
Journal of Modern Applied Statistical
Methods

Volume 10 | Issue 1 Article 15

5-1-2011

Model Diagnostics for Proportional and Partial
Proportional Odds Models
Ann A. O'Connell
The Ohio State University, aoconnell@ehe.osu.edu

Xing Liu
Eastern Connecticut State University, liux@easternct.edu

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
O'Connell, Ann A. and Liu, Xing (2011) "Model Diagnostics for Proportional and Partial Proportional Odds Models," Journal of
Modern Applied Statistical Methods: Vol. 10 : Iss. 1 , Article 15.
DOI: 10.22237/jmasm/1304223240
Available at: http://digitalcommons.wayne.edu/jmasm/vol10/iss1/15

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss1/15?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss1/15?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2011 JMASM, Inc. 
May 2011, Vol. 10, No. 1, 139-175                                                                                                                           1538 – 9472/11/$95.00 

139 
 

Model Diagnostics for Proportional and Partial Proportional Odds Models 
 

Ann A. O’Connell Xing Liu 
The Ohio State University, 

Columbus, OH USA 
Eastern Connecticut State University, 

Willimantic, CT USA 
 

 
Although widely used to assist in evaluating the prediction quality of linear and logistic regression 
models, residual diagnostic techniques are not well developed for regression analyses where the outcome 
is treated as ordinal. The purpose of this article is to review methods of model diagnosis that may be 
useful in investigating model assumptions and in identifying unusual cases for PO and PPO models, and 
provide a corresponding application of these diagnostic methods to the prediction of proficiency in early 
literacy for children drawn from the kindergarten cohort of the Early Childhood Longitudinal Study 
(ECLS-K; NCES, 2000). 
 
Key words: Model diagnostics, proportional odds models, partial proportional odds models, residual 

analyses. 
 
 

Introduction 
Although widely used to assist in evaluating the 
prediction quality of linear and logistic 
regression models, residual diagnostic 
techniques are not well developed for regression 
analyses where the outcome is treated as ordinal. 
For ordinal regression models, Hosmer and 
Lemeshow (2000) suggested recombining 
outcomes according to the ordinal structure of 
the data and applying residual strategies 
developed for binary logistic models, such as 
outlined in Pregibon (1981). This approach is 
useful in the investigation of the assumption of 
proportionality as well as for examination of 
unusual or extreme values via residual 
diagnostics and this article presents guidelines 
for proportional odds (PO) and non- or partial-
proportional odds (PPO) models. 
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is an Associate Professor of Research and 
Assessment in the Education Department. Email 
him at: liux@easternct.edu. 
 

 
Residual analyses provide rich 

opportunities for researchers to examine model 
fit and misfit, and require going beyond the 
results obtained through a direct application of a 
statistical model, the interpretation of parameter 
estimates or the summary statistics obtained 
from that model. Studies of residuals are 
becoming an important analytic process in many 
research situations, for example, when high-
performing or low-performing students or 
schools are selected for intensive investigation. 
Despite their importance, however, results are 
often presented in the research literature with 
little emphasis on or reference to the model 
residuals; readers are thus not always provided 
with a clear understanding of study findings. In 
the education field, it becomes particularly 
important to be able to reliably identify children 
(or schools, or teachers, or program participants, 
etc.) whose response or outcome may not be 
adequately represented by a particular derived 
model, because if such unusual cases can be 
discerned, attention may be directed to improve 
desired outcomes. 

Extensive outlines of useful residual 
analyses and diagnostic measures have been 
provided for logistic (Pregibon, 1981) and linear 
(Fox, 1991) regression models. In addition, 
Bender and Benner (2000) suggested some 
graphical strategies that can be used to examine 
the feasibility of the proportional odds 
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assumption. However, analysis of residuals for 
PO and PPO models in ordinal logistic 
regression is not well established; thus, this 
study was designed to build on the collection of 
strategies available through logistic and linear 
approaches. Specifically, these include: Pearson 
residuals, Deviance residuals, Pregibon 
leverages, DFBeta’s and the use of index plots 
and other graphical strategies to examine and 
isolate unusual cases within the logistic 
framework. The use of Mahalanobis’ distance, 
leverages, SDResiduals, Cook’s D and other 
statistics from the ordinary least-squares 
framework, when applied to ordinal data are also 
investigated. 

This study contributes to the empirical 
literature on detection of extreme or unusual 
cases, investigation of statistical assumptions 
and validation of ordinal regression models by: 
reviewing methods of model diagnosis that may 
be useful in investigating model assumptions, 
identifying unusual cases for PO and PPO 
models and providing a corresponding 
application of these diagnostic methods to the 
prediction of proficiency in early literacy for 
children drawn from the kindergarten cohort of 
the Early Childhood Longitudinal Study (ECLS-
K; NCES, 2000). The primary focus is on how 
outlying or influential cases in ordinal logistic 
regression models can be reliably detected and 
on how these strategies can be applied to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

proportional and/or partial proportional odds 
models. 
 
Background 

One of the most commonly used models 
for the analysis of ordinal data comes from the 
class of logistic models: the PO model. Consider 
a simple binary model; in a binary logistic 
model, the data represent two possible ordinal 
outcomes, success or failure, typically coded 0 
for failure and 1 for success. For a K-level 
ordinal outcome, several different 
conceptualizations of success can be derived. 
Table 1 shows the  ECLS-K ordinal outcome 
variable description and the data indicating the 
proportion of kindergarten children, drawn from 
a national random sample of kindergarteners 
followed through the third-grade, attaining 
mastery of five hierarchical early-literacy skills 
at the end of the kindergarten year. In this 
example, K=6, and the outcome values are 
scored as 0, 1, 2, 3, 4 and 5, to represent the 
highest level of proficiency attained on the 
ECLS-K literacy mastery test (0 = no mastery at 
any level; 5 = mastered all 5 levels). For these 
data, 26.9% of the children were not able to 
achieve beyond level 1 at the end of the 
kindergarten year and only 12.8% of these 
children mastered literacy skills beyond level 3, 
most students scored in levels 2 and 3 (60.3%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Proficiency Categories and Frequencies (Proportions) for the Study Sample, ECLS-K 
Measures for Early Literacy and N = 2687 Public School Children, End of Kindergarten Year 

 

Proficiency 
Category 

Description Frequency 

0 Did not pass level 1 295 (11.0%) 

1 Can identify upper/lowercase letters 427 (15.9%) 

2 Can associate letters with sounds at the beginnings of words 618 (23.0%) 

3 Can associate letters with sounds at the ends of words 1003 (37.3%) 

4 Can recognize sight words 233 (8.7%) 

5 Can read words in context 111 (4.1%) 
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A particular series of questions are of 
interest when analyzing ordinal outcome data; 
these involve predicting the likelihood that an 
observation is at or beyond each specific 
outcome level given a collection of explanatory 
variables. For the ECLS-K data, this involves 
estimating the probability that a child with 
particular background characteristics or a given 
set of explanatory variables is at or beyond level 
0 (which would always be 1.0); then estimating 
the probability of that same child being at or 
beyond level 1, at or beyond level 2, etc., until 
reaching the probability of the child being at or 
beyond the last, or Kth, outcome category. This 
series of probabilities are referred to as 
cumulative probabilities. 

The analysis that mimics this method of 
dichotomizing the outcome, in which the 
successive dichotomizations are used to form 
cumulative splits to the data, is referred to as the 
proportional or cumulative odds model (PO) 
(Agresti, 2000, 2007; Armstrong & Sloan, 1989; 
Long, 1997; Long & Freese, 2006; McCullagh, 
1980; McCullagh & Nelder, 1989; O’Connell, 
2006; Powers & Xie, 2000). The model is 
defined as: 
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In this logistic model, the prediction represents 
the expected logit for being in category j or 
above, conditional on the collection of 
predictors, and Yj

’ represents the odds of being 
in higher proficiency categories. These predicted 
logits can be transformed to odds and then to 
estimated probability: 
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The intercept, αj, represents the threshold, or 
cutpoint, for each particular split to the data. 
Each person thus has K-1 predicted values, 
representing their estimated likelihood of 

scoring in category j or beyond, given their 
explanatory data. Note that in the PO model the 
effect of each predictor remains the same across 
each of these K-1 prediction models: This means 
that for each predictor, its effect on the 
probability of being at or beyond any category is 
assumed to remain constant within the model; 
thus, the slope estimate provides a summary of 
each independent variable’s relationship to the 
outcome across all cutpoints. In this model, b1, 
for example, remains the same for all of the 
splits, although αj may change. This restriction 
is referred to as the assumption of proportional 
odds. 

A model that relaxes the assumption of 
proportional odds is referred to as a partial-
proportional odds (PPO) or non-proportional 
odds model. This model is given by: 
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In this expression, all of the effects of the 
explanatory variables are allowed to vary across 
each of the cutpoints. If some of the effects are 
found to be stable, they can be held constant as 
in the PO model. Thus, partial-proportional odds 
refers to the case that at least one of the slopes 
for an explanatory variable varies across splits. 

Due to its simplicity and natural 
correspondence to ordinary logistic regression, 
the proportional odds model is the most widely 
used ordinal regression model. Tests for the 
assumption of proportional odds can be very 
liberal (Peterson & Harrell, 1990), however, and 
are strongly affected by sample size and the 
number of covariate patterns - which will always 
be large if continuous covariates are used 
(Allison, 1999; Brant, 1990; Clogg & Shihadeh, 
1994). Researchers have argued that if the 
assumption of proportional odds is rejected, 
good practice would dictate that the 
corresponding underlying binary models be fit 
and compared with the PO results to check for 
discrepancies or deviations from the general 
pattern suggested by the PO model (e.g., 
Allison, 1999; Bender & Grouven, 1998; Brant, 
1990; Clogg & Shihadeh, 1994; Long, 1997; 
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O’Connell, 2000, 2006). This strategy of 
considering the PO model as a collection of 
underlying binary models is an approach that has 
been found useful not only in qualifying the 
nature of the proportionality assumption, but 
also in assessing univariate proportionality, 
linearity in the logit, and the distribution of 
residuals from the PO model (O’Connell, Liu, 
Zhao & Goldstein, 2004). 
 

Methdology 
Sample 

The data were drawn from the public-
use data base Early Childhood Longitudinal 
Study-Kindergarten Cohort (ECLS-K) (NCES, 
2000). The outcome variable of interest was 
proficiency in early reading, assessed at the end 
of the kindergarten year. Actual data were used 
rather than simulated data, because this could 
help create a realistic context for conducting 
residual analyses. 

The final sample included n = 2687 
public school children sampled from within 198 
public schools across the U.S. The sample 
contained first-time kindergarten children only, 
who remained in the same school between 
kindergarten and first-grade. Analyses 
intentionally ignored school-level effects in 
order to focus on residual diagnostics for single-
level models (only public schools were selected 
for this study). Analyses were conducted for the 
full sample as well as for 10 different randomly 
selected subsamples of 10% each to facilitate 
use of casewise statistics and plots. 

Residual analyses are often very 
intensive, thus, for demonstration purposes, two 
of the smaller subsets were selected to highlight 
interesting patterns and residual statistics within 
each data set. No attempt was made to draw 
inference to the overall sample or population; 
rather focus was placed on demonstration of 
diagnostic procedures and strategies for ordinal 
data. 

The proficiency outcomes were obtained 
from the third-grade release of the ECLS-K data 
base (prior to that, researchers used a series of 
dichotomous variables to derive the ordinal 
proficiency scores). Proficiency is defined as 
mastery of a cluster of 4 items representing each 
of the domains outlined in Table 1. The domains 
are hierarchically structured and theoretically 

assumed to follow the Guttman scale (NCES, 
2000). Mastery is recognized as students passing 
3 out of the 4 items representing each domain. 

The selection of explanatory variables 
was theoretically driven and supported through 
prior research on factors affecting early 
childhood literacy. These included: gender (male 
= 1), minority status (minority = 1), whether the 
child attended half-day kindergarten (yes = 1), 
number of family risks (0 to 4), frequency with 
which parents read books to child (0 to 3), 
family socio-economic status (continuous), and 
assessment age (continuous). The data presented 
were from the end of the Kindergarten year. 
Tables 2a, 2b and 2c present descriptive 
statistics for the full-sample and the two sub-
samples, respectively. 
 
Data and Models 

The data were used to inspect the 
residuals from the PO model and test the 
assumptions of equal slopes. Residuals from an 
OLS regression of the same data as well as from 
the five corresponding cumulative binary 
logistic regression models (splits) underlying the 
proportional odds assumption (i.e., level 0 
versus beyond level 0; levels 0 and 1 combined 
versus beyond level 1; levels 0, 1, and 2 
combined versus beyond, etc.) were examined. 
Logistic regression diagnostics were 
investigated for each cumulative split to the 
data; these procedures were repeated for two of 
the 10% subsamples (referred to as Samples I 
and II). The study began by investigating the 
plausibility of the PO assumption in the full- and 
sub-samples. A PPO model was then fit where 
the effect of minority was allowed to vary across 
thresholds. 

The SAS (V. 9.1.3), SPSS (V. 15.0) and 
Stata (V. 9.0) software packages were used for 
data analyses and graphing. The options for 
residual diagnostics in logistic regression models 
were also compared among these packages. SAS 
PROC LOGISTIC procedure was used for 
binary logistic models and ordinal logistic 
models. SPSS was used for descriptive statistics, 
casewise residual diagnostics in OLS and 
ordinal regression, index plotting and some 
scatterplots. Stata was used for residual 
diagnostics. 
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Table 2a: Descriptive Statistics at the End of Kindergarten, n = 2,687 (Full-Sample) 
 Reading Proficiency Level 

 
0 

n = 295 
11.0% 

1 
n = 427 
15.9% 

2 
n = 618 
23.0% 

3 
n = 1,003 

37.3% 

4 
n = 233 
8.7% 

5 
n = 111 
4.1% 

Total n = 2,687 
100% 

% Male 55% 57% 47% 50% 43% 42% 50% 

% Minority 82.03% 51.05% 47.73% 33.40% 38.20% 32.43% 45.22% 

Risknum 
Mean 
(sd) 

1.48 
(1.07) 

.76 
(.90) 

.60 
(.82) 

.44 
(.72) 

.33 
(.62) 

.23 
(.53) 

.62 
(.87) 

Wksesl 
Mean 
(sd) 

−0.7080 
(0.64) 

−0.2678 
(0.67)  

−0.1017 
(0.72) 

0.1278 
(0.71) 

0.2679 
(0.72) 

0.68 
(0.75) 

−0.0446 
(0.77) 

% Halfday 58.98% 47.07% 48.87% 49.55% 41.20% 54.05% 49.50% 

% Readbk2 66.10% 74.47% 77.83% 84.85% 87.98% 98.20% 80.35% 

r2_kage 
Mean 
(sd) 

75.18 
(4.15) 

75.64 
(4.69) 

75.58 
(4.47) 

75.23 
(4.37) 

75.12 
(4.43) 

75.34 
(4.20) 

75.37 
(4.42) 

 
Table 2b: Descriptive Statistics at the End of Kindergarten, n = 244 (Sample I) 

 Reading Proficiency Level 

 
0 

n = 26 
10.7% 

1 
n = 32 
13.1% 

2 
n = 54 
22.1% 

3 
n = 108 
44.3% 

4 
n = 16 
6.6% 

5 
n = 8 
3.3% 

Total n = 244 
100% 

% Male 46% 66% 59% 53% 38% 38% 54% 

% Minority 73.08% 50.00% 55.56% 33.33% 37.50% 37.50% 45.08% 

Risknum 
Mean 
(sd) 

1.38 
(1.13) 

0.75 
(0.92) 

0.69 
(1.01) 

0.50 
(0.76) 

0.25 
(0.77) 

0.25 
(0.46) 

0.64 
(0.92) 

Wksesl 
Mean 
(sd) 

−0.8108 
(0.55) 

−0.2256 
(0.69) 

0.0057 
(0.70) 

0.1073 
(0.76) 

0.1019 
(0.71) 

0.2250 
(0.56) 

−0.0532 
(0.76) 

% Halfday 69.23% 46.88% 42.59% 49.07% 56.25% 50.00% 50.00% 

% Readbk2 69.23% 71.88% 77.78% 81.48% 93.75% 87.50% 79.10% 

r2_kage 
Mean 
(sd) 

75.74 
(4.53) 

75.44 
(3.24) 

75.81 
(4.93) 

74.57 
(4.30) 

74.44 
(3.94) 

77.95 
(4.64) 

75.18 
(4.37) 
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Results 
Interpretation of Proportional Odds for Full-
Sample (n=2678) 

The model including all seven predictors 
identified in Tables 2a, 2b, and 2c is referred to 
the full model. Table 3a provides a results 
summary for the fitted PO model with seven 
explanatory variables for the full-sample. The 
results were obtained using SAS with the 
descending option (see O’Connell (2006) for 
details on fitting ordinal regression models). The 
score test yielded χ2

32 = 131.53 (p < 0.0001), 
indicating that the proportional odds 
assumptions for the full-model was not upheld. 
This suggested that the effect of one or more of 
the explanatory variables was likely to differ 
across separate binary models fit to the 
cumulative cutpoints. The Cox & Snell R2= 

0.210, Nagelkerke R2= 0.219, and the likelihood 
ratio R2

L = 0.074 all suggested that the 
relationship between the response variable, 
proficiency and the seven predictors is small. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, the model fit statistic χ2

7 = 633.55 (p < 
0.0001), indicated that the full model provided a 
better fit than the null model with no 
independent variables in predicting cumulative 
probability for proficiency. 

Because the proficiency was measured 
through six categories with outcomes as 0, 1, 2, 
3, 4 or 5, with the descending option in SAS, α5 

corresponds to the intercept for the cumulative 
logit model for Y ≥ 5, α4 corresponds to the 
intercept for the cumulative logit model for Y ≥ 
4, and so on. The effects of the seven 
independent variables can be interpreted as how 
variables contribute to the log of the odds of 
being at or beyond a particular category. In 
terms of odds ratios, boys were less likely than 
girls to be at or beyond a particular category 
(OR=0.73). Being in a minority category 
(OR=0.649), the presence of any family risk 
factor (OR=0.649) and attending half-day 
kindergarten rather than full-day kindergarten 
(OR=0.695) all had significant negative 
coefficients in the model and corresponding  

Table 2c: Descriptive Statistics at the End of Kindergarten, n = 278 (Sample II) 
 Reading Proficiency Level 

 
0 

n = 23 
8.3% 

1 
n = 47 
16.9% 

2 
n = 65 
23.4% 

3 
n = 102 
36.7% 

4 
n = 27 
9.7% 

5 
n = 14 
5.0% 

Total n = 278 
100% 

% Male 57% 68% 58% 46% 56% 29% 54% 

% Minority 86.96% 44.68% 44.62% 25.49% 33.33% 42.86% 39.93% 

Risknum 
Mean 
(sd) 

1.39 
(1.12) 

0.66 
(0.87) 

0.41 
(0.66) 

0.45 
(0.78) 

0.19 
(0.40) 

0.07 
(0.27) 

0.51 
(0.81) 

Wksesl 
Mean 
(sd) 

−0.8191 
(0.50) 

−0.2296 
(0.53) 

0.0534 
(0.66) 

0.1488 
(0.70) 

0.2315 
(0.75) 

0.9864 
(0.81) 

0.0327 
(0.75) 

% Halfday 56.52% 51.06% 55.38% 50.00% 40.74% 42.86% 50.72% 

% Readbk2 65.22% 78.72% 78.46% 85.29% 85.19% 100.00% 81.65% 

r2_kage 
Mean 
(sd) 

74.62 
(3.84) 

75.12 
(4.92) 

75.20 
(4.16) 

75.81 
(4.07) 

74.94 
(4.83) 

75.20 
(3.77) 

75.34 
(4.27) 
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OR’s were significantly less than 1.0. These 
characteristics were associated with a child 
being in lower proficiency categories rather than 
in higher categories. Conversely, increasing 
frequency of parents reading to their children 
(OR=1.422) and family SES (OR=2.183) had 
positive  effects  on  children  being  in  higher 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
proficiency categories. The slopes for both 
variables were positive and significantly 
different from zero in the model; child’s 
assessment age was not associated with 
proficiency in this model because the slope was 
almost 0 and the OR is close to 1.0. 
 

Table 3a: Proportional Odds Model and OLS Regression Model for Full-Sample Data, 
n = 2687 Public School Children (Y > cat.j) 

Variable 

Proportional Odds Model 

OR 

OLS Model 

b (se(b)) b (se(b)) 

α5 -2.88 (0.62)   

α4 -1.59 (0.61)   

α3 0.58 (0.61)   

α2 1.74 (0.61)   

α1 3.02 (0.61)  2.64 (0.38) 

Genderδ −0.31 (0.07)** 0.730 −0.21 (0.04)** 

Minority −0.43 (0.08)** 0.649 −0.26 (0.05)** 

RiskNum −0.36 (0.05)** 0.695 −0.23 (0.03)** 

Halfday −0.48 (0.07)** 0.619 −0.27 (0.04)** 

Readbk2 0.35 (0.09)** 1.422 0.22 (0.06)** 

Wksesl 0.78 (0.06)** 2.183 0.48 (0.03)** 

R2_kage −0.001 (0.01) 0.999 0 (0.01) 

R2
 R2

L = .074  R2 = .218 

Cox & Snell R2 .210   

Nagelkerke R2 .219   

Somer’s D .386   

Model Fita χ2
7 = 633.55 (p < 0.0001)  F(7, 2679) = 106.76** 

Deviance 7869.82 (df = 13398) 0.5874c  

Pearson X2 13032.47 (df = 13398) 0.9727c  

Score Testb χ2
32 = 131.53 (p < 0.0001)   

Notes: δgender: male=1; aLikelihood ratio test; bFor the proportional odds assumption; 
cValue/df; *Significant at p < 0.05; ** p < 0.01 
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Interpretation of Proportional Odds Models for 
Sub-samples I and II 

Table 3b shows the results summary for 
the fitted PO model for sub-samples I (n = 244) 
and II (n = 278): both results were similar to that 
of the full-sample. An α = 0.05 was used to 
assess the hypothesis of proportionality. The 
score test for sub-sample I, χ2

28= 46.67 (p = 
0.0148), and the score test for sub-sample II 
χ2

28= 44.41 (p = 0.0253), were both statistically 
significant, indicating that the proportional odds 
assumptions for both sub-models were violated.  

The model fit statistic for sub-sample I, 
χ2

7 = 38.61 (p < 0.0001), and the model fit 
statistic for sub-sample II, χ2

7 = 71.67 (p < 
0.0001) indicated that the models with seven 
predictors provided a better fit than the null 
model with no independent variables. The Odds 
Ratios (OR) for the seven explanatory variables 
for sub-sample I and II looked similar, and were 
also similar to those of the proportional odds 
model for the full-sample. However, in the PO 
model for sub-sample I, it was noticeable that 
the effects of gender, minority and frequency of 
being read to by parents were not statistically 
significant; and the p value of the slopes of 
number of family risks and attendance at half-
day kindergarten were slightly larger than the 
0.05 level. In the CO model for sub-sample II, 
the effects of minority, half-day kindergarten 
and having parents read to their children were 
not significant. 
 
Assumption of Proportional Odds 

Table 4a shows the results of five 
separate binary logistic regression analyses for 
the full sample, where the data were 
dichotomized according to the cumulative 
probability pattern described earlier for the 
proportional odds model. Each logistic 
regression model estimates the probability of 
being at or beyond proficiency level j. In the 
data set, the grouping of categories coded 1 
corresponded to children who were at or beyond 
each proficiency category and 0 was coded for 
children below each successive category. The 
model χ2 for each separate logistic model was 
statistically significant, indicating that each 
model fit well compared to its corresponding 
null model. The Hosmer-Lemeshow tests were 

all not statistically significant, indicating that 
observed and predicted probabilities were 
consistent. 

Examining the patterns of slopes and 
ORs for each explanatory variable across these 
five logistic regression models, it was found that 
the effects of gender, after adjusting for the other 
predictors directionally and on average, were 
similar across the five separate logistic 
regressions. This was also true for family risk, 
family SES, half-day kindergarten, being read to 
by parents and the child’s assessment age. 
However, the effect of minority did appear to 
present a dissimilar pattern across the five 
separate logistic regressions. The direction of the 
effect of minority changed between the first 
three regressions and the last two. For the other 
explanatory variables, the direction and average 
magnitude of the slopes and the ORs from the 
logistic models were similar to those of the PO 
model.  

Because the proportional odds 
assumption for the full-sample ordinal model 
was violated, separate score tests unadjusted for 
the presence of other covariates in the 
cumulative odds model were examined for each 
of the explanatory variables, in order to 
illuminate where non-proportionality might lie. 
The univariate score tests for the assumption of 
proportional odds were upheld for gender and 
child’s assessment age. However, the univariate 
score tests were violated for minority, family 
risk, family SES, being read to by parents and 
half-day kindergarten at the 0.05 level of 
significance. The p-values for these unadjusted 
tests are presented in the final column of Table 
4a; it should be noted that these score tests are 
simply descriptive, given their univariate nature. 

Table 4b presents the results of five 
separate binary logistic regression analysis for 
sub-sample I, n = 244. The univariate score tests 
for the assumption of proportional odds were 
upheld for separate PO models for all the 
variables, except for the continuous variable of 
family SES (wksesl). The p values for these 
unadjusted tests are presented in the final 
column of Table 4b. However, minority as well 
as gender, half-day kindergarten attendance and 
frequency of being read to by parents all 
exhibited inconsistencies in the directional 
patterns across the binary splits. 
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Table 4c shows the results of five 
separate binary logistic regression analysis for 
sub-sample II, n = 278. Based on α =0.05, the 
univariate score tests for the assumption of 
proportional odds were upheld for separate PO 
models for these variables: gender, attending 
half-day kindergarten (halfday), having parents  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
read to their children (readbk2) and child’s 
assessment age (r2_kage). However, the score 
tests for the assumptions of proportional odds 
were violated for these three variables: being in 
a minority category (minority), number of 
family risks (risknum) and family SES (wksesl). 
The p-values for these unadjusted tests were 
presented in the final column of Table 4c. 

Table 3b: Subsamples I (n = 244) and II (n = 278): Proportional Odds Models (Y > cat.j) 

Variable 
Sample I Sample II 

b (se(b)) OR b (se(b)) OR 

α5 −1.78 (2.11)  −5.68 (2.00)  

α4 −0.60 (2.09)  −4.41 (1.99)  

α3 1.96 (2.09)  −2.35 (1.97)  

α2 3.08 (2.10)  −1.14 (1.97)  

α1 4.16 (2.11)  0.40 (1.98)  

Genderδ −0.29 (0.24) 0.750 −0.45 (0.22)* 0.638 

Minority −0.40 (0.28) 0.670 −0.38 (0.24) 0.681 

RiskNum −0.29 (0.15) a 0.752 −0.31 (0.16) * 0.733 

Halfday −0.45 (0.25) a 0.638 −0.33 (0.21) 0.716 

Readbk2 0.27 (0.30) 1.312 0.24 (0.29) 1.266 

Wksesl 0.58 (0.20) ** 1.793 0.94 (0.18) ** 2.552 

R2_kage −0.02 (0.03) 0.983 0.04 (0.03) 1.039 

R2
L 0.053  0.081  

Cox & Snell R2 0.146  0.227  

Nagelkerke R2 0.154  0.237  

Somer’s D 0.322  0.393  

Model Fitb χ2
7 38.61 (p < 0.0001)  71.67 (p < 0.0001)  

Deviance 688.63 (df = 1208) 0.5701d 813.11 (df = 1378) 0.5901d 

Pearson X2 1190.51 (df = 1208) 0.9855d 1221.86 (df = 1378) 0.8867d 

Score Testc χ2
28 46.67 (p = 0.0148)  44.41 (p = 0.0253)  

Notes: δgender: male=1; ap = 0.06 for risknum; p = 0.07 for halfday; bLikelihood ratio test; cFor 
the proportional odds assumption; dValue/df; *Significant at p < 0.05; ** p < 0.01 
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Table 4a: Associated Cumulative Binary Models for the CO Analysis (Descending) for the Full-sample, 
Where CUMSPj Compares Y < cat. j to Y > cat. j, n = 2687 

 

Variable 

CUMSP1 
b 

(se(b)) 
OR 

CUMSP2 
b 

(se(b)) 
OR 

CUMSP3 
b 

(se(b)) 
OR 

CUMSP4 
b 

(se(b)) 
OR 

CUMSP5 
b 

(se(b)) 
OR 

Score Testb 
P value 

Constant 
2.53 

(1.22) 
1.88 

(0.82) 
1.10 

(0.72) 
−1.77 
(1.04) 

−5.84 
(1.86) 

 

Genderδ 
−0.33 
(0.14) 
0.72* 

−0.44 
(0.10) 
0.64** 

−0.23 
(0.08) 
0.80** 

−0.40 
(0.12) 
0.67** 

−0.41 
(0.20) 
0.67* 

0.10 

Minority 
−1.21 
(0.18) 
0.30** 

−0.49 
(0.10) 
0.61** 

−0.47 
(0.09) 
0.62** 

0.11 
(0.13) 
1.12 

0.17 
(0.23) 
1.18 

0.001 

Risknum 
−0.50 
(.08) 

0.61** 

−0.33 
(0.06) 
0.72** 

−0.23 
(0.06) 

(0.79)** 

−0.35 
(0.11) 
0.70** 

−0.32 
(0.21) 
0.73 

0.001 

Wksesl 
0.94 

(0.13) 
2.57** 

0.83 
(0.09) 
2.29** 

0.73 
(0.07) 
2.08** 

0.79 
(0.09) 
2.19** 

1.12 
(0.14) 
3.08** 

0.001 

Halfday 
−0.85 
(0.14) 
0.43** 

−0.42 
(0.10) 
0.65** 

−0.37 
(0.09) 
0.69** 

−0.42 
(0.12) 
0.65** 

−0.12 
(0.20) 
0.89 

0.004 

Readbk2 
0.19 

(0.15) 
1.21 

0.25 
(0.11) 
1.28* 

0.37 
(0.11) 
1.45** 

0.60 
(0.21) 
1.83** 

2.00 
(0.72) 
7.40** 

0.043 

r2_kage 
0.19 

(0.15) 
1.02 

0.00 
(0.01) 
1.00 

−0.01 
(0.01) 
0.99 

0.00 
(0.01) 
1.00 

0.01 
(0.02) 
1.01 

0.47 

R2
L 0.237 0.134 0.105 0.088 0.134  

NaglekerkeR2 0.30 0.21 0.18 0.12 0.16  

Model χ2
7 441.26** 418.37** 389.97** 180.89** 124.18**  

H-La χ2
8 5.80 8.07 7.94 3.81 13.09  

Notes: δ gender: male=1; *Significant at p < 0.05; p < 0.01; aHosmer-Lemeshow test; bScore test for 
each IV, unadjusted (no other covariates in the model) 
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Table 4b: Associated Cumulative Binary Models for the CO Analysis (Descending) for Sub-sample I, 
Where CUMSPj Compares Y < cat. j to Y > cat. j, n = 244 

 

Variable 

CUMSP1 
b 

(se(b)) 
OR 

CUMSP2 
b 

(se(b)) 
OR 

CUMSP3 
b 

(se(b)) 
OR 

CUMSP4 
b 

(se(b)) 
OR 

CUMSP5 
b 

(se(b)) 
OR 

Score Testb 
P value 

Constant 
3.43 

(4.29) 
2.52 

(.2.84) 
4.26 

(2.45) 
−4.46 
(4.05) 

−15.79 
(6.68) 

 

Genderδ 
0.37 

(0.48) 
1.45 

−0.22 
(0.33) 
0.80 

−0.40 
(0.28) 
0.67 

−0.71 
(0.46) 
0.49 

−0.69 
(0.78) 
0.50 

0.38 

Minority 
−0.61 
(0.58) 
0.54 

−0.23 
(0.38) 
0.79 

−0.65 
(0.31) 
0.52* 

0.18 
(0.50) 
1.20 

0.27 
(0.84) 
1.31 

0.36 

Risknum 
−0.24 
(0.26) 
0.78 

−0.16 
(0.19) 
0.85 

−0.22 
(0.18) 
(0.80) 

−0.76 
(0.42) 
0.47 

−.71 
(0.71) 
0.49 

0.47 

Wksesl 
1.74 

(0.53) 
5.71** 

1.09 
(0.32) 
2.98** 

0.38 
(0.23) 
1.47 

0.13 
(0.36) 
1.24 

0.55 
(0.59) 
1.73 

0.01 

Halfday 
−1.66 
(0.54) 
0.19** 

−0.74 
(0.34) 
0.48* 

−0.30 
(0.28) 
0.74 

0.11 
(0.46) 
1.11 

0.01 
(0.77) 
1.01 

0.26 

Readbk2 
−0.11 
(0.59) 
0.89 

0.18 
(0.40) 
1.19 

0.23 
(0.35) 
1.26 

0.78 
(0.78) 
2.18 

0.07 
(1.14) 
1.07 

0.90 

r2_kage 
0.01 

(0.06) 
1.01 

−0.01 
(0.04) 
0.99 

−0.05 
(0.01) 
0.96 

0.03 
(0.05) 
1.03 

0.17 
(0.08) 
1.18 

0.13 

R2
L 0.265 0.127 0.082 0.072 0.104  

NaglekerkeR2 0.33 0.19 0.14 0.10 0.12  

Model χ2
7 43.83** 33.89** 27.73** 11.34 7.29  

H-La χ2
8 14.31 14.59 11.25 8.89 4.14  

Notes: δ gender: male=1; *Significant at p < 0.05; aHosmer-Lemeshow test; bScore test for each IV, 
unadjusted (no other covariates in the model) 
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Table 4c: Associated Cumulative Binary Models for the CO Analysis (Descending) 
for Sub-Sample II, Where CUMSPj Compares Y < cat. j to Y > cat. j, n = 278 

 

Variable 

CUMSP1 
b 

(se(b)) 
OR 

CUMSP2 
b 

(se(b)) 
OR 

CUMSP3 
b 

(se(b)) 
OR 

CUMSP4 
b 

(se(b)) 
OR 

CUMSP5 
b 

(se(b)) 
OR 

Score Testb 
P value 

Constant −4.16 
(4.50) 

−2.03 
(2.79) 

−2.09 
(2.26) 

−0.66 
(3.20) 

−13.56 
(284.9) 

 

Genderδ 
−0.02 
(0.53) 
0.98 

−0.63 
(0.32) 
0.53 

−0.62 
(0.26) 
0.54 

−0.26 
(0.36) 
0.77 

−0.97 
(0.67) 
0.38 

0.33 

Minority 
−1.41 
(0.71) 
0.24 

−0.42 
(0.34) 
0.66 

−0.71 
(0.29) 
0.49* 

0.42 
(0.39) 
1.53 

0.81 
(0.64) 
2.24 

0.00 

Risknum 
−0.14 
(0.29) 
0.87 

−0.23 
(0.21) 
0.80 

−0.08 
(0.20) 
(0.93) 

−1.00 
(0.44) 
0.37* 

−1.65 
(1.10) 
0.19 

0.04 

Wksesl 
2.60 

(0.73) 
13.43** 

1.24 
(0.32) 
3.44** 

0.71 
(0.21) 
2.04** 

0.82 
(0.25) 
2.23** 

1.59 
(0.42) 
4.91** 

0.00 

Halfday 
−0.49 
(0.54) 
0.61 

−0.23 
(0.31) 
0.98* 

−0.37 
(0.26) 
0.69 

−0.53 
(0.36) 
0.59 

−.47 
(0.62) 
0.62 

0.93 

Readbk2 
0.17 

(0.57) 
1.19 

−0.02 
(0.38) 
0.98 

0.25 
(0.35) 
1.28 

0.32 
(0.58) 
1.38 

11.60 
(284.8) 
1000.00 

0.65 

R2_Kage 
0.12 

(0.06) 
1.13 

0.05 
(0.04) 
1.06 

0.04 
(0.03) 
1.04 

−0.01 
(0.04) 
1.00 

−0.01 
(0.08) 
1.00 

0.77 

R2
L 0.351 0.163 0.112 0.121 0.297  

NaglekerkeR2 0.42 0.25 0.19 0.17 0.34  

Model χ2
7 55.70** 51.25** 43.08** 28.11** 32.94**  

H-La χ2
8 4.17 5.07 6.99 2.63 2.22  

Notes: δ gender: male=1; *Significant at p < 0.05; aHosmer-Lemeshow test; bScore test for each IV, 
unadjusted (no other covariates in the model) 
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For comparison, Table 4d presents the 
p-values for univariate score tests of 
proportionality for each explanatory variable 
analyzed separately in a single variable model 
for the full-sample and for sub-samples I and II 
provided for SPSS, SAS and Stata. SPSS 
performs an approximation to the score test in 
their PLUM procedure (Nichols, 2004), so 
analysts should be aware of the possibility for 
discrepancies and differences in results between 
software packages.  

Given the large sample size, α = 0.01 
was used to evaluate the assumption of 
proportionality for these univariate tests for the 
full-sample. Consistent results were found 
across the three software packages for all 
explanatory variables except the frequency with 
which parents read books to children, for which 
p = 0.006 (SPSS), p = 0.0426 (SAS) and p = 
0.078 (Stata). However, for the two smaller sub-
samples, and using α = 0.05, it was found that 
the results of these univariate score tests (using 
SAS) varied across the sub-samples and were 
also inconsistent with the full-sample results. 
For example, the p-values of the score test for 
the minority variable was 0.3562 in the model 
for sub-sample I and 0.0031 for sub-sample II; 
the hypothesis of proportionality was rejected 
for the minority variable within the full sample 
(p < 0.0001). In addition, the effect of attending  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

half-day kindergarten was found to deviate from 
proportionality in the full sample, but this 
assumption was upheld in both of the smaller 
samples. 
 
Results of the Partial Proportional Odds (PPO) 
Model 

The discrepancy of results of the score 
tests between the full-sample and sub-sample 
analyses and across statistical packages presents 
a disheartening situation for the analyst 
attempting to assess the plausibility of the 
proportional odds model through score tests 
alone. These results support the view that 
investigation of proportional odds may be more 
reasonably investigated through visual 
examination of the variable effects and odds 
ratios of the binary models underlying the 
ordinal progression of the outcome data. 
Consequently, it was decided to fit a PPO model 
that relaxes the assumption of proportionality for 
the minority variable because this effect changed 
direction across cutpoints in all three analyses 
(full-sample, I and II). Results using SAS PROC 
GENMOD are shown in Table 4e for the full-
sample data. 

The outcome being modeled in this PPO 
analysis was the probability that a child was at 
or beyond category j, with the effect of minority 
being allowed to vary across the K−1 = 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4d: Score tests for Proportion Odds for each IV in the Model: Single Variable Models for the Full 
Sample and for Subsamples I and II. 

IV 
Full Sample, 
p-value SPSS 

Full Sample, 
p-value SAS 

Full Sample, 
p-value Stata 

Sample I 
p-value SAS 

Sample II 
p-value SAS 

Genderδ 0.101 0.1013 0.102 0.3792 0.3313 

Minority 0.000 < 0.0001 0.000 0.3562 0.0031 

Risknum 0.000 < 0.0001 0.000 0.4698 0.0440 

Halfday 0.004 0.0041 0.005 0.2643 0.8821 

Readbk2 0.006 0.0426 0.078 0.8969 0.6471 

Wksesl 0.000 < 0.0001 0.000 0.0119 0.0004 

R2_Kage 0.467 0.4700 0.445 0.1263 0.7706 

Notes: δgender: male=1 
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Table 4e: Partial Proportional Odds (PPO) Model for Full-sample, SAS (Descending) 
(Y≥cat. j), N = 2687 

 

Variable b (se(b)) OR 

Intercept -3.56 (0.63)** 0.03 

Gender (0) 0.34 (0.07)** 1.40 

Minority (0) 0.06 (0.21)  

Risknum -0.33 (0.05)** 0.72 

Wksesl 0.83 (0.06)** 2.29 

Halfday (0) 0.44 (0.07)** 1.55 

Readbk2 -0.34 (0.09)** 0.71 

R2_Kage 0.00 (0.00) 1.00 

Split 1 5.46 (0.18)** 6.69 

Split 2 4.42 (0.17)** 2.36 

Split 3 3.26 (0.17)** 0.74 

Split 4 1.39 (0.15)** 0.11 

Split 5 0.00 (0.00)** 0.03 

Split 1* Minority (0) 1.23 (0.26)**  

Split 2* Minority (0) 0.42 (0.22)  

Split 3* Minority (0) 0.35 (0.21)  

Split 4* Minority (0) -0.15 (0.18)  

Split 5* Minority (0) 0.00 (0.00) (see score test below)  

*p < 0.05; **p < 0.01; Gender: female = 0; Minority: no = 0; Halfday: no = 0 
 
 

Score Statistics for Type 3 GEE Analysis 
 

Variable Chi-Square p 

Gender χ2
1 =  22.54 < 0.0001 

Minority χ2
1 = 22.69 < 0.0001 

Risknum χ2
1 = 43.08 < 0.0001 

Wksesl χ2
1 = 158.61 < 0.0001 

Halfday χ2
1 = 35.83 < 0.0001 

Readbk2 χ2
1 = 14.38 0.0001 

R2_kage χ2
1 = 0.00 0.9734 

Split χ2
4 = 2132.14 < 0.0001 

Split *Minority χ2
4 = 60.86 < 0.0001 
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cutpoints while holding the other variable effects 
constant. Overall, only one intercept parameter 
was estimated (for the log-odds of a value being 
at or beyond proficiency level 5), but different 
estimates for each split were obtained which 
were used to modify the intercept value; and the 
split by minority interaction terms were used to 
determine how much the effect of minority 
changed across splits. In this analysis, the coding 
of categorical variables was internal to 
GENMOD; effects are shown in Table 4e for the 
lower value of the coded variables (for example, 
the effect for gender, I = 0.34, was the change in 
slope for females; this was the opposite of the 
slope in the PO model, where I = −0.31 for the 
change in slope for males). 

According to these results, the split by 
minority interaction terms were statistically 
significant for the first logit comparison 
(corresponding to P(Y ge 1)) and the last 
(corresponding to P(Y ge 5)), but not for the 
other splits. These results suggested that reliable 
differences existed in the effect of minority 
across the outcome levels of the ordinal model. 

Overall, when coding was taken into 
consideration for the effect of minority, the 
predicted logits were similar to those obtained 
from the separate binary regressions shown in 
Table 4a for the full-sample. Additionally, the 
slope effects for the remaining variables, which 
were held proportional in the analysis, reflected 
the values obtained through the PO analysis in 
Table 3a (after accounting for coding reversals). 
Thus, using the separate binary models to 
investigate the presence and impact of extreme 
or unusual scores made sense for both the PO 
and PPO model, as these binary models reflect 
what was expected in the data for each of the 
separate splits. 
 
Residuals in Ordinal Logistic Regression 

SAS, SPSS and Stata do not provide 
residual diagnostics for ordinal models. Hosmer 
and Lemeshow (2000) suggested considering 
each of the underlying models separately and 
applying residual methods for these binary 
logistic models in order to identify unusual or 
extreme observations. This approach mirrors the 
aptness of model investigations for the 
proportional odds assumption presented 
previously. 

Consider the residuals for these 
underlying cumulative binary models and in 
addition the OLS strategies that were used for 
preliminary analyses to examine whether that 
approach could assist in identifying unusual 
cases. Under the OLS framework, there are 
several commonly used measures to identify 
unusual cases. Mahalanobis’ distance is the 
distance for each case to the centroid of 
remaining cases (multivariate outliers). 
Leverages are the diagonal elements of the hat 
matrix in OLS; they are a transformation of 
Mahalanobis distance. Leverages flag cases are 
considered extreme in the X or explanatory 
variable space, where two or three times the 
average leverage can be considered large.  

However, cases with large leverage 
values may or may not be influential; that is, an 
observation may be unusual in terms of being 
outside an acceptable range relative to the other 
X values, but it may not affect the shape or 
direction of the regression function. Cook’s D 
assesses how influential each case is to the fit of 
the overall model. This measure considers what 
happens to the model when each case is 
removed, one at a time, from the overall model. 
A large Cook’s D value is determined in relation 
to values obtained from all the other cases. 
Generally Cook’s D statistics are plotted to 
identify any large jumps in the measures. 
Finally, when assessing outliers on Y, the 
outcome variable, a common statistic is the 
studentized deleted residual, or SDRESID. For 
SDRESID the change in residuals was examined 
when each case is removed, one at a time, from 
the model. 

Adjustments to the OLS statistics are 
required for logistic regression. Logistic models 
predict the probability that Y = 1 for a 
dichotomous dependent variable. The residuals 
obtained through a logistic regression are 
heteroscedastic (variance = πi(1 − πi)). 
Techniques similar to those used in OLS models 
have been developed for logistic regression in 
order to detect unusual or influential 
observations (Pregibon, 1981). The Pearson 
residual, deviance residual and Pregibon 
leverages are three main types of residual 
statistics commonly used for logistic regression 
diagnostics; however, many choices are 
available.  Table 5 presents the types of residual 
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diagnostics for logistic regression that are 
available in the three statistical software 
packages discussed here: SPSS, SAS and Stata. 
The corresponding mathematical form for each 
type of residual is also included in the table. 

The Pearson residual is the standardized 
difference between the observed and fitted 
values. Pearson residuals, ri are components of 
the summary χ2. SAS labels these residual 
components as reschi; SPSS labels it as zresid 
(normalized residuals); Stata provides residuals 
(Pearson residuals) and rstandard (standardized 
Pearson residuals). Pearson residuals can be 
computed using: 
 

( )
ˆ

ˆ ˆ1
i i i

i
i i i

y nr
n

− π=
π − π

                     (3) 

 
Where yi is the observed number of success; ni is 
the number of observations with explanatory 
variable xi; iπ̂  is estimated probability at xi. 

When the number of observations is 1, that is, ni 
= 1 (assuming a Bernoulli rather than binomial 
model), the Pearson residuals can be simplified 
as: 

( )
ˆ

ˆ ˆ1
i i

i
i i

yr − π=
π − π

                     (4) 

 
Deviance residuals capture the 

difference between the maxima of the observed 
and fitted log likelihood functions. Devi are 
components of the summary model deviance, D 
=−2LL. SAS labels this as resdev; SPSS labels it 
as dev; and Stata labels it as deviance. Deviance 
residuals are defined as: 
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Also when ni = 1, the formula can be simplified 
as: 
 

(1 )
2 log (1 )log .

ˆ ˆ(1 )
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π π

 
 
 
  
 

−= ± + −
−

 

(6) 

Large values of ri or di suggest that the 
model does not fit that case well. The ri and devi 
are components of alternate tests for same null 
hypothesis tested based on the Chi-square 
distribution; that is, does the model fit as well as 
a saturated model of the data (i.e., one that 
perfectly reproduces the original data). Under 
the null hypothesis, the individual components 
are approximately normally distributed and it is 
expected that the summary value/df will be less 
than 1.0. However, neither the summary Pearson 
residual statistic nor the summary deviance 
residual statistic follows a Chi-square 
distribution when continuous explanatory 
variables are included in the model. Thus, the 
summary statistics are not appropriately used in 
that situation. When the data are sparse (i.e., 
with continuous IVs), this Chi-square 
distributional assumption is not upheld. 

Pregibon leverages (hat) are the 
diagonal elements of the hat matrix in logistic 
regression. They are used to measure the relative 
influence of an observation on the model fit. 
SAS labels these as h; SPSS labels them as 
lever; and Stata labels them as hat. Pregibon hats 
tend to be small when the estimated probability 
of observations is outside of the 0.1 to 0.9 
interval, because most extreme cases may also 
have small leverages (Hosmer & Lemeshow, 
2000). Therefore, Pregibon hats may not provide 
a good assessment of influential cases when the 
estimated probability of an observation is too 
small or too large. Pregibon leverages are 
defined as: 
 

( )
( ) ( )

11/ 2 1/2H=W X X’WX X’W

ˆˆˆ ˆ1 'ii i i i ih xVar xπ π β

−

= −
,      (7) 

 
where W is the diagonal weight matrix; and hii is 
the leverage or diagonal element of the hat  
matrix, H. 

It is also often more informative to 
consider how each case affects fit of the overall 
model. There are several approaches in logistic 
regression to measure the change in Chi-square 
fit, deviance fit, and in the estimated parameters 
when a single observation is removed from the 
model. These measures are similar to Cook’s D 
in ordinary least-squares regression. SPSS 
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provides a measure which is an analog of 
Cook’s D, and labels it Cook; SPSS only 
provides change in estimated parameters and 
labels it as dfbeta. SAS and Stata provide all 
three options. SAS labels the standardized 
difference in estimated parameters dfbetas, 
which is different from SPSS. SAS also provides 
two measures of the change in the confidence 
interval for the regression estimates when an  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

observation is deleted, and labels them C and 
CBAR. SAS labels the change in Chi-square fit 
as difchisq and change in deviance fit as dfdev. 
Stata labels the standardized change in 
regression coefficient as dbeta, the change in 
Chi-square fit as dx2, and the change in 
deviance fit as ddeviance. Descriptions of 
several of these statistics in SPSS, SAS and 
Stata are listed in Table 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Residual Diagnostics of Logistic Regression in SPSS, SAS and Stata 
 

Types Of Residuals Mathematical Formula SPSS SAS Stata 
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The Hosmer-Lemeshow test does not yield a 
residual measure, but it does inform about the fit 
of a model, particularly when continuous 
explanatory variables are included. The H-L test 
attempts to compensate for the presence of 
continuous variables and resulting sparseness of 
the data by aggregating across deciles of risk, 
which are formed by collapsing over 
observations with similar covariate patterns. 
However, this same strategy of aggregating by 
covariate pattern for residual diagnostic 
purposes may mask influential or poorly fit 
cases; therefore, researchers tend to rely on 
visual assessment rather than specific concrete 
measures or approaches, for identification of 
unusual cases. In addition, given the lack of 
informative distributional theory regarding many 
of the residual statistics discussed above, it may 
be more valuable to apply graphical strategies 
for observing and identifying unusual or 
influential cases within logistic and ordinal 
models. 

Many of these graphical approaches 
mirror what is available through OLS. For 
ordinary least squares regression, a graph of the 
observed dependent variable, y, versus the 
predicted dependent variable, y-hat, can be 
plotted. Observed and predicted outcomes in 
logistic regression are dichotomous; thus 
modifications are required – usually the 
resulting graphs are done at a casewise level. For 
logistic regression, index plots are enormously 
useful. Index plots display each residual 
diagnostic for a case against the case number. 
The resulting output can be unwieldy for 
samples with many observations and when 
multiple residual statistics are investigated; but 
visually, extreme or unusual cases can be readily 
detected. 

As a minimum, Hosmer and Lemeshow 
(2000) recommended plotting the change in Chi-
square fit versus the predicted probability (p-hat) 
of the dependent variable; change in deviance fit 
versus p-hat; and change in regression estimates 
versus p-hat. They pointed out that using the 
summary change statistic rather than the 
individual component values (ri or di, above) for 
each case visually emphasized the poorly fit 
cases. Because not all statistics are available in 
each statistical package, choices among possible 

graphs or plots have to be made depending on 
the options available. 
 
Residual Diagnostics Results 

With large data sets, the amount of 
output involved in graphical displays for 
diagnostic statistics can become unworkable 
very quickly. Thus, two smaller data sets are 
employed to demonstrate the use and 
interpretation of regression diagnostic statistics. 
OLS regression of the ordinal outcome was used 
on the collection of explanatory variables as an 
initial strategy to identification of unusual or 
poorly fit cases for both Samples I and II. A 
series of logistic regression models were then 
run for Samples I and II corresponding to the 
cumulative splits; residual statistics obtained 
from these five logistic models were used to 
identify unusual cases. Next, the use of index 
plots to visually display the residual statistics for 
a collection of diagnostic values derived from 
the logistic splits for Sample I (one sample was 
selected for demonstration of the index plots) 
was demonstrated. After reviewing the residual 
strategies and identifying the poorly fit cases, 
those cases identified as unusual by inspecting 
the original data were explored along with 
characteristics of the children in order to better 
understand who is potentially being poorly fit by 
the model. 
 
Ordinal Residual Diagnostics for Sample I 

Table 6a presents casewise statistics 
based on unusual cases identified through an 
OLS scatterplot of observed versus predicted 
values, OLS casewise diagnostics, and 
additional cases identified through the five 
sequential (cumulative) logistic models and 
corresponding index plots for Sample I (n = 
244). Figure 1 displays the OLS scatterplot of 
observed versus predicted values: several 
potentially unusual cases or outliers were 
observed in proficiency level 0, 3 and 5. From 
the scatterplot, nine cases were identified as 
unusual or poorly fit. The absolute values of the 
studentized deleted residuals (SDRESID) of 
these cases were mostly larger than or close to 2. 
For case number 1698 (ID = 0731010C) its 
Mahalanobis Distance was 39.23, which is very 
large, and the corresponding leverage value and 
Cook’s D for this case are also the largest among 
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those cases identified as outliers. This child was 
predicted to be in proficiency level 0.28 (via 
OLS), yet had actually scored in proficiency 
level 3. Visually, this case can be clearly 
identified as an outlier in Figure 1 for 
proficiency level 3. 

Table 6a shows statistics for two 
additional  cases  identified  through  the  OLS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

residual diagnostics options as having 
standardized deleted residuals (ZRESID) larger 
than our setting of 2.5 (2.5 was used instead of 
the default value of 3.0 to maintain consistency 
with the values used in the logistic regression 
procedure). Both children were in proficiency 
level 5 but were predicted to be in levels 2.16 
and 2.15 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6a: Casewise Diagnostics for OLS Model Sample I 
 

From Residual Diagnostics 
Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal 
Cook’s 

D 

2103 0936002C 5 2.16 2.84 2.60 .02 4.86 .02 

3414 3113018C 5 2.15 2.85 2.62 .03 7.71 .03 

 
From Scatterplot 

Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal 
Cook’s 

D 

351 0204016C 0 2.30 -2.30 -2.12 .04 10.87 .03 

665 0303004C 0 2.23 -2.23 -2.02 .02 4.81 .01 

946 0388016C 0 2.21 -2.21 -1.99 .02 3.83 .01 

1059 0443015C 0 2.58 -2.58 -2.35 .02 4.36 .02 

1571 0665018C 0 2.68 -2.68 -2.44 .02 3.77 .01 

1698 0731010C 3 0.28 2.72 2.69 .16 39.23 .17 

2343 1049011C 0 2.17 -2.17 -1.97 .02 4.82 .01 

2889 1271005C 0 2.04 -2.04 -1.85 .03 6.48 .01 

2952 1275024C 0 2.78 -2.78 -2.53 .02 4.20 .02 

 
Additional from Logistic Diagnostics and Plots 

Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal 
Cook’s 

D 

1917 0833003C 2 3.06 -1.06 -0.96 .02 4.15 .00 

3392 3105020C 4 1.89 2.11 1.96 .06 15.23 .03 

3114 3002012C 2 2.90 -0.90 -0.81 .02 5.39 .00 

1384 0609022C 3 1.70 1.30 1.21 .08 18.84 .02 

3078 2115003C 5 2.88 2.12 1.92 .02 3.88 .01 
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For comparison, the summary statistics 
of Table 6a include OLS for cases that were 
identified through the binary logistic models as 
being potential outliers: five additional cases 
were detected. The OLS statistics for these 
cases, however, do not indicate that these cases 
are unusual, with the exception of one large 
Mahalanobis’ distance value of 18.84 for Case 
No. 1384 (ID = 0609022C). 

Table 6b presents casewise diagnostics 
for the five cumulative binary logistic regression 
models (splits) for Sample I. Four cases (Case 
No. 1059, 1571, 1698 and 2952) were flagged as 
outliers for the first cumulative split based on 
SRESID greater than 2.5 (set greater than the 2.0 
default setting); one (Case No. 1698) was 
flagged as an outlier for the second cumulative 
split; no cases were identified in the analysis for 
the third cumulative split; two (Case No. 1917, 
and 3414) were flagged as outliers for the fourth 
cumulative split; and three (Case No. 2103, 
3392, and 3414) were flagged as outliers for the 
fifth cumulative split. 
 
Ordinal Residual Diagnostics for Sample II 

Table 7a presents casewise statistics 
based on unusual cases identified through an 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OLS scatterplot of observed versus predicted 
values, OLS casewise diagnostics, and 
additional cases identified through the five 
sequential (cumulative) logistic models and 
corresponding index plots for Sample II (n = 
278). Figure 2 displays the OLS scatterplot of 
observed versus predicted values; eleven 
potentially unusual cases or outliers can be 
observed in proficiency level 0, 4 and 5. 
Referring to Table 7a, only one of these eleven 
cases had a fairly large OLS Mahalanobis’ 
distance of 11.85; this child scored in 
proficiency level 4 but was predicted into level 
1.95. The statistics for the other 10 cases 
identified did not seem unusual. The absolute 
values of the studentized deleted residuals 
(SDRESID) of these cases were slightly larger 
than or close to 2. 

After running the OLS regression to 
request residual diagnostics, no additional 
unusual observations were identified. Only one 
case, Case 5, had already been identified through 
the review of the scatterplot; this case had a 
ZRESID value greater than 2.5. 

Table 7b presents casewise diagnostics 
for the five cumulative binary logistic regression 
models (splits) for Sample II. One case (Case 
No. 19) was flagged as an outlier for the first  

Figure 1: OLS Observed Versus Predicted Values for Sample I, n = 244 Public School Children 
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Table 6b: Casewise Diagnostics for Cumulative Splits, Sample I, n = 244 
 

 CUMSP1: P(Y ge 1)   CUMSP2: P(Y ge 2) 

Case 1059 1571 1698 2952  Case 1698 

CUMSP4 0** 0** 1** 0**  CUMSP5 1** 

Resid -0.959 -0.990 0.993 -0.978  Resid 0.973 

SResid -2.546 -3.044 3.197 -2.770  SResid 2.746 

Dev -2.525 -3.037 3.155 -2.756  Dev 2.689 

ZResid -4.823 -9.980 11.997 -6.607  ZResid 6.014 

DFB0 -0.401 -0.009 2.442 -0.706  DFB0 0.932 

DFB1 0.101 -0.137 -0.165 0.098  DFB1 -0.057 

DFB2 0.119 0.168 -0.270 0.185  DFB2 -0.113 

DFB3 -0.064 0.017 -0.055 0.025  DFB3 -0.017 

DFB4 0.002 0.258 0.026 0.241  DFB4 0.002 

DFB5 -0.008 -0.061 -0.060 -0.037  DFB5 -0.040 

DFB6 -0.204 -0.104 -0.970 -0.021  DFB6 -0.369 

DFB7 0.003 -0.004 -0.034 0.004  DFB7 -0.012 

 

 CUMSP4: P(Y ge 4)   CUMSP5: P(Y ge 5) 

Case 1917 3414 Case 2103 3392 3414 

CUMSP1 1** 1** CUMSP2 1** 1** 1** 

Resid 0.982 0.954 Resid 0.961 0.966 0.985 

SResid 2.883 2.521 SResid 2.595 2.628 2.943 

Dev 2.844 2.480 Dev 2.552 2.596 2.907 

ZResid 7.493 4.547 ZResid 4.996 5.296 8.204 

DFB0 0.671 0.594 DFB0 -0.018 3.052 2.649 

DFB1 -0.073 0.091 DFB1 -0.215 -0.207 0.331 

DFB2 -0.280 -0.081 DFB2 0.396 -0.353 -0.244 

DFB3 0.456 -0.066 DFB3 0.305 -0.043 -0.173 

DFB4 -0.145 0.115 DFB4 0.369 -0.388 0.313 

DFB5 0.136 -0.540 DFB5 0.146 0.183 -1.050 

DFB6 -0.043 -0.065 DFB6 0.101 -0.114 -0.229 

DFB7 -0.009 -0.001 DFB7 -0.004 -0.034 -0.022 

a S = Selected, U = Unselected cases, ** = Misclassified cases; b Cases with studentized residuals 
greater than 2.500 are listed; For CUMSP3: P(Y ge 3), the casewise plot is not produced because no 
outliers were found 
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Figure 2: OLS Observed Versus Predicted Values for Sample II, n = 278 Public School Children 
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Table 7a: Casewise Diagnostics for OLS Model Sample II 
 

From Scatterplot 
Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal Cook’s D 

5 0023019C 5 2.25 2.75 2.56 .02 6.18 .02 

23 0110005C 5 2.66 2.34 2.17 .02 6.82 .02 

44 0285024C 0 2.06 -2.06 -1.91 .03 7.55 .01 

53 0345011C 5 2.50 2.50 2.32 .02 5.45 .02 

58 0377007C 5 2.80 2.20 2.03 .01 3.91 .01 

93 0601011C 5 2.94 2.06 1.90 .01 4.10 .01 

118 0729001C 4 1.55 2.45 2.27 .02 6.90 .02 

142 0841003C 4 1.98 2.01 1.87 .03 8.08 .01 

153 0890014C 0 2.29 -2.29 -2.11 .01 3.93 .01 

155 0935007C 4 1.95 2.05 1.91 .04 11.85 .02 

226 1273010C 4 1.87 2.13 1.97 .02 6.08 .01 
 

From Residual Diagnostics: None 
 

Additional from Logistic Diagnostics and Plots 
Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal Cook’s D 

19 0057012C 0 1.94 -1.94 -1.79 .03 7.66 .01 
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cumulative split; this case was overpredicted – 
that is, the observation was in level 0 but 
predicted to be at or beyond level 1. Case No. 
118 was flagged as an outlier for the fourth 
cumulative split, and was underpredicted (i.e., 
child scored in a higher category but was 
predicted into a category below 4). The third 
outlier identified was Case No. 5 at the fifth 
cumulative split; this child was also 
underpredicted. For comparison purposes, the 
OLS statistics for the one new case, Case No. 
19, is included in the bottom section of Table 7a. 
No additional unusual values were determined 
from the index plots for Sample II (demonstrated 
below for Sample I). 
 
Index Plots 

Using the separate binary logistic 
models to mimic the data patterns of an ordinal 
model yields five different regressions for a K = 
6 level ordinal outcome variable. Plotting each  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model’s residuals or diagnostic summary values 
against the case number can enhance the search 
for extreme or unusual values; however, there 
will necessarily be multiple plots for each binary 
split. 

Figure 3 contains a display of index 
plots for 8 residual measures: normalized 
residual, residual, deviance residual, logit 
residual, Cook’s analog, leverages, difference in 
deviance statistic and difference in the Pearson 
Chi-square statistic. These displays contain the 
value of the residual statistic on the vertical axis, 
and the case number horizontally. Strong peaks 
indicate extreme value in the residual score. In 
the first plot, it is easy to detect unusual scores, 
as noted in the Figure.  The three marked cases 
were previously identified in the residual 
analyses for Sample I. 

Figure 4 contains two of the plots 
recommended by Hosmer and Lemeshow 
(2000), namely, the change in Chi-square and 

Table 7b: Casewise Diagnostics for Cumulative Splits, Sample II Public School Children, n = 278 
 

 CUMSP1: P(Y ge 1)   CUMSP4: P(Y ge 4)   CUMSP5: P(Y ge 5) 

Case 19  Case 118 Case 5 

CUMSP1 0**  CUMSP4 1** CUMSP5 1** 

Resid -0.977  Resid 0.957 Resid 0.983 

SResid -2.776  SResid 2.532 SResid 2.880 

Dev -2.750  Dev 2.507 Dev 2.862 

ZResid -6.547  ZResid 4.706 ZResid 7.690 

DFB0 -0.984  DFB0 0.119 DFB0 1.714 

DFB1 -0.129  DFB1 0.052 DFB1 -0.112 

DFB2 0.370  DFB2 0.046 DFB2 -0.174 

DFB3 -0.052  DFB3 0.113 DFB3 -0.071 

DFB4 -0.127  DFB4 -0.055 DFB4 0.245 

DFB5 0.275  DFB5 -0.249 DFB5 0.188 

DFB6 -0.247  DFB6 -0.031 DFB6 -0.238 

DFB7 0.006  DFB7 0.000 DFB7 -0.021 

Notes: a S = Selected, U = Unselected cases, ** = Misclassified cases; b Cases with studentized residuals greater 
than 2.500 are listed; For CUMSP2: P(Y ge 2) and CUMSP3: P(Y ge 3) the casewise plots are not produced 
because no outliers were found 
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deviance fit statistics against p-hat. These graphs 
are a compilation of two curves, one 
representing Y = 1 (the downward curve, so that 
outliers are in the top left corner), and one 
representing Y = 0 (the upward curve, so 
outliers are in the top right corner). As illustrated 
in the first graph in Figure 4, previously 
identified cases are again indicated through  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

these index plots. The plots of change in the 
regression coefficients versus p-hat are not 
shown (with seven predictors and the intercept, 
there are eight graphs for each of the five 
logistic regression splits). Figures 5 through 12 
provide the same plots as above for the 
remaining four logistic regression splits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Index Plots for Diagnostic Statistics, Split 1 for Sample I 
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Figure 3 (continued): Index Plots for Diagnostic Statistics, Split 1 for Sample I 
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Figure 4: Change in Chi-Square and Deviance Fit against P-hat (Split 1), Sample I 
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Figure 5: Index Plots for Diagnostic Statistics, Split 2 for Sample I 
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Figure 6: Change in Chi-Square and Deviance Fit against P-hat, Split 2, Sample I 
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Figure 7: Index Plots for Diagnostic Statistics, Split 3 for Sample I 
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Figure 8: Change in Pearson and Deviance Fit against P-hat, Sample I, Split 3 
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Figure 9: Index Plots for Diagnostic Statistics, Sample I Split 4 
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Figure 10: Change in Chi-Square and Deviance Fit, Sample I Split 4 
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Figure 11: Index Plots for Diagnostic Statistics, Sample I Split 5 
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Figure 12: Change in Chi-Square and Deviance Fit, Sample I Split 5 
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Reviewing plots for residual analyses 
can be informative, but to match extreme or 
unusual observations in a plot to the original 
data can be time-consuming. In identifying the 
outliers in plots, SPSS does not label the cases 
directly; the analyst must use a two-step 
procedure (isolating the extreme value and 
matching that back to the original case). 
However, Stata has an option of adding labels to 
the points using the mlabel command. Figure 13 
displays the plots of change in Pearson Chi-
square against p-hat for five cumulative splits 
for Sample I using Stata. This option can 
facilitate easy identification of unusual cases 
from the plots. 
 
Characteristics of Children Misfit by the Model 

Investigation of the characteristics of the 
children who were identified as unusual, in 
terms of not being well represented by the model 
through at least one of the strategies employed, 
can ultimately help with understanding who the 
model is not providing a good fit for and why, 
and thus lead to development of better models 
that demonstrate stronger knowledge of the 
outcome for all persons. Tables 8 and 9 contain 
the values of the explanatory variables of 
interest for the collection of cases identified as 
unusual through the diagnostics applied to 
Sample I and Sample II, respectively. To 
summarize, for both samples, most identified 
children were female with SES below the 
standardized average of 0. 

In general, the model tended to under-
predict proficiency for some children who have 
theoretically assumed strikes against them, such 
as low SES or a large number of family risk 
characteristics. These cases tended to perform as 
well as or - in many cases - better than their 
peers. For example, child ID 0936002C (Case 
No. 2103) in sub-sample I is a female minority 
student who does not speak English at home and 
who attended half-day kindergarten rather than 
full-day kindergarten: this child’s parents read to 
her at least three times per week and her actual 
reading proficiency level is 5. The logistic 
models predicted her to be in a lower category, 
as did the OLS model (level 2). Thus, some high 
achieving children do not have their reading 
proficiency adequately captured by the current 
model or current set of predictors. 

Conversely, some children who have 
perceived theoretical benefits in their favor, such 
as higher SES or no family risk characteristics, 
performed less well than the model predicts. For 
example, child ID 1275024C (Case No. 2952) in 
sub-sample I is a female non-minority student 
without any family risk factor, who attends full-
day kindergarten, had parents read to her at least 
three times per week, and speaks English at 
home: this student’s actual reading proficiency 
level is 0, but she is predicted to be in level 3. 
 

Conclusion 
Although poor predictions are inevitable in any 
modeling situation, the concern is that the 
typically limited range of the dependent variable 
for ordinal (or logistic) regression models may 
lead to more systematic under- or over-
predictions relative to what might be expected 
with a continuous outcome. Identification of 
unusual cases or cases that are poorly fit by a 
particular model is only the first step in a 
residual analysis. After the cases are identified, 
the process turns towards understanding what 
characteristics of the collection of identified 
cases are associated with their corresponding 
under- or over-prediction from the model. This 
study has only examined the collection of data 
for the variables included in the models; it could 
be that a variable external to the model would 
better explain why some children are so strongly 
under- or over-predicted by the model. 

For the proportional odds and partial-
proportional odds model, the analysis of 
residuals was split into two components, given 
that residual analyses for ordinal regression 
analyses are not directly available. These were 
the OLS analysis of the ordinal outcome (treated 
as interval/continuous) and the analysis of 
residuals from the separate binary regression 
models forming the progression of the 
cumulative logit model. The latter approach has 
been advocated by many researchers (Hosmer & 
Lemeshow; 2000; Harrell, 2001; Long & Freese, 
2006), but it remains unclear how well these 
cases may be fit by a specific ordinal model. 
That particular model was only approximated in 
the approach taken herein. Other work has 
investigated quality of goodness-of-fit tests for 
ordinal and multinomial data (Fagerland, 
Hosmer & Bofin, 2008; Pulkstenis & Robinson,  
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Figure13: Change in Pearson versus P-hat using Stata, Sample I, 5 Cumulative Splits 
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2004). However, this study focused specifically 
on data diagnostics for ordinal outcomes, which 
constitutes a preliminary but necessary step in 
the determination of model fit. 

This article reviewed proportional odds 
model and partial proportional odds model and 
the use of some valuable strategies were 
demonstrated for identifying influential or 
unusual cases after fitting ordinal regression 
models. In particular, OLS strategies for 
preliminary residual detection were applied, 
followed by application of logistic regression 
diagnostics approaches for each cumulative 
binary model in the cumulative odds ordinal 
series. Results of these methods confirm that 
investigation of casewise fit to the proportional 
odds model can be very intensive.  

OLS strategies can be a good first step 
in the diagnostic process, but does it not capture 
some extreme or influential cases. Differences 
across statistical packages in terms of 
availability of options for residual diagnostics 
can limit the kinds of analyses a researcher has 
available, thus choice of statistical package 
should be made with full understanding of the 
procedures and statistics available. Further, it 
was demonstrated that index and change plots 
can yield important information about who is not 
being fit well by these model and these plots can 
augment findings from other residual strategies. 

Overall, it may be concluded that 
reliance on one method or approach to 
understanding residuals from an ordinal 
regression model can be very misleading to the 
researcher. Results from this study clearly make 
a case for the need to consider multiple 
strategies in determining quality of model fit – 
not just overall, but for individuals as well. 
Further studies and extensions to this research 
should consider the residuals obtained from the 
PO model based on predicted category (i.e., 
classification accuracy). In addition, it would be 
worthwhile to pursue the use of Monte Carlo 
techniques to examine residuals and to control 
over the nature of departure from the assumption 
of proportional odds or other model 
characteristics; for example, one question not 
answered in the current study is the degree to 
which outliers or extreme values affects the 
determination of the assumption of proportional 
odds. 

Substantively, it may be reasonable to 
consider separate models for cases that are not 
well-represented by a general population-type 
ordinal regression model. From a policy 
perspective, findings suggest that individual 
student performance or proficiency can be easily 
misunderstood, and in the current climate of 
accountability, the repercussions from such a 
situation can have great impact. The approaches 
and strategies presented here could be used to 
effectively argue for support for intervention 
programs, including gifted-education programs, 
or to support improved funding for special 
education or second-language acquisition 
programs. Only through residual diagnostics 
would the children who are left far behind, or 
who score far beyond their peers, be readily 
identified. 
 
Proposed Diagnostic Guidelines for Ordinal 
Regression Models 
 
1. Residuals from both OLS and Binary 

Logistic Models provide a good first look at 
the potential for influential or unusual cases 
from an ordinal model. 

 
2. OLS does not capture all the unique unusual 

values; neither do the corresponding binary 
logistic analyses. Thus, researchers need to 
be aware of the potential to miss important 
misfit cases and counteract this possibility 
by viewing/plotting as many different 
diagnostic statistics as possible, particularly 
for the binary models corresponding to a 
given ordinal approach (e.g.,  proportional 
odds) 

 
3. Graphical strategies, while extensive and 

often time-consuming, can tell the 
researcher more about their data than a 
single summary statistic. 

 
4. Researchers should make a commitment 

early on to include residual diagnostics in all 
their presented or published papers. It is 
easy to mislead oneself, one’s audience, and 
various research stakeholders when residual 
diagnostic strategies are ignored. 
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