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CHAPTER 1 - INTRODUCTION 

Cancer and Metastasis 

According to the World Health Organization (2008), cancer is a leading cause of death 

worldwide and 90% of these deaths result from the secondary tumors. The secondary tumors are 

formed by a multistep process called metastasis, which involves migration and invasion of primary 

tumor cells into different parts of the body (Pantel and Brakenhoff, 2004). The primary tumor mass 

is surrounded by a basement membrane and stroma. The basement membrane is comprised of 

a number of extracellular matrix (ECM) proteins such as type IV collagen, laminin, elastin, and 

fibronectin. The tumor stroma, on the other hand, is composed of many non-tumor cells such as 

fibroblasts, adipocytes and various immune cells, in addition to the ECM proteins (Bissell and 

Radisky, 2001). The metastatic cascade begins with the acquisition of invasive properties by the 

primary tumor cells. By virtue of these invasive or metastatic properties, tumor cells breach the 

basement membrane of the tissue, invade the stroma and via blood or lymph reach other parts of 

the body where they can form a secondary tumor (Chambers et al., 2002; Liotta et al., 1986; 

Poincloux et al., 2009). A great deal of research has been done to understand the causes of origin 

and spread of cancer. Nevertheless, given the extreme complexity and heterogeneity of the 

disease etiology, it is still difficult to pinpoint exact cause of cancer development. For decades, 

genetic and epigenetic factors, predisposing cancer cells to become metastatic, have been the 

main focus of research groups. This research has resulted in the identification of many 

biochemical factors such as various growth factors and cytokines that promote the metastatic 

behavior of cancer cells (Hirakawa et al., 2005; Huang et al., 2002; Oft et al., 1998). However, 

with increasing knowledge about metastatic progression cancer biologists have begun to 

appreciate the importance of multiple mechanical factors, such as changes in the structure and 
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mechanics of the tissue, as well as biophysical changes in the geometry and topology of the ECM 

in initiating the multi-step metastatic cascade (Kumar and Weaver, 2009). 

Effect of Tumor Microenvironment on Metastasis 

Along with the development of the tumor mass, structure and composition of the tumor 

stroma undergoes constant changes, a process known as stromagenesis (Bissell and Radisky, 

2001). During this process different non-tumor cells, collectively referred to as tumor associated 

stromal cells, are also recruited and activated. These non-tumor cells contribute to the 

progression of cancer through the secretion of several biochemical factors and up-regulated 

synthesis of ECM proteins. By virtue of its dynamic nature, the tumor stroma provides a unique 

microenvironment for the tumor mass. This tumor microenvironment possesses the ability to 

change the neoplastic properties of the tumor. The metastatic cascade begins with changes in 

the tumor microenvironment which triggers the dissemination of primary tumor cells to the 

probable sites of secondary tumor formation (Yu et al., 2011). Examination of genetic alterations 

in the tumor associated stromal cells showed numerous chromosomal rearrangements not found 

in tumor cells (Moinfar et al., 2000).  The sources of mutations in stromal cells are still unknown, 

but lead to the abnormal cross-signaling between cancer cells and stromal cells (De Wever et al., 

2008). Therefore is it extremely important to understand the tumor-stromal interactions. 

Biochemical Factors in Invasion 

Many biochemical factors from the stroma have been identified as promoters of tumor 

metastasis. For example, immune cells present in the stroma, such as macrophages, dendritic 

cells, natural killer cells, and mast cells, produce chemokines, cytokines and soluble cytotoxic 

mediators. All these biochemical components aid in the process of angiogenesis, cell proliferation, 

cell motility, and invasion (Tlsty and Coussens, 2006). During tumor development, stromal cells 
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and cancer cells together form a paracrine loop that regulates cancer progression (De Wever et 

al., 2008; Pollard, 2004). For example, tumor cells secrete colony stimulating factor-1 (CSF-1) for 

attracting macrophages and macrophages secrete epithelial growth factor (EGF) causing tumor 

cell proliferation (Wyckoff et al., 2004). Tumor cells also secrete various chemoattractants such 

as, transforming growth factor β-1 (TGFβ-1), platelet-derived growth factor (PDGF), fibroblast 

growth factor (FGF), and EGF, in response to which stromal fibroblast cells are attracted towards 

the tumor (Denys et al., 2008; Dong et al., 2004; Lederle et al., 2006; Stuelten et al., 2005). 

Stromal fibroblasts then undergo differentiation into myofibroblasts and secrete similar growth 

factors, which cause proliferation of tumor cells (Ao et al., 2007; Cat et al., 2006; Shao et al., 

2006), and matrix metalloproteinases, which cause degradation and remodeling of tumor stroma 

(Stuelten et al., 2005; Taniwaki et al., 2007). 

Mechanical Factors in Invasion 

In addition to the biochemical factors, physical or mechanical factors in the tumor 

microenvironment also contribute to cancer progression and metastasis (Desmouliere et al., 

2004; Tlsty and Coussens, 2006). The tumor mass is characterized by uncontrolled cell growth 

and disrupted tissue structure. This leads to the loss of tissue homeostasis and mechanical 

equilibrium that is maintained in the physiologically normal tissue. The physical state of the tumor 

also evolves with the evolution of the tumor mass (Yu et al., 2011), due to changes in the cell-cell 

and cell-ECM interactions, as well as deposition and remodeling of the ECM components 

surrounding the tumor mass (Borghi et al., 2010; Ingber, 2008; Schwartz and DeSimone, 2008). 

On account of these changes the tumor mass and its microenvironment are acted upon by 

different mechanical forces such as hydrostatic pressure, shear stress, compression and tension, 

and changes in compliance (Butcher et al., 2009). 
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One of the mechanical forces within the tumor microenvironment results from the 

expansion of the tumor itself. The uncontrollably growing tumor mass is confined within a limited 

space in the tissue. These spatial constraints generate high levels of radial stress on the 

surrounding stroma. At the same time, compression of the stroma generates stress within the 

tumor itself (Shieh, 2011). Tumor cell spheroids embedded in agarose gels have been shown to 

generate stresses more than 10 kPa in in-vitro studies (Helmlinger et al., 1997). Interstitial fluid 

pressure also contributes to compressive forces within the tumor and its microenvironment. It is 

formed due to highly permeable microvascular networks leading to increased flow of fluids and 

macromolecules within the tumor and stroma (Boucher and Jain, 1992; Fukumura et al., 2010; 

Hagendoorn et al., 2006). Nonetheless, most studies of mechanical forces in the tumor and 

microenvironment have focused on compliance.  After all, stiffer stromal tissue has long been a 

hallmark of different cancer types such as breast, liver and prostate cancer   (Boyd et al., 1999; 

Gang et al., 2009; Hoyt et al., 2008). Mammary tumor tissue is known to have stiffness exceeding 

4 kPa, which is much higher than a normal mammary gland that has an elastic modulus of 200 

Pa (Paszek et al., 2005). This increase in stiffness or rigidity of the stroma is due to the abnormal 

production of type I collagen and fibronectin by different stromal cells (Bissell and Radisky, 2001; 

Tlsty and Coussens, 2006). Recent studies have shown that this rigidity of the tumor stroma 

positively regulates cancer cell proliferation and dissemination to other sites within the body 

(Kostic et al., 2009; Levental et al., 2009; Paszek et al., 2005). 

Stromal cells associated with tumors also give rise to different mechanical forces, which 

can promote metastasis. Myofibroblasts are one of the main types of stromal cells that appear 

early during tumor progression. They were initially discovered to be involved in the process of 

wound healing (Ryan et al., 1974).  In the tumor stroma, myofibroblasts differentiate from normal 

fibroblasts, fibrocytes, mesenchymal stem cells (MSCs) and other cells of mesenchymal origin 
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(De Wever et al., 2008; Desmouliere et al., 2004). This differentiation requires various paracrine 

signals from the cancer cells. TGFβ-1 has been found to play a significant role in this process 

(Desmouliere et al., 1993). The hallmarks of differentiated myofibroblasts are secretion of ECM 

proteins like collagen and fibronectin as well as neo-expression of α-smooth muscle actin (α-

SMA) (Darby et al., 1990; Serini et al., 1998). This actin isoform bundles with myosin-II and forms 

contractile stress fibers. A direct correlation between the level of α-SMA expression and 

myofibroblast contractions has been demonstrated both in vitro (Hinz et al., 2001a) and in vivo 

(Hinz et al., 2001b). Myofibroblasts are also known to produce large focal adhesions, through 

which tugging or pulling forces produced by stress fibers are transferred into the surrounding ECM 

(Castella et al., 2010; Hinz et al., 2003). Using a unique in-vitro invasion assay developed in our 

lab, it has been shown that mechanical stimuli in the form of pulling forces leads to enhanced 

invasion by cancer cells (Menon and Beningo, 2011). Thus, it is important to study the mechano-

sensitivity of tumor cells to these forces generated by stromal cells and to understand how ECM 

remodeling, mechanical regulation and stromal cell activities contribute to cancer progression. 

In vitro Mechano-Invasion Assay 

As mentioned earlier, contractile stromal cells such as myofibroblasts can produce pulling 

forces in the tumor microenvironment. We have developed an in vitro mechano-invasion assay, 

where cells can be subjected to similar pulling forces in an environment free of any cell secreted 

factors and the effect of these forces on the invasion response of the cells can be observed. The 

general set-up of the assay is illustrated in figure 1. In preparation for the invasion assay, 

substrates made of collagen and fibronectin were prepared. These two proteins are the most 

abundant ECM proteins in the tumor stroma. Paramagnetic beads, functionalized by carboxylation 

for protein binding, were also mixed with these collagen/fibronectin substrates. Mechanical 

stimulation was provided by holding these substrates over a rare earth magnet that is rotated on 
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an orbital shaker beneath the culture. The human fibrosarcoma cell line, HT1080, was used for 

this assay. HT1080 cells cultured on collagen/fibronectin matrices incubated without magnetic 

stimulation were used as controls (Figure 1). 

Magnetic stimulation was provided for 24 hours and the number of cells that invaded into 

the matrix were counted using an inverted phase microscope. HT1080 cells under mechanical 

stimulation showed enhanced invasion (2-fold) compared to control cells. Similar enhanced 

invasion was also seen at 36 hours of mechanical stimulation (Figure 2A). This enhanced invasion 

response by HT1080 cells was stable for frequencies of bead stimulation ranging from 8 to 160 

Figure 1. Design of in vitro mechano-invasion assay. A) A well is created in a 60mm culture 
dish and filled with a collagen type-I/fibronectin matrix containing 1 µm carboxylated 
paramagnetic beads. Cells are seeded onto the surface of the matrix and either cultured 
outside of a magnetic field or cultured 1.5 cm above a rotating rare earth magnet.  Upon 
stimulation, cells invade the substrate. B) 60mm plate with a 20mm hole drilled into it with an 
activated coverslip glued to the bottom creates a well for the matrix. C) The actual assay within 
a typical cell culture incubator. (Menon and Beningo, 2012) 
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rpm. Furthermore, non-invasive mouse embryonic fibroblast (MEF) cells failed to invade in the 

presence, as well as the absence, of mechanical stimulation, demonstrating that in order to invade 

upon mechanical stimulation, cells must have a pre-defined ability to invade. 

To test the importance of fibronectin in the process of enhanced invasion, the assay was 

performed in collagen only substrates and compared to collagen/fibronectin substrates. After 24 

Figure 2. Cancer cells show enhanced invasion in response to mechanical stimulation 
in the presence of fibronectin. A) HT1080, human fibrosarcoma cells were seeded onto 
collagen/fibronectin matrices containing paramagnetic beads. 25 fields of cells were counted 
at multiple depths within the substrate (beginning at the surface of the field and progressing 
towards the bottom of the plate – farthest depth of invasion was 800 µm) at 24 and 36 hours 
after seeding. The percent of invading cells was 2-fold higher in stimulated cultures when 
compared to controls (** P=0.0120). B) The assay was performed as in (A) however only 
collagen type I was used (2.5mg/ml). (Menon and Beningo, 2011) 

A 

B 
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hours of mechanical stimulation, cells seeded on collagen only substrates failed to show 

enhanced invasion compared to non-stimulated controls (Figure 2B). This demonstrates the 

requirement of fibronectin in the extracellular environment for the cancer cell to sense the 

mechanical stimulation. 

Mechanosensing and Mechanotransduction 

In order for the cell to respond to mechanical cues in its surrounding, the cells must first 

be able to sense these stimuli. The process of sensing mechanical stimuli is known as 

mechanosensing. Secondly, cells should be able to transduce these stimuli within their cytoplasm 

resulting in changes in gene expression and intracellular biochemistry of the cell, by the process 

known as mechanotransduction (Wang et al., 2009). The signal assimilated into the cytoplasm is 

carried forward through a hierarchical mechanochemical signal transduction network that results 

in the cellular response to the mechanical stimulus. In the case of cancer cells, this response can 

be in the form of increased proliferation and invasion or secretion of proteases for matrix 

remodeling (Kumar and Weaver, 2009). Since the mechanical signal spreads once it crosses the 

cell membrane, this conversion of the mechanical signal into a biochemical signal likely takes 

place nearing close proximity to the cell membrane. Indeed, many different transmembrane 

proteins that connect the ECM to the inside of the cell can act as mechanotransductors (Orr et 

al., 2006). Integrins are one of the most studied families of transmembrane receptors known to 

act as mechanotransductors. As the name suggests, they integrate the outside of the cell with the 

inside. However, additional membrane receptors can also act as mechanotransductors. For 

example, abolishment of G-protein coupled receptors (GPCR) in neutrophils has been shown to 

inhibit the cellular response to fluid shear stress, implicating GPCRs as mechanosensors (Makino 

et al., 2006). Unlike all the above mentioned receptors, which bring about mechanotransduction 
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between ECM and cell, E-cadherin transduces the mechanical signal through cell-cell junctions 

with the help of other binding partners such as α-catenin and vinculin (Smutny and Yap, 2010). 

Integrins are heterodimeric glycoproteins composed of one α-subunit and one β-subunit. 

There are eighteen α-subunits and eight β-subunits which non-covalently pair with each other to 

form 24 different integrin molecules (Plow et al., 2000). Both α and β-subunits have larger 

extracellular domains with which they bind to a specific ligand in the extracellular matrix. The 

cytoplasmic tail of these subunits is non-catalytic and shorter compared to the extracellular 

domain. The cytoplasmic tail of the β-subunits bind directly to the actin cytoskeleton of the cell, 

thus providing a connection between the outside and the inside of the cell (Rathinam and Alahari, 

2010; Springer and Wang, 2004). The cellular response to different mechanical forces such as, 

fluid shear stress, stretch, hydrostatic pressure, has been shown to be dependent on the type 

integrin that is engaged (Katsumi et al., 2004). Since many signaling cascades are controlled 

downstream of integrins, these mechanical forces can activate a variety of pathways. The 

outcome of this phenomenon changes from cell type to cell type and is also dependent on the 

type of integrin and mechanical forces involved (Schwartz and DeSimone, 2008). Considering 

their important role in mechanosensing and mechanotransduction, integrins have been implicated 

in cancer cell proliferation and migration. Even though detailed specifics vary with cancer type, in 

general the integrin gene expression in cancer cells is found to be in disarray. These defective 

expression levels of integrins, also lead to abnormal signaling downstream causing the 

progression of cancer (Guo and Giancotti, 2004). Higher expression levels of certain integrin 

subunits such as α3, α5, α6, αv, β1, and β3 have been correlated with greater metastatic potential 

of cancer cells, whereas, some integrins such as α2β1 have been associated with decreased cell 

proliferation (Wiseman and Werb, 2002). 
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Integrin β3 

Integrin β3 is one of several β-subunits of integrin receptors which non-covalently binds 

with the αv or αIIb subunits (Hynes, 2002). β3 containing integrins bind to Arg-Gly-Asp (RGD) 

sequence containing ligands in the extracellular matrix, which include fibronectin, vitronectin, and 

fibrinogen (Xiong et al., 2002). Expression levels of integrin β3 coupled with integrin αv are shown 

to be variable in different types of cancers. They are highly up-regulated in cases of melanoma, 

squamous cell carcinoma and ovarian cancer. Whereas, down-regulated in cases of kidney and 

colon cancer (Mizejewski, 1999). Integrin β3 has been shown to affect different processes during 

cancer development and progression such as cell proliferation, apoptosis, angiogenesis and cell 

invasion (Jin and Varner, 2004). Integrin αvβ3 up-regulation is known induce cell death (Stupack 

et al., 2001). This agrees with the recent finding that down-regulation of ITGB3 in glioma and 

hepatocellular carcinoma renders cancer cells resistant to apoptosis and therefore causes 

aggressive tumor growth (Kim et al., 2011; Wu et al., 2009). Up-regulation of ITGB3 has been 

seen in melanoma and breast cancer and it is associated with increased tumor invasion and 

metastasis (Albelda et al., 1990; Gasparini et al., 1998). As integrin β3 is known to aid in the 

process of tumor progression by increasing cell proliferation and invasion, it has become a 

potential target for cancer therapy. Different types of blocking peptides and antibodies against 

integrin β3 are currently in clinical and pre-clinical trials (Eskens et al., 2003; Smith, 2003; 

Stoeltzing et al., 2003). 

Integrin Crosstalk 

As mentioned earlier, integrin heterodimers bind to specific ligands in the ECM. Integrins 

in the ligand bound unfolded conformation are said to be “active”, whereas those in unbound 

folded conformation are said to be “inactive” (Takagi et al., 2002). It has been observed that when 
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activity of one integrin subunit or the entire heterodimer is inhibited, it sometimes causes 

perturbation of ligand binding ability of another integrin family member within the same cell. This 

phenomenon where the activity of one integrin is controlled by other integrin is referred to as 

“integrin crosstalk” (Diaz-Gonzalez et al., 1996; Gonzalez et al., 2010). Evidence of integrin 

crosstalk has been reported between integrin β3 and integrin β1. Integrin β1 is also one of the β 

subunits which can form heterodimers with 12 different α subunits. Integrin α5β1 is a RGD-binding 

heterodimer, like integrin β3, and it primarily binds to fibronectin (Hynes, 2002). In endothelial 

cells, reciprocal inhibitory activity of integrin αvβ3 and integrin α5β1 has been observed (Brooks 

et al., 1994; Eliceiri and Cheresh, 1999). Moreover, in vivo experiments in mice have shown that 

down-regulation of integrin αvβ3 expression during tumor associated angiogenesis leads to 

increased activity of integrin β1 (Reynolds et al., 2002). This integrin crosstalk is regulated by 

different proteins binding to the cytoplasmic tail of the integrins, for example talin. In some 

instances, it is also regulated by the phosphorylation state of the integrin cytoplasmic tails. There 

is also evidence that this integrin crosstalk is brought about, not only at the protein level, but also 

at the level of mRNA. It has been shown that integrin β1 destabilizes the mRNA encoding integrin 

β3, therefore decreasing the activity of integrin αvβ3 (Retta et al., 2001). Activity of a particular 

integrin matters because downstream signaling under different integrins is different (Morgan et 

al., 2009). Thus, the same type of cell having different integrin activity can produce totally different 

cellular response. For example, it has been demonstrated that the activity of Rho GTPases is 

regulated differently downstream of integrin αvβ3 and α5β1 (Morgan et al., 2009). Cells with active 

β3 integrins have low RhoA activity and show persistent migration, conversely, cells with active 

β1 integrins have high RhoA activity and show random migration (Danen et al., 2005). 

Invadopodia: Mechanosensory Protrusions 

In 1971 Gabbiani and colleagues first discovered specialized actin-rich protrusions in Rou- 
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s sarcoma virus (RSV) transformed chicken embryonic fibroblasts making contacts with the ECM 

and having ECM degradation properties  (Gabbiani et al., 1971). These protrusions were named 

invadopodia and were found to be a characteristic unique to invasive cancer cells and transformed 

cells. Matrix degradation by invadopodia enhances the process of cancer metastasis in vivo, by 

helping cancer cells breach the basement membrane and navigate through the dense stromal 

ECM. The process of breaching the basement membrane via invadopodia consists of three 

stages; 1) formation of invadopodia, 2) maturation of invadopodia by their elongation and 

recruitment of ECM degrading proteases and finally, 3) degradation of ECM (Schoumacher et al., 

2010). The actin core formation is the principle step in invadopodia formation. Hence, different 

molecules required for actin nucleation and polymerization such as, Arp2/3, N-WASP, cortactin, 

have been shown to be required for this process. However, the molecule that stands out from 

these is an actin severing protein cofilin. Cofilin has been shown to be required only for 

invadopodia maturation and not for the formation stage. When cofilin is knocked down, cells give 

rise to short-lived invadopodia which are not capable of ECM degradation (Yamaguchi et al., 

2005). 

Cofilin is an actin binding protein that belongs to a family of “actin depolymerizing factors 

(ADF)” (Maciver and Hussey, 2002). Cofilin is actively involved in actin tread-milling as it binds to 

capped ends of the actin filaments and severs them. This function of cofilin is important in two 

ways; 1) the severing action keeps on refilling the actin monomer pool, 2) it creates more barbed 

ended actin filaments which can be further elongated (Pollard and Borisy, 2003). The actin 

depolymerization activity of cofilin is controlled by its phosphorylation at a serine-3 near the N-

terminus by LIM-kinase. When phosphorylated, cofilin cannot interact with ADP-actin filaments of 

monomers and therefore, inactivated (Blanchoin et al., 2000). Rho family GTPases indirectly 

control the cofilin activity. Active Rho family GTPases activate PAK kinase which in turn activates 
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LIM-kinase leading to cofilin phosphorylation (Edwards et al., 1999). A phosphatase called 

slingshot causes dephosphorylation of serine residue and activates cofilin (Niwa et al., 2002). By 

virtue of its actin depolymerizing ability, cofilin plays an important role in cell motility. Recently it 

has also been observed that expression profiles of cofilin and its regulators are highly disturbed 

in invasive cancer cells (Wang et al., 2007). Moreover, in our in vitro invasion assay, we found 

that cofilin knock-down cells fail to show enhanced invasion in response to mechanical stimulus 

in their microenvironment (Figure 3; Menon and Beningo, 2012). Even though cofilin is closely   

related to invadopodia maturation and cancer cell invasion, its exact role in the process is still 

unclear. 

In addition to cofilin, many other invadopodia associated proteins have been shown to be 

required for tumor growth and metastasis (Blouw et al., 2008; Clark et al., 2009). However, the 

effect of external mechanical forces on the activity of invadopodia is still unknown. Recently it was 

shown that increased stiffness of ECM leads to enhancement in the activity and number of 

invadopodia (Alexander et al., 2008). Moreover, localization of active forms of mechanosensing 

Figure 3. Cofilin is required for enhanced invasion upon mechanical stimulation. 
HT1080 cells nucleofected with control siRNA or Cofilin siRNA and cultured for 48 hours were 
seeded onto collagen/fibronectin matrices containing paramagnetic beads. The cells were 
cultured with or without stimulation for 48hr hours and the percent of invading cells was 
calculated. Stimulated cells had 3-fold higher invasion as compared to non-stimulated cells 
(P= 0.0065) (Menon and Beningo; 2012). 
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proteins such as FAK (focal adhesion kinase) and p130Cas suggests that invadopodia are 

sensitive to mechanical forces in the tumor microenvironment (Parekh and Weaver, 2009). 

Therefore, the molecular dissection of the process of invadopodia formation and maturation in 

response to mechanical forces will be interesting. 

 In conclusion, the tumor stroma serves as a potent carcinogen by being a source of 

numerous mechanical factors. Recent findings suggest that many of these factors are both 

necessary and sufficient for the process of cancer progression. Even though influence of 

mechanical factors is positively linked with enhanced invasion, it is important to integrate this 

information into our existing knowledge of the molecular and cell biology of cancer. Identification 

of signaling pathways and molecules related to mechanosensing in cancer can provide new 

directions to chemotherapeutics, although much remains to be uncovered. 

 

 

 

 

 

 

 

 

 



15 

 

 

 

 

CHAPTER 2 - METHODS 

Cell Culture 

All the experiments in this study were performed with human fibrosarcoma cells (HT1080) 

purchased from ATCC. As per ATCC recommendation, these cells were cultured in Eagle’s 

Minimum Essential Medium (EMEM; ATCC) along with 10% fetal bovine serum (FBS; Hyclone) 

and 1% Penicillin-Streptomycin solution (100 U/ml of penicillin and 100 µg/ml of streptomycin; 

Gibco by Life Technologies). The cells were maintained in a culture incubator at 37oC with 5% 

CO2. Cells were allowed to grow up to 75-80% confluency before passing them into fresh culture 

dishes. For this purpose, cells were trypsinized with 0.25% trypsin (Sigma) and proteolysis was 

stopped by addition of fresh complete media. For all experiments, cells up to consecutive sixth 

passage were used. After the sixth passage all cells were discarded.  

Invasion Matrices 

Invasion assay matrices were composed of 2.5 µg/ml collagen type I (PureColl, Advanced 

Biomatrix), 20 µg/ml fibronectin (Sigma). 4 µl of 1 µm carboxylated paramagnetic microspheres 

(Polysciences Inc.) were added for each 1 ml of matrix solution to provide magnetic stimulation. 

0.1N NaOH and 10X PBS were used to adjust the pH to 7.4 +/- 2. All the components were kept 

cold and mixed together at 4oC. 450 µl of this solution was then polymerized in a culture well, by 

incubating at 37oC for 30 min. The culture well, 1 mm deep and 2 cm in diameter, was created in 

60 mm culture dish (Nunclon) by drilling a hole and attaching an activated coverslip (described in 

Beningo and Wang, 2002) at the bottom. During polymerization a 25 mm coverslip was dropped 

on top of the matrix to make the surface flat. For mRNA and protein extraction, 1.1 ml of matrix 
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mix of the same composition was polymerized in larger wells of 1 mm depth and 3 cm in diameter. 

The polymerization was carried out at 37oC for 60 min.  After polymerization, 4 ml of warm media 

was added to the plates and coverslips on the top were removed. The matrices were then 

sterilized under ultraviolet light for 15 min within a laminar flow culture hood. “Collagen only” 

matrices were prepared in the same manner without adding fibronectin to the matrix mix. 

In vitro Mechano-Invasion Assay 

For the invasion assay, 1.5 X 104 cells were counted by hemocytometer and seeded onto 

the sterilized matrix. The cells were allowed to adhere and spread for 1 hour in the incubator at 

37oC with 5% CO2. To provide mechanical stimulation, the culture dish with seeded matrix was 

held over a rare earth magnet 25 mm in diameter and 5.5 mm in thickness with magnetic field of 

12,100 Gauss. The distance between matrix and the magnet was kept constant to 1.5 cm for all 

experiments. An orbital shaker (Barnstead Thermolyne, Roto Mix-Type 50800) was used to rotate 

the magnet at 160 rpm (2.6 Hz) below the seeded collagen/fibronectin matrix. Another matrix 

seeded with cells was incubated separately without magnetic stimulation served as a control. At 

24 hours (48 hours for integrin β3 overexpression analysis) the invasion response of cells was 

quantified by selecting 10 random microscopic fields of matrix under 10X phase objective on an 

Olympus IX81 microscope. Cells on the surface of the matrix were counted and then invaded 

cells were counted in eight focal planes separated by 100 µm, from 5 µm to 800 µm below the 

matrix surface. The percent invasion was counted as a percent of number of invaded cells 

compared to total number of cells counted.  

Collagenase Degradation 

A 2 mg/ml solution of collagenase was prepared by dissolving collagenase type 4 

(Worthington Biochemical Corporation) in Hank’s Balanced Salt Solution (HBSS, Gibco by Life 
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Technologies) warmed to 37oC. The media on top of the collagen/fibronectin matrix was aspirated 

and the matrix was physically removed from the culture well with a spatula. Each matrix (3 cm in 

diameter) was dropped into a tube containing 2 ml of collagenase solution and kept in water bath 

at 37oC. With intermittent shaking for approximately 10 min, the collagen matrix was degraded. 

Cells were separated by centrifugation at ~500 x g for 5 min in eppendorf centrifuge 5810 R at 

37oC.  The resulting pellet contained both whole cells and the paramagnetic beads from the 

collagen/fibronectin matrix. The pellet was washed with sterile 1X PBS at 37oC.  

RNA Extraction 

The RNA was extracted from invaded cells after the matrix had been degraded as 

mentioned above. The original matrices had been seeded with 7 X 104 HT1080 cells. For each 

independent experiment, control and stimulated matrices were made in duplicates. During 

collagenase degradation cells from duplicate cultures were pooled together. Qiagen RNeasy Mini 

kit was used for RNA extraction from pelleted cells. 700 µl of lysis buffer from the kit was added 

to the pellet. To prevent plugging the column, paramagnetic beads from the pellet were pulled 

down with a magnet, before loading the lysate on to the column. Genomic DNA contamination 

was removed by Qiagen on-column DNaseI digestion. RNA was eluted in 20 µl of DNase/RNase 

free water. The quality of the acquired RNA was tested spectrophotometrically using a NanoDrop 

spectrophotometer (Thermo Scientific). Only RNA samples having 260/280 ≥ 2.0, 260/230 ≥ 1.7 

and concentration ≥ 40 µg/ml were used for further studies.  

PCR Array and qPCR Analysis 

RNA obtained from both control and mechanically stimulated cells from the invasion assay 

were used to make cDNA that was used for PCR array as well as qPCR analysis. For each 

experiment, 1 µg of RNA from each control and stimulated sample was converted into cDNA using 
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RT² First Strand Kit (SA Biosciences, for PCR array analysis) or GoScript™ Reverse 

Transcriptase (Promega, for qPCR). To identify differentially expressed genes between non-

stimiulated and stimulated conditions from the invasion assay, the following PCR arrays were 

purchased from SA Biosciences; Cell Motility PCR Array, Tumor Metastasis PCR Array and ECM 

and Adhesion Molecules PCR Array. PCR array analysis was performed using RT² qPCR SYBR 

Green/ROX MasterMix-12 (SA Biosciences) on a Stratagene Mx3000P instrument. The raw data 

obtained were analyzed using the web-based RT2 Profiler PCR Array Data Analysis software (SA 

Biosciences). For confirming the differential expression, qPCR primers were designed for the 

genes showing more than 1.35 fold differential expression in PCR array analysis. For designing 

qPCR primers online PrimerQuest software (Integrated DNA technologies) was used. The 

following primers were synthesized; GAPDH (GAPDH-F: 5'- 

TTCGACAGTCAGCCGCATCTTCTT- 3', GAPDH-R: 5'- ACCAAATCCGTTGACTCCGACCTT- 

3'), ACT3 (ACT3-F: 5'- CAATGGCCTCAAACTCATGCTGCT- 3', ACT3-R: 5'- TCTCTTCAGCA 

CCAATGGACACCA- 3'), SRC (SRC-F: 5'- ATCCTACTGTGTGCTGGAAAGCGA- 3', SRC-R: 5'-

GGTGCAGATGTTCACAAACAGCCA-3'), MMP14 (MMP14-F: 5'- TGATGGATGGATACCCAA 

TGCCCA- 3', MMP14-R: 5'- CGCCTCATCAAACACCCAATGCTT- 3'), CTTN (CTTN-F: 5'-TCCA 

AAGGATTCGGCGGGAAGTAT-3', CTTN-R: 5'-ACCTGGGTGACATCCTCAAAGGTT-3'), 

DIAPH1 (DIAPH1-F: 5'-TGAAGGCTTGGCCTCCTTATTGGA-3', DIAPH1-R: 5'-TCTCATGCTT 

GTTCCGGCTATCGT-3'), MYL9 (MYL9-F: 5'-GGCCACATCCAATGTCTTCGCAAT-3', MYL9-R: 

5'-AGCCATCACGGTTCTGGTCAATCA-3'), PTK2B (PTK2B-F: 5'-AGAAGTTCATGAGCGAGG 

CAGTGA-3', PTK2B-R:5'- ATTCCATGATGATCCAGGTGGGCT-3'), ITGB3 (ITGB3-F: 5'-

TGGACAAGCCTGTGTCACCATACA-3', ITGB3-R: 5'-TTGTAGCCAAAC ATGGGCAAGCAG-3'), 

IGF1 (IGF1-F: 5'-TGAAGATGCACACCATGTCCTCCT-3', IGF1-R: 5'-AACTGAAGAGCATCCA 

CCAGCTCA-3'), MTSS1 (MTSS1-F: 5'-ATCAAGATGGGCTTTGCCGTTTCC-3', MTSS1-R: 5'-
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AGCCAAACCGCTCTGTAGGGTATT-3'), TSHR (TSHR-F: 5'-ACCCGTGTGAAGACATAATGGG 

CT-3', TSHR-R: 5'-AGGACAAAGACATTGCCCAGGAGA-3'). The GAPDH gene was used as the 

normalizing gene in the analysis. The qPCR analysis of individual genes was performed using 

RT² qPCR SYBR Green/ROX MasterMix-12 (SA Biosciences) on Stratagene Mx3000P 

instrument. For every gene, at least two biological replicates were performed and for every 

biological replicate two technical replicates were performed. The raw data obtained were analyzed 

using Stratagene Mx-Pro Mx3000P software. Student’s t-test was performed to determine the 

statistical significance of difference in gene expression.  

Integrin β3 Overexpression 

 A plasmid with human ITGB3 gene, pcDNA3.1-beta-3, provided by Dr. Timothy Springer 

(Addgene plasmid #27289), was used for integrin β3 overexpression in HT1080 cells. HT1080 

cells were grown to approximately 85% confluency and nucleofected using the Amaxa 

Nucleofector 2 with the Amaxa nucleofector kit T (Lonza). 4 µg of pcDNA3.1-beta-3 plasmid were 

used for each nucleofection. The cells were also cotransfected with pmaxGFP® supplied with the 

kit, to determine the efficiency of nucleofection. For mock nucleofection, HT1080 cells were also 

transfected with pmaxGFP or with Amaxa nucleofector kit T (Lonza) alone. After nucleofection, 

cells were seeded into 100 mm culture dish for 24 hours and incubated at 37oC with 5% CO2. In 

case of invasion assays performed for protein extractions, nucleofected cells were directly seeded 

on to collagen/fibronectin matrices prior to incubation.  

Protein Extraction 

Triple detergent lysis buffer (TDLB; 50 mM Tris HCL pH 8.0, 150 mM NaCl, 1% NP-40, 

0.5% sodium deoxycholate, and 0.1% SDS) mixed with Protease Inhibitor Cocktail (Sigma), and 

HaltTM Phosphatase Inhibitor Cocktail (Thermo Scientific) was used for protein extraction for 
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western blot analysis. In studies checking for integrin β3, proteins were extracted from HT1080 

cells, mock nucleofected HT1080 cells and HT1080 cells nucleofected with integrin β3 plasmid at 

24, 48 and 72 hours post nucleofection. All cells were rinsed with 1X PBS and incubated with 

TDLB for 20 min under ice-cold conditions. Lysates were centrifuged at 4oC for 10 min at ~5500 

x g to remove cell debris. Protein estimation was done using the DC assay (Bio-Rad).  

For protein extraction from invaded cells, collagen/fibronectin matrices were prepared as 

mentioned above and seeded with HT1080 cells, mock nucleofected HT1080 cells or HT1080 

cells nucleofected with integrin β3 plasmid. For each experiment, control and stimulated matrices 

were made in duplicates. After 48 hours of mechanical stimulation, matrices were degraded with 

collagenase and cells were pelleted down by centrifugation as described above. The cell pellet 

was incubated with 250 µl TDLB for 20 min under ice-cold conditions. The paramagnetic beads 

were separated from lysates with a magnet. Lysates were centrifuged at 4oC for 5 min at ~7000g 

to remove cell debris. The supernatant was again mixed with separated paramagnetic beads, in 

order to avoid loss of protein bound to paramagnetic beads. This solution was then mixed with 50 

µl of 6X lamelli buffer (reducing or non-reducing, based on the antibody to be used) and boiled 

for 10 min. Immediately following boiling, paramagnetic beads were separated from the solution 

using a magnet, without letting the solution cool down. Protein estimation was done by the RC-

DC assay (Bio-Rad).  

Western Blots 

Western blots were performed with protein samples collected from HT1080 cells, mock 

transfected HT1080 cells, and integrin β3 transfected HT1080 cells. Invasion assays were 

performed with all the above cell conditions and western blots were performed with protein 

samples collected from each condition following 48 hours of mechanical stimulation. 15 µg – 25 
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µg of protein was run on a 4-20% PreciseTM Protein Gel (Thermo Scientific) for one hour at 100 

V. Proteins were then transferred onto a PVDF membrane (Bio-Rad) using a Transblot® SD 

Semi-Dry Transfer Cell (Bio-Rad) at 20 V for 30 min. Following transfer, the PVDF membrane 

was blocked for 1 hour using 5% milk in 0.1% PBS/T (for GAPDH and cofilin), 5% milk in 0.1% 

TBS/T (for integrin β3 and integrin β1) or 5% BSA in 0.1% TBS/T (for phospho-cofilin (ser3)). 

Primary antibody dilutions were made in the same solutions used for blocking (except for integrin 

β3 for which 1% milk in 0.1% TBS/T was used) and incubated at 4oC overnight (except for cofilin; 

4 hours at RT). The following day, the membrane was washed three times for 10 minutes each 

either with 0.1% PBS/T (GAPDH and cofilin) or 0.1% TBS/T (phospho-cofilin (ser3), integrin β3 

and active integrin β1). Secondary antibody dilutions were made in the same solution as that of 

primary antibody and incubation was carried out at RT for 1 hour. The following antibodies were 

used for these studies; rabbit polyclonal integrin β3 antibody (1:300, Santa Cruz Biotechnology), 

rat monoclonal active integrin β1 antibody (1:5000, BD PharmingenTM), mouse monoclonal cofilin 

antibody (1:300, Abcam), rabbit monoclonal phospho-cofilin (ser3) antibody (1:1000; Cell 

Signaling Technology), mouse monoclonal GAPDH antibody (1:15000; Millipore), HRP tagged 

anti-mouse antibody (Fisher), HRP tagged anti-rat (Abcam), HRP tagged anti-rabbit (Amersham 

GE Healthcare). GAPDH served as a loading control in all experiments. Following secondary 

antibody incubation, membranes were washed again with 0.1% PBS/T or 0.1% TBS/T three times 

for 10 minutes each and for detection incubated with Amersham ECL Prime Western Blotting 

Detection Reagent. After development, band intensity readings were taken using ImageJ 

software.  
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CHAPTER 3 - RESULTS 

Many types of mechanical forces are produced in the tumor stroma. With the growing 

awareness about these mechanical forces, a new door for research has opened with respect to 

their effect on the process of metastasis. Despite the different known mechanical forces produced 

in the tumor microenvironment, efforts have focused heavily on only one kind of mechanical force, 

increased rigidity of the stroma. Recently it has been shown that the rigidity of tumor stroma is 

responsible for an increase in number and activity of invadopodia as well as cell proliferation and 

dissemination (Kostic et al., 2009; Levental et al., 2009; Paszek et al., 2005). We have developed 

an in vitro mechano-invasion assay, where we tested the impact of mechanical stimuli in the form 

of pulling forces on the cells ability to invade the stroma. We have found a significant increase in 

the invasion efficiency of cells in this mechanically stimulated culture environment compared to 

that in a non-stimulated culture environment (Menon and Beningo, 2011). However, the 

mechanistic details about this process of mechanosensing still remain elusive. Our objective is to 

uncover candidate genes involved in this mechanosensing pathway, which ultimately leads to 

cancer metastasis. Based on our preliminary data, we hypothesized that in response to 

mechanical forces in the stroma, cancer cells will show an altered expression of genes involved 

in mechanosensing. To test our hypothesis, we used real-time PCR analysis to identify 

differentially expressed genes in mechanically stimulated cancer cells compared to non-

stimulated cancer cells.  

RNA Extraction Standardization 

 In order to obtain an RNA yield sufficient for real-time PCR experiments, the previously 

described in vitro invasion assay was scaled up. For scaling up, HT1080 cells were seeded on 

larger collagen/fibronectin substrates (3 cm in diameter) and mechanical stimulation was provided 
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for 48 hours. For real-time PCR it is recommended to use RNA with 260/280 ≥ 2.0 and 260/230 

≥ 1.7, in order to have RNA free of protein and chemical contamination. As the cells were invaded 

into the collagen/fibronectin matrix, it was necessary to degrade the matrix to isolate the cells for 

RNA extraction. For standardization of matrix degradation and RNA extraction two different 

methods were used. In the first method, the collagen/fibronectin matrix was degraded with TRIzol, 

which degrades the matrix and lyses the cells simultaneously. Therefore, the matrix degradation 

will be directly followed by RNA extraction with chloroform as per the TRIzol RNA extraction 

protocol. Despite numerous attempts, this method consistently produced values of 260/230 ratio 

significantly less than 1.7 indicating phenol contamination in the purified RNA. As an alternative 

approach, the degradative enzyme collagenase in Hanks’s balanced salt solution at 37oC was 

used to degrade the matrix. However, as collagenase is known to have a low tryptic and protease 

activity, the concentration of collagenase solution to be used for matrix degradation, without 

damaging the cells, required standardization. The concentration of collagenase was standardized 

to 2 mg/ml which degraded the matrix within 10 min. The cells were separated by centrifugation 

and RNA was extracted with the Qiagen RNeasy mini kit. Any genomic DNA contamination was 

removed by Qiagen on-column DNaseI digestion. An RNA with sufficient concentration and of 

high quality was consistently obtained using this method and therefore it was used for RNA 

extraction. 

Identification of Differentially Expressed Genes by PCR Array Analysis 

 For identification of differentially expressed genes under stimulated and non-stimulated 

conditions, three sets of PCR arrays were purchased from SA Biosciences. Each PCR array 

contained primers against 84 candidate genes related to cell motility, tumor metastasis and ECM 

and adhesion molecules. The RNA was obtained from mechanically stimulated and non-

stimulated cells as described above and was then used to prepare cDNA. This cDNA was used 
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for PCR array analysis. The gene expression was normalized with five housekeeping genes, actin 

(ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

hypoxanthine phosphoribosyltransferase 1 (HPRT1) and large ribosomal protein (RPL13A). The 

differentially expressed genes identified by PCR array analysis were classified into 7 groups 

based on their function (Figure 4). With cut-off value of 1.35, 46 genes were found to be 

differentially expressed, out of which 39 genes were up-regulated (Table 1) and 8 genes were 

down-regulated (Table 2). 

 From the differentially expressed genes listed in table 1 and 2, select genes were chosen 

for further confirmation of gene expression by qPCR. The factors for selection were based on 

literature survey, genes with known association with cancer cell invasion and genes associated 

with mechanosensing. The genes chosen were, CTTN (cortactin), DIAPH1 (diaphanous 

homologue 1), SRC (V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog), TSHR 

(thyroid stimulating hormone receptor), ITGB3 (integrin β3), MTSS1 (metastatic suppressor 1), 

Figure 4. Differentially expressed genes identified by PCR array. Genes found to be more 
than equal to +/- 1.35-fold differentially expressed upon mechanical stimulation were classified 
into seven groups. The pie chart illustrates the number of differentially expressed genes in 
each class. The table demonstrates the number of up-regulated and down-regulated genes 
within each class.  
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Up-regulated genes (> 1.35 fold) 

Gene name 
Fold 

regulation 
Gene name 

Fold 
regulation 

Gene name 
Fold 

regulation 

Cell 
adhesion 
genes  

Membrane 
projections  ECM proteins  

BCAR1 1.40 CTTN† 1.47 COL14A1 2.35 

LAMA2 1.62 DIAPH1† 1.49 COL7A1 1.75 

PNN 1.42 RDX 1.39 VCAN 1.72 

ROCK1 1.37 SRC† 1.79 HAS1 1.61 

    SPP1 1.48 
Cell growth 
and 
proliferatio
n   Proteases  THBS3 1.64 

CCL7 3.22 ADAMTS13 1.57 VTN 1.64 

CXCR4 1.43 ADAMTS8 1.69   

DENR 1.43 MMP10* 2.59 +/- 0.8 
Protease 
inhibitor  

GNRH1 1.86 MMP12 2.20 KAL1 1.47 

KISS1R 1.70 MMP13 1.73   

HTATIP2 2.31 MMP15 2.27 
Rho family 
GTPase  

IL8RB 1.59 MMP16 1.51 ARHGDIA 1.37 

SET 1.39 MMP2 1.55 RAC2 1.39 

TSHR† 5.46 MMP7 1.40   

VEGFA 1.45 SPG7 1.84   

 Confirmation of Differential Gene Expression by qPCR 

Down-regulated genes (> -1.35 fold) 

Gene name 
Fold 

regulation 
Gene name 

Fold 
regulation 

Cell adhesion genes  Integrin mediated signaling  

ACTN3** -3.89 ITGB3* 
-1.73 +/- 
0.2 

CLEC3B -2.17 Proteases  

MYL9** -1.57 MMP8 -2.13 

MTSS1** -1.37 Rho family GTPase signaling  

PTK2B** -1.67 RHO -1.58 

Table 1: Up-regulated genes in mechanically stimulated cells obtained by PCR array analysis. 

(*genes tested in more than one array; †inconsistent results) 

 

Table 2: Down-regulated genes in mechanically stimulated cells obtained by PCR array 

analysis. (*genes tested in more than one array; **genes tested individually by qPCR) 
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PTK2B (protein tyrosine kinase 2B), MYL9 (myosin light chain 9), ACTN3 (actinin 3), MMP14 

(matrix metalloproteinase 14). Similar to PCR array analysis, qPCR was performed with RNA 

extracted from cells incubated under stimulated and non-stimulated conditions for 48 hours. For 

every gene, at least two biological replicates were used and for every biological replicate two 

technical replicates were performed. The housekeeping gene GAPDH was used for normalization 

of gene expression. After repeating the qPCR, CTTN, DIAPH1, SRC and TSHR did not show a 

consistent change in gene expression (P > 0.05). However, differential expression of ITGB3, 

MTSS1, PTK2B, MYL9, ACTN3 and MMP14 were confirmed by qPCR. Out of these genes, 

ITGB3, MTSS1, PTK2B, MYL9 and ACTN3 were confirmed to be down-regulated in response to 

Figure 5. Genes confirmed to be differentially expressed upon mechanical stimulation. 
ITGB3 – β3 integrin; MTSS1 – Metastasis  suppressor 1; PTK2B – Protein kinase 2 β; MYL9 
– Myosin light chain 9; ACTN3 – Alpha 3 actinin; MMP14 – Matrix  metalloproteinase 14. Above 
differentially expressed genes were selected for further confirmation by qPCR. Two biological 
replicates were used for qPCR of MMP14; three biological replicates were used for qPCR of 
MTSS1, ITGB3, MYL9 and ACTN3; four biological replicates were used for qPCR of PTK2B. 
For every biological replicate two technical replicates were also performed. Statistical 
significance was tested by performing Student’s t-test (P<0.05).  
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mechanical stimulation, whereas, MMP14 was up-regulated after mechanical stimulation (Figure 

5).  

Down-regulation of the Integrin β3 Protein upon Mechanical Stimulation 

 From the above confirmed differentially expressed genes, ITGB3 was chosen for further 

analysis for a number of reasons. ITGB3 codes for integrin β3, one of the β subunits of membrane 

receptors called integrins. Integrins bind to extracellular membrane proteins and are known to 

relay signals from outside of the cell to inside and vice-versa and they are considered to be 

potential mechanosensors (Rathinam and Alahari, 2010). Integrin β3 has been found to be 

differentially expressed in different types of cancer and this differential expression is associated 

with increased cell proliferation and invasion (Jin and Varner, 2004). More importantly, integrin 

β3 pairs with integrin αv or integrin αIIb to form heterodimeric integrin molecules. These integrin 

β3 containing heterodimers are known to bind Arginine-Glycine-Aspartic acid (RGD) domains of 

Figure 6. Transcriptional down-regulation of integrin β3 is also reflected at protein level. 

A) HT1080 cells were seeded on collagen/fibronectin matrix and incubated with or without 

mechanical stimulation for 48 hours. Protein was extracted from cells separated out of the 

matrix by collagenase treatment. Western blot confirmed the down-regulation of integrin β3 at 

protein level under stimulated condition compared to non-stimulated condition. B) Graph 

illustrating approximately 0.6 times down-regulation of protein expression of integrin β3 after 

stimulation. Significance was tested using Student’s t test (P = 0.0059). 

A B 

* 
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fibronectin (Xiong et al., 2002). As fibronectin has been shown to be required for enhanced cellular 

response in our invasion assay (Menon and Beningo, 2011), the down-regulation of integrin β3 

upon mechanical stimulation was intriguing. 

 Given that we were sure β3 levels were down-regulated at the transcriptional level, we 

confirmed the down-regulation of integrin β3 at translational level. To test for β3 protein levels, 

HT1080 cells were seeded on larger collagen/fibronectin substrates and incubated with and 

without mechanical stimulation for 48 hours. After 48 hours, cells were removed from within the 

matrix by collagenase treatment and protein was extracted from them using triple detergent lysis 

buffer. Western blot analysis performed using these cell lysates showed down-regulation of 

integrin β3 protein levels when mechanically stimulated in the invasion assay (Figure 6A). Cell 

lysates from mechanically stimulated cells had approximately 0.6 times integrin β3 compared to 

that from non-stimulated cells. This value was comparable to gene expression levels, where 

stimulated samples contained 0.5 times ITGB3 mRNA compared to non-stimulated samples 

(Figure 5 and 6B). 

Enhanced Invasion is Inhibited by Over-expression of Integrin β3 

 Once the down-regulation of integrin β3 at transcriptional and translational levels was 

confirmed, we addressed the functional significance of this down-regulation. Naturally we 

speculated that its down-regulation is directly involved in sensing the mechanical stimulus. 

However, it is entirely possible that down-regulation of integrin β3 is just an outcome of enhanced 

invasion and not required for sensing the mechanical stimulus. To test the functional significance 

of the down-regulation of integrin β3 we over-expressed integrin β3 in HT1080 cells and tested 

the invasion response of these cells in the mechano-invasion assay. If the down-regulation of 

integrin β3 is required for cells to sense the mechanical stimulus and show enhanced invasion re- 
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sponse, overexpression of integrin β3 should inhibit the enhanced invasion observed in these 

cells.  

Figure 7. Down-regulation of integrin β3 is required for enhanced invasion. A) HT1080 

cells nucleofected with pCDNA3.1-beta3 plasmid overexpressed integrin β3 by approximately 

two-fold for up to 72 hours compared to mock nucleofected HT1080 cells (control). B) Integrin 

β3 overexpressing cells and control cells cultured for 24 hours were seeded on 

collagen/fibronectin substrate. The substrates were incubated with or without mechanical 

stimulation for 48 hours. Number of cells invaded into the substrate were counted in 10 

different fields and percent invasion was calculated in comparison with cells on surface of the 

substrate. Mock nucleofected cells showed 2-fold enhanced invasion in response to 

mechanical stimulation over non-stimulated condition. Whereas, cells over-expressing integrin 

β3 failed to show enhanced invasion upon mechanical stimulation and showed basal level of 

invasion as non-stimulated culture. The significance was tested using two factor ANOVA 

(P<0.05). 

A 

B 

* 
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 Integrin β3 was overexpressed in HT1080 cells by nucleofecting them with pcDNA3.1-

beta-3 plasmid. The cells were also co-nucleofected with GFP plasmid to estimate the 

nucleofection efficiency. Fluorescence microscopy, indicated a 75-80% nucleofection efficiency 

was obtained for every experiment. HT1080 cells nucleofected with only GFP plasmid were used 

as control for these experiments. Western blot confirmed that ITGB3 gene was stably 

overexpressed up to 72 hours and approximately two-fold over-expression was obtained (Figure 

7A). After nucleofection cells were incubated at 37oC for 24 hours to let them recover and allow 

stable over-expression of integrin β3. After 24 hours these cells were seeded on 

collagen/fibronectin substrates and incubated with or without mechanical stimulation for 48 hours. 

After 48 hours, the number of cells invaded into the collagen/fibronectin matrix, were counted. It 

was observed that cells overexpressing integrin β3 failed to respond to mechanical stimulation 

and did not display enhanced invasion. However, control cells nucleofected with GFP plasmid 

showed the typical 2-fold enhanced invasion with mechanical stimulation compared to those 

under non-stimulated conditions (Figure 7B). This confirmed that down-regulation of integrin β3 

is required for the process of enhanced invasion and if the integrin β3 down-regulation is inhibited, 

cells fail to show enhanced invasion in response to mechanical stimulation.  

Down-regulation of Integrin β3 is Not Accompanied by Increased Activity of Integrin β1 

 Numerous instances of integrin crosstalk have been reported, where binding of one 

integrin to its ligand causes perturbation in the expression levels or activity of other integrins.  

Such crosstalk is known to occur between integrin β3 and integrin β1 (Gonzalez et al., 2010). 

Integrin β1 is another fibronectin binding β subunit of integrin. To address the potential of integrin 

cross-talk between these two integrins we tested if down-regulation of integrin β3 is accompanied 

by an increase in the activation of integrin β1. A re-evaluation of the PCR array analysis indicated 

there was no difference in the expression levels of integrin β1 under stimulated and non-
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stimulated conditions (Figure 8A). However, as a result of integrin crosstalk between integrin β1 

and β3 the regulation may not occur at the level of expression but in the degree of receptor 

activation of β1. To address this possibility, we tested if levels of active integrin β1 are increased 

upon mechanical stimulation compared to non-stimulated cultures. 

A 

B 

Figure 8. No change in activation of integrin β1 upon mechanical stimulation. A) 

Expression levels of integrin β1 were found to be similar under stimulated and non-stimulated 

conditions by PCR array analysis. Statistical analysis was performed by Student’s t-test 

(P>0.05)   B) HT1080 cells cultured on collagen/fibronectin substrates under mechanically 

stimulated or non-stimulated conditions for 48 hours. Cell lysates collected from these cells 

were used to perform western blot for active integrin β1. C) Graph showing average levels of 

active integrin β1 in four biological samples under mechanically stimulated and non-stimulated 

conditions. No significant difference between levels of active integrin β1 was observed 

between stimulated and non-stimulated conditions. Significance was tested using Student’s t-

test (P=0.28). 

C 
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  We used an antibody that specifically recognizes the activated conformation of integrin β1 

and probed western blots prepared from HT1080 cell lysates. HT1080 cells incubated with or 

without mechanical stimulation for 48 hours, were separated from collagen/fibronectin matrix and 

lysed to collect total protein. Western blot performed with these protein extracts determined that 

levels of activated integrin β1 upon mechanical stimulation were not significantly different from 

those in non-stimulated cells (Figure 8B and 8C). Our results suggest that no crosstalk occurs 

between integrin β1 and integrin B3 in the invasive response observed upon mechanical 

stimulation.  

Down-regulation of Integrin β3 causes Decrease in Levels of Ser3 Phospho-cofilin upon 

Mechanical Stimulation 

To identify potential down-stream pathways of integrin β3, we focused on the relationship 

between integrins and cofilin. As mentioned previously, cofilin is an actin binding protein that 

severs actin filaments and have been shown to be required for invadopodia maturation 

(Yamaguchi et al., 2005). Moreover, in our in vitro mechano-invasion assay, cofilin siRNA treated 

cells failed to sense the mechanical stimulation and did not show enhanced invasion, yet retained 

basal levels of invasion (Menon and Beningo, 2011). Cofilin activity within the cell is controlled by 

its phosphorylation at serine-3 by LIM kinase. When phosphorylated at serine-3, cofilin loses its 

ability to bind and sever actin filaments and is considered to be inactive. The phosphorylation 

status of cofilin is under indirect control of Rho GTPases (Pollard and Borisy, 2003). As Rho 

GTPases such as Rho, Rac and Cdc42 are differentially regulated under different integrins, 

differences in integrin signaling might also affect down-stream cofilin activity. We hypothesized 

that under mechanically stimulated conditions levels of Ser3 phospho-cofilin (inactive) were lower 

compared to those in non-stimulated conditions, leading to enhanced invasion. In addition, if the 
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cofilin activity is dependent on integrin β3 expression, overexpression of integrin β3 should 

increase the levels of phospho-cofilin upon mechanical stimulation.  

A 

B 

Figure 9. Decrease in levels of Ser3 phospho-cofilin upon mechanical stimulation is 

dependent on down-regulation of integrin β3. A) Cell lysates from HT1080s, HT1080s 

overexpressing integrin β3 and mock nucleofected HT1080 cultured on collagen/fibronectin 

substrate with or without stimulation for 48 hours, were used for western blot for Ser3 phospho-

cofilin and total cofilin. B) Quantitation of band intensities showed significant decrease in 

phospho-cofilin in HT1080 and control cells upon stimulation, but not in integrin β3 

overexpressing cells. Significance was tested using two-factor ANOVA (P<0.05).  

* 
* 
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 To test our hypothesis, cell lysates were collected from HT1080 cells cultured on 

collagen/fibronectin substrates and incubated with or without mechanical stimulation for 48 hours. 

The western blot performed with these cell lysates determined that levels of Ser3 phospho-cofilin 

were indeed decreased under mechanically stimulated conditions compared to non-stimulated 

conditions indicating that more cofilin was likely to be active (Figure 9A). Cell lysates collected 

from mock nucleofected cells also showed similar decrease in Ser3 phospho-cofilin upon 

mechanical stimulation. Quantitation of band intensities found that Ser3 phospho-cofilin upon 

mechanical stimulation were approximately 0.65 times lower when compared to the non-

stimulated samples in both HT1080 cells and mock nucleofected HT1080 cells (Figure 9B). 

However, when integrin β3 was over-expressed within the cells, the effect of mechanical 

stimulation on Ser3 phospho-cofilin level was reversed, such that similar levels of Ser3 phospho-

cofilin were observed in integrin β3 overexpressing HT1080 cells with or without mechanical 

stimulation (Figure 9A and 9B). In addition, the amount of total cofilin was unchanged in HT1080 

cells, integrin β3 overexpressing HT1080 cells and mock nucleofected HT1080 cells, between 

stimulated and non-stimulated conditions (Figure 9A). Our data strongly suggests that the amount 

of active cofilin increases in response to mechanical stimulation and this increase in active cofilin 

is brought about by down-regulation of integrin β3.  
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CHAPTER 4 - DISCUSSION 

 Metastasis is a multistep process controlled by various biochemical and mechanical 

factors in the tumor microenvironment. Secondary tumors formed by metastatic cancer cells are 

the leading cause of death in cancer patients. In order to recognize potential therapeutic targets 

against metastasis, it is important to understand the effects of factors that instigate the process in 

the first place. In this study, I have focused on the effects of mechanical factors in the tumor 

microenvironment that can enhance cancer cell invasion. In our in vitro mechano-invasion assay 

we used magnetic beads embedded within the collagen/fibronectin matrix to mimic the pulling 

forces produced by cellular movements within the extracellular matrix (Menon and Beningo, 

2011). Under the effect of these pulling forces, a greater number of cancer cells will invade into 

the ECM (Figure 2). In this study I wanted to identify molecular players in the process of 

mechanosensing that eventually leads to the enhanced invasion of cancer cells in our assay. My 

approach was to identify genes that are differentially expressed between mechanically stimulated 

and non-stimulated conditions by qPCR. As mRNA is the least stable biomolecule within the cell, 

it was challenging to standardize a method for RNA extraction from invaded cells. With the help 

of collagenase, invaded cells were taken out of the matrix within 15 min and RNA was successfully 

extracted from them.  

 Using PCR arrays I was able to screen over 200 genes that could be differentially 

regulated between mechanically stimulated and non-stimulated conditions. Candidate genes 

were identified and categorized based on their function. These genes belonged to the following 

categories; cell adhesion, cell growth and proliferation, membrane protrusions, proteases, ECM 

proteins, protease inhibitors, Rho family GTPase signaling (Figure 4). The pattern of overall gene 

regulation in some of the above categories was interesting. For instance, in the case of cell 

adhesion genes, a greater number of genes were down-regulated than up-regulated. This 
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observation is consistent with the idea that in both 3D invasion and 2D migration, optimal motility 

of cells occurs when cells possess an intermediate degree of adhesiveness (Palecek et al., 1997; 

Zaman et al., 2006). Therefore, down-regulation of cell adhesion genes is suggestive of an 

increase in invasive ability of the cells. Also, in my screen, many genes involved in membrane 

protrusions were found to be up-regulated. As these genes are known to be required for 

invadopodia formation in tumor cells, their up-regulation could indicate formation of more 

invadopodia under mechanical stimulation (Albiges-Rizo et al., 2009; Alexander et al., 2008). In 

addition, I also found that many genes coding for different proteases were up-regulated under 

mechanical stimulation. During invasion, cells need to breach the physical barriers formed by the 

basement membrane (BM) and stroma, and they secrete proteases to degrade the ECM proteins 

that form these barriers (Poincloux et al., 2009). Hence, this increase in proteases also suggests 

increased invasive activity by cells. In addition to these, differential regulation of Rho GTPase 

signaling molecules, which are the key regulators of actin dynamics, also point to modulation of 

cell motility upon stimulation (Jaffe and Hall, 2005).  

 From the above candidate genes I was able to confirm the differential expression of six 

genes between mechanically stimulated and non-stimulated conditions of our mechano-invasion 

assay. Out of these six genes, ITGB3 that codes for integrin β3 was selected for further studies 

because it was the only integrin subunit found to be differentially regulated upon mechanical 

stimulation. Other genes confirmed to be differentially expressed were as follows. 1) MTSS1, also 

known as ‘Missing-in-metastasis (MIM)’, is expressed in low levels in cancer cells (Lee et al., 

2002). It codes for an actin binding scaffold protein that regulates actin dynamics through its 

interactions with cortactin and protein tyrosine phosphatase δ (PTPδ) (Gonzalez-Quevedo et al., 

2005; Lin et al., 2005; Quinones et al., 2010; Woodings et al., 2003). 2) MYL9 codes for myosin 

light chain (MLC) which is a regulatory component whose phosphorylation state dictates myosin 
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motor binding to actin filaments. The actomyosin contractility is required by cells to apply traction 

force on its substrate as well as for retracting the trailing edge of the cell as it moves forward 

hence it is mechanistically important in cell motility.  (Jaffe and Hall, 2005; Ridley et al., 2003). 3) 

ACTN3 codes for a homologue of α-actinin. It is an actin crosslinking protein generally found at 

different cell-cell and cell-matrix adhesions. It connects transmembrane proteins such as tails of 

β integrins and intracellular adhesion molecule-1 (ICAM-1) to the actin cytoskeleton (Carpen et 

al., 1992; Otey et al., 1990). It also acts as a scaffold to bring together different signaling 

molecules and plays an important role in cell migration (Otey and Carpen, 2004). 4) PTK2B codes 

for a non-receptor protein tyrosine kinase that binds to cytoplasmic tails of integrins and is 

activated in response to cues from fibronectin in many developmental processes (Ma et al 1997, 

Schaller and Sasaki, 1997). Down-regulation of PTK2B is required for the differential cell 

response to rigidity and compliance in human foreskin fibroblasts (Prager-Khoutorsky et al., 

2011). The kinase activity of PTK2B has been correlated with increased malignancy of cancer 

cells and the catalytic domain of PTK2B has become a therapeutic target (Lipinski and Loftus, 

2010). 5) MMP14 encodes a zinc-dependent endopeptidase called matrix metalloproteinase 14 

that causes collagenolysis (Li et al., 2008; Sabeh et al., 2004). In tumor cells, MMP14 is enriched 

at invadopodia. This provides invadopodial structures with an ECM degrading property, thereby 

increasing the rate of invasion of tumor cells through the ECM (Clark and Weaver, 2008; Linder, 

2007).  

 As described earlier, being transmembrane proteins, β subunits of integrin are able to bind 

extracellular ligands outside the cell and actin cytoskeleton and a variety of signaling proteins 

inside the cell (Rathinam and Alahari, 2010; Springer and Wang, 2004). By virtue of this property, 

β subunits serve as potential mechanosensors and mechanotransductors. Using qPCR and 

western blot analysis I confirmed that integrin β3 is down-regulated upon mechanical stimulation 
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at both the transcriptional and translational levels. As it is a candidate mechanosensing molecule, 

one would expect to see up-regulation of integrin β3 expression upon mechanical stimulation, 

hence this decrease in integrin β3 expression was rather surprising. To confirm that the down-

regulation of integrin β3 upon mechanical stimulation is required for enhanced invasion of cells, I 

overexpressed integrin β3 and inhibited the enhanced invasion normally seen upon mechanical 

stimulation. This indicated that integrin β3 must be down-regulated upon mechanical stimulation 

in order for the cells to respond to the stimulus. The upstream mechanism of how the mechanical 

stimulation causes the down-regulation of integrin β3 is unclear. Since fibronectin in the ECM is 

required for sensing this mechanical stimulus, it is entirely possible that down-regulation of 

integrin β3 is caused by a feedback mechanism that is initiated by mechanosensing through 

integrin β3 itself. Alternatively, a second integrin could be responsible for the down-regulation I 

have observed. 

 Different signaling pathways are controlled down-stream of different integrins and can 

result in very different cellular responses. To control the display and engagement of the correct 

integrins at the proper time, cells use a mechanism of integrin crosstalk, where one type of integrin 

regulates expression and activity of another type of integrin (Gonzalez et al., 2010). Such integrin 

crosstalk has been observed between integrin β3 and another fibronectin binding integrin, integrin 

β1. As integrin β3 is down-regulated upon mechanical stimulation, I checked if it was 

accompanied by an increase in activity of integrin β1. Unfortunately, we did not observe any 

significant changes in the levels of activation of integrin β1 upon mechanical stimulation. However, 

another possibility is that down-regulation of integrin β3 might change localization of integrin β1 

within the cell. For example, down-regulation of integrin β3 might enrich integrin α5β1 in 

invadopodia and thus increasing their interaction with fibronectin resulting in enhanced 

mechanosensing. 
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 The downstream pathway resulting from the down-regulation of integrin β3, and eventual 

increase in cellular invasion upon mechanical stimulation, may not be as obscure as its upstream 

pathway. To begin, our previous studies have shown the requirement of cofilin for sensing the 

mechanical stimulation in our mechano-invasion assay (Menon and Beningo, 2011). As 

mentioned previously cofilin is an actin binding protein, also required for maturation of 

invadopodia and its activity is dependent on phosphorylation by LIM kinase (Pollard and Borisy, 

2003; Yamaguchi et al., 2005). (Blanchoin et al., 2000). My results suggest cofilin is in its active 

state (low phosphorylation at Ser-9) upon mechanical stimulation and that this activation can be 

inhibited upon overexpression of integrin β3. This evidence provides a clue to a known pathway 

leading from integrin beta 3 to cofilin and potentially to the maturation of invadopodia. 

 As cofilin is a key regulator of the actin cytoskeleton, the balance between its active and 

inactive forms is very important with respect to cell motility and invasion. The levels of Ser3 

phosphorylated cofilin are low in highly metastatic cell lines derived from T-lymphoma and 

carcinoma (Nebl et al., 1996). In in vitro as well as in vivo experiments, invasiveness of cancer 

cells has been correlated with overall output of the cofilin pathway (Wang et al., 2006; Zebda et 

al., 2000). The mammary tumors formed by LIMK1 over-expressing cancer cells have been 

shown to have low metastatic potential. The tumors with dominant negative LIMK1 expressing 

cells, on the other hand, show increased invasive abilities (Wang et al., 2006). The 

phosphorylation of cofilin is linked to the ligand binding ability of integrin αvβ3. Murine melanoma 

cells expressing integrin αvβ3 have 10-fold higher amounts of Ser3 phospho-cofilin than integrin 

αvβ3 negative cells. Moreover, expression of pseudophosphorylated and non-phosphorylatable 

mutant cofilin in these cells showed that cofilin activity is required for expression of MMP2 and 

MMP14 (Dang et al., 2006). 
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 Based on our observations and current literature we have developed a model that could 

explain the pathway connecting integrin β3 and cofilin. It is known that integrin engagement and 

activation leads to activation Rho GTPases. Activity of Rho GTPase Rac1 can be regulated by 

integrin β3 in focal complexes (Morgan et al., 2009). We hypothesize that in conditions without 

mechanical stimulation, signaling down-stream of integrin β3 leads to activation of Rac1. The 

active GTP bound Rac1 phosphorylates and activates its down-stream effector p21 activated 

kinase-1 (PAK1) (del Pozo et al., 2000). Active PAK1 activates LIM kinase-1 (LIMK1), which in 

turn phosphorylates its substrate cofilin at Ser-3 thereby inactivating it. Therefore, under non-

Figure 10. Possible pathway for enhanced invasion upon mechanical stimulation. 

Signaling down-stream of integrin β3, through sequential activation of Rac1, PAK1 and LIMK1, 

results in inhibition of cofilin activity by phosphorylation at Ser3. Upon mechanical stimulation 

integrin β3 gets down-regulated thereby decreasing the levels of down-stream kinases. 

Decrease in activation of LIMK1, also decreases phosphorylation of cofilin. This leads to 

increase in levels of active cofilin. Increased cofilin activity probably through formation of more 

mature invadopodia causes enhanced invasion.  
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stimulated conditions, the amount of active cofilin is lower than inactive cofilin, yet it is enough to 

produce basal levels of invasion. When mechanical stimulation is provided, integrin β3 is down-

regulated through an unknown mechanism. As the amount of integrin β3 displayed on the surface 

decreases, the overall signaling down-stream of it also decreases. This leads to a decrease in 

the amounts of Rac1-GTP, which further causes less activation of PAK1 and LIMK1. Thus, the 

collective effect of integrin β3 down-regulation is a decrease in the amount of inactive Ser3 

phospho-cofilin and an increase in non-phosphorylated active form. This increase in active cofilin 

upon stimulation leads to the formation of more mature invadopodia which eventually cause 

enhanced invasion. 

 In conclusion, this study has uncovered a part of the pathway that leads to enhanced 

invasion of cancer cells in response to tugging forces in the tumor microenvironment. For future 

studies, we first need to confirm the involvement of Rac1, PAK1 and LIMK1 down-stream of 

integrin β3 for controlling activation status of cofilin, as predicted by the model. As cofilin is known 

to be involved in invadopodia maturation, it will be interesting to test by microscopic studies if 

stimulated cultures show increased invadopodial activity. Moreover, how cofilin controls the 

maturation of invadopodia is still unknown. Solving these still unanswered questions will take us 

one step closer to understanding the mechanosensing pathway causing enhanced cancer cell 

invasion.  
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Metastasis is a multistep process driven by various biochemical and mechanical factors, 

which eventually leads to formation of secondary tumors. The tumor mass is surrounded by 

basement membrane (BM) and stroma made of various extracellular matrix (ECM) proteins. 

During metastasis tumor cells disseminate from the primary tumor, breach the BM, invade the 

stroma, travel through blood and lymph and colonize tissues distant from the primary tumor. 

Formation of secondary tumors by metastasis is a leading cause of death in cancer patients. Even 

though plenty of research has been focused on biochemical factors affecting metastasis, 

information on role of mechanical factors in this process is very limited. Using our previously 

developed in vitro mechano-invasion assay, we had observed enhanced cellular invasion in 

response to tugging forces in the stroma during cancer cell invasion. In vivo, such tugging forces 

would be produced by contractile cells within the stroma as they migrate and remodel the matrix 

fibers. In addition, we found this mechanically enhanced invasion by cancer cells to be dependent 

on the presence of fibronectin in the extracellular matrix. The objective of our study is to 

understand the mechanotransduction pathway leading to enhanced invasion. We hypothesized 

that in response to mechanical forces in the stroma, tumor cells will show an altered expression 
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of genes involved in mechanosensing. We performed expression profiling of several genes 

related to cell migration, adhesion and tumor metastasis by real-time PCR analysis. Six genes 

were confirmed to be differentially expressed between mechanically stimulated and non-

stimulated conditions. Surprisingly, one of the genes found to be significantly down-regulated in 

the mechanically stimulated invasion culture is a fibronectin specific integrin subunit, integrin β3. 

Over-expression of this gene resulted in a significant decrease in enhanced invasion, supporting 

its role in sensing the mechanical stimulus. Furthermore, down-regulation of integrin β3 resulted 

in decrease in amounts of inactive form of cofilin (Ser3 phospho-cofilin). 
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