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CHAPTER 1 

BACKGROUND 

Overview of Cell Secretion 

Elucidating the complexities of microscopic cellular systems is a major objective 

of scientific research in biology.  Seemingly innocuous alteration to cellular operations 

can have an enigmatic impact on human biological activity as a whole.  Cell secretion is 

one such mechanism that has enormous influence on numerous physiological 

processes.  For example, the release of digestive enzymes, neurotransmitters, and 

hormones are employed through secretion, utilizing the molecular machinery referred to 

as porosomes (Jena 2009; Trikha et al., 2010).  In exocrine pancreas (Schneider et al., 

1997; Cho et al., 2002a; Jeremich et al., 2003), growth hormone cells of the pituitary 

(Cho et al., 2002e), chromaffin cells (Cho et al., 2002f), neurons (Cho et al., 2004, 2007, 

2008; Siksou et al., 2007), and in other cell types, the function, morphology, and 

composition of the porosome has been demonstrated, and the structure has been 

functionally reconstituted into artificial lipid membrane.  A porosome-like “canaliculi 

system” in human platelets (White & Clawson 1980; White 1999), for the precise and 

regulated docking, fusion, and release of intravesicular contents from these cells has 

also been demonstrated.  Interestingly in Nature, even single-cell organisms have 

developed specialized and sophisticated secretory machinery, such as the secretion 

apparatus of Toxoplasma gondii (Joiner & Ross 2002), the contractile vacuoles in 

paramecium (Hausmann & Allen 1997), or the various types of secretory structures in 

bacteria (Kubori et al., 1998).  These studies provide support that these structures and 

the mechanism of cell secretion is conserved and ubiquitous throughout species. 

Investigation of cell secretion through conserved membrane structures 



 

 

2 

(porosomes) has altered former exocytotic paradigms (Jena 2011).  Previously, it was 

believed that exocytosis occurred through complete incorporation of vesicular 

membrane with the cell plasma membrane.  While this theory postulated a possible 

mechanism for cellular release, it also raised a number of questions; for example, the 

conundrum as to why partially empty vesicles accumulate following cell secretion.  Also, 

how could the cell utilize this method of secretion without growing exponentially in size 

due to the incorporation of vesicles into its membrane?  And how could the cell control 

the amount released if vesicles had to discharge all their contents once they began to 

fuse with the plasma membrane?  The second query was rationalized by the conjecture 

that compensatory endocytosis would follow exocytosis to account for the added 

membrane.  However, a full understanding of the molecular mechanism of cell secretion 

required the direct observation of such events.  It was not until the advent of Atomic 

Force Microscopy (AFM) and its near nanometer resolution of the dynamics of cell 

secretion that the mechanism of this process was confirmed (Kelly et al., 2004).   

The story of cell secretion initially began with the discovery of N-ethylmaleimide-

sensitive factor in the promotion of transport vesicle fusion with golgi (Malhotra et al., 

1988).  Subsequent discovery of SNARE proteins (Oyler et al., 1989; Bennette et al., 

1992; Trimble et al., 1988) and their involvement in membrane fusion provided further 

support for a highly regulated cell secretory process. The presence of secretory 

machinery has also been suggested by electron micrograph (EM) images depicting cell 

membranes before (Figure 1A) and after (Figure 1B) secretion stimuli.  Following the 

secretory stimulus, EM data depicts no change in the number of vesicles, but more 

importantly it also demonstrates the appearance of partially empty vesicles (Figure 1B & 

C).  If complete incorporation of vesicles with the plasma membrane were the method 
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by which cells secrete their intravesicular contents, then incomplete release of vesicular 

cargo would not be observed (Cho et al., 2002a).  Instead, secretion would be 

synonymous to an all-or-none event in which vesicle numbers would decrease after 

stimuli and total intravesicular contents would be released to the extracellular medium.  

Empty or partially-filled vesicles (Figure 1C) would not accumulate within cells. 

 

 

Figure 1.  Electron micrographs of resting (A) and stimulated (B) pancreatic acinar 
cells.  (C) The number of zymogen granules before and after stimulation remains 
unchanged.  (D) The number of partially empty ZGs increases following stimulation.  
(Cho et al., 2002a) 

 

These findings were substantiated by AFM studies on pancreatic acinar cells.  

Isolated live pancreatic acinar cells were imaged using AFM before and after simulation 

to secrete (Figure 2B-D).  AFM data indicated that vesicles, located just below the 

surface of apical membranes, initially swelled or increased in size when a secretory 
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stimulus was applied (Figure 2C) followed by a decrease in vesicle diameter, 

demonstrating release of intravesicular contents (Figure 2D).  Immunoblot analysis of 

the secreted products confirmed the secretion of α-amylase from these cells (Figure 

2E).  Additionally, vesicle number did not change following a secretory stimulus.  These 

results confirmed the earlier EM study findings, but above all demonstrated, for the first 

time, secretory events in live cells (Kelly et al., 2004).  

 

 

Figure 2.  Electron micrograph confirming the presence of pancreatic acinar cells  Bar = 
2.5 µm (A). (B-D) Apical surface images of pancreatic acinar cells depicting the 
presence of secretory vesicles before (B) and after (C&D) the secretory stimulus, 1 µM 
carbachol (Carb), was applied.  (E) Immunoblot analysis of secretory products from 
pancreatic acinar cells imaged in B-D.  (Kelly et al., 2004) 

 

Considered perhaps the preeminent discovery within this process was the 

discovery of the porosome (Schneider et al., 1997).  Porosomes are structures at the 

cell plasma membrane by which cells can release their intracellular contents to the 

extracellular environment (Figure 3B) (Cho et al., 2005a).  It has been demonstrated 

that secretory vesicles transiently dock and fuse at the porosome base during cell  
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Figure 3.  (A) AFM micrograph depicting pits (yellow arrows) and porosomes (blue 
arrows) at the apical plasma membrane of a pancreatic acinar cell.  (B) Cartoon 
depiction of porosomes at the cell plasma membrane (PM).  (C) High resolution AFM 
image showing a single pit with four porosomes within it.  (D) Electron micrograph 
depicting porosome (red arrow) next to microvilli (MV) with expanded insert. (E) Close 
up EM image depicting a pre-synaptic membrane (SM) and associated synaptic vesicle 
(SV).  (F) AFM micrograph of neuronal porosome.  (Cho et al., 2005a) 

 

secretion (Cho et al., 2005a).  Proteins at the vesicle membrane, termed v-SNAREs (or 

secretory vesicle-associated membrane protein, VAMP) interact with t-SNAREs 
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(comprised of SNAP-25 and syntaxin) located at the porosome base (Figure 4) (Jena 

2003; Jeremic et al., 2003).  These proteins associate to bring opposing vesicle and cell 

  

 

Figure 4.  The fusion pore complex. (A) Electron micrograph of fusion pores isolated 
from rat pancreatic tissue with drawn in structure for clarity.  (B) Schematic of the 
basket-like structure of the fusion pore depicting the presence of t-SNAREs (C) at its 
base (shown in blue) and its subsequent association with v-SNAREs at the zymogen 
granule membrane.  (D) t- and v-SNAREs bring the cell membrane and zymogen 
granule membrane into closer proximity and associate in a circular array (yellow ring) to 
establish membrane continuity.  (E) When v-SNARE reconstituted liposomes associate 
with t-SNARE reconstituted lipid bilayer, they form a circular array as shown by AFM.  
(Jena et al., 2003) 

 

plasma membranes into close proximity, approximately 2.8Å, for subsequent 

establishment of calcium-mediated membrane continuity (Jeremic et al., 2004).  As 
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vesicle and cell membranes approach one another via SNARE complex assembly, 

fusion of the cell membrane to vesicle membrane to form a continuous channel requires 

the presence of calcium.  Once fusion of the vesicle with the plasma membrane is 

achieved, intravesicular contents are expelled by way of vesicle swelling (Kelly et al., 

2004).  Following expulsion, the SNARE complex dissociates with the assistance of a 

soluble ATPase, known as N-ethylmalemide sensitive factor (NSF) (Jeremic et al., 

2006).  Although much about secretion has been discovered in the last 10 to 20 years, 

the exact molecular dynamics of this highly regulated process is incompletely 

understood. 

Clinical Significance of Cell Secretion 

Secretion and membrane fusion are fundamental cellular processes regulating 

ER-Golgi transport in protein maturation, plasma membrane recycling, cell division, 

sexual reproduction, acid secretion, and the release of enzymes, hormones and 

neurotransmitters, to name just a few.  It is therefore no surprise that defects in 

secretion and membrane fusion give rise to diseases like diabetes, Alzheimer‟s, 

Parkinson‟s, acute gastroduodenal diseases, gastroesophageal reflux disease, 

intestinal infections due to inhibition of gastric acid secretion, biliary diseases resulting 

from malfunction of secretion from hepatocytes, polycystic ovarian disease as a result of 

altered gonadotropin secretion, and Gitelman disease associated with growth hormone 

deficiency and disturbances in vasopressin secretion.  Understanding cellular secretion 

and membrane fusion will therefore help not only to advance our understanding of these 

vital cellular and physiological processes, but in the development of drugs to help 

ameliorate secretory defects (Jena 2004). 

Similarly, disregulation of secretory processes, specifically SNARE mutations 
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which disrupt secretion, can lead to impaired neuronal secretion (Fergestad et al., 

2001), down regulation of vesicle trafficking pathways involved in secretion (Sprecher et 

al., 2005), and inhibition of hormone release (Jeans et al., 2007).  In humans, a 

mutation in the gene encoding for SNAP-29, a protein involved in intracellular vesicle 

trafficking, results in CEDNIK (cerebral dysgenesis, neuropathy, ichthyosis, and 

keratoderma) syndrome.  This disease is characterized by neurological and 

dermatological pathologies (Sprecher et al., 2005).  Patients suffer from symptoms that 

range in severity, including delayed mental development, seizures, and even death 

(Sprecher et al., 2005).  An alteration in gene expression typically accompanies 

diseases such as schizophrenia.  In this disorder, proteins that regulate the pre-synaptic 

functional gene group (PSYN) are down regulated, effecting the expression of N-

ethymalemide sensitive factor (NSF) and synapsin II (Mirnics et al., 2000).  NSF and 

synapsin II are proteins involved in the secretory pathway; therefore, this study 

demonstrates yet another association between cell secretion and disease states. 

Recently, studies have shown that non-structural membrane lipids such as 

lysophospatidylcholine (LPC) are also involved in secretory processes including 

secretion of atrial naturatic peptide (ANP) (Han et al., 2003) and endothelin-1 

(Jougasaki 1992).  The endogenous release of LPC is in response to ischemia (Han et 

al., 2003).  LPC has been shown to inhibit the release of ANP in a dose-dependent 

manner through its effects on phosphoinositide 3-kinase and protein kinase-C pathways 

(Han et al., 2003).  Because ANP typically acts as a vasodilator in response to high 

blood pressure (Baxter et al., 1988), these findings suggest that LPC may play a role in 

the progression of hypertension (Han et al., 2003).  Cultured vascular endothelial cells 

when incubated with LPC, derived from oxidized low-density lipoproteins, cause a 
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decrease in endothelin-1 secretion to counter vasoconstriction due to arthrosclerosis 

(Jougasaki 1992).  Both studies indicate that LPC has effects on secretory pathways, 

specifically on inhibition of hormone secretion. 

On account of the finding that LPC levels are also elevated in some cancers (for 

example in breast and ovarian cancers) (Sutphen et al., 2004; Fang et al., 2000), it 

follows that secretory processes can be altered by disease pathologies and could be 

possible targets for treatment.  Lysophospholipids, specifically lysophosphatidic acid 

(LPA), lysophosphatidylserine (LPS), and sphingosylphosphorylcholine (SPC), are 

involved in calcium release pathways in ovarian as well as breast cancer cells (Xu et al., 

1995).  Their involvement in these pathways has correlations to cancer progression.  

Using mass spectrometry analysis of ovarian patients‟ blood samples, it was 

demonstrated that LPC levels are significantly higher in pre-operative patients (Stuphen 

et al., 2004).  These levels were also significantly increased in early stage patients over 

controls (Stuphen et al., 2004).  Highly aggressive cancer cells express the enzyme 

monoacylglycerol lipase (MAGL), which is capable of converting monoglycerides into a 

number of fatty acid derivatives, including lysophospholipids (Nomura et al., 2010).  This 

lipogenetic pathway is then coupled to a lypolytic pathway employed by aggressive 

cancer cells to support their malignancy (Nomura et al., 2010).  Since lysophospholipids 

play a role in both cancer and secretory processes, cancer progression could contribute 

to the disregulation of cell secretion.  

Since cell secretion is an integral mechanism utilized by all secretory cells, 

investigation into its complexities is vital.  Not only can its disruption lead to diseases 

(for example CEDNIK syndrome) (Sprecher et al., 2005), the mechanism of secretion 

itself can be affected by disease pathologies (such as in schizophrenia) (Mirnics et al., 
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2000) and circuitously through LPC in cancer.  Cancer‟s potential links to cell secretory 

processes draws attention to the suggestion that other disorders could also ultimately 

be linked to impaired secretion.  Because there are a myriad of disorders that are 

shown to have influence on secretion, the critical importance of studying this 

mechanism is further supported for expanding knowledge base and for disease 

therapies. 

The Porosome 

Acinar cells of the exocrine pancreas are polarized cells, which secrete digestive 

enzymes into the small intestine upon stimulation by a secretory stimulus.  It is in these 

cells that the porosome or the secretory portal in cells was first observed (Schneider et 

al., 1997).  Isolated live acinar cells, imaged by AFM, depict in real time the presence of 

circular pits approximately 0.4-1.2 m in diameter at the apical membrane of these cells.  

Each pit also contains 3-4 smaller, cone-shaped depressions (porosomes) 

approximately 100-180 nm in diameter and 15-35 nm in height or depth (Figure 3A, B, 

C) (Cho et al., 2005a).  Upon the addition of the secretagogue, mastoparan (a peptide 

derived from wasp venom), the cone-shaped depressions increase in size 25-45% with 

a reestablishment of resting size once secretion is terminated (Schneider et al., 1997).  

Reciprocally, introduction of cytochalasin B (a fungal toxin that inhibits secretion) to an 

acinar cell preparation causes a decrease in depression size and secretion (Schneider 

et al., 1997).  In addition to these investigations, the existence of the porosome is 

confirmed in neuroendocrine cells (Cho et al 2002e; Cho et al., 2002f), neurons (Cho et 

al., 2004), and astrocytes (Lee et al., 2008). 

To validate that these pores were indeed the structures by which cells secrete 

their intracellular contents, immuno-AFM experiments were performed using gold-
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conjugated antibody to acinar cell secretory products, specifically to amylase in case of 

pancreatic acinar cells (Cho et al., 2002b), and growth hormone in case of growth 

hormone secreting pituitary cells (Cho et al., 2002f).  AFM images (Figure 5) depict 

 

 

Figure 5.  Porosome images and profiles before and after stimulation for secretion.  
Exposure of cells to gold-congugated antibody against amylase (blue arrowheads) 
shows their localization around pores (yellow arrow).  (Jena 2008) 

 

localization of these antibodies to the depressions or porosomes following a secretory 

stimulus.  Once secretion is stimulated, zymogen granules (ZGs), vesicular bodies 

found in pancreatic acinar cells, dock and transiently fuse to the base of porosomes at 

the apical plasma membrane.  Granules then swell, enabling the regulated expulsion of 

their contents, through the porosome opening. Therefore, detection of secretory 

products at the porosome and confirmation of their presence was substantiated by the 

use of gold-conjugated antibodies in these AFM investigations (Cho et al., 2002b).   

The morphology of the pancreatic porosome complex has been further evaluated 

using transmission electron microscopy (TEM) (Jeremic, et al., 2003).  TEM studies 
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confirm the porosome to possess a cup-shaped structure, with similar dimensions as 

determined from AFM measurements.  Additionally, TEM micrographs demonstrate 

pancreatic porosomes to exhibit a basket-like morphology, with three lateral and a 

number of vertically arranged ridges.  A ring at the base of the complex is further 

identified (Jeremic, et al., 2003), and is hypothesized to represent t-SNARE present in a 

circular array.  Studies using full length recombinant SNARE proteins and artificial lipid 

membranes demonstrated that t- and v-SNAREs located in opposing bilayers interact in 

a circular array to form conducting channels (Cho, et al., 2002d).  Since similar circular 

structures are observed at the base of the pancreatic porosome complex, and SNAP-23 

immunoreactivity is localized to the same site, these findings suggest the circular 

arrangement of proteins at the porosome base to be t-SNAREs.   

The size and shape of the immunoisolated porosome complex has also been 

determined using both negative staining EM and AFM (Jeremic, et al., 2003).  The 

morphology of immunoisolated porosomes obtained using EM and AFM, were similar, 

and found to be super-imposable (Jeremic, et al., 2003).  The immunoisolated 

porosome complex has also been both structurally and functionally reconstituted into 

liposomes and lipid bilayer membrane (Cho, et al., 2004; Jeremic, et al., 2003).  

Transmission electron micrographs of pancreatic porosomes reconstituted into 

liposomes, exhibit a 150–200 nm cup-shaped basket-like morphology, similar to what is 

observed in its native state when co-isolated with ZGs.   

In the past decade, a number of studies demonstrate the involvement of 

cytoskeletal proteins in cell secretion, some implicating a direct interaction of 

cytoskeleton protein with SNAREs (Bennett 1990; Faigle, et al., 2000; Goodson, et al., 

1997; Nakano, et al., 2001; Ohyma, et al., 2001; Cho, et al., 2005b).  Furthermore, actin 
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and microtubule-based cytoskeleton has been implicated in intracellular vesicle traffic.  

Fodrin, which was previously implicated in exocytosis, has also been shown to directly 

interact with SNAREs (Nakano, et al., 2001).  Studies demonstrate α-fodrin to regulate 

exocytosis via its interaction with t-SNARE syntaxin family of proteins.  The C-terminal 

region of syntaxin is known to interact with α-fodrin, a major component of the 

submembranous cytoskeleton.  Similarly, vimentin filaments interact with SNAP23/25 

and hence are able to control the availability of free SNAP23/25 for assembly of the t-/v-

SNARE complex (Faigle, et al., 2000).  All these findings suggested that vimentin, α-

fodrin, actin, and SNAREs may be part of the porosome complex.  Additional proteins 

such as v-SNARE (VAMP or synaptobrevin), synaptophysin and myosin, may associate 

when the porosome establishes continuity with the secretory vesicle membrane.  The 

globular tail domain of myosin V contains a binding site for VAMP, which is bound in a 

calcium independent manner (Ohyma, et al., 2001).  Further interaction of myosin V 

with syntaxin had been shown to require both calcium and calmodulin.  It had also been 

suggested that VAMP, may act as a myosin V receptor on secretory vesicles, and 

regulate formation of the SNARE complex (Nakano, et al., 2001).  Interaction of VAMP 

with synaptophysin and myosin V had also been reported (Ohyma, et al., 2001).   

In agreement with these earlier findings, our studies (Cho, et al., 2004; Jena, et 

al., 2003) demonstrate the association of SNAP-23, syntaxin 2, cytoskeletal proteins 

actin, α-fodrin, and vimentin, and calcium channels β3 and α1c, together with the 

SNARE regulatory protein NSF, in the porosome complex (Cho, et al., 2004; Jena, et 

al., 2003; Jeremic, et al., 2003).  Additionally, chloride ion channels ClC2 and ClC3 

were also identified as part of the porosome complex (Cho, et al., 2004; Jena, et al., 

2003; Jeremic, et al., 2003).  Isoforms of the various other proteins identified in the 
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porosome complex, have also been demonstrated using 2D-BAC gels electrophoresis 

(Jeremic, et al., 2003).  Three isoforms each of the calcium ion channel and vimentin 

were found in porosomes (Jeremic, et al., 2003).  Using yeast two-hybrid analysis, 

recent studies confirm the presence and interaction of some of these proteins with t-

SNAREs within the porosome complex (Cho, et al., 2005b).  

Concomitant electrophysiological studies support AFM findings regarding 

porosome function.  To test the functionality of the isolated porosome complex, purified 

porosomes obtained from exocrine pancreas or neurons were subjected to 

reconstitution in lipid membrane of the electrophysiological setup (EPC9), and 

challenged with isolated ZGs or synaptic vesicles.  Electrical activity of the reconstituted 

membrane as well as the transport of vesicular contents from the cis to the trans 

compartments of the bilayer chambers was monitored.  Results from these experiments 

demonstrate that the lipid membrane-reconstituted porosomes, are indeed functional 

(Cho, et al., 2004; Jeremic, et al., 2003), since in the presence of calcium, isolated 

secretory vesicles dock and fuse to transfer intravesicular contents from the cis to the 

trans compartment of the bilayer chamber.  ZGs fused with the porosome-reconstituted 

bilayer as demonstrated by an increase in capacitance and conductance, and a time-

dependent transport of the ZG enzyme, amylase, from cis to the trans compartment of 

the bilayer chamber (Figure 6A & B) (Jeremic, et al., 2003; Jena 2007).  Amylase was 

detected using immunoblot analysis of the buffer in the cis and trans chambers, using 

immunoblot analysis (Jeremic, et al., 2003; Jena 2007).  As observed in immunoblot 

assays of isolated porosomes, chloride channel activity is also present in the 

reconstituted porosome complex.  Furthermore, the chloride channel inhibitor DIDS, 

was found to inhibit current activity through the porosome-reconstituted bilayer (Figure 
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6C), demonstrating a requirement of the porosome-associated chloride channel activity  

 

 

Figure 6.  (A) Drawing of electrophysiological set up for lipid bilayer experiments.  (B)  
ZG fuse to porosome reconstituted bilayer as show by increases in capacitance and 
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appearance of amylase in trans side medium.  (C) The addition of the anion channel 
blocker DIDS to the reaction buffer inhibited the fusion of ZGs to porosomes.  (Jeremic 
et al., 2003a) 

 

in porosome function.  Similarly, the structure and biochemical composition of the 

neuronal porosome, and the docking and fusion of synaptic vesicles at the neuronal 

porosome complex has also been elucidated (Figure 7) (Cho, et al., 2004; Cho, et al.,  

 

 

Figure 7.  Neuronal fusion pore.  (A) Electron micrograph of isolated synaptosome 
containing a large number of synaptic vesicles. Bar = 100nm (B-D) Higher magnification 
of a single synaptic vesicle docked to the plasma membrane at the porsome. (Cho et 
al., 2004) 

 

2007).  In summary, these studies demonstrate porosomes to be permanent 

supramolecular lipoprotein structures at the cell plasma membrane, where membrane-

bound secretory vesicles transiently dock and fuse to release intravesicular contents to 

the outside.  Porosomes are therefore the universal secretory machinery in cells (Jena 

2007; Jena 2005; Jena 2004). 
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SNARE Proteins 

Soluble NSF attachment protein receptors (SNAREs) are a family of proteins, 

which are involved in membrane trafficking and secretory processes (Weber et al., 

1998).  At the plasma membrane, target SNAREs (or t-SNAREs) are comprised of the 

proteins syntaxin and SNAP (synaptosome associated protein), both which differ in 

isoform depending on cell type.  Syntaxin-2 is mainly found in pancreatic acinar cells 

(Hansen et al., 1999) while syntaxin-1 (A and B) is localized to neuronal cells (Aguado 

et al., 1999).  SNAP-25 is present almost exclusively in the brain in contrast to SNAP-

23, which is widely distributed in many tissues, including pancreas (Ravichandran et al., 

1996).  t-SNAREs are present at the base of the porosome, as confirmed by AFM 

studies (Jeremic et al., 2003). 

The structure and arrangement of SNAREs associated with lipid bilayers were 

first determined using AFM (Cho et al., 2002d), almost a decade ago.  

Electrophysiological measurements of membrane conductance and capacitance 

enabled the determination of fusion of v-SNARE-reconstituted liposomes with t-SNARE-

reconstituted membrane.  Results from these studies demonstrated that t-SNAREs and 

v-SNARE when present in opposing membrane interact and assemble in a circular 

array, and in presence of calcium, form conducting channels (Cho et al., 2002d).  The 

interaction of t-/v-SNARE proteins to form such conducting channels is strictly 

dependent on the presence of t-SNAREs and v-SNARE in opposing membranes.  

Simple addition of purified recombinant v-SNARE to a t-SNARE-reconstituted lipid 

membrane, fails to form the SNARE ring complex, and is without influence on the 

electrical properties of the membrane (Cho et al., 2002d).  However when v-SNARE 
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vesicles are added to t-SNARE reconstituted membrane, SNAREs assemble in a ring 

conformation, and in the presence of calcium, establish continuity between the opposing 

membrane (Figure 8) (Jeremic et al., 2004).  The establishment of continuity between  

 

 

Figure 8.  Illustration demonstrating t-/v-SNARE complex formation between t- and v-
SNARE reconstituted liposomes.  In the presence of calcium, lipid membrane continuity 
is established and a circular pore or channel is produced.  (Jeremic et al., 2004) 

 

the opposing t-SNARE and v-SNARE reconstituted bilayers, is reflected in the increase 

in membrane capacitance and conductance.  These results confirm that t- and v-

SNAREs are required to reside in opposing membrane, similar to their presence in cells, 

to allow appropriate t-/v-SNARE interactions leading to membrane fusion (Cho et al., 

2002d; Cho et al., 2005a).   

Membrane curvature dictates the size of the SNARE ring complex. When t-

SNARE- and v-SNARE-reconstituted proteoliposomes of different diameters were 

examined, they gave rise to different size t-/v-SNARE ring complexes (Cho et al., 2005).  

It was demonstrated that the larger the vesicle, the greater the diameter of the SNARE 

ring complex.  The experimental data fit well with the high correlation coefficient, 

R2=0.9725 between vesicle diameter and SNARE-complex size.  These studies verify 
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that SNARE interaction is synonymous despite a difference in size of the liposome to 

which they are found; however, the size of the complex is augmented in relation to the 

size of the vesicle in a linear fashion.  These results also indicate that, as in vivo, vesicle 

size ranges (30-50nm in diameter in neurons to 100‟s of nm in diameter in zymogen 

granules) do not disrupt the function of these proteins. 

Furthermore, the proper folding of the SNARE proteins requires the presence of 

lipid membrane, as determined by AFM and circular dichroism (CD) spectroscopy 

investigations.  Resolution of the crystal structure of truncated non-membraneous 

SNARE complex reveals that in its core domain, it is comprised of a bundle of four 

SNARE motifs of intertwined α-helical structures (Figure 9) (Sutton et al., 1998).  Upon  

 

Figure 9.  Schematic depiction of the crystal structure of truncated non-membrane 
associated SNARE complex.  Syntaxin 1A shown in red, synaptobrevin-II shown in blue, 
their transmembrane domains shown in yellow, and the loop connecting the Sn1 and 
Sn2 fragments shown in green.  (Sutton et al., 1998) 

 

investigation of the secondary structure of the t- and v-SNAREs using CD spectroscopy, 

both in suspension and reconstituted into liposomes, results indicate decreased folding 

of both SNAREs when membrane associated.  This finding can be attributed to protein 
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insertion into the lipid membrane due to the association of hydrophobic protein domains 

with the phospholipids.  When t- and v-SNARE reconstituted liposomes are incubated 

simultaneously, SNARE complexes form; however, there is no increase in secondary 

structure.  Addition of NSF and ATP to SNARE complexes in suspension and in 

membrane dissociate with almost complete loss of α-helices.  This finding supports 

previous studies which indicate that NSF and ATP are the minimal requirements for 

complex disassembly.  In agreement with AFM images depicting t-/v-SNARE complexes 

forming globular-like structures when non-membrane associated, CD spectroscopic 

data on the secondary nature of these proteins demonstrates that proper folding 

requires lipid (Cook et al., 2008).  

In contrast to the spontaneous association of t- and v-SNAREs in opposing 

membranes, dissociation of the complex requires an input of energy (ATP) and the 

presence of NSF, a soluble ATPase protein (Jeremic et al., 2006; Littleton et al., 2001).  

Light scattering profiles in real time reveal the requirement of both NSF and ATP to 

dissociate t-/v-SNARE vesicles.  These findings were reinforced by immunoblot, CD 

spectroscopic, and AFM analyses of t-/v-SNARE associated vesicles with or without 

NSF and ATP.  If either NSF or ATP is not present in the reaction sample, t-/v-SNARE 

complexes remain associated (Jeremic et al., 2006; Cook et al., 2008). 

SNARE-induced Membrane Fusion 

As previously mentioned, SNARE proteins interact to pull opposing lipid 

membranes into closer proximity; however, this mechanism itself is not responsible for 

the establishment of lipid bilayer continuity during the formation of a channel.  The 

dilemma of establishing a channel between the vesicle and cell plasma membrane lies 

in the natural repulsion between the polar phospholipid head groups.  Consequently, a 
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mechanism that would allow the lipids to associate with one another, overcoming the 

repulsive forces of the negatively charged lipid head groups is necessary to mediate 

membrane fusion and subsequent cell secretion. 

It has long been understood that calcium is a mediator of vesicle fusion in 

neurotransmission.  Cumulating evidence such as the finding that calcium channels and 

calcium binding proteins (for example synaptotagmin) are associated with the SNARE 

complex, also support this molecule‟s role in cell secretion (Jeremic et al., 2003).  Light 

scattering experiments using t- and v-SNARE reconstituted liposomes indicate that 

calcium (Ca2+) in the sample buffer is required for fusion of the opposing vesicles.  X-ray 

diffraction analysis of hydrated Ca2+ demonstrates that the ion with its first layer or shell 

of hydration consists of six water molecules in an octahedral arrangement at a size of 

6Å.  The proposed mechanism of calcium mediated fusion postulates that once the 

hydrated calcium interacts with the negatively charged phospholipid head groups on the 

opposing membranes, water is discharged locally and phospholipids are destabilized, 

which enables them to mix and fuse.  The resulting dehydrated calcium ion has an ionic 

radius of approximately 2.56Å (Figure 10B, C, D).  SNAREs bring opposing membranes  

to within a distance of 2.8 to 3Å, which allows the dehydrated calcium ion to fit and 

bridge the opposing bilayers (Figure 10B, C, D).  These results agree both spatially and 

with the findings that calcium must be present in the cellular medium before SNARE 

interaction takes place (Jeremic et al., 2004). 
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Figure 10.  Light scattering profiles of SNARE-associated vesicle interactions. A,B. 
Addition of t-SNARE and v-SNARE vesicles in calcium-free buffer lead to a significant 
increase in light scattering. Subsequent addition of 5 mM Ca2+ (marked by the 
arrowhead) does not have any significant effect on light scattering (□). A,C. In the 
presence of NSF-ATP (1 μg/ml) in the assay buffer containing 5 mM Ca2+, significantly 
inhibited vesicle aggregation and fusion (∆). Pi denotes inorganic phosphate. A,D. 
When the assay buffer was supplemented with 5 mM Ca2+, prior to the addition of t- and 
v-SNARE vesicles, it led to a 4-fold decrease in light scattering intensity due to Ca2+-
induced aggregation and fusion of t-/v-SNARE-apposed vesicles (Ο). Light scattering 
profiles shown are representatives of 4 separate experiments. (Jeremic et al., 2004) 
 

Expulsion of Intravesicular Contents 

Once membrane continuity is established between compartments (membrane-

bound secretory vesicles at the porosome base), vesicular contents must be released to 

the outside of the cell.  Kinetically, simple diffusion out of the vesicle into the 

extracellular medium is not favorable, especially when considering that 

neurotransmission occurs on a sub-millisecond time scale (Sabatini & Regehr 1996).  

Accordingly, an inherent system by which cell secretion can occur quickly had to be 

established.  The cell overcomes this predicament by exploiting an intravesicular 
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electrochemical gradient, which allows for the entry of water into its vesicles and 

subsequent expulsion of vesicular cargo (Shin et al., 2010). 

Vesicle swelling is a requirement for content expulsion during cell secretion (Kelly 

et al., 2004).  Isolated live pancreatic acinar cells in near physiological buffer when 

imaged using AFM at high force (200-300 pN), demonstrate the size and shape of the 

ZGs lying immediately below the apical plasma membrane of the cell.  Within 2.5 

minutes of exposure to a physiological secretory stimulus, the majority of ZGs within 

cells swell, followed by a decrease in ZG size by the time secretion is complete.  These 

studies reveal for the first time in live cells, intracellular swelling of secretory vesicles 

following stimulation of cell secretion and their deflation following partial discharge of 

vesicular contents.  No loss of secretory vesicles is observed throughout the 

experiment.  Measurements of intracellular ZG size further reveal that individual 

vesicles swell differently from one another, following a secretory stimulus.  For example, 

the ZG marked by the red arrowhead swelled to show a 23-25% increase in diameter, in 

contrast to the green arrowhead-marked ZG, which increased by only 10-11% (Figure 

2).  This differential swelling among ZGs within the same cell, may explain why following 

stimulation of secretion, some intracellular ZGs demonstrate the presence of less 

vesicular content than others, and hence have discharged more of their contents.  To 

determine precisely the role of swelling in vesicle-plasma membrane fusion and in the 

expulsion of intravesicular contents, an electrophysiological ZG-reconstituted lipid 

bilayer fusion assay has been employed.  The ZGs used in the bilayer fusion assays 

were characterized for their purity and their ability to respond to a swelling stimulus.  As 

previously reported (Jena et al., 1997; Cho et al., 2002c), exposure of isolated ZGs to 

GTP results in ZG swelling.  Similar to what is observed in live acinar cells, each 
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isolated ZG responds differently to the same swelling stimulus.  This differential 

response of isolated ZGs to GTP has been further assessed by measuring changes in 

the volume of isolated ZGs of different sizes.  ZGs in the exocrine pancreas range in 

size from 0.2 to 1.3 µm in diameter (Jena et al., 1997), not all ZGs are found to swell 

following a GTP challenge (Kelly et al., 2004).  In most ZGs, volume increases are 

between 5-20%, however, larger increases of up to 45% are observed only in vesicles 

ranging from 250 nm to 750 nm in diameter.  In the electrophysiological bilayer fusion 

assay, immunoisolated porosome complex from the exocrine pancreas, are functionally 

reconstituted into the lipid membrane of the bilayer apparatus, where membrane 

conductance and capacitance can be continually monitored.  Reconstitution of the 

porosome into the lipid membrane results in a small increase in capacitance, possibly 

due to the increase in membrane surface area.  Isolated ZGs when added to the cis 

compartment of the bilayer chamber, fuse at the porosome-reconstituted lipid 

membrane and is detected as a step increase in membrane capacitance.  Even after 15 

min of ZG addition to the cis compartment of the bilayer chamber, little or no release of 

the intra-vesicular enzyme α-amylase is detected in the trans compartment of the 

bilayer chamber.  On the contrary, exposure of ZGs to 20 µM GTP, induced swelling 

and results both in the potentiation of fusion as well as a robust expulsion of α-amylase 

into the trans compartment of the bilayer chamber observed in immunoblot assays.  

These studies demonstrate that during cell secretion, secretory vesicle swelling is 

required for the efficient expulsion of intravesicular contents.  This mechanism of 

vesicular expulsion during cell secretion may explain why partially empty vesicles are 

generated in cells following secretion.  The presence of empty secretory vesicles could 

result from multiple rounds of fusion-swelling-expulsion cycles a vesicle may undergo 
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during the secretory process, reflecting on the precise and regulated nature of cell 

secretion. 

Previous studies have shown that zymogen granules swell (or increase in size) in 

response to GTP, implicating the involvement of a G-protein coupled mediated signaling 

pathway in vesicles, specifically Gi3 in these organelles.  It has also been shown that 

water channels, known as aquaporins (AQPs) induce rapid volume changes in vesicles 

(Yasui et al., 1999).  Appropriately, the presence of aquaporins in vesicles was 

demonstrated in multiple cells types: AQP1 in zymogen granules and AQP6 in synaptic 

vesicles (Cho et al., 2002c; Jeremic et al., 2005).   

 Immunoblot analysis of pancreatic tissue fractions depicts an enrichment of 

AQP1 in zymogen granule membranes in greater proportion than any other tissue 

fraction.  Immunofluorescently labeled AQP1 observed under a confocal microscope 

shows preferential localization of this protein at the apical end of pancreatic acinar cells, 

as confirmed by electron microscope images depicting AQP1 in zymogen granule 

membranes.  These findings were corroborated with immuno AFM imaging of AQP1 in 

zymogen granules in concert with GTP induced ZG swelling imaging via AFM.  To 

further demonstrate AQP1‟s involvement in ZG swelling, administration of a water 

channel blocker (mercury chloride or HgCl2), inhibited (but did not abolish) GTP induced 

ZG expansion (Cho et al., 2002c).  These studies provide evidence indicating that 

AQP1 is a regulator and found upstream of the GTP induced ZG swelling pathway, and 

therefore, modulates cell secretion.  

Successive research has elucidated the role of water channels (AQP6) in 

synaptic vesicle swelling.  In response to GTP and mastoparan (an amphipathic 

tetradecapeptide that selectively activates Gi/o proteins), photon correlation 
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spectroscopy (PCS) results report approximately 100% increases in synaptic vesicle 

size.  Additionally, inclusion of HgCl2 into the reaction medium produced abrogated 

swelling.  Through immunoblot analysis, it was determined that AQP1 and AQP6 

(predominately) are found in synaptic vesicles (Jeremic et al., 2005).   

Furthermore, synaptic vesicle membranes have also been shown to contain vH+-

ATPases (Stadler & Tsukita, 1984). Vesicle acidification through H+ uptake via the vH+-

ATPase pump is a requirement for neurotransmitter transport into the organelle (Füldner 

& Stadler, 1982).  Not only is neurotransmitter movement into synaptic vesicles 

modulated by vH+-ATPases, these proton carriers have also been suggested to 

participate in neurotransmitter release (Morel et al., 2001). 

Mastoparan has the ability to act as an activated beta-receptor by insertion and 

formation of an α-helical structure analogous to intracellular domains of G-protein 

coupled adrenergic receptors.  Because of this property, it was postulated and 

determined that adrenoceptors and an endogenous β-adrenergic agonist exists at the 

synaptic vesicle membrane (Chen et al., 2010).  Through western blot analysis and a 

series of swelling experiments, adrenergic receptors were shown to be present in 

synaptic vesicles and involved in the GTP mediated swelling pathway.  

These in addition to many other investigations indicate that multiple proteins are 

involved in vesicle swelling.  For example, potassium (K+) and chloride (Cl-) channels 

have been found in zymogen granule membranes and implicated in the expulsion 

process (Abu-Hamdah et al., 2004).  Concurrently, the synergistic actions of all the 

components (which have yet to be determined) involved in the swelling process 

culminate in the rapid entry of water into the porosome-fused-vesicle, which creates a 

turgid pressure, causing intravesicular content expulsion out of the fusion pore and into 
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the extracellular space (Kelly et al., 2004). 

RESEARCH DESIGN AND METHODS 

The investigations on cellular secretion mechanisms have shed insight and 

altered the commonly accepted dogma of complete vesicle merger with the cell plasma 

membrane. Collectively, these studies reveal the dynamic yet elegant, and highly 

regulated nature of cell secretion; where membrane-bound secretory vesicles 

transiently dock and fuse at the base of plasma membrane-associated structures called 

porosomes, to expel vesicular contents from the cell.  However, not all facets of this 

mode by which cells secrete have been fully elucidated.  For example the molecular 

mechanism of membrane-associated SNARE assembly and disassembly required for 

fusion of secretory vesicles at the base of porosomes, or the molecular mechanism of 

secretory vesicle swelling required for the expulsion of intravesicular contents during 

cell secretion, remained to be determined. This is what I set out to determine in my 

studies. 

The cell membrane has many functions ranging from acting as a semi-permeable 

barrier to its direct involvement in signal transduction, where membrane lipids are 

cleaved as in inflammatory pathways catalyzed by the enzyme phospholipase A2.  

Because of its wide range of properties, it is necessary for the cell membrane to remain 

both flexible (for example during fusion of vesicles with the plasma membrane in 

transport functions) yet durable (as a semi-permeable barrier).  Previous studies have 

revealed that the lipid composition of cellular membranes is critical to normal functioning 

of the cell and that changes in lipid proportions in the plasma membrane can affect the 

function of that cell.  Specifically, it has been shown that cholesterol interacts with a 

number of proteins within the porosome complex and regulates neurotransmitter 
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release.  Some of these proteins include calcium ion channels and VAMP (Zamir and 

Charlton 2006).   It has also been established that t-SNAREs congregate in large 

cholesterol-dependent clusters at the plasmalemma and when cholesterol is depleted 

from these areas, it results in the dispersion of the t-SNARE proteins as well (Lang et 

al., 2001).  A 2007 study by Cho and others demonstrated that the presence of 

cholesterol in the cell plasma membrane is required for the structural and functional 

integrity of the porosome.  Interestingly, this study also found that depletion of 

cholesterol had no effect on the assembly of SNARE proteins during secretion.  

Additionally, it has been confirmed that another membrane lipid, LPC, has effects 

on hormonal secretion (Han et al., 2003; Jougasaki 1992) and both cholesterol and LPC 

affect the membrane curvature of the cell.  Cholesterol imparts a negative curvature to 

the cell membrane, causing it to become less curved (Wang et al., 2007).  LPC on the 

other hand imparts a positive curvature, inducing the membrane to become more 

curved (Chernomordik 1996).  Previous studies have demonstrated that the curvature of 

the membrane influences functions of the cell, such as secretion (McMahon & Gallop 

2005).  Therefore, it is apparent that both cholesterol and LPC influence secretory 

processes, yet their precise molecular interactions with secretory proteins were not 

understood. 

Following SNARE-induced secretory vesicle docking and fusion at the porosome 

base, vesicle swelling leading to intravesicular pressure and expulsion of intravesicular 

contents occurs (Kelly et al., 2004).  It has been determined that vesicle membranes 

contain a number of proteins which are involved in a G-protein mediated signaling 

cascade that leads to the opening of aquaporin channels within the vesicle membrane 

and entry of water to cause the vesicle to rapidly swell (Cho et al., 2002c; Jeremic et al., 
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2005).  Previous studies have verified the presence of vH+-ATPases within vesicle 

membranes and have elucidated their function to acidify the vesicle for neurotransmitter 

uptake into the organelle (Michaelson & Angel, 1980; Füldner & Stadler, 1982).  It has also 

been established that vH+-ATPases influence neurotransmitter secretion (Morel et al., 

2001; Peters et al., 2001).  Although a number of proteins have been implicated within the 

secretory process, the exact order and the influence of vH+-ATPases on the signaling 

cascade within the vesicle membrane was not known. 

Non structural lipid bilayer molecules such as cholesterol and LPC have been 

shown to influence cell secretion, yet their interactions with SNARE proteins have not 

been investigated.  Although the dynamics of secretory vesicle swelling and content 

expulsion have been studied, certain details underlying the process remained to be fully 

elucidated.  In view of this, the following research objectives were investigated: 

Objective #1: Determine how membrane lipids, specifically cholesterol and LPC, 

influence the assembly and disassembly of membrane-associated SNARE 

complex. 

Objective #2: Understanding the regulation of vesicle swelling by the vH+-ATPase 

proton pump. 
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CHAPTER 2 

MEMBRANE LIPIDS INFLUENCE PROTEIN COMPLEX ASSEMBLY-DISASSEMBLY 

INTRODUCTION 

The process of cell secretion requires the interaction of SNARE proteins both at 

plasma and vesicle membranes.  t-SNAREs (or target SNAREs) located at the cell 

plasma membrane are comprised of syntaxin and SNAP proteins.  These target 

SNAREs associate with vesicle (or v-SNARE) proteins to pull the opposing bilayers into 

closer proximity.  In the presence of calcium, continuity is established to form a channel 

or pore for expulsion of vesicular contents (Jeremic et al., 2004).  A deeper 

understanding of the molecular mechanisms underlying SNARE complex formation 

requires an investigation of the structural changes that occur at the atomic level during 

SNARE assembly and disassembly.   

As previously described, the crystal structure of the SNARE complex is 

comprised of an intertwined four α-helical bundle (Sutton et al., 1998).  CD 

spectroscopic studies done in 2008 by Cook et al. reveal that SNARE folding is 

dependent on the presence of a lipid bilayer.    SNAREs in membrane versus in 

suspension displayed significantly decreased α-helical character (or decreased folding).  

These findings should not come as a surprise since VAMP and syntaxin are both 

integral membrane proteins; therefore, their folding profiles are affected by the absence 

of a lipid bilayer.  When in suspension, the hydrophobic regions self-associate to shield 

themselves from the aqueous medium.  Comparison of t-SNAREs, t-/v-SNAREs, and t-

/v-SNAREs with NSF, both in suspension and in membrane, demonstrates high α-

helical content.  Interestingly, this study also reported an almost complete elimination of 

α-helices upon the addition of ATP to the t-/v-SNARE-NSF complex, providing support 
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for earlier studies on SNARE-NSF complex dissociation in the presence of ATP 

(Jeremic et al., 2006). 

Elaborating on the former study by Cook et al., although lipid is required for 

proper SNARE folding, membrane lipid composition varies between cell types (Spektor 

& Yorek 1985).  Non-structural membrane lipids, cholesterol and LPC, are known to 

influence secretory processes in the cell (Cho et al., 2007; Han et al., 2003).  

Cholesterol is a critical component of cellular membranes.  It has also been implicated 

to participate in neurotransmitter release (Zamir & Charlton, 2006).  It is because of 

these characteristics of cholesterol that peaked interest to examine whether this 

molecule had any influence on the porosome and process of cell secretion.  In a 2007 

study by Cho et al., isolated synaptic membrane preparations when depleted of 

cholesterol, displayed a decrease in porosome integrity but had no effect on t-/v-SNARE 

complex assembly.   

Additionally, both cholesterol and LPC influence cell membrane curvature.  

Cholesterol imparts a negative curvature to the cell membrane (Wang et al., 2007).  It 

causes the membrane to curve away from the cytoplasm or in essence, flatten the 

membrane.   Conversely, LPC imparts a positive curvature to the cell membrane 

(Chernomordik 1996), or more simply, causes the membrane to curve towards the cell 

cytoplasm.  Since curvature itself is also known to modify cellular processes, including 

secretion, mobility and trafficking (McMahon & Gallop 2005), investigation into the 

molecular mechanisms underlying the interactions between these membrane lipids with 

the SNARE complex is pertinent to our understanding of process of cell secretion. 

Experimental Overview 

Full length recombinant SNARE proteins expressed in E. coli were reconstituted 
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into liposomes (synthetic vesicles) with and without cholesterol and LPC.  Since vesicle 

size influences membrane curvature, uniform samples of 50 nm in diameter vesicles 

were used for this study.  Samples were observed using CD spectroscopy to determine 

the secondary folding profiles of v-SNAREs, t-SNAREs, t-/v-SNAREs, t-/v-SNAREs + 

NSF, and t-/v-SNAREs + NSF and ATP.  AFM images of t- and v-SNAREs and their 

complexes were also obtained to confirm CD spectroscopic results. 

Detailed Materials and Methods 

Protein Purification N-terminal 6xHis-tag constructs for SNAP-25 and NSF, C-terminal 

6xHis-tag constructs for Syntaxin 1A and VAMP2 were generated.  All four proteins 

were expressed with 6xHis at full length in E. coli (BL21DE3) and isolated by Ni-NTA 

(nickel-nitrilotriacetic acid) affinity chromatography (Qiagen, Valencia, CA).  Protein 

concentration was determined by BCA assay. 

Preparation of Proteoliposomes All lipids were obtained from Avanti Polar Lipids 

(Alabaster, AL). For the control group, a 5 mM lipid stock solution was prepared by 

mixing lipid solution in chloroform-DOPC (1,2-dioleoyl phosphatidylcholine): DOPS (1,2-

dioleoyl phosphatidylserine) in 70:30 mol/mol ratios in glass test tubes.  For the 

cholesterol group, a 5 mM lipid stock solution was prepared by mixing lipid solution in 

chloroform-DOPC (1,2-dioleoyl phosphatidylcholine): DOPS (1,2-dioleoyl 

phosphatidylserine): cholesterol in 63:27:10 mol/mol/mol ratios in glass test tubes. For 

the LPC group, 5 mM lipid stock solution was prepared by mixing lipid solution in 

chloroform-DOPC (1,2-dioleoyl phosphatidylcholine): DOPS (1,2-dioleoyl 

phosphatidylserine): LPC (L-α-Lysophosphatidlycholine) in 63:27:10 mol/mol/mol ratios 

in glass test tubes. The lipid mixture was dried under gentle stream of nitrogen and 

resuspended in sodium phosphate buffer.  Lipids were suspended in 5mM sodium 
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phosphate buffer, pH 7.5, by vortexing for 5 min at room temperature.  Unilamellar 

vesicles were formed following sonication for 2 min, followed by a 50 nm pore size 

extruder.  Typically, vesicles ranging in size from 80-100 nm in diameter were obtained 

as assessed by AFM and photon correlation spectroscopy.  Two sets of 

proteoliposomes were prepared by gently mixing either t-SNARE complex (Syntaxin-

1/SNAP-25; final concentration 25 µM) or VAMP2-His6 (final concentration 25 µM) with 

liposomes (Cho et al., 2002d; Jeremic et al., 2004) followed by three freeze/thaw cycles 

to enhance protein reconstitution at the vesicles membrane. 

Atomic force microscopy on liposomes Atomic force microscopy was performed on 

liposomes placed on mica surface in buffer.  Liposomes were imaged using the 

Nanoscope IIIa AFM from Digital Instruments. (Santa Barbara, CA).  Images were 

obtained in the “tapping” mode in fluid, using silicon nitride tips with a spring constant of 

0.38 N.m-1, and an imaging force of <200 pN.  Images were obtained at line frequencies 

of 2 Hz, with 512 lines per image, and constant image gains.  Topographical dimensions 

of the lipid vesicles were analyzed using the software nanoscope IIIa4.43r8, supplied by 

Digital Instruments. 

Circular Dichroism (CD) Spectroscopy Overall secondary structural content of both 

soluble and membrane associated SNARE complexes were determined by CD 

spectroscopy using an Olis DSM 17 spectrometer.  Data was collected at 20oC with a 

0.01 cm pathlength quartz cuvette (Helma); spectra were collected over a wavelength 

range of 190 – 260 nm using a1 nm step spacing.  Five scans were averaged per 

sample for enhanced signal to noise, and data were collected on duplicate independent 

samples to ensure reproducibility.  Liposome, liposome+cholesterol, and liposome+LPC 

associated protein and protein complex samples were analyzed for the following 
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samples: v-SNARE, t-SNARE, v-SNARE + t-SNARE, v-SNARE + t-SNARE + N-

ethylmaleimide Sensitive Factor (NSF), v-SNARE + t-SNARE + NSF + 2.5mM ATP.  All 

samples had final protein concentrations of 25µM in 5mM NaPi buffer pH 7.5 and were 

baseline subtracted to remove buffer (or liposome in buffer) signal.  Data was analyzed 

using the supplied GlobalWorks software (Olis), which incorporates a smoothing 

function (Gorry 2002), and fit using the CONTINLL algorithm (Provencher & Glockner 

1981).   

Results and Discussion 

AFM results indicate a significant difference between SNARE ring complexes 

formed from reconstituted liposomes with cholesterol versus LPC, approximately 6.89 

and 7.746 nm respectively (Figure 11).  CD spectroscopic data also indicate profound 

differences in SNARE complexes between cholesterol and LPC groups.  Both groups 

indicate high α-helical content in t-SNAREs, t-/v-SNAREs, and t-/v-SNAREs + NSF.  

These results were consistent with the previous study done by Cook et al., 2008; 

however in the present study, upon the addition of ATP to t-/v-SNARE complexes with 

NSF, cholesterol groups displayed a complete abolishment of α-helices, while t-/v-

SNARE complexes from LPC groups did not show a change in the presence of NSF 

and ATP (Table 1).  These changes were also apparent in CD graphical analyses 

demonstrating alterations in wavelength peaks at 208 and 222 nm, which are 

characteristic of α-helical secondary structure (Figure 12). 

CD spectra of membrane-associated v-SNARE displayed little signal (Figure 

12Ai, Bi), as was consistent with previous studies (Cook et al., 2008); yet cholesterol 

groups showed high α-helical content in contrast to the low content seen in LPC groups 

(Table 1).  These findings could be attributed to the limitations of the spectrometer and 
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of GlobalWorks software (Olis) in analyzing and fitting data with such weak signals.  

Nevertheless, v-SNARE data was run to ensure no inappropriate protein signals were 

present, which could negatively impact the data obtained from t-/v-SNARE complexes. 

In cholesterol and LPC groups, t-SNARE and t-/v-SNARE data obtained from this 

study correlated with the previous study by Cook et al., 2008.  Surprisingly, significant 

differences were found when NSF and ATP were added to t-/v-SNARE complexes in 

cholesterol and LPC groups.  In LPC groups, t-/v-SNARE complex disassembly was 

inhibited, as was demonstrated by the lack of change in α-helical content in the 

presence of NSF and ATP (Table 1).  Furthermore, addition of NSF and ATP to t-/v-

SNARE complexes in cholesterol groups did not influence β-sheet structure; however, 

in LPC groups, β-sheet structure was nearly completely abolished (Table 1). These 

results are consistent with studies indicating that LPC inhibits membrane fusion (Mitter 

et al., 2003).  These findings indicate the existence of a direct lipid-protein relationship 

that modulates the function of SNARE proteins.  Modifying membrane lipid diversity 

could influence the degree and rate of membrane fusion and membrane-directed 

SNARE complex assembly-disassembly.  Cells with higher distribution of cholesterol 

would promote membrane fusion while cells with greater concentration of LPC would 

facilitate initial secretory event longevity by inhibiting complex disassembly. 
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Figure 11. Representative AFM micrographs of ~50 nm diameter liposomes and the t-
/v-SNARE ring complexes formed when such cholesterol- or LPC containing t-SNARE 
and v-SNARE proteoliposomes meet. (A-C) 50-53 nm diameter cholesterol-containing 
liposomes. Similarly sized LPC containing vesicles were prepared and observed using 
AFM (data not shown). (D, F) 6.89 ± 0.61 nm t-/v-SNARE ring complexes formed when 
∼50 nm diameter t-SNARE-cholesterol liposomes interact with 50 nm v-SNARE-
cholesterol vesicles. (E, F) Similar 7.746 ± 0.646 nm t-/v-SNARE ring complexes formed 
by replacing cholesterol with LPC. * indicates p < 0.001. (Shin et al., 2010) 
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Figure 12. CD data reflecting structural changes to SNAREs associated with liposomes 
containing (A) cholesterol and (B) LPC. Structural changes following the assembly and 
NSF-ATP-induced disassembly of the t-/v-SNARE complex are further shown: (i) v-
SNAREs; (ii) t-SNAREs; (iii) t-/v-SNARE complex; (iv) t-/v-SNARE complex + NSF; and 
(v) t-/v-SNARE + NSF + 2.5 mM ATP. CD spectra were recorded at 25 ºC in 5 mM 
sodium phosphate buffer (pH 7.5) at a protein concentration of 25 µM. In each 
experiment, scans were averaged per sample for enhanced signal-to-noise, and data 
were acquired on duplicate independent samples to ensure reproducibility.  The 
decrease in α-helicity in the cholesterol groups as opposed to the LPC groups following 
exposure of the t-/v-SNARE complex to NSF-ATP should be noted (Table1). (Shin et 
al., 2010) 



 

 

38 

CHAPTER 3 

LYSOPHOSPHATIDYLCHOLINE REGULATES MEMBRANE PROTEIN COMPLEX 

DISASSEMBLY 

INTRODUCTION 

Recent findings have shown that structural membrane lipids influence membrane 

fusion via interactions with SNAREs and SNARE chaperones (Mima & Wickner, 2009); 

however, the importance of non structural membrane lipids (such as LPC and 

cholesterol) on secretion is only partially understood.  The previous investigation by 

Shin et al. in 2010 revealed that full length recombinant SNAREs reconstituted in lipid 

membrane (synthetic vesicles, also known as liposomes) will associate to form SNARE 

complexes that dissociate in the presence of NSF and ATP, as demonstrated by a 

change in α-helical content.  Additionally, membranes containing LPC generate larger 

SNARE ring complexes, where the α-helical component of the complex is little affected 

by NSF-ATP (Shin et al., 2010).  In contrast, cholesterol-containing membranes 

produce smaller SNARE ring complexes that readily disassemble in the presence of 

NSF-ATP (Shin et al., 2010).  These findings suggest that in the presence of LPC, 

subsequent rounds of secretion are inhibited and the initial contact between secretory 

vesicle and plasma membrane is maintained due to the inability of NSF-ATP to 

disassemble the SNARE complex (Shin et al., 2010).  Although these studies have 

given us insight into the molecular dynamics of SNARE assembly and disassembly, the 

interaction between SNARE proteins and membrane lipids is incompletely understood. 

A recent review by McIntosh and Simon in 2006 discussed the influence of 

membrane lipid composition on the distribution, function and organization of membrane 

proteins.  This paper analyzed recent research findings to show that both the lipid 



 

 

39 

environment and the individual interactions of lipid molecules with membrane proteins 

can alter protein properties. For example, membrane lipid composition alters the 

electrostatic charge of the membrane. The charge of the membrane can then determine 

the concentration of peptides with a net positive or negative charge that will accumulate 

in such a membrane.  Furthermore, the lipid composition of the cell membrane will 

influence the binding of proteins and that the deformation of the membrane is 

constrained by energy barriers, which have to be overcome in order for protein 

interactions to occur.  In agreement with these findings, another review article by 

Zimmerberg and Chernomordik, published in 2005, demonstrated that the membrane 

enzyme, phospholipase A2, upregulates lysophospholipds that promote pore formation 

between synaptic vesicles and synaptic terminals.  Therefore, the cell will employ the 

use of membrane proteins to increase the amount of certain lipids, which then influence 

secretory processes such as neurotransmission.  These findings provide support that 

the interaction between membrane proteins and lipids is beyond structural.  Therefore, it 

is pertinent to our understanding of the secretory process to investigate the interactions 

between non structural membrane lipids, specifically cholesterol and LPC, on SNARE 

complex disassembly. 

Experimental Overview 

The association between LPC- or cholesterol-associated t-SNARE and v-SNARE 

liposomes in the presence of NSF-ATP was examined using atomic force microscopy 

(AFM), dynamic light scattering (DLS), and X-ray diffraction measurements. Further, the 

disassembly of t-/v-SNAREs in isolated nerve terminals (fast secretor, ms) and exocrine 

pancreas (slow secretor, min) exposed to either cholesterol or LPC, was 

immunochemically determined.  Since vesicle size influences membrane curvature, a 
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uniform vesicle population was prepared for the entire study, using a published2 

extrusion method.  Two sets of 50 nm in diameter liposomes, one set containing 

cholesterol and the other LPC, were reconstituted with either t-SNARE or v-SNARE for 

use. 

Detailed Materials and Methods 

Preparation of t-SNAREs, v-SNARE and NSF: N-terminal 6xHis-tag constructs for 

SNAP-25 and NSF, C-terminal 6xHis-tag constructs for Syntaxin 1A and VAMP2 were 

generated.  All four proteins were expressed with 6xHis at full length in E. coli 

(BL21DE3) and isolated by Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatography 

(Qiagen, Valencia, CA).  Protein concentration was determined by BCA assay. 

Preparation of Proteoliposomes: All lipids were obtained from Avanti Polar Lipids 

(Alabaster, AL). For the control group, a 5 mM lipid stock solution was prepared by 

mixing lipid solution in chloroform-DOPC (1,2-dioleoyl phosphatidylcholine): DOPS (1,2-

dioleoyl phosphatidylserine) in 70:30 mol/mol ratios in glass test tubes.  For the 

cholesterol group, a 5 mM lipid stock solution was prepared by mixing lipid solution in 

chloroform-DOPC (1,2-dioleoyl phosphatidylcholine): DOPS (1,2-dioleoyl 

phosphatidylserine): cholesterol in 63:27:10 mol/mol/mol ratios in glass test tubes. For 

the LPC group, 5 mM lipid stock solution was prepared by mixing lipid solution in 

chloroform-DOPC (1,2-dioleoyl phosphatidylcholine): DOPS (1,2-dioleoyl 

phosphatidylserine): LPC (L-α-Lysophosphatidlycholine) in 63:27:10 mol/mol/mol ratios 

in glass test tubes. The lipid mixture was dried under gentle stream of nitrogen and 

resuspended in 5mM sodium phosphate buffer, pH 7.5, by vortexing for 5 min at room 

temperature.  Unilamellar vesicles were formed following sonication 50x at 10 sec per 

sonication, followed by extrusion, resulting in 50 nm vesicles.  Typically, vesicles 
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ranging in size from 45-50 nm in diameter were obtained as assessed by AFM and 

photon correlation spectroscopy.  Two sets of proteoliposomes were prepared by gently 

mixing either t-SNARE complex (Syntaxin-1A-His6/SNAP-25-His6; final concentration 

25 µM) or VAMP2-His6 (final concentration 25 µM) with liposomes (Cho et al., 2002d; 

Jeremic et al., 2004), followed by three freeze/thaw cycles to enhance protein 

reconstitution at the vesicle membrane. 

Atomic force microscopy: Atomic force microscopy was performed on liposomes 

placed on mica surface.  Liposomes were imaged using the Nanoscope IIIa AFM from 

Digital Instruments. (Santa Barbara, CA).  Images were obtained in the “tapping” mode 

in fluid, using silicon nitride tips with a spring constant of 0.38 N.m-1, and an imaging 

force of <200 pN.  Images were obtained at line frequencies of 2 Hz, with 512 lines per 

image, and constant image gains.  Topographical dimensions of the lipid vesicles were 

analyzed using the software nanoscope IIIa4.43r8, supplied by Digital Instruments. 

Wide-angle X-ray diffraction studies: Sixty microliters of 1 mM PC:PS-cholesterol or -

LPC t- and v-SNARE reconstituted vesicle suspension was placed at the center of an X-

ray polycarbonate film, mounted on an aluminum sample holder in a Rigaku RU2000 

rotating anode X-ray diffractometer equipped with automatic data collection unit 

(DATASCAN) and processing software (JADE). Experiments were performed at 25C. 

Samples were scanned with a rotating anode, using the nickel-filtered Cu Ka line 

(=1.5418 Å) operating at 40 kV and 150 mA. Diffraction patterns were recorded 

digitally with scan rate of 10º/min using a scintillation counter detector. The scattered X-

ray intensities were evaluated as a function of scattering angle 2  and converted into Å 

units, using the formula d (Å)= /2sin.  To determine the influence of LPC and 

cholesterol on the interaction between t-SNARE and v-SNARE vesicles in presence of 



 

 

42 

NSF, and the ability of ATP to disassemble the t-/v-SNARE complex, X-ray diffraction 

studies were performed (Figure 2).  Recordings were made of vesicles in solution in the 

1.54-5.9 Å diffraction range, and a broad diffraction pattern is demonstrated, spanning 

2  ranges 26.67-42.45 or d value of 2.1-3.3 Å. The diffractogram traces exhibit a 

pattern typical of short-range ordering in a liquid system, indicating a multitude of 

contacts between interacting vesicles, majority being in the 3Å region. X-ray studies 

demonstrate larger clusters and consequently much less diffraction by the LPC vesicles 

compared to cholesterol. Not surprising, the average distance between cholesterol-

vesicles is shorter (3.05Å) compared to LPC (3.33Å). 

Light Scattering Measurements: Kinetics of association and dissociation of t-SNARE 

and v-SNARE reconstituted vesicles in solution were monitored by right angle light 

scattering assay with excitation and emission wavelength set at 600 nm in a Hitachi F-

2000 spectrophotometer (Jeremic et al., 2004). Equal volumes of t-SNARE (5 µM) and 

v-SNARE (5 µM) reconstituted vesicle suspension and NSF (1 μg/ml), were injected into 

the cuvette containing 700 μl of assay buffer (140 mM NaCl, 10 mM Hepes pH=7.4, 2 

mM CaCl2) at a final lipid concentration of 100 μM at 37°C. ATP-Mg (150 μM) was 

added to the mixture under continuous stirring, and changes in the light scattering were 

continuously monitored for a 5 min period. Values are expressed as intensities of 

scattered light (arbitrary units) taken continuously after addition of ATP, after which 

interactions between vesicles in solution reached a steady state. Student‟s t-test was 

used for comparisons between groups with significance established at p<0.05 (*). 

Total brain homogenate preparation: Total brain homogenate was prepared from rat 

brains according to published methods (Cho et al., 2004; Cho et al., 2007).  Whole 

brain, from Sprague-Dawley rats weighing 100-150 g, was isolated and placed in ice-
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cold buffered sucrose solution (5 mM Hepes, pH 7.4, 0.32 M sucrose). The brain tissue 

was sliced into small sections (approximately 0.5mm3) for immunoblot analysis. 

Pancreas tissue preparation:  Pancreatic tissue was isolated from Sprague-Dawley 

rats weighing 100-150 g according to published methods (Schneider et al., 1997).  

Tissue sections approximately 0.5mm3 were prepared for immunoblot analysis. 

Immunoblot Analysis of SNARE complex disassembly: Quantitative assessment of 

SNARE complex disassembly was determined using immunochemical analysis. Isolated 

rat brains (total brain homogenate) were stimulated using 30 mM KCl following 

exposure to cholesterol, LPC, or vehicle (control), followed by solubilization in buffer 

containing 1% Triton-1% Lubrol, 5mM ATP-EDTA in PBS. Similarly, pancreatic lobules 

exposed to 10 µM cholesterol, 10 µM LPC, or vehicle (control), was stimulated using 

1µM carbamylcholine for different periods, followed by solubilization in buffer containing 

1% Triton-1% Lubrol, 5mM ATP-EDTA in PBS supplemented with protease inhibitor 

cocktail (Sigma-Aldrich, St. Louis, MO). Interactions were stopped by addition of 

Laemmli reducing sample preparation buffer at R.T. and the SNARE complexes formed 

were resolved in a 12.5% SDS-PAGE. Proteins were electrotransferred to nitrocellulose 

sheets for immunoblot analysis using SNAP-25 (total brain homogenate) or SNAP-23 

(exocrine pancreas) specific antibody (1:2000) (Alomone lab, Israel). Immunobands 

were visualized using a chemiluminescence detection system (Amersham Biosciences, 

UK) and photographed using a Kodak Image Station 440. Densytometric analysis of the 

immunobands was performed using the Kodak 1D Image Analysis software and is 

presented as relative intensities or optical density (O.D.). The approximately 70 to 75 

kDa band is the t-/v-SNARE complex, and the lower 25 kDa and 23 kDa bands that of 

SNAP-25 and SNAP-23 respectively. 
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Results and Discussion 

  t-/v-SNARE complexes formed between t- and v-SNARE reconstituted 50 nM 

liposomes displayed marked differences between cholesterol and LPC groups.  SNARE 

complexes formed between cholesterol containing liposomes (Figure 13A, B) 

disassembled in the presence of NSF-ATP (Figure 13C).  Conversely, SNARE 

complexes formed between LPC containing t- and v-SNARE reconstituted liposomes 

(Figure 13D, E, F) remained clustered in the presence of NSF-ATP (Figure 13G, H).  

These observations support the notion that LPC allows an initial secretory event while 

preventing subsequent secretions by SNARE complex disassembly inhibition. 

 To further determine the influence of LPC and cholesterol on the interaction 

between t-SNARE and v-SNARE vesicles in presence of NSF, and the ability of ATP to 

disassemble the t-/v-SNARE complex, X-ray diffraction studies were performed (Figure 

14).  Recordings were made of vesicles in solution in the 1.54-5.9 Å diffraction range, 

and a broad diffraction pattern was demonstrated, spanning 2  ranges 26.67-42.45° or 

d values of 2.1-3.3 Å.  The diffractogram trace exhibits a pattern typical of short-range 

ordering in a liquid system, indicating a multitude of contacts between interacting 

vesicles, the majority being in the 3Å region.  In agreement with our AFM studies, X-ray 

studies demonstrate larger clusters and consequently much less diffraction by the LPC 

vesicles compared to Chol.  However, the distance between vesicles is closer in the 

Chol population (3.05Å) compared to the LPC (3.33Å). 

 Dynamic light scattering (DLS) experiments were conducted to further support 

the findings from AFM and X-ray diffraction studies.  Unassociated vesicles diffract 

more light in DLS experiments versus their aggregate counterparts.  LPC-associated-t-

/v-SNARE liposome complexes demonstrated a complete inhibition of NSF-ATP 
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induced complex disassembly as compared to cholesterol-associated t-/v-SNARE 

lipsosome complexes (Figure 15A).  The percent change in light scattering intensity was 

much greater in cholesterol groups versus LPC groups (Figure 15A), confirming the 

inability of LPC-associated complexes to disassemble in the presence of NSF-ATP.  

Upon analysis of real time light scattering measurements of LPC versus cholesterol-

associated SNARE complexes, the kinetics show that LPC-associated-t-/v-SNARE 

liposome complexes dissociate at a much slower rate (k = 0.01) (Figure 15C) as 

compared to their cholesterol-associated counterparts (k = 0.03) (Figure 15B).   

 Additionally, stimulated brain slices and pancreatic tissue preparations displayed 

differences in SNARE complex disassembly between control, cholesterol and LPC 

groups (Figure 15D).  Immunoblot analysis of stimulated tissue samples (both brain and 

pancreatic tissue) exhibit an inhibition of NSF-ATP induced SNARE complex 

disassembly in LPC incubated tissue samples versus control and cholesterol groups 

(Figure 15D).  Membrane probed for SNAP protein (SNAP-25 in brain and SNAP-23 in 

pancreas) clearly demonstrate that the addition of LPC to tissue preparations causes an 

enrichment of the SNARE complex band in comparison to the other groups.  

Simultaneously, as the SNARE complex band increases, there is a corresponding 

decrease in the SNAP band, indicating that NSF-ATP stimulated dissociation is not 

occurring (Figure 15D).  Therefore, LPC has an inhibitory effect on NSF-ATP induced 

SNARE complex disassembly and these results are consistent with both AFM and X-ray 

diffraction analyses (Figure 13 and Figure 14). 

 Collectively, these studies provide support for the postulation that LPC is a 

secretion inhibitor.  In the presence of LPC, SNARE complexes are still able to 

associate (Figure 13E, F); however, disassembly of the complex via NSF-ATP is 
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abrogated (Figure 13G, H).  This finding suggests that an initial secretion event can 

occur in the presence of LPC but that additionally rounds of secretion cannot.  

Furthermore, it appears that cholesterol does not have the same effect on SNARE 

complex disassembly.  Liposomes in the presence of cholesterol seem to behave 

similarly to control groups (Figure 15D) in that SNARE complex disassembly is not 

interfered with as it is in LPC groups.  This result is in agreement with previous studies 

that show that cholesterol depletion from isolated synaptic membranes does not affect 

SNARE complex assembly (Cho et al., 2007).   

 These studies reinforce a deeper connection between membrane proteins and 

lipids.   Not only can membrane lipids influence protein interactions, proteins can 

stimulate an increase in specific lipids such as lysophopholipids, which can influence 

processs such as secretion (Zimmerberg and Chernomordik, 2005).  As was previously 

discussed, LPC is upregulated in cancer (Sutphen et al., 2004; Fang et al., 2000) and 

drawing on this association, a greater understanding of lipid protein interactions can be 

useful targets for treatment.  
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Figure 13. Representative AFM micrographs demonstrating LPC containing t-/v-
SNARE proteoliposome complexes fail to dissociate in presence of NSF-ATP. Top 
panel is a schematic outline of the experiment.  Exposure of cholesterol-associated t-
SNARE and v-SNARE liposome mixtures (A, B, low and high magnification) to NSF-
ATP results in liposome dissociation as demonstrated in C (at low magnification) and D 
(at higher magnification). In contrast, LPC-associated t-/v-SNARE liposomes (E, F) 
remain clustered (G, H) following exposure to NSF-ATP. 
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Figure 14. Wide-angle X-ray diffraction pattern of interacting lipid vesicles.  Diffraction 
profiles of a mixture of 50 nm in diameter t-SNARE and v-SNARE reconstituted PC:PS 
vesicles either containing cholesterol (Chol.) or lysophosphatidylcholine (LPC), in 
presence of NSF. Exposure of the Chol vesicles to ATP results in t-/v-SNARE 
disassembly by the NSF and an increase in the vesicle-vesicle contact distance from 
3.05Å (-ATP) to 3.13Å (+ATP), as opposed to LPC from 3.33Å (-ATP) to 3.23Å (+ATP). 
Note as a consequence of clustering, while diffraction is significantly lower in the LPC 
vesicles (lower green peak), the distance between vesicles is closer between the Chol 
population. 
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Figure 15. SNARE complexes in presence of LPC fail to disassemble. (A) Real-time 
dynamic light scattering (DLS) profiles on cholesterol-associated (CHOL) and LPC-
associated t-/v-SNARE liposomes in presence of NSF-ATP. There is no appreciable 
dissociation of the LPC vesicles, in contrast to a rapid ATP-dependent dissociation of 
CHOL vesicles. (B) Note the dissociation of cholesterol-associated t-/v-SNARE vesicles 
occurs with rate constant k = 0.03 s-1, and (C) a relatively slow dissociation in LPC 
vesicles. (D) Following KCl stimulation, when isolated synaptosomes are solubilized in 
buffer containing ATP-EDTA, resolved by SDS-PAGE, followed by immunoblot analysis 
using SNAP-25 specific antibody, negligible disassembly of the t-/v-SNARE complex is 
demonstrated in the LPC group as opposed to the control and the CHOL group. 
Similarly in the presence of LPC, there is little disassembly of the t-/v-SNARE complex 
in the exocrine pancreas following stimulated secretion using 1µM carbamylcholine. 
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CHAPTER 4 

INVOLVEMENT OF vH+-ATPASE IN SYNAPTIC VESICLE SWELLING 

INTRODUCTION 

 Although vesicle docking to porosomes rationalizes the appearance of partially 

empty vesicles following a secretory stimulus (Cho et al., 2002a), simple diffusion of 

intravesicular contents once membrane continuity is established, cannot account for the 

sub-microsecond time scale characteristic of neuronal transmission.  Given this 

dilemma, the cell must employ a mechanism by which vesicular contents are rapidly 

discharged in a regulated manner.  The first direct measurement of secretory vesicle 

swelling at nanometer resolution within live cells was reported in studies on pancreatic 

acinar cells, using atomic force microscopy (Cho et al., 2002c).  Recent studies have 

indicated the secretory requirement for vesicle swelling through a GTP stimulated Gαo 

signaling cascade, which culminates in water entry through activated aquaporin 

channels in the vesicle membrane (Kelly et al., 2004; Jeremic et al., 2005).  This 

regulated signaling cascade provides an explanation for the cell‟s employment of a 

coordinated mechanism for intravesicular expulsion versus passive diffusion of contents 

out of the cell. 

 Multiple studies have indicated that mastoparan, an amphiphilic tetradecapeptide 

from wasp venom, stimulates the GTPase activity of Gαo/i proteins (Higashijima et 

al.1988; Vitale et al., 1993; Konrad et al., 1995).  The activation of G proteins is 

proposed to occur through the insertion of mastoparan into the lipid bilayer, resembling 

the intracellular loops of G-protein-coupled receptors.  The ability of mastoparan to 

initiate the Gαo signaling cascade involved in synaptic vesicle swelling confirms its 

essential use for GTP induced swelling stimuli. 



 

 

51 

Previous findings demonstrate that vH+-ATPases are present in synaptic vesicle 

membranes (Stadler & Tsukita, 1984; Hicks & Parsons, 1992) and are responsible for 

the formation of an intravesicular electrochemical H+ gradient (pH 5.2-5.5) (Michaelson 

& Angel, 1980; Füldner & Stadler, 1982), required for transport of neurotransmitters into 

the vesicle lumen. Additionally, vH+-ATPases have also been shown to participate in 

neurotransmitter secretion (Morel et al., 2001; Peters et al., 2001).  Furthermore, 

guanine nucleosides have been reported to influence the glutamate-induced cellular 

response via diverse trophic, proliferative, and modulatory effects of the nucleotide on 

neurons (Santos et al., 2005).  Because synaptic vesicle swelling is Gao mediated and 

is required for cell secretion (Kelly et al., 2004), the vH+-ATPase in synaptic vesicle 

membranes (Stadler and Tsukita, 1984; Hicks and Parsons, 1992) may participate in 

Gao-mediated water gating through the AQP-6 channels at the synaptic vesicle 

membrane, resulting in vesicle swelling.  Due to the extensive evolvement of vH+-

ATPases in secretory processes, investigation into the molecular dynamics of these 

channels is essential to our understanding of the mechanisms of cell secretion.   

Experimental Overview 

 Synaptic vesicles were isolated from whole rat brain preparations.  Synaptic 

vesicle size changes were monitored both by photon correlation spectroscopy (PCS) 

and dynamic light scattering techniques.  Vesicle samples were administered GTP-

mastoparan to induce swelling both with and without the vH+-ATPase inhibitory 

molecule, bafilomycin (BM).  In addition to the inhibition of vH+-ATPase activity, vesicles 

were induced to swell (using GTP-mastoparan) under different pH conditions.  Potential 

measurements were also collected to determine the change in surface charge under 

different pH conditions with and without GTP-mastoparan stimulation. 
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Detailed Materials and Methods 

Synaptosome and synaptic vesicle isolation.  Synaptosomes and synaptic vesicles 

were prepared from rat brains using published procedures (Kelly et al., 2004; Jeremic et 

al., 2005).  Whole brain from Sprague-Dawley rats, weighing 100-150 g, was isolated 

and placed in ice-cold buffered sucrose solution (5 mM Hepes pH 7.5, 0.32 M sucrose), 

supplemented with protease inhibitor cocktail (Sigma, St. Louis, MO).  The brain tissue 

was homogenized using 8-10 strokes in a Teflon-glass homogenizer.  The total 

homogenate was centrifuged for 3 min at 2,500 x g, and the supernatant fraction was 

further centrifuged for 15 min at 14,500 x g, to obtain a pellet.  The resultant pellet was 

resuspended in buffered sucrose solution, and loaded onto a 3-10-23 % Percoll 

gradient.  After centrifugation at 28,000 x g for 6 min, the enriched synaptosome fraction 

was collected at the 10-23 % Percoll gradient interface.  To isolate synaptic vesicles, 

the synaptosome preparation was diluted using 9 vol. of ice-cold water, resulting in the 

lysis of synaptosomes to release synaptic vesicles, followed by 30 min incubation on 

ice.  The homogenate was then centrifuged for 20 min at 25,500 x g, and the resultant 

supernatant enriched in synaptic vesicles was obtained. 

Transmission electron microscopy.  Isolated synaptic vesicle preparations were fixed 

in 2.5% buffered paraformaldehyde for 30 min, followed by dehydration and embedding 

in Unicryl resin. The resin-embedded tissue was sectioned at 40-70 nm.  Thin sections 

were transferred to coated specimen TEM grids, dried in the presence of uranylacetate 

and methylcellulose, and examined in a JOEL transmission electron microscope.  

Synaptic vesicle size measurements using photon correlation spectroscopy.  

Changes in synaptic vesicle size were determined using photon correlation 

spectroscopy (PCS).  PCS is a well-known technique for the measurement of size of 
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micron to nm size particles and macromolecules.  PCS measurements were performed 

in a Zetasizer Nano ZS, (Malvern Instruments, UK).  In a typical experiment, the size 

distribution of isolated synaptic vesicles was determined using built-in software provided 

by Malvern Instruments. Prior to determination of the vesicle hydrodynamic radius, 

calibration of the instrument was performed using latex spheres of known size. In PCS, 

subtle fluctuations in the sample scattering intensity are correlated across microsecond 

time scales. The correlation function was calculated, from which the diffusion coefficient 

was determined. Using Stokes-Einstein equation, hydrodynamics radius can be 

acquired from the diffusion coefficient (Higashijima et al., 1988). The intensity size 

distribution, which is obtained as a plot of the relative intensity of light scattered by 

particles in various size classes, is then calculated from a correlation function using 

built-in software. The particle scattering intensity is proportional to the molecular weight 

squared. Volume distribution can be derived from the intensity distribution using Mie 

theory (Vitale et al., 1993; Weingarten et al., 1990). The transforms of the PCS intensity 

distribution to volume distributions can be obtained using the provided software by 

Malvern Instruments. In experiments, isolated synaptic vesicles were suspended in 

isotonic buffer containing 0.3 M Sucrose, 10 mM Hepes pH 7.5, and 20 mM KCl, and 

changes in vesicle size monitored prior to and after addition of 40 mM GTP-

mastoparan, and or 1 nM bafilomycin. Student‟s t-test was performed for comparison 

between groups (n=5) with significance established at p<0.05(*). 

Measurements of synaptic vesicle size using right angle light scattering.  Similar 

to PCS, isolated synaptic vesicles were suspended in isotonic buffer (0.3 M Sucrose; 10 

mM Hepes pH 7.5; and 20 mM KCl) and changes in vesicle size monitored prior to and 

following the addition of 40 mM GTP-mastoparan, and or 1 nM bafilomycin.  Synaptic 
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vesicle size dynamics were determined using real time right angle light scattering, in a 

Hitachi F-2000 spectrofluorimeter.  Scattered light intensities at 600 nm were measured 

as a function of vesicle radius (Cho et al., 2004). Values are expressed in arbitrary units 

and as percent light scattered over controls.  Student‟s t-test was performed for 

comparison between groups (n=5) with significance established at p<0.05(*). 

Synaptic vesicle acidification determined from zeta potential measurements.  Zeta 

potential is the overall surface charge a particle acquires in a certain medium.  Hence in 

the case of liposomes or isolated synaptic vesicles in aqueous media, the zeta potential 

is a direct reflection of both the internal and external pH of vesicles.  If more alkali buffer 

is added to the vesicle suspension, then the vesicles acquire more negative charge.  In 

contrast, if acid is added to the suspension, the vesicles acquire less negative charge.  

This implies that the pH of the buffer both within and outside the vesicle, dictates the 

zeta potential or the net surface charge of the vesicle. Experiments were performed on 

isolated synaptic vesicles suspended in isotonic buffer containing 0.3 M sucrose, 10 mM 

Hepes pH 7.5, and 20 mM KCl, and changes in vesicle zeta potential monitored prior to 

and after addition of 40 mM GTP-mastoparan, and or 1 nM bafilomycin. Zeta potential 

was determined using the Zetasizer Nano ZS, from Malvern Instruments, UK. Student‟s 

t-test was performed for comparison between groups (n=8) with significance established 

at p<0.001(*). 

Atomic force microscopy.  Isolated synaptosome membrane or synaptic vesicles in 

buffer were plated on freshly cleaved mica, to be imaged using the atomic force 

microscope (AFM).  Ten minutes after plating, the mica disk was placed in a fluid 

chamber and washed with the incubation buffer to remove unattached membrane and 

or synaptic vesicles, prior to imaging in the presence or absence of 40 mM GTP-
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mastoparan, and or 1 nM bafilomycin.  Isolated synaptosome membrane and synaptic 

vesicles were imaged using the Nanoscope IIIa, Digital Instruments (Santa Barbara, 

CA).  All images presented in this study were obtained in the „„tapping‟‟ mode in fluid, 

using silicon nitride tips with a spring constant of 0.06 Nm-1 and an imaging force of less 

than 200 pN.  Images were obtained at line frequencies of 2.523 Hz, with 512 lines per 

image and constant image gains.  Topographical dimensions of synaptic vesicles were 

analyzed using the NANOSCOPE (R) IIIA 4.43r8 software, supplied by Digital 

Instruments. 

Immunoblot analysis.  Protein content in the various brain fractions, were determined 

by the Bradford method (Bradford, 1976).  Sample aliquots solubilized in Laemmli 

(Laemmli, 1970) sample preparation buffer, were resolved using 12.5% SDS-PAGE. 

Five micrograms protein, each from total brain homogenate, synaptosome, and synaptic 

vesicle fractions, were resolved using SDS-PAGE. Resolved proteins were 

electrotransferred to nitrocellulose membrane for immunoblot analysis using specific 

antibodies to VAMP-2 (Alomone Labs, Jerusalem, Israel), vH+-ATPase and AQP-6 from 

the Aquaporins1-

electrotransferred with the resolved proteins were incubated for 1 h at 4ºC in blocking 

buffer (5% non-fat milk in PBS containing 0.1% Triton X-100 and 0.02% NaN3), and 

immunoblotted for 1 h at room temperature with the specific antibody.  Primary 

antibodies were used at a dilution of 1:3,000 (VAMP-2); 1:1000 AQP-6 and vH+-

ATPase) in blocking buffer.  The immunoblotted nitrocellulose sheets were washed in 

PBS containing 0.1% Triton X-100 and 0.02% NaN3 and incubated for 1 h at room 

temperature in horseradish peroxidase-conjugated secondary antibody at a dilution of 

1:3,000 in blocking buffer.  The immunoblots were then washed in PBS buffer, 
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processed for enhanced chemiluminescence (Amersham Biosciences, NJ) and 

developed using a Kodak 440 image station.  

Results and Discussion 

EM, AFM, immunoblot analysis, and PCS all confirmed the purity of the obtained 

synaptic vesicle preparation (Figure 16).  Size profiles for the sample indicated an 

average size of 35 nm and immunoblot data demonstrated an enrichment of the 

synaptic vesicle specific proteins, VAMP-2 and AQP-6 in synaptic vesicle fractions 

(Figure 16C).   As indicated from previous studies (Stadler and Tsukita, 1984; Hicks and 

Parsons, 1992), immunoblot data also confirmed the presence of vH+-ATPases in both 

synaptosome and synaptic vesicle samples, with enrichment in the latter (Figure 16C).  

Collectively, these experiments demonstrate the isolation of a highly enriched SV 

preparation from brain tissue for SV swelling assays. 

To determine the relative concentration of vH1- ATPase in SV, immunoblot 

analysis was performed with 5 µg each of total brain homogenate (BH), isolated 

synaptosome (S), and SV fractions (Fig. 20C).  In agreement with earlier findings 

(Stadler and Tsukita, 1984; Hicks and Parsons, 1992), vH1-ATPase was present both in 

the S and in the SV fraction but was enriched in SV (Fig. 20C).  Dynamic light scattering 

profiles indicated 0.5 nm BM as the optimal concentration for inhibition (approximately 

25%) of GTP-mastoparan stimulated SV swelling (Figure 17A).  Additionally, light 

scattering and PCS experiments revealed that SV exposure to BM alone caused a 

decrease in SV size (~18-20%) (Figure 17B) and BM + GTP-mastoparan had an abated 

swelling response as compared to GTP-mastoparan alone (Figure 17A, B).  In 

corroboration with these findings, AFM analyses indicated similar results confirming an 

inhibition of GTP-mastoparan stimulated synaptic vesicle swelling in the presence of BM 
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(Figure 18). Because of the decrease in GTP-mastoparan induced swelling, these data 

indicate vH+-ATPases to be upstream of the AQP-6 channel.  Also, water entry into 

vesicles is only partially regulated by vH+-ATPases as indicated by the slight but not 

complete inhibition of the swelling response (Figure 17A, B).  It is highly possible that 

water entry into vesicles is a consequence of the electrochemical H+ gradient produced 

by vH+-ATPases for intravesicular neurotransmitter uptake.  

Former investigations into cellular acidification and its effects on vH+-ATPases 

reveal profound effects on localization and activity of these transporters (Alexander et 

al., 1999; Nordstrom et al., 1997).  Exposure to moderately acidic extracellular pH (pH 

6.5) augments plasmalemmal vH+-ATPase activity in cultured osteoclasts (Nordstrom et 

al., 1997). In addition, some studies (Bastani et al., 1991, 1994; Chambrey et al., 1994) 

report that the number of vH+-ATPase in apical membrane of renal epithelial cells is up-

regulated in animals exposed to acidosis (Bastani et al., 1991, 1994; Chambrey et al., 

1994).  Therefore, elucidating the effects of pH environment on synaptic vesicle swelling 

was also examined in the current study.  PCS and light scattering results demonstrated 

complete inhibition of Gαο-mediated SV swelling under even slightly acidic or alkaline 

conditions (Figure 17C, D).  The GTP-mastoparan-stimulable SV swelling was found to 

be rapid (Fig. 21E), as opposed to SV swelling in hypotonic medium. No change in SV 

size was found up to 105 sec following exposure to a 50% hypotonic buffer (data not 

shown). Insofar as bafilomycin is specific in its inhibition of vH+-ATPase, this pH 

sensitivity of SV swelling may be a reflection of the direct inhibition of vH+-ATPase 

activity under both basic and acidic conditions (Fig. 21B–D).  This data provides 

confirmation that SV swelling is pH sensitive. 

The activity of vH+-ATPases in the efficacy of SV swelling was also analyzed 
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utilizing kinetic data collected from dynamic light scattering experiments (Figure 17E).  

GTP-mastoparan induced swelling was determined to be first order with a rate constant 

k = 0.0106 sec-1 as compared to k = 0.0068 sec-1 in the presence of bafilomycin (an 

approximate 35% inhibition).  Results from the study demonstrate that bafilomycin 

exposure decreases both the potency and the efficacy of GTP-Mas-induced SV swelling 

by 20% and 35%, respectively.  These findings indicate a strong correlation between 

AQP-6 and vH+-ATPase activity in synaptic vesicle swelling. 

Further confirmation of the inhibition of GTP-mastoparan stimulated increase in 

isolated SV volume following exposure to bafilomycin was demonstrated by using AFM 

(Figure 18). Exposure of SV to 40 lM GTP-mastoparan demonstrated a robust increase 

in vesicle size (Figure 18A).  However, prior exposure of SVs to 1 nM bafilomycin 

resulted in a significant (*P < 0.001) inhibition of the GTP-mastoparan-induced swelling 

of synaptic vesicles (Figure 18B, C). 

To determine bafilomycin‟s effect on synaptic vesicle acidification, zeta potential 

measurements were collected on SVs in varying pH environments under stimulation of 

GTP-mastoparn (Figure 19).  Isolated SVs were negatively charged at approximately -

20 to -25 mV.  As vesicles lost acidity, net membrane charge became more positive.  

Under stimulation by GTP-mastoparan, vesicle membrane decreased in negativity (–

24.4 ± 2.1 to –12.3 ± 1.0).  In the presence of bafilomycin, GTP-mastoparan stimulated 

decrease in acidity was diminished (Figure 19A).  In either highly alkaline or acidic 

buffer, SVs failed to respond to GTP-mastoparan stimulation (Figure 19B).  Both acidic 

and basic suspension media inhibited vH+-ATPase activity, thereby preventing the entry 

of protons into the vesicle lumen.  Results from these studies support the idea that 

luminal acidification of SV is a requirement for AQP-6-induced active water transport 
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and vesicle swelling and that either low (pH 4) or high (pH 8) pH inhibits the activity of 

SV-associated vH+-ATPase (Figure 19).  However, Gao-stimulated SV acidification is 

completely abrogated (Figure 19A) and bafilomycin is able to inhibit only partially the 

Gao-stimulated SV swelling (Figure 17B), suggesting that vH+-ATPase is in part 

responsible for the Gao-mediated SV swelling.  

Collectively, these studies demonstrate the integral role of vH+-ATPases in Gαο-

mediated SV swelling.  Water channels including AQP-6 are bidirectional, and the vH+-

ATPase inhibitor bafilomycin decreases the volume of resting synaptic vesicles, 

suggesting vH+-ATPase to be upstream of AQP-6, in the pathway leading from Gao-

stimulated swelling of synaptic vesicles (Figure 20).  Not only is the proton transporter 

itself necessary in the activation of the swelling pathway, it is also inhibited by changes 

in pH environment of the cell; indicating that pH can also influence the swelling 

response and modulate cell secretion.  Vesicle acidification is therefore a prerequisite 

for AQP-6-mediated rapid gating of water into synaptic vesicles. 
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Figure 16. Associate of vH+-ATPase with synaptic vesicles. Purity of synaptic vesicles 
was determined by using transmission electron microscopy (A), atomic force micrscopy 
(B), and immunoblot analysis (C) on isolated synaptic vesicles. Both electron and 
atomic force micrographs demonstrate the average size of synaptic vesicles to be 40 
nm, which is futher confirmed by photon correlation spectroscopy in Figure 17. 
Immunoblot analysis of 5 µg protein each of total rate brain homogenate (BH), 
synaptosome (S), and synaptic vesicles (SV) demonstrates the enriched presence of 
SV proteins VAMP-2 and the water channel AQP6. Note the enriched presence of vH+-
ATPase in the SV fraction. Scale bar = 100 nm. (Shin et al., 2009) 
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Figure 17. A-E: Guanosine triphosphate-mastoparan (GTP-MAS) induced synaptic 
vesicle (SV) swelling is both pH and bafilomycin (BM) sensitive. Isolated SV‟s swell in 
response to 40 µM GTP-Mas, as demonstrated by using photon correlation 
spectroscopy (A-C). Similarity, right-angle light scattering also demonstrates an 
increase in SV size following exposure to the GTP-Mas mixture. Exposure of SV to 0.5 
or 1 nM of the vH+-ATPase inhibitor BM or low pH significantly inhibits GTP-Mas 
induced vesicle swelling (A-D). Note the loss in SV size following exposure to BM alone 
(B). The GTP-Mas induced SV swelling is pH sensitve (C), insofar as, except the near 
physiological pH of 7.5, both alkaline and acidic environments nearly abolish GTP-Mas-
induced swelling of SV, as determined both by photon correlation spectroscopy (C) and 
by dynamic light scattering measurements (D). B-D: n = 5, *P<0.001. (Shin et al., 2009) 
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Figure 18. Atomic force microscopy on synaptic vesicles demonstrating inhibition of 
GTP-Mas-induced synaptic vesicle (SV) swelling by bafilomycin (BM). In accordance 
with photon correlation spectroscopy and dynamic light scattering studies (Fig. 2), 
isolated SVs (A, left) swell when exposed to 40 µM GTP-Mas (A, right). Exposure of SV 
to 1 nM of the vH+-ATPase inhibitor BM (B, left) significantly inhibits GTP-Mas-induced 
vesicle swelling (B, right). Note the loss in GTP-Mas-induced SV volume increase 
following exposure to BM (C); n = 22, *P < 0.001. (Shin et al., 2009) 
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Figure 19. Exposure of SVs to the vH+-ATPase inhibitor bafilomycin abrogates the 
GTP-Mas-induced net loss in negative charges at the vesicle membrane by inhibiting 
vesicle acidification. A: With the exception of pH 7.5, vesicles in either acidic or alkaline 
medium fail to elicit any change in their zeta potential (B), demonstrating that both acidic 
and basic suspension media inhibited vH+-ATPase activity, thereby preventing the entry 
of protons into the vesicle lumen. *P < 0.05. (Shin et al., 2009) 
 

 

Figure 20. Diagram of the synaptic vesicle membrane depicting the presence of Gao, 
vH+-ATPase, and the water channel AQP6. Mastoparan (MAST) stimulates GTP-Gao 
protein. This study demonstrates involvement of vH+-ATPase in GTP-Gao-mediated 
synaptic vesicle swelling. Results demonstrate a bafilomycin (BM)-sensitive (red X) 
vesicle acidification following the GTP-Gao stimulus, and water channels are 
bidirectional and the vH+-ATPase inhibitor BM decreases both the volume of isolated 
synaptic vesicles and GTP- mastoparan stimulated swelling, suggesting vH+-ATPase to 
be upstream of AQP- 6. Vesicle acidification is therefore a prerequisite for AQP-6-
mediated gating of water into synaptic vesicles. (Shin et al., 2009) 
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  CHAPTER 5 

GENERAL DISCUSSION AND CONCLUSIONS 

Due to the fact that hormone and neurotransmitter secretion out of cells is such a 

rapid and highly regulated process, and because total fusion of vesicular and cell lipid 

bilayers does not address these issues, cell secretion is an obvious resolution to these 

predicaments but had remained an enigma until recently.  Previous studies have 

implicated the role of non-structural membrane lipids such as cholesterol and LPC in the 

secretory process; however, the precise mechanisms underlying these interactions 

were unknown.  In a 2007 study by Cho and others, depletion of cholesterol from 

synaptosomal membranes resulted in a decrease in porosome integrity but had no 

effect on t-/v-SNARE complex assembly.  It was however demonstrated in this study 

that interactions between t-SNAREs and associated calcium channels were disrupted.  

Because the presence of calcium is required for membrane fusion between secretory 

vesicle and cell plasma membrane, it follows that a disturbance in the interaction 

between SNAP-25, syntaxin-1 and calcium channels leads to an inhibition of secretion.  

Therefore, there is a lipid-protein interaction occurring between cholesterol and 

secretory complex proteins that is vital to the process of cell secretion. 

Although the previous study had shown a requirement for cholesterol, specifically 

in interactions between SNARE proteins and other porosome proteins such as the 

calcium channel, it also demonstrated that cholesterol had no effect on the size, shape 

and assembly of the t-/v-SNARE complex.  Furthermore, prior studies have shown a 

direct decrease in neurotransmission due to the depletion of cholesterol from synaptic 

membranes (Zamir and Charlton, 2006).  Not only does cholesterol associate with 

porosome proteins, it also has interactions with proteins at the synaptic vesicle such as 
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synaptophysin and VAMP.  Although the function of synaptophysin is relatively 

unknown, it is understood that it has associations with the essential synaptic vesicle 

protein VAMP, and that this interaction may be mediated by cholesterol (Mitter et al., 

2003).   

Besides cholesterol, another non-structural membrane lipid, LPC, has also been 

shown to influence secretory processes.  Isolated, perfused rat atria when administered 

LPC via the perfusate demonstrated a dose dependent decrease in ANP secretion (Han 

et al., 2003).  Additionally, evidence has shown that low density lipoproteins (LDLs) 

accumulate at atherosclerotic regions of vasculature.  These oxidized LDLs can then 

result in the insertion of LPC into endothelial cell membranes which can suppress the 

secretion of endothelin-1 from cultured vascular endothelial cells (Jougaski et al., 1992).   

A main contributor to cardiovascular disease is arthrosclerosis due to poor diets 

that cause high plasma lipid concentrations (Watts et al., 1992).  In a 1992 study by 

Watts and others, men with coronary artery disease were treated with either a low fat 

diet or the combination of low fat diet with the drug cholestyramine (responsible for 

lowering plasma cholesterol levels).  From this study, it was determined that a reduction 

in dietary fat intake was sufficient to cause a regression in coronary artery disease.  In 

patients treated with both diet and cholestyramine therapy, there was a net increase in 

coronary lumen diameter, which was a result of a decrease in atherosclerotic plaque.  

Because of the overall implications of high lipid diet and its effects on both cholesterol 

and LPC levels in the body, it is important to understand how these lipid molecules 

disrupt normal processes in the cell.  Due to the accumulating evidence that both of 

these lipid molecules are involved in the secretory process, it is imperative to 

understand the molecular dynamics of the lipid-protein interaction which underlies these 
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operations.   

From the current study, we have been able to show that cholesterol has no effect 

on t-/v-SNARE complex assembly (Shin et al., 2010).  These findings are consistent 

with previous study findings from Cho and others in 2007 and are a first time 

observation of the molecular folding events occurring in the SNARE complex in the 

presence of cholesterol.  What was really surprising was the effect that LPC had on 

SNARE complex disassembly.  In the presence of LPC, t-/v-SNARE complexes formed 

between t- and v-SNARE reconstituted liposomes did not disassemble in the presence 

of NSF-ATP.  This was demonstrated by maintenance of α-helices within the complex 

(Table 1) (Shin et al., 2010).  From these observations, it is clear that LPC has an 

inhibitory effect on SNARE complex disassembly; however, it allows for an initial binding 

event to occur between t- and v-SNAREs.  This suggests that there is an initial complex 

formation and secretory event that occurs in the presence of LPC, yet further secretions 

are inhibited. 

Although LPC is upregulated by the activity of phospholipase A2 (Zimmerberg 

and Chernomordik, 2005), the aforementioned study was done in liposomes without any 

exogenous proteins outside of t- and v-SNAREs.  Therefore, it is reasonable to 

conclude that the effect shown is a result of LPC‟s direct action on the SNARE complex.  

The fact that LPC levels are however increased by phospholipase A2 activity brings to 

mind the idea that any process that is responsible for stimulating this inflammatory 

pathway may also cause disruption to secretory processes in the cell. 

In conformation of the previous study, it was demonstrated that SNARE complex 

disassembly is inhibited, both in pancreatic (slow secretor) and brain (fast secretor) 

tissues, in the presence of LPC (Figure 13 and Figure 15).  This was clearly 
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demonstrated utilizing immunoblot analysis (Figure 15D).   Additionally, the current 

study showed that when disassembly is stimulated (by NSF-ATP), the process occurs 

much more rapidly in cholesterol containing liposomes (Figure 15B). 

Collectively, these studies indicate that LPC does indeed have an inhibitory effect 

on SNARE disassembly while cholesterol seems to maintain the secretory response in 

cells.  To confirm the effects of cholesterol and LPC on the overall secretion process, 

these studies should be repeated in live cells and measurements of secretory products 

should be made to determine if the secretory response is abrogated in cells incubated 

with LPC.  Initial studies using pancreatic tissue have begun and amylase secretion 

after treatment of tissue with cholesterol or LPC has been measured, but must be 

repeated for significance. 

In addition to understanding the interaction of lipids with SNARE proteins, it 

would be pertinent to our understanding of the t-/v-SNARE protein complexes and their 

associations with membrane lipids to conduct a series of experiments utilizing truncated 

SNARE proteins.  This would allow us the ability to determine which regions of the 

proteins are responsible for SNARE complex assembly and may also shed some insight 

into the interactions of the transmembrane regions of the SNARE proteins with the lipid 

bilayer. 

As well as investigating the effects of cholesterol and LPC on SNARE complex 

assembly-disassembly, the current study looked at the swelling response of vesicles in 

different pH environments.  It is well known that vH+-ATPases are present in vesicle 

membranes (Stadler & Tsukita, 1984) and are required for vesicle acidification (Füldner 

& Stadler, 1982), which is itself necessary for uptake of intravesicular contents into the 

vesicle.  Additionally, study findings have shown that vesicles swell or increase in size in 
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response to stimulation by GTP and mastoparan, and that GTP stimulates a Gαo 

signaling cascade, that results in swelling due to water entry into the vesicle via 

aquaporin channels (Kelly et al., 2004; Jeremic et al., 2005).  Upon inhibition of water 

channels, the swelling response is abrogated but not completely abolished (Cho et al., 

2002c).  This finding seems to suggest that the Gαo signaling cascade involves a 

number of proteins within the secretory vesicle membrane.  Therefore, it was pertinent 

to understand if vH+-ATPase activity was regulated by Gαo in hopes to further resolve 

the sequence of events occurring within this cascade. 

To investigate vH+-ATPase‟s influence on the swelling response, isolated 

synaptic vesicles were administered bafilomycin (a vH+-ATPase inhibitor) and 

stimulated to swell via GTP-mastoparan.  It was determined that if synaptic vesicle 

acidification was inhibited, so too was the swelling response (Figure 17 & 22).  To 

further examine the activity of vH+-ATPases, isolated synaptic vesicles were placed in 

varying pH environments with bafilomycin and stimulated to swell.  When vesicles were 

in a pH environment that was anything other than neutral pH (pH 7.5), there swelling 

response was completely inhibited (Figure 17C, D).  What was interesting to note was 

that the swelling response was decreased in the presence of bafilomycin, but not 

completely abolished (Figure 17A-D, Figure 18).  However, bafilomycin did cause a 

decrease in the rate of swelling response to GTP-mastoparan (Figure 17E).  These 

findings suggested that because the swelling response was not completely inhibited, the 

vH+-ATPase is in fact one of the proteins that is activated in the G-protein signaling 

cascade at the level of the vesicle.  Also, because vesicles still swell in response to 

GTP-mastoparan, even in the presence of bafilomycin, it appears that vH+-ATPases are 

located upstream (Figure 20) of aquaporin channels in the signaling cascade and that 
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proper acidification of secretory vesicles must occur in order for swelling and 

subsequent expulsion to occur. 

As a follow up to these swelling studies, further investigation into all the proteins 

involved in this vesicular signaling cascade would provide us with a better 

understanding of the regulatory mechanisms employed during vesicle swelling and 

expulsion of intravesicular contents.  By utilizing a series of inhibitors for the proteins 

that participate in the swelling response, the sequence of protein channel activation 

could be elucidated.  Additionally, a series of immunoprecipitation experiments could be 

used to determine which proteins are physically coupled within the vesicle membrane 

and are most likely activated in succession with one another.   

Collectively the present study findings suggest the cell to be even more complex 

than previously thought.  It is clear that there are signaling cascades that occur within 

organelles of the cell, such as the vesicle.  Again, these data reiterate the complexity of 

the secretory process and how secretion of products from the cell is very tightly 

regulated.  A greater understanding of cell secretion would unfold many mysteries within 

the cell and provide us with a better understanding of certain disease progression and 

possible treatment options. 
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For nearly half a century, it was believed that during cell secretion, membrane-

bound secretory vesicles completely merge at the cell plasma membrane resulting in 

the diffusion of intra-vesicular contents to the cell exterior and the compensatory 

retrieval of the excess membrane by endocytosis.  This explanation made no sense or 

logic, since following cell secretion partially empty vesicles accumulate as demonstrated 

in electron micrographs. Furthermore, with the „all or none‟ mechanism of cell secretion 

by complete merger of secretory vesicle membrane at the cell plasma membrane, the 

cell is left with little regulation and control of the amount of content release.  Moreover, it 

makes no sense for mammalian cells to possess an „all or none‟ mechanism of cell 

secretion, when even single-cell organisms have developed specialized and 

sophisticated secretory machinery, such as the secretion apparatus of Toxoplasma 

gondii, the contractile vacuoles in paramecium, or the various types of secretory 

structures in bacteria.  This conundrum in the molecular mechanism of cell secretion 

was finally resolved in 1997 following discovery of the „Porosome‟, the universal 

secretory machinery in cells.  Porosomes are supramolecular lipoprotein structures at 
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the cell plasma membrane, where membrane-bound secretory vesicles transiently dock 

and fuse to release inravesicular contents to the outside during cell secretion.  In the 

past decade, the composition of the porosome, its structure and dynamics at nanometer 

resolution and in real time, and its functional reconstitution into artificial lipid membrane, 

have been elucidated.  Three soluble N-ethylmaleimide-sensitive factor (NSF)-

attachment protein receptors called SNAREs, have been implicated in membrane fusion 

in cells.  For example in neurons, target membrane proteins SNAP-25 and syntaxin (t-

SNARE) present at the porosome base, and a synaptic vesicle-associated membrane 

protein (v-SNARE), are part of the conserved protein complex involved in fusion of 

synaptic vesicle membrane at the porosome. Studies demonstrate that t-SNAREs and 

v-SNAREs, when present in opposing lipid membrane, interact in a circular array, and in 

the presence of calcium, form conducting channels.  The interaction of t-SNARE and v-

SNARE proteins to form conducting channels is strictly dependent on the presence of 

these proteins in opposing membrane.  Following stimulation of cell secretion, it has 

been demonstrated that secretory vesicles swell via rapid transport of water and ions, 

and the intravesicular pressure thus created enables the expulsion of vesicular contents 

from the cell via the SNARE channel and the porosome.  The focus of the present study 

was to understand at the molecular level, membrane-associated t-/v-SNARE assembly 

and secretory vesicle swelling involved in cell secretion. Using t- and v-SNARE 

reconstituted proteoliposomes, and isolated secretory vesicles, the present study was 

conducted employing various biochemical and biophysical approaches. The results from 

this work were published in seven research papers, and provide a molecular 

understanding of both t-/v-SNARE assembly and secretory vesicle swelling during cell 

secretion. 
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