state 11 and S is in state 0; it will transit into state 1

immediately if P is in state 12 or P is in state 11 and S is in state 1.

Figure 3.3: The WSP gate in FT and CTBN representation

Table 3.8: CIM for node P of WSP gate

State P(0) P(11) P(12)

P(0) −�� �*�� �+��

P(11) 0 0 0

P(12) 0 0 0

Table 3.9: CIM for node S of WSP gate

P(0)

State S(0) S(1)

S(0) −��} ��}
S(1) 0 0

P(11) State S(0) S(1)

S(0) −�} −�}
S(1) 0 0

P(12) State S(0) S(1)

S(0) −��} ��}
S(1) 0 0

39

Table 3.10: CIM for node WSP

{P(0), S(0)}

{P(0), S(1)}

{P(11), S(0)}

State WSP(0) WSP(21)

WSP(0) 0 0

WSP(21) ∞ −∞

{P(11), S(1)}

{P(12), S(0)}

{P(12), S(1)}

State WSP(0) WSP(21)

WSP(0) −∞ ∞

WSP(21) 0 0

3.2.3 PAND Gate

PAND gate reaches a failure state if and only if all of its input components have

failed in a pre-assigned order. As an example, let us consider a situation where a PAND

gate consists of 2 components A, B. If A fails before B, then a failure occurs; otherwise,

there is not a failure happening. Node B has 3 states: state 0 means B is working; state 11

means A fails before B; state 12 means A fails after B. Node A and node PAND have 2

states 0 and 1. State 0 means they are working while state 1 means they fail. CIM of node

A is the same as that in Table 3.5. CIM of node B and node PAND are listed in Table

3.11 and Table 3.12 respectively. For node B, if A is in state 0, the only way B can go is

to state 12, which means B fails before A. However, if A is in state 1, obviously, A fails

before B, B then will enter state 11. As for node PAND, it will keep in state 0 unless A

and B both are in state 1, which indicates a failure.

40

Figure 3.4: The PAND gate in FT and CTBN representation

Table 3.11: CIM for node B of PAND gate

A(0) State B(0) B(11) B(12)

B(0) −�� 0 ��

B(11) 0 0 0

B(12) 0 0 0

A(1) State B(0) B(11) B(12)

B(0) −�� �� 0

B(11) 0 0 0

B(12) 0 0 0

Table 3.12: CIM for node PAND

{A(1),

B(11)}

State PAND(0) PAND(1)

PAND(0) −∞ ∞

PAND(1) 0 0

Others

State PAND(0) PAND(1)

PAND(0) 0 0

PAND(1) 0 0

3.2.4 PDEP Gate

In the PDEP gate, one trigger event T causes other dependent components to

become unusable or inaccessible with probability 	���" ≤ 1 . As an example, let us

consider a situation where the failure of a trigger component T will cause both

41

component A and B to fail with probability 	���" . The corresponding CTBN

representation is shown in Fig 3.5. Node T has 3 states: 0, 11 and 12. State 0 means it is

working; state 11 means it fails in failure modal 1 and this failure will cause both A and

B fail; state 12 means it fails in failure modal 2 and this failure has no effect on A and B.

Node A and B both have 2 states: 0 and 1. State 0 means it is working while state 1

means it fails. For node T, its initial state is 0 and it will transit to state 11 with

probability ���" or transit to state 12 with probability	1 − ���" . For node A, if T is

working or T’s failure has not impact on it (with probability	���"), it will evolve with

failure rate	��; otherwise, it will transit to failure state (state 1) immediately. Node B has

the same CIMs as Node A has. The discussion above assumes that A and B are non-

reparable. If A and B are reparable, since trigger event T can cause both A and B to fail,

there are two cases in reality: case 1: they need repair action or case 2: they do not. Case

1 means that if A and B fail (due to trigger event T or fail by themselves), it takes
*�� or

*�� to repair them. Case 2 is that if A and B fail due to T, they do not need repair action.

They are in good condition; they stop working just because T is malfunction. Once T is

back to normal, they will continue to operate. However, if their failures are not caused by

T, they fail by themselves, they still need repair action. For example, suppose T is power

supply, A and B are two generators. If power supply (T) is down, A and B are down.

However, they do not need repair action because they are in good condition. Once the

power supply continues, they will continue to work again. It is easy to model case 1: if A

or B are in state 1, they will transit back to state 0 with repair rate ��	or	��. For case 2,

where one more state is needed for A and B, they have 3 states: state 0 means they are

working; state 11 means they fail in failure modal 1 and this failure is caused by T, they

42

do not need repair action in this failure; state 12 means they fail in failure modal 2 and

this failure is caused by themselves, so this failure needs repair action. For detail CIMs,

please refer to Table 3.14 and Table 3.15. In the Literature (Portinale, Raiteri et al. 2010),

only case 1 is considered. In order to make a comparison with the results from the

literature, for the rest of this chapter, unless specified, we refer to case 1.

Figure 3.5: The PEDP gate in FT and CTBN representation

Table 3.13: CIM for node T of PDEP gate

State T(0) T(11) T(12)

T(0) -�� ���" ∗ �� (1 − ���") ∗ ��

T(11) 0 0 0

T(12) 0 0 0

Table 3.14: CIM for node A of PDEP gate, non-reparable and reparable case 1

Non-reparable Reparable, Case 1

T(0) or

T(12)

State A(0) A(1) T(0) or

T(12)

State A(0) A(1)

A(0) −�� �� A(0) −�� ��

A(1) 0 0 A(1) �� −��

T(11)

State A(0) A(1) T(11)

State A(0) A(1)

A(0) -∞ ∞ A(0) -∞ ∞

A(1) 0 0 A(1) �� −��

43

Table 3.15: CIM for node A of PDEP gate, reparable case 2

Reparable, Case 2

T(0)

State A(0) A(11) A(12)

A(0) −�� 0 ��

A(11) ∞ -∞ 0

A(12) �� 0 −��

T(11)

State A(0) A(11) A(12)

A(0) -∞ ∞ 0

A(11) 0 0 0

A(12) 0 0 0

T(12)

State A(0) A(11) A(12)

A(0) −�� 0 ��

A(11) 0 0 0

A(12) �� 0 −��

3.3 Multi-state Interaction and CTBN Modeling

Multi-state interaction is similar to the WSP gate. The (Dynamic) Fault trees

cannot model a multi-state system, thus there is not this kind of gate in DFTs. The

difference between multi-state interaction and the WSP gate is that, in multi-state

interaction, we do not distinguish components by primary and standby. The purpose of

multi-state interaction is not to increase the redundancy. Instead, it models the case in

which the failure distribution of one component depends on the working state of other

components. In this sense, it looks more like the PDEP gate. However, the PDEP gate is

to model common failure factor, which means that the failure of one component will

bring down one or more components. In multi-state interaction, the component doesn’t

necessarily fail; it primarily focuses on how the degradation of one component will affect

the others. For example, consider a system that consists of two components A and B in

series with exponential failure distribution. A has multi-state: good, moderate and failed.

B is binary state: good and failed. The failure rate of B depends on the state of A. If A is

44

in state good, the failure rate for B is	��,�; if A is in state moderate, the failure rate for B

change to	��, . The failure rates for A are ��,�and ��, when it is in state good and

moderate respectively.

The CTBN representation for multi-state interaction is shown in Figure 3.6. The

CIM for node B is listed in Table 3.16.

Table 3.16: CIM for node B of Multi-state interactions

A(good)

State B(good) B(failed)

B(good) −��,� ��,�

B(failed) 0 0

A(moderate)

State B(good) B(failed)

B(good) −��, ��,

B(failed) 0 0

A(failed) State B(good) B(failed)

B(good) −��, ��,

B(failed) 0 0

Figure 3.6: CTBN representation for multi-state interaction

45

3.4 CTBN Modeling of Repair Policies

In this subsection, we will present the modeling of repair policies within CTBN

formalism through the CPU subsystem of a running example named the Cardiac Assist

System (CAS) (Boudali, Crouzen et al. 2007; Portinale, Raiteri et al. 2010) described in

Section 3.6.1. The CPU subsystem consists of two different CPUs: a primary CPU P with

failure rate �� and a backup warm spare CPU B with failure rate �� and dormancy

factor	�� = .5. Both CPU are functionally dependent on cross switch CS (failure rate	�¡¢)

and system supervision SS (failure rate	�¢¢). The failure of either CS or SS will force the

failure of both CPUs and so the failure of the CPU subsystem. The dependencies among

these components are modeled by dynamic gates and are shown as a part of DFT for the

whole system in Figure 3.10. P and B are the input events of a WSP gate; this means that

P is the principal component and in the case of failure, it will be substituted by B. The

PDEP gate forces both P and B to fail if the event Trigger occurs (failure of either CS or

SS). The corresponding CTBN representation of this subsystem is show in Figure 3.10.

3.4.1 CPU Subsystem with SGR Policy

In the case when SGR policy is employed, the corresponding CTBN

representation is show in Figure 3.7. Compared with non-reparable case, there are extra

green links (dash line) from CPU to reparable components (CS, SS, P and B), which

means that the failure of the CPU subsystem will activate the repair process of each

component. Node CPU has 3 states (0, 1 and 2). State 0 means it is working; state 1

means it is under repair and state 2 means the repair action is completed. The initial state

of CPU is 0. When it fails, it enters state 1; the repair state and the node evolve following

46

the corresponding global repair rate	�¢£¤ (the expected transition time from state 1 to

state 2 is	 *�¥¦§). When the repair is done, it will enter state 2, which is an instant state

indicating that the global repair action is done, and all components under repair (nodes

with green in-flow link) are immediately set to be functional again; and CPU will switch

to state 0 instantly. Table 3.17 is the detailed CIM for node CPU. For node P, if CPU is in

state 2, the repair process is completed. If it is in state 1, it will return back to state 0

immediately. Otherwise, it will stay in state 1. The detailed CIM is in Table 3.18. Other

nodes (CS, SS and B) have the similar logic as node P.

Figure 3.7: CTBN representation for SGR, SLR and SLR-min policy

47

Table 3.17: CIM for node CPU of CPU subsystem with SGR policy

{P(0), B(0)},

{P(0), B(1)},

{P(1), B(0)}

State CPU(0) CPU(1) CPU(2)

CPU(0) 0 0 0

CPU(1) ∞ −∞ 0

CPU(2) ∞ 0 −∞

{P(1), B(1)} State CPU(0) CPU (1) CPU (2)

CPU (0) −∞ ∞ 0

CPU (1) 0 −�¢£¤ �¢£¤

CPU (2) ∞ 0 −∞

Table 3.18: CIM for node P of CPU subsystem with SGR policy

{Trigger (0),

CPU (0)},

{Trigger (0),

CPU (1)}

State P(0) P(1) {Trigger (1),

CPU (0)},

{Trigger (1),

CPU (1)}

State P(0) P(1)

P(0) −�� �� P(0) −∞ ∞

P(1) 0 0 P(1) 0 0

Trigger (0),

CPU (2)

State P(0) P(1) Trigger (1),

CPU (2)

State P(0) P(1)

P(0) −�� �� P(0) −∞ ∞

P(1) ∞ −∞ P(1) ∞ −∞

3.4.2 CPU Subsystem with SLR Policy

In the case when SLR policy is employed, the corresponding CTBN

representation is the same as that of SGR shown in Figure 3.7. However, node CPU only

has two states (0 it is working and1 it fails), the CIM is listed in Table 3.19. Nodes CS,

SS, P and B all have 3 states (0, 1 and 2). State 0 means that the component is working;

state 1 means that it fails and state 2 means it is being repaired. For node P, its repair

process is activated by the failure of CPU. If CPU is in state 1 and P is in state 1, P will

transits to state 2 immediately and evolves with repair rate	��. The detailed CIM of P is

listed in Table 3.20. Other nodes (CS, SS and B) have the similar logic as node P.

48

Table 3.19: CIM for CPU of CPU subsystem with SLR policy

Table 3.20: CIM for P of CPU system with SLR policy

Trigger (0),

CPU (0)

State P(0) P(1) P(2) Trigger (1),

 CPU (0)

State P(0) P(1) P(2)

P(0) −�� �� 0 P(0) −∞ ∞ 0

P(1) 0 0 0 P(1) 0 0 0

P(2) �� 0 −�� P(2) �� 0 −��

Trigger (0),

CPU (1)

State P(0) P(1) P(2) Trigger (1),

CPU (1)

State P(0) P(1) P(2)

P(0) −�� �� 0 P(0) −∞ ∞ 0

P(1) 0 −∞ ∞ P(1) 0 −∞ ∞

P(2) �� 0 −�� P(2) �� 0 −��

3.4.3 CPU Subsystem with SLR-min Policy

In the case when SLR-min policy is employed, the corresponding CTBN

representation is the same as that of SGR in Figure 3.7. The CIM of CPU is similar to

that of SLR case, which is listed in Table 3.21. Node CS, SS, P and S all have 2 states (0

and 1). State 0 means they are working, and state 1 means they fails or are been repaired.

For node P, when CPU is in state 0 (CPU returned back to working state), if P is in state 1,

it will stay in state 1 (with repair rate 0); this models the situation when the subsystem is

functional, the repair action will stop. Other nodes (CS, SS and B) have the similar logic

as node A.

{P(0), B(0)}

{P(0), B(1)}

{P(1), B(0)}

{P(0), B(2)}

{P(2), B(0)}

State CPU (0) CPU (1)

CPU (0) 0 0

CPU (1) ∞ −∞

{P(1), B(1)}

{P(1), B(2)}

{P(2), B(1)}

{P(2), B(2)}

State CPU (0) CPU (1)

CPU (0) −∞ ∞

CPU (1) 0 0

49

Table 3.21: CIM for CPU of CPU subsystem with SLR-min policy

{P(0), B(0)},

{P(1), B(0)},

{P(0), B(1)}

State CPU (0) CPU (1)

CPU(0) 0 0

CPU (1) ∞ −∞

{P(1), B(1)} State CPU (0) CPU (1)

CPU (0) −∞ ∞

CPU (1) 0 0

Table 3.22: CIM for P of CPU subsystem with SLR-min policy

{Trigger (0), CPU

(0)}

State P(0) P(1) {Trigger (1), CPU

(0)}

State P(0) P(1)

P(0) −�� �� P(0) −∞ ∞

P(1) 0 0 P(1) 0 0

{Trigger (0), CPU

(1)}

State P(0) P(1) {Trigger (1), CPU

(1)}

State P(0) P(1)

P(0) −�� �� P(0) −∞ ∞

P(1) �� −�� P(1) �� −��

3.4.4 CPU Subsystem with CR Policy

When CR policy is applied to the CPU subsystem, there is no extra links and

nodes needed. The corresponding CTBN representation is shown in Figure 3.8. The net

representation is the same as the non-reparable case; however, CIM of each node is

different from that of non-reparable case. Table 3.23 is the CIM for P with non-reparable

case; Table 3.24 is the CIM for P with CR policy. Notice that the difference between

them is when P is in state 1, it will stay there in non-reparable case, while it will evolve

with repair rate ��	in CR policy case. Other nodes (CS, SS and B) have the similar logic

as node P. CIMs for node Trigger and node CPU are the same as that of non-reparable

case.

50

Table 3.23: CIM for P of CPU subsystem with CR policy, non-reparable case

Trigger(0) State P(0) P(1)

 P(0) −�� ��

P(1) 0 0

Trigger(1) State P(0) P(1)

 P(0) −∞ ∞

P(1) 0 0

Table 3.24: CIM for P of CPU subsystem with CR policy

Trigger(0) State P(0) P(1)

 P(0) −�� ��

P(1) �� −��

Trigger(1) State P(0) P(1)

 P(0) −∞ ∞

P(1) �� −��

CS SS

P

(PDEP)

B

(PDEP)

Trigger

(OR)

CPU

(WSP)

Figure 3.8: CTBN representation for CR policy

3.4.5 CPU Subsystem with CR-limit Policy

When CR-limit policy is applied, since the repair crews are limited, there should

be a control center which can assign a repair crew to a down component, and reclaim the

repair crew from a component when the repair process is completed. In the CPU

51

subsystem example, one more node M is added and plays this role. Node M has two way

links connected with reparable components (CS, SS, P and B). If a component fails, and

node M has available repair crew, it will assign this repair crew to this component; if

there is not repair crew available, it will keep the component on hold. When a repair

process is completed, the component will report to node M and node M will reclaim the

repair crew from that component. The states of node M are dependent on the total number

of repair crews available. Suppose there are ' repair crews available, then node M has

	' + 1 states (0:	'). c�J�k = y	(y ≤ ')	means that there are y repair crews available. As

an example, lets support	y = 2, then node M has 3 states: 0, 1 and 2. And the initial state

is 2, which means it has 2 repair crews available at the beginning. Nodes CS, SS, P and B

all have 3 states: 0, 1 and 2. State 0 means that the component is working; state 1 means

that the component fails and state 2 means that it is being repaired. The corresponding

CTBN representation is shown in Figure 3.9. Table 3.25 is the CIM for node M with 2

repair crews. Notice that the initial state of node M is state 2. When there is not a

component in repair state (state 2), node M will stay in state 2. If one component fails,

node M will transits into state 1 immediately and stay there (of course, this component

will enter repair state 2). If the component finishes its repair process (back to state 0),

node M will transits back to state 2 instantly. However, before the 1
st
 failed component

finishes it repair, if one more component fails, node M will transits from state 1 to state 0.

At this time, even more components fail, node M will still stick in state 0, because there

is not an available repair crew for assigning, and the failed components stay in a failure

state (state 1) and wait for the repair crew. Table 3.26 is the CIM for node P. We can see

that, when node M is in state 0, if P is in state 1, it will stay in state 1. However, if node

52

M is in state 1 or state 2, P will enter state 2 instantly, which mean that it is assigned a

repair crew and can enter repair process. Other nodes (CS, SS and B) have the similar

logic as node A.

If we want to model this policy using Markov Chains, we can denote each state

as	(�c, cc, 2, s|	*, 	+); 	* and 	+ are the 1
st
 and 2

nd
 repair crew. The number of states

we need for the case with 2 repair facilities is	2© × �©+ = 2© × ©×ª+ = 96. For the case

with 3 or 4 repair facilities, the number of states need is	2© × �©ª = 2© × �©© = 192. Due

to the natural limitation of DBNs, they cannot model this repair policy.

Figure 3.9: CTBN representation for CR-limit policy

53

Table 3.25: CIM for node M of CPU subsystem with 2 repair facilities

0 component (CS, SS, P,

B) is in state 2

State M(0) M(1) M(2)

M(0) −∞ 0 ∞

M(1) 0 −∞ ∞

M(2) 0 0 0

1 component (CS, SS, P,

B) is in state 2

State M(0) M(1) M(2)

M(0) −∞ ∞ 0

M(1) 0 0 0

M(2) ∞ −∞

2 or more than 2

components (CS, SS, P,

B) are in state 2

State M(0) M(1) M(2)

M(0) 0 0 0

M(1) ∞ −∞ 0

M(2) ∞ 0 −∞

Table 3.26: CIM for node P of CPU subsystem CR-limited policy

{Trigger (0),

M (0)}

State P(0) P(1) P(2) {Trigger (1),

M (0)}

State P(0) P(1) P(2)

P(0) −�� �� 0 P(0) −∞ ∞ 0

P(1) 0 0 0 P(1) 0 0 0

P(2) �� 0 −�� P(2) �� 0 −��

{Trigger (0),

M (1)},

{Trigger (0),

M (2)}

State P(0) P(1) P(2) {Trigger (1),

M (1)},

{Trigger (1),

M (2)}

State P(0) P(1) P(2)

P(0) −�� �� P(0) −∞ ∞ 0

P(1) 0 −∞ ∞ P(1) 0 −∞ ∞

P(2) �� 0 −�� P(2) �� 0 −��

3.5 Case Studies:

In this subsection, the CTBN method is applied to three systems. The examples

presented, are based on real-life systems. The Cardiac system is a typical example with

dynamic behavior, which is broadly used in literatures (Boudali, Crouzen et al. 2007;

Portinale, Raiteri et al. 2010) for evaluating the reliability modeling methods. The

purpose of implementing the CTBN method to Cardiac system is two folders. First, we

can show how to map the (Dynamic) Fault trees into CTBNs; second, we can evaluate the

accuracy of CTBNs by comparing it with the results of other methods (Markov Chain,

54

Dynamic Bayesian Networks, Petri-net) taken from literatures (Montani, Portinale et al.

2005; Portinale, Raiteri et al. 2010). The second example is a ground vehicle system,

which is used for a demonstration of how the CTBNs model multi-state interactions. The

last example is based on the second example. It is a fleet of vehicles system. The purpose

of this example is to demonstrate how the CTBNs model the repairable system with

limited shared repair crews, which cannot be modeled by Dynamic Bayesian Networks.

3.5.1 Cardiac System

The Cardiac Assist System (CAS) model is taken from literatures (Boudali,

Crouzen et al. 2007; Portinale, Raiteri et al. 2010) and is based on a real-world system. It

consists of three separate subsystems: the CPU subsystem, the motor subsystem and the

pump subsystem. The failure of either one of the above subsystem will cause the whole

system to fail. As we introduce in Section 3.5, the CPU subsystem has two different

CPUs: a primary CPU P and a backup warm spare CPU B (with dormancy failure

rate	�� = 0.5). Both CPUs are functionally dependent a cross switch CS and a system

supervision SS. The failure of either CS or SS will force both CPUs to fail. The motor

subsystem also has two motors: a primary MA and a cold spare MB. The switching

component MS will activate the spare motor when the primary one fails on condition that

MS is still working. This means that if MS fails before MA, MS cannot effetely turn on

MB and then the whole subsystem fails. Finally, there are three pumps in the pump

subsystem. Two primary pumps PA and PB running in parallel and a cold shared pump

PS. The pump subsystem fails if all three pumps fail. The failure rate for each component

is listed in Table 3.27 and the DFT for the whole CAS system is shown in Fig. 3.10. The

CTBN representation corresponding to the DFT in Figure 3.10 is shown in Figure 3.11.

55

In this thesis, all numerical experiments with CTBNs are performed with CTBN-RLE

(Shelton, Fan et al. 2010) developed by Shelton and his team. And for all ∞ in CIMs, we

make them equal to a larger number; here we choose	10*�.

Table 3.27: Failure rates for the CAS system component

Component Subsystem Failure rate

Primary CPU-P CPU 	�� = .5j − 3

Backup CPU-B CPU �� = .5E − 3

Cross switch-CS CPU 	�¡¢ = .2j − 3

System supervision-SS CPU 	�¢¢ = .2j − 3

Primary Motor-MA MOTOR 	�¬� = 1j − 3

Cold spare Motor-MB MOTOR 	�¬� = 1j − 3

Switching Component- MS MOTOR 	�¬¢ = .01j − 3

Primary pump-PA PUMP 	��� = 1j − 3

Primary pump-PB PUMP 	��� = 1j − 3

Shared pump-PS PUMP 	��¢ = 1j − 3

In order to validate the correctness of CTBNs modeling method in RAM analysis,

first, we consider the system as non-reparable and estimate the unreliability of the system

with the mission time from 100 to 1000 hours (with time step 100), and then compare

them with the results from paper (Montani, Portinale et al. 2005), which are calculated by

MC-based method Galileo. Table 3.28 shows the comparison between them. Since

Galileo method is based on continuous time Markov chain analysis, we consider the

results obtained from it as true value. From the Table we can see that the results

estimated from CTBNs are almost identical to those of Galileo, which validates the

correctness of CTBN modeling method. The average of Relative Deviation Percentage

(RDP) is as small as 2.3 %, where RDP is calculated

by 		2 = ∑ ®¯°±²³L´µ�¶?M·¯°±²³(¦°±?±³p?)¯°±²³(¦°±?±³p?) ®;? - × 100 . The estimation of the reliability using

56

CTBNs is a filtering task which queries the node System (Top Event) with empty

observation in in other nodes (Basic Event).

Table 3.28: The unreliability of CAS estimated by CTBNs

Hours CTBN Galileo Deviation RDP

100 0.041633 0.046034 -0.0044 9.56%

200 0.09786 0.103223 -0.00536 5.20%

300 0.163169 0.169335 -0.00617 3.64%

400 0.236178 0.24148 -0.0053 2.20%

500 0.317489 0.31671 0.000779 0.25%

600 0.391319 0.392059 -0.00074 0.19%

700 0.469853 0.465402 0.004451 0.96%

800 0.534843 0.534898 -5.5E-05 0.01%

900 0.600071 0.59931 0.000761 0.13%

1000 0.663378 0.657889 0.005489 0.83%

Mean RDP 2.30%

In the reparable case, in order to compare results of CTBN with those of other

methods taken from the paper (Portinale, Raiteri et al. 2010), we assume the same setting

as that in Portinale’s paper. Only the CPU subsystem is reparable: first only the two

CPUs are applied with CR policy, and then extended to Trigger (CS and SS) with the

same policy. Their repair rates are all equal to 0.1 (�¡¢ = �¢¢ = �� = �� = .1). The

DRPFTproc (Bobbio and Raiteri 2004)is a Stochastic Petri Nets based reliability analysis

tool and the RADyBaN (Portinale, Raiteri et al. 2010)is a DBN-based method. Table 3.29

shows the comparison of results obtained from these methods and CTBNs. From the

Table we can see that the agreement between them.

57

Table 3.29: The unavailability (1- point availability) of CAS obtained by CTBNs with

CR policy

Hours

CPU repair CPU+Trigger repair

CTBN

DRPFTproc
(Bobbio and

Raiteri 2004)

RADyBaN
(Portinale,

Raiteri et al.

2010)

CTBN

DRPFTproc
(Bobbio and

Raiteri 2004)

RADyBaN
(Portinale,

Raiteri et al.

2010

100 0.04883 0.044330 0.044283 0.007782 0.011282 0.011243

200 0.094698 0.095198 0.096916 0.025652 0.027652 0.027566

300 0.160094 0.155094 0.156659 0.057963 0.054963 0.054837

400 0.221637 0.220137 0.221550 0.088617 0.092117 0.091957

500 0.291619 0.288119 0.2893821 0.136437 0.137437 0.137252

600 0.356405 0.356905 0.358023 0.184482 0.188982 0.188779

700 0.421624 0.424624 0.425606 0.248771 0.244771 0.244558

800 0.490268 0.489768 0.490624 0.306446 0.302946 0.302729

900 0.556211 0.551211 0.551952 0.360365 0.361865 0.36165

1000 0.607691 0.608191 0.608829 0.421148 0.420148 0.419939

Table 3.30: The unavailability (1- point availability) of CAS obtained by CTBNs with

CR-limit policy

Table 3.30 lists the unavailability estimated by CTBNs when the number of repair

crew varies. The 2
nd

 column (CR) is the unlimited repair crew case; the 3
rd

 to 6
th

 columns

are the cases when number of repair crew varies from 4 to 1. The instantaneous

availability decreases as the number of repair facility decreases. In this example, CR-L4

Hours CR
CR-limit

4 Crews 3 Crews 2 Crews 1 Crew

100 0.04883 0.04935022 0.04987309 0.05495257 0.107054

200 0.094698 0.09523264 0.09671853 0.09862899 0.16194

300 0.160094 0.16017298 0.16141105 0.16729006 0.174128

400 0.221637 0.22171244 0.22239923 0.22279578 0.294837

500 0.291619 0.29245792 0.29389953 0.30237777 0.334138

600 0.356405 0.35675185 0.35805307 0.3583714 0.3813

700 0.421624 0.42220654 0.42272338 0.42998631 0.506544

800 0.490268 0.49037719 0.49089903 0.49673556 0.54792

900 0.556211 0.55698206 0.55789716 0.56496994 0.617032

1000 0.607691 0.6081461 0.60920054 0.61310904 0.652559

58

should have the same result as that of CR because there are only 4 components in this

subsystem. Having 4 repair crews available actually is the case of unlimited repair crews.

Results (the 2
nd

 and 3
rd

 column) in the table above show the agreement between them.

Figure 3.10: The DFT model of CAS

59

Figure 3.11: The CTBN representation corresponding to the DFT in Figure 3.10

3.5.2 Ground Vehicle System

Let’s look at a ground vehicle. It consists of four main subsystems in series: the

body subsystem, the chassis subsystem, the powertrain subsystem and the electrical

subsystem. Let’s focus more detail on the chassis subsystem and the powertrain

subsystem. The chassis subsystem has four components in series: suspensions, the brakes,

the wheels & tires, and the axles. The powertrain subsystem has three components in

series: the engine, the transmission and the cooling subsystem. Although all components

and subsystems are in series structure, there are some interactions among these

components and subsystems. For example, the operating condition of suspension has a

great impact on the wheels & tires, the body and the axles (Clifton 1990). With the

suspension degradation, such as the shock absorber being stuck (less or no movement),

the wheels & tires, the axles and the body would bear more energy from a shock and

60

would result in damages in these components, which will accelerate their failures.

Another example of interaction is between the cooling subsystem and the engine (Walter

2001). Commonly the perfect operating temperature for an engine is around 180F. The

degradation of cooling system will lead to engine overheating or being too cold. One

common effect of overheating or cooling to an engine is that the abnormal temperature

will cause the engine lubricating oil to thin or become too dense and result in poor

lubrication, which will cause damage to the engine and accelerate its failure. Thus, we

assume that both the suspension and cooling system have multiple working states: good,

moderate and failed. All other subsystems have binary states: working and failed. We

also assume that all failure time and repair time follow exponential distribution. The

failure rates �. and repair rates �.for each subsystem in different states are shown in Table

3.31. The original failure rate for each subsystem is failures per mile. In order to make

the unit consistent with repair rate (per hours), we transfer failure rate from failures per

mile into failures per hour by using average speed factor 50 miles per hour. It is not easy

to define the failure of a body subsystem, and this failure is not common except in car

accidents. Thus in this study we don’t consider the failure of a body subsystem, and just

put its failure rate and repair rate as 0. There are more than one suspension, wheel & tire

in a vehicle, the failure rate and repair rate for these two subsystems are aggregated from

independent multiple suspensions, wheels & tires.

61

Table 3.31: Failure and repair rate for each subsystem of ground vehicle example

Subsystem Component State Failure Rate or Repair Rate

Chassis (CH)

Brakes(BR)

 SU(good) SU(moderate)

Good
�¸¹,�= .5k − 3

�¸¹, = .8k − 3

Failed �¸¹ =.5

Wheels &

Tires(WT)

 SU(good) SU(moderate)

Good
�o�,�= .16k − 3

�o�, = .2k − 3

Failed �.º» = 1.2

Suspension(SU)

Good �},� = .5k − 4

Moderate �}, = .1k − 3

Failed �}=3

Axles(AX)

 SU(good) SU(moderate)

Good
�¼5,�= .5k − 4

�¼5, = .7k − 4

Failed �¼5 =8

Powertrain

(PT)

Engine(EG)

 CO(good) CO(moderate)

Good
��-,�= .23k − 4

��-, = .35k − 4

Failed ��- = 10

Transmission(TR)
Good ��¹ = .83k − 4

Failed ��¹ =4

Cooling(CO)

Good �½,� =.75e-4

Moderate �½, =.15e-3

Failed �½ =3.5

Electrical

subsystem(EL)

Electrical

subsystem(EL)

Good ��¾ =.12e-3

Failed ��¾ =.8

Body (BO) Body (BO)
Good �¸¿ =0

Failed �¸¿ =0

The (Dynamic) Fault trees are only limited to modeling binary state systems. The

CTBNs can easily handle a multi-state component. The CTBN representation for the

ground vehicle system is shown in Figure 3.12.

62

Figure 3.12: The CTBN representation of ground vehicle system

There is no redundancy in this system; all subsystems and components are in

series structures. As discussed in the previous subsection, the subsystem repair policies

are identical to the component repair policies in this system. Furthermore, without

redundancy, if one component fails, the whole system fails. Then other components stop

operating and cannot fail, but they are still in good state (case 2 of PDEP gate, Section

3.2.4). Thus only one component would fail each time and one repair crew would be

enough. Based on the discussion above, in this example we just need to consider the CR

policy. The CIMs for some nodes are shown for Table 3.32 to Table 3.34. Nodes CO, TR,

EL have similar CIMs with node SU; Nodes WT, BO, AX and EG have similar CIMs

with node BR; Node PT and Vehicle have similar CIMs with node CH. The double arrow

dash green links in this example work in this way: when a component fails, it will bring

63

down the subsystem and finally bring down the whole vehicle. On the other hand, when

the subsystem/system fails, if the component is in failure state, it will start the repair

procedure automatically; if it is in other states, it will stay in those states. These model

the situation when a subsystem is brought down by one component. Only the failed

component needs repair, other components would stay in their current state due to the

facts that when the subsystem fails, other components stop operating. All nodes are in

good state at the beginning.

Table 3.32: CIM for node SU for ground vehicle example

CH(good)

State SU(good) SU(moderate) SU(failed)

SU(good) −�}!,� �}!,� 0

SU(moderate) 0 −�}!, �}!,

SU(failed) �}! 0 −�}!

CH(failed)

State SU(good) SU(moderate) SU(failed)

SU(good) 0 0 0

SU(moderate) 0 0 0

SU(failed) �}! 0 −�}!

CH(standby)

State SU(good) SU(moderate) SU(failed)

SU(good) 0 0 0

SU(moderate) 0 0 0

SU(failed) �}! 0 −�}!

64

Table 3.33: CIM for node BR of ground vehicle example

CH(good)

SU(good)

State BR(good) BR(failed)

BR(good) −�¸¹,� �¸¹,�

BR(failed) �¸¹ −�¸¹

SU(moderate)

State B(good) B(failed)

BR(good) −�¸¹, �¸¹,

BR(failed) �¸¹ −�¸¹

SU(failed)

State B(good) B(failed)

BR(good) −�¸¹, �¸¹,

BR(failed) �¸¹ −�¸¹

CH(failed)

SU(good)

State BR(good) BR(failed)

BR(good) 0 0

BR(failed) �¸¹ −�¸¹

SU(moderate)

State B(good) B(failed)

BR(good) 0 0

BR(failed) �¸¹ −�¸¹

SU(failed)

State B(good) B(failed)

BR(good) 0 0

BR(failed) �¸¹ −�¸¹

CH(standby)

SU(good)

State BR(good) BR(failed)

BR(good) 0 0

BR(failed) �¸¹ −�¸¹

SU(moderate)

State B(good) B(failed)

BR(good) 0 0

BR(failed) �¸¹ −�¸¹

SU(failed)

State B(good) B(failed)

BR(good) 0 0

BR(failed) �¸¹ −�¸¹

65

Table 3.34: CIM for node CH for ground vehicle example

Vehicle(good) BR, WT, AX and

SU are all in

good state

State CH(good) CH(failed) CH(repair)

CH(good) 0 0 0

CH(failed) ∞ −∞ 0

CH(repair) ∞ 0 −∞

One of BR, WT,

AX or SU fails

State CH(good) CH(failed) CH(repair)

CH(good) −∞ ∞ 0

CH(failed) 0 0 0

CH(repair) 0 0 0

Vehicle(failed) BR, WT, AX and

SU are all in

Good state

State CH(good) CH(failed) CH(repair)

CH(good) 0 0 0

CH(failed) ∞ −∞ 0

CH(repair) 0 0 0

One of BR, WT,

AX or SU fails

State CH(good) CH(failed) CH(repair)

CH(good) 0 0 0

CH(failed) 0 −∞ ∞

CH(repair) 0 0 0

First, we perform the standard reliability analysis (there is no repair action, put all

repair rates as 0) using Dynamic Bayesian Networks and Continuous Time Bayesian

Networks. The reliability of the ground vehicle at 10000 miles (200 hours) is .8296 from

DBNs and .8311 from CTBNs respectably. Next, we will take the repair actions into

consideration and perform the availability analysis. As we discussed in the previous

section, in this ground vehicle example, the mean availability is a more practical metric

than point availability because it indicates how much proportion of time the vehicle is

operational in a mission period. By using CTBNs, the expected up time is 199.74 hours in

the first 200 hours. The mean availability for this 200 hours mission period is �̅ =
*ÁÁ.Â©+�� = .9987. For DBNs, there is not a direct inference algorithm for calculating the

66

mean availability. However, we can estimate the point availability for each hour of these

200 hours and get the mean from them. The mean availability from DBNs is .9952 for the

first 200 hours. We can see that these two results are close to each other. When the

mission miles increase to 20000 miles (400 hours), the reliability and mean availability

given by CTBNs are 	 = .6872 and �̅ = ªÁÁ.©Ã©�� = .9986; and the results given by DBNs

are 	 = .6869 and �̅ = .9947 respectely. From the results above, we can see that when

the mission time increase from 200 hours to 400 hours, the reliability decrease from .82

to .68, while the mean availability is almost stable, both are around .99.

3.5.3 A Fleet of Vehicles

This is a practical example taken from our industrial partner. Consider a ground

combat team consisting of a fleet of ground combat vehicles with different functionalities.

For example, the Stryker CV (Command Vehicle) (GDLS 2011), the Stryker MGS

(Mobile Gun System), the Stryker ICV (Infantry Carrier Vehicle), and the Stryker MEV

(Medical Evacuation Vehicle) et al. Each vehicle is a system and the ground combat team

has limit number of repair crews shared by these vehicles. For example in Figure 3.13,

the vehicles ICV, MGS, MEV and CV form a ground combat team. And assume that

there are two repair crews in this team. The problem is to estimate the mean availability

per vehicle in this ground combat team. It is calculated in this way: given a mission time

�, we estimate the up time for the four vehicles in the team and then get the average up

time per vehicle. Finally it is divided by mission time so we can get the mean availability

per vehicle for this combat team. For security purpose and the proprietary nature of the

67

data, in this study, we use the ground vehicle system in Section 3.5.2 to denote the

combat vehicles in this ground combat team example and do the demonstration analysis.

Figure 3.13: The ground combat team, consists of a fleet of vehicles

Figure 3.14: The CTBN representation for the ground combat team

ICV CV MEV MGS

Ground Combat Team

(Two repair crews)

68

The CTBN modeling of this team is shown in Figure 3.14. From the figure, we

can see that, for each vehicle, its structure is identical with that of Figure 3.12 in the

Ground Vehicle Example. We cannot apply the CR repair policy in this example. When a

component fails, it needs to check whether there are repair crews available or not. The

CR-limit policy is employed here. There are only two repair crews in this team. If there is

not a repair crew available, the failed component has to wait; if there are repair crews

available, the failed component can be repaired immediately. The green M node is the

maintenance node, which assigns and reclaims repair crews to and from vehicles. Besides

the functionalities in ground vehicle example, the double arrow dash green links here also

do the following works: when a component fails, a repair crew would be assigned from

M node to vehicle node if there is one available; and the vehicle node will assign the

repair crew to subsystem and the subsystem will pass on it to the component. After the

component is repaired and back to working state, it returns the repair crew back to the

subsystem; and then the subsystem passes on it to the vehicle node and finally to the M

node. In this study, we simply put the subsystems of the four vehicle having the same

failure rates and repair rates as those in the ground vehicle example.

By using CTBNs, the mean availability per vehicle for the mission time of 400

hours is .9397. It is less than the result of .9986 from ground vehicle example (Section

3.5.2) because there are only 2 repair crews available in this example; while there is not

limitation for repair crews in ground vehicle example. The mean availability per vehicle

changes as the number of repair crew changes. When the number of repair crews

decreases to 1, the mean availability decreases to .9016; when the number of repair crews

increase to 3, the mean availability is .9713; when the number of repair crews is 4 or

69

more, the mean availability is .9983, which is almost identical to the result from ground

vehicle system example. This can be explained by the fact that, when there are 4, or more

than 4 repair crews available, it is identical to that case with unlimited repair crews

because there are only 4 vehicles in this fleet.

Table 3.35: CIM for node SU in the fleet example

CH(good) State SU(good) SU(moderate) SU(failed) SU(repair)

SU(good) −�}!,� �}!,� 0 0

SU(moderate) 0 −�}!, �}!, 0

SU(failed) 0 0 0 0

SU(repair) 0 0 ∞ −∞

CH(failed)

or

CH(standby)

State SU(good) SU(moderate) SU(failed) SU(repair)

SU(good) 0 0 0 0

SU(moderate) 0 0 0 0

SU(failed) 0 0 0 0

SU(repair) 0 0 0 0

CH(repair) State SU(good) SU(moderate) SU(failed) SU(repair)

SU(good) 0 0 0 0

SU(moderate) 0 0 0 0

SU(failed) 0 0 −∞ −∞

SU(repair) �}! 0 0 −�}!

Table 3.36: CIM for node BR in the fleet example

CH(good) SU(good)

State BR(good) BR(failed) BR(repair)

BR(good) −�¸¹,� �¸¹,� 0

BR(failed) 0 0 0

BR(repair) 0 ∞ −∞

SU(moderate)

State B(good) B(failed) BR(repair)

BR(good) −�¸¹, �¸¹, 0

BR(failed) 0 0 0

BR(repair) 0 ∞ −∞

SU(failed) State B(good) B(failed) BR(repair)

BR(good) 0 0 0

BR(failed) 0 0 0

BR(repair) 0 ∞ −∞

SU(repair) State B(good) B(failed) BR(repair)

70

BR(good) 0 0 0

BR(failed) 0 0 0

BR(repair) ∞ 0 −∞

CH(failed) SU(.)

State BR(good) BR(failed) BR(repair)

BR(good) 0 0 0

BR(failed) 0 0 0

BR(repair) ∞ 0 −∞

CH(standby) SU(.)

State BR(good) BR(failed) BR(repair)

BR(good) 0 0 0

BR(failed) 0 0 0

BR(repair) �¸¹ 0 −�¸¹

CH(repair) SU(good)

State BR(good) BR(failed) BR(repair)

BR(good) 0 0 0

BR(failed) 0 0 0

BR(repair) �¸¹ 0 −�¸¹

SU(moderate)

State BR(good) BR(failed) BR(repair)

BR(good) 0 0 0

BR(failed) 0 0 0

BR(repair) �¸¹ 0 −�¸¹

SU(failed) State BR(good) BR(failed) BR(repair)

BR(good) 0 0 0

BR(failed) 0 0 0

BR(repair) �¸¹ 0 −�¸¹

SU(repair) State BR(good) BR(failed) BR(repair)

BR(good) 0 0 0

BR(failed) 0 0 0

BR(repair) �¸¹ 0 −�¸¹

Table 3.36 Continues

71

Table 3.37: CIM for node CH in the fleet example

Vehicle(good)

BR, WT,

AX and SU

are all in

good state

State CH(good) CH(failed) CH(standby) CH(repair)

CH(good) 0 0 0 0

CH(failed) ∞ −∞ 0 0

CH(standby) ∞ 0 −∞ 0

CH(repair) ∞ 0 0 −∞

Otherwise State CH(good) CH(failed) CH(standby) CH(repair)

CH(good) −∞ ∞ 0 0

CH(failed) 0 0 0 0

CH(standby) 0 ∞ −∞ 0

CH(repair) 0 0 0 0

Vehicle(failed)

BR, WT,

AX and

SU are all in

good state

State CH(good) CH(failed) CH(standby) CH(repair)

CH(good) 0 0 0 0

CH(failed) ∞ −∞ 0 0

CH(standby) ∞ 0 −∞ 0

CH(repair) ∞ 0 0 −∞

Otherwise State CH(good) CH(failed) CH(standby) CH(repair)

CH(good) −∞ ∞ 0 0

CH(failed) 0 0 0 0

CH(standby) 0 ∞ −∞ 0

CH(repair) 0 0 0 0

Vehicle(repair)

BR, WT,

AX and

SU are all in

Good state

State CH(good) CH(failed) CH(standby) CH(repair)

CH(good) 0 0 0 0

CH(failed) ∞ −∞ 0 0

CH(standby) ∞ 0 −∞ 0

CH(repair) ∞ 0 0 −∞

Otherwise State CH(good) CH(failed) CH(standby) CH(repair)

CH(good) −∞ ∞ 0 0

CH(failed) 0 −∞ 0 ∞

CH(standby) 0 ∞ −∞ 0

CH(repair) 0 0 0 0

72

Table 3.38: CIM for node Vehicle in the fleet example

M(2), M(1)

CH, BO, PT and

EL are all in

good state

State Vehicle

(good)

Vehicle

(failed)

Vehicle

(repair)

Vehicle (good) 0 0 0

Vehicle (failed) ∞ −∞ 0

Vehicle (repair) ∞ 0 −∞

Otherwise State Vehicle

(good)

Vehicle

(failed)

Vehicle

(repair)

Vehicle (good) −∞ ∞ 0

Vehicle (failed) 0 −∞ ∞

Vehicle (repair) 0 0 0

M(0)

CH, BO, PT and

EL are all in

Good state

State Vehicle

(good)

Vehicle

(failed)

Vehicle

(repair)

Vehicle (good) 0 0 0

Vehicle (failed) ∞ −∞ 0

Vehicle (repair) ∞ 0 −∞

Otherwise State Vehicle

(good)

Vehicle

(failed)

Vehicle

(repair)

Vehicle (good) −∞ ∞ 0

Vehicle (failed) 0 0 0

Vehicle (repair) 0 0 0

Table 3.39: CIM for node M in the fleet example
of vehicle in state

Repair =0

State M(2) M(1) M(0)

M(2) 0 0 0

M(1) ∞ −∞ 0

M(0) ∞ 0 −∞

of vehicle in state

Repair =1

State M(2) M(1) M(0)

M(2) −∞ ∞ 0

M(1) 0 0 0

M(0) 0 ∞ −∞

of vehicle in state

Repair >=2

State M(2) M(1) M(0)

M(2) −∞ 0 ∞

M(1) 0 −∞ ∞

M(0) 0 0 0

3.6 Conclusion

In this chapter we propose CTBN formalism for RAM modeling of dynamic

repairable systems. We also show how to translate special purpose FT gates, called

dynamic gates, into the framework of CTBNs. We applied our proposed method to three

73

case examples derived from practical application. We evaluated the performance of our

method and compared to other methods in the case examples. The numerical results

shows that the proposed method is as accurate as the traditional methods, which indicates

that it is a good alternative for existing RAM modeling methods.

In the next chapter, in the system design optimization framework, we will employ

CTBNs as a reliability (availability) estimation method to calculate the system reliability

(availability) and do the system design optimization analysis.

74

Chapter 4 System Design Optimization Using NSGA-II and CTBNs

In this chapter, we propose a system design framework for systems with dynamic

failure behaviors or various repair policies. The CTBNs are used to estimate the

reliability (availability) and the multi-objective GA algorithm NSGA-II is implemented

to solve for the Pareto solutions. We first provide the background about multi-objective

optimization and a brief introduction of NSGA-II, and then present the NSGA-II+CTBNs

system design optimization framework. Finally, to show how this framework works, a

case example is demonstrated.

4.1 Multi-objective Optimization Problem

In general, for a problem with ' objective functions, the multi-objective

formulation can be formulated as follows:

min ÇA()) 	ÇTQ	R = 1,2, … , '

Subject to

lB()) ≤ 0, � = 1,2, … , È,
ℎ�()) = 0, y = 1,2, … , �.

There are ' objective functions and � variables so Ç()) is an ' dimensional vector, and)

is a � dimensional vector corresponding to � decision variables. Solutions to a multi-

objective optimization problem are often mathematically expressed in terms of non-

dominated or superior points. Non-dominance can be defined as: in a minimization

problem, a solution)* dominated a solution)+ (a), if and only if)* is no worse than)+

75

in all objectives, i.e.ÇA()*) ≤ ÇA()+)	∀	R, � ∈ {1,2, … , '}; and (b),)*is strictly better than

)+ in at least one objective, i.e. ÇA()*) < ÇA()+) for at least one	R . Thus, instead of a

unique solution to the problem, the solution to a multi-objective optimization problem is

a set of Pareto-optimal points (Zeleny 1982).

Generally there are two common ways to solve multi-objective problems: 1)

combine them into a single objective function and obtain a single solution such as in the

cases of weighted sum method or utility function, or 2) obtain a set of non-dominated

Pareto-optimal solutions.

For multi-objective problems, it can be problematic to combine the objectives into

a single objective (e.g. weighted sum method, utility functions) to obtain a single solution.

A slight perturbation in the parameters used to combine the objectives could result in

very different optimal solutions. This can be a problem because the exact objective

function weights or utility functions are often not that clear. The Pareto set includes all

rational choices, among which we have to select the final solution by trading the

objectives again each other. The search is then not for one optimal solution but for a set

of solutions that are optimal in a broader sense, i.e. they are Pareto-optimal.

4.1.1 Multi-objective GAs

In this study, we use CTBNs to estimate the system reliability (availability). Thus

at least one objective function is non-close-form; it is black-box type. For black-box type

optimization problem, meta-heuristic based methods like GAs are the most efficiency

approaches to solve them. Genetic Algorithm (GA) was proposed by Holland (Holland

1975). GAs are a particular class of evolutionary algorithms that uses techniques inspired

76

by some mechanisms of natural selection. They are essentially search techniques used to

find approximate solutions to difficult combinatorial optimization problems.

The GA starts with a population of random individuals (chromosomes) that are

revised over successive generations. The crossover and mutation operators are used to

introduce new prospective design solutions each generation. During each successive

generation, each individual is evaluated and a value of fitness is returned by a fitness

function. Individuals with high-fitness values rank at the top while individuals with low-

fitness values are likely to be abandoned from the population. The algorithm continues

for a pre-determined maximum number of generations or until no additional

improvement is observed.

Several versions of multi-objective GAs, most often referred as multi-objective

evolutionary algorithms (MOEAs), have been developed, such as:

� Vector evaluated genetic algorithm (VEGA) (Schaffer 1985);

� Multi-objective genetic algorithm (MOGA) (Fonseca and Fleming 1993);

� Niched-Pareto genetic algorithm (NPGA) (Horn, Nafpliotis et al. 1994);

� Non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb 1994);

� Strength Pareto evolutionary algorithm (SPEA) (Zitzler and Thiele 1999);

� Non-dominated sorting genetic algorithm-II (NSGA-II) (Deb, Pratap et al.

2002).

As a well-know MOEA, the NSGA-II is the most widely used and has been

proven to perform well on various real-world application problems (Coello Coello 2006).

The pseudo-code of NSGA-II is presented in Algorithm 4.1.

77

We will employ NSGA-II in our system design optimization framework, since

there have been many studies ensuring that NSGA-II can often converge to Pareto set and

the obtained solution can often spread well over the Pareto set. NSGA-II takes the fast-

non-dominated-sort mechanism to ensure the well convergence which is shown in

Algorithm 4.2. Moreover, it adopts the Density Estimation and Crowding Comparison

Operator (Deb, Pratap et al. 2002) to cut the solutions which have bad distributions so as

to obtain a good spread of solutions. The above merits of NSGA-II make it a promising

choice of solving the black-box type problem in our study. For more details of NSGA-II,

one can refer to the paper (Deb, Pratap et al. 2002).

Algorithm 4.1: The Pseudo-Code of NSGA-II

1: Set the parent vector	2 = ∅, the offspring vector	4 = ∅, the collect vector 	 = ∅ and the

 generation number	� = 0.

2: Initialize the parent vector2�.

3: While � < the terminate generation number do

4: (1) Combine the parent and offspring population via 	� = 2� ∪ 4�
5: (2) Sort all solutions of 	� to get all non-dominated fronts Ì =fast-non-dominated-sort(�)
 where Ì = (Ì*, Ì+, …).
6: (3) Set 2�1* = ∅ and R = 1

7: (4)

8: While the parent population size |2�1*| + |ÌA| < b do

9: (a) Calculate crowding-distance of ÌA.
10: (b) Add the R�ℎ	non-dominated front ÌAto the parent pop 2�1*.

11: (c) R = R + 1.

12: End while

13: (5) Sort the ÌA according to the crowding distance.

14: (6) Fill the parent pop 2�1* with the first b − |2�1*| elements of ÌA.
15: (7) Generate the offspring population to 4�1*.

16: (8) Set � = � + 1

17: End while

18: the population in vector 2 are the non-dominated solutions.

78

4.2 CTBNs and NSGA-II System Design Optimization Framework

In this study, for system design optimization problem, we only consider three

system metrics: the system reliability (availability), cost and weight. However, in

practical application, it is not limited to these three metrics. Consider a system with b

components and for component 	R , it has ÍA option for chose, where for option � of

component	R, the failure rate is	�AB, the repair rate is	�AB , the cost is SAB and the weight

is	NAB. If � option is chose for component	R, then)AB = 1, otherwise,)AB = 0.

The system performance metrics are shown as follows:

The reliability 		 (availability 	�) of the system can be estimated by CTBNs. For a

specified system, a CTBN is constructed.

Algorithm 4.2: The Pseudo-Code for the function: fast-non-dominated-sort(P)

1: For each population � in the 2, we get the solutions which � dominates and save these

solutions into c". We also need to calculate the '" which is the number of solutions which

dominates �.

2: Find the solutions whose '" = 0 and add them to the first front Ì*.

3: Initialize the front counter R = 1.

4: While ÌA is not empty do

5: Set the temp vector 4 = ∅

6: For each � ∈ ÌA do

7: For each 7 ∈ c" do

8: 'Î = 'Î − 1.

9: if 'Î = 0 then add 7 to the 4.

10: End for

11: End for

12: i= R + 1 and the solutions in 4 compose the ÌA
13: End while

79

	/� = ��sbOÏÐÑ)*B�*B¬8
Bf* ,Ñ)*B�*B¬8

Bf* Ò ,… , ÐÑ)eB�eB¬¶
Bf* ,Ñ)eB�eB¬¶

Bf* ÒÓ

where � is the selected option for components.

We assume that the system cost and weight are simply the summation of each

component:

� =ÑÑ)ABSAB¬?
Bf*

e
Af*

H =ÑÑ)ABNAB¬?
Bf*

e
Af*

And the system design optimization problem can be formula as:

ÔÕÕ
Ö
ÕÕ×max��sbOÏÐÑ)*B�*B¬8

Bf* ,Ñ)*B�*B¬8
Bf* Ò ,… , ÐÑ)eB�eB¬¶

Bf* ,Ñ)eB�eB¬¶
Bf* ÒÓ ,

minÑÑ)ABSAB¬?
Bf*

e
Af* , minÑÑ)ABNAB¬?

Bf*
e
Af* ÙÕÕ

Ú
ÕÕÛ

Subject to

∑)AB¬?Bf* = 1 for R = 1,2, … ,b

4.2.1 Chromosomal Representation

In this study, binary coding scheme is employed. The length of chromosome

is	∑ ÍAeAf* .

80

The first Í*bits are for the	Í* options of component 1. Each bit is corresponding

to one option, if the option is chose, it is 1 otherwise it is 0. From Í* + 1 bit to Í* +Í+

bits are for options of component 2. The arrangements of remaining components are

similar to component 2. For example, consider Figure 4.1, the chromosome contains

twelve bits for a configuration which consists of three components, with options of four

for each component. For component1, the 1
st
 option is chose, for component 2, the 2

nd

option is chose and the last option is chose for component 3.

Figure 4.1: Encoding of the solutions

4.2.2 Genetic Operator

On the basis of coding scheme, we adopt the single-point crossover and bitwise

mutation for NSGA-II. The detailed implementations of them are presented in Figure 4.2.

In order to guide the search within the feasible region, we utilize the constraint

handling approach based on the concept of constrained-dominate proposed in the paper

(Deb, Pratap et al. 2002). Concretely, a solution R constrained-dominates � must satisfy

one of the following three conditions: 1) Solution R is feasible but solution � is not; 2)

Solution R and �	 are both feasible, and R	 dominates � ; 3) Solution R	 and � are both

infeasible, but R violates less constraints than �.

1 0 0 0 0 1 0 0 0 0 0 1

Component 1 Component 2 Component 3

81

Figure 4.2: Crossover and Mutation

4.3 Case Example: Ground Vehicle System Design

To demonstrate the proposed system design optimization framework, the ground

vehicle system example (Section 3.5.2) in the previous chapter is considered. In this

example, except body subsystem and electrical subsystem, other subsystems all have four

levels of options for chose. Each level has different failure rates, cost and weight as

shown in Table 4.1.

The system performance metrics are system reliability, cost and weight. The

parameter settings of NSGA-II are as follows: the crossover probability is set to be .9 and

the mutation rate is .001. The terminate generation is set to 50 and the population size is

500.

Ü�� Ü�Ý Ü�Þ Ü�ß … Ü�à

ÜÝ� ÜÝÝ ÜÝÞ ÜÝß … ÜÝà

Ü�� Ü�Ý Ü�Þ ÜÝß … ÜÝà

ÜÝ� ÜÝÝ ÜÝÞ Ü�ß … Ü�à

Exchange the bits

after crossover

point

Ü�� … Ü�á … Ü�â … Ü�à Ü�� … Ü�â … Ü�á … Ü�à Exchange two

bits s*A and s*B

Bitwise mutation on s*A

Single point crossover between s* and s+

82

Figure 4.3 shows the 104 solutions found in the Pareto-front. To better visualize the

solutions obtained, figure 4.4 and figure 4.5 show the two dimensional representation of

the same solutions.

Table 4.1: Choices for each subsystem of Series-Parallel system

Subsyst

ems

Failure Measure Cost Weight

1 2 3 4 1 2 3 4 1 2 3 4

BR .5e-3 .3e-3 .62e-3 .43e-3 9 12 9 8 21 26 19 34

WT .16e-3 .21e-3 .23e-3 .28e-3 5 4 3 6 35 45 43 45

AX .5e-4 .3e-4 .7e-4 .6e-3 4 9 7 6 65 47 38 42

SU .5e-4 .7e-4 .6e-4 .9e-4 7 7 9 6 43 17 34 26

TR .83e-4 .67e-4 .91e-4 .68e-4 12 14 13 17 23 32 42 45

EG .23e-4 .33e-4 .27e-4 .35e-4 6 6 5 8 98 79 86 89

CO .33e-4 .28e-4 .25e-4 .36e-4 8 9 8 4 12 19 27 34

Figure 4.3: Unreliability vs Cost vs Weight

83

Figure 4.4: Unreliability vs Cost (left); Unreliability vs Weight (right)

Figure 4.5: Cost vs Weight

As we discussed before, there are limitations in meta-heuristic based-methods like

NSGA-II. There is no guarantee that the solutions are globally optimal. However, for

black-box type optimization problems, NSGA-II is the most efficient way to solve it

currently. In the next chapter, for systems with simple structures (series/parallel) and

close-form objective functions, we propose a modified adaptive ϵ-constraint method to

identify all Pareto-optimal solutions.

84

4.4 Conclusion

We have presented a system design optimization framework for systems with

dynamic behaviors or various repair policies. We employ the CTBNs to estimate the

system reliability (availability) and put it as a multi-objective optimization problem and

then use NSGA-II to solve it. Finally, the proposed framework is applied to an example

of a ground vehicle system to illustrate its performance.

85

Chapter 5 System Design Optimization using Modified Adaptive ϵϵϵϵ-
Constraint Method

In the previous section, for systems with dynamic behavior or various repair

policy, we present a CTBNs and NSGA-II based system design optimization framework.

However, as we mentioned before, NSGA-II cannot guarantee globally optimal. In this

chapter, for systems with simple structures (series/parallel) and close-form objective

functions, we proposed a modified adaptive ϵ-constraint method to identify all the Pareto-

optimal solutions for the system design optimization analysis. A brief introduction of

traditional ϵ-constraint method and adaptive ϵ-constraint method are given. Then we

present the modified adaptive ϵ-constraint method in detail. Finally the proposed method

is implemented in two case examples to evaluate its performance with NSGA-II and

other ϵ-constraint methods. The first case example is the well-known Redundancy

Allocation Problem (RAP) in Series-Parallel systems. The other case example is a

practical configuration selection problem which is taken from our industrial partner.

5.1 The Traditional ϵϵϵϵ-constraint Methods

The traditional %-constraint method is a multi-objective optimization technique

proposed by Chankong and Haimes (Chankong and Haimes 1983) for generating Pareto-

optimal solutions. It transforms the multi-objective problem into a series of several

single-objective problems with updated constraints, using the following procedure:

�R' ÇA�)�
s.t. ÇB�)� ≤ ãB 			ÇTQ	JKK	� = 1,2, … ,�,			� ≠ R

where

86

R ∈ (1,2,3, … ,�.
% = �%*, %+, … , % � are the upper bounds of each objective function

In order to identify all non-dominated solutions, the vector of upper bounds must

be varied (iteratively increase or decrease by a pre-defined constant	∆) along the Pareto

front for each objective and perform a new optimization process for each new upper

bound vector. The generation of different non-dominated points using different upper

bound values is illustrated in bi-objective case in Figure 5.1.

Figure 5.1: An illustrative example of Generating different solutions with the traditional

ϵ-constraint method generating different solutions sequentially under two objective

functions that need to be minimized

There are two limitations to the traditional	%-constraint method. Firstly, it is the

necessity to choose a pre-defined constant		∆. Since only one solution can be found in

each interval, the discretization has to be fine enough not to “miss” any Pareto-optimal

Ç+

Ç*

Iteration 1,ã+ = Ç+ Ç+

Ç+

Ç* Ç*

å+

Iteration 2, ã+ = Ç+ � å+

Iteration 3, ã+ = Ç+ � 2å+

Iteration 4, ã+ = Ç+ � 3å+

Iteration 5, ã+ = Ç+

O+
*

O+
+

O+
ª

O+
©

O+
æ

y

87

solution. As shown in Figure 5.1, there are two Pareto-optimal points in iteration 3.

However, solution O+
© (highlighted in red) is missed due to the larger		∆. Second, it will

identify non-Pareto-optimal solution. The main reason is that it is just takes one objective

function into consideration. Let’s look back to Figure 5.1 again. In iteration 4, the two

solutions have the same fitness value of	Ç*, so both of them are identified as solution.

However, solution y is not a Pareto-optimal solution and is dominated by solution	O+
æ.

The traditional %-constraint method can be summarized as follows.

To cope with the drawback of the traditional %-constraint method, Ozlen (Ozlen

and Azizoglu 2009) presented an adaptive ϵ-constraint method for the multi-objective

integer programming (MOIP) problem. Unlike the traditional %-constraint method which

determines ϵ by decreasing a fixed	∆ in each iteration, the adaptive %-constraint method

uses an adaptive % value. It determines the % based on the solutions of previous iteration.

1:		c = ∅

Algorithm 5.1: The traditional �-constraint method

Input

Objective bounds	ÇA, ÇA for each R ∈ (2,… ,�.

Increments ∆A for each R ∈ (2,… ,�.
Output

Set of solution contain Pareto-optimal solution set c

2: For ã+ ≔ Ç+ to Ç+ step ∆+ do

3: For ãª ≔ Çª to Çª step ∆ª do

4: ⋮

5: For ã ≔ Ç to Ç step ∆ do

6: Solve (1) for), c ≔ c ∪)

7: End for

8: 	⋮
9: End for

10: End for

11: Return c

88

This increases the efficiency of the algorithm dramatically and will not miss a single

Pareto-optimal solution. In order to avoid identifying non-Pareto-optimal solutions,

instead of using a single objective function by implementing a proper weight for each

objective function, the adaptive %-constraint method constructs a new single objective

function (which is a weighted sum of all the original objective functions) and solves this

new objective function. This way, it takes all objective functions into consideration

during the search.

Figure 5.2: An illustrative example of the adaptive ϵ-constraint method generating

different solutions sequentially under two objective functions that need to be minimized

Let’s reconsider a tri-objective problem:

è�:	�R'(Ç*�)�, Ç+�)�, Çª�)�.	

Ç+

Ç*

Iteration 1,ã+ = Ç+ Ç+

Ç+

Ç* Ç*

Iteration 2, ã+ = s+

*

Iteration 3, ã+ = s+
+

Iteration 4, ã+ = s+
ª

Iteration 6, ã+ = s+
æ

No possible solution,

stop

Iteration 5, ã+ = s+
©

O+
*

O+
+

O+
ª

O+
©

O+
æ

y

89

The specific weighted sum single objective function problem solved by the ϵ-adaptive

constraint method is:

èÝ:	�R' 	Ç*�)� + N+Ç+�)� + NªÇª�)�.	

N+ =
*

ê9
¦ë��ê9

¦ì�1*
,	 Nª =

í9

êî
¦ë��êî

¦ì�1*

O. �.	

Ç+ < ϵ+

Çª < ϵª

Here Ç+
£i� , Ç+

£ï�, Çª
£i� and Çª

£ï� are the upper and lower bounds on Ç+�)� and Çª�)�

values of any feasible solution respectively.

The weight for Ç* is 1, and since all objective functions are linear integer

functions, the minimal increment of Ç*is 1, which is always greater than the maximal

increment of	Ç+. By the same logic, the maximal increment of Çª is always less than the

minimal increment of	Ç+. These weights make sure that Ç*	has the high priority, then Ç+

and	Çª. Let’s look back to the bi-objective problem in Figure 5.2 again. In iteration 4,

under the constraint determined by solution in iteration 3, we cannot miss solution O+
© (red

point). While in iteration 5, the yellow point y and O+
æ have the same Ç* value. However,

since we use the weight sum objective function, we also take Ç+ into consideration. With

Ç+ included, obviously yellow point y is a dominated point.

The proposed approach of assigning proper weights to the objectives thus allows

one to solve the weighted sum objective function and still maintain the hierarchy of the

multiple objectives. The adaptive %-constraint method to solve P1 can be summarized as

follows.

90

The adaptive % -constraint method improves the efficiency over the traditional

method significantly. However, there are still drawbacks in this method. It has the

potential to identify a lot of identical solutions. In order to illustrate this inefficiency and

introduce our method, let us consider a numerical example taken from Ozlen’s paper

(Ozlen and Azizoglu 2009).

NA =
NA�*

	ÇA
£i� , �	ÇA

£ï�, +1
,w* = 1

Ç = Ç* + N+Ç+ +⋯+N Ç

1:	c = ∅

Algorithm 5.2: The adaptive �-constraint method

Input

Objective bounds	ÇA
£ï�, 	ÇA

£i�for each	R ∈ (2, … ,�.,

%A = 	ÇA
£i�, R ∈ (2,… ,�., ÇKJl = 1

Output

Set of Pareto-optimal solution set c

2: While ÇKJl = 1	do

3: ϵ �* ≔ Ç �*
£i�

4: While ÇKJl = 1 do

5: ϵ �+ ≔ Ç �+
£i�

6: 								 ⋮

7: ϵ+ ≔ Ç+
£i�

8: While ÇKJl = 1 do

9: Solve (1) for),

10: If the solution is impossible

11: ÇKJl = 0

12: Else

13: c+ ≔ c+ ∪), ã+ ≔ Ç+�)� � 1

14: End if

15: End while

16: (ϵª ≔ max�Çª�)�� � 1:) ∈ c+., 	cª ≔ cª ∪ c+

17: ⋮
18: End while

19: 				(ϵ ≔ max�Ç �)�� � 1:) ∈ c �*, .	c ≔ c ∪ c �*

20: End while

21:	c ≔ c

22: Return c

91

Numerical Example

This is a 5×5 Tri-objective Assignment Problem (TAP). Table 1 has the three

objective coefficients for assigning each row to each column. Each solution is

represented by a sequence of column index values assigned to row 1 through 5.

Accordingly, in sequence 5-4-3-2-1, row 1 is assigned to column 5 and row 2 is assigned

to column 5.

Using the single-objective assignment solutions one can identify general upper

and lower bounds on the individual objectives as

Ç* = 86, 2 � 1 � 4 � 3 � 5

Ç+ = 128, 1 � 5 � 4 � 3 � 2

Çª = 129, 3 � 2 � 1 � 5 � 4

Ç* = 358, 4 � 2 � 3 � 5 � 1

Ç+ = 411, 4 � 2 � 1 � 5 � 3

Çª = 451, 4 � 5 � 3 � 1 � 2

Table 5.1: Three objective coefficients for the numerical example problem

S* 1 2 3 4 5 S+ 1 2 3 4 5 S+ 1 2 3 4 5

1 99 19 74 55 41 1 28 39 19 42 7 1 29 67 2 90 7

2 23 81 93 39 49 2 66 98 49 83 42 2 84 37 64 64 87

3 66 21 63 24 66 3 73 26 42 13 54 3 54 11 100 83 61

4 65 41 7 39 66 4 46 42 28 27 99 4 75 63 69 96 3

5 93 30 5 4 13 5 80 17 99 59 68 5 66 99 34 33 21

The iteration details of algorithm 5.2 are presented in Table 5.2. We report the

number of IPs solved and the %+ and %ª bound values. The objective function values of

92

the bi-objective solutions are stated in group each representing a single execution the

“while loop” from step 8 to step 15 in algorithm 5.2.

Table 5.2: The iteration details

G1 %ª ≤ 451 %+ ≤ G2 %ª ≤ 366 %+ ≤ G3 %ª ≤ 341 %+ ≤

Ç* Ç+ Çª # Ç* Ç+ Çª # Ç* Ç+ Çª

1 86 214 324 411 6 86 214 324 411 10 86 214 324 411

2 96 186 204 213 7 96 186 204 213 11 96 186 204 213

3 125 131 342 185 8 125 131 342 185 12 180 183 229 185

4 209 128 367 130 9 Infeasible 130 13 253 132 328 182

5 Infeasible 127 14 Infeasible

 Max(Çª) 367 Max(Çª) 342 Max(Çª) 328

G4 %ª ≤ 327 %+ ≤ G5 %ª ≤ 323 %+ ≤ G6 %ª ≤ 319 %+ ≤

Ç* Ç+ Çª # Ç* Ç+ Çª # Ç* Ç+ Çª

15 86 214 324 411 20 91 246 314 411 25 91 246 314 411

16 96 186 204 213 21 96 186 204 245 26 96 186 204 245

17 180 183 229 185 22 180 183 229 185 27 180 183 229 185

18 269 173 320 182 23 269 173 320 182 28 Infeasible 182

19 Infeasible 24 Infeasible 172

 Max(Çª) 324 Max(Çª) 320 Max(Çª) 314

G7 %ª ≤ 313 %+ ≤ G8 %ª ≤ 228 %+ ≤ G9 %ª ≤ 203 %+ ≤

Ç* Ç+ Çª # Ç* Ç+ Çª # Ç* Ç+ Çª

29 96 186 204 411 32 96 186 204 411 34 171 261 191 411

30 180 183 229 185 33 Infeasible 185 35 179 233 194 260

31 Infeasible 182 36 224 187 190 232

 37 186

 Max(Çª) 229 Max(Çª) 204 Max(Çª) 194

G

10
%ª ≤ 193 %+ ≤ G

11
%ª ≤ 190 %+ ≤ G

12
%ª ≤ 189 %+ ≤

Ç* Ç+ Çª # Ç* Ç+ Çª # Ç* Ç+ Çª

38 171 261 191 411 42 188 269 133 411 46 188 269 133 411

39 212 242 173 260 43 212 242 173 268 47 212 242 173 268

40 224 187 190 241 44 224 187 190 241 48 Infeasible 241

41 Infeasible 186 45 Infeasible 186

 Max(Çª) 191 Max(Çª) 190 Max(Çª) 173

G

13
%ª ≤ 172 %+ ≤ G

14
%ª ≤ 139 %+ ≤ G

15
%ª ≤ 132 %+ ≤

Ç* Ç+ Çª # Ç* Ç+ Çª # Ç* Ç+ Çª

49 188 269 133 411 52 188 269 133 411 54 291 348 129 411

50 283 261 140 268 53 Infeasible 268 55 Infeasible 347

51 Infeasible 260

 Max(Çª) 140 Max(Çª) 133 Max(Çª) 129

G

16
%ª ≤ 128 %+ ≤

Ç* Ç+ Çª

56 Infeasible 411

93

From Table 5.2, we can see that a total of 56 Integer Programming (IP) are solved

to identify 15 unique tri-objective non-dominated solutions. The 15 non-dominated

solutions are listed in Table 5.3. 56 IP are solved to get only 15 unique solutions. From

Table 5.2, we also can see that there are so many identical solutions between groups. If

we can skip solving the duplicated solutions, we can speed up the search and increase the

algorithm efficiency significantly. This is the motivation for proposing the modified

adaptive ϵ-constraint method.

Table 5.3: The Pareto-optimal solutions for the numerical example problem

Solutions Ç* Ç+ Çª

1 86 214 324

2 91 246 314

3 96 186 204

4 125 131 342

5 171 261 191

6 179 233 194

7 180 183 229

8 188 269 133

9 209 128 367

10 212 242 173

11 224 187 190

12 253 132 328

13 269 173 320

14 283 261 140

15 291 348 129

5.2 The Modified Adaptive ϵϵϵϵ-Constraint Method

In order to introduce the modified adaptive %-constraint method, let us reexamine

the results from group 1 (G1, iterations 1-5) and group 2 (G2, iterations 6-9) of Table 5.2.

With constraints %+ ≤ 411 and 	%ª ≤ 451 , we get the 1
st
 Pareto-optimal solution to

94

be	Ç* = 86,	Ç+ = 214, and		Çª = 314. The constraints of the 1
st
 iteration in group 2

(iteration 6) are %+ ≤ 411 and	%ª ≤ 366.

The only difference between these two iterations is that the constraint %ª < 451 is

changed to	%ª ≤ 366. Notice that, with	%ª < 451, the obtained objective value		Çª = 314

also meets the constraint	%ª ≤ 366. Thus, with the constraints %+ ≤ 411 and	%ª ≤ 366,

the solution should be identical to that with constraints %+ ≤ 411 and	%ª ≤ 451, which

is	Ç* = 86,	Ç+ = 214, and		Çª = 314. Within each group #, the next iteration depends on

the previous iteration (%+ is the previous	Ç+ � 1). For each group, if the 1
st
 iteration has

the identical solution as that of the previous group, the solutions of the following

iterations in this group will be identical to that of the previous group until it hits the upper

bound of constraint 	%ª. For example, in group 1 and group 2, since the solution of the 1
st

iterations are the same for these two group, the iteration 7-8 have the same solution as

iteration 2-3 in group 1, until it violates the constraint 	%ª ≤ 366. The solution of iteration

9 cannot be identical to that of iteration 4 because Çª = 367 in iteration 4 violates the

constraint 	%ª ≤ 366 in iteration 9. From the analysis above, we can see that if we skip

solving for the same solution, we can reduce the number of Integer Programming (IP)

formulations solved so that the whole search procedure can be speeded up. In order to

avoiding solving for the repeated solutions, we save the previous group temporarily. .

In particular, we add two refinement strategies to the adaptive % -constraint

algorithm. The first strategy involves checking solutions from the previous group on the

current constraint set, in the very first iteration, before attempting to solve the new

problem. We find the solution O*}�ñ	that first violates the current constraint set. If O*}�ñ is

95

not the 1
st
 solution in the previous group, let us say it is the y�ò solution in the previous

group, then we just copy the first y � 1 solutions in the previous group as the first y � 1

solutions in the current group and continuous the outer “while loop” of the Adaptive %-

Constraint Algorithm. If the very first solution of the previous group violates the current

constraint set, we do not achieve any efficiency; we apply the algorithm as normal.

However, in the latter case, a second refinement strategy might come in handy. For

example, let’s look back to group 1 and group 2 in Table 5.2 again. Before processing

iteration 6 (1
st
 iteration of group 2), we save all solutions in the group 1 and check these

solutions on the current constraint set (%+ ≤ 411 and	%ª ≤ 366). We can see that the

4�ò�y = 4� solution violates the constraints. Thus the first 3 solutions from group 1 are

copied directly as the first three solutions for group 2 and the outer “while loop” of the

algorithm	continuous in iteration 9, which does not have a possible solution and group 2

is done.

As discussed above, within each group, current solution exploits solutions from

the previous groups. In the second refinement strategy, we check the current solution

against the solutions in the previous group. If there is an identical solution 	OA��-�A½¼¾ in

the previous group, then it is possible that the current iteration will have the same next

solution as that of	OA��-�A½¼¾. What we need to do is check the next solution of 	OA��-�A½¼¾

against the current constraint set. If it doesn’t violate current constraints, then we just

copy this one as our next solution and skip the IP solving. Let us reexamine the numerical

example from Table 5.2. In group 4 and group 5, the solutions of the first iteration of both

groups are not identical. However, when we get the solution of iteration 21, we find that

it is identical to the solution of iteration 16. Then we can check the solution of iteration

96

17 against the current constraint set. It does not violate the constraints in this example, so

the iteration 17 and 22 should have the same solution and we can skip the IP solving of

iteration 22. Following the same logic, we can avoid solving the IP and get the solution

for iteration 23.

Thus, the modified adaptive %-constraint method is obtained by adding the first

refinement strategy before step 8 and the second refinement strategy before step 9 of the

basic adaptive % -constraint method (Algorithm 5.2). The pseudo code for the two

refinement strategies is provided below.

Search Refinement Strategy #1

1: Save solutions of previous group cA�*

2: Check 1
st

 solution in cA�* on current constraint

3: If it doesn’t violate constraints

4: Copy solution 1 by 1 in cA�* to current group

5: As solution until it violate the current constraints

6: Else

7: Process step 8 to 15 in Procedure 1 as normal

8: End if

Search Refinement Strategy #2

1: Save solutions of previous group cA�*

2: Check current solution with solution set of previous group

3: If there is an identical solution 	OA��-�A½¼¾ in previous group

4: Check the solution next to	OA��-�A½¼¾ again current constraints

5: If it doesn’t violate current constraints

6: Copy solution as the next solution of current iteration

7: Else

8: Process step 8 to 15 in Procedure 1 as normal

9: End if

10: Else

11: Process step 8 to 15 in Procedure 1 as normal

12: End if

97

By applying the modified adaptive %-constraint method to the numerical example

mentioned above (i.e., employ the two search refinement strategies), only 35 IPs are

needed to be solved to obtain all the 15 unique Pareto-optimal solutions. Compared with

the 56 IPs needed for the original adaptive %-constraint method, there is �56 � 35� 56⁄ =
37.5% improvement. To evaluate the proposed method more comprehensively, we

randomly generated an additional 1000 TAP problem sets (randomly generate 1000 sets

of matrix 0< SA ≤ 100, R = 1,2,3) and solved them by the two methods. The average

improvement observed from the 1000 problems is 39%. However, the savings do vary

from problem to problem. This will be further confirmed by implementing the proposed

method on the Redundancy Allocation Problem (RAP) for a Series-Parallel system in the

later sections.

5.3 Case Example: RAP of Series Parallel System

The redundancy allocation problem for Series-Parallel systems has received much

attention in the literature (Oiddir, Rahli et al. 2004; Levitin and Lisninaski 2001; Lyu,

Rangarajan et al. 2002). A series-parallel system has a total of O independent subsystems

arranged in series; and for the R -th subsystem, it can have up to ' ¼5,A functionally

equivalent components arranged in parallel. Each component potentially varies in

reliability, cost, weight and other characteristics. A subsystem can work properly if at

least one of its components is operational. The 'A components are selected from �A
available component types where multiple copies of each type can be selected. A typical

structure of Series-Parallel system is illustrated in Figure 5.3. Increasing the number of

redundant components will increase the system reliability, but also increases cost and

98

weight. The goal is to optimally allocate the redundant components while balancing

multiple competing objectives.

Figure 5.3: General Series-Parallel redundancy system

The formulation of RAP in a multi-objective setting with reliability, cost and weight

considerations can be presented as:

max õöÏ1 −öL1 − QABM5?@ ?
Bf* Ó¢

Af* ÷,			min õÑÑSBA)AB ?
B

¢
Af* ÷ ,				�R' õÑÑNAB)AB ?

B
}
Af* ÷			

s.t.

1 ≤Ñ)AB ≤ ' ¼5,A			ÇTQ		∀R = 1,2, … , O ?
Bf*

)AB ∈ (0,1,2, … , .
where: O: the number of subsystems)AB: decision variable, the number of the �th type component used in subsystem R �A: the total number of available components for subsystem R ' ¼5,A: the maximum number of components in parallel used in subsystem R QAB, SAB , NAB: the reliability, cost and weight of the �th available component for subsystem R

For the multi-objective RAP, the objectives are to determine the optimal design

configuration that maximize system reliability, minimizes the total cost and minimizes

the system weight for a Series-Parallel system.

O
x**

O
x+*

'*

O
x*+

O
x++

'+

O
x*}
O
x+}
'}

…

…

…

…

99

5.3.1 Decomposition

In solving multi-objective RAP problems, decomposing the original problem into

sub-problems and combining the solutions intelligently can greatly aid the process of

constructing the Pareto-optimal solution set. This is illustrated below.

We first decompose the original RAP into several sub-problems and solve each

sub-problem using the modified adaptive %-constraint method so as to identify all the

non-dominated solutions for each sub-problem. Then, we sequentially filter each pair of

non-dominated solution sets and pool the resulting solutions together to obtain the non-

dominated solution set for the original RAP.

Decomposition is generally good for efficiency because of the reduced

complexity of sub-problems. As a result, non-optimal solutions are filtered out early in

the process when sub-problems are small and easy to solve. The details of the

decomposition procedure are illustrated below.

Let us consider the original RAP P3:

èÞ:	�J) õöÏ1 −öL1 − QABM5?@ ?
Bf* Ó¢

Af* ÷,			�R' õÑÑSBA)AB ?
B

¢
Af* ÷ ,				�R' õÑÑNAB)AB ?

B
}
Af* ÷			

By changing the maximization of reliability to an equivalent minimization formulation,

we can get P4 as:

èß:	�R' õöÏöL1 − QABM5?@ ?
Bf* Ó}

Af* ÷,			�R' õÑÑSBA)AB ?
B

}
Af* ÷ ,				�R' õÑÑNAB)AB ?

B
}
Af* ÷			

100

Further, by using log transformation, we can change the product terms of reliability into

summation terms of KTl�QkKRJxRKR�P� and have P5 as:

èø:	�R' õÑKTlÏöL1 − QABM5?@ ?
Bf* Ó}

Af* ÷,			�R' õÑÑSBA)AB ?
B

}
Af* ÷ ,				�R' õÑÑNAB)AB ?

B
}
Af* ÷			

Finally, P5 can be presented as:

èù:	�R' ÐÑÐ�R' õKTl ÏöL1 − QABM5?@ ?
Bf* Ó÷,			�R' õÑSBA)AB ?

B ÷ ,				�R' õÑNAB)AB ?
B ÷Ò}

Af* Ò			
Thus, the Pareto-optimal solution set of P3 is identical to that of the solution sets from P4,

P5 and P6.

P6 can be decomposed into several subsystems. The Pareto-optimal solution set of P6 can

be obtained by combining the Pareto-optimal solutions sets of each subsystem. The

procedure is illustrated in Figure 5.4.

101

Figure 5.4: Framework of decomposition based modified adaptive

 �-constraint method for RAP problems

For subsystem	R, we solve the following sub-problem:

èú:
ÔÕÕ
Ö
ÕÕ×�R' Ç* = õÑSBA)AB ?

B ÷ , 	�R'	Ç+ = õÑNAB)AB ?
B ÷,			

min Çª = õKTlÏöL1 − QABM5?@ ?
Bf* Ó÷ ÙÕÕ

Ú
ÕÕÛ			

102

In the proposed method, we assume that all objective functions are linear integer

functions. However, in the RAP problem, the reliability objective (or the unreliability

objective in the transformed formulation) is not an integer. In order to implement the

proposed method, we need to make some additional modifications. First, the non-integer

objective function (unreliability) is always set to be the last objective function (Çª) as

shown in P7. In the adaptive %-constraint method, the weights for each objective function

are selected so as to guarantee that the maximal increment of any current objective

function is always less than the minimal increment of previous objective function. In the

current example, the weight N+ in P2 guarantees that the maximal increment of Ç+ is

always less than the minimal increment of Ç* (the minimal increment of Ç* is 1 by default

due to the fact that	Ç* is an integer function); similarly, the weight Nª in P2 guarantees

that the maximal increment of Çª is always less than the minimal increment of	Ç+. Since

Çª is the last objective function and deals with reliability, even though it is a non-integer,

given that there is no additional objective function beyond this objective, we can apply

the proposed method (ignoring the fact the reliability objective is not integral). The other

modification necessary to apply the proposed decomposition-based adaptive %-constraint

method to RAP problems is that, in step 16 of Algorithm 5.2, ãª ≔ max	�Çª�)�� − 1 is

replaced by	ãª ≔ max	�Çª�)�� − ∆, here ∆ is a very small number.

Numerical Example

In this section, we experimentally compare the proposed method with meta-

heuristic based approach NSGA-II on a RAP for a Series-Parallel system example taken

from literature (Taboada and Coit 2006). This Series-Parallel system consists of three

subsystems (O = 3), with an option of five, four and five type of components in each

103

subsystem (�* = 5, 	�+ = 4,�ª = 5) respectively. The maximum number of

components is seven ((' ¼5,* = ' ¼5,+ = ' ¼5,ª = 7) in each subsystem. Table 5.4 lists

the component parameters for each subsystem.

Table 5.4: Component parameters for each subsystem

Component

Type â
Subsystem á

1 2 3
Rel. Cost Weight Rel. Cost Weight Rel. Cost Weight

1 .94 9 9 .97 12 5 .96 10 6

2 .91 6 6 .86 3 7 .89 6 8

3 .89 6 4 .70 2 3 .72 4 2

4 .75 3 7 .66 2 4 .71 3 4

5 .72 2 8 .67 2 4

The experiments of proposed method and NSGA-II were run on a HP desktop, with an

AMD Quad-Core CPU operating at 2.3 GHz and 8 GB of RAM. The proposed method is

coded in MATLAB
®

R2008b and NSGA-II was coded in C which is taken from the

website of Deb’s lab (Deb 2005). For NSGA-II, we vary its population size from 100 up

to 5000, with generation=100, crossover probability= .8 and mutation probability = .008.

Results from the proposed method and NSGA-II are shown in Table 5.5.

Table 5.5: Results from the proposed method and NSGA-II

Our method

of Pareto-optimal Points 6,112

CPU Time (MATLAB R2008b) 1,728 seconds

NSGA-II

Population Size 100 200 500 1,000 2,000 4,000 5,000

of Pareto Points 85 141 289 589 1,109 2,109 2,324

of Pareto-optimal Points 15 27 66 214 558 1,247 1,263

CPU Time (C) 12s 28s 69s 177s 442s 1,231s 1,699s

104

From Table 5.5, we can see that, the proposed method identifies all 6,112 non-

dominated points in 1,728 seconds. For NSGA-II, the number of Pareto points it

identified increases as the population size increases. When the population size is 5,000, it

identified 2,324 Pareto points. However, beside these Pareto points, only parts of them

are Pareto-optimal points (1,263 out of 2,324). The disadvantages of NSGA-II are that, it

cannot generate all Pareto-optimal points; and more important, it cannot guarantee all

points it identified are Pareto-optimal. In other words, NSGA-II gives out a set of Pareto

points, but it doesn’t tell you which one is Pareto-optimal and which one is not. Figure

5.5 shows the 6,112 solutions identified by the proposed method in blue start and 1,263

solutions found by NSGA-II with population size 5,000 in red triangle. Figures 5.6 to

figure 5.7 show the same results under two dimensional representations.

For this problem, the number of IP solved using adaptive %-constraint method is

5773, while only 1680 IPs need to be solved using our proposed method to identify all

the Pareto-optimal solutions, translating to an improvement of 	æÂÂª�*Ã`�æÂÂª = 70.9% . We

can see that the proposed method outperforms the adaptive ϵ-constraint method

significantly.

105

Figure 5.5: Pareto-optimal solution obtained by the proposed method

and NSGA-II for the RAP problem

Figure 5.6: Pareto-optimal solutions plotted in the space of Reliability vs. Cost (left);

Reliability vs. Weight (right)

106

Figure 5.7: Pareto-optimal solutions plotted in the space of Cost vs. Weight

5.4 Case Example: Configuration Selection Problem

The configuration selection analysis evaluates configuration alternatives based on

a large set of competing criteria, such as cost, weight and power et al. In this study, we

implement the proposed modified adaptive ϵ-constraint method on the configuration

selection problem and compare its results with that of adaptive ϵ-constraint method one

so as to show its superiority.

The configuration selection problem considered in this study has three linear

integer objective functions. They are minimizing the cost, weight and maximizing the

power (combat power). The system consists of eleven subsystems. There are four options

for choosing in subsystem 3 and subsystem 10, three options for choosing in subsystem 6.

All other subsystems have five options and total there are 51 options. The cost, weight

and power for each option are listed in Table 5.6. The interaction constraints include five

in-compatible (IC) constraints, eight pre-requisite (PR) constraints and six co-requisite

(CR) constraints. The in-compatible constraint��, s� means if option � is chose, then

option s cannot be chose or vice versa. The pre-requisite constraint ��, s� means if

option s is chose, option � also must be chose while it doesn’t happen in vice versa case.

107

The co-requisite constraint ��, s� means option � and option s have to be chose together.

The five in-compatible constraints are: {(Opt9_1, Opt2_4), (Opt5_5, Opt3_1), (Opt9_5,

Opt4_1), (Opt2_3, Opt7_3), (Opt8_3, Opt10_4)}; the eight pre-requisite are: {(Opt4_3,

Opt2_3), (Opt1_2, Opt3_2), (Opt5_5, Opt4_4), (Opt11_4, Opt5_5), (Opt9_5, Opt7_4),

(Opt5_4, Opt8_4), (Opt7_4, Opt8_4), (Opt10_3, Opt9_5)}; the six co-requisite

constraints are: {(Opt7_1, Opt4_3), (Opt10_4, Opt5_4), (Opt8_4, Opt6_2), (Opt11_1,

Opt7_4), (Opt7_5, Opt9_4), (Opt3_2, Opt10_2)}. And the problem can be formulated as:

Ðmin� =ÑÑ)ABSAB
¬@

Bf*
**
Af* , minH =ÑÑ)ABNAB

¬@

Bf*
**
Af* , max 2 =ÑÑ)AB�AB

¬@

Bf*
**
Af* Ò

Subject to:

ÔÕ
ÕÖ
ÕÕ
×Ñ)AB¬?
Bf* = 1, ÇTQ	R = 1,2, … ,11
)AB −)¾� ≤ 0, R�, Ky ∈ 2)AB +)¾� ≤ 1, R�, Ky ∈ û�)AB −)¾� = 0, R�, Ky ∈ �)AB ∈ (0,1.

where ÍA is the number of option for subsystem R.
Finally, 159 Pareto-optimal solutions are identified by both methods which are

shown in Figure 5.8. Figures 5.9 and Figure 5.10 show also the two dimensional

representation of the solutions.

108

Table 5.6: Component parameters for each subsystem

Subsystem Options Cost Weight Power

Subsystem Options Cost Weight Power

Subsys1

Opt1_1 42 36 97

Subsys7

Opt7_1 98 38 7

Opt1_2 35 60 24 Opt7_2 78 80 48

Opt1_3 50 99 49 Opt7_3 54 27 79

Opt1_4 49 62 67 Opt7_4 1 10 47

Opt1_5 29 1 33 Opt7_5 84 38 47

Subsys2

Opt2_1 51 50 33

Subsys8

Opt8_1 28 25 8

Opt2_2 54 93 21 Opt8_2 66 96 10

Opt2_3 60 51 92 Opt8_3 1 32 26

Opt2_4 92 57 66 Opt8_4 51 69 99

Opt2_5 81 19 64 Opt8_5 15 95 52

Subsys3

Opt3_1 12 32 69

Subsys9

Opt9_1 95 19 93

Opt3_2 70 28 71 Opt9_2 95 58 60

Opt3_3 39 48 77 Opt9_3 9 18 96

Opt3_4 48 21 55 Opt9_4 23 39 96

Subsys4

Opt4_1 66 86 53 Opt9_5 36 5 56

Opt4_2 45 11 18

Subsys10

Opt10_1 54 64 43

Opt4_3 7 29 84 Opt10_2 59 40 63

Opt4_4 81 95 86 Opt10_3 61 5 11

Opt4_5 100 32 99 Opt10_4 96 6 29

Subsys5

Opt5_1 82 66 94

Subsys11

Opt11_1 97 26 64

Opt5_2 19 26 50 Opt11_2 60 6 87

Opt5_3 72 21 34 Opt11_3 61 46 7

Opt5_4 19 17 46 Opt11_4 87 84 26

Opt5_5 58 62 95 Opt11_5 62 24 4

Subsys6

Opt6_1 56 35 36

 Opt6_2 61 32 80

Opt6_3 5 72 13

For the adaptive % -constraint method, it needs to solve 1702 IP, while the proposed

modified adaptive ϵ-constraint method only solves 454 IP. It improves the algorithm

efficiency by	*Â�+�©æ©*ÂÁ+ = 73.3%, which is a significant improvement.

109

Figure 5.8: Cost vs Weight vs Power

Figure 5.9: Cost vs Weight (left); Cost vs Power (right)

110

Figure 5.10: Weight vs Power

5.5 Conclusion

In this chapter, we propose a modified adaptive ϵ-constraint method to identify all

Pareto-optimal solutions for linear multi-objective optimization problem. Compared with

existing methods, our method not only improves the algorithm efficiency significantly

but also is able to cope with at most one non-integer linear objective function. Based on

the proposed optimization method, we present a system design optimization framework

for simple structure systems (series/parallel) which have close-form reliability

(availability) formulas. The presented framework is applied to a special case of system

design optimization problem, the RAP of Series-Parallel system to evaluate its

performance. Furthermore, the proposed optimization method is evaluated on a

configuration selection problem taken from our industrial partner. Both numerical results

show that the proposed method outperforms the existing methods, but the improvement is

problem dependable.

111

Chapter 6 Conclusion

6.1 Contributions

The contributions made in this dissertation are as follows:

1. We have proposed a new CTBN formalism for RAM modeling of dynamic

repairable systems. The previous work considered two main approaches: Dynamic

Bayesian networks and Markov chain based models. Compared with DBNs, the

CTBN framework belongs to the class of event-based BN formalisms which is

essentially used for modeling reversible processes. Thus the advantage of CTBNs,

over DBNs is their ability to handle various repair polices. Compared with

Markov chain models, where each system state explicitly describes the state of all

the system variables, CTBNs do not suffer from the state space explosion problem

of Markov chain models. In particular, the CTBN is a local-state model, where the

state of the current node is only dependent on its parent node. In short, CTBNs are

more efficient and tractable than Markov chain models and also more suitable to

model dynamic behavior among components than are DBNs.

2. Based on the CTBN framework, we have proposed CTBN constructs for the static

(Fault tree) and dynamic (Dynamic Fault tree) gates, typically found in reliability

tools. Furthermore, we have shown how to model different repair policies using

CTBNs. The CTBN RAM modeling framework is applied to model three case

examples to estimate the system reliability and availability: the Cardiac system,

the ground vehicle system and the fleet of vehicles system.

112

3. Based on the proposed CTBN RAM modeling formalism and NSGA-II, we

present a system design optimization framework for dynamic repairable systems.

The CTBNs are employed to estimate system reliability (availability) while the

meta-heuristic optimization method NSGA-II is used to solve the black-box

multi-objective optimization problem. The CTBNs and NSGA-II based system

design framework is applied to a ground vehicle system to identify the Pareto

solution set.

4. We propose a modified adaptive ϵ-constraint method which is able to identify all

Pareto-optimal solutions for integer linear multi-objective optimization problem.

Compared with the existing ϵ-constraint method, the proposed one improves the

algorithm efficiency significantly by avoiding solving for the duplicate solutions.

Furthermore, in the application to the RAP, the proposed method is adjusted to

cope with linear multi-objective optimization problem with one non-integer

objective function.

5. We regard the typical system design problem, the RAP of Series-Parallel systems,

as a multi-objective optimization problem. Consequently, we utilize the proposed

modified adaptive ϵ-constraint method and the decomposition scheme to cope

with this Multi-Objective Redundancy Allocation Problem (MORAP). Compared

with existing MORAP methods, the main advantage of the proposed method is

that it is able to identify all Pareto-optimal solutions. The modified adaptive ϵ-
constraint method is evaluated on the RAP of Series-Parallel systems and the

configuration selection problem.

113

6.2 Future Research

The following is a list of avenues for future research:

1. The CTBN RAM modeling framework, as defined in this work, is primarily

geared towards the modeling of systems whose component failure time and

repair time follows exponential distribution. The Markovian property assumption

restricts the expressive power of CTBNs to model non-exponential distribution

over time. There are two possible ways to cope with non-exponential distribution

processes. The first one is to use the Phase-type distribution (Nodelman 2007) to

map the non-exponential process into several exponential processes; the second

one is to add hidden variables (Nodelman 2007) as parent nodes to the non-

exponential nodes to control their evolution. However, both of these approaches

will add complexity and computation burden to the model. Thus, finding a new

and efficient way for CTBNs to cope with non-exponential distribution processes

would allow a broader use for CTBNs in the RAM modeling applications.

2. In the CTBNs and NSGA-II based multi-objective system design optimization

framework, the meta-heuristic based NSGA-II has limitations of not being able

to identify all Pareto-optimal solution and to guarantee the solutions are Pareto-

optimal. It would be very intriguing to find an optimization method which can

break these limitations for the black-box multi-objective system design problem.

3. Compared with the existing ϵ-constraint method, the modified adaptive ϵ-
constraint method, as proposed in this work, is able to improve the algorithm

efficiency by avoiding solving the majority of duplicate solutions. However, the

proposed method, while reducing the identification of duplicate solutions

114

significantly, cannot avoid all duplicated solutions. The investigation of

incorporating a more sophisticated checking mechanism into the proposed

method so that it can avoid all the duplicated solutions is definitely a worthwhile

task to undertake in the future.

115

REFERENCES

Bellman, R. and S. Dreyfus (1958). "Dynamic Programming and the Reliability of

Multicomponent Devices." Operations Research 6(2): 200-206.

Billionnet, A. (2008). "Redundancy allocation for series-parallel systems using integer

linear programming." Ieee Transactions on Reliability 57(3): 507-516.

Bobbio, A., L. Portinale, et al. (2001). "Improving the analysis of dependable systems by

mapping fault trees into Bayesian networks." Reliability Engineering & System

Safety 71(3): 249-260.

Bobbio, A. and D. C. Raiteri (2004). Parametric fault trees with dynamic gates and repair

boxes. Reliability and Maintainability, 2004 Annual Symposium (RAMS 2004),

Los Angeles.

Boudali, H., P. Crouzen, et al. (2007). Dynamic fault tree analysis using input/output

interactive markov chains. the 37th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks. UK.

Boudali, H. and J. B. Dugan (2005). "A discrete-time Bayesian network reliability

modeling and analysis framework." Reliability Engineering & System Safety

87(3): 337-349.

Boudali, H. and J. B. Dugan (2005). "A new Bayesian network approach to solve

dynamic fault trees." Annual Reliability and Maintainability Symposium, 2005

Proceedings: 451-456.

Boudali, H. and J. B. Dugan (2006). "A continuous-time Bayesian network reliability

modeling, and analysis framework." Ieee Transactions on Reliability 55(1): 86-97.

116

Bulfin, R. L. and C. Y. Liu (1985). "Optimal Allocation of Redundant Components for

Large Systems." Ieee Transactions on Reliability 34(3): 241-247.

Busacca, P. G., M. Marseguerra, et al. (2001). "Multiobjective optimization by genetic

algorithms: application to safety systems." Reliability Engineering & System

Safety 72(1): 59-74.

Chankong, V. and Y. Haimes (1983). Multiobjective Decision Marking Theory and

Methodology. New York., Elsevier Science.

Clifton, R. E. J. (1990). Apparatus for preventing truck roll over in the event of failure of

its suspension system. U. patent. USA.

Coello Coello, C. A. (2006). "Evolutionary multi-objective optimization: an historical

view of the field." Computational Intelligence Magazine 1: 28-36.

Cohn, I., T. El-Hay, et al. (2009). Mean field variational approximation for continuous-

time Bayesian networks. The Twenty-Fifth Conference Conference on

Uncertainty in Artificial Intelligence Montreal, QC, Canada 91-100.

Coit, D. W. (2001). "Cold-standby redundancy optimization for nonrepairable systems."

Iie Transactions 33(6): 471-478.

Coit, D. W. and A. E. Smith (1996). "Reliability optimization of series-parallel systems

using a genetic algorithm." Ieee Transactions on Reliability 45(2): 254-&.

Deb, K. (2005). "Multi-objective NSGA-II code in C." from

http://www.iitk.ac.in/kangal/codes.shtml. .

Deb, K., A. Pratap, et al. (2002). "A fast and elitist multiobjective genetic algorithm:

NSGA-II." Ieee Transactions on Evolutionary Computation 6(2): 182-197.

117

Dhingra, A. K. (1992). "Optimal Apportionment of Reliability and Redundancy in Series

Systems under Multiple Objectives." Ieee Transactions on Reliability 41(4): 576-

582.

Dugan, J. B. (2000). "Galileo: A tool for dynamic fault tree analysis." Computer

Performance Evaluation, Proceedings 1786: 328-331.

Dugan, J. B., S. J. Bavuso, et al. (1992). "Dynamic Fault-Tree Models for Fault-Tolerant

Computer-Systems." Ieee Transactions on Reliability 41(3): 363-377.

Dugan, J. B., S. J. Bavuso, et al. (1993). "Fault-Trees and Markov-Models for Reliability-

Analysis of Fault-Tolerant Digital-Systems." Reliability Engineering & System

Safety 39(3): 291-307.

Dugan, J. B., K. J. Sullivan, et al. (2000). "Developing a low-cost high-quality software

tool for dynamic fault-tree analysis." Ieee Transactions on Reliability 49(1): 49-59.

Fan, Y. and C. R. Shelton (2008). Sampling for approximate inference in continous time

Bayesian networks. The Tenth International Symposium on Artificial Intelligence

and Mathmatics. Fort Lauderdale, FL, USA.

Fonseca, C. M. and P. J. Fleming (1993). Genetic algorithms for multiobjective

optimization: formulation, discussion and generalization. The fifth international

conference on genetic algorithms. San Mateo California: 416-423.

Fyffe, D. E., W. W. Hines, et al. (1968). "System reliability allocation and a

computational algorithm." IEEE Transaction on Reliability 17: 64-69.

GDLS. (2011). "Stryker ground combat vehicle family." Retrieved April 19, 2011, from

http://www.gdls.com/programs?option=com_gdlsmain&id=32&Itemid=37.

Holland, J. (1975). Adaption in natural and artificial systems, U. Michigan Press.

118

Horn, J., N. Nafpliotis, et al. (1994). A niched pareto genetic algorithm for multiobjective

optimization. the first IEEE conference on evolutionary computation. Piscataway,

NJ: 82-87.

John, C., H. Loy, et al. (2003). Through life support for building services system.

Worldwide CIBSE/ASHERAE, Gathering of the Building Services Industry.

Florence: 24-26.

Kulturel-Konak, S., D. W. Coit, et al. (2008). "Pruned Pareto-optimal sets for the system

redundancy allocation problem based on multiple prioritized objectives." Journal

of Heuristics 14(4): 335-357.

Kulturel-Konak, S., A. E. Smith, et al. (2003). "Efficiently solving the redundancy

allocation problem using tabu search." Iie Transactions 35(6): 515-526.

Levitin, G. and A. Lisninaski (2001). "A New Approach to Solving Problem of Multistate

System Reliability Optimization." Quality and Reliability Engineering

International 17: 93-94.

Liang, Y. C. and A. E. Smith (2004). "An ant colony optimization algorithm for the

redundancy allocation problem (RAP)." Ieee Transactions on Reliability 53(3):

417-423.

Lyu, M. R., S. Rangarajan, et al. (2002). "Optimal allocation of test resources for

software reliability growth modeling in software development." Ieee Transactions

on Reliability 51(2): 183-192.

Marseguerra, M., E. Zio, et al. (2004). "A multiobjective genetic algorithm approach to

the optimization of the technical specifications of a nuclear safety system."

Reliability Engineering & System Safety 84(1): 87-99.

119

Mettas, A. and W. Zhao (2004). Modeling and Analysis of Complex Repairable Systems,

ReliaSoft Corporation.

Misra, K. B. (1971). "Dynamic Programming Formulation of the Redundancy Allocation

Problem." International Journal of Mathematical Education in Science and

Technology 2(3): 207 - 215.

Misra, K. B. (1972). "Reliability optimization of a series-parallel system." IEEE Trans.

Reliability R-21(4): 230-238.

Misra, K. B. and U. Sharma (1991). "An Efficient Algorithm to Solve Integer-

Programming Problems Arising in System-Reliability Design." Ieee Transactions

on Reliability 40(1): 81-91.

Montani, S., L. Portinale, et al. (2005). Dynamic Bayesian Networks for Modeling

Advanced Fault Tree Features in Dependability Analysis. European Safety and

Reliability Conference (ESREL 2005), Tri City, Poland.

Montgomery, A. D. (1996). Logistics, an integral part of cost efficient space operations.

Florida, 32899, National Aeronautics and Space Administration (NASA),

Kennedy Space Center.

Nelson, J. R. (1977). Life Cycle Analysis of Aircraft Turbine Engines. Santa Monica, CA,

The Rand Corporation.

Nodelman, U. (2007). Continuous Time Bayesian Networks. PhD Dissertation,

STANFORD UNIVERSITY.

Nodelman, U., D. Koller, et al. (2005). Expectation propagation for continous time

Bayesian networks. The Twenty-First International Conference on Uncertainty in

Artificial Intelligence. Edinburgh, Scotland, UK: 431-440.

120

Oiddir, R., M. Rahli, et al. (2004). "Ant colony optimization for new redesign problem

of multi-state electrical power systems." Journal of Electrical Engineering 55 (3-

4): 57-63.

Ozlen, M. and M. Azizoglu (2009). "Multi-objective integer programming: A general

approach for generating all non-dominated solutions." European Journal of

Operational Research 199(1): 25-35.

Painton, L. and J. Campbell (1995). "Genetic Algorithms in Optimization of System

Reliability." Ieee Transactions on Reliability 44(2): 172-178.

Portinale, L. and R. D. C. (2009). A GSPN Semantics for Continuous Time Bayesian

Networks with Immediate Nodes, Computer Science Department, UPO,.

Portinale, L., D. C. Raiteri, et al. (2010). "Supporting reliability engineers in exploiting

the power of Dynamic Bayesian Networks." International Journal of Approximate

Reasoning 51(2): 179-195.

Raiteri, D. C., G. Fraceschinis, et al. (2004). Repariable Fault Tree for the automatic

evaluation of repair policies. International Conference on Dependable Systems

and Networks, Florence, Italy.

Ramirez-Marquez, J. E. and D. W. Coit (2004). "A heuristic for solving the redundancy

allocation problem for multi-state series-parallel systems." Reliability

Engineering & System Safety 83(3): 341-349.

Rashika, G. and A. Manju (2006). "Penalty guided genetic search for redundancy

optimization in multi-state series-parallel power system." Journal of combinatorial

optimization 12(3): 257-277.

121

Ravi, V., B. S. N. Murty, et al. (1997). "Nonequilibrium simulated annealing-algorithm

applied to reliability optimization of complex systems." Ieee Transactions on

Reliability 46(2): 233-239.

Reliasoft. (2011). "Availability." Retrieved April 19, 2011, from

http://www.weibull.com/SystemRelWeb/availability.htms.

Ren, Y. S. and J. B. Dugan (1998). "Design of reliable systems using static & dynamic

fault trees." Ieee Transactions on Reliability 47(3): 234-244.

Salazar, D., C. M. Rocco, et al. (2006). "Optimization of constrained multiple-objective

reliability problems using evolutionary algorithms." Reliability Engineering &

System Safety 91(9): 1057-1070.

Saria, S., U. Nodelman, et al. (2007). Reasoning at the right time granularity. The

Twenty-third Conference on Uncertainty in Artificial Intelligence. Univ. of BC,

Vancouver, BC, Canada: 421-430.

Schaffer, J. (1985). Multiple objective optimization with vector evaluated genetic

algorithms. Genetic algorithms and their applications: the first international

conference on genetic algorithms. Hillsdale, NJ: 93-100.

Sharma, U. and K. B. Misra (1990). "An efficient algorithm to solve integer

programming problem in reliability optimization." International Journal of

Quality & Reliability Management 7(5): 44-46.

Shelton, C. R., Y. Fan, et al. (2010). "Continuous Time Bayesian Network Reasoning and

Learning Engine." Journal of Machine Learning Research 11: 1137-1140.

Srinivas, N. K. and A. Deb (1994). "Multiobjective optimization using non-dominated

sorting in genetic algorithms." J Evol Comput 2(3): 221-248.

122

Taboada, H. A., F. Baheranwala, et al. (2007). "Practical solutions for multi-objective

optimization: An application to system reliability design problems." Reliability

Engineering & System Safety 92(3): 314-322.

Taboada, H. A. and D. W. Coit (2006). MOEA-DAP: A New Multiple Objective

Evolutionary Algorithm for Solving Design Allocation Problems, Rutgers

University IE Working Paper

Taboada, H. A., J. F. Espiritu, et al. (2008). "MOMS-GA: A multi-objective multi-state

genetic algorithm for system reliability optimization design problems." Ieee

Transactions on Reliability 57(1): 182-191.

Tavakkoi-Moghaddam, R., J. Safari, et al. (2008). "Reliability optimization of series-

parallel systems with a choice of redundancy strategies using a genetic

algorithm." Reliability Engineering & System Safety 93(4): 550-556.

Tian, Z. G. and M. J. Zuo (2006). "Redundancy allocation for multi-state systems using

physical programming and genetic algorithms." Reliability Engineering & System

Safety 91(9): 1049-1056.

Tillman, F. A., C. L. Hwang, et al. (1977). "Determining Component Reliability and

Redundancy for Optimum System Reliability." Ieee Transactions on Reliability

26(3): 162-165.

Walter, J. (2001). John Walter (2001), Automotive cooling system component

interactions, Dissertation, Texas Tech University, Texas Tech University.

Weber, P. and L. Jouffe (2003). Reliability modeling with Dynamic Bayesian Networks.

5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical

Processes (SAFEPROCESS'03), Washington, D.C., USA.

123

Zafiropoulos, E. P. and E. N. Dialynas (2004). "Reliability and cost optimization of

electronic devices considering the component failure rate uncertainty." Reliability

Engineering & System Safety 84(3): 271-284.

Zeleny, M. (1982). Multiple criteria decision making, McGraw-Hill.

Zia, L. and D. W. Coit (2010). "Redundancy Allocation for Series-Parallel Systems

Using a Column Generation Approach." Ieee Transactions on Reliability 59(4):

706-717.

Zitzler, E. and L. Thiele (1999). "Multiobjective evolutionary algorithms: A comparative

case study and the Strength Pareto approach." Ieee Transactions on Evolutionary

Computation 3(4): 257-271.

124

ABSTRACT

NOVEL MODELS AND ALGORITHMS FOR SYSTEMS

RELIABILITY MODELING AND OPTIMIZATION

by

DINGZHOU CAO

August 2011

Advisors: Dr. Ratna Babu Chinnam and Dr. Alper Murat

Major: Industrial Engineering

Degree: Doctor of Philosophy

Recent growth in the scale and complexity of products and technologies in such

the defense and other industries as the defense is has become a challenge for attaining

cost efficiency in challenging product development, realization, and sustainment costs.

Uncontrolled costs and routine budget overruns are forcing companies causing all parties

involved to seek become leaner in their product development processes and treatment to

treat products’ of reliability, availability, and maintainability of the system as a true

“design parameter”. To this effect, accurate estimation and management of the system

reliability of a design during the “earliest stages” of new product development is critical

not only critical for managing product development and manufacturing costs but also to

for controlling life cycle costs (LCC). In this regard, the overall objective of this research

study is to develop an integrated framework for “design for reliability” (DFR) upfront

during the upfront product development by treating reliability as a design parameter. The

125

aim here is to develop the theory, methods, and tools necessary for: 1) accurate

assessment of system reliability and availability and 2) optimization of the design to meet

system reliability targets. In modeling the system reliability and availability, we aim to

address the limitations of existing methods, in particular the Markov chains method and

the Dynamic Bayesian Network approach, by incorporating a Continuous Time Bayesian

Network framework for more effective modeling of sub-system/component interactions,

dependencies, and various repair policies. We also propose a multi-object optimization

scheme to aid the designer in obtaining identifying the optimal design(s) with respect to

system reliability/availability targets and other system design requirements. In particular,

the optimization scheme would entail optimal selection of sub-system and component

alternatives. The theory, methods, and tools to be developed will be are extensively tested

and validated using simulation test-bed data and actual case studies from our industry

applications.

126

AUTOBIOGRAPHICAL STATEMENT

DINGZHOU CAO

Dingzhou Cao did his undergraduate studies at Jinan University, Guangzhou, P. R.

China, where he received his Bachelor of Science degree in Mathematics and Applied

Mathematics in 2004. He received his Master of Science degree in Applied Mathematics

in 2006 from the same school. Since 2007, Dingzhou has been studying at Wayne State

University (WSU) for a Ph.D. in the Department of Industrial and System Engineering

(ISE). During his Ph.D. program, he has worked as graduate research assistant in the ISE

department at WSU.

