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1

CHAPTER 1: INTRODUCTION

This work is the summary of my research during the period of pursuing my Ph.D.

from the year of 2006 to present. I have comprehensively investigated several problems

of modern anesthisa management such as depth monitoring, automatical drug control,

and modeling the patient dynamics for prediction, diagnosis and warning by using the

technologies of signal processing, control theory, and system identification. All of the

analysis were based on the cranial EEG signals or its derivatives. In addition, I also

have taken an initial step on the problem of analyzing the impact of anesthesia and

noise lesion on the neural activities of primary auditory cortex from a system point of

view. In this case, the output of the objective system is the function of intracranial

EEG signals recorded through the intrusive electrode. The intracranial EEG is less

noise contaminated and contains more information of the brain than the cranial EEG

does.

1.1 Objective and Motivation

My research aims to potientally improve the current technologies for building a

more safe, reliable, efficient, and economical clinical enviroment for anesthesia pa-

tients.

Modern anesthsia managment is a comprehensive, complex, even the most critical

issue and plays a very important role in healthcares. In the past decades, it has

attracted much attention of the researchers to investigate this issue from several
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aspects. There are two main tasks:

• Monitoring aneshtesia depth, which aims to measure the anesthesia paptient

unconsiousness levels by monitoring a seires of indexes. The main problem of

this issue is how to choose or derive a reliable and sensitive depth index suiting

for any anesthesia drug and any patient.

• Modeling anesthesia patient responses, such as anesthesia depth, blood pressure

and so on, to anesthesia drugs and operation procedures etc. Those models can

be used for displaying, control, diagnosis, and prediction etc.

Characterizing, measuring, and continuously monitoring the depth of anesthesia

has been pursued extensively and persistently for many decades since the observa-

tions of the physiologic effects of anesthetic agents by John Snow’s description of the

various stages of ether anesthesia in 1847 [1]. Accurate monitoring of the anesthesia

depth helps to avoid overdose of anesthetic agent, prevent intraoperative awareness,

assist the anesthesiologists in anesthesia decisions and management. Furthermore,

monitoring of the anesthesia depth can guide more precise titration of anesthesia

agents, and consequently can potentially reduce drug costs, expedite post-anesthesia

recovery, and shorten hospital stay [9]. My first research goal is to investigate the

problem of measuring anesthesia depth based on EEG signal processing. The EEG

is the voltage difference between two different recording locations on the scalp and

can be recorded by properly arranged electrodes [13]. The use of EEG processing

rests on the observation that anesthesia medications have substantial effects on neu-
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ronal synaptic activity which produces the EEG and this change appears to produce

the characteristic central nervous system (CNS) effects identified as anesthesia. The

origin of the EEG and its characteristic of safety and noninvasion place the EEG

monitors in a better perspective.

The second topic of this work is multi-input-multiouput real-time anesthesia pa-

tient modeling for multi-objective prediction, diagnosis and control. Real-time anes-

thesia decisions are exemplified by general anesthesia for attaining an adequate anes-

thetic depth and ventilation control etc. One of the most critical requirements in

this decision process is to predict the impact of the inputs (drug infusion rates, fluid

flow rates, etc.) on the outcomes (consciousness levels, blood pressures, heart rates,

etc.). This prediction capability can be used for control, display, warning, predictive

diagnosis, decision analysis, outcome comparison, etc. The core function of this pre-

diction capability is embedded in establishing a reliable model that relates the drug

or procedure inputs to the outcomes. Furthermore, anesthesia drugs have impact on

multiple outcomes on an anesthesia patient. Most typical outcomes include anesthesia

depth, blood pressures, heart rates, etc. Traditional modeling, diagnosis, and control

in anesthesia focus on a one-drug-one-output scenario [48, 86, 50, 51, 52, 57, 64].

For a comprehensive anesthesia managment, it becomes essential that the impact of

anesthesia drugs on multiple outcomes be taken into consideration.

The third task of my research is to investigate the performance of feedback anes-

thesia drug control in wireless connected system. This research goal was based on the

following two issues:
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• Operation room in the future

In an operation room, a wide range of medical devices are connected together or

connected to patient through cables for measuring, monitoring and diagnosis.

The cable clutter interferes with patient care, creats hazards for clinical staff

and delays transport and positioning. To improve the clinical room efficiency

and safty, it is reasonable to replace those cables with wireless connections.

• Automatic anesthesia control

In medical point of view, to maintain an adequate depth of anesthesia without

compromising patient’s health, an anesthesiologist usually works as a multi-

task feedback controller to roughly regulate the drugs titration while observing

a variety of patient outcomes. Designing an automatic anesthesia controller

aims to automatically regulate anesthesia levels by taking account on several

physilogical measurments and then frees up anesthesiologists for more important

tasks in operation.

However, when wireless communication channels is involved, it would introduce

noises due to quantization, channel noises, and haveing limited communication band-

width resources. As a results, it would impact the performance of, even distablize the

close-loop control systems. So investigating how the wireless communication channels

affect the close-loop systems, then avoiding the unstable status and even optimizing

the system performance become more critical than ever.

The final project is modeling for the impact of anesthesia and noise lesion on the
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neuron activities of auditory systems. This project is motivated by the purpose of

investigating the impact of anestheisa and noise lesion on the auditory system from

a system view point. In tradition, the response of primary auditory cortex nerons to

outside stimuli was represented by the STRF (Spectra temperal receptive field) which

aims to completely characterize and predict the acitvities of the auditory neurons to

any acoutic stimuli from wideband noises to nature sounds. The system identification

methods were widely applied for estimating the mapping functions of the systems.

Usually, the mapping functions contain much nonlinearity that potentially increases

the computation complexities. However, for special applications, it is reasonable to

utilize a simple model structure even linear model to represent the auditory systems.

In this research work, a model structure was presented and applied for analyzing the

impact of anesthesia and noise lesion on the primary auditory cortex neuron activities.

Several interesting findings were highlighted.

1.2 Literature Survey

1.2.1 Measuring Anesthesia Depth Based on EEG Signal Processing

In previous research works, several EEG based depth indexes and EEG signal

processing methods for measuring depth have been developed and investigated [2, 28,

40, 24, 26, 30, 34, 36, 44, 41, 42, 45]. Rampil etc. reviewed main of these technologies

and the corresponding clinical applications, including the bispectral index used in BIS

system which is the product of Aspect Medical Systems Inc.[28]. All of the methods
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can be classified into two categories: time-domain methods and frequency-domain

methods. Only one time domain method, burst suppression quantitation [36], is in

current used in monitoring systems. Frequency domain analysis, which is based on

Fourier transform, is an important alternative approach to time domain methods.

Almost all the currently available devices: BIS system, Entropy system, Narcotrend,

Sedline, and Snap II, are based on the power spectrum analysis of EEG. The results

from frequency domain analysis can be described by sole parameters such as median

frequency, spectral edge frequency, relative band power, band power ratio etc. and

combined parameters such as bispectral index and spectral entropy index used in BIS

system and Datex-Ohmeda S/5TM Entropy Module respectively. Unfortunately, no

sole indicators could server as a comprehensive descriptor of anesthesia depth [40].

The combination of several parameters showed a higher discriminating power than

sole parameters. For example, the measuring indexes of widely used BIS system

and Entropy system are the combination of several EEG parameters. BIS monitor

uses different algorithm to calculate the BIS during the different stages of anesthesia,

e.g., burst suppression, frequency power ratio as well as bispectral analysis. The

Entropy Module measures the depth of anesthesia by calculating two spectral entropy

indicators: state entropy and response entropy, and the difference of them. The

detailed algorithm to obtain the bispectral index and spectral entropy index was

presented in [28] and [41] while the combination of those individual parameters is

unknown. In addition, some other analysis methods such as artificial neural networks,

complexity and wavelet analysis also were reported and proved to be useful tools in
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measuring depth of anesthesia [26, 30, 42, 45].

Although the goal of monitoring anesthesia was initially focused on avoiding the

hazards of overdose, a greater interest has been added in the prevention of recall or

awareness during operation [7, 8, 15, 44]. In one of the papers of John C. Drummond,

it was stated that a valuable monitor is that the average value yielded by the device

in two distinct states should be statistically different and the range of values seen

in those two stage should not overlap, ideally, the index of the device should be 100

percent sensitive and specified to the different states, and the critical threshold values

that distinguish depth of anesthesia states of interest should not be influenced by the

choice of anesthesia agent or by patient physiology [8]. But neither technique com-

pletely meets the two preconditions for identifying the probable patient awareness.

Although the BIS system yielded the best combination of sensitivity and specificity of

any commercially available monitors, a significant limitation that the BIS thresholds

is dependent on the anesthesia agents administered can not be eliminated. Further-

more, some publications reported that some values recorded during adequate surgical

anesthesia were within the range of values seen in awake patients [29]. Hence, the

Middle Latency Auditory Evoked Response (MLAER) emerged as a new technology

to predict the awareness [8]. Christian Jeleazcov etc. [19] analyzed the discriminant

power of EEG, acoustic evoked potentials (AEP) and somatosensory evoked potentials

(SSEP) respectively and the discriminant power of their combinations, and suggested

that future anesthesia monitor should consider the combined information simultane-

ously distributed on different electrophysiological measurements.
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1.2.2 Anesthesia Modeling and Control

• Modeling in anesthesia

The standard modeling paradigm used to describe the releationship between in-

put drugs and patient responses is Pharmacokinetic-pharmacodynamic(PKPD)

compartmental models. Pharmacokinetics concerns the dynamic process of drug

distribution in the body, pharmacodynamics decribes the effects of the drug on

the body. This model formed the basis of target-controlled infusion(TCI) system

used extensively in the world excepted for North America. The most frequently

used model is a three-compartment model described in [46]. Currently, most

of the anesthesia controller design and monitoring are based on PKPD models

[48, 86, 50, 51, 52, 64]. An alternative modeling way is physiological-based mod-

els which try to eliminate the disadavantages of simple compartmental models.

Decription and illustration of these models are detailed in [47]. Those models

are population based and can only be indentified off line or partially update PD

model parameters online [48, 50]. As the increasing emphasis on multi-objective

anesthesia diagnosis, researchers are moving their attention to the problems of

the MIMO modeling for anesthesia patient. The representive works can be seen

from those published papers of C. Nunes, M. Mahfouf, and H. Lin[53, 54, 55, 71].

In papers [53, 54],the neural-fuzzy paradigm was applied to model the patient

dynamics and measure the anesthesia depth. Neural network is widely used

in anesthesia monitoring and diagnosis [70]. Such a smart system can assist
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anestheologists in diagnosis and making decisions. H. Lin et al. developed a

multi-variable piecewise-linear model to relates all drugs, surgical stimuliations

to patient outcomes such as heart rate, BIS index, and blood pressure. The ba-

sic idea is dividing the whole anesthesia procedure into two parts according to

the BIS value, then the nonlinearity of patient dynamics can be approximately

linearized. The advantages of this model is that it can describe the interaction

between inputs and can be easily identified through existing multivatiable in-

dentification methods. The obvious shortcomings are that it is time consuming

and can not be realized in real time. In paper [71], an automatic MIMO drug

delivery system named ‘RAN’ was reported. In this paper, the PKPD model

related the input drugs to patient outcomes. In our previous research works,

an information-oriented model structure (a special case of Wiener models), for

patient anesthesia depth responses to propofol infusion as an SISO system was

introduced in [60, 61, 62]. This simple model structure contains few parameters

and can be easily indetified in real-time.

• Control in anesthesia

Closed-loop control of anesthesia has been a goal of many researchers since

the middle 20th century. Before the availibility of reliable anesthesia moni-

tors, Schwilden et al. [72] used the median frequency of EEG as an index of

depth of hypnosis and a simple model-based adaptive scheme based on a two-

compartment model to adjust propofol infusion. In the 1990s Machfouf and
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Linkens [73] used a number of model-based predictive control techniques to

control muscular relaxation and mean arterial pressure. With the emergence of

BIS monitor in late 1990s, the interests in closed-loop control of depth of hyp-

nosis was renewed. The most notable works are seen in [74, 86, 64, 51]. Model

predictive control and PID control are the widely used strategies in anesthesia

applications. Both strategies requrie complete decrisption of the pateint mod-

els. Another strategy is the fuzzy-logic based controller which does not use the

mathematic models [54]. In recent years, the multi-task controller for anesthesia

applications attracted more interests [71, 75]. As a promising control strategy

for regulation of anesthesia patient outcomes, model predictive control has been

applied to regulate two patient outcomes simultaneously [67]. Most of the effort

in this area is focused on control strategy design. As the emergence of the new

demands in current operation rooms, we need to consider using new or curent

technologies to fulfill those coming challenges. Wireless connection of medical

devices in operation room with special applications on anesthesia is an example.

To my knowledge, no related research works have been made to discuss these

problems.

1.2.3 Modeling for Auditory System

The problem of modeling for auditory systems was extensively investigated by

researchers in the past two decades. Although the outputs of the conventional models,

STRF (Spectro-Temporal Receptive Field) and computational models, were neural
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activities such as spike trains, action potentials or firing probabilities, these models

have distinct applications. STRF was introduced by Aertsen to describe the input-

output relationships of auditory neurons in 1981 [76]. It was widely used for describing

and predicting the auditory neuron activities under such a wide range of stimuli as

the pure tones, wideband noise, and natural sounds and so on [77, 78]. The model

classes of the STRF can be either linear or nonlinear, parametric or nonparamet-

ric. The estimation of the STRF was typically summaried by using the maximum

a posteriori(MAP) estimation [79, 97]. The computational model consists of several

functional blocks (pass-band filter bank, nonlinear functions, etc.), with each block

representing a physiological function of the ear or transmission channels in the neu-

ral system. This method was based on the knowledge of the neurophysiology of the

auditory system and used for describing the audio signal processing at the physio-

logical and perceptual levels and designing hearing-aid devices and cochlear implants

[80, 81]. Recently, a simple dynamic model was derived to represent variability and

state-dependence of auditory neuron responses [82].

The central nerve system (CNS) activities are affected by anesthesia drugs. Sev-

eral EEG signal processing based methods were introduced to quantify and contin-

uously monitor the anesthesia depth [83, 84]. In addition, modeling the anestheisa

dynamics with the anesthesia drugs as inputs and EEG based indexes (eg: BIS) as

outputs were widely investigated for the purpose of automatic anesthesia control,

outcomes prediction and diagnosis [85, 86, 87]. The anestheisa drugs are widley be-

lieved to affect the neuron activities of the auditory cortex. The auditory evoked
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potentials were proved to be more efficient than the EEG in decribing the transition

from conciousness to unconciousness state of patients [88]. Futhermore, the noise

lesion on auditory cortex may cause the auditory systems can not work properly. To

understand the impact of anesthesia drugs or noise lesion on auditory cortex neuron

activities, many researchers studied neuron activities (spontaneous or acoustically

evoked) among awaked and anesthetized animals [89, 90, 91, 92, 93]. Low frequency

hearing loss was even found after spinal and general anesthesia [94]. Most of the

analysis methods were limited in their scopes and in model structures. Mechanism of

the propofol’s effect on neural activities was described through a physiological model

with parameters determined by large amount of testing experiments [95].

1.3 Potential Original Contributions

During the study period, I have completed several projects of modern anesthesia

management. They are the following:

1. Monitoring anesthesia depth based on EEG signal processing.

2. MIMO anesthesia modeling and diagnosis.

3. Feedback anesthesia control in wireless networks.

4. Analysis of the imapct of anesthesia and noise lesion on primary auditory cortex

from a system point of view.

There are several origianl contributions in my research work.
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The first contribution: developed a new EEG parameter and analized the EEG

channel locations. Our initial analysis results show that the developed new parameter

is stronger in monitoring anesthesia depth, especially for detecting awareness of a

patient during anesthesia. Furthermore, the results of channel locations analysis give

a guidance for EEG sensor placement in the viewpoints of drug sensitivity and signal

to noise ratio in the application of depth monitoring.

The second contribution is the introduction of multi-input-multi-output real-time

modeling method for anestheisa prediction and decision making. Anesthesia man-

agement is actually a MIMO problem. Usually, anesthesiologists watch several vital

patient responses such as blood pressure, heart rate, and BIS index etc., then manipu-

late anesthesia drugs tirations based on current inforamtion to maintain an adequate

anesthesia level roughly. With the assistant of this real-time and individulized MIMO

anesthesia patient model, anesthesiologists can make decisions based on both of cur-

rent and future information and achieve enhanced anesthesia management.

The third contribution of this research work is the hardware implementation of

the developed MIMO model through Labview graphical programing software. The

implemented multi-objective predicting and diagnosing model is proposed to be able

to work as an Anesthesia Management Assistant Equipment in clinical room.

The forth contribution is theoretical conclusions of the feedback anesthesia control

problem in wireless connected system. When signal averaging is inserted in such a

closed-loop system for noise reduction, it is observed that the averaging window will

destabilize the closed-loop system if the window size excess the stability margin. In
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this work, the analysis and calculation of stability margin against exponential window,

as well as the optimal strategy for choosing averaging window sizes are introduced.

Those findings formed one of the fundamental theoretical basis for wireless connected

medical device systems in future operation rooms.

The fifth contribitution is the introduction of the modeling method for the analysis

of the auditory system under anesthesia and after noise lesion. In this project, I

developed an auditory system structure, analized the system parameters when the

system under different conditions. Serveral interesting points were highlighted in this

work.
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CHAPTER 2: MONITORING ANESTHESIA DEPTH

BASED ON EEG SIGNAL PROCESSING

2.1 Background and Problem Statement

General anesthetics is proved to interference with synaptic function in the CNS(central

neural system). CNS produces all kinds of cortical activities such as cognition, mem-

ory, attentiveness etc. Due to the depression of CNS caused by anesthesia drugs, the

loss of consciousness, lack of movement to incisional pain of the patient etc. are the

general phenomenons occurred during anesthesia[27]. The term depth of anesthesia

is rooted in the principles developed by Guedel in 1937 with ether anesthesia when

he was training inexperienced personnel to give anestheisa in Second World War[14].

Guedel defined a series of stages and planes using changes in vital signs and cranial

nerve reflexes as ether anesthesia deepened. These effects are related to the progres-

sive effects of ether on the cortex and brainstem with lighter levels primarily affecting

the cortex and deeper levels acting on the brainstem as well. Using these signs,

the patient could be adjusted to a level of responsiveness associated with “surgical

anesthesia”.

One of the developement of modern anesthesiology is the ability to monitor the

depth of anesthesia. The main method is focused on the search of a reliable index to

discriminate the statistically significant difference in anesthesia. Among the current

available technologies, none has the sensitivity and specificity to allow the clinician
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to draw certain conclusions about the depth of anesthesia in individual patients for

whom he or she treats. The developed technologies and monitor devices just serve as

a trend indicator of anesthesia stages as the variation of drug dose.

2.1.1 Previous Monitering Techniques in Anesthesiology

Traditionally, some measurable indicators such as arterial blood pressure, ven-

tilation, and heart rate are used as anesthesia depth indicators which can predicte

anesthesia depth roughly[3].

Another more general monitoring approach is to consider general anesthesia as a

mixture of three basic components and then focus anesthetic management on each

component. Traditionally, the following three components have been considered[27].

• patient movement,

• analgesia or insensitivity to pain,

• unconciousness.

Classic assessment of sedation is provided by Observer Assessment of Awareness

and Sedation Score(OAA/S score)(Table 2.1.1)[6]. However, once the response to

physical stimuli or verbal is absent, the ability to assess the cortical activity is lost.

Clearly, an effective method should be developed to characterize the state of higher

cortical functions, such as level of conscisousness, so that a reasonable threshold for

keeping the patient adequately anesthetized and not overdosed could be achieved.
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Table 1: ModifiedOAA/S scale used in associating subject behavior with EEG change

Expected response Score

Responds readily to name spoken in normal stone 5(Alert)

Responds only after name is called loudly andor repeatedly 4

Lethargic response to name spoken in normal stone 3

Responds only after mild prodding or shaking 2

Responds only after painful trapezius squeeze 1

Does not respond to painful trapezius squeeze 0(Unconscious)

2.1.2 Use of EEG to Monitor the Anesthesia

Scince EEG is the product of synaptic activity on the pyramidal cells in the

superficial cortex, it can be recorded by the properly arranged electrodes placed on

the scalp. A large amount of evidence substantiates the alteration in synaptic activity

as a primary mechanism of anesthetic agent action(the details were presented in

reference [27]), the EEG may be useful in assessing the anesthesia drug effects on

synaptic activity which occurs with higher cortical processing.

1. Description of EEG The EEG activity can be described by those descriptors

such as waveform, repetition, amplitude, frequency, distribution, phase relation,

timing, persistence and reactivity [13]. In anesthesia field, the most frequently

used discriptor for EEG is frequency. In frequency domain, EEG signal is

usually divided into 5 groups or frequency band(Table 1) [28]:

Table 2: Five EEG frequency bands

Band Designation Delta or δ Theta or θ Alpha or α Beta1 or β1 Beta2 or β2

frequency range Under 3.5Hz 3.5Hz to 7Hz 7Hz to 13Hz 13Hz to 30Hz 30Hz to 50Hz

Alpha waves or α are usually seen in patients who are awake. They are generally
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more prominent over the vertex(top of the head)in a relaxed state as with

meditation (especially with eyes closed). Beta1 waves or β1 are usually seen in

the prefrontal regions and to increase during the initial stages of sedation, and

amnesia caused by some anesthesia drugs. Theta waves or θ (also known as slow

waves) are normally seen in sleep. Delta waves or δ are usually seen in deep

sleep and are abnormal in the awake adult. Both of θ and δ are seen due to the

influence of anesthesia. The high frequency band, Beta2 waves or β2 is thought

to play a role in perception and processing of sensory information [10, 32]. This

high frequency band are usually contaminated by EMG (electromyography)

signals, a composite of all the muscle fiber action potentials occurring in the

muscle(s) underlying the skin. Both of β2 wave and EMG signal are normally

seen in awake person and depressed significantly by anesthetics, so they are

usually used as important indicators to measure the anesthetics effects [28, 41].

The overlap of the frequency content of the EEG and EMG is depicted in

Figure 1 where the relative amplitude is also shown (Copied from Jensen [77]).

As shown, the facial muscle EMG overlaps with the EEG even to the α band.

2. Effects of Anesthesia Agents on EEG In general, EEG has basic patterns such

that a change from these rhythms suggests a physiologic perturbation or drug

effect. Most anesthetic drugs alter EEG by producing an initial excitatory

stage characterized by desynchronization and increased relative power of faster

frequency [22]. The fast β activity is most prominent in the frontal regions and
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Figure 1: Power spectrum of the EEG, facial muscle EMG and midlatency auditory-

evoked potentials(MLAEP).

moves posterior as the anesthetic drug effect increases. At the same time, a

prominent area of EEG synchronization in the alpha range developes over the

more posterior regions and moves to the frontal regions. As the increasing of

anesthesia drug doses, the EEG will achieves burst surpression (where periods

of EEG activity are interspersed with periods of flat EEG) [28].

The general pattern change during anesthesia is shown in Figure 2 [27]. First,

frequency activity increases and then gradually decreases until electrocerebral

silence occurs. Amplitude increases as the activity is synchronized into the

8 − 10Hz range and then gradually decreases until the EEG is flat. Next the

variability (or entropy) in the EEG decreases as the EEG becomes synchro-
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Figure 2: Changes of several EEG and EMG parameters as anesthesia is deepened

nized with the thalamic pacemaker. Finally, the EMG of the frontal muscles

disappears as the anesthesia deepens. Based on these observations the EEG

may be capable of reflecting a gradual change in anesthetic effect by using a

combination of EEG amplitude, frequency, variability, topography, and frontal

EMG.

With the central nervous system (CNS) being the target of anesthesia drugs, the

electroencephalogram (EEG) signal processing has been the focus for anesthesia depth

monitoring [13, 7]. A variety of methods based on EEG signals processing have been

developed [2, 28, 40, 42, 19, 24, 34, 45]. The goal of all these EEG processing methods

is to produce a scale quantitative EEG “index” that is clinically useful.

Currently, there are a few EEG based anesthesia depth monitors in the market,

such as the BIS monitor (Aspect Medical Systems, Inc.) and the Entropy Module
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(GE Medical Systems, Inc.). Both monitors use frontal EEG signals and give an index

from 0 to 100 continuously with ‘0’ means brain dead and ‘100’ means fully awake.

The index is produced by weighted combination of several derived EEG parameters

from both time domain and frequency domain. Although these machines improve the

performance of anesthesia depth measurement much in certain level, their reliability in

ICU applications remain to be enhanced, some cases of failure in predicting patient’s

status are reported in [15, 29]. As a result, investigation of such EEG parameters

or processing methods that could serve as or produce a stronger depth indicator

during some special situation such as recovery stage becomes a very important issue.

Furthermore, in one aspect, frontal EEG locations are more convenient for signal

collecting, on the other hand, these locations are more easily subjected to noise of

eye movement and EMG which have detrimental imapct on the accuracy of depth

measurement. So, it is necessary to compare the performance of the EEG indexes

from different channel locations.

2.2 Evaluation of EEG β2/θ-Ratio

2.2.1 EEG Signals Acquisition and Preprocessing

1. Subjects and Anesthesia All the EEG signal analysis results presented in this

thesis are based on EEG recordings from 5 young healthy male volunteers.

The study was conducted in the Receiving Hospital, Detroit, MI., and recieved

institutional approval. All subjects were explained of the nature of the study
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and consenting participants.

The BIS values and other physiological vital signs (blood pressures, heart rate,

oxygen saturation, etc.) were continuously monitored during the entire process

with BIS value used as a reference.

Propofol titration rates range from 170− 200µg/km/min. The data collection

procedure was divided into four separated stages,which was showed in Figure

3(b):

(a) Awake stage (15 minutes): The subject was conscious and instructed to

be calm and inactive. Facial and body movements were observed in this

stage. No titration or injection of anesthesia drugs was administered. The

EEG parameters in this stage served as a reference for the other stages.

Other physiological vital signs were also recorded.

(b) Induction stage (15 minutes): Propofol titration starts at the beginning

of the induction stage. During this stage, propofol titration rates were

slightly adjusted to achieve a BIS value to the desired levels (between 30

and 50). Towards the end of this 15-minute period, the BIS values of all

the subjects become stable. This stage was characterized by substantial

changes of anesthesia depth towards its steady-state values. Occasional

facial and body movements occurred.

(c) Maintenance stage (30 minutes): Propofol titration was continued 30 mins

to the level that achieved the desired Bis level and depth of anesthesia. This
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stage is characterized by relatively stable BIS values, no drug adjustment,

and no body movements.

(d) Emergence stage (15 minutes or longer): This stage starts when propofol is

stopped and the subject experiences a recovery process without any drugs.

Due to differences in recovery speed, the duration varies. Body movements

become gradually apparent in the recovery process.

2. Equipments and EEG Channels EEG signals from 16 channels were recorded by

using the 16 channel Nolan Mindset-16 EEG data acquisition equipment(Nolan

Computer Systems, L.L.C.). Each subject worn an electrode cap with elec-

trodes arranged according to the international 10−20 system, see Figure ??. It

uniformly covers the entire scalp and consists of 21 recording electrodes as well

as one ground electrodes. The number of electrodes is enough for recording the

EEGs in the whole scalp regions. Sometimes, the modified 10-20 system is used

to increase the spatial resolution for special studies or to detect highly localized

evoked potentials [13].

Every electrode is named by the position on the scalp where it locates, and

depicted by a letter and subscript z for midline electrodes or number with odd

number for left electrodes and even for the right. The electrodes in prefrontal

are denoted by Fp, frontal by F , central by C, temporal by T , parietal by P ,

occipital by O, and auricular by A. Usually, there are no electrodes in the

positions of Fz, Pz, and Oz, thus only 18 electrodes including two reference
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(a) Electrodes placement according to the

10− 20 system

(b) Propofol adminstration and time in-

terval for each anesthesia stage

Figure 3: Electrodes placement and anesthesia stages division

electrodes (in reference montage) are used for EEG recording.

Actually, the recorded EEG is the potential difference between two recording

electrodes, the absolute potential value at any individual electrode can never

be known. How the two recording electrodes are combined for EEG recording

(e.g. Which electrode is conected to inupt1 or input2 of the amplifer) is defined

as montage. The are five basic kind of montages: bipolar, Laplacian, common

reference, average reference and wieghted average reference. The difference

between those montage are detailed in reference [13]. The common reference

montage, simply, the reference montage, is used in all the experiments in this

thesis.

3. EEG signal preprocessing The raw EEG signals were digitized at 256 Hz. Al-
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though a low-pass filter with cutoff frequency 35 Hz was used in the Nolan

Mindset-16, 60 Hz power line contamination was still visible in the recorded

EEG signals. Scince the interested EEG signal frequency band is below 50Hz

in monitoring anesthesia depth, the 60Hz power line contamintion can be easily

removed by a low pass filter with cutoff frequency below 60Hz. While EEG

signal is also easily contaminated by other artifacts such as eyemovement, body

movement, ECG etc. ECG signals could be avoided by properly arrange refer-

ence electrodes. But the eyemovement is a high amplitude potential usually be

recorded with EEG and locates in the interested EEG frequency band. Mean-

while, some artifacts, such as body movement and cabel movement, have large

amplitude, which results in overflow of the recording equipment channels and

invalid recording EEG signals. The eyemovement signal could be removed by

some developed signal separation technologies, but the overflowed data points

have to be discarded. In this thesis, what is going to be focused is the develop-

ment and clinical application of various EEG parameters. For convenience, the

original EEG data were manually cleared of highly visible artifacts (eye move-

ments, body movements, equipment disturbance, cable movements, etc.), all the

segments with those artifacts were discarded. Then, the remained artifactfree

signals were seperated into 10 sencond (2560 data points) segments and a low

pass filter with cutoff frequency of 47 Hz was designed to filter out the 60 Hz

power line disturbances before the next data analysis step of the EEG signals.

Each EEG parameters presented in the following chapters was calculated for
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each preprocessed EEG segment and then the time trajectories of each parame-

ter were obtained. For those EEG parameters based on EEG spectral analysis,

the power spectrum of each EEG segment should be calculated first. The meth-

ods used in this thesis to estimated the power sepctrum is the following: the

10-second segment was divided into 4 50% overlapping subsegments of 4 seconds

each, [0, 4], [2, 6], [4, 8], [6, 10]. The spectra of each subsegment was estimated

by Welch’s method [43] and the resulting spectra of the four subsegments were

averaged to generate one spectra.

2.2.2 Methods

As presented in chapter 2, five frequency bands are frequently identified for the

EEG signal: Delta band or δ (0.5−3.5 Hz), Theta band or θ (3.5−7 Hz), Alpha band

or α (7 − 13 Hz), Beta-1 band or β1 (13 − 30 Hz), and Beta-2 band or β2 (30 − 50

Hz) [9, 27]. All five bands are influenced by anesthesia agents [27].

The relative β-ratio is one of the main parameters that are used jointly to produce

the BIS index in the BIS Monitor. It is defined as log(P30−47/P11−22) [28], where Px−y

denotes the sum of spectral power in the frequency band from x to y in Hz. It is

well understood that the state of human awareness and alertness are associated with

increased power in the higher frequency bands such as β and β2 with an accompanied

decreased power in the lower frequency bands (θ and δ bands). Consequently, it is

a sensible choice of using power ratios of high power ranges to low power ranges as

indicators of anesthesia depth.
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However, sensitivity of band powers to awareness and alertness varies significantly.

Author O. Dressler et al. introduces a measure of discriminating capability for aware-

ness and alertness indications [7]. Figure 4 shows the re-mapped predicting probabil-

ities, denoted by rPk, of different frequency bins. The higher the rPk, the better the

discriminating power of the frequency band. It is reported that the best performance

for discriminating the awareness and lacking of responsiveness was achieved by the

high frequency band ( > 26 Hz) and low frequency band (< 15 Hz) in EEG.

Figure 4: Remapped prediction probability of frequency bins from 1 to 128 Hz, copied

from paper of O. Dressler et al. [7]

In particular, it is noticeable that the average rPk value within θ band (3.5 − 7

Hz) is much higher than that of the band between 15 to 20 Hz, which is a major part

of the band (11 − 22 Hz) used in the BIS monitor. Based on this observation, the

aim of this study was to introduce a different band power ratio: the ratio of the β2

and θ powers, which is defined as log(P30−47/P3.5−7). This is termed as the β2/θ-ratio.
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There are several potential advantages to this method:

1. The β2/θ-ratio have more sensitivity to changes in awareness and alertness as

shown by Figure 4.

2. In the frequency band over 30 Hz, the EMG signal becomes more dominant than

EEG signals in partially awake subjects. As presented before, the EMG signals

can be a good indication of high awareness and alertness. As a result, in the two

currently available anesthesia depth monitors, the BIS system (Aspect Medical

Systems, Inc., Newton, MA) and Datex Entropy Module (Datex-Ohmeda Di-

vision, Instrumentarium Corporation, Helsinki, Finland), the frequency band

dominated by EMG was used to enhance sensitivity to develop the depth indi-

cators [28, 41].

One adversary impact of this approach is that EMG frequencies can extend

to the alpha band, which is covered in the relative β-ratio. This can reduce

sensitivity since the EMG increases power concentration in both P30−47 and

P11−22. In contrast, the EMG has little effect in the θ range. As the θ power is

used in the β2/θ-ratio, this can become more effective than the relative β-ratio.

3. Both of the power in band β1 and β2 increase during the initial excitation state,

so the ratio of these two band power conceals this special state. While the

power of theta decreases at the initial excitation state, thus this state can be

captured by β2/θ-ratio.
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2.2.3 Results

The trajectories of the β2/θ-ratio and the relative β-ratio from the F4 EEG

electrode for 5 patients are plotted in Figure 5, where a patient is only indexed by a

code such as S1. While the awareness, induction, and maintenance stages had fixed

lengths, the duration of the emergence stage was variable. The end of this stage

for each subject is indicated by an arrow in the figures, indicating that the subject

became fully awake at this time. The trajectories are divided by the four stages which

are separated by vertical dotted lines and marked by letters ‘awareness’, ‘induction’,

‘maintenance’, and ‘emergence’. As β and β2 powers decrease and θ power increases

when the anesthesia depth increases, both the relative β-ratio and the β2/θ-ratio

drop during induction and then rise during recovery. Due to symmetry of the left and

right sides of EEG measurements, only the EEG data in the right side channels were

analyzed. The only exception was when the data generated from the right side EEG

signals became invalid due to noises and recording channel errors, in which case they

were replaced by the corresponding signals from their symmetric channels on the left

side.

The following results were derived from the data.

1. Sensitivity of EEG Parameters to Anesthesia Depth Changes. The trend of

an indicator can be extracted from its trajectories by curve fitting. In this

study, the approach of polynomial curving was used: For each anesthesia stage,

a parameter’s trajectory was represented by a second order polynomial which
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Figure 5: Relative β-ratio and β2/θ-ratio of F4 channel

was obtained by optimal curve fitting.

The second polynomial curves of the β2/θ-ratio and relative β-ratio in the emer-

gence stage for the five subjects were showed in Figure 6. The larger slopes of

the β2/θ-ratio curves imply that it is more sensitive to the subject recovery than

the relative β-ratio after the termination of anesthesia agents.

2. Reliability of the Parameters. One possible reliability test of an anesthesia depth

indicator is its random deviations of its average trend. This can be represented

by the sample variances of the parameter trajectories from its trend curve,
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Figure 6: Comparison of 2nd order polynomial fitting curve between β2/θ-ratio and

relative β-ratio in emergence stage of all 5 subjects
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and is precisely the curve fitting errors. Figure 7 illustrates the comparison of

sample variances between β2/θ-ratio and relative β-ratio in different stages. In

control and induction stages, the sample variances of relative β-ratio is smaller

than those of β2/θ-ratio, while in maintenance and emergence stages,the case is

reversed.

Figure 7: Comparison of 2nd order polynomial curve fitting errors between β2/θ-ratio

and relative β-ratio from control to emergence stage

2.3 Analysis of EEG Channel Locations

In this section, the analysis of EEG channel locations will be made from two

aspects: sensitivity to anesthesia stage change and the noise resistance capability.

The sensitivity and reliability of EEG parameters are influenced significantly by

the EEG signal channels. This can be seen by the following example. Figure 8 shows

the β2/θ-ratio and the β-ratio from the posterior channel O1. It is obvious that

the same EEG parameter comes from O1 channel almost can not distinguish the
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anesthesia stages although it works well during F4 channel. Frontal and posterior

parts are separated by the central line on the cortex. It can be concluded that the

EEG signals from the frontal part channels are far more sensitive to anesthesia depth

changes than those from posterior part channels.

Figure 8: Relative β-ratio and β2/θ-ratio of O1 channel

In addition, it is necessary to measure the noise resistance ability of different

channels since it may be helpful in some cases, such as in ICU, the noise artifacts

may severely affect the performance of those EEG indexes.

1. Sensitivity of EEG Signals from Different Channels to Anesthesia Depth Varia-
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tions The sensitivity of EEG from frontal region to anesthesia agent is stronger

than that of posterior region can be shown by the distinct EEG signal variances

change range in different regions. Table 1 details the difference between the

maximum and minimum values of the fitting curves of EEG variance trajecto-

ries in induction and emergence stage. The relative large values appeared in

frontal channels.

Table 3: Averaged EEG signal variances change range of different channels during

induction and emergence stages

induction emergence

Fp1 226.0929 129.1887

Fp2 213.4230 126.2557

F7 134.2772 75.8060

F3 102.6195 149.1918

F4 289.7570 153.2214

F8 208.3282 116.6764

T3 40.2689 16.5473

C3 120.9685 46.8462

C4 115.1856 47.8127

T4 52.4477 22.9725

T5 22.8496 15.9653

P3 61.2498 27.7901

P4 68.1277 27.6742

T6 39.1953 23.5402

O1 62.8832 26.3245

O2 54.8328 27.3487

2. Noise Resistance of EEG Channels. The amplitude of EEG signals is notice-

ably lower than noises. When an epoch of the EEG signal is contaminated by

artifacts, the variance of this epoch will change markedly from the average of



35

recent previous ones. This is the artifact detection method used in Narcotrend

monitor of anesthesia depth [4]. Figure 9 illustrated the variance changes caused

by artifacts.

Figure 9: Variances of 10 seconds original EEG epochs from control stage to emer-

gence stage in Fp1 channel. The variances of artifact contaminated epochs were

included in some rectangular frames

To understand the noise resistance capability of different EEG recording chan-

nels, it was measured by the signal-to-noise ratio:

SNR =
Noise Free Signal Power

Noise Power

The larger the SNR, the stronger the ability of the channel to resist noise. Table

8 details the averaged SNR of different channels from the control to emergence

stages. In the control stage, the main artifact is eye movements. It is most

obvious in the Fp1 and Fp2 channels, which results in the lowest SNRs in

these two channels. In the maintenance stage, the SNRs in all channels are

higher than other 3 stages because there are no facial or body movements of
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the subjects. In the induction and emergence stages, the SNR in the F4 channel

is the highest among all the channels. The SNRs are also relatively high in the

C3, C4,and other frontal part channels.

Table 4: Averaged SNRs(dB) of different channels in different stages

control induction maintenance emergence

Fp1 6.4465 14.0269 31.9007 22.5068

Fp2 8.1891 14.4074 33.6381 19.1656

F7 10.3199 14.0059 30.4129 17.1422

F3 10.7433 13.7870 33.3786 23.5401

F4 14.5430 16.4383 31.3622 27.8633

F8 10.8283 15.8591 30.7116 18.0307

T3 13.7144 11.9399 29.0920 11.5183

C3 13.4724 14.0608 30.3207 18.4979

C4 16.0707 15.4230 31.4219 18.7303

T4 13.2940 13.2449 33.8836 12.4270

T5 15.9161 12.2889 29.0741 9.7702

P3 17.0888 13.8646 31.5286 15.6814

P4 19.6762 14.9575 31.4345 15.1456

T6 17.8059 13.0461 29.7781 11.7184

O1 16.9754 11.2980 29.0531 11.1733

O2 17.5309 12.0858 27.0983 11.0979

2.4 Conclusion and Discussion

2.4.1 Slection of EEG Parameters

The relative β-ratio and the β2/θ-ratio can demonstrate different sensitivities

in distinct anesthesia stages. In the induction stage, the relative β-ratio falls down

faster than the β2/θ-ratio. From Figure 5, a delay of the β2/θ-ratio is observed in the

induction stage. This shows that the relative β-ratio provides fast initial response to
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drug inputs during the induction stage. But the β2/θ-ratio can capture the initial

excitation while relative β-ratio can not. In the emergence stage, the β2/θ-ratio

is more responsive to the depth changes during recovery than the β-ratio. This is

evidence by Figure 6. These observations imply that that a better description of the

anesthesia depth may be obtained by using the β2/θ-ratio in the emergence stage and

the relative β-ratio in the induction stage.

In terms of reliability,In the control and induction stages, the relative β-ratio has

less random fluctuations than the β2/θ-ratio(Figure 7). The trend is reversed during

the maintenance and emergence stages. This observation points towards a possible

combined utility of the two parameters: Using the relative β-ratio during the control

and induction stages and shifting to the β2/θ-ratio in the maintenance and emergence

stages.

2.4.2 Slection of Channels

Figures 5 and 8 show the traces of the relative β-ratio and β2/θ-ratio in the F4

and O1 channels respectively. The results demonstrate that both the relative β-ratio

and β2/θ-ratio can track anesthesia depth changes with substantial sensitivity when

they are computed from the channel F4. The same parameters that are computed

from the channel O1 do not provide sufficient discriminating capability. This phe-

nomenon prevails to other frontal/central vs. posterior channels. This observation

means that the posterior cortex EEG signals are less desirable for depth measurements

in terms of the relative β-ratio and the β2/θ-ratio.
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The sensitivity to the anesthesia agent propofol is distinct between different cor-

tical regions. For comparison of the sensitivities from different EEG channels, the

EEG signal variance change ranges (the differences between the maximum and mini-

mum values of the fitting curves of the artifact-free EEG signal variance traces) were

calculated for induction and emergence stage and averaged for all the subjects. The

larger the ranges are, the more sensitive the EEG parameters are to anesthesia agents.

In Table 1, the largest ranges, both in induction and emergence stages, occur in the

channel F4. This result renders the F4 channel EEG signals most sensitive to the

influence of anesthesia agent. On the other hand, the parameters derived from the

channels Fp1, Fp2, F3, F7, and F8, are sufficient to make them candidates for depth

measurements. However, derived from the temporal, parietal and occipital regions

are of little use. From the data derived in this study, it appeared that the EEG signals

recorded from the frontal and central channels can best describe the brain activities

during anesthesia.

The noise resistance capability is also distinct between different channels. An

analysis of data from Table 8 reveals that in the control and induction stages, due

to facial, eye, and body movements, the EEG signals suffer from large artifacts,

represented by lower SNRs. Within the front and central channels (that provide

substantial sensitivity for depth measurements), the F4 channel has a stronger SNR.

This is not the case when in the maintenance stage as artifacts become very small,

all channels dispaly similar SNRs. During the emergence stage, the front and central

channels are relatively noise resistent with the F4 channel demonstrating a slightly
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stronger SNR.

These analysis suggests that the non-frontal channels such as F4 may be a sound

candidate for a better tradeoff between signal sensitivity to the depth changes and

noise resistance capability. This may be especially useful in consideration the typi-

cal case studies of BIS reliability in ICU (Intensive Care Unit) settings where noise

artifacts make the BIS index far less reliable than in deep anesthesia patients.
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CHAPTER 3: MULTI-OUTCOME ANESTHESIA

PATIENT MONITORING AND DIAGNOSIS

In this chapter, the problem of real-time multi-input-multi-output anesthesia

modeling has been thoughly investigated from the aspects of the motivations, mod-

eling methods, and the concepts and ideas of multi-outcome diagnosis. In addition,

the model structure was also implemented in hardware level and applied in the oper-

ation rooms to assist the anesthesiologist in monitoring, diagnosing, and predicting

outcomes in real time.

3.1 Data Acquisition for Anesthesia Modeling

The patient population age group is between 20 and 70 years old. These patients

are undergoing upper extremity arteria-venous fistula placement or thrombectomy,

under intravenous unconscious sedation. Anesthesia is administered by an experi-

enced anesthesiologist or registered nurse anesthetist. The patient is seen, examined

and evaluated in the pre-operative holding area by an anesthesiologist. The anesthe-

siologist makes sure that the patient is ready for the surgery. Labs are checked in the

pre-operative holding area and 1 mg of Midazolam IV is administered to the patient,

after receiving full consent for the surgery and the participation in this study. All

risks and benefits are thoroughly explained to the patient while obtaining consent.

The patient is, then, taken to the operating room, placed on the OR table, started

on face mask oxygen at a rate of 8 liters/min, hooked to the electrocardiogram mon-



41

itor, noninvasive blood pressure cuff is placed on the contralateral arm, and the cuff

cycle is set to measure blood pressure every three minutes. A pulse oximeter is hooked

on the patient’s contralateral index.

The patient consciousness levels during anesthesia are measured by a BIS (bi-

spectrum) monitor (Aspect Medical Devices, Inc.). It is one of the anesthesia moni-

tors commercially available and widely used in operation rooms [56, 59]. The monitor

provides continuously an index in the range of [0, 100] such that the lower the index

value, the deeper the anesthesia state. Hence, an index value 0 will indicate“brain

dead” and 100 will be “awake.” A bi-spectral (BIS) electrode is placed on the patient’s

forehead before administering anesthesia to the patient. The electrode is connected

to the BIS monitor, which in turn is connected to a special computer system to allow

continuous recording and saving of the BIS values. The computer’s software is a mon-

itoring system designed by the Department of Electrical and Computer Engineering

at Wayne State University. The system performs prediction of BIS values for the

specific patient by generating patient models in real time using response data from

the patient under anesthesia, see Figures 28 and 29.

Figure 10: Computer data acquisition system
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Figure 11: Front panel of the system

A baseline BIS value of at least 90 is recorded before the administration of anes-

thesia. The patient is given 1-2 mcg/kg of bolus IV Fentanyl at the beginning of the

surgery and 1 mcg/kg bolus during the surgery, as needed. The patient is started on

intravenous propofol pump at a rate of 50 mcg/kg/min and titrated as needed during

the surgery. All measured heart rates, blood pressures and pulse oximetry values are

entered and saved manually into the computer every three minutes and following any

bolus administration. The propofol rate, any changes made to the propofol rate, and

any propofol or Fentanyl bolus given are transmitted to the computer monitoring

system automatically and continuously at the sampling rate of 1 Hz (one sample per

second). Towards the end of the procedure, and after making sure no more surgical

stimuli are applied to the patient, all anesthetics are turned off and the patient is

awakened with the BIS value of more than 75. The patient is then taken to the

recovery room on oxygen tank for a period of two hours of observation.
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3.2 Motivations for Muliti-Outcome Real-time and Indeividulized

Modeling

The Anesthesia modeling problem can be figured out as a multi-input-multi-

output nonlinear system indentification problem in Figure 12.

Figure 12: Input/Output representation of anesthesia problem

We also can see that from Figure 13 which shows a typical recording of a patient’s

response to propofol and fentanyl titration and bolus injections. For this patient,

the anesthesia drugs not only reduce the patient BIS values to a lower level, but

also depress the blood pressure and make the heart rate fluctuate. For monitoring,

diagnosis, and control, it becomes essential that the impact of anesthesia drugs on

both anesthesia depth and blood pressures be taken into consideration.



44

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

B
ol

us
   

 
(m

cg
/m

in
)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200
pr

op
of

ol
   

 
(m

cg
/k

g/
m

in
)

0 1000 2000 3000 4000 5000 6000 7000 8000
50

100

B
IS

(0
−1

00
)

0 1000 2000 3000 4000 5000 6000 7000 8000
50

100

150

M
A

P
(m

m
H

g)

0 1000 2000 3000 4000 5000 6000 7000 8000
60

80

100

H
R

(B
P

M
)

time(sec)

Mean arterial pressure

Fenteyl bolus
Propofol bolus

Figure 13: Drug inputs influence many patient outcomes

3.2.1 Individualized and Time Varying Patient Dynamics

Each patient responses to drug inputs with very different dynamics. Figure 14 is

another patient’s response to the same types of anesthesia drugs as in Figure 13. In

comparison to Figure 13, this patient demonstrates slower response after drug changes

or bolus injections, lower sensitivity near steady state, and more heart rate variations

during the process. For example, this patient’s BIS index reaches the steady state

value of 75 after 750 seconds, in comparison to the steady state BIS value of 60 after

around 1600 seconds in the patient data in Figure 13. Similar disparity also shows

in blood pressures. In Figure 14, the blood pressure drops to the value around 90

mmHg in comparison to the value of 65 mmHg in Figure 13. Consequently, to improve
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accuracy in anesthesia management, it is necessary to obtain individualized patient

models.
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Figure 14: Different patients demonstrate different dynamics

Even for the same patient, responses to the same drugs change with time and

surgical stages, and patient conditions. The patient in Figure 15 initially has a more

sensitive response in BIS values to propofol infusion, see the BIS trajectory in the

first 100 seconds in which the BIS value drops from 100 to 65 after the propofol rate is

increased to 75 mcg/kg/min. However, late in the time interval of 240− 310 seconds,

the BIS values become higher, around 75, even though the same rate of propofol is

administered.
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Figure 15: Patient dynamics change with time

3.2.2 Multiple Drugs and Multi-Objective Anesthesia Administration

Our case studies involve both propofol and fentanyl. Both drugs impact multiple

outcomes, although to a different degree. For instance, fentanyl has direct influence

on blood pressure while it has no obvious influence on BIS values. In the time interval

of 0-200 seconds, the initial injection of fentanyl bolus depressed the blood pressure

from 110 to 90, while there are no obvious changes on BIS values. The propofol

controls both anesthesia depth and blood pressure significantly. During time interval

of 350-1000 seconds, both of BIS value and blood pressure are climbing up as the

propofol titration rate is decreased. These are seen in Figure 15.

Anesthesia management must consider all essential patient outcomes. For in-
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stance, if one focuses only on the anesthesia depth, propofol will be increased when

the BIS is too high. However, if this occurs when a patient’s blood pressures are

low and if the patient’s blood pressures respond to propofol sensitively, a much more

cautious control action will be preferred since aggressive propofol increase may drive

blood pressures to an alarming level. Consequently, a multi-objective control strategy

can potentially deliver a better anesthesia management. Some researchers have inves-

tigated the problems of multi-variable feedback control with applications in anesthesia

[54, 55, 66, 67]. As a promising control strategy for regulation of anesthesia patient

outcomes, model predictive control has been applied to regulate two patient outcomes

simultaneously [67]. Most of the previous work has concentrated on population based

models.

To understand the importance of the multi-objective anesthesia modeling and

control, we make a comparison of control actions between the regulation of two pa-

tient outcomes (BIS and blood pressure) and the regulation of one patient outcome

only. Figure 16 illustrates the simulation results which are produced by the MAT-

LAB function “scmpc” in the model predictive control toolbox. Those data used for

simulation are collected real-time patient data in operating rooms. We can see that

the control actions (the propofol titration rate) are very different in the two cases.

The above discussions indicate that for enhanced anesthesia monitoring and con-

trol, it is necessary and beneficial to consider a patient as a multi-input-multi-output

dynamic system whose characteristics change substantially among different patients

and over different time intervals.
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Figure 16: Anesthesia managements differ when multiple outcomes are considered

3.3 MIMO Anesthesia Modeling and Diagnosis

3.3.1 Wiener Model Structure in Anesthesia Application

For the purpose of real-time prediction, diagnosis, and control, it is necessary to

use a simple model structure without sacrificing much accuracy. A basic information-

oriented model structure (a special case of Wiener models), for patient anesthesia

depth responses to propofol infusion as an SISO system was introduced in [60, 61,

62]. This model can also be applied to relate other patient outcomes, such as blood

pressure and heart rate, to input drugs. Its basic idea is summarized below.

The anesthesia drug propofol is administered by an infusion pump. The patient

anesthesia depth is measured by BIS monitor. The dynamics of a patient’s BIS

response to a drug infusion can be divided into several blocks. The response from
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the titration command to the drug infusion at the needle point is the infusion pump

dynamics and can be represented by a transfer function Gi(s). Similarly, the BIS

monitor dynamics can be represented by a transfer function Gm(s).

The patient dynamics is a nonlinear system. Although the actual physiological and

pathological features of the patient require models of high complexity, for prediction

or control purposes it is not only convenient but essential to use simple models as

long as they are sufficiently rich to represent the most important properties of the

patient response. Understanding the information used by anesthesiologists in infusion

control, we characterize the patient response to propofol titration with three basic

components: (1) Initial time delay τp after drug infusion: During this time interval

after a change of the infusion rate, the BIS value does not change due to time required

for drugs to reach the target tissues, to complete volume distribution. (2) Dynamic

reaction: This reflects how fast the BIS value will change once it starts to respond,

and is modeled by a transfer function Gp(s). (3) A nonlinear static function for

sensitivity of the patient to a drug dosage at steady state: This is represented by a

function or a look-up table f . The meaning of these system blocks is illustrated in

Figure 17. Combined with infusion pump and monitor models, this model structure

for titration response is a special case of the Wiener models shown in Figure 18.

To establish patient models for monitoring and control, clinical data were col-

lected. One of these data sets is used in this paper. The anesthesia process lasted

about 76 minutes, starting from the initial drug administration and continuing until

last dose of administration. Propofol was used in both titration and bolus. Fentanyl
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Figure 18: Wiener model structure

was injected in small bolus amount three times, two at the initial surgical preparation

and one near incision. Analysis shows that the impact of Fentanyl on the BIS values

is minimal. As a result, it is treated as a disturbance and not explicitly modeled in

this example. The drug infusion was controlled manually by an experienced anes-

thesiologist. The trajectories of titration (in mcg/sec) and bolus injection (converted

to mcg/sec) during the entire surgical procedure were recorded, which are shown to-

gether with the corresponding BIS values in Figure 20. The patient was given bolus

injection twice to induce anesthesia, first at t = 3 minute with 20 mcg and then at

t = 5 minute with 20 mcg. The surgical procedures were manually recorded. Three
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major types of stimulation were identified: (1) During the initial drug administration

(the first 6 minutes), due to set-up stimulation and patient nervousness. (2) Incision

at t = 45 minute for about 5 minutes duration. (3) Closing near the end of the

surgery at t = 60 minute.

The data from the first 30 minutes and in the interval where the bolus and stim-

ulation impact is minimal (between t = 10 to t = 30 minutes)are used to determine

model parameters and function forms. By optimized data fitting (least-squares) [58],

we derive the estimated parameter values. For this data case, the patient sensitivity

function shown in Figure 19 is close to a linear function. Under a sampling interval

T = 1 second, which is the standard data transfer interval for the BIS monitor, the

combined linear dynamics was estimated. The patient model with propofol infusion

rate as the input and BIS measurement as the output was identified as

P (z) =
0.01872z2 − 0.08813z + 0.09016

z5 − 1.159z4 + 0.7501z3 − 0.5989z2 + 0.2984z − 0.2678
(3.1)

with sampling interval T = 1 second.
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The actual BIS response is then compared to the model response over the entire

surgical procedure. Comparison results are demonstrated in Figure 20. Here, the
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inputs of titration and bolus are the recorded real-time data. The model output

represents the patient response very well. In particular, the model captures the key

trends and magnitudes of the BIS variations in the surgical procedure. This indicates

that the model structure contains sufficient freedom in representing the main features

of the patient response.
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Figure 20: Actual and model responses

The linear patient dynamics can be approximated by a simple system. The plant

in this case is identified as a 5th order difference equation in (3.1). The system can

be well approximated by a continuous-time system that consists of a pure time delay

and a first-order dynamics, sampled with sampling interval T = 1 second. Let a

continuous-time system be

P (s) = e−5s 0.93

73s+ 1
. (3.2)
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The step responses of the original system and the simplified system P (s) are shown

in Figure 21. Since this model contains only three parameters, it is much easier to be

identified in real time.
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Figure 21: Step responses of the original system and the simplified system

It is also possible to use a simplified nonlinear function which has only three

parameter r, α, b to represent the sensitivity function f :

y = r

[
u±

(
erf (αu)

erf (αb)
− u

)]
.

This function can be linear or nonlinear which is determined by the sign of ±.

Figure 22 shows an example of this function.

3.3.2 Extendsion to MIMO Anesthesia Modeling

Although in principle the SISO wiener model struture can be employed in MIMO

models, by considering an m-input and n-output system as a collection of m × n

subsystems, each of which represents one input and one outcome relationship. For

example, if two drugs (propofol and fentanyl) are present and three outcomes (depth,
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Figure 22: The sensitivity function is simplified by a nonlinear function which has

three parameters: r, α, b. The sign of ± determines the function’s shape.

blood pressures, and heart rates) are considered, we may view this as a collection of

6 subsystems, including propofol-to-depth, propofol-to-BP, propofol-to-HR, fentanyl-

to-depth, fentanyl-to-BP, fentanyl-to-HR subsystems. This approach, however, in-

volves many model parameters and encounters high system complexity in modeling

processes. For example, if each submodel contains only L parameters, the over system

will have 6L parameters that must be updated in real time, which is a substantial

complexity in this application.

Modifications to the above approach are made to reduce modeling complexity

by the following combination method. Since both propofol and fentanyl go through

similar propagation and metabolism to influence blood pressure and heart rate, it is

reasonable to use the same time delay and same dynamic response speed for both

models. They, however, demonstrate very different sensitivity [65]. As a result, it is

reasonable to use only one scaling factor to represent the difference between propofol

and fentanyl in their impact on the blood pressure and heart rate. Furthermore,
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fentanyl does not have influence on BIS index [65]. This method reduces significantly

the number of model parameters. For example, if each model contains L parameters,

in the case of two drugs and three outcomes, this method will reduce the number of

parameters from 6L to 3L + 3. For this application, we have L = 11 (8 parameters

for the 5th order linear system and 3 for the nonlinear part) for the initial model

structure; or L = 6 (6 parameters for the simplified delay system and 3 for the

nonlinear part) after simplification. The above method of combining submodels can

reduce model complexity from 6L = 66 to 3L+3 = 36 for the initial model structure;

or from 6L = 36 to 3L + 3 = 21 for simplified delay systems. These complexity

reductions are substantial in making real-time MIMO modeling a feasible option in

anesthesia applications which are not data rich.

3.3.3 Multi-Objective Anesthesia Predictive Diagnosis

Here, we consider a special case that involves two outcomes: the anesthesia depth

yB and and mean blood pressure yP . The continuous control is provided by propofol

titration whose rate is denoted by u. Propofol or fentanyl bolus injections can be used

when necessary to assist. Also, blood pressures may also be reduced by vasodilation

agents or other means if necessary.

From a system viewpoint, we have a system with two types of control inputs: one

main control variable u that is continuously managed, and another pulse types of

control v that is used only when it is necessary. The system has two outputs yB and

yP . The basic strategy is to use u to achieve control objectives as much as possible.
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When u alone cannot achieve certain control objectives, v can be used to assist u to

reach the goal.

This paper is focused on predictive diagnosis: (1) Given the current input u, what

will be the outcomes in the near future? (2) If the input is changed to a new value,

what will be the impact of this change? (3) If we want the outcomes to settle at a

new level, will it be possible to achieve it with assistance from v?

The basic ideas and analysis are detailed in following. We first consider a patient

whose BIS response to propofol titration rate u (mcg/kg/min) is modeled by

xB = e−τBs KB

TBs+ 1
U(s); yB = 100− fB(xB(t)) + dB

where τB is the initial delay, KB is the drug sensitivity, TB represents the response

speed of the patient, fB is a nonlinear sensitivity function, and dB is an external

disturbance to the BIS value; and whose mean blood pressure response to propofol

titration is represented by the simplified delay model

xP = e−τP s KP

TP s+ 1
U(s); yP = 110− fP (xP (t)) + dP

where those parameters have the same meanings as in the BIS model.

We will use w(t) = [yB(t), yP (t)] to represent the outputs. In real implementations

of our prediction algorithms, the patient models will be generated in real-time, using

actual input-output data. Here, for methodology description we use the above models

to show how outcome prediction is performed.

Outcome Prediction
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Suppose that the output vector w(t) is initially at an equilibrium point with

w(t0) = [yB(t0), yP (t0)] and input u(t0) = u0. When u(t) is increased from u0 to

u0 + ∆, we may observe the outcome w(t) starts to change due to this input jump.

Outcome prediction shows how w(t) will change in the near future and where it will

settle to a new equilibrium. When the patient model is available, outcome prediction

can be calculated from the model as follows.

From xB = e−τBs KB

TBs+1
U(s), we can derive the response x̃B(t) to ∆ jump at t0 to

be: x̃B(t) = 0, t − t0 ≤ τB, and x̃B(t) = KB(1 − e−(t−t0−τB)/TB)∆, t − t0 > τB. As a

result, for t > t0, we have

xB(t) = xB(t0) + x̃B(t)

and

yB(t) = 100− fB(xB(t)) = 100− fB(xB(t0) + x̃B(t))

Furthermore, yB(t) will settle at the new equilibrium value 100− fB(xB(t0) +KB∆).

Following the same analysis, we have also

x̃P (t) =


0, t− t0 ≤ τP

KP (1− e−(t−t0−τP )/TP )∆, t− t0 > τP .

As a result, for t > t0, we have

xP (t) = xP (t0) + x̃P (t)

and

yP (t) = 110− fP (xP (t)) = 110− fP (xP (t0) + x̃P (t))
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and yP (t) will settle at the new equilibrium value 110− fP (xP (t0) +KP∆).

The models will used in the following capacity to assist an anesthesiology to make

decisions in anesthesia administration.

• Drug Impact Prediction: Drug impact prediction is an extension of outcome

prediction. The outcome prediction provides the future outcome trajectories

when one drug decision is made and implemented. Drug impact prediction is an

assessment of future outcomes when several drug decisions are being considered.

This prediction capability will allow an anesthesiologist to evaluate and decide

the optimal choices.

• Reachable Sets: Suppose that the output vector w(t) is initially at an equi-

librium point w(t0) = w0. The question here is to determine if the propofol

titration control alone is sufficient to achieve a designated target wf . If the an-

swer is affirmative, then assistance from v is not needed. Otherwise, v must be

used such that after applying a bolus injection v, wf becomes reachable. The

reachable set of the outputs under one drug actions will exhaust all possible

values of that drug and determine the set of the outputs that can be reached.

If the desired outputs are outside of this reachable set, the second drug, in our

case it is either the fentanyl bolus or propofol bolus, must be used so that the

new reachable set will contain the desired output values.
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3.3.4 Results

To demonstrate our ideas presented in the previous sections, clinical data were

collected and analyzed, as detailed in Section 3.3.3. One of the case data sets, shown

in Figure 13, is used here. The three inputs include propofol titration, propofol bolus

injection, fentanyl bolus injection. The two outputs are the BIS index and MAP. Since

fentanyl bolus has very small impact on the BIS index, we neglect the submodel from

the fentanyl bolus to the BIS index. As a result, there are a total of 5 submodels:

propofol titration to BIS and MAP, propofol bolus to BIS and MAP, and fentanyl

bolus to MAP.

The patient data are used to identify these models, with the identified model listed

below.

1. BIS to propofol titration: xB(s) = e−3s 0.0163
46s+1

U(s),

yB(t) = 100− 9 ∗ (xB(t)− (erf(0.4 ∗ xB(t))− xB(t)))

2. BIS to propofol bolus: yB(s) = 100− e−15s 200
2000s+1

U(s)

3. MAP to propofol titration: yP (s) = 110− e−250s 0.1
200s+1

U(s)

4. MAP to propofol bolus: yP (s) = 110− e−25s 42
4000s+1

U(s)

5. MAP to fentanyl bolus: yP (s) = 110− e−100s 80
4000s+1

U(s)

Figure 23 illustrates the identified model outputs with the real patient outcomes.

The models capture the main trends of the BIS and MAP quite well. We should em-

phasize that this is achieved with a very low model complexity. This trend information
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will be similar to what an anesthesiologist usually requires in making anesthesia drug

administration decisions.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

B
ol

us
(m

cg
/m

in
) Fenteyl bolus

Propofol bolus

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

P
ro

po
fo

l
(m

cg
/k

g/
m

in
)

0 1000 2000 3000 4000 5000 6000 7000 8000
40

60

80

100

B
IS

Actual output
Model output

0 1000 2000 3000 4000 5000 6000 7000 8000
60

80

100

120

M
A

P

time(sec)

Actual output
Model output

Figure 23: Multi-input-multi-output patient model

The models can be used for drug impact prediction. For example, suppose the

propofol rate is increased by 30 mcg/min at t0 = 80 second. Figure 24 shows how this

drug infusion rate change will affect the BIS value and MAP. In any time instant, to

provide decision assistance to an anesthesiologist, different drug infusion strategies

can be considered and their impact on the outputs can be plotted to evaluate and

compare consequences of such actions in the near future. For example, to understand

drug impacts prediction of increasing propofol rates by 10, 20, 30, 40, 50, we may plot

all these cases simultaneously. These impact predictions are plotted in Figure 25.
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Figure 24: Outcome predictions

To study the reachable sets, suppose at a given time the BIS index is 70 and the

MAP is 80 mmHg. Figure 26 shows all potential patient steady-state outcome sets

when various drugs are administrated. From Figure 26, we can see that different des-

ignated targets can be achieved through administrating different drugs. For Example,

if we want to depress the patient blood pressure without changing BIS values, then

only fentanyl bolus is needed. But, if we want to push the BIS value to a low level

of 60 without much effect on blood pressures (mean arterial pressure of 80 mmHg

is usually the desired level during anesthesia), then it will be better to use propofol

bolus than propofol titration. This is reflected in the reachable set of propofol bolus

that has less impact on the MAP. We should also point out that one may also use

propofol bolus with a reduced propofol titration to actually keeps MAP unchanged.
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Figure 25: Drug impact prediction

3.4 Device Development for Anesthesia Depth Predication

In this section, the introduced model structure 3.3.1 was implemented in device

level to benifit anesthesia patients management. With this device, anesthesiologists

can monitor the future BIS values while watching current BIS at the same time.

Here, the technical details for the development of BIS prediction device were demon-
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Figure 26: Reachable outcomes from the current outcome with different drugs inputs
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strated. With this device, the model parameters is indentified online through a em-

beded method in [62]. This device has been tested in operation room for real-time

anesthesia depth prediction.

3.4.1 Implementation Diagram and Hardware Setup

The complete BIS prediction system diagram is shown in Figure 27. This system

is composed of four components: BIS sensor, BIS monitor, RS232 to USB converter

and a Laptop.

Figure 27: BIS prediction system diagram

The hardware setup is shown in Figure 28.

A BIS sensor is attached on the forehead of an anesthesia patient, then in turn
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Figure 28: BIS prediction system hardware setup

connected with a BIS monitor. EEG signals were collected and send to BIS moni-

tor for processing and producing BIS index. BIS data is transmitted to the laptop

through a RS232 to USB standard converter which connects the RS232 output port

of BIS monitor with the Laptop. Other input data including drug titration rate,

bolus, and stimulations are manually typed into the frontal panel of the software.

The indentification and prediction algorithm is implemented through Labview graph-

ical programing language(Version 7.1, Natioanl Instrument Inc.) and run on a IBM

laptop.

3.4.2 Requirement Analysis and Development Tool (IDE) Selection

In this software implemetation, our software need to do the following tasks simu-

taniously in real time: 1) communication with BIS monitor and DAQ to get data; 2)

Process data and do model-based prediction; 3) Output and display result on user

interface. More over, this project has urgent time requirement which leave us quite
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short time for development. Based on these reasons, we choose National Instruments

(NI) LabVIEW as our software development tool. The NI LabVIEW has several

advantages which matches our development requirements:

• Fast implementation

• Excellent hardware support for NI hardware, standard interfaces, and third-

party hardwares which will make our software has good extendability for in-

tegrating/fusion data from and control signal to other devices (such as drug

pump, other medical devices,etc) in the future.

• Simple implementation of user interface development

In this project, we spent just two weeks to complete this simple version and tested

it. The total development (two versions development, debugging, and validation in

clinic room) time is two months. In the following two sections, we will describe the

software in more details.

3.4.3 User Interface

Figure 29 and Figure 30 show the user interfaces of the simple version and the

complete version of our anesthesia depth prediction software respectively.

In the user interface of the complete version, three more display windows including

EEG signal, as well as heart and lung sound signal display windows are added for

comprehensive diagnosing purpose.
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Figure 29: Front panel of the simple version system

Figure 30: Front panel of the complete version system
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3.4.4 Code Implementation

Since NI LabVIEW is a graphical programming languange and the code execu-

tion is data-flow driven (another example is Mathworks Simulink) and the code is

straitforwad for viewing and reading. Figure 31 and Figure 32 illustrates our code

implementation for the simple and complete version respectively.

Figure 31: Block diagram of the simple version system

From the program block diagram, we can see this code is running sequencially.

1. The first section is communication port setup and running parameters initial-

ization. The commnication port setup let user select the COM port they are

using to connect with the BIS monitor. And setup the communication protocal

and data transfer rate. The runnig parameters initialization includes setting

the prediction steps and sampling rate, as well as data recording settings.
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Figure 32: Block diagram of the complete version system

2. The second section is initial data logging. This initial data (usually 20 sample

points) are used for the inital patient model estimation in section 3.

3. Initial patient model estimation.

4. The last and the major section is the BIS prediction section. After estimation of

the initial patient model, we can run the BIS prediction. In this block diagram,

the BIS prediction algorithm is represented by a subVI, which is implemented

in MATLAB and embbed into the LabVIEW execution. Thanks to the Matlab

script functionality of LabVIEW, which makes it possible to implement complex

algorithms in Matlab and use them in LabVIEW. This let the user can combine
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the advantages of both tools.

3.4.5 Results

This system has been studied on five patients at the Detroit Medical Center with

varying age, body mass index, coexisting disease and drug responses. This case report

shows the 60 second BIS prediction of one of the patient.

Propofol is used as the sole anesthetic drug throughout the procedure. Anesthesia

was provided manually by an anesthesia resident and lasted about 76 minutes starting

from the initial drug administration until the last dose of administration. A prototype

of the Anesthesia Depth Prediction System (ADPS) is used for anesthesia depth

prediction. BIS monitor measurements are sent to the ADPS in real time, which are

then used to generate the patient model.

Figure 33 illustrates all the predicted BIS values at a time point. Here all BIS

values in the future 300 seconds are predicted. The comparison between real BIS and

predicted BIS in front of 60 seconds is shown in Figure 34. We can see from this

figure that the predicted BIS catches the variation of the real BIS very well.

3.5 Conclusions

This chapter investigates the problem of real-time monitoring, diagnosing, and

predicting multiple outcomes of anesthesia patients. For the enhanced anesthesia

management, it is essential to view the anesthesia patient dynamics as a multi-input

(multi drugs) and multi-output (multi outcomes) system. For predictive diagnosis and
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decision assistance, a simplified Wiener model structure is introduced and studied for

its suitability in representing the patient responses to drug infusion. Furthermore, a

method of consolidating submodels is introduced which can significantly reduce the
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total number of MIMO system parameters. The identified models are shown to have

significant utility in anesthesia decision assistance, by developing outcome impact

analysis and reachable sets. In addition, we discussed the development of BIS pre-

diction system with details in hardware setup and software implementation. Labview

programing languange is a wonderful tool for medical device implementation because

of its characteristics of graphical programing and friendly user interface design. This

developed BIS prediction system is tested in operation room and our results show

that this system is competent for anesthesia depth predition. As we presented before,

anesthesia problem is actually a multi-input-multi-output problem, MIMO modeling

and multi-outcome diagnosis are necessary for enhenced the anesthesia management.

In future work, I will consider to upgrade this system to a MIMO identification and

prediction system.
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CHAPTER 4: ANESTHESIA CONTROL INWIRE-

LESS CONNECTED SYSTEMS

In this chapter, I investigated the impact of noise and signal averaging on patient

control in anesthesia applications, especially in networked control system settings such

as wireless connected systems, sensor networks, local area networks, or tele-medicine

over a wide area network.

4.1 Problem Statement

While anesthesia patient vital signs such as anesthesia depth index, blood pres-

sure, heart rate etc. are trasmitted through a noisy wireless channel in a wide area,

those trasmitted signals will be corrupted by the transmission noise. To improve the

accuracy of the received signals, it is necessary to reduce the noise effect as much

as possible. It is well understood that within most algorithms that reduce effects

of random noises on signals and systems, some types of signal averaging are used

[69, 68]. This is mainly because the laws of large numbers and central limit theorems

provide a foundation for noise reduction. The rationale is that when averaging is

applied, noises diminish in an appropriate sense. This fundamental understanding

leads to algorithms in filtering, signal reconstruction, state estimation, parameter es-

timation, system identification, and stochastic control. On the other hand, signal

averaging introduces dynamic delays. While feedback control is intended, such delays

will have detrimental effects on closed-loop systems, even destabilizing the system.
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Consequently, signal averaging encounters a fundamental performance limitation in

feedback systems. Performance and stability analysis are needed for this closed-loop

system with averaging filter. To explain this phenomenon, we analyze stability mar-

gins under signal averaging and derive some optimal strategies for selecting window

sizes. We will use a typical anesthesia control problem to understand impact of com-

munication channels and utility of signal averaging on anesthesia monitoring and

control.

4.2 Signal Averaging and Control Performance

4.2.1 Signal averaging

There are different window functions for signal averaging, such as uniform win-

dows, exponential windows, etc. They are different only in their forms, but most

conclusions for system analysis or error bounds are usually valid for all window types.

As a result, we shall use the exponential windows to carry out our analysis. A signal

averaging by exponential decaying weighting of rate 0 < α < 1 is

hk = (1− α)
k∑

i=−∞

αk−ixi (4.3)

whose transfer function is

Fα(z) =
(1− α)z

z − α
. (4.4)
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4.2.2 Open-Loop Systems and Closed-Loop Systems

In wireless-based monitoring and diagnosis applications, the system is running in

open-loop. In this case quantization errors and communication noises can be grouped

as an additive noise to the patient output y. When signal averaging is applied to

reduce noise effects, the resulting system can be represented by the block diagram in

Figure 35.
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Figure 35: Signal filtering in open-loop systems

Figure 36 illustrates impact of filtering on open loop systems. In open loop ap-

plications, filtering will not de-stabilize the system. Consequently, one may choose a

window of long horizon to reduce the effects of noise. It is apparent that the longer the

averaging window, the less the noise effect on the signal. However, it is also observed

that signal averaging slows down system’s response to the input. In other words,

filtering introduces a dynamic delay. This delay has very important implication in

the closed-loop applications.

On the other hand, if feedback control for anesthesia management decisions are

intended, signal filtering becomes part of a closed-loop system. When signal averaging

is applied, the averaging filter Fα is inserted into the system, resulting in a modified
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Figure 36: Effects of signal averaging on open-loop systems

closed-loop system shown in Figure 37.

Figure 37: System modules and their equivalent representation

The close-loop system equations are:

yk = Gek, ek = rk − Fα(yk + dk). (4.5)
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Then

yk = Grk −GFαyk −GFαdk,

and

yk = Hrrk +Hαdk (4.6)

where,

Hr =
G

1 + FαG
; Hα =

−FαG

1 + FαG
. (4.7)

Figure 38 illustrates impact of filtering on closed loop systems. Although signal

filtering can reduce the noise effect of the signal, it introduces a dynamic delay which

has detrimental effects on the closed-loop system. The plots confirm that when filter-

ing window is long the filter can destabilize the closed-loop system. Even when the

filtering window size is small, its effectiveness is not very obvious. This example sug-

gests that in closed-loop applications, signal filtering has limited effectiveness. This

understanding will be used to introduce new methods to reduce noise effects in such

applications.

4.3 Analysis of Stability and Performance

4.3.1 Feedback Robustness against Signal Averaging

Definition 1 The stability margin against exponential averaging, abbreviated as α-

margin and denoted by αmax(G), is the largest 0 ≤ α ≤ 1 such that for all 0 ≤

α < αmax(G), the close-loop system (4.6) is stable and the system is unstable if

α > αmax(G). If the close-loop system is stable for all α, we denote αmax(G) = 1.
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Figure 38: Effects of signal averaging on closed-loop systems

4.3.2 Discrete and Continuous Time Averaging

Suppose that the input to the filter is a noise corrupted constant

xk = θ + dk.

An exponential window of rate 0 < α < 1 is applied to this signal and its output is

hk = (1− α)
k∑

i=−∞

αk−ixi = θ + (1− α)
k∑

i=−∞

αk−idi = θ + εk,

where

εk = (1− α)
k∑

i=−∞

αk−idi.

If di is i.i.d. (independent and identically distributed) with Edi = 0 and Ed2i = σ2,

then Eε2k = 0 and

Eε2k =
1− α

1 + α
σ2.
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Consequently, using hk as an estimate of θ can reduce errors by 1−α
1+α

. We will call α as

the decaying rate. Convergence (in the mean square sense) is achieved when α → 1:

limα→1Eε2k = 0.

Consider an exponential filter

F (s) =
1

λs+ 1
(4.8)

whose impulse response is

f(t) =
1

λ
e−t/λ, t ≥ 0. (4.9)

Note that ∫ ∞

0

f(t)dt = 1.

Now,the input-output relationship of this filter is

y(t) =
∫ t

−∞ f(t− τ)x(τ)dτ

= 1
λ

∫ t

−∞ e−(t−τ)/λx(τ)dτ.

When the signals are sampled with sampling interval T , we denote xk = x(kT ) and

yk = y(kT ). If α is related to λ and T by α = e−T/λ, we have

lim
T→0

T

λ(1− α)
= 1.
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For small T , y(t) is approximated by

yk = y(kT )

= 1
λ

∫ t

−∞ e−(t−τ)/λx(τ)dτ

≈ T
λ

∑k
i=−∞(e−T/λ)k−ixi

= T
λ(1−α)

(1− α)
∑k

i=−∞ αk−ixi

≈ (1− α)
∑k

i=−∞ αk−ixi.

In other words, for system analysis, we may approximate the discrete-time filter

in (4.3) by its continuous-time counterpart in (4.8). These relationships between

discrete-time averaging and continuous time averaging will be used to derive stability

margins.

4.3.3 Stability Margin Against Exponential Averaging

The relationship between α and λ will allow us to focus on stability analysis in

continuous time systems and then transform the results to the discrete-time filters.

This is stated in the following theorem.

Theorem 2 If the exponential stability margin in the continuous-time domain is

λmax, then

lim
T→0

T

− lnαmax

= λmax.
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Proof: This follows from the relationship

α = e−T/λ.

□

We now concentrate on calculation of λmax.

Definition 3 The stability margin against exponential averaging for the continuous-

time closed-loop system, abbreviated as continuous exponential A-margin and denoted

by λmax(G), is the smallest λ > 0 under which the closed-loop system becomes unsta-

ble. If the closed-loop system remains stable for all λ > 0, we denote λmax(G) = ∞.

Suppose G(s) = N(s)/D(s) where n(s) and d(s) are polynomial functions of s and

coprime (that is, N(s) and D(s) do not have common zeros). Then λmax is the largest

λ > 0 before the closed-loop system becomes unstable. Consider the characteristic

equation of the closed-loop system

1 + Fλ(s)G(s) = 1 +
1

λs+ 1

N(s)

D(s)
= 0

or

λsD(s) +D(s) +N(s) = 0 (4.10)

which leads to

1 + λ
sD(s)

D(s) +N(s)
= 0. (4.11)

This expression leads to the following conclusion.
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Theorem 4 The exponential A-margin λmax(G) of G(s) is the gain margin of

H(s) =
sD(s)

D(s) +N(s)
. (4.12)

We make several interesting observations from (4.11). First,from (4.10), λmax may

be calculated by using the Routh-Hurwitz test. Second, (4.11) is in a standard form

for using root locus technique. So, we may plot the root locus of the system (4.12)

(it is an improper system) and detect the λ value that reaches marginal stability,

which will be λmax. The root locus plot starts at the poles of system (4.12) which

are precisely the poles of the closed-loop system without the averaging filter. Since

the closed-loop system is stable, for small λ the closed-loop system with the filter will

remain stable. The root locus plot moves towards the zeros of system (4.12) which

are the poles of the open-loop system. Hence, if the open-loop system is unstable,

the exponential A-margin is always finite.

Example 5 Suppose G(s) = (s+ 2)/(s− 1). Then,

H(s) =
sD(s)

D(s) +N(s)
=

s2 − s

2s+ 1
.

The gain margin can be obtained by using the Matlab function “margin” (which

gives λmax = 2) or by plotting the bode plot as shown in Figure 39 which gives

λmax = 6.02 dB = 2. Alternatively, from

(2s+ 1) + λ(s2 − s) = λs2 + (2− λ)s+ 1 = 0,

we can calculate λmax = 2 by the Routh-Hurwitz method.
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Figure 39: Using bode plots to obtain the gain margin.

4.3.4 Performance Analysis

Within the A-margin, what is the benefit of signal averaging? On one hand,

signal averaging can reduce noise effect. On the other hand, averaging introduces

delays and reduces closed-loop system performance. Consequently, an optimal choice

of averaging becomes an issue.

Similarly, the continuous time close-loop system equations are:

y =
G

1 + FλG
r − FλG

1 + FλG
d (4.13)

Here,we denote

Hλ =
−FλG

1 + FλG
(4.14)

If d is a white noise, noise attenuation aims to reduce the L2 norm of Hλ. Naturally,

for optimal noise reduction, we should select

η = inf
0<λ<λmax

∥Hλ∥2 . (4.15)
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Example 6 For the system in Example 5, when λ takes values 0, 0.1, . . . , 0.9, the

corresponding H2 norms for the closed-loop system Hλ are

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η 6.22 7.00 7.87 9.00 10.49 12.59 15.73 20.96 31.44 62.85

The monotone increase of the L2 norms indicates that for this system, averaging

cannot reduce noise impact on the output. As a result, there should be no averaging

for this system.

Example 7 For another example, consider a system

G(s) =
s2 + 2s− 1

s2 − s+ 4

The closed-loop system’s characteristic equation is

λsD(s) +D(s) +N(s) = λs3 + (2− λ)s2 + (1 + 4λ)s+ 3 = 0.

It can be calculated by the Routh-Hurwitz method that λmax = 1.366. The H2 norm

of Hλ as a function of λ is plotted in Figure 40. The optimal averaging occurs at

λ = 0.59 with the norm ∥H0.59∥2 = 2.5263.

From the relationship α = e−T/λ, for small sampling interval T ,

α = e−T/λ = e−T/0.59 = e−1.7T

is the optimal rate for averaging in the discrete-time domain. For example, if T =

0.01, we obtain α = 0.983.
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Figure 40: Optimal averaging rate

4.3.5 Fast Sampling for Disturbance Attenuation

Although the optimal L2 performance η in (4.15) cannot be improved for the

continuous-time system, noise attenuation in the sampled system can be further im-

proved.

We first establish a relationship between the L2 norm of the continuous-time

system and the l2 norm of its sampled system. Suppose that the disturbance sequence

dk passes through a ZOH of interval T to become d(t). The continuous-time system

H is stable with impulse response g(t). Then,

y(t) =

∫ t

0

h(t− τ)d(τ)dτ.

Suppose dk is a pulse sequence, d0 = 1, and dk = 0, k ̸= 0. Then, d(t) = 1, 0 ≤ t < T ,

and d(t) = 0, otherwise. Under this input

y(t) =

∫ T

0

h(t− τ)dτ.
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Hence, the sampled values of y(t), which form the pulse response of the sampled

system, become

yk = y(KT ) =

∫ T

0

h(kT − τ)dτ.

For small T this can be approximated by

yk = Tg(kT ).

We note that for small T ,

∥H∥22 =
∫ ∞

0

h2(t)dt ≈ T
∞∑
k=0

h2(kT ).

Consequently, if we use H̃ and h̃k to denote the sampled system and its pulse response

of the continuous-time system H, we have h̃k = Th(kT ) and

∥H̃∥22 = ∥h̃k∥22 = T 2

∞∑
k=0

h2(kT ) = T∥H∥22

From

yk =
k∑

i=0

h̃k−idi
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if dk is i.i.d., mean zero and variance σ2, then

σ2
k = Ey2k

=
∑k

i=0

∑k
j=0 h̃k−iEdidjh̃k−j

= σ2
∑k

i=0 h̃
2
k−i

≤ σ2∥h̃k∥22

= σ2T∥H∥22

In fact,

σ2
max = sup

k
σ2
k ≈ σ2T∥H∥22.

If ∥H∥22 is optimized, then ∥H∥22 = η2 as in (4.15). Consequently, the noise reduction

ratio can be expressed as

η̃2 = Tη2. (4.16)

This is a relationship between noise reduction in the sampled system and the optimal

L2 norm of the continuous-time system. This analysis concludes that using faster

sampling (smaller T ) can reduce the noise effects.
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4.4 Results

Consider the identified patient model in section 3.3.1 with BIS as model output

and propofol titration rate as input:

P (z) =
0.01872z2 − 0.08813z + 0.09016

z5 − 1.159z4 + 0.7501z3 − 0.5989z2 + 0.2984z − 0.2678

The sampling rate of BIS machine is T = 1 second.

Usually to eliminate steady-state error in tracking control, an integrator is inserted

into the system

C(z) =
1

z − 1
.

A stabilizing feedback controller is then designed for the patient model (3.1) by using

a full-order observer and pole placement design, leading to

F (z) =
1.234z5 + 0.6298z4 − 3.644z3 + 3.67z2 − 1.981z + 0.2479

z6 − 2.341z5 + 2.284z4 − 0.7252z3 − 0.4057z2 + 0.5714z − 0.08343
.

These system components result in a combined open-loop system

G(z) = F (z)C(z)P (z). (4.17)

It can be derived as

G(z) =
N(z)

D(z)

with

N(z) = 0.02311z7 − 0.09699z6 − 0.01243z5 + 0.4466z4 − 0.689z3

+0.5101z2 − 0.2005z + 0.02235
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and

D(z) = z12 − 4.5z11 + 9.248z10 − 11.48z9 + 9.576z8 − 5.684z7 + 2.528z6 − 0.7518z5

−0.2721z4 + 0.6608z3 − 0.507z2 + 0.2003z − 0.02234.

The open loop system is unstable.

When an exponential weighted filter is inserted for signal averaging, the closed-

loop system’s stability concerns have already been depicted in Figure 38. The closed-

loop system’s H2 norm, which defines the system’s ability in noise attenuation, is

shown in Figure 41.
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Figure 41: Closed-loop system performance vs. filter decaying rates

When T = 1, the optimal filter decaying rate is αopt = 0.1300 with the corre-

sponding H2 norm 9.0872. The closed-loop system’s step response is simulated when

the filter is optimally selected and shown in Figure 42.

To relate this to re-sampling, we note that the above model is derived with the

sampling interval T = 1 second. From the relationship, αopt = e−T/λopt = e−1/λopt ,
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Figure 42: Step response of the close-loop system when the filter is optimally selected,

and sampling interval T = 1

we obtain λopt = 0.49. This leads to the optimal choice of decaying rate when the

sampling interval T is reduced from 1 as

α = e−T/λopt = e−T/0.49 = e−2.04T .

When re-sampling is performed with T ≪ 1, the H2 norm of the closed-loop system

will be reduced to 9.0872 T as established in (4.16). For reduced sampling intervals,

improvements of noise attenuation are illustrated in Figure 43.

4.5 Conclusions

The impact of communication channels on feedback control in anesthesia appli-

cations in wireless based systems was investigated in this paper. Such systems involve

communication channels which are corrupted by noises and have limited bandwidth

resources. Signal averaging is the fundamental method in dealing with stochastic
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Figure 43: The closed-loop system performance for reduced sampling intervals

noises and errors. It is used effectively in reducing noise effects when only remote

monitoring and diagnosis are involved. However, the case is different when feedback

is intended.

Our results show that the decaying rate of the averaging window has significant

impact on the performance of the close-loop system. When α is larger than some

value, the close-loop system becomes unstable. A concept of stability margins against

exponential averaging is introduced. Its calculation can be performed by either the

Routh-Hurwitz method or the root-locus method on a modified system. Furthermore,

the strategy for choosing the optimal decaying rate is derived. Our results conclude

that fast sampling must be used for improving noise reduction after optimal filter

design. The analysis and design method is applied to anesthesia patient control
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problems.

Our analysis is conducted on the basis of the linear systems. Actually, anesthe-

sia patient models contain nonlinearity. Our future work will consider analysis of

nonlinear systems.
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CHAPTER 5: MODELING FOR THE IMPACT

OF ANESTHESIA AND NOISE LESION ON THE

PRIMARY AUDITORY CORTEX

5.1 Problem Statement

This work was motivated by the goal of characterizing the impact of anesthesia

on the auditory system and diagnosing hearing damage from a system’s viewpoint.

In this chapter, we derived a comprehensive mathematical model and the auditory

system was modeled as a black-box input-output system. Two model structures were

employed to capture distinct neural activities: an ARX (Auto-Regression with Ex-

ternal Input) model for the auditory system under external stimuli and an ARMA

(Auto-Regression and Moving Average) model for the spontaneous activities of the

neurons in primary auditory cortex. The models provide a quantitative characteri-

zation of anesthesia’s impacts and diagnosis of hearing loss on auditory transmission

channels. It was shown that impact of anesthesia dosage levels and hearing damage

can be characterized by some distinct model parameters such as the time constant,

delay time, model bandwidth, and weighting coefficients. To demonstrate these fea-

tures, in this study different dosages of anesthesia were related to model parameters

to quatify their impact on the auditory system. This modeling approach offers sev-

eral advantages. They can be potentially used to understand mechanisms of auditory

signal transmissions and their dependence on anesthesia drugs. Also, model param-
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eter changes under different conditions can be used to analyze the impact of drugs,

stimulations, and physiological conditions on the auditory system. As such, they may

be used as a tool for diagnosis. The derived models can provide a quantitative char-

acterization of such impacts. In addition, rats with hearing damage demonstrated

different neural responses in comparison to normal control groups. By comparing the

models of healthy and damaged auditory systems, it is possible to reveal how hearing

damage affects the neural activity recorded from different channels in the auditory

cortex. Finally, model analysis may provide some insights on remedies to correct

adverse effects of anesthesia drugs or hearing loss.

5.2 Materials

5.2.1 Surgery and Animal Preparation

The data were collected from five long-Evans rats. The subjects were anes-

thetized with isoflurane (gas). To understand the impact of anesthesia on the audi-

tory system, two dosages were used: a low dose of concentration 1.25-1.5%, which

is about 1.25-1.5 times of the minimum alveolar anesthesia concentration (MAC)for

rats;1 and a high dose of concentration 2.5-3.0%. The anesthesia was maintained over

the entire period of the experiments. To investigate the effect of noise stimuli and

impact of noise lesion, different experiments were designed for those rats. Table 5

listed all available rat data sets under various conditions.

1The MAC is the lowest anesthesia dosage for preventing purposeful movement in response to

supramaximal noxious stimulation in 50% of animals. The MAC is about 0.98 for the rat



94

Table 5: Experiment arrangement and available data sets of five long-Evans rats. ‘A’

indicates that the data set is available, ‘NA’ means that the data were either not

collected or unreliable.

Rat No. Stimulus interval: 10sec Stimulus interval: 5sec noise lesion

Impl25 A NA A

Impl26 A A A

Impl29 A NA A

Impl30 A A NA

ABI017 NA A NA

5.2.2 Establishing ABR (Auditory brainstem response) thresholds before

and after noise exposure

While the animal was under anesthesia, ABR thresholds were obtained by eval-

uating hearing conditions. Following sound calibration, 3 subdermal platinum elec-

trodes were inserted. The active electrode was inserted in the vertex, the return

electrode inserted below the left pinna, and the ground electrode placed into the

contralateral temporal muscle. Tone bursts of 10 ms duration were delivered to an

electrostatic speaker at 4, 8, 10, 16, 20, 24, and 30 KHz (2.5 ms rise/fall, 0 ms plateau).

The stimuli were generated by RX6 Multifunction Processor and SigGenRP software

(TDT System 3). Calibration of tone bursts was achieved using SigCalRP software.

ABR signals were amplified, band-filtered (300 Hz - 3 KHz) and notch-filtered (60

Hz), and averaged 300 times.



95

5.2.3 Surgical preparation

Following anesthesia, the head of each animal was fixed on a stereotaxic appa-

ratus (Kopf Model 1350). For sound delivery, a pair of custom-made hollow earbars

was used. The animal’s body temperature was maintained at 37 ◦C by a thermostat-

controlled blanket. Surgery was performed to expose the right auditory cortex (AC)

for placement of an array. To expose the right AC, a 3× 4 mm2 craniotomy was per-

formed at 4 mm lateral and 5 mm posterior to the bregma. The auditory core and belt

regions were identified by stereotaxic coordinates, vascular landmarks (the anterior

and posterior dorsoventral vessels) and physiological response properties to tone and

noise bursts. After taking photographs to record the surgical view, a 4×4, 16-channel

microwire electrode array was dipped in 3% Di-I solution (1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate, Invitrogen) prepared with DMSO to label

the track of electrode insertions. Then, the array was implanted in the AC and a

silver wire for grounding was connected to one of the pedestal screws. The array was

lowered 0.8− 0.9 mm from the AC surface, which corresponded to the pyramidal cell

layer. Each array consisted of 16 polyimide insulated platinum/iridium microwires

that were arranged in 4 rows with 4 wires in each row (diameter = 50 µm; electrode

spacing = 500 µm; row spacing = 500 µm; impedance =0.2-0.5 MΩ). The array cov-

ered the area of about 1.5× 1.5 mm2, and were implanted in an area that contained

both auditory core and belt regions.
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5.2.4 Acoustic Stimuli and Data Recording

Sound stimuli were calibrated and presented to the left ear contralateral to the

surgically exposed AC. The sample rate for audio output was 100 KHz with 16-bit

resolution. Tone and broadband Gaussian noise bursts (1-32 kHz) were 50 ms in

duration. Tones were ramped on and off with 2 ms rise/fall times, and noise bursts

had 0.5 ms rise/fall times. The level of stimuli was 80 dB SPL.

Single- and multi-unit activity was recorded from the right AC. Neural signals

were pre-amplified and bandpass filtered (300-10, 000 Hz). Spontaneous activity was

recorded for 10 min. Then stimulus-driven activity, in response to noise bursts (50 ms

duration, burst/sec, 80 dB SPL) was recorded. The measured neural spike waveforms

were processed to derive the neural firing rate trajectories over time.

5.3 Methods

5.3.1 Model Structure Selection

In this study, two parallel subsystems were introduced in the proposed audi-

tory system models: one was an ARX (Auto-Regression with External Input) model

structure representing the auditory system under external stimuli as the input and

the neuron firing rate as the output, see the auditory system model in Figure 44.

The output of this subsystem represented the firing rate in response to acoustic stim-

uli. The neuronal firing rate was a commonly-used variable to characterize neural

activities. It contained essential information on neurons activities and was the core
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of computational neuro-sciences [96]. The other subsystem was an ARMA (Auto-

Regression and Moving Average) model structure which represented the spontaneous

activities (no inputs) of the neurons in primary auditory cortex. The main reason

for the model structure is that ARX is a general dynamic system model for an in-

put/output system. By varying its delay time and model order this model structure

is highly capable to describe a wide variety of physical systems. Here, the response of

neural activity to external stimuli can be viewed as an input/output system. In con-

trast, neural spontaneous activities represent self-excited signal generation. ARMA

models describe a self-excited signal as the output of a dynamic system driven by a

standard white noise stimulation. In other words, it can be suitably used to describe

internal activities of a physical system.

In a neural system these two activities coexist. Naturally, a combination of these

two models become appropriate. By combining these two models, the total mea-

sured firing rate was a weighted sum of the two models. The weighting parameter

γ =
y(arma)

y(base)
in Figure 44 was a function of anesthesia levels and noise stimulus in-

tervals. In this paper, the base activity is defined as the neural activity under the

deep anesthesia(2.5− 3%). As a result, γ = 1 when the anethesia is at 2.5− 3% con-

centration. The output of ARMA model, yarma(t) is normalized at anesthesia base

level and the base value of yarma(t), is defined as: ybase(t) = yarma(t) \DeepAnesthesia,

which is different among animals and corresponding to the doseage of drugs. As

a result, the contribution of ARMA model to the measured firing rate should be

yarma(t) = γ ∗ ybase(t).
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Figure 44: Diagram of the auditory system model

1. ARX Model for Stimulation Responses

The ARX model has noise burst uk as the input and firing rate yk as the output.

The structure of the ARX model of order na is:

A(q)yk = B(q)uk + ek

where A(q) = 1+ a1q
−1 + a2q

−2 + ......+ anaq
−na , B(q) = b1q

−1−nk + b2q
−2−nk +

...... + bnb
q−nb−nk . Here, q−m is the m-step delay operator: q−myk = yk−m.

nb−1 is the number of zeros of the system, nk is the delay, and ek is an additive

i.i.d. (independent and identically distributed) noise with mean zero and a

finite unknown variance. This model structure means that the current output

yk at time t = kτ is related to previous sampled inputs at k − nb, also related

to previous outputs up to the time of t − na. This model can be completely

described by parameters θ = [a1, a2, ...ana , b1, ..., bnb
]T .

2. ARMA Model for Spontaneous Activities
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When animals were not stimulated, the spontaneous activities may be viewed

as a time-series generated from a noise stimulation of standard Gaussian dis-

tribution with mean zero and variance one. It can be expressed as an ARMA

model structure:

A(q)yk = C(q)ek

where A(q) = 1 + a1q
−1 + a2q

−2 + ...... + anaq
−na , C(q) = 1 + c1q

−1 + c2q
−2 +

...... + cncq
−nc , na is the order of the model, nc is the number of zeros of the

system, and ek is a standard white noise.

5.3.2 Model Parameter Estimation

Once a model structure is selected, the next step is to determine the model pa-

rameters. The main method is to use the measured data to choose model parameters

optimally. In this paper model parameters were determined through the least-squares

optimal fitting method [97]. To estimate the model parameters, a typical data set

was chosen for system identification and parameter estimation. Figure 45 illustrates

the recordings of one rat’s firing rates in our experiments. In Figure 45, the firing

rates (in the middle plot) increased dramatically in response to the inputstimuli of

broadband noise, and then dissipated after the noise stimuli stopped.

For both figures, the top plot is the spike train of a single neuron recorded over

a period of 45 seconds. The middle plot shows the firing rates to external (acoustic)

stimulation. The vertical lines indicate the starting times of the noise stimuli. The

stimuli were given in an interval of 10 second with duration of 50 ms, 80 dB broadband
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(a) Deep anesthesia (b) Light Anesthesia

Figure 45: The spike train, firing rate and its power spectrum.

noise. The bottom plot is the power spectra of the firing rates. The primary frequency

component of 0.1 Hz represents the impulses of the firing rates that occurred every

10 seconds (frequency 0.1 Hz) during the periodic stimuli of the same period.

When rats were under deep anesthesia with a high dose of isoflurane, the activities

of primary auditory cortex neurons were significantly activated by acoustic stimula-

tion with broadband noise. On the other hand, the spontaneous activities were largely

suppressed, see Figure 45(a). Under light anesthesia, the spontaneous activities were

more visible than those in deep anesthesia, see Figure 45(b). Although anesthesia

impact on auditory neurons could be seen directly from the recorded time series,

quantifying anesthesia effects on neurons activities required detailed analysis. Mod-
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eling for the auditory system made it possible to analyze such effects systematically.

The procedure of our method is detailed in next.

The inherent sampling interval of the original firing rates was 1 ms second. For

system identification, this step size is too small to get an accurate model. As a

result, the data set was re-sampled with a larger sampling interval τ = 18ms. The

re-sampled signals became yk = y(kτ), uk = u(kτ), τ = 0, 1, . . .. Due to randomness

in neural activity and measured signals, signal averaging was conducted.

1. ARX Model Parameter Estimation

To attenuate noise effect, stimuli were applied periodically every 10 seconds.

The data were then divided into segments of 10 seconds each. The firing rates

over consecutive data segments were averaged. In this data processing, five

segments of the data (a total of 50-second data) were averaged to generate a

10-second combined segment for model estimation. The model parameters were

estimated using the function ARX in the Matlab System Identification Toolbox.

The orders of the model were chosen as na = 3 and nb = 2. The delay time

was estimated with the function DELAYEST in System Identification Toolbox.

Given a white noise with power 80 dB and duration 50 ms as the input signal,

the transfer function of the ARX model structure with a delay of nk = 31 was

identified as:

HARX(z) = z−31 10−3(−0.36z − 0.52)

z3 − 1.805z2 + 1.084z − 0.2605
(5.18)
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2. ARMA Model Parameter Estimation

The averaged firing rates after t = 2 seconds in Figure 46 were used in estimation

of the ARMA model. The model order was usually selected by an iterative

process of increasing model orders and checking model fidelity as a tradeoff

between model complexity and accuracy. Such a process led to the selected

orders na = 3 and nc = 2. The discrete-time transfer function of the ARMA

model was identified, by applying the ARMA function in System Identification

Toolbox of MATLAB, as:

HARMA(z) =
z2 + 0.03146z − 0.8969

z3 − 1.102z2 − 0.6824z + 0.7996
(5.19)

5.3.3 Model Fidelity Evaluation

1. ARX Model Fidelity

To evaluate the accuracy of the identified model and its prediction ability, the

model was used to produce the output with an input as the actual stimuli.

The model output was employed to predict the firing rates under a given white

noise with the same SPL and duration in a 10-second interval which followed the

data used to estimate the model parameters. Actual firing rates were compared

with the model output in Figure 46. The model output fitted well with the

data. In Figure 47, the firing rates in the next 10-second interval and model

predictions were compared. In both cases, the model output captured the real

data authentically.
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Figure 46: Model output and real firing rate

2. ARMA Model Fidelity

Performance of the identified ARMA model was evaluated by comparing the

power spectrum of the model output and the real data in Figure 48. The

spectrum of the model output captured the main frequency components of the

real firing rates. So, the parameters obtained in the frequency domain could be

used for analysis. In this paper, model accuracy was measured by β =
√

PModel

Prealdata
.

Here P is the total power of firing rates during the time interval of interest.

In Table 6, the ARMA model β values were compared under different anesthesia

levels and conditions of the auditory system. From Table 6, β was approximately

equal to 1 for all cases. Hence the output of the ARMA model well represented

the real firing rates.
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Figure 47: Predicted firing rate and measured data in 10 second interval

Table 6: β values of normal auditory system and auditory system after noise lesion

Rats No. βdeep βlight βlight,noiseleison

Impl25 0.9337 0.9091 1.0625

Impl26 0.9353 1.0143 0.9043

Impl29 0.8339 0.9904 1.0065

Impl30 0.9266 0.9017 data not usable

5.4 Results

Anesthesia has a significant impact on auditory systems. In addition, hearing

damage may cause changes in the auditory neural tuning curves [98]. To investigate

the impact of anesthesia and hearing-damage-induced effects on the auditory system,

the two subsystems of the proposed model structure, ARX model and ARMA model,

were analyzed for the auditory system under different conditions. Although a model

is completely determined by its structure and parameters, for its utility in this study,
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Figure 48: The power spectrums comparison between ARMA model output and the

spontaneous firing rate.

we extract certain characterizing variables as indices to quantify neural activity. ARX

and ARMA models carry certain physically meaningful variables that can be used to

describe neural activity intensity in more details than signal energy or power density.

As such, they can be potentially used to distinguish a patient’s auditory system in

terms of its response to stimuli or self-excited neural firing actions. In particular, we

focus on the time constant, time delay, bandwidth, and power ratio. In the following

sections, we will discuss those system characteristic variables in details. The results

were first obtained from the data analysis of two levels anesthesia, then extended to

more anesthesia levels
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5.4.1 Light vs. Deep Anesthesia

We first studied the relationship between the model variables and the anesthesia

levels, by using only two cases: Deep anesthesia with high dose (2.5%) of isoflurane

and light anesthesia with a low dose (1.5%). In addition, it was observed that ex-

periment conditions usually had an influence on collected signals that may affect the

generality of the results. As a result, we also investigated the effect of stimulus in-

tervals to see whether the same conclusions could be achieved. For this analysis, the

broadband noise with same SPL and duration was applied periodically, first in the 5

second interval, and then the 10 second interval.

Time Constant The time constant is defined as the time for the system step

response reaching to the 63% of the steady value. Its meaning was illustrated in

Figure 49.

Figure 49: The step responses of the identified system.
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Figure 50 displayed the time contants of ARX (Figure 50 (a) and (b)) and ARMA

models (Figure 50 (c)). From Figure 50 (a) and (b), it could be seen that the system

variables were affected by the level of anesthesia and hearing conditions. For a stable

LTI system, its time constant determines its response speed to an outside stimulus.

From Figure 50, we found that the mean response speed (the inverse of the time

constant) was slower for the system in light anesthesia without hearing damage, than

those after noise lesion or the normal system in deep anesthesia. In addition, no

obvious effect could be seen from the trend of system variables when the stimuli were

applied over different time intervals. Similar trends were observed for the ARMA

model (Figure 50 (c))except for one case that the time contant kept at the same

value while the drug dosage was changed.

For both ARX and ARMA models, the time constant changed with the anesthesia

levels and hearing conditions. In Figure (a), the stimulus noise was presented every

10 second with 50 millisecond and 80 dB SPL. In Figure (b), the stimulus noise was

presented every 5 second with 50 millisecond and 80 dB SPL.

Time Delay The time delay is defined as the initial time interval before the system

responds to the stimuli. Its meaning was illustrated in Figure 49.

Figure 51 illustrated time delays of the ARX model when stimulus were applied

over different intervals. The system delay went down after the drug dosages were

reduced and it decreased further after the noise lesion.

In plot (a), the stimulus noise was presented every 10 seconds with 50 millisecond
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(a) Time constants of ARX mod-

els(Stimulus interval: 10sec)

(b) Time constants of ARX mod-

els(Stimulus interval: 5sec)

(c) Time constants of ARMA model

Figure 50: The variation of system time constant corresponding to the anesthesia

levels and hearing conditions.

and 80 dB SPL. The system delay of all cases have the same variation trend. In plot

(b), the stimulus noise was presented every 5 seconds with 50 millisecond and 80 dB

SPL. The trend of one case is reversed comparing to that of other cases. Obiviously,

when the noise stimuli interval was 5 seconds, the time delay of one case was reversed,

comparing to other cases. This means the time delay was sensitive to the intervals

of input stimuli. As a result, it was judged as a non-robust index for dectecting the

anesthesia levels.

Bandwidth The bandwidth is defined in the frequency response of the model.

Then, the bandwidth is the frequency when the magnitude of its frequency response

reduces to −3 dB from its DC value.
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(a) Time delay of the ARX mod-

els(Stimulus interval: 10 seconds)

(b) Time delay of the ARX mod-

els(Stimulus interval: 5sec)

Figure 51: The variation of system delay corresponding to the anesthesia levels and

hearing conditions.

The values of system bandwidth of ARX and ARMA models were displayed in

Figure 52. From the figure, it was clear that the variation trend of system bandwidth

was similar to that of time constant. For ARX model, all of the cases demonstrated

the same trend for both noise intervals. However, for the ARMA model, one case was

showing a different trend after the auditory system experienced the noise lesion.

In plot (a), the stimulus was presented every 10 seconds with 50 millisecond and

80 dB SPL. The bandwidth of all cases had the same variation trend. In plot (b),

the stimuli was presented every 5 seconds with 50 millisecond and 80 dB SPL. The

trend of one case was reversed comparing to other cases.
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(a) Bandwidth of ARX

model(Stimuli interval: 10sec)

(b) Bandwidth of ARX

model(Stimuli interval: 5sec)

(c) Bandwidth of ARMA model

Figure 52: The variation of system bandwidth corresponding to the anesthesia level

and hearing conditions.

Power Ratio In an ARMAmodel, the parameters derived from the signal spectrum

were used for analysis. The power ratio µ was evaluated as a potential indicator of

anesthesia levels. For two levels anesthesia, it is defined as

µ =

√
Plight

Pbase

.

Where the Pbase = PDeepAnesthesia is the power of firing rates when the animal was

given a high dosage of drug which is supposed to induce deep anesthesia level. This is

especially useful under the ARMA models to show the relative impact of anesthesia

on spontaneous activity. Table 7 listed the µ values of the ARMA model when the

noise stimulus was presented every 10 seconds. And the µ values of the ARMA model

when the noise stimulus was presented every 5 seconds were listed in Table 8. The
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ARMA model’s µ values were compared under different conditions of the auditory

system.

Table 7: µ values of normal auditory system and auditory system after noise lesion.

The stimuli were applied every 10 seconds

Rats No. µnormal µlight,noiseleison

Impl25 4.09± 1.18 6.3± 1.34

Impl26 4.42± 1.1 6.8± 1.4

Impl29 3.75± 0.86 2.3275± 0.68

Impl30 2.5± 0.74 datanotusable

Table 8: µ values of damaged and normal auditory system. The stimuli were applied

every 5 seconds.

Rats No. µnormal µlight,noiseleison

Impl26 2.25± 0.95 2.6± 1.17

Impl30 1.26± 0.74 datanotusable

Here, we define a parameterK to relate the µ and the drug dosages r: K∗ rhigh
rlow

= µ.

K increases as the anesthesia levels being from deep to light. All rats used in our

experiments were undergoing the anesthesia with a high dose of 2.5% and low dose of

1.5%. Then the K ≈ µ
1.67

. When the noise stimulus was presented every 10 seconds,

the K was averaged among all rats and we got K = 2.2, while K = 1.05 when the

stimulus presented every 5 seconds. Obviously, the K is proportioned to the stimulus

intervals. For the systems after noise leison, the values of K are around 3.9 (noise was

applied every 10 seconds) and 2.6 (noise was applied every 5 seconds), which were

larger than those of the normal systems.
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5.4.2 Extended Anesthesia Levels

In this section, our method will be investigated for the case of extended anesthesia

levels. A long-Evans rat was firstly anesthetized with a high dose of isoflurane (3.0%),

then multi-channel brainstem responses recording were started after around 30 min

when the rat was supposed to be in a steady status. The recording continuous about

2 min, after that the isoflurane was turn down to a very low dose of (1.25%) which

makes the rat recover gradually to awake status. The response signals (around 30min

in length) were collected till the animal was fully awake. The 30 min data was

separated into three time-continuous blocks with each representing the deep-light

anesthesia, light anesthesia and light-awake status respectively in time order.

The stimulus with 80 dB SPL and 50ms duration was presented periodically in

5 seconds interval. The proposed model structure was applied and the identical

system parameters were calculated for multi-level anesthesia problem. Results were

summarized in Table 9 for comparing µ, time constant and bandwidth of the ARMA

subsystem and system delay of ARX subsystem when the auditory system is under

different anesthesia levels. In this case, the power ration is defined as:

µ =

√
PL

Pbase

, where the PL can be the signal power of one of the anestheisa levels: PDeep−light,

Plight and Plight−awake. Pbase = PDeepAnesthesia is the power of firing rates when the

animal was given a high dosage of drug which is supposed to induce deep anesthesia.

Figure 53 demonstrates the trend of the time constant and bandwidth of the ARX
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Table 9: µ, time constant and bandwidth of ARMA model, as well as the system

delay of the ARX model when the auditory system is under 4 anesthesia levels: deep,

deep-light, light and light-awake status.

Deep Deep-light Light Light-awake

µ 1 0.997± 0.37 1.15± 0.38 1.5287± 0.53

Time constant(ARMA) 0.105 0.145 0.126 0.14

Bandwidth(ARMA) 17.4915 12.3797 14.3701 12.9027

Dealy(ARX) 0.16 0.1275 0.1585 0.1487

system when the auditory system is under 4 anesthesia levels. Obviously, the values

of time constants are increasing and bandwidth are decreasing gradually as expected.

That coincides with conclusions derived from two levels anesthesia.

Figure 53: Box plots of the time constant and bandwidth of the ARX system in 4

levels anesthesia.
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5.5 Discussion and Conclusions

In this paper, we investigated the problem of anesthesia impact on auditory neu-

ron activities and characterized the noise lesion effect on auditory systems from a

system viewpoint. A simple and application-oriented system structure was proposed

and system identification methods were applied to estimate the system parameters,

which indicated the changes of system conditions. Anesthesia is widely believed to

affect the audio signal processing in auditory systems. Understanding the anesthesia

effects is essential when for charaterizing how the information is processed in auditory

systems. Our modeling method makes it possible to characterize the anesthesia im-

pact at a system level. A distinct feature of our models is that those derived system

parameters have physical meanings for easy understanding.

5.5.1 Impact of Anestheisa Levels on the Auditory System

We have studied the impact of anesthesia levels on the auditory system for the

case of two levels anesthesia (deep anesthesia witha high dose of 2.5% and light

anesthesia with low dose of 1.5% ) and the case of extended anesthesia levels (4

levels anesthesia were considered). The system variables (time constant, bandwidth,

system delay, and power ratio) of both models, ARX and ARMA, were calculated

and compared to identify the anesthesia status. In Figures 50,51, 52 and 53 , we

observed that the system parameters were affected by the levels of anesthesia and

hearing conditions. From the results, several interesting findings were highlighted.



115

1. ARX Model: For the ARX model, the varibales of the time constant, delay and

bandwidth were calculated. The time constant determines response speed to an

outside stimulus. The mean response speed was slower for the system in light

anesthesia without hearing damage when compared with an auditory system

in deep anesthesia. Meantime, the bandwidth decreased when the drug was

reduced to a lower dosage. In addition, the neuron responses to noise stimuli

were delayed in the auditory system under deep anesthesia. In the case of multi-

level anesthesia, the time contant increased and bandwidth decreased gradually

as the animals recovered from deep anesthesia to awake, while the system delay

fluctuates during the recovery procedure.

2. ARMAModel: In an ARMAmodel, both of the the time-domain and freuquency-

domain parameters, the power ratio, time constant and bandwidth, were used

for analysis. The power ratio µ parameters derived from model outputs and

calculated from measured real firing rates were similar. On the other hand, the

obvious difference of µ could be found from the auditory system in distinct anes-

thesia status (See Table 7,8 and 9). For most animals, the time constant was

lower in deep anesthesia and higher in light anesthesia, the case was reversed

for bandwidth. However, for the auditory system of one animal (Impl29), the

time constant and bandwidth did change although the drug was reduced to

a lower dosage. Furthermore, in the case of extended anesthesia levels, these

variables derived from the ARMA model flucatuated in the recovery procedure
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(See Table 9). In addition, the values of the time constant and bandwidth are

different from those of ARX models implying that the auditory system was a

nonlinear system in response to outside stimuli.

5.5.2 Impact of Noise Lesion

Except for anesthesia, we also considered the impact of noise leison on the au-

ditory system. The same variables were extracted from the ARX model and ARMA

model. From the results, we can see that:

1. ARX Model: For the ARX models of all animals, the time constant decreased a

little bit after the animals experienced the noise leison, although the anesthesia

was kept at the seam dosage (1.5%). Meanwhile, the bandwidth increased. The

broader bandwidth may indicate the abnormal hearing conditions caused by the

noise leison or anesthesia. From the results of all animals, the system response

was delayed futher after the noise leison.

2. ARMA Model: In an ARMA model, the variables demonstrated the same trend

as those of the ARX model, except for the system of one animal(Impl29). From

Tables 7 and 8, µ parameters derived from model outputs and calculated from

real firing rates were similar. On the other hand, the obvious difference of

µ can be found from the auditory system before and after noise lesion. The

parameter µ of the auditory system after noise lesion was much larger than

that of a normal system, except for one animal(Impl29). When the stimulus

interval was adjusted to 5 seconds, it could be seen from Table 8 that although
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the µ values showed the same trend as the initial findings in the cases of 10

seconds stimulus interval (the µ increased when the drug dosage was reduced).

For the same rat, the µ values were relatively small when the stimulus was

presented every 5 seconds. Hence the µ was not only a function of anesthesia

levels and noise leison, but also a function of stimulus intervals. But the µ did

not detect the samll changes in the auditory system when extended anesthesia

level were considered.

By comparing the system variables of the ARX and ARMA model, we concluded

that it was essential to use acoustic stimuli to track the anesthesia levels and hearing

conditions more precisly. However, the system time delay of ARX model was sensitive

to the periodical stimulus intervals. In contrast, the time constant and bandwidth of

were more robust variables in detecting the anesthesia status because these variables

of all animals reflected trend variations as the anesthesia levels and hearing conditions.

Obviously, both anethesia drugs and noise lesion had impact on the animals’ auditory

systems. From the results, we concluded that the effect of noise lesion was similar to

an increase of the drug dosage. In other words, both anesthesia drugs and noise lesion

affected similarly the fuctions of the auditory system in terms of response speeds to

outside acoustic stimuli and the sound frequency selection.

5.5.3 Signal Processing and Modeling Issues

We calrify several points in the data analysis to avoid the ambiguity in explaining

the results and reaching a conclusion.
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1. The values of the system time constant and bandwidth:

They were relative values and maybe different among a group of animals. The

size of the windows applied for neuron spike trains to get the firing rates de-

termined those relative values as “large” or “small”. Thus, it is important to

keep an identical window size in calculating the time-dependent firing rates in

each animal. The size of the windows was usually between 100-500 millisecond.

How to choose the window size was determined by the noise-induced response

durations which were different among the animals. If the response duration

was short, a small window size should be chosen to derive a more accurate

time-dependent firing rate.

2. The length of signals used for calculating averaged firing rates:

As long as the signals remained in the same conditions (identical anesthesia

dosage, with or without noise lesion), the longer of the data segment used for

calculating the averaged firing rate, the more accuracy would be achieved for

the results.

3. Choice of the data segments used for analysis:

It is desirableto use as much data as possible for computing averaged firing rates.

However, choice the proper data segments from original signals was essential. In

this paper, those data segments in non-steady status, such as the data recorded

at the time when the anesthesia dosage and the noise interval were changed,

as well as those recordings immediately after several hours of the noise lesion,
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were removed from analysis.
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CHAPTER 6: PLAN OF FUTURE WORKS

Along these directions, there are some remained works need to be completed in

the near future. In this chapter, several topics are proposed as the future research

efforts to supplement the current works.

6.1 Clinlic Proof of Relative β2/θ-Ratio

An EEG parameter β2/θ-ratio was developed and compared with relative β-ratio

which is one of main parameters used for producing the BIS index. Our results have

reached a conclusion that the use of β2/θ-ratio can potentially improve the monitor’s

perfromance in detecting the awareness of anestehsia patients during emergence stage.

To prove the effectiveness of this parameter, it’s performance needs to be verified

through population based statistical analysis. This is a long term work and is up to

the amount of patient data being availiable.

6.2 Hardware Implementation for MIMO Modeling and Di-

agnosis

In this work, a decision-oriented modeling method was introduced for real-time

mornitoring, diagnosing, and predicting multiple outcomes of anesthesia patients.

This model was used for outcomes prediction, drug impact prediction and observ-

ing all potiential outcome sets to assist anesthesiologists in making decisions during

surgery. Simulation results proved that this model could represent the real patient
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dynamics with minor accuracy loss.

Labview graphical programming software (National Instrument Inc.) can be used

for model based design. Recently, NI is making effort to support developing medical

device through Labview. We have sucessfully implemented the SISO real-time model

for prediction in operation room. In the future work, we will update the device to

the one that embeds the multivariable patient model and apply it in operation room

for multi-outcome anesthesia diagnosis.

6.3 Signal Averaging in Nonlinear Systems

In this project, the problem of the impact of signal averaging on close-loop sys-

tems with applications on the wireless anesthesia control has been studied. With a

simple linear anesthesia patient model, we derived the stablity margin against ex-

ponential windows and calculated the optimal window size to optimize the system

performance. Actually, patient models show much nonlinearity. For simplicity, the

anesthesia patient model was figured out as a special wiener model struture, which

was composed of a linear dynamic model followed by a static nonlinear function. The

future work will be focused on the performance analysis of nonlinear wiener system

with feedback controller and averaging windows. In addition, in current proble frame-

work, the noise was added to the transmitted signals, while the noise is not additional

or not white, the results will be definitly different.
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[97] L. Ljung and T. Söderström T, Theory and Practice of Recursive Identification,

MIT Press, Cambridge,1983.

[98] ”Pure tone audiometry”, http://en.wikipedia.org/wiki/Pure tone audiometry.



137

ABSTRACT

MONITORING, DIAGNOSIS AND CONTROL
FOR ADVANCED ANESTHESIA MANAGEMENT

by

ZHIBIN TAN

August 2011

Advisor: Dr. Le Yi Wang

Major: Electrical Engineering

Degree: Doctor of Philosophy

Modern anesthesia management is a comprehensive and the most critical issue in

medical care. During the past dacades, a large amount of research works have been

focused on the problems of monitoring anesthesia depth, modeling the dynamics of

anesthesia patient for the purpose of control, prediction, and diagnosis.

Monitoring the anesthesia depth is not only for keeping the patient in adquate

anesthesia level but also for preventing the patient from overdosing. Several EEG

based indexes have been developed such as the BIS, and Entropy etc. for mea-

suring depth. However, reports mentioned that those indexes in some cases fail in

detecting the awareness of the the patient. In this research work, a new EEG based

parameter,β2/θ-ratio, was introduced as a potential enhancement in measuring anes-

thesia depth. It was compared to the relative β-ratio which had been commercially

used in the BIS monitor and proved that the β2/θ-ratio has improved reliability and

sensitivity in detecting the awareness than the β-ratio does.

Traditional modeling, diagnosis and control in anesthesia focus on a one-drug

one-outcome scenario. In fact, Anesthesia drugs have impact on multiple outcomes

of an anesthesia patient. Due to limited real-time data, real-time modeling in multi-
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outcome modeling requires low complexity model structures. A method of decision-

oriented modeling which employs simplified and combined model functions in aWiener

structure to reduce model complexity was introduced. This model structure was

implemented in device level and tested in operation room for real-time anesthesia

monitoring, diagnosis, and prediction.

Furthermore, the impact of wireless channels on patient control in anesthesia ap-

plications was also investigated. Such a system involves communication channels

which introduce noises due to quantization, channel noises, and have limited com-

munication bandwidth resources. Usually signal averaging can be used effectively in

reducing the noise effects. However, when feedback was intended, we showed that

signal averaging will lose its utility substantially. To explain this phenomenon, we

analyzed stability margins under signal averaging and derived some optimal strategies

for selecting window sizes.

Finally, a mathematical model for the auditory system was introduced to char-

acterize the impact of anesthesia on auditory systems, and analyze and diagnose

hearing damage. The auditory system was represented by a black-box input-output

system with external sound stimuli as the input and the neuron firing rates as the

output. Two parallel subsystem models were developed for modeling the auditory

system dynamics: an ARX (Auto-Regression with External Input) model for the au-

ditory system under external stimuli and an ARMA (Auto-Regression and Moving

Average) model for the spontaneous activities of the neurons on primary auditory

cortex. These models provide a quantitative characterization of anesthesia’s impacts

and diagnosis of hearing loss on auditory transmission channels.
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