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RAM Modeling Methods for Repairable Systems 

In all studies mentioned above, non-reparable systems are considered. In order to 

account for reparable systems, some extensions of Fault Trees are presented. In the paper 

(Bobbio and Raiteri 2004), the authors propose the Dynamic Repairable Parametric Fault 

Trees (DRPFTs), which implement DFTs in compact parametric form. By adding Repair 

Boxes (RB), the DFT is extended to include dependencies arising from the repair process. 

However, the RB semantics is investigated only in the special case of its application to a 

dynamic gate. In the work(Raiteri, Fraceschinis et al. 2004), another extension of FTs 

called Repairable Fault Trees (RFTs) is proposed; more generalized repair features are 

introduced. Nevertheless, one limitation is that, both methods have to be solved by Petri-

net-based method eventually, and the RB introduced by DRPFTs/RFTs requires a 

solution in the state spaces, which may be computationally very expensive. Thus in paper 

(Raiteri, Fraceschinis et al. 2004), the authors seek for solutions by implementing the 

modular multi-solution process. Namely classifying the RFT modules into two categories, 

the sub-trees without RB actions are solved with the standard combinatorial method and 

the sub-trees with RB actions are solved by Petri-net-based method. In spite of the 

increased expressive power, RFTs feature the drawback of a lower solving efficiency, 

due to the required state-based analysis. In the paper (Portinale, Raiteri et al. 2010), 

Portinale shows how to take into account similar repair policies aforementioned during 

the reliability analysis based on DBNs formalism. However, due to the limitation of 

DBNs, all repair policies investigated in this paper assume unlimited repair crews, which 

limit its application in real world.  
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In order to model repair actions with limited crews, one must have a center 

process which can assign and reclaim repair crews. The time-slice-based modeling 

method DBNs are out of capability for this situation. Continuous Time Bayesian 

Networks (CTBNs), firstly presented by Nodelman  (Nodelman 2007), are based on 

Bayesian Networks, but with a continuous time representation of the temporal evolution. 

They inherit all the advantages of BNs and are kind of event-based modeling methods, 

which are more flexible to model repair process under different repair policies. The 

technical report (Portinale and C. 2009) is the only work found to apply CTBNs in 

reliability modeling. In the technical report, the authors present an extension to CTBNs 

called Generalized CTBNs (GCTBNs) by adding immediate nodes. They claim that these 

immediate nodes allow capturing the logical/probabilistic interaction among the model’s 

variables.  Actually, in this thesis (Section 3.2.2, Chapter 3), we will demonstrate it is 

also possible to model this scenario just using the original definition of CTBNs. The 

authors also outline a semantic model of GCTBN based on the formalism of Generalized 

Stochastic Petri Nets (GSPN). In this study, we propose a CTBN framework for 

reliability modeling, and extend it to an RAM modeling with considering various repair 

policies, including the repair policy with limited repair crews. We validate the proposed 

approach by applying it to an example taken from literature and show that the modeling 

capability of CTBNs outperforms that of DBNs, which indicates the CTBN framework is 

a good alternative for RAM modeling and analysis. 

2.3 System Design Optimization: Literature Review 

The design process of a reliable system is by nature, iterative. Traditional 

approaches to the design process of a reliable system follow the system requirement 
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analysis, preliminary design, detail design, evaluation and redesign phases until a final 

acceptable design is obtained. However, to achieve a shorter time-to-market, system 

reliability concerns should be addressed at the design stage (“design for reliability”). The 

design requirements have to consider reliability (availability), cost, weight, physical size, 

power consumption, etc. The system design optimization problem can be formula as to 

select components or redundancy-level to optimize some objective functions, given 

system-level constraints on reliability (availability), cost, and/or weight.  

The system design optimization problem consists of two parts: the system metrics 

estimation and the optimization methods. The common system metrics are system 

reliability (availability), cost and weight et al. The optimization methods in system design 

optimization problem refer to multi-objective optimization methods or single-objective 

optimization methods. In this study, we focus on multi-objective optimization methods.  

Among these system metrics, reliability (availability) estimation is the most 

important system metric. For different systems, the way to calculate reliability 

(availability) is total different. For example, in a simple series or parallel system, the 

reliability (availability) can be estimated by close-form mathematical formulas; however, 

for a complex system with dynamic behaviors or various kind of repair policies, there are 

not close-form mathematical formulas for its reliability (availability), the Markov chain, 

Dynamic Bayesian Networks or CTBNs are the methods for the reliability (availability) 

estimation in this kind of systems. From optimization standpoint, we put this kind of non-

close-form objective function problem as black-box optimization problem. The heuristics 

methods (GA, Simulated annealing and Tabu search et. al) are the most efficiency way to 

solve the black-box optimization problem.  
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Thus, in the proposed system design optimization framework, we treat the system 

design optimization problem based on the difference of systems. For simple structure 

(series/parallel) systems with close-form reliability (availability) mathematical formulas, 

we propose a modified adaptive ϵ-constraint method to identify all Pareto-optimal 

solutions. For systems with dynamic behaviors and various repair policies, we employ 

CTBNs to estimate its reliability (availability) and treat it as a black-box optimization 

problem; and NSGA-II is used to solve for its Pareto solutions.  

2.3.1 System Metrics Estimation Methods 

A large number of models and solution methods have been proposed to solve the 

system design optimization problem especially the reliability optimization problem 

(Redundancy Allocation Problem, RAP), such as dynamic programming, Lagrangean 

multiplier (Misra 1972), heuristic approach (Ramirez-Marquez and Coit 2004) and 

integer programming (Sharma and Misra 1990). As for the system involves active and 

cold-standby redundancy, Tavakkoli-Moghaddam (Tavakkoi-Moghaddam, Safari et al. 

2008) proposed a genetic algorithm for a redundancy allocation problem of the Series-

Parallel system with active and cold-standby redundancies. The similar jobs are done by 

Coit in these papers (Coit and Smith 1996; Coit 2001). However, the above-mentioned 

methodologies are not applicable to the kind of complex system with dynamic behaviors; 

they mainly focus on simple system structure: series, parallel or k-out-of-n with/without 

simple active or cold-standby redundancy strategy. The reliability of these simple 

structure (series/parallel) systems can be estimated by close-form mathematical formulas. 

There are few works about reliability (availability) optimization of complicated systems 

with dynamic behaviors. The only one work related to this is done by Ren (Ren and 



19 
 

 

 

Dugan 1998). In her paper, she described a methodology for embedding a GA into an 

existing fault-tree methodology to determine the heuristic optimal design configuration of 

a reliable system. She used DFTs to model interactive actions between events. However, 

she applied MCs-based method DIFtree SOLVER to solve the DFTs, which will have 

state explosion problem if the system is too large.  As we discussed in previous 

subsection, the CTBN is a flexible tool for reliability (availability) estimation. It doesn’t 

have the state explosion problem mentioned above, but it is more practical to model the 

dynamic failure behaviors between components and various repair policies. In this study, 

we will employ CTBNs to calculate system reliability (availability) of complex systems 

with dynamic behaviors for the proposed system design optimization framework. 

2.3.2 Optimization Methods 

           In the past several decades, there have been a number of studies and approaches to 

the RAP. Roughly, they can be grouped into three categories: single objective 

optimization with constraints, aggregated objective function methods for multi-objective 

optimization, and Pareto-based ranking methods for multi-objective optimization. 

Single objective optimization methods 

The first set of methods treat the RAP as a single objective optimization problem 

(maximizing system reliability or minimizing cost) with constraints. Various single-

objective optimization approaches have been used to solve such formulations, including 

dynamic programing (Bellman and Dreyfus 1958; Fyffe, Hines et al. 1968; Misra 1971), 

integer programming (Bulfin and Liu 1985; Misra and Sharma 1991; Billionnet 2008), 

meta-heuristics (Painton and Campbell 1995; Coit and Smith 1996; Ravi, Murty et al. 
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1997; Kulturel-Konak, Smith et al. 2003; Liang and Smith 2004; Rashika and Manju 

2006), mixed integer and non-linear programming (Tillman, Hwang et al. 1977) and 

column generation method (Zia and Coit 2010).  

Multi-objective Optimization: Aggregation Objective Function Methods  

These single-objective optimization techniques have their own advantages on 

RAP. However, in practical applications, some researchers have realized that it should 

take multiple considerations into account when determining the redundancy allocation of 

the system. For example, they want to obtain a system with high reliability and at the 

same time, they still want the design cost of the system to be low. The aggregation 

objective function method is implemented to solve this problem. They weight sum the 

multiple objective functions into a single objective function, and solve the new objective 

function via single-objective optimization approaches. These studies (Dhingra 1992; 

Busacca, Marseguerra et al. 2001; Marseguerra, Zio et al. 2004; Zafiropoulos and 

Dialynas 2004; Tian and Zuo 2006) are belong to this category. In the paper (Dhingra 

1992), the author presented a multi-objective reliability apportionment problem. The 

problem is a multi-objective, nonlinear, mixed-integer mathematical programming 

problem and is solved by sequential unconstrained minimization techniques in 

conjunction with heuristic algorithms. The series system considered in this study is with 

time-dependent reliability. The study (Zafiropoulos and Dialynas 2004) provided an 

efficient computational method to obtain the optimal system structure of electronic 

devices by using a single or a multi-objective simulated annealing algorithm based 

optimization approach. Studies (Marseguerra, Zio et al. 2004; Zafiropoulos and Dialynas 

2004; Tian and Zuo 2006) are multi-criteria formulations using genetic algorithm. 
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Approach in paper (Tian and Zuo 2006) is based on GA and Monte Carlo simulation; 

while in paper (Marseguerra, Zio et al. 2004) GA and physical programming are 

combined to solve the RAP.   

Multi-objective Optimization: Pareto-based ranking methods 

The above multiple objectives studies have taken important steps towards finding 

more effective and efficient approaches for RAP. However, in order to obtain promising 

results, how to aggregate multiple objectives into a single one is a sophisticated work; 

besides, the aggregation of multiple objectives may eliminate the possibility of 

identifying more non-dominated solutions. To cope with these drawbacks, people come 

to some other multi-objective optimization approaches. Multi-objective optimization 

refers to the solution of problems with two or more objective to be satisfied 

simultaneously. Unlike single-objective optimization problem, the multi-objective 

optimization problems usually have a set of solutions, which called Pareto-optimal 

solutions or non-dominated solutions. There have been some studies in this field (Salazar, 

Rocco et al. 2006; Taboada, Baheranwala et al. 2007; Kulturel-Konak, Coit et al. 2008; 

Taboada, Espiritu et al. 2008). In the paper (Taboada, Baheranwala et al. 2007), the 

authors formulated the redundancy allocation problem as a tri-objective problem 

(maximize reliability, minimize cost and weight) and solve this problem using Non-

dominated Sorting Genetic Algorithm (NSGA-II) (Deb, Pratap et al. 2002). An 

improving version NSGA-II was presented so called MOMS-GA (Taboada, Espiritu et al. 

2008) to solve the tri-objective redundancy allocation problem in multi-state systems. In 

the paper (Kulturel-Konak, Coit et al. 2008), Tabu search approaches with Monte-Carlo 

simulation method are employed to solve a bi-objective (reliability and cost) redundancy 
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allocation problem. In this paper (Kulturel-Konak, Coit et al. 2008), a problem specific 

MOEA is employed to solve the continuous reliability optimization problems where the 

reliability of the components are variables to be optimized.  

The meta-heuristic based multi-objective optimization approaches mentioned 

above are very popular on RAP now. However, meta-heuristic based approaches have 

several limitations: they do not guarantee that Pareto points are optimal; they may not 

identify all the Pareto-optimal points and they may have computation burden problem 

when the population size is large. Thus, in this study, from optimization standpoint, in 

our proposed system design optimization framework, two cases are discussed. 1) For 

systems with dynamic behavior and various repair policies, CTBNs is used to estimate 

the system reliability (availability). The system design optimization is a black-box type 

problem and the meta-heuristic based methods are best option for this kind of problem. 

Thus in our framework, NSGA-II is employed to identify the Pareto solutions for this 

problem.  2) For simple structure (series/parallel) systems with close-form reliability 

(availability) mathematical formulas, a modified adaptive ϵ-constraint method is 

proposed to identify all Pareto-optimal solutions for this problem. Compared with meta-

heuristic based method NSGA-II, the modified adaptive ϵ-constraint method could 

identify all Pareto-optimal solutions, and guarantees that the identified solutions are 

Pareto-optimal.  

The %-constraint method (Chankong and Haimes 1983)  is a traditional method to 

generate all non-dominated solutions for multi-objective optimization problems. It works 

by choosing one of the objective functions as the only objective and handling the 

remaining objective functions in the form of constraints. Through systematic variation of 
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the objective constraint bounds, all non-dominated solutions can be obtained. To improve 

the computational efficiency of the %-constraint method, an improved version of the %-

constraint method (Ozlen and Azizoglu 2009)  was proposed. Instead of using a fixed	%, 

the improved method updates the % value based on the location of the previous solution. 

It uses an adaptive % value in each iteration, which explains its name, the adaptive %-

constraint method. This improves the efficiency of algorithm significantly. However, 

there are two limitations ton this method. Firstly, the adaptive %-constraint method is 

limited to linear objective functions and requires all coefficients of the objective function 

terms and the decision variables to be integers. Secondly, this method identifies duplicate 

solutions, affecting the efficiency of the algorithm. In this thesis, we propose efficient 

solutions for addressing these two limitations. 

In the RAP problems, the system reliability objective function is not a linear 

integer function. In order to obtain a linear function, we make some mathematical 

transformations to the reliability objective function. In addition, to cope with the non-

integral nature of the non-integer reliability objective function, we make necessary 

modifications to the adaptive ϵ-constraint method so that it can account for at least one 

non-integer linear objection function. To avoid solving for the duplicated solutions, two 

search refinement strategies are added to the adaptive ϵ-constraint method which can help 

to reduce the number of IPs solving solved significantly. Furthermore, a decomposition 

scheme is employed to improve the algorithm efficiency. We decompose the original 

problem into several sub-problems and solve each sub-problem for Pareto-optimal 

solution sets with the modified adaptive ϵ-constraint method. By sequentially combining 
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and filtering each pair of Pareto-optimal solution sets from a pair of subsystems, finally 

we can obtain the Pareto-optimal solutions set for the original problem.  

2.4 Summary 

We first introduce the concepts, definitions and assumptions of repairable systems. 

Then we review the different quantitative RAM analysis methods being used currently 

and present the relevant research on system design optimization methods. Furthermore, 

the limitations of existing methods are highlighted and discussed.   
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Chapter 3 RAM Modeling using Continuous Time Bayesian Networks 

 

As we discuss in Section 2.3 of Chapter 2, in RAM modeling, the existing 

methods have limitations. Such as the traditional method Markov chains have state 

explosion problem when the system is too larger; while the Dynamic Bayesian Networks 

are incapable to model some repair policies especially the one with limited repair crews. 

The CTBNs, firstly presented by Nodelman (Nodelman 2007), are based on Bayesian 

Networks, but with a continuous time representation of the temporal evolution. They 

inherit all the advantages of BNs and are kind of event-based modeling methods which 

are more flexible to model repair process under different repair policies. In this chapter, 

we propose CTBN formalism for RAM modeling. The proposed method doesn’t have the 

state explosion problem. And within the flexible modeling ability, it is capable to cope 

with various repair policies.  The proposed approach is applied to three case examples, 

one is taken from the literature and another two are original from practical problems of 

our industrial partners. The experiment results are promising, which indicate that the 

presented method is a good alternative for existing RAM modeling methods. 

3.1 Introduction of CTBNs 

In this subsection, we provide the background material about the Continuous 

Time Bayesian Networks. We first introduce a continuous-time, finite-state, homogenous 

Markov process, and then describe the Continuous Time Bayesian Networks, which use a 

graphical representation to model multi-variable continuous-time stochastic process. 
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3.1.1 Continuous Time Markov Processes 

Let &  be a continuous-time, finite-state, homogenous Markov process. &  has ' 

states {)*, )+, … , )-}. &(�) is the (finite) state of the system at time �. The collection of 

random variables {&(�)|� ∈ 	1}  composes the process. &  satisfies the Markov 

assumptions.  

The initial distribution 23� = 2()(0)) is a multinomial distribution over ' states 

of & . The transient behavior of &  is described by the initial distribution 23�  and the 

transition model which is often represented by the intensity matrix 

45 = 6−75* 75859 ⋯ 7585;75958 −75+ … 7595;⋮ ⋮ ⋱ ⋮75;58 75;59 … −75-> 
where 75?5@is the intensity with which &transitions from )Ato )Band 75A = ∑ 75?5@ADB . The 

diagonal element 7A and the off-diagonal elements 7ABdefine the instantaneous transition 

probabilities of	&.  

The intensity matrix 45 is time invariant. Given	45, the transient behavior of & 

can be described as the following: &  stays in state )A  for an amount of time �  and 

transitions to state)B. � is exponentially distributed with parameter 75A. The expected time 

of transitioning is	1/75. Upon transitioning, the probability that & transitions from state 

)A to )B is	G5?5@ = 75?5@/75? . For example, assume that we want to model the changes of 

weatherH(�)  which has three values 	(IJKLH(�)M = {N� = O
''P, N* = QJR'P,N+ =
SKT
�P}). We could represent the behavior of H(�) using the intensity matrix 
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QV = W−1.6 1.3 . 3. 7 −1 . 3. 8 1.2 −2^ 
If we set the time unit to one day, this means that we expect the weather would change in 

*+ = .5 day if currently it is cloudy. When the intensity is changing, with probability 

.+̀ = .4 the new value will be sunny and with probability 
*.++ = .6 the new value will be 

rainy.  

To model a multi-variable system, we first combine all variables into a single join 

variable by enumerating all possible states of the variables. If the system has N 

variables	&A(R = 1, … ,b), and each variable contain cA states, the total number of states 

of the join process is ' = ∏ cAeAf*  and the size of the intensity matrix for the join process 

is ' by '. As the number of variables increases, the size of the intensity matrix grows 

exponentially.  

3.1.2 Continuous Time Bayesian Networks 

A continuous-time Markov process suffers from state space explosion when 

handling large dynamic systems. A structured representation is needed to deal with multi-

variable dynamic systems.  

In order to decompose a multi-variable dynamic system, we introduce a 

conditional intensity matrix (CIM) to describe the dynamics of local variables in a system. 

Let & be all the variables of the dynamic system we are trying to model. Let ) ∈ & be one 

variable in the system and g ⊂ & be a set of other variables. The conditional intensity 

matrix 45|i  for variable ) is defined as a set of intensity matrices	45|! , one for each 
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instantiation 
	of the variable set	g. The evolution of &	depends instantaneously on the 

values of the variables in	g . Using a CIM, we can model each local variable as an 

inhomogeneous Markov process, whose intensities are a function of the current values of 

a set of other variables 

Example 3.1.2.1 Let us expand the weather example in the previous subsection to a 

dynamic system with more than one node. Assume that we want to consider the effect of 

the weather on the people’s outdoor exercise intensity, which has two 

values	(IJKLj(�)M = {k� = KRlℎ�, k* = 'TQ�JK}). We can model the dynamics of each 

local variable separately by utilizing the dependencies among the variables. Therefore, 

the dynamics of the exercise intensity can be described using three CIMs. 

4n|op = q−.1 . 1. 8 −.8r 		4n|o8 = q−.4 . 41.2 −1.2r, 
		4n|o9 = q−.3 . 31 −1r 

The behavior of variable j(�) is now represented as an inhomogeneous Markov 

process, whose intensities depend on the current value of	H(�). When	H(�) = N�, the 

behavior of j(�) is descried using	4n|op . When	H(�) = N*, it is described using	4n|o8 . 

When	H(�) = N+, it is described using	4n|o9 .  

The way the Markov chain models the dynamic of this system is total different. 

We first have to list all the possible combinations of the joint 

variable: {(N�, k�), (N�, k*), (N*, k�), (N*, k*), (N+, k�), (N+, k*)} . We then write the 

transition intensity of each pair of values into the join intensity matrix. It is a 6 by 6 

matrix. 
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Definition 3.1.2.1 A continuous time Bayesian Networks b  over &  consists of two 

components: an initial distribution	23�, specified as a Bayesian Networks s over	&, and a 

continuous transition model, specified using a directed (possibly cyclic) graph t whose 

nodes are	) ∈ &. Let g5 denote the parents of ) in	t. Each variable ) ∈ & is associated 

with a conditional intensity matrix	45|iu .  

Example 3.1.2.2 Assume we want to model how a person improves his health status via 

doing outdoor exercise. When the weather is good, or his schedule is not tight, he may 

exercise more. Increasing exercise intensity tends to make him more energetic and 

healthy, which will allow him to work more efficiently. Such a dynamic system contains 

four variables: Weather, Exercise, Schedule, and Body status. Each variable changes in 

continuous time and its changing rate depends on the current value of some other 

variables.  

We can use a CTBN to represent such behavior. The dependencies of these four 

variables are depicted using a graphical structure. As shown in Figure 3.1. The 

quantitative transient dynamics for each variable are represented using CIMs. Let’s 

assume all the four variables are binary. Let B(t)  be the person’s body 

status 	(IJKLs(�)M = {x� = ℎkJK�ℎ, x* = ORSy}) , E(t)  be the exercise 

intensity (IJKLj(�)M = {k� = KRlℎ�, k* = 'TQ�JK}) , S(t)  be his daily 

schedule (IJKLc(�)M = {O� = KTTOk, O* = �Rlℎ�}) , and H(�)  be the 

weather (IJKLH(�)M = {N� = O
''P,N* = QJR'R'l}) . The conditional intensity 

matrices for the four variables can be specified as 
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Table 3.1: CIM for node Weather  

State H(N�) H(N*) H(N�) -.5 .5 H(N*) .5 -.5 
 

Table 3.2: CIM for node Exercise  {H(N�), c(O�)} State j(k�) j(k*)  {H(N*), c(O�)} State j(k�) j(k*) j(k�) -2 2 j(k�) -.6 .6 j(k*) .1 -.1 j(k*) .3 -.3 {H(N�), c(O*)} State j(k�) j(k*) {H(N*), c(O*)} State j(k�) j(k*) j(k�) -.5 .5 j(k�) -1 1 j(k*) 1.1 -1.1 j(k*) .1 -.1 

 

Table 3.3: CIM for node Schedule  s(x�) State c(O�) c(O*)  s(x*) State c(O�) c(O*) c(O�) -.1 .1 c(O�) -.5 .5 c(O*) .5 -.5 c(O*) .8 -.8 

 

Table 3.4: CIM for node Body status  j(k�) State s(x�) s(x*)  j(k*) State s(x�) s(x*) s(x�) -.2 .2 s(x�) -.1 .1 s(x*) 5 -5 s(x*) 10 -10 
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Figure 3.1: Healthy improvement example 

If the person is in loose schedule, and the weather is sunny, the dynamic of his 

exercise intensity is determined by the intensity matrix	4n|o|,,}p,. If the time unit is one 

month, we can expect he will do normal exercise in 
*+ = .5 month, conditioned on the fact 

that he is currently doing light exercise, his schedule is loose and the weather is good. 

The model contains double direction links, the dash line, indicating that whether a person 

is doing normal exercise depends on his body status; while the body status also impacts 

the exercise intensity of the person. For example, if he is sick, we would not do any 

exercise.   

3.1.3 Inference in CTBNs 

Given a CTBN model, we would like to use it to answer queries conditioned on 

observations, which is named evidence here. Evidence for a CTBN is usually a partial 

trajectory, in which some values or transitions are missing for some variable during some 

time intervals. It is also possible that the evidence has no observation; we name it as 

empty evidence. In this study, we mainly focus on two kinds of queries. The first one is 
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to query the marginal distribution of some variable at a particular time, such as the 

distribution of weight at	� = 10, which can answer the kind of question like what is the 

probability of the person is overweight at the tenth month. In reliability analysis, this 

inference enables us to query the reliability or point availability of a system at a particular 

time. The second kind of inference is to query the expected total amount of time that a 

variable spends in a state in a period of time like	[0	�]. For example, this inference can 

answer the question like what is the expected total month the person is overweight for the 

first ten months. In reliability analysis, we can apply this to calculate the expected total 

amount of operational time for a repairable system so as to estimate its mean availability. 

The reliability or availability estimation using a CTBN is a filtering task with empty 

evidence for a particular node. 

Inference algorithms 

There are various inference algorithms available in the literature, such as the exact 

inference method (Nodelman, Koller et al. 2005), the expectation propagation based 

method (Nodelman, Koller et al. 2005; Saria, Nodelman et al. 2007), the mean field 

variational based method (Cohn, El-Hay et al. 2009) and the sampling based method (Fan 

and Shelton 2008). Next, we will give a brief introduction of the basic inference 

algorithm in CTBNs, the exact inference. A more complete treatment of this method can 

be found in Nodelman’ paper (Nodelman, Koller et al. 2005). 

Assume that there is a partially observed trajectory ~ for a CTBN from time 0 

to	�. The evidence ~ is divided into b interval [�A, �A1*)(R = 0,… ,b − 1) according to 

the observed transition times. That is, each interval contains a constant observation of the 

CTBN. We set �� = 0 and	�e = �.  
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To perform exact inference, the intensity matrix 4  for the join homogeneous 

Markov process is generated using the amalgamation method. Then the evidence is 

incorporated into 4 as following. The intensity matrix 4 is reduced to 4A for each interval 

[�A, �A1*)  by zeroing out the rows and columns of 4  which represent states that are 

inconsistent with the evidence. And 4AB represents the matrix 4 with all elements zeroed 

out except the off-diagonal elements that represent the intensities of transitioning from 

non-zero rows in 4A  to non-zero columns in4B . Exp	(4A(�A1* − �A))  is the transition 

matrix for interval [�A, �A1*)  and 4A,A1*coresponds to the transition probability density 

between two consecutive intervals at time �A1*.  

Next, the forward-backward algorithm for Markov processes is used to answer 

queries. Let �� = �(&�, ~[�,�])  and �� = �(~[�,�)|&�)  be the forward and backward 

probability vector respectively, ~[�?,�@] be the trajectory during interval[�A, �B], �� be the 

initial distribution 23� over the state at time 0 and �� be a vector of ones. The forward and 

backward distribution vectors for each interval can be calculated recursively: 

��?�8 = ��A expL4A(�A1* − �A)M4A,A1* 

��A = 4A�*,A expL4A(�A1* − �A)M ��?�8 

The distribution over the state of the CTBN at time � ∈ [�A, �A1*) given the evidence ~[�,�) 
can be computed as  

2L&� = �, ~[�,�)M = ��A expL4A(� − �A)M ∆�,� expL4A(�A1* − �)M ��?�8  
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where  ∆A,B  is an ' × '  matrix of zeros except for a single one in position R, � . The 

expected total amount of time that the join Markov process spends in state �  during 

interval [�A , �A1*) given the evidence is a kind of expected sufficient statistics (Nodelman, 

Koller et al. 2005)  for CTBNs, which can be calculated as: 

1� � ��? expL4A(� − �A)M ∆B,B expL4A(�A1* − �)M ��?�8���?�8
�?  

where � is the normalization factor to guarantee that the summation of the total time the 

process spends on each state during interval [�A, �A1*) is �A1* − �A.  
3.2 FT(DFT) Gates and CTBN Modeling 

Fault trees (FTs) are one of the most popular techniques for reliability analysis of 

large, complex systems. The two most commonly used gates in a FT are the AND gate 

and OR gate. Dynamic Fault trees are extensions of FTs, aimed at increasing the 

modeling power of FTs by including new primitive gates, able to accommodate complex 

kind of dependencies. DFTs introduce four basic (dynamic) gates: the warm spare gate 

(WSP), the sequence enforcing gate (SEQ), the probabilistic dependency gate (PEDP) 

and the priority AND gate (PAND). In the rest of this section, we propose to characterize 

(Dynamic) Fault trees gates within the CTBNs framework, by translating all the basic 

gates into the corresponding CTBNs models. We adopt the following convention. Given 

a generic binary component � we denote with � = 1 the component failure and with 

� = 0	 the component working. In the common hypothesis, component failures and 

repairs are exponentially distributed with failure rate	�� and	��. 
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3.2.1 AND Gate and OR Gate 

The AND gate represents that the output event occurs if all input events occur; the 

OR gate represents that the output event occurs if at least one of the input events occurs. 

The corresponding CTBN representations for AND gate and OR gate are shown in Figure 

3.2. In the CTBN modeling, node A, B and C all have 2 states: state 1 means the 

corresponding component fails and state 0 means it is working. Their initial states are 0, 

which means that they are all working at the beginning. CIMs for node A and B are listed 

in the left part of Table 3.5. For node A/B, its initial state is 0, the expected time of 

transitioning from state 0 to state 1 is	 *�� or 
*��. However, when it enters state 1, it will stay 

in that state forever, because the expected time of transitioning from state 1 to state 0 is 

infinity (1/0). In reliability, this means that the component is non-repairable. This is very 

easy to be extended to model reparable case. For instance, suppose component A and B 

both are reparable and subject to a CR policy with failure rate and repair rate �� and	�� 

respectively. When they are in state 1, they will return back to state 0 with expected time 

*��  and		 *�� respectively. The detailed CIM for the reparable case is in the right part of 

Table 3.5. For node C with OR gate, its initial state is 0. When node A and B are in state 

0, node C always stays in state 0 (the expected transitioning time is infinity). However, 

when at least one of A or B is in state 1, it transits into state 1 immediately (the expected 

transitioning time is	0 = *�).  The similar logic is applied to node C with AND gate.  
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Table 3.5: : CIMS for node A and B of  OR gate 

Node A,  

non-

reparable 

State A(0) A(1)  Node A,  

reparable 

State A(0) A(1) 

A(0) −�� �� A(0) −�� �� 

A(1) 0 0 A(1) �� −�� 

Node B,  

non-

reparable 

State B(0) B(1) Node B,  

reparable 

State B(0) B(1) 

B(0) −�� �� B(0) −�� �� 

B(1) 0 0 B(1) �� −�� 
 

Table 3.6: CIMS for node C of OR gate 

{A(0),B(0)} 

 

State B(0) B(1) 

B(0) 0 0 

B(1) ∞ −∞ 

{A(0),B(1)} 

{A(1),B(0)} 

{A(1),B(1)} 

State B(0) B(1) 

B(0) −∞ ∞ 

B(1) 0 0 

 

Table 3.7: CIMS for node C of AND gate 

{A(0),B(0)} 

{A(0),B(1)} 

{A(1),B(0)} 

State B(0) B(1) 

B(0) 0 0 

B(1) ∞ −∞ 

{A(1),B(1)} State B(0) B(1) 

B(0) −∞ ∞ 

B(1) 0 0 

 

 

 

Figure 3.2: The OR and AND gate in FT and CTBN representation 
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3.2.2 WSP Gate 

The WSP is a dynamic gate modeling one or more main components that can be 

replaced by one or more backups (spares). Spares can fail while they are dormant, but the 

failure rate of the unpowered spare is αλ with 0≤α≤1 called the dormancy factor and λ is 

the failure rate of an active spare. Spares are called “hot” if α=1 and “cold” if α=0. When 

the main component fails, the switch will activate spare component to substitute the main 

one with probability	�*; it fails to activate spare component with probability	�+(�+ = 1 −
�*). As an example, let us consider a situation where a single component P can be 

substituted by a spare S. If any component (either main or spare) is failed or the switch 

fails to active spare component, the gate produces a fault. The corresponding CTBN 

nodes to this gate are shown in Figure 3.3. Node P has 3 states: 0, 11 and 12. State 0 

means P is working; State 11 means P fails in failure modal 1, which means that the 

switch activates the spare component successfully; State 12 means P fails in failure 

modal 2, which means that the switch fails to activate the spare component. Node S and 

Node WSP both have 2 states: 0 and 1. State 0 means it is working, while state 1 means it 

fails. The CIMs for each node with different scenarios are listed in Table 3.8-3.10. For 

node P, its initial state is 0, the expected time it goes out this state is	 *��. The probability it 

enters state 11 is 
"8���� = �* and the probability it enters state 12 is	"9���� = �+. If it transits 

into state 11 or state 12, it will stay in that state forever. For node S, its initial state is 0. 

However, the state transition depends on its parent P. If P is in state 0, then S is dormant 

and evolves with failure rate	��}; If P is in state 11, which means P fails and the switch 

activates S successfully, it will evolve with failure rate	�} ; If P is in state 12, which 
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means P fails and the switch fails to activate S, then S will stay in dormant state. S is non-

reparable; once it enters the failure state, it will not go out. For node WSP, it will stay in 

state 0 if P is working or P is in state 11 and S is in state 0; it will transit into state 1 

immediately if P is in state 12 or P is in state 11 and S is in state 1. 

 

Figure 3.3: The WSP gate in FT and CTBN representation 

Table 3.8: CIM for node P of WSP gate 

State P(0) P(11) P(12) 

P(0) −�� �*�� �+�� 

P(11) 0 0 0 

P(12) 0 0 0 
 

Table 3.9: CIM for node S of  WSP gate 

P(0) 

 

 

State S(0) S(1) 

S(0) −��} ��} 
S(1) 0 0 

P(11) State S(0) S(1) 

S(0) −�} −�} 
S(1) 0 0 

P(12) State S(0) S(1) 

S(0) −��} ��} 
S(1) 0 0 
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Table 3.10: CIM for node WSP 

{P(0), S(0)} 

{P(0), S(1)} 

{P(11), S(0)} 

State WSP(0) WSP(21) 

WSP(0) 0 0 

WSP(21) ∞ −∞ 

{P(11), S(1)} 

{P(12), S(0)}  

{P(12), S(1)} 

State WSP(0) WSP(21) 

WSP(0) −∞ ∞ 

WSP(21) 0 0 

 

3.2.3 PAND Gate 

PAND gate reaches a failure state if and only if all of its input components have 

failed in a pre-assigned order. As an example, let us consider a situation where a PAND 

gate consists of 2 components A, B. If A fails before B, then a failure occurs; otherwise, 

there is not a failure happening. Node B has 3 states: state 0 means B is working; state 11 

means A fails before B; state 12 means A fails after B. Node A and node PAND have 2 

states 0 and 1. State 0 means they are working while state 1 means they fail. CIM of node 

A is the same as that in Table 3.5. CIM of node B and node PAND are listed in Table 

3.11 and Table 3.12 respectively. For node B, if A is in state 0, the only way B can go is 

to state 12, which means B fails before A. However, if A is in state 1, obviously, A fails 

before B, B then will enter state 11. As for node PAND, it will keep in state 0 unless A 

and B both are in state 1, which indicates a failure.  
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Figure 3.4: The PAND gate in FT and CTBN representation 

Table 3.11: CIM for node B of PAND gate 

A(0) State B(0) B(11) B(12) 

B(0) −�� 0 �� 

B(11) 0 0 0 

B(12) 0 0 0 

A(1) State B(0) B(11) B(12) 

B(0) −�� �� 0 

B(11) 0 0 0 

B(12) 0 0 0 

 

Table 3.12: CIM for node PAND 

{A(1), 

B(11)} 

 

 

State PAND(0) PAND(1) 

PAND(0) −∞ ∞ 

PAND(1) 0 0 

Others 

 

 

State PAND(0) PAND(1) 

PAND(0) 0 0 

PAND(1) 0 0 

 

3.2.4 PDEP Gate 

In the PDEP gate, one trigger event T causes other dependent components to 

become unusable or inaccessible with probability 	���" ≤ 1 . As an example, let us 

consider a situation where the failure of a trigger component T will cause both 
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component A and B to fail with probability 	���" . The corresponding CTBN 

representation is shown in Fig 3.5. Node T has 3 states: 0, 11 and 12. State 0 means it is 

working; state 11 means it fails in failure modal 1 and this failure will cause both A and 

B fail; state 12 means it fails in failure modal 2 and this failure has no effect on A and B. 

Node A and B both have 2 states: 0 and 1. State 0 means it is working while state 1 

means it fails. For node T, its initial state is 0 and it will transit to state 11 with 

probability ���"  or transit to state 12 with probability	1 − ���" . For node A, if T is 

working or T’s failure has not impact on it (with probability	���"), it will evolve with 

failure rate	��; otherwise, it will transit to failure state (state 1) immediately. Node B has 

the same CIMs as Node A has. The discussion above assumes that A and B are non-

reparable. If A and B are reparable, since trigger event T can cause both A and B to fail, 

there are two cases in reality: case 1: they need repair action or case 2: they do not. Case 

1 means that if A and B fail (due to trigger event T or fail by themselves), it takes 
*�� or 

*�� to repair them. Case 2 is that if A and B fail due to T, they do not need repair action. 

They are in good condition; they stop working just because T is malfunction. Once T is 

back to normal, they will continue to operate. However, if their failures are not caused by 

T, they fail by themselves, they still need repair action. For example, suppose T is power 

supply, A and B are two generators. If power supply (T) is down, A and B are down. 

However, they do not need repair action because they are in good condition. Once the 

power supply continues, they will continue to work again. It is easy to model case 1: if A 

or B are in state 1, they will transit back to state 0 with repair rate ��	or	��. For case 2, 

where one more state is needed for A and B, they have 3 states: state 0 means they are 

working; state 11 means they fail in failure modal 1 and this failure is caused by T, they 
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do not need repair action in this failure; state 12 means they fail in failure modal 2 and 

this failure is caused by themselves, so this failure needs repair action. For detail CIMs, 

please refer to Table 3.14 and Table 3.15. In the Literature (Portinale, Raiteri et al. 2010), 

only case 1 is considered.  In order to make a comparison with the results from the 

literature, for the rest of this chapter, unless specified, we refer to case 1.  

 

 

Figure 3.5: The PEDP gate in FT and CTBN representation 

Table 3.13: CIM for node T of PDEP gate 

State T(0) T(11) T(12) 

T(0) -�� ���" ∗ �� (1 − ���") ∗ �� 

T(11) 0 0 0 

T(12) 0 0 0 

 

Table 3.14: CIM for node A of PDEP gate, non-reparable and reparable case 1 

Non-reparable  Reparable, Case 1 

T(0)  or  

T(12) 

State A(0) A(1) T(0)  or  

T(12) 

State A(0) A(1) 

A(0) −�� �� A(0) −�� �� 

A(1) 0 0 A(1) �� −�� 

T(11) 

 

 

State A(0) A(1) T(11) 

 

 

State A(0) A(1) 

A(0) -∞ ∞ A(0) -∞ ∞ 

A(1) 0 0 A(1) �� −�� 
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Table 3.15: CIM for node A of PDEP gate, reparable case 2 

Reparable, Case 2 

T(0)   

 

State A(0) A(11) A(12) 

A(0) −�� 0 �� 

A(11) ∞ -∞ 0 

A(12) �� 0 −�� 

T(11) 

 

 

State A(0) A(11) A(12) 

A(0) -∞ ∞ 0 

A(11) 0 0 0 

A(12) 0 0 0 

T(12) 

 

 

State A(0) A(11) A(12) 

A(0) −�� 0 �� 

A(11) 0 0 0 

A(12) �� 0 −�� 

 

3.3 Multi-state Interaction and CTBN Modeling 

Multi-state interaction is similar to the WSP gate. The (Dynamic) Fault trees 

cannot model a multi-state system, thus there is not this kind of gate in DFTs.  The 

difference between multi-state interaction and the WSP gate is that, in multi-state 

interaction, we do not distinguish components by primary and standby. The purpose of 

multi-state interaction is not to increase the redundancy. Instead, it models the case in 

which the failure distribution of one component depends on the working state of other 

components. In this sense, it looks more like the PDEP gate. However, the PDEP gate is 

to model common failure factor, which means that the failure of one component will 

bring down one or more components. In multi-state interaction, the component doesn’t 

necessarily fail; it primarily focuses on how the degradation of one component will affect 

the others.  For example, consider a system that consists of two components A and B in 

series with exponential failure distribution. A has multi-state: good, moderate and failed. 

B is binary state: good and failed. The failure rate of B depends on the state of A.  If A is 
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in state good, the failure rate for B is	��,�; if A is in state moderate, the failure rate for B 

change to	��,  . The failure rates for A are ��,�and ��,   when it is in state good and 

moderate respectively.  

The CTBN representation for multi-state interaction is shown in Figure 3.6. The 

CIM for node B is listed in Table 3.16. 

Table 3.16: CIM for node B of Multi-state interactions 

A(good) 

 

 

State B(good) B(failed) 

B(good) −��,� ��,� 

B(failed) 0 0 

A(moderate) 

 

 

State B(good) B(failed) 

B(good) −��,  ��,  

B(failed) 0 0 

A(failed) State B(good) B(failed) 

B(good) −��,  ��,  

B(failed) 0 0 

 

 

Figure 3.6: CTBN representation for multi-state interaction 
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3.4 CTBN Modeling of Repair Policies 

In this subsection, we will present the modeling of repair policies within CTBN 

formalism through the CPU subsystem of a running example named the Cardiac Assist 

System (CAS) (Boudali, Crouzen et al. 2007; Portinale, Raiteri et al. 2010) described in 

Section 3.6.1. The CPU subsystem consists of two different CPUs: a primary CPU P with 

failure rate ��  and a backup warm spare CPU B with failure rate ��  and dormancy 

factor	�� = .5. Both CPU are functionally dependent on cross switch CS (failure rate	�¡¢) 

and system supervision SS (failure rate	�¢¢). The failure of either CS or SS will force the 

failure of both CPUs and so the failure of the CPU subsystem. The dependencies among 

these components are modeled by dynamic gates and are shown as a part of DFT for the 

whole system in Figure 3.10. P and B are the input events of a WSP gate; this means that 

P is the principal component and in the case of failure, it will be substituted by B. The 

PDEP gate forces both P and B to fail if the event Trigger occurs (failure of either CS or 

SS). The corresponding CTBN representation of this subsystem is show in Figure 3.10. 

3.4.1 CPU Subsystem with SGR Policy 

In the case when SGR policy is employed, the corresponding CTBN 

representation is show in Figure 3.7. Compared with non-reparable case, there are extra 

green links (dash line) from CPU to reparable components (CS, SS, P and B), which 

means that the failure of the CPU subsystem will activate the repair process of each 

component. Node CPU has 3 states (0, 1 and 2). State 0 means it is working; state 1 

means it is under repair and state 2 means the repair action is completed. The initial state 

of CPU is 0. When it fails, it enters state 1; the repair state and the node evolve following 
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the corresponding global repair rate	�¢£¤  (the expected transition time from state 1 to 

state 2 is	 *�¥¦§	). When the repair is done, it will enter state 2, which is an instant state 

indicating that the global repair action is done, and all components under repair (nodes 

with green in-flow link) are immediately set to be functional again; and CPU will switch 

to state 0 instantly. Table 3.17 is the detailed CIM for node CPU. For node P, if CPU is in 

state 2, the repair process is completed. If it is in state 1, it will return back to state 0 

immediately. Otherwise, it will stay in state 1. The detailed CIM is in Table 3.18. Other 

nodes (CS, SS and B) have the similar logic as node P.  

 

Figure 3.7: CTBN representation for SGR, SLR and SLR-min policy 
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Table 3.17: CIM for node CPU of CPU subsystem with SGR policy 

{P(0), B(0)}, 

{P(0), B(1)}, 

{P(1), B(0)} 

State CPU(0) CPU(1) CPU(2) 

CPU(0) 0 0 0 

CPU(1) ∞ −∞ 0 

CPU(2) ∞ 0 −∞ 

{P(1), B(1)} State CPU(0) CPU (1) CPU (2) 

CPU (0) −∞ ∞ 0 

CPU (1) 0 −�¢£¤ �¢£¤ 

CPU (2) ∞ 0 −∞ 

 

Table 3.18: CIM for node P of CPU subsystem with SGR policy 

{Trigger (0),  

CPU (0)}, 

{Trigger (0),  

CPU (1)} 

State P(0) P(1)  {Trigger (1),  

CPU (0)}, 

{Trigger (1),  

CPU (1)} 

State P(0) P(1) 

P(0) −�� �� P(0) −∞ ∞ 

P(1) 0 0 P(1) 0 0 

  

Trigger (0),  

CPU (2) 

State P(0) P(1)  Trigger (1),  

CPU (2) 

State P(0) P(1) 

P(0) −�� ��  P(0) −∞ ∞ 

P(1) ∞ −∞  P(1) ∞ −∞ 

 

3.4.2 CPU Subsystem with SLR Policy 

In the case when SLR policy is employed, the corresponding CTBN 

representation is the same as that of SGR shown in Figure 3.7. However, node CPU only 

has two states (0 it is working and1 it fails), the CIM is listed in Table 3.19. Nodes CS, 

SS, P and B all have 3 states (0, 1 and 2). State 0 means that the component is working; 

state 1 means that it fails and state 2 means it is being repaired. For node P, its repair 

process is activated by the failure of CPU. If CPU is in state 1 and P is in state 1, P will 

transits to state 2 immediately and evolves with repair rate	��. The detailed CIM of P is 

listed in Table 3.20. Other nodes (CS, SS and B) have the similar logic as node P.  
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Table 3.19: CIM for CPU of CPU subsystem with SLR policy 
 

 

Table 3.20: CIM for P of CPU system with SLR policy 

Trigger (0),  

CPU (0) 

State P(0) P(1) P(2)  Trigger (1), 

 CPU (0) 

State P(0) P(1) P(2) 

P(0) −�� �� 0 P(0) −∞ ∞ 0 

P(1) 0 0 0 P(1) 0 0 0 

P(2) �� 0 −�� P(2) �� 0 −�� 

Trigger (0), 

CPU (1) 

State P(0) P(1) P(2) Trigger (1),  

CPU (1) 

State P(0) P(1) P(2) 

P(0) −�� �� 0 P(0) −∞ ∞ 0 

P(1) 0 −∞ ∞ P(1) 0 −∞ ∞ 

P(2) �� 0 −�� P(2) �� 0 −�� 

 

3.4.3 CPU Subsystem with SLR-min Policy 

In the case when SLR-min policy is employed, the corresponding CTBN 

representation is the same as that of SGR in Figure 3.7. The CIM of CPU is similar to 

that of SLR case, which is listed in Table 3.21. Node CS, SS, P and S all have 2 states (0 

and 1). State 0 means they are working, and state 1 means they fails or are been repaired. 

For node P, when CPU is in state 0 (CPU returned back to working state), if P is in state 1, 

it will stay in state 1 (with repair rate 0); this models the situation when the subsystem is 

functional, the repair action will stop. Other nodes (CS, SS and B) have the similar logic 

as node A. 

 

{P(0), B(0)} 

{P(0), B(1)} 

{P(1), B(0)} 

{P(0), B(2)} 

{P(2), B(0)} 

State CPU (0) CPU (1) 

CPU (0) 0 0 

CPU (1) ∞ −∞ 

{P(1), B(1)} 

{P(1), B(2)} 

{P(2), B(1)} 

{P(2), B(2)} 

State CPU (0) CPU (1) 

CPU (0) −∞ ∞ 

CPU (1) 0 0 
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Table 3.21: CIM for CPU of CPU subsystem with SLR-min policy 

{P(0), B(0)}, 

{P(1), B(0)}, 

{P(0), B(1)} 

State CPU (0) CPU (1) 

CPU(0) 0 0 

CPU (1) ∞ −∞ 

{P(1), B(1)} State CPU (0) CPU (1) 

CPU (0) −∞ ∞ 

CPU (1) 0 0 

 

Table 3.22: CIM for P of CPU subsystem with SLR-min policy 

{Trigger (0), CPU 

(0)} 

State P(0) P(1)  {Trigger (1), CPU 

(0)} 

State P(0) P(1) 

P(0) −�� �� P(0) −∞ ∞ 

P(1) 0 0 P(1) 0 0 

{Trigger (0), CPU 

(1)} 

State P(0) P(1) {Trigger (1), CPU 

(1)} 

State P(0) P(1) 

P(0) −�� �� P(0) −∞ ∞ 

P(1) �� −�� P(1) �� −�� 

 

3.4.4 CPU Subsystem with CR Policy 

When CR policy is applied to the CPU subsystem, there is no extra links and 

nodes needed. The corresponding CTBN representation is shown in Figure 3.8. The net 

representation is the same as the non-reparable case; however, CIM of each node is 

different from that of non-reparable case. Table 3.23 is the CIM for P with non-reparable 

case; Table 3.24 is the CIM for P with CR policy. Notice that the difference between 

them is when P is in state 1, it will stay there in non-reparable case, while it will evolve 

with repair rate ��	in CR policy case. Other nodes (CS, SS and B) have the similar logic 

as node P. CIMs for node Trigger and node CPU are the same as that of non-reparable 

case.  

 

 



50 
 

 

 

Table 3.23: CIM for P of CPU subsystem with CR policy,  non-reparable case 

Trigger(0) State P(0) P(1) 

 P(0) −�� �� 

P(1) 0 0 

Trigger(1) State P(0) P(1) 

 P(0) −∞ ∞ 

P(1) 0 0 

 

Table 3.24: CIM for P of CPU subsystem with CR policy 

Trigger(0) State P(0) P(1) 

 P(0) −�� �� 

P(1) �� −�� 

Trigger(1) State P(0) P(1) 

 P(0) −∞ ∞ 

P(1) �� −�� 

CS SS

P

(PDEP)

B

(PDEP)

Trigger

(OR)

CPU

(WSP)

 

Figure 3.8: CTBN representation for CR policy 

3.4.5 CPU Subsystem with CR-limit Policy 

When CR-limit policy is applied, since the repair crews are limited, there should 

be a control center which can assign a repair crew to a down component, and reclaim the 

repair crew from a component when the repair process is completed. In the CPU 
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subsystem example, one more node M is added and plays this role. Node M has two way 

links connected with reparable components (CS, SS, P and B). If a component fails, and 

node M has available repair crew, it will assign this repair crew to this component; if 

there is not repair crew available, it will keep the component on hold. When a repair 

process is completed, the component will report to node M and node M will reclaim the 

repair crew from that component. The states of node M are dependent on the total number 

of repair crews available. Suppose there are ' repair crews available, then node M has 

	' + 1 states (0:	').  c�J�k = y	(y ≤ ')	means that there are y repair crews available. As 

an example, lets support	y = 2, then node M has 3 states: 0, 1 and 2. And the initial state 

is 2, which means it has 2 repair crews available at the beginning. Nodes CS, SS, P and B 

all have 3 states: 0, 1 and 2. State 0 means that the component is working; state 1 means 

that the component fails and state 2 means that it is being repaired.  The corresponding 

CTBN representation is shown in Figure 3.9. Table 3.25 is the CIM for node M with 2 

repair crews. Notice that the initial state of node M is state 2. When there is not a 

component in repair state (state 2), node M will stay in state 2. If one component fails, 

node M will transits into state 1 immediately and stay there (of course, this component 

will enter repair state 2). If the component finishes its repair process (back to state 0), 

node M will transits back to state 2 instantly. However, before the 1
st
 failed component 

finishes it repair, if one more component fails, node M will transits from state 1 to state 0. 

At this time, even more components fail, node M will still stick in state 0, because there 

is not an available repair crew for assigning, and the failed components stay in a failure 

state (state 1) and wait for the repair crew. Table 3.26 is the CIM for node P. We can see 

that, when node M is in state 0, if P is in state 1, it will stay in state 1. However, if node 
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M is in state 1 or state 2, P will enter state 2 instantly, which mean that it is assigned a 

repair crew and can enter repair process. Other nodes (CS, SS and B) have the similar 

logic as node A.  

If we want to model this policy using Markov Chains, we can denote each state 

as	(�c, cc, 2, s|	*, 	+);  	* and 	+ are the 1
st
 and 2

nd
 repair crew. The number of states 

we need for the case with 2 repair facilities is	2© × �©+ = 2© × ©×ª+ = 96. For the case 

with 3 or 4 repair facilities, the number of states need is	2© × �©ª = 2© × �©© = 192. Due 

to the natural limitation of DBNs, they cannot model this repair policy.  

 

Figure 3.9: CTBN representation for CR-limit policy 
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Table 3.25: CIM for node M of CPU subsystem with 2 repair facilities 

0 component (CS, SS, P, 

B) is in state 2 

State M(0) M(1) M(2) 

M(0) −∞ 0 ∞ 

M(1) 0 −∞ ∞ 

M(2) 0 0 0 

1 component (CS, SS, P, 

B) is in state 2 

State M(0) M(1) M(2) 

M(0) −∞ ∞ 0 

M(1) 0 0 0 

M(2)  ∞ −∞ 

2 or more than 2 

components (CS, SS, P, 

B) are in state 2 

State M(0) M(1) M(2) 

M(0) 0 0 0 

M(1) ∞ −∞ 0 

M(2) ∞ 0 −∞ 

 

Table 3.26: CIM for node P of CPU subsystem CR-limited policy 

{Trigger (0), 

M (0)} 

State P(0) P(1) P(2)  {Trigger (1), 

M (0)} 

State P(0) P(1) P(2) 

P(0) −�� �� 0 P(0) −∞ ∞ 0 

P(1) 0 0 0 P(1) 0 0 0 

P(2) �� 0 −�� P(2) �� 0 −�� 

{Trigger (0), 

M (1)}, 

{Trigger (0), 

M (2)} 

State P(0) P(1) P(2) {Trigger (1), 

M (1)}, 

{Trigger (1), 

M (2)} 

State P(0) P(1) P(2) 

P(0) −�� ��  P(0) −∞ ∞ 0 

P(1) 0 −∞ ∞ P(1) 0 −∞ ∞ 

P(2) �� 0 −�� P(2) �� 0 −�� 

 

3.5 Case Studies: 

In this subsection, the CTBN method is applied to three systems. The examples 

presented, are based on real-life systems. The Cardiac system is a typical example with 

dynamic behavior, which is broadly used in literatures (Boudali, Crouzen et al. 2007; 

Portinale, Raiteri et al. 2010) for evaluating the reliability modeling methods. The 

purpose of implementing the CTBN method to Cardiac system is two folders. First, we 

can show how to map the (Dynamic) Fault trees into CTBNs; second, we can evaluate the 

accuracy of CTBNs by comparing it with the results of other methods (Markov Chain, 
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Dynamic Bayesian Networks, Petri-net) taken from literatures (Montani, Portinale et al. 

2005; Portinale, Raiteri et al. 2010). The second example is a ground vehicle system, 

which is used for a demonstration of how the CTBNs model multi-state interactions. The 

last example is based on the second example. It is a fleet of vehicles system. The purpose 

of this example is to demonstrate how the CTBNs model the repairable system with 

limited shared repair crews, which cannot be modeled by Dynamic Bayesian Networks.  

3.5.1 Cardiac System 

The Cardiac Assist System (CAS) model is taken from literatures (Boudali, 

Crouzen et al. 2007; Portinale, Raiteri et al. 2010) and is based on a real-world system. It 

consists of three separate subsystems: the CPU subsystem, the motor subsystem and the 

pump subsystem. The failure of either one of the above subsystem will cause the whole 

system to fail. As we introduce in Section 3.5, the CPU subsystem has two different 

CPUs: a primary CPU P and a backup warm spare CPU B (with dormancy failure 

rate	�� = 0.5	). Both CPUs are functionally dependent a cross switch CS and a system 

supervision SS. The failure of either CS or SS will force both CPUs to fail. The motor 

subsystem also has two motors: a primary MA and a cold spare MB. The switching 

component MS will activate the spare motor when the primary one fails on condition that 

MS is still working. This means that if MS fails before MA, MS cannot effetely turn on 

MB and then the whole subsystem fails. Finally, there are three pumps in the pump 

subsystem. Two primary pumps PA and PB running in parallel and a cold shared pump 

PS. The pump subsystem fails if all three pumps fail. The failure rate for each component 

is listed in Table 3.27 and the DFT for the whole CAS system is shown in Fig. 3.10. The 

CTBN representation corresponding to the DFT in Figure 3.10 is shown in Figure 3.11. 



55 
 

 

 

In this thesis, all numerical experiments with CTBNs are performed with CTBN-RLE 

(Shelton, Fan et al. 2010) developed by Shelton and his team.  And for all ∞ in CIMs, we 

make them equal to a larger number; here we choose	10*�.   

Table 3.27: Failure rates for the CAS system component 

Component Subsystem  Failure rate 

Primary CPU-P CPU 	�� = .5j − 3 

Backup CPU-B CPU �� = .5E − 3 

Cross switch-CS CPU 	�¡¢ = .2j − 3 

System supervision-SS CPU 	�¢¢ = .2j − 3 

Primary Motor-MA MOTOR 	�¬� = 1j − 3 

Cold spare Motor-MB MOTOR 	�¬� = 1j − 3 

Switching Component- MS MOTOR 	�¬¢ = .01j − 3 

Primary pump-PA PUMP 	��� = 1j − 3 

Primary pump-PB PUMP 	��� = 1j − 3 

Shared pump-PS PUMP 	��¢ = 1j − 3 

 

In order to validate the correctness of CTBNs modeling method in RAM analysis, 

first, we consider the system as non-reparable and estimate the unreliability of the system 

with the mission time from 100 to 1000 hours (with time step 100), and then compare 

them with the results from paper (Montani, Portinale et al. 2005), which are calculated by 

MC-based method Galileo. Table 3.28 shows the comparison between them. Since 

Galileo method is based on continuous time Markov chain analysis, we consider the 

results obtained from it as true value. From the Table we can see that the results 

estimated from CTBNs are almost identical to those of Galileo, which validates the 

correctness of CTBN modeling method. The average of Relative Deviation Percentage 

(RDP) is as small as 2.3 %, where RDP is calculated 

by 		2 = ∑ ®¯°±²³L´µ�¶?M·¯°±²³(¦°±?±³p?)¯°±²³(¦°±?±³p?) ®;? - × 100 . The estimation of the reliability using 
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CTBNs is a filtering task which queries the node System (Top Event) with empty 

observation in in other nodes (Basic Event). 

Table 3.28: The unreliability of CAS estimated by CTBNs 

Hours CTBN Galileo Deviation RDP 

100 0.041633 0.046034 -0.0044 9.56% 

200 0.09786 0.103223 -0.00536 5.20% 

300 0.163169 0.169335 -0.00617 3.64% 

400 0.236178 0.24148 -0.0053 2.20% 

500 0.317489 0.31671 0.000779 0.25% 

600 0.391319 0.392059 -0.00074 0.19% 

700 0.469853 0.465402 0.004451 0.96% 

800 0.534843 0.534898 -5.5E-05 0.01% 

900 0.600071 0.59931 0.000761 0.13% 

1000 0.663378 0.657889 0.005489 0.83% 

 
Mean RDP 2.30% 

 

In the reparable case, in order to compare results of CTBN with those of other 

methods taken from the paper (Portinale, Raiteri et al. 2010), we assume the same setting 

as that in Portinale’s paper. Only the CPU subsystem is reparable: first only the two 

CPUs are applied with CR policy, and then extended to Trigger (CS and SS) with the 

same policy. Their repair rates are all equal to 0.1 (�¡¢ = �¢¢ = �� = �� = .1). The 

DRPFTproc (Bobbio and Raiteri 2004)is a Stochastic Petri Nets based reliability analysis 

tool and the RADyBaN (Portinale, Raiteri et al. 2010)is a DBN-based method. Table 3.29 

shows the comparison of results obtained from these methods and CTBNs. From the 

Table we can see that the agreement between them. 
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Table 3.29: The unavailability (1- point availability) of CAS obtained by CTBNs with 

CR policy 

Hours 

CPU repair CPU+Trigger repair 

CTBN 

DRPFTproc 
(Bobbio and 

Raiteri 2004) 

RADyBaN 
(Portinale, 

Raiteri et al. 

2010) 

CTBN 

DRPFTproc 
(Bobbio and 

Raiteri 2004) 

RADyBaN 
(Portinale, 

Raiteri et al. 

2010 

100 0.04883 0.044330 0.044283 0.007782 0.011282 0.011243 

200 0.094698 0.095198 0.096916 0.025652 0.027652 0.027566 

300 0.160094 0.155094 0.156659 0.057963 0.054963 0.054837 

400 0.221637 0.220137 0.221550 0.088617 0.092117 0.091957 

500 0.291619 0.288119 0.2893821 0.136437 0.137437 0.137252 

600 0.356405 0.356905 0.358023 0.184482 0.188982 0.188779 

700 0.421624 0.424624 0.425606 0.248771 0.244771 0.244558 

800 0.490268 0.489768 0.490624 0.306446 0.302946 0.302729 

900 0.556211 0.551211 0.551952 0.360365 0.361865 0.36165 

1000 0.607691 0.608191 0.608829 0.421148 0.420148 0.419939 

  

Table 3.30: The unavailability (1- point availability) of CAS obtained by CTBNs with 

CR-limit policy 

 

Table 3.30 lists the unavailability estimated by CTBNs when the number of repair 

crew varies. The 2
nd

 column (CR) is the unlimited repair crew case; the 3
rd

 to 6
th

 columns 

are the cases when number of repair crew varies from 4 to 1. The instantaneous 

availability decreases as the number of repair facility decreases. In this example, CR-L4 

Hours CR 
CR-limit 

4 Crews 3 Crews 2 Crews 1 Crew 

100 0.04883 0.04935022 0.04987309 0.05495257 0.107054 

200 0.094698 0.09523264 0.09671853 0.09862899 0.16194 

300 0.160094 0.16017298 0.16141105 0.16729006 0.174128 

400 0.221637 0.22171244 0.22239923 0.22279578 0.294837 

500 0.291619 0.29245792 0.29389953 0.30237777 0.334138 

600 0.356405 0.35675185 0.35805307 0.3583714 0.3813 

700 0.421624 0.42220654 0.42272338 0.42998631 0.506544 

800 0.490268 0.49037719 0.49089903 0.49673556 0.54792 

900 0.556211 0.55698206 0.55789716 0.56496994 0.617032 

1000 0.607691 0.6081461 0.60920054 0.61310904 0.652559 
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should have the same result as that of CR because there are only 4 components in this 

subsystem. Having 4 repair crews available actually is the case of unlimited repair crews. 

Results (the 2
nd

 and 3
rd

 column) in the table above show the agreement between them. 

 

Figure 3.10: The DFT model of CAS 
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Figure 3.11: The CTBN representation corresponding to the DFT in Figure 3.10 

3.5.2 Ground Vehicle System 

Let’s look at a ground vehicle. It consists of four main subsystems in series: the 

body subsystem, the chassis subsystem, the powertrain subsystem and the electrical 

subsystem. Let’s focus more detail on the chassis subsystem and the powertrain 

subsystem. The chassis subsystem has four components in series: suspensions, the brakes, 

the wheels & tires, and the axles. The powertrain subsystem has three components in 

series: the engine, the transmission and the cooling subsystem. Although all components 

and subsystems are in series structure, there are some interactions among these 

components and subsystems. For example, the operating condition of suspension has a 

great impact on the wheels & tires, the body and the axles (Clifton 1990). With the 

suspension degradation, such as the shock absorber being stuck (less or no movement), 

the wheels & tires, the axles and the body would bear more energy from a shock and 
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would result in damages in these components, which will accelerate their failures. 

Another example of interaction is between the cooling subsystem and the engine (Walter 

2001). Commonly the perfect operating temperature for an engine is around 180F. The 

degradation of cooling system will lead to engine overheating or being too cold. One 

common effect of overheating or cooling to an engine is that the abnormal temperature 

will cause the engine lubricating oil to thin or become too dense and result in poor 

lubrication, which will cause damage to the engine and accelerate its failure. Thus, we 

assume that both the suspension and cooling system have multiple working states: good, 

moderate and failed. All other subsystems have binary states: working and failed. We 

also assume that all failure time and repair time follow exponential distribution. The 

failure rates �. and repair rates �.for each subsystem in different states are shown in Table 

3.31. The original failure rate for each subsystem is failures per mile. In order to make 

the unit consistent with repair rate (per hours), we transfer failure rate from failures per 

mile into failures per hour by using average speed factor 50 miles per hour. It is not easy 

to define the failure of a body subsystem, and this failure is not common except in car 

accidents. Thus in this study we don’t consider the failure of a body subsystem, and just 

put its failure rate and repair rate as 0. There are more than one suspension, wheel & tire 

in a vehicle, the failure rate and repair rate for these two subsystems are aggregated from 

independent multiple suspensions, wheels & tires. 
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Table 3.31: Failure and repair rate for each subsystem of ground vehicle example 

Subsystem Component State Failure Rate or Repair Rate 

Chassis (CH) 

Brakes(BR) 

 SU(good) SU(moderate) 

Good 
�¸¹,�= .5k − 3 

�¸¹, = .8k − 3 

Failed  �¸¹ =.5 

Wheels & 

Tires(WT) 

 SU(good) SU(moderate) 

Good 
�o�,�= .16k − 3 

�o�, = .2k − 3 

Failed  �.º» = 1.2 

Suspension(SU) 

Good �},� = .5k − 4 

Moderate �},  = .1k − 3 

Failed  �}=3 

Axles(AX) 

 SU(good) SU(moderate) 

Good 
�¼5,�= .5k − 4 

�¼5, = .7k − 4 

Failed  �¼5 =8 

Powertrain 

(PT) 

Engine(EG) 

 CO(good) CO(moderate) 

Good 
��-,�= .23k − 4 

��-, = .35k − 4 

Failed  ��- = 10 

Transmission(TR) 
Good ��¹ = .83k − 4 

Failed  ��¹ =4 

Cooling(CO) 

Good �½,� =.75e-4 

Moderate �½,  =.15e-3 

Failed  �½ =3.5 

Electrical 

subsystem(EL) 

Electrical 

subsystem(EL) 

Good ��¾ =.12e-3 

Failed  ��¾ =.8 

Body (BO) Body (BO) 
Good �¸¿ =0 

Failed  �¸¿ =0 

 

The (Dynamic) Fault trees are only limited to modeling binary state systems. The 

CTBNs can easily handle a multi-state component. The CTBN representation for the 

ground vehicle system is shown in Figure 3.12. 
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Figure 3.12: The CTBN representation of ground vehicle system 

There is no redundancy in this system; all subsystems and components are in 

series structures. As discussed in the previous subsection, the subsystem repair policies 

are identical to the component repair policies in this system. Furthermore, without 

redundancy, if one component fails, the whole system fails. Then other components stop 

operating and cannot fail, but they are still in good state (case 2 of PDEP gate, Section 

3.2.4). Thus only one component would fail each time and one repair crew would be 

enough. Based on the discussion above, in this example we just need to consider the CR 

policy. The CIMs for some nodes are shown for Table 3.32 to Table 3.34. Nodes CO, TR, 

EL have similar CIMs with node SU; Nodes WT, BO, AX and EG have similar CIMs 

with node BR; Node PT and Vehicle have similar CIMs with node CH. The double arrow 

dash green links in this example work in this way: when a component fails, it will bring 
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down the subsystem and finally bring down the whole vehicle. On the other hand, when 

the subsystem/system fails, if the component is in failure state, it will start the repair 

procedure automatically; if it is in other states, it will stay in those states. These model 

the situation when a subsystem is brought down by one component. Only the failed 

component needs repair, other components would stay in their current state due to the 

facts that when the subsystem fails, other components stop operating. All nodes are in 

good state at the beginning.   

 

Table 3.32: CIM for node SU for ground vehicle example 

CH(good) 

 

State SU(good) SU(moderate) SU(failed) 

SU(good) −�}!,� �}!,� 0 

SU(moderate) 0 −�}!,  �}!,  

SU(failed) �}! 0 −�}! 

CH(failed) 

State SU(good) SU(moderate) SU(failed) 

SU(good) 0 0 0 

SU(moderate) 0 0 0 

SU(failed) �}! 0 −�}! 

CH(standby) 

State SU(good) SU(moderate) SU(failed) 

SU(good) 0 0 0 

SU(moderate) 0 0 0 

SU(failed) �}! 0 −�}! 
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Table 3.33: CIM for node BR of ground vehicle example 

CH(good) 

 

SU(good) 

State BR(good) BR(failed) 

BR(good) −�¸¹,� �¸¹,� 

BR(failed) �¸¹ −�¸¹ 

SU(moderate) 

State B(good) B(failed) 

BR(good) −�¸¹,  �¸¹,  

BR(failed) �¸¹ −�¸¹ 

SU(failed) 

State B(good) B(failed) 

BR(good) −�¸¹,  �¸¹,  

BR(failed) �¸¹ −�¸¹ 

CH(failed) 

SU(good) 

State BR(good) BR(failed) 

BR(good) 0 0 

BR(failed) �¸¹ −�¸¹ 

SU(moderate) 

State B(good) B(failed) 

BR(good) 0 0 

BR(failed) �¸¹ −�¸¹ 

SU(failed) 

State B(good) B(failed) 

BR(good) 0 0 

BR(failed) �¸¹ −�¸¹ 

CH(standby) 

SU(good) 

State BR(good) BR(failed) 

BR(good) 0 0 

BR(failed) �¸¹ −�¸¹ 

SU(moderate) 

State B(good) B(failed) 

BR(good) 0 0 

BR(failed) �¸¹ −�¸¹ 

SU(failed) 

State B(good) B(failed) 

BR(good) 0 0 

BR(failed) �¸¹ −�¸¹ 
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Table 3.34: CIM for node CH for ground vehicle example 

Vehicle(good) BR, WT, AX and 

SU are all in 

good state 

State CH(good) CH(failed) CH(repair) 

CH(good) 0 0 0 

CH(failed) ∞ −∞ 0 

CH(repair) ∞ 0 −∞ 

One of BR, WT, 

AX or SU fails 

State CH(good) CH(failed) CH(repair) 

CH(good) −∞ ∞ 0 

CH(failed) 0 0 0 

CH(repair) 0 0 0 

Vehicle(failed) BR, WT, AX and 

SU are all in  

Good state 

State CH(good) CH(failed) CH(repair) 

CH(good) 0 0 0 

CH(failed) ∞ −∞ 0 

CH(repair) 0 0 0 

One of BR, WT, 

AX or SU fails 

State CH(good) CH(failed) CH(repair) 

CH(good) 0 0 0 

CH(failed) 0 −∞ ∞ 

CH(repair) 0 0 0 

 

First, we perform the standard reliability analysis (there is no repair action, put all 

repair rates as 0) using Dynamic Bayesian Networks and Continuous Time Bayesian 

Networks. The reliability of the ground vehicle at 10000 miles (200 hours) is .8296 from 

DBNs and .8311 from CTBNs respectably. Next, we will take the repair actions into 

consideration and perform the availability analysis. As we discussed in the previous 

section, in this ground vehicle example, the mean availability is a more practical metric 

than point availability because it indicates how much proportion of time the vehicle is 

operational in a mission period. By using CTBNs, the expected up time is 199.74 hours in 

the first 200 hours. The mean availability for this 200 hours mission period is �̅ =
*ÁÁ.Â©+�� = .9987. For DBNs, there is not a direct inference algorithm for calculating the 
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mean availability. However, we can estimate the point availability for each hour of these 

200 hours and get the mean from them. The mean availability from DBNs is .9952 for the 

first 200 hours. We can see that these two results are close to each other. When the 

mission miles increase to 20000 miles (400 hours), the reliability and mean availability 

given by CTBNs are 	 = .6872 and �̅ = ªÁÁ.©Ã©�� = .9986; and the results given by DBNs 

are 	 = .6869 and �̅ = .9947 respectely. From the results above, we can see that when 

the mission time increase from 200 hours to 400 hours, the reliability decrease from .82 

to .68, while the mean availability is almost stable, both are around .99.  

3.5.3 A Fleet of Vehicles 

This is a practical example taken from our industrial partner. Consider a ground 

combat team consisting of a fleet of ground combat vehicles with different functionalities. 

For example, the Stryker CV (Command Vehicle) (GDLS 2011), the Stryker MGS 

(Mobile Gun System), the Stryker ICV (Infantry Carrier Vehicle), and the Stryker MEV 

(Medical Evacuation Vehicle) et al. Each vehicle is a system and the ground combat team 

has limit number of repair crews shared by these vehicles. For example in Figure 3.13, 

the vehicles ICV, MGS, MEV and CV form a ground combat team. And assume that 

there are two repair crews in this team. The problem is to estimate the mean availability 

per vehicle in this ground combat team. It is calculated in this way: given a mission time 

�, we estimate the up time for the four vehicles in the team and then get the average up 

time per vehicle. Finally it is divided by mission time so we can get the mean availability 

per vehicle for this combat team. For security purpose and the proprietary nature of the 



67 
 

 

 

data, in this study, we use the ground vehicle system in Section 3.5.2 to denote the 

combat vehicles in this ground combat team example and do the demonstration analysis.  

 

Figure 3.13: The ground combat team, consists of a fleet of vehicles 

 

 

Figure 3.14: The CTBN representation for the ground combat team 

ICV CV MEV MGS 

Ground Combat Team 

(Two repair crews) 
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The CTBN modeling of this team is shown in Figure 3.14. From the figure, we 

can see that, for each vehicle, its structure is identical with that of Figure 3.12 in the 

Ground Vehicle Example. We cannot apply the CR repair policy in this example. When a 

component fails, it needs to check whether there are repair crews available or not. The 

CR-limit policy is employed here. There are only two repair crews in this team. If there is 

not a repair crew available, the failed component has to wait; if there are repair crews 

available, the failed component can be repaired immediately. The green M node is the 

maintenance node, which assigns and reclaims repair crews to and from vehicles. Besides 

the functionalities in ground vehicle example, the double arrow dash green links here also 

do the following works: when a component fails, a repair crew would be assigned from 

M node to vehicle node if there is one available; and the vehicle node will assign the 

repair crew to subsystem and the subsystem will pass on it to the component. After the 

component is repaired and back to working state, it returns the repair crew back to the 

subsystem; and then the subsystem passes on it to the vehicle node and finally to the M 

node. In this study, we simply put the subsystems of the four vehicle having the same 

failure rates and repair rates as those in the ground vehicle example.  

By using CTBNs, the mean availability per vehicle for the mission time of 400 

hours is .9397. It is less than the result of .9986 from ground vehicle example (Section 

3.5.2) because there are only 2 repair crews available in this example; while there is not 

limitation for repair crews in ground vehicle example. The mean availability per vehicle 

changes as the number of repair crew changes. When the number of repair crews 

decreases to 1, the mean availability decreases to .9016; when the number of repair crews 

increase to 3, the mean availability is .9713; when the number of repair crews is 4 or 
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more, the mean availability is .9983, which is almost identical to the result from ground 

vehicle system example. This can be explained by the fact that, when there are 4, or more 

than 4 repair crews available, it is identical to that case with unlimited repair crews 

because there are only 4 vehicles in this fleet. 

Table 3.35: CIM for node SU in the fleet example 

CH(good) State SU(good) SU(moderate) SU(failed) SU(repair) 

SU(good) −�}!,� �}!,� 0 0 

SU(moderate) 0 −�}!,  �}!,  0 

SU(failed) 0 0 0 0 

SU(repair) 0 0 ∞ −∞ 

CH(failed) 

or  

CH(standby) 

State SU(good) SU(moderate) SU(failed) SU(repair) 

SU(good) 0 0 0 0 

SU(moderate) 0 0 0 0 

SU(failed) 0 0 0 0 

SU(repair) 0 0 0 0 

CH(repair) State SU(good) SU(moderate) SU(failed) SU(repair) 

SU(good) 0 0 0 0 

SU(moderate) 0 0 0 0 

SU(failed) 0 0 −∞ −∞ 

SU(repair) �}! 0 0 −�}! 

 

Table 3.36: CIM for node BR in the fleet example 

CH(good) SU(good) 

 

 

State BR(good) BR(failed) BR(repair) 

BR(good) −�¸¹,� �¸¹,� 0 

BR(failed) 0 0 0 

BR(repair) 0 ∞ −∞ 

SU(moderate) 

 

 

State B(good) B(failed) BR(repair) 

BR(good) −�¸¹,  �¸¹,  0 

BR(failed) 0 0 0 

BR(repair) 0 ∞ −∞ 

SU(failed) State B(good) B(failed) BR(repair) 

BR(good) 0 0 0 

BR(failed) 0 0 0 

BR(repair) 0 ∞ −∞ 

SU(repair) State B(good) B(failed) BR(repair) 
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BR(good) 0 0 0 

BR(failed) 0 0 0 

BR(repair) ∞ 0 −∞ 

CH(failed) SU(.) 

 

State BR(good) BR(failed) BR(repair) 

BR(good) 0 0 0 

BR(failed) 0 0 0 

BR(repair) ∞ 0 −∞ 

CH(standby) SU(.) 

 

State BR(good) BR(failed) BR(repair) 

BR(good) 0 0 0 

BR(failed) 0 0 0 

BR(repair) �¸¹ 0 −�¸¹ 

CH(repair) SU(good) 

 

State BR(good) BR(failed) BR(repair) 

BR(good) 0 0 0 

BR(failed) 0 0 0 

BR(repair) �¸¹ 0 −�¸¹ 

SU(moderate) 

 

 

State BR(good) BR(failed) BR(repair) 

BR(good) 0 0 0 

BR(failed) 0 0 0 

BR(repair) �¸¹ 0 −�¸¹ 

SU(failed) State BR(good) BR(failed) BR(repair) 

BR(good) 0 0 0 

BR(failed) 0 0 0 

BR(repair) �¸¹ 0 −�¸¹ 

SU(repair) State BR(good) BR(failed) BR(repair) 

BR(good) 0 0 0 

BR(failed) 0 0 0 

BR(repair) �¸¹ 0 −�¸¹ 

Table 3.36 Continues 
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Table 3.37: CIM for node CH in the fleet example 

Vehicle(good) 

BR, WT, 

AX and SU 

are all in 

good state 

State CH(good) CH(failed) CH(standby) CH(repair) 

CH(good) 0 0 0 0 

CH(failed) ∞ −∞ 0 0 

CH(standby) ∞ 0 −∞ 0 

CH(repair) ∞ 0 0 −∞ 

Otherwise State CH(good) CH(failed) CH(standby) CH(repair) 

CH(good) −∞ ∞ 0 0 

CH(failed) 0 0 0 0 

CH(standby) 0 ∞ −∞ 0 

CH(repair) 0 0 0 0 

Vehicle(failed) 

BR, WT, 

AX and 

SU are all in  

good state 

State CH(good) CH(failed) CH(standby) CH(repair) 

CH(good) 0 0 0 0 

CH(failed) ∞ −∞ 0 0 

CH(standby) ∞ 0 −∞ 0 

CH(repair) ∞ 0 0 −∞ 

Otherwise State CH(good) CH(failed) CH(standby) CH(repair) 

CH(good) −∞ ∞ 0 0 

CH(failed) 0 0 0 0 

CH(standby) 0 ∞ −∞ 0 

CH(repair) 0 0 0 0 

Vehicle(repair) 

BR, WT, 

AX and  

SU are all in  

Good state 

State CH(good) CH(failed) CH(standby) CH(repair) 

CH(good) 0 0 0 0 

CH(failed) ∞ −∞ 0 0 

CH(standby) ∞ 0 −∞ 0 

CH(repair) ∞ 0 0 −∞ 

Otherwise State CH(good) CH(failed) CH(standby) CH(repair) 

CH(good) −∞ ∞ 0 0 

CH(failed) 0 −∞ 0 ∞ 

CH(standby) 0 ∞ −∞ 0 

CH(repair) 0 0 0 0 
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Table 3.38: CIM for node Vehicle in the fleet example 

M(2), M(1) 

CH, BO, PT and 

EL are all in 

good state 

State Vehicle 

(good) 

Vehicle 

(failed) 

Vehicle 

(repair) 

Vehicle (good) 0 0 0 

Vehicle (failed) ∞ −∞ 0 

Vehicle (repair) ∞ 0 −∞ 

Otherwise State Vehicle 

(good) 

Vehicle 

(failed) 

Vehicle 

(repair) 

Vehicle (good) −∞ ∞ 0 

Vehicle (failed) 0 −∞ ∞ 

Vehicle (repair) 0 0 0 

M(0) 

CH, BO, PT and 

EL are all in  

Good state 

State Vehicle 

(good) 

Vehicle 

(failed) 

Vehicle 

(repair) 

Vehicle (good) 0 0 0 

Vehicle (failed) ∞ −∞ 0 

Vehicle (repair) ∞ 0 −∞ 

Otherwise State Vehicle 

(good) 

Vehicle 

(failed) 

Vehicle 

(repair) 

Vehicle (good) −∞ ∞ 0 

Vehicle (failed) 0 0 0 

Vehicle (repair) 0 0 0 

 

Table 3.39: CIM for node M in the fleet example 
# of vehicle in state  

Repair =0 

State M(2) M(1) M(0) 

M(2) 0 0 0 

M(1) ∞ −∞ 0 

M(0) ∞ 0 −∞ 

# of vehicle in state  

Repair =1 

State M(2) M(1) M(0) 

M(2) −∞ ∞ 0 

M(1) 0 0 0 

M(0) 0 ∞ −∞ 

# of vehicle in state  

Repair >=2 

State M(2) M(1) M(0) 

M(2) −∞ 0 ∞ 

M(1) 0 −∞ ∞ 

M(0) 0 0 0 

 

3.6 Conclusion 

In this chapter we propose CTBN formalism for RAM modeling of dynamic 

repairable systems. We also show how to translate special purpose FT gates, called 

dynamic gates, into the framework of CTBNs. We applied our proposed method to three 



73 
 

 

 

case examples derived from practical application. We evaluated the performance of our 

method and compared to other methods in the case examples. The numerical results 

shows that the proposed method is as accurate as the traditional methods, which indicates 

that it is a good alternative for existing RAM modeling methods.  

In the next chapter, in the system design optimization framework, we will employ 

CTBNs as a reliability (availability) estimation method to calculate the system reliability 

(availability) and do the system design optimization analysis.  
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Chapter 4 System Design Optimization Using NSGA-II and CTBNs 

 

In this chapter, we propose a system design framework for systems with dynamic 

failure behaviors or various repair policies. The CTBNs are used to estimate the 

reliability (availability) and the multi-objective GA algorithm NSGA-II is implemented 

to solve for the Pareto solutions. We first provide the background about multi-objective 

optimization and a brief introduction of NSGA-II, and then present the NSGA-II+CTBNs 

system design optimization framework. Finally, to show how this framework works, a 

case example is demonstrated.  

4.1 Multi-objective Optimization Problem 

In general, for a problem with '  objective functions, the multi-objective 

formulation can be formulated as follows: 

min ÇA()) 	ÇTQ	R = 1,2, … , ' 

Subject to 

lB()) ≤ 0, � = 1,2, … , È, 
ℎ�()) = 0, y = 1,2, … , �. 

There are ' objective functions and � variables so Ç()) is an ' dimensional vector, and ) 

is a � dimensional vector corresponding to � decision variables. Solutions to a multi-

objective optimization problem are often mathematically expressed in terms of non-

dominated or superior points. Non-dominance can be defined as: in a minimization 

problem, a solution )* dominated a solution )+ (a), if and only if )* is no worse than )+ 
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in all objectives, i.e.ÇA()*) ≤ ÇA()+)	∀	R, � ∈ {1,2, … , '}; and (b), )*is strictly better than 

)+  in at least one objective, i.e. ÇA()*) < ÇA()+) for at least one	R . Thus, instead of a 

unique solution to the problem, the solution to a multi-objective optimization problem is 

a set of Pareto-optimal points (Zeleny 1982).  

Generally there are two common ways to solve multi-objective problems: 1) 

combine them into a single objective function and obtain a single solution such as in the 

cases of weighted sum method or utility function, or 2) obtain a set of non-dominated 

Pareto-optimal solutions. 

For multi-objective problems, it can be problematic to combine the objectives into 

a single objective (e.g. weighted sum method, utility functions) to obtain a single solution. 

A slight perturbation in the parameters used to combine the objectives could result in 

very different optimal solutions. This can be a problem because the exact objective 

function weights or utility functions are often not that clear. The Pareto set includes all 

rational choices, among which we have to select the final solution by trading the 

objectives again each other. The search is then not for one optimal solution but for a set 

of solutions that are optimal in a broader sense, i.e. they are Pareto-optimal.  

4.1.1 Multi-objective GAs 

In this study, we use CTBNs to estimate the system reliability (availability). Thus 

at least one objective function is non-close-form; it is black-box type. For black-box type 

optimization problem, meta-heuristic based methods like GAs are the most efficiency 

approaches to solve them. Genetic Algorithm (GA) was proposed by Holland (Holland 

1975). GAs are a particular class of evolutionary algorithms that uses techniques inspired 
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by some mechanisms of natural selection. They are essentially search techniques used to 

find approximate solutions to difficult combinatorial optimization problems.  

The GA starts with a population of random individuals (chromosomes) that are 

revised over successive generations. The crossover and mutation operators are used to 

introduce new prospective design solutions each generation. During each successive 

generation, each individual is evaluated and a value of fitness is returned by a fitness 

function. Individuals with high-fitness values rank at the top while individuals with low-

fitness values are likely to be abandoned from the population. The algorithm continues 

for a pre-determined maximum number of generations or until no additional 

improvement is observed.  

Several versions of multi-objective GAs, most often referred as multi-objective 

evolutionary algorithms (MOEAs), have been developed, such as: 

� Vector evaluated genetic algorithm (VEGA)  (Schaffer 1985); 

� Multi-objective genetic algorithm (MOGA) (Fonseca and Fleming 1993); 

� Niched-Pareto genetic algorithm (NPGA) (Horn, Nafpliotis et al. 1994); 

� Non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb 1994); 

� Strength Pareto evolutionary algorithm (SPEA) (Zitzler and Thiele 1999); 

� Non-dominated sorting genetic algorithm-II (NSGA-II) (Deb, Pratap et al. 

2002). 

As a well-know MOEA, the NSGA-II is the most widely used and has been 

proven to perform well on various real-world application problems (Coello Coello 2006). 

The pseudo-code of NSGA-II is presented in Algorithm 4.1. 
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We will employ NSGA-II in our system design optimization framework, since 

there have been many studies ensuring that NSGA-II can often converge to Pareto set and 

the obtained solution can often spread well over the Pareto set. NSGA-II takes the fast-

non-dominated-sort mechanism to ensure the well convergence which is shown in 

Algorithm 4.2. Moreover, it adopts the Density Estimation and Crowding Comparison 

Operator (Deb, Pratap et al. 2002) to cut the solutions which have bad distributions so as 

to obtain a good spread of solutions. The above merits of NSGA-II make it a promising 

choice of solving the black-box type problem in our study. For more details of NSGA-II, 

one can refer to the paper (Deb, Pratap et al. 2002). 

 

 

 

 

 

 

 

 

 

 

Algorithm 4.1: The Pseudo-Code of NSGA-II 
___________________________________________________ 

1: Set the parent vector	2 = ∅, the offspring vector	4 = ∅, the collect vector 	 = ∅ and the     

    generation number	� = 0. 

2: Initialize the parent vector2�. 

3: While � < the terminate generation number do 

4:       (1) Combine the parent and offspring population via 	� = 2� ∪ 4� 
5:       (2) Sort all solutions of 	� to get all non-dominated fronts Ì =fast-non-dominated-sort(	�) 
          where Ì = (Ì*, Ì+, … ). 
6:       (3) Set 2�1* = ∅ and R = 1 

7:       (4) 

8:       While the parent population size |2�1*| + |ÌA| < b do 

9:             (a) Calculate crowding-distance of ÌA. 
10:           (b) Add the R�ℎ	non-dominated front ÌAto the parent pop 2�1*. 

11:           (c) R = R + 1. 

12:     End while 

13:     (5) Sort the ÌA according to the crowding distance. 

14:     (6) Fill the parent pop 2�1* with the first b − |2�1*| elements of ÌA. 
15:     (7) Generate the offspring population to 4�1*. 

16:     (8) Set � = � + 1 

17: End while 

18: the population in vector 2 are the non-dominated solutions. 
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4.2 CTBNs and NSGA-II System Design Optimization Framework  

In this study, for system design optimization problem, we only consider three 

system metrics: the system reliability (availability), cost and weight. However, in 

practical application, it is not limited to these three metrics. Consider a system with b 

components and for component 	R , it has ÍA  option for chose, where for option �  of 

component	R, the failure rate is	�AB, the repair rate is	�AB , the cost is SAB and the weight 

is	NAB. If � option is chose for component	R, then	)AB = 1, otherwise,	)AB = 0. 

The system performance metrics are shown as follows: 

The reliability 		  (availability 	� ) of the system can be estimated by CTBNs. For a 

specified system, a CTBN is constructed.  

Algorithm 4.2: The Pseudo-Code for the function: fast-non-dominated-sort(P) 
___________________________________________________ 

1: For each population � in the 2, we get the solutions which � dominates and save these  

solutions into c". We also need to calculate the '" which is the number of solutions which  

dominates �. 

2: Find the solutions whose '" = 0 and add them to the first front Ì*. 

3: Initialize the front counter R = 1. 

4: While ÌA is not empty do 

5:       Set the temp vector 4 = ∅ 

6:       For each � ∈ ÌA do 

7:             For each 7 ∈ c" do 

8:                    'Î = 'Î − 1. 

9:                    if 'Î = 0 then add 7 to the 4. 

10:           End for 

11:     End for 

12:     i= R + 1 and the solutions in 4 compose the ÌA 
13: End while 
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	/� = ��sbOÏÐÑ)*B�*B¬8
Bf* ,Ñ)*B�*B¬8

Bf* Ò ,… , ÐÑ)eB�eB¬¶
Bf* ,Ñ)eB�eB¬¶

Bf* ÒÓ 

where � is the selected option for components.  

We assume that the system cost and weight are simply the summation of each 

component: 

� =ÑÑ)ABSAB¬?
Bf*

e
Af*  

H =ÑÑ)ABNAB¬?
Bf*

e
Af*  

And the system design optimization problem can be formula as: 

ÔÕÕ
Ö
ÕÕ×max��sbOÏÐÑ)*B�*B¬8

Bf* ,Ñ)*B�*B¬8
Bf* Ò ,… , ÐÑ)eB�eB¬¶

Bf* ,Ñ)eB�eB¬¶
Bf* ÒÓ ,

minÑÑ)ABSAB¬?
Bf*

e
Af* , minÑÑ)ABNAB¬?

Bf*
e
Af* ÙÕÕ

Ú
ÕÕÛ

 

Subject to  

∑ )AB¬?Bf* = 1 for R = 1,2, … ,b 

4.2.1 Chromosomal Representation 

In this study, binary coding scheme is employed. The length of chromosome 

is	∑ ÍAeAf* .  
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The first Í*bits are for the	Í* options of component 1. Each bit is corresponding 

to one option, if the option is chose, it is 1 otherwise it is 0. From Í* + 1 bit to Í* +Í+ 

bits are for options of component 2. The arrangements of remaining components are 

similar to component 2.  For example, consider Figure 4.1, the chromosome contains 

twelve bits for a configuration which consists of three components, with options of four 

for each component. For component1, the 1
st
 option is chose, for component 2, the 2

nd
 

option is chose and the last option is chose for component 3.  

 

Figure 4.1: Encoding of the solutions 

4.2.2 Genetic Operator 

On the basis of coding scheme, we adopt the single-point crossover and bitwise 

mutation for NSGA-II. The detailed implementations of them are presented in Figure 4.2.  

In order to guide the search within the feasible region, we utilize the constraint 

handling approach based on the concept of constrained-dominate proposed in the paper 

(Deb, Pratap et al. 2002). Concretely, a solution R constrained-dominates � must satisfy 

one of the following three conditions: 1) Solution R is feasible but solution � is not; 2) 

Solution R  and �	 are both feasible, and R	  dominates � ; 3) Solution R	 and �  are both 

infeasible, but R violates less constraints than �.  

1 0 0 0 0 1 0 0 0 0 0 1 

   
Component 1 Component 2 Component 3 
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Figure 4.2: Crossover and Mutation 

4.3 Case Example: Ground Vehicle System Design 

To demonstrate the proposed system design optimization framework, the ground 

vehicle system example (Section 3.5.2) in the previous chapter is considered. In this 

example, except body subsystem and electrical subsystem, other subsystems all have four 

levels of options for chose. Each level has different failure rates, cost and weight as 

shown in Table 4.1.   

The system performance metrics are system reliability, cost and weight. The 

parameter settings of NSGA-II are as follows: the crossover probability is set to be .9 and 

the mutation rate is .001. The terminate generation is set to 50 and the population size is 

500. 

Ü�� Ü�Ý Ü�Þ Ü�ß … Ü�à 

ÜÝ� ÜÝÝ ÜÝÞ ÜÝß … ÜÝà 

Ü�� Ü�Ý Ü�Þ ÜÝß … ÜÝà 

ÜÝ� ÜÝÝ ÜÝÞ Ü�ß … Ü�à 

Exchange the bits 

after crossover 

point 

Ü�� … Ü�á … Ü�â … Ü�à Ü�� … Ü�â … Ü�á … Ü�à Exchange two 

bits s*A and s*B   

Bitwise mutation on s*A 

Single point crossover between s* and s+ 



82 
 

 

 

Figure 4.3 shows the 104 solutions found in the Pareto-front. To better visualize the 

solutions obtained, figure 4.4 and figure 4.5 show the two dimensional representation of 

the same solutions.  

Table 4.1: Choices for each subsystem of Series-Parallel system 

Subsyst

ems 

Failure Measure Cost Weight 

1 2 3 4 1 2 3 4 1 2 3 4 

BR .5e-3 .3e-3 .62e-3 .43e-3 9 12 9 8 21 26 19 34 

WT .16e-3 .21e-3 .23e-3 .28e-3 5 4 3 6 35 45 43 45 

AX .5e-4 .3e-4 .7e-4 .6e-3 4 9 7 6 65 47 38 42 

SU .5e-4 .7e-4 .6e-4 .9e-4 7 7 9 6 43 17 34 26 

TR .83e-4 .67e-4 .91e-4 .68e-4 12 14 13 17 23 32 42 45 

EG .23e-4 .33e-4 .27e-4 .35e-4 6 6 5 8 98 79 86 89 

CO .33e-4 .28e-4 .25e-4 .36e-4 8 9 8 4 12 19 27 34 

 

 

Figure 4.3: Unreliability vs Cost vs Weight 
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Figure 4.4: Unreliability vs Cost (left); Unreliability vs Weight (right) 

 

Figure 4.5: Cost vs Weight 

As we discussed before, there are limitations in meta-heuristic based-methods like 

NSGA-II. There is no guarantee that the solutions are globally optimal. However, for 

black-box type optimization problems, NSGA-II is the most efficient way to solve it 

currently. In the next chapter, for systems with simple structures (series/parallel) and 

close-form objective functions, we propose a modified adaptive ϵ-constraint method to 

identify all Pareto-optimal solutions. 
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4.4 Conclusion 

We have presented a system design optimization framework for systems with 

dynamic behaviors or various repair policies. We employ the CTBNs to estimate the 

system reliability (availability) and put it as a multi-objective optimization problem and 

then use NSGA-II to solve it. Finally, the proposed framework is applied to an example 

of a ground vehicle system to illustrate its performance.   
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Chapter 5 System Design Optimization using Modified Adaptive ϵϵϵϵ-
Constraint Method 

 

In the previous section, for systems with dynamic behavior or various repair 

policy, we present a CTBNs and NSGA-II based system design optimization framework. 

However, as we mentioned before, NSGA-II cannot guarantee globally optimal. In this 

chapter, for systems with simple structures (series/parallel) and close-form objective 

functions, we proposed a modified adaptive ϵ-constraint method to identify all the Pareto-

optimal solutions for the system design optimization analysis. A brief introduction of 

traditional ϵ-constraint method and adaptive ϵ-constraint method are given. Then we 

present the modified adaptive ϵ-constraint method in detail. Finally the proposed method 

is implemented in two case examples to evaluate its performance with NSGA-II and 

other ϵ-constraint methods. The first case example is the well-known Redundancy 

Allocation Problem (RAP) in Series-Parallel systems. The other case example is a 

practical configuration selection problem which is taken from our industrial partner.  

5.1 The Traditional ϵϵϵϵ-constraint Methods 

The traditional %-constraint method is a multi-objective optimization technique 

proposed by Chankong and Haimes (Chankong and Haimes 1983) for generating Pareto-

optimal solutions. It transforms the multi-objective problem into a series of several 

single-objective problems with updated constraints, using the following procedure: 

�R' ÇA�)� 
s.t. ÇB�)� ≤ ãB 			ÇTQ	JKK	� = 1,2, … ,�,			� ≠ R 

where 
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R ∈ (1,2,3, … ,�. 
% = �%*, %+, … , % � are the upper bounds of each objective function 

In order to identify all non-dominated solutions, the vector of upper bounds must 

be varied (iteratively increase or decrease by a pre-defined constant	∆) along the Pareto 

front for each objective and perform a new optimization process for each new upper 

bound vector. The generation of different non-dominated points using different upper 

bound values is illustrated in bi-objective case in Figure 5.1. 

 

Figure 5.1: An illustrative example of Generating different solutions with the traditional 

ϵ-constraint method generating different solutions sequentially under two objective 

functions that need to be minimized 

There are two limitations to the traditional	%-constraint method. Firstly, it is the 

necessity to choose a pre-defined constant		∆. Since only one solution can be found in 

each interval, the discretization has to be fine enough not to “miss” any Pareto-optimal 
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solution. As shown in Figure 5.1, there are two Pareto-optimal points in iteration 3. 

However, solution O+
© (highlighted in red) is missed due to the larger		∆. Second, it will 

identify non-Pareto-optimal solution. The main reason is that it is just takes one objective 

function into consideration. Let’s look back to Figure 5.1 again. In iteration 4, the two 

solutions have the same fitness value of	Ç*, so both of them are identified as solution. 

However, solution y is not a Pareto-optimal solution and is dominated by solution	O+
æ.  

The traditional %-constraint method can be summarized as follows. 

 

To cope with the drawback of the traditional %-constraint method, Ozlen (Ozlen 

and Azizoglu 2009) presented an adaptive ϵ-constraint method for the multi-objective 

integer programming (MOIP) problem. Unlike the traditional %-constraint method which 

determines ϵ by decreasing a fixed	∆ in each iteration, the adaptive %-constraint method 

uses an adaptive % value. It determines the % based on the solutions of previous iteration. 

1:		c = ∅ 

Algorithm 5.1: The traditional �-constraint method 
 

Input 

Objective bounds	ÇA, ÇA for each R ∈ (2,… ,�. 

Increments ∆A for each R ∈ (2,… ,�. 
Output 

Set of solution contain Pareto-optimal solution set c 

___________________________________________________ 

2:  For ã+ ≔ Ç+ to Ç+ step ∆+ do 

3:       For ãª ≔ Çª to Çª step ∆ª do 

4:       ⋮ 

5:             For ã  ≔ Ç  to Ç  step ∆  do 

6:                   Solve (1) for ), c ≔ c ∪ )  

7:             End for 

8:       	⋮ 
9:        End for 

10: End for 

11: Return c 
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This increases the efficiency of the algorithm dramatically and will not miss a single 

Pareto-optimal solution. In order to avoid identifying non-Pareto-optimal solutions, 

instead of using a single objective function by implementing a proper weight for each 

objective function, the adaptive %-constraint method constructs a new single objective 

function (which is a weighted sum of all the original objective functions) and solves this 

new objective function. This way, it takes all objective functions into consideration 

during the search.  

 

Figure 5.2: An illustrative example of the adaptive  ϵ-constraint method generating 

different solutions sequentially under two objective functions that need to be minimized 

Let’s reconsider a tri-objective problem: 

è�:	�R'(	Ç*�)�, Ç+�)�, Çª�)�.	 
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The specific weighted sum single objective function problem solved by the ϵ-adaptive 

constraint method is: 

èÝ:	�R' 	Ç*�)� + N+Ç+�)� + NªÇª�)�.	 

N+ =
*

ê9
¦ë��ê9

¦ì�1*
,	 Nª =

í9

êî
¦ë��êî

¦ì�1*
 

O. �.	 

Ç+ < ϵ+ 

Çª < ϵª 

Here Ç+
£i� , Ç+

£ï�, Çª
£i�  and Çª

£ï�  are the upper and lower bounds on Ç+�)�  and Çª�)�  

values of any feasible solution respectively.   

The weight for Ç*  is 1, and since all objective functions are linear integer 

functions, the minimal increment of Ç*is 1, which is always greater than the maximal 

increment of	Ç+. By the same logic, the maximal increment of Çª is always less than the 

minimal increment of	Ç+. These weights make sure that Ç*	has the high priority, then Ç+ 

and	Çª. Let’s look back to the bi-objective problem in Figure 5.2 again. In iteration 4, 

under the constraint determined by solution in iteration 3, we cannot miss solution O+
© (red 

point). While in iteration 5, the yellow point y and O+
æ have the same Ç* value. However, 

since we use the weight sum objective function, we also take Ç+ into consideration. With 

Ç+ included, obviously yellow point y is a dominated point.  

The proposed approach of assigning proper weights to the objectives thus allows 

one to solve the weighted sum objective function and still maintain the hierarchy of the 

multiple objectives. The adaptive %-constraint method to solve P1 can be summarized as 

follows. 



90 
 

 

 

 
 

The adaptive % -constraint method improves the efficiency over the traditional 

method significantly. However, there are still drawbacks in this method. It has the 

potential to identify a lot of identical solutions. In order to illustrate this inefficiency and 

introduce our method, let us consider a numerical example taken from Ozlen’s paper 

(Ozlen and Azizoglu 2009). 

NA =
NA�*

	ÇA
£i� , �	ÇA

£ï�, +1
,w* = 1 

Ç = Ç* + N+Ç+ +⋯+N Ç  

1:	c = ∅ 

Algorithm 5.2: The adaptive �-constraint method 
 

Input 

Objective bounds	ÇA
£ï�, 	ÇA

£i�for each	R ∈ (2, … ,�.,  

%A = 	ÇA
£i�, R ∈ (2,… ,�., ÇKJl = 1 

Output 

Set of Pareto-optimal solution set c 

_________________________________________________ 

2: While ÇKJl = 1	do  

3:      ϵ �* ≔ Ç �*
£i� 

4:      While ÇKJl = 1 do 

5:            ϵ �+ ≔ Ç �+
£i� 

6:      								 ⋮ 

7:            ϵ+ ≔ Ç+
£i� 

8:            While ÇKJl = 1 do 

9:                     Solve (1) for ),  

10:                  If the solution is impossible  

11:                         ÇKJl = 0 

12:                   Else  

13:                         c+ ≔ c+ ∪ ), ã+ ≔ Ç+�)� � 1 

14:                   End if 

15:           End while 

16:           (ϵª ≔ max�Çª�)�� � 1: ) ∈ c+., 	cª ≔ cª ∪ c+ 

17:           ⋮ 
18:     End while 

19: 				(ϵ  ≔ max�Ç �)�� � 1: ) ∈ c �*, .	c  ≔ c  ∪ c �* 

20: End while 

21:	c ≔ c  

22: Return c 
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Numerical Example 

This is a 5×5 Tri-objective Assignment Problem (TAP). Table 1 has the three 

objective coefficients for assigning each row to each column. Each solution is 

represented by a sequence of column index values assigned to row 1 through 5. 

Accordingly, in sequence 5-4-3-2-1, row 1 is assigned to column 5 and row 2 is assigned 

to column 5. 

Using the single-objective assignment solutions one can identify general upper 

and lower bounds on the individual objectives as  

Ç* = 86, 2 � 1 � 4 � 3 � 5 

Ç+ = 128, 1 � 5 � 4 � 3 � 2 

Çª = 129, 3 � 2 � 1 � 5 � 4 

Ç* = 358, 4 � 2 � 3 � 5 � 1 

Ç+ = 411, 4 � 2 � 1 � 5 � 3 

Çª = 451, 4 � 5 � 3 � 1 � 2 

Table 5.1: Three objective coefficients for the numerical example problem 

S* 1 2 3 4 5  S+ 1 2 3 4 5  S+ 1 2 3 4 5 

1 99 19 74 55 41 1 28 39 19 42 7 1 29 67 2 90 7 

2 23 81 93 39 49 2 66 98 49 83 42 2 84 37 64 64 87 

3 66 21 63 24 66 3 73 26 42 13 54 3 54 11 100 83 61 

4 65 41 7 39 66 4 46 42 28 27 99 4 75 63 69 96 3 

5 93 30 5 4 13 5 80 17 99 59 68 5 66 99 34 33 21 

 

The iteration details of algorithm 5.2 are presented in Table 5.2. We report the 

number of IPs solved and the %+ and %ª bound values. The objective function values of 
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the bi-objective solutions are stated in group each representing a single execution the 

“while loop” from step 8 to step 15 in algorithm 5.2.  

Table 5.2: The iteration details 

G1 %ª ≤ 451 %+ ≤  G2 %ª ≤ 366 %+ ≤  G3 %ª ≤ 341 %+ ≤ 

# Ç* Ç+ Çª  # Ç* Ç+ Çª  # Ç* Ç+ Çª  

1 86 214 324 411 6 86 214 324 411 10 86 214 324 411 

2 96 186 204 213 7 96 186 204 213 11 96 186 204 213 

3 125 131 342 185 8 125 131 342 185 12 180 183 229 185 

4 209 128 367 130 9 Infeasible 130 13 253 132 328 182 

5 Infeasible 127    14 Infeasible   

 Max(Çª) 367   Max(Çª) 342   Max(Çª) 328  

   

G4 %ª ≤ 327 %+ ≤ G5 %ª ≤ 323 %+ ≤ G6 %ª ≤ 319 %+ ≤ 

# Ç* Ç+ Çª  # Ç* Ç+ Çª  # Ç* Ç+ Çª  

15 86 214 324 411 20 91 246 314 411 25 91 246 314 411 

16 96 186 204 213 21 96 186 204 245 26 96 186 204 245 

17 180 183 229 185 22 180 183 229 185 27 180 183 229 185 

18 269 173 320 182 23 269 173 320 182 28 Infeasible 182 

19 Infeasible  24 Infeasible 172    

 Max(Çª) 324   Max(Çª) 320   Max(Çª) 314  

   

G7 %ª ≤ 313 %+ ≤ G8 %ª ≤ 228 %+ ≤ G9 %ª ≤ 203 %+ ≤ 

# Ç* Ç+ Çª  # Ç* Ç+ Çª  # Ç* Ç+ Çª  

29 96 186 204 411 32 96 186 204 411 34 171 261 191 411 

30 180 183 229 185 33 Infeasible 185 35 179 233 194 260 

31 Infeasible 182    36 224 187 190 232 

      37    186 

 Max(Çª) 229   Max(Çª) 204   Max(Çª) 194  

   

G 

10 
%ª ≤ 193 %+ ≤ G 

11 
%ª ≤ 190 %+ ≤ G 

12 
%ª ≤ 189 %+ ≤ 

# Ç* Ç+ Çª  # Ç* Ç+ Çª  # Ç* Ç+ Çª  

38 171 261 191 411 42 188 269 133 411 46 188 269 133 411 

39 212 242 173 260 43 212 242 173 268 47 212 242 173 268 

40 224 187 190 241 44 224 187 190 241 48 Infeasible 241 

41 Infeasible 186 45 Infeasible 186    

 Max(Çª) 191   Max(Çª) 190   Max(Çª) 173  

   

G 

13 
%ª ≤ 172 %+ ≤ G 

14 
%ª ≤ 139 %+ ≤ G 

15 
%ª ≤ 132 %+ ≤ 

# Ç* Ç+ Çª  # Ç* Ç+ Çª  # Ç* Ç+ Çª  

49 188 269 133 411 52 188 269 133 411 54 291 348 129 411 

50 283 261 140 268 53 Infeasible 268 55 Infeasible 347 

51 Infeasible 260       

 Max(Çª) 140   Max(Çª) 133   Max(Çª) 129  

           

G 

16 
%ª ≤ 128 %+ ≤           

# Ç* Ç+ Çª            

56 Infeasible 411           
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From Table 5.2, we can see that a total of 56 Integer Programming (IP) are solved 

to identify 15 unique tri-objective non-dominated solutions. The 15 non-dominated 

solutions are listed in Table 5.3. 56 IP are solved to get only 15 unique solutions. From 

Table 5.2, we also can see that there are so many identical solutions between groups. If 

we can skip solving the duplicated solutions, we can speed up the search and increase the 

algorithm efficiency significantly. This is the motivation for proposing the modified 

adaptive ϵ-constraint method. 

Table 5.3: The Pareto-optimal solutions for the numerical example problem 

Solutions Ç* Ç+ Çª 

1 86 214 324 

2 91 246 314 

3 96 186 204 

4 125 131 342 

5 171 261 191 

6 179 233 194 

7 180 183 229 

8 188 269 133 

9 209 128 367 

10 212 242 173 

11 224 187 190 

12 253 132 328 

13 269 173 320 

14 283 261 140 

15 291 348 129 

 

5.2 The Modified Adaptive ϵϵϵϵ-Constraint Method 

In order to introduce the modified adaptive %-constraint method, let us reexamine 

the results from group 1 (G1, iterations 1-5) and group 2 (G2, iterations 6-9) of Table 5.2. 

With constraints %+ ≤ 411  and 	%ª ≤ 451 , we get the 1
st
 Pareto-optimal solution to 
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be	Ç* = 86,	Ç+ = 214, and		Çª = 314.  The constraints of the 1
st
 iteration in group 2 

(iteration 6) are %+ ≤ 411 and	%ª ≤ 366. 

The only difference between these two iterations is that the constraint %ª < 451 is 

changed to	%ª ≤ 366. Notice that, with	%ª < 451, the obtained objective value		Çª = 314 

also meets the constraint	%ª ≤ 366. Thus, with the constraints  %+ ≤ 411 and	%ª ≤ 366, 

the solution should be identical to that with constraints %+ ≤ 411 and	%ª ≤ 451, which 

is	Ç* = 86,	Ç+ = 214, and		Çª = 314. Within each group #, the next iteration depends on 

the previous iteration (%+ is the previous	Ç+ � 1). For each group, if the 1
st
 iteration has 

the identical solution as that of the previous group, the solutions of the following 

iterations in this group will be identical to that of the previous group until it hits the upper 

bound of constraint 	%ª. For example, in group 1 and group 2, since the solution of the 1
st
 

iterations are the same for these two group, the iteration 7-8 have the same solution as 

iteration 2-3 in group 1, until it violates the constraint 	%ª ≤ 366. The solution of iteration 

9 cannot be identical to that of iteration 4 because Çª = 367 in iteration 4 violates the 

constraint 	%ª ≤ 366 in iteration 9. From the analysis above, we can see that if we skip 

solving for the same solution, we can reduce the number of Integer Programming (IP) 

formulations solved so that the whole search procedure can be speeded up. In order to 

avoiding solving for the repeated solutions, we save the previous group temporarily. . 

In particular, we add two refinement strategies to the adaptive % -constraint 

algorithm. The first strategy involves checking solutions from the previous group on the 

current constraint set, in the very first iteration, before attempting to solve the new 

problem. We find the solution O*}�ñ	that first violates the current constraint set. If O*}�ñ is 
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not the 1
st
 solution in the previous group, let us say it is the y�ò solution in the previous 

group, then we just copy the first y � 1 solutions in the previous group as the first y � 1 

solutions in the current group and continuous the outer “while loop” of the Adaptive %-

Constraint Algorithm. If the very first solution of the previous group violates the current 

constraint set, we do not achieve any efficiency; we apply the algorithm as normal. 

However, in the latter case, a second refinement strategy might come in handy. For 

example, let’s look back to group 1 and group 2 in Table 5.2 again. Before processing 

iteration 6 (1
st
 iteration of group 2), we save all solutions in the group 1 and check these 

solutions on the current constraint set (%+ ≤ 411 and	%ª ≤ 366). We can see that the 

4�ò�y = 4� solution violates the constraints. Thus the first 3 solutions from group 1 are 

copied directly as the first three solutions for group 2 and the outer “while loop” of the 

algorithm	continuous in iteration 9, which does not have a possible solution and group 2 

is done.   

As discussed above, within each group, current solution exploits solutions from 

the previous groups. In the second refinement strategy, we check the current solution 

against the solutions in the previous group. If there is an identical solution 	OA��-�A½¼¾ in 

the previous group, then it is possible that the current iteration will have the same next 

solution as that of	OA��-�A½¼¾. What we need to do is check the next solution of 	OA��-�A½¼¾ 

against the current constraint set. If it doesn’t violate current constraints, then we just 

copy this one as our next solution and skip the IP solving. Let us reexamine the numerical 

example from Table 5.2. In group 4 and group 5, the solutions of the first iteration of both 

groups are not identical. However, when we get the solution of iteration 21, we find that 

it is identical to the solution of iteration 16. Then we can check the solution of iteration 
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17 against the current constraint set. It does not violate the constraints in this example, so 

the iteration 17 and 22 should have the same solution and we can skip the IP solving of 

iteration 22. Following the same logic, we can avoid solving the IP and get the solution 

for iteration 23. 

Thus, the modified adaptive %-constraint method is obtained by adding the first 

refinement strategy before step 8 and the second refinement strategy before step 9 of the 

basic adaptive % -constraint method (Algorithm 5.2). The pseudo code for the two 

refinement strategies is provided below. 

  

 

Search Refinement Strategy #1 

 

1: Save solutions of previous group cA�* 

2: Check 1
st

 solution in cA�* on current constraint 

3: If it doesn’t violate constraints 

4:        Copy solution 1 by 1 in cA�* to current group  

5:        As solution until it violate the current constraints         

6: Else 

7:        Process step 8 to 15 in Procedure 1 as normal 

8: End if 

Search Refinement Strategy #2 

 

1:  Save solutions of previous group cA�* 

2:  Check current solution with solution set of previous group 

3:  If there is an identical solution 	OA��-�A½¼¾ in previous group 

4:         Check the solution next to	OA��-�A½¼¾ again current constraints 

5:         If it doesn’t violate current constraints 

6:                Copy solution as the next solution of current iteration  

7:         Else 

8:                Process step 8 to 15 in Procedure 1 as normal 

9:         End if 

10: Else 

11:       Process step 8 to 15 in Procedure 1 as normal 

12: End if 
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By applying the modified adaptive %-constraint method to the numerical example 

mentioned above (i.e., employ the two search refinement strategies), only 35 IPs are 

needed to be solved to obtain all the 15 unique Pareto-optimal solutions. Compared with 

the 56 IPs needed for the original adaptive %-constraint method, there is �56 � 35� 56⁄ =
37.5%  improvement. To evaluate the proposed method more comprehensively, we 

randomly generated an additional 1000 TAP problem sets (randomly generate 1000 sets 

of matrix 0< SA ≤ 100, R = 1,2,3) and solved them by the two methods. The average 

improvement observed from the 1000 problems is 39%. However, the savings do vary 

from problem to problem. This will be further confirmed by implementing the proposed 

method on the Redundancy Allocation Problem (RAP) for a Series-Parallel system in the 

later sections.  

5.3 Case Example: RAP of Series Parallel System 

The redundancy allocation problem for Series-Parallel systems has received much 

attention in the literature (Oiddir, Rahli et al. 2004; Levitin and Lisninaski 2001; Lyu, 

Rangarajan et al. 2002).  A series-parallel system has a total of O independent subsystems 

arranged in series; and for the R -th subsystem, it can have up to ' ¼5,A  functionally 

equivalent components arranged in parallel. Each component potentially varies in 

reliability, cost, weight and other characteristics. A subsystem can work properly if at 

least one of its components is operational. The 'A  components are selected from �A 
available component types where multiple copies of each type can be selected. A typical 

structure of Series-Parallel system is illustrated in Figure 5.3. Increasing the number of 

redundant components will increase the system reliability, but also increases cost and 
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weight. The goal is to optimally allocate the redundant components while balancing 

multiple competing objectives. 

 

Figure 5.3: General Series-Parallel redundancy system 

The formulation of RAP in a multi-objective setting with reliability, cost and weight 

considerations can be presented as: 

max õöÏ1 −öL1 − QABM5?@ ?
Bf* Ó¢

Af* ÷,			min õÑÑSBA)AB ?
B

¢
Af* ÷ ,				�R' õÑÑNAB)AB ?

B
}
Af* ÷			 

s.t. 

1 ≤Ñ)AB ≤ ' ¼5,A			ÇTQ		∀R = 1,2, … , O ?
Bf*  

)AB ∈ (0,1,2, … , . 
where: O: the number of subsystems )AB: decision variable, the number of the �th type component used in subsystem R  �A: the total number of available components for subsystem R ' ¼5,A: the maximum number of components in parallel used in subsystem R QAB, SAB , NAB: the reliability, cost and weight of the �th available component for subsystem R 
 

For the multi-objective RAP, the objectives are to determine the optimal design 

configuration that maximize system reliability, minimizes the total cost and minimizes 

the system weight for a Series-Parallel system.  
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5.3.1 Decomposition  

In solving multi-objective RAP problems, decomposing the original problem into 

sub-problems and combining the solutions intelligently can greatly aid the process of 

constructing the Pareto-optimal solution set. This is illustrated below. 

We first decompose the original RAP into several sub-problems and solve each 

sub-problem using the modified adaptive %-constraint method so as to identify all the 

non-dominated solutions for each sub-problem. Then, we sequentially filter each pair of 

non-dominated solution sets and pool the resulting solutions together to obtain the non-

dominated solution set for the original RAP. 

Decomposition is generally good for efficiency because of the reduced 

complexity of sub-problems. As a result, non-optimal solutions are filtered out early in 

the process when sub-problems are small and easy to solve. The details of the 

decomposition procedure are illustrated below.  

Let us consider the original RAP P3: 

èÞ:	�J) õöÏ1 −öL1 − QABM5?@ ?
Bf* Ó¢

Af* ÷,			�R' õÑÑSBA)AB ?
B

¢
Af* ÷ ,				�R' õÑÑNAB)AB ?

B
}
Af* ÷			 

By changing the maximization of reliability to an equivalent minimization formulation, 

we can get P4 as: 

èß:	�R' õöÏöL1 − QABM5?@ ?
Bf* Ó}

Af* ÷,			�R' õÑÑSBA)AB ?
B

}
Af* ÷ ,				�R' õÑÑNAB)AB ?

B
}
Af* ÷			 
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Further, by using log transformation, we can change the product terms of reliability into 

summation terms of  KTl�QkKRJxRKR�P� and have P5 as: 

èø:	�R' õÑKTlÏöL1 − QABM5?@ ?
Bf* Ó}

Af* ÷,			�R' õÑÑSBA)AB ?
B

}
Af* ÷ ,				�R' õÑÑNAB)AB ?

B
}
Af* ÷			 

Finally, P5 can be presented as: 

èù:	�R' ÐÑÐ�R' õKTl ÏöL1 − QABM5?@ ?
Bf* Ó÷,			�R' õÑSBA)AB ?

B ÷ ,				�R' õÑNAB)AB ?
B ÷Ò}

Af* Ò			 
Thus, the Pareto-optimal solution set of P3 is identical to that of the solution sets from P4, 

P5 and P6.  

P6 can be decomposed into several subsystems. The Pareto-optimal solution set of P6 can 

be obtained by combining the Pareto-optimal solutions sets of each subsystem. The 

procedure is illustrated in Figure 5.4.  
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Figure 5.4: Framework of decomposition based modified adaptive 

 �-constraint method for RAP problems 

For subsystem	R, we solve the following sub-problem: 

èú:
ÔÕÕ
Ö
ÕÕ×�R' Ç* = õÑSBA)AB ?

B ÷ , 	�R'	Ç+ = õÑNAB)AB ?
B ÷,			

min Çª = õKTlÏöL1 − QABM5?@ ?
Bf* Ó÷ ÙÕÕ

Ú
ÕÕÛ			 
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In the proposed method, we assume that all objective functions are linear integer 

functions.  However, in the RAP problem, the reliability objective (or the unreliability 

objective in the transformed formulation) is not an integer. In order to implement the 

proposed method, we need to make some additional modifications. First, the non-integer 

objective function (unreliability) is always set to be the last objective function (Çª) as 

shown in P7. In the adaptive %-constraint method, the weights for each objective function 

are selected so as to guarantee that the maximal increment of any current objective 

function is always less than the minimal increment of previous objective function. In the 

current example, the weight N+  in P2 guarantees that the maximal increment of Ç+  is 

always less than the minimal increment of Ç* (the minimal increment of Ç* is 1 by default 

due to the fact that	Ç* is an integer function); similarly, the weight Nª in P2 guarantees 

that the maximal increment of Çª is always less than the minimal increment of	Ç+. Since 

Çª is the last objective function and deals with reliability, even though it is a non-integer, 

given that there is no additional objective function beyond this objective, we can apply 

the proposed method (ignoring the fact the reliability objective is not integral). The other 

modification necessary to apply the proposed decomposition-based adaptive %-constraint 

method to RAP problems is that, in step 16 of Algorithm 5.2, ãª ≔ max	�Çª�)�� − 1 is 

replaced by	ãª ≔ max	�Çª�)�� − ∆, here ∆ is a very small number.  

Numerical Example 

In this section, we experimentally compare the proposed method with meta-

heuristic based approach NSGA-II on a RAP for a Series-Parallel system example taken 

from literature (Taboada and Coit 2006). This Series-Parallel system consists of three 

subsystems (O = 3), with an option of five, four and five type of components in each 
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subsystem ( �* = 5, 	�+ = 4,�ª = 5 ) respectively. The maximum number of 

components is seven ((' ¼5,* = ' ¼5,+ = ' ¼5,ª = 7) in each subsystem. Table 5.4 lists 

the component parameters for each subsystem.  

Table 5.4: Component parameters for each subsystem 

Component 

Type â 
Subsystem á 

1 2 3 
Rel. Cost Weight Rel. Cost Weight Rel. Cost Weight 

1 .94 9 9 .97 12 5 .96 10 6 

2 .91 6 6 .86 3 7 .89 6 8 

3 .89 6 4 .70 2 3 .72 4 2 

4 .75 3 7 .66 2 4 .71 3 4 

5 .72 2 8  .67 2 4 

 

The experiments of proposed method and NSGA-II were run on a HP desktop, with an 

AMD Quad-Core CPU operating at 2.3 GHz and 8 GB of RAM. The proposed method is 

coded in MATLAB
®

R2008b and NSGA-II was coded in C which is taken from the 

website of Deb’s lab (Deb 2005). For NSGA-II, we vary its population size from 100 up 

to 5000, with generation=100, crossover probability= .8 and mutation probability = .008. 

Results from the proposed method and NSGA-II are shown in Table 5.5. 

Table 5.5: Results from the proposed method and NSGA-II 

Our method 

# of Pareto-optimal Points 6,112 

CPU Time (MATLAB R2008b) 1,728 seconds 

NSGA-II 

Population Size 100 200 500 1,000 2,000 4,000 5,000 

# of Pareto Points 85 141 289 589 1,109 2,109 2,324 

# of Pareto-optimal Points 15 27 66 214 558 1,247 1,263 

CPU Time (C) 12s 28s 69s 177s 442s 1,231s 1,699s 
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From Table 5.5, we can see that, the proposed method identifies all 6,112 non-

dominated points in 1,728 seconds. For NSGA-II, the number of Pareto points it 

identified increases as the population size increases. When the population size is 5,000, it 

identified 2,324 Pareto points. However, beside these Pareto points, only parts of them 

are Pareto-optimal points (1,263 out of 2,324). The disadvantages of NSGA-II are that, it 

cannot generate all Pareto-optimal points; and more important, it cannot guarantee all 

points it identified are Pareto-optimal. In other words, NSGA-II gives out a set of Pareto 

points, but it doesn’t tell you which one is Pareto-optimal and which one is not. Figure 

5.5 shows the 6,112 solutions identified by the proposed method in blue start and 1,263 

solutions found by NSGA-II with population size 5,000 in red triangle. Figures 5.6 to 

figure 5.7 show the same results under  two dimensional representations.  

For this problem, the number of IP solved using adaptive %-constraint method is 

5773, while only 1680 IPs need to be solved using our proposed method to identify all 

the Pareto-optimal solutions, translating to an improvement of 	æÂÂª�*Ã`�æÂÂª = 70.9% . We 

can see that the proposed method outperforms the adaptive ϵ-constraint method 

significantly.  
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Figure 5.5: Pareto-optimal solution obtained by the proposed method  

and NSGA-II for the RAP problem 

                         

Figure 5.6: Pareto-optimal solutions plotted in the space of Reliability vs. Cost (left); 

Reliability vs. Weight (right) 
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Figure 5.7: Pareto-optimal solutions plotted in the space of Cost vs. Weight 

5.4 Case Example: Configuration Selection Problem 

The configuration selection analysis evaluates configuration alternatives based on 

a large set of competing criteria, such as cost, weight and power et al. In this study, we 

implement the proposed modified adaptive ϵ-constraint method on the configuration 

selection problem and compare its results with that of adaptive ϵ-constraint method one 

so as to show its superiority.  

The configuration selection problem considered in this study has three linear 

integer objective functions. They are minimizing the cost, weight and maximizing the 

power (combat power). The system consists of eleven subsystems. There are four options 

for choosing in subsystem 3 and subsystem 10, three options for choosing in subsystem 6. 

All other subsystems have five options and total there are 51 options. The cost, weight 

and power for each option are listed in Table 5.6. The interaction constraints include five 

in-compatible (IC) constraints, eight pre-requisite (PR) constraints and six co-requisite 

(CR) constraints. The in-compatible constraint��, s�  means if option � is chose, then 

option s  cannot be chose or vice versa. The pre-requisite constraint ��, s�  means if 

option s is chose, option � also must be chose while it doesn’t happen in vice versa case. 
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The co-requisite constraint ��, s� means option � and option s have to be chose together. 

The five in-compatible constraints are: {(Opt9_1, Opt2_4), (Opt5_5, Opt3_1), (Opt9_5, 

Opt4_1), (Opt2_3, Opt7_3), (Opt8_3, Opt10_4)}; the eight pre-requisite are: {(Opt4_3, 

Opt2_3), (Opt1_2, Opt3_2), (Opt5_5, Opt4_4), (Opt11_4, Opt5_5), (Opt9_5, Opt7_4), 

(Opt5_4, Opt8_4), (Opt7_4, Opt8_4), (Opt10_3, Opt9_5)}; the six co-requisite 

constraints are: {(Opt7_1, Opt4_3), (Opt10_4, Opt5_4), (Opt8_4, Opt6_2), (Opt11_1, 

Opt7_4), (Opt7_5, Opt9_4), (Opt3_2, Opt10_2)}. And the problem can be formulated as: 

Ðmin� =ÑÑ)ABSAB
¬@

Bf*
**
Af* , minH =ÑÑ)ABNAB

¬@

Bf*
**
Af* , max 2 =ÑÑ)AB�AB

¬@

Bf*
**
Af* Ò 

Subject to: 

ÔÕ
ÕÖ
ÕÕ
×Ñ)AB¬?
Bf* = 1, ÇTQ	R = 1,2, … ,11
)AB − )¾� ≤ 0, R�, Ky ∈ 2	)AB + )¾� ≤ 1, R�, Ky ∈ û�)AB − )¾� = 0, R�, Ky ∈ �	)AB ∈ (0,1.

 

where ÍA is the number of option for subsystem R. 
Finally, 159 Pareto-optimal solutions are identified by both methods which are 

shown in Figure 5.8. Figures 5.9 and Figure 5.10 show also the two dimensional 

representation of the solutions. 
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Table 5.6: Component parameters for each subsystem 

Subsystem Options Cost Weight Power 

 

Subsystem Options Cost Weight Power 

Subsys1 

Opt1_1 42 36 97 

Subsys7 

Opt7_1 98 38 7 

Opt1_2 35 60 24 Opt7_2 78 80 48 

Opt1_3 50 99 49 Opt7_3 54 27 79 

Opt1_4 49 62 67 Opt7_4 1 10 47 

Opt1_5 29 1 33 Opt7_5 84 38 47 

Subsys2 

Opt2_1 51 50 33 

Subsys8 

Opt8_1 28 25 8 

Opt2_2 54 93 21 Opt8_2 66 96 10 

Opt2_3 60 51 92 Opt8_3 1 32 26 

Opt2_4 92 57 66 Opt8_4 51 69 99 

Opt2_5 81 19 64 Opt8_5 15 95 52 

Subsys3 

Opt3_1 12 32 69 

Subsys9 

Opt9_1 95 19 93 

Opt3_2 70 28 71 Opt9_2 95 58 60 

Opt3_3 39 48 77 Opt9_3 9 18 96 

Opt3_4 48 21 55 Opt9_4 23 39 96 

Subsys4 

Opt4_1 66 86 53 Opt9_5 36 5 56 

Opt4_2 45 11 18 

Subsys10 

Opt10_1 54 64 43 

Opt4_3 7 29 84 Opt10_2 59 40 63 

Opt4_4 81 95 86 Opt10_3 61 5 11 

Opt4_5 100 32 99 Opt10_4 96 6 29 

Subsys5 

Opt5_1 82 66 94 

Subsys11 

Opt11_1 97 26 64 

Opt5_2 19 26 50 Opt11_2 60 6 87 

Opt5_3 72 21 34 Opt11_3 61 46 7 

Opt5_4 19 17 46 Opt11_4 87 84 26 

Opt5_5 58 62 95 Opt11_5 62 24 4 

Subsys6 

Opt6_1 56 35 36 

 Opt6_2 61 32 80 

Opt6_3 5 72 13 

 

For the adaptive % -constraint method, it needs to solve 1702 IP, while the proposed 

modified adaptive ϵ-constraint method only solves 454 IP. It improves the algorithm 

efficiency by	*Â�+�©æ©*ÂÁ+ = 73.3%, which is a significant improvement.  
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Figure 5.8: Cost vs Weight vs Power 

  

Figure 5.9: Cost vs Weight (left); Cost vs Power (right) 
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Figure 5.10: Weight vs Power 

5.5 Conclusion 

In this chapter, we propose a modified adaptive ϵ-constraint method to identify all 

Pareto-optimal solutions for linear multi-objective optimization problem. Compared with 

existing methods, our method not only improves the algorithm efficiency significantly 

but also is able to cope with at most one non-integer linear objective function.  Based on 

the proposed optimization method, we present a system design optimization framework 

for simple structure systems (series/parallel) which have close-form reliability 

(availability) formulas. The presented framework is applied to a special case of system 

design optimization problem, the RAP of Series-Parallel system to evaluate its 

performance. Furthermore, the proposed optimization method is evaluated on a 

configuration selection problem taken from our industrial partner. Both numerical results 

show that the proposed method outperforms the existing methods, but the improvement is 

problem dependable.  
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Chapter 6 Conclusion 

 

6.1 Contributions 

The contributions made in this dissertation are as follows: 

1. We have proposed a new CTBN formalism for RAM modeling of dynamic 

repairable systems. The previous work considered two main approaches: Dynamic 

Bayesian networks and Markov chain based models. Compared with DBNs, the 

CTBN framework belongs to the class of event-based BN formalisms which is 

essentially used for modeling reversible processes. Thus the advantage of CTBNs, 

over DBNs is their ability to handle various repair polices. Compared with 

Markov chain models, where each system state explicitly describes the state of all 

the system variables, CTBNs do not suffer from the state space explosion problem 

of Markov chain models. In particular, the CTBN is a local-state model, where the 

state of the current node is only dependent on its parent node. In short, CTBNs are 

more efficient and tractable than Markov chain models and also more suitable to 

model dynamic behavior among components than are DBNs.  

2. Based on the CTBN framework, we have proposed CTBN constructs for the static 

(Fault tree) and dynamic (Dynamic Fault tree) gates, typically found in reliability 

tools. Furthermore, we have shown how to model different repair policies using 

CTBNs. The CTBN RAM modeling framework is applied to model three case 

examples to estimate the system reliability and availability: the Cardiac system, 

the ground vehicle system and the fleet of vehicles system.  
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3. Based on the proposed CTBN RAM modeling formalism and NSGA-II, we 

present a system design optimization framework for dynamic repairable systems. 

The CTBNs are employed to estimate system reliability (availability) while the 

meta-heuristic optimization method NSGA-II is used to solve the black-box 

multi-objective optimization problem.  The CTBNs and NSGA-II based system 

design framework is applied to a ground vehicle system to identify the Pareto 

solution set. 

4. We propose a modified adaptive ϵ-constraint method which is able to identify all 

Pareto-optimal solutions for integer linear multi-objective optimization problem. 

Compared with the existing ϵ-constraint method, the proposed one improves the 

algorithm efficiency significantly by avoiding solving for the duplicate solutions. 

Furthermore, in the application to the RAP, the proposed method is adjusted to 

cope with linear multi-objective optimization problem with one non-integer 

objective function.   

5. We regard the typical system design problem, the RAP of Series-Parallel systems, 

as a multi-objective optimization problem. Consequently, we utilize the proposed 

modified adaptive ϵ-constraint method and the decomposition scheme to cope 

with this Multi-Objective Redundancy Allocation Problem (MORAP). Compared 

with existing MORAP methods, the main advantage of the proposed method is 

that it is able to identify all Pareto-optimal solutions. The modified adaptive ϵ-
constraint method is evaluated on the RAP of Series-Parallel systems and the 

configuration selection problem. 
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6.2 Future Research 

The following is a list of avenues for future research: 

1. The CTBN RAM modeling framework, as defined in this work, is primarily 

geared towards the modeling of systems whose component failure time and 

repair time follows exponential distribution. The Markovian property assumption 

restricts the expressive power of CTBNs to model non-exponential distribution 

over time. There are two possible ways to cope with non-exponential distribution 

processes. The first one is to use the Phase-type distribution (Nodelman 2007) to 

map the non-exponential process into several exponential processes; the second 

one is to add hidden variables (Nodelman 2007) as parent nodes to the non-

exponential nodes to control their evolution. However, both of these approaches 

will add complexity and computation burden to the model. Thus, finding a new 

and efficient way for CTBNs to cope with non-exponential distribution processes 

would allow a broader use for CTBNs in the RAM modeling applications. 

2. In the CTBNs and NSGA-II based multi-objective system design optimization 

framework, the meta-heuristic based NSGA-II has limitations of not being able 

to identify all Pareto-optimal solution and to guarantee the solutions are Pareto-

optimal. It would be very intriguing to find an optimization method which can 

break these limitations for the black-box multi-objective system design problem.  

3. Compared with the existing ϵ-constraint method, the modified adaptive ϵ-
constraint method, as proposed in this work, is able to improve the algorithm 

efficiency by avoiding solving the majority of duplicate solutions. However, the 

proposed method, while reducing the identification of duplicate solutions 



114 
 

 

 

significantly, cannot avoid all duplicated solutions. The investigation of 

incorporating a more sophisticated checking mechanism into the proposed 

method so that it can avoid all the duplicated solutions is definitely a worthwhile 

task to undertake in the future.   
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Recent growth in the scale and complexity of products and technologies in such 

the defense and other industries as the defense is has become a challenge for attaining 

cost efficiency in challenging product development, realization, and sustainment costs. 

Uncontrolled costs and routine budget overruns are forcing companies  causing all parties 

involved to seek become leaner in their product development processes and treatment to 

treat products’ of reliability, availability, and maintainability of the system as a true 

“design parameter”. To this effect, accurate estimation and management of the system 

reliability of a design during the “earliest stages” of new product development is critical 

not only critical for managing product development and manufacturing costs but also to 

for controlling life cycle costs (LCC). In this regard, the overall objective of this research 

study is to develop an integrated framework for “design for reliability” (DFR) upfront 

during the upfront product development by treating reliability as a design parameter. The 
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aim here is to develop the theory, methods, and tools necessary for: 1) accurate 

assessment of system reliability and availability and 2) optimization of the design to meet 

system reliability targets. In modeling the system reliability and availability, we aim to 

address the limitations of existing methods, in particular the Markov chains method and 

the Dynamic Bayesian Network approach, by incorporating a Continuous Time Bayesian 

Network framework for more effective modeling of sub-system/component interactions, 

dependencies, and various repair policies. We also propose a multi-object optimization 

scheme to aid the designer in obtaining identifying the optimal design(s) with respect to 

system reliability/availability targets and other system design requirements. In particular, 

the optimization scheme would entail optimal selection of sub-system and component 

alternatives. The theory, methods, and tools to be developed will be are extensively tested 

and validated using simulation test-bed data and actual case studies from our industry 

applications. 

 

 

 



126 
 

 

 

AUTOBIOGRAPHICAL STATEMENT 

DINGZHOU CAO 

Dingzhou Cao did his undergraduate studies at Jinan University, Guangzhou, P. R. 

China, where he received his Bachelor of Science degree in Mathematics and Applied 

Mathematics in 2004. He received his Master of Science degree in Applied Mathematics 

in 2006 from the same school. Since 2007, Dingzhou has been studying at Wayne State 

University (WSU) for a Ph.D. in the Department of Industrial and System Engineering 

(ISE). During his Ph.D. program, he has worked as graduate research assistant in the ISE 

department at WSU. 


