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Matched-Pair Studies with Misclassified Ordinal Data 
 

Tze-San Lee 
Western Illinois University 

Macomb, IL USA 
 

 
The problem of matched-pair studies with misclassified ordinal data is considered. Misclassification is 
assumed to occur only between the adjacent columns/rows. Bias-adjusted generalized odds ratio and a test 
for marginal homogeneity are presented to account for misclassification bias. Data from lambing records 
of 227 Merino ewes are used to illustrate how to calculate these bias-adjusted estimators and – because 
validation data are not available – a sensitivity analysis is conducted. 
 
Key words: Matched-pair, misclassification, ordinal scale. 
 
 

Introduction 
Matched-pair studies with ordered categorical 
variables have received much attention in the 
literature (see Agresti, 1983, 1984; Clayton, 
1974; McCullagh, 1977; Stuart, 1953, 1955). A 
few published studies investigated matched-pair 
with misclassified data (Greenland, 1982, 1989; 
Greenland & Kleinbaum, 1983; Lee, 2010); 
however, these studies consider only 2 × 2 
contingency tables with misclassified data. To 
date, matched-pair studies with misclassified 
data have not been investigated when the 
number of exposure categories is greater than 
two. A matched-pair misclassification problem 
is considered here with an exposure variable that 
has K (≥ 3) ordered levels. The generalized odds 
ratio is used for measuring the association in 
contingency tables with misclassified ordinal 
data and a test for marginal homogeneity 
proposed by Stuart (1955) is modified to manage 
the misclassified data. 
 

Methodology 
Consider a 1:1 matched-pair study where X 
represents the case and Y represents the control 
population and the same exposure variable with 
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K (≥ 3) ordered levels is used. Assume that a K 
× K contingency table is realized with the 
following frequency counts: 
 

, 1,...,[ ]ij i j KA n ==                   (1) 

 
where { ijn } are assumed to follow a 

multinomial distribution with parameters n (= 


ji

ijn
,

) and the cell probability { ijp > 0}. A 

naïve estimator ( ijp̂ ) for ijp  is given by 

 
ˆ /ij ijp n n= .                     (2) 

 
Generalized Odds Ratio 

As a measure for the association 
between X and Y, a generalized odds ratio 
(GOR), ζ , is defined by Agresti (1980) as: 
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where Cp  (or Dp ) denotes the probability of a 

randomly selected matched-pair in which a case 
has a higher (or lower) level of exposure than 
his/her matched control. A naïve estimator, 

denoted by ζ̂ , for (3) is obtained by replacing 
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the unknown parameters ijp , i, j = 1, …, K by 

the sample estimator ijp̂  shown in (2). Note that 

this naïve estimator of equation 3 could have 
substantial bias if the observed data in (1) are 
misclassified. Due to the faster convergence of 

)ˆln(ζ , a natural logarithm of ζ̂ , to normality, 
is preferred to find a large sample Wald’s   
100(1 – p)% confidence interval: 
 

2
/ 2

2
/ 2

ˆ ˆˆ[ exp( (ln( ))),

ˆ ˆˆexp( (ln( )))]

z

z

α

α

ζ σ ζ

ζ σ ζ

⋅ −

⋅
         (4a) 

 
for ζ , where 2/αz  is the (α/2)th upper-tail 

percentile of the standard normal distribution. 

The asymptotic variance of )ˆln(ζ  is given by 
Agresti (1980) as 
 

)ˆˆ())ˆ(ln(ˆ 1112 −−− += DC ppnζσ ,      (4b) 

 
where Cp̂  (or Dp̂ ) is obtained by substituting 

equation 2 for ijp  in Cp  (or Dp ). 

 
A Test for Marginal Homogeneity 

A global test for marginal homogeneity 
was proposed by Stuart (1955). A drawback of 
this global test is its failure to account for an 
ordinal nature in the categorical level of the 
exposure variable. Assume that the ordinal 
nature of the exposure variable is quantified by a 
variable U taking the score values uk (u1 < u2 < 
… < uK ) at the kth level. Thus, the score test for 
the significance of the β coefficient in a linear 
trend model 100 : ββ =H , where 

ii up 00 βα +=+  and jj up 11 βα +=+  is 

defined by 
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where ijp̂  is defined by equation 2, 

jiijij ppP ˆˆˆ += , and ui = i – 1, i = 1, …, K. By a 

large sample theory (5) is distributed as a Chi-
square distribution with 1 degree of freedom 
(Breslow, 1982). 
 
Misclassification Probability 

Suppose that the observed K × K 
contingency table shown in (1) were 
misclassified with respect to both X and Y. Let 
X* and Y* be the classified surrogate variables 
for X and Y, respectively. Furthermore, assume 
that only adjacent rows in X* or adjacent 
columns in Y* are misclassified. For Z = X, Y, 
the misclassification probabilities (MPs) for the 
row or column variable are defined as follows: 
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and 

[ ] ( );

[ ; ] [ ; ]                            

P 1|

1 ;

r ; ,= = − = =

= −

*
Z j k

Z j k Z j k

ψ Z j Z j Z k

ψ ψ
 

(6b) 
 
where  and vice versa. Note 
that, due to symmetry, [ ; 1] [ 1; ].+ +=Z k j Z k j φ ψ  If 

 
T

KKKKK ppppppp ],...,,...,,...,,,...,[ 1221111= , 
(7a) 

 
and 
 

11 1 21 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ,..., , ,..., ,..., ,..., ] ,T
K K K KKp p p p p p p=  

(7b) 
 
then the expected value of a naïve estimator for 
equation 2 is given by 
 

WppE =)ˆ(                          (8) 
 
where the misclassification matrix W is a K2 × 
K2 matrix defined, respectively, by 
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ܹ =
ێێۏ
ێێێ
ۍێ 1ܹ1 1ܹ2 0 0 … ⋯2ܹ1 2ܹ2 2ܹ3 0 0 ⋯00⋮⋮⋮0

3ܹ20⋮⋮⋮0
3ܹ34ܹ30⋮⋮0

3ܹ44ܹ45ܹ40⋮0
⋯⋯⋯⋮⋮⋮ ۑۑے

ۑۑۑ
ېۑ
 

 
(9) 

where 
 ܹ݈݇ = ቂ݅ݓ[݆݈݇]ቃ , ݅, ݆, ݇, ݈ = 1,2, … , [11]11ݓ ;ܭ = ߮ܺ[1;1]തതതതതതതത − [11]ܭܭݓ ,[1;1]ܻ߮ = തതതതതതതതത[1;ܭ]ܻ߰ − [11]22ݓ ,[ܭ;1]ܺ߮ = ܻ߰[2;1]തതതതതതതത − ߮ܺ[1;1] − [11]݇݇ݓ ,[1;2]ܻ߮ = ܻ߰[݇−1;1]തതതതതതതതതതത − ߮ܺ[1;݇−1] − ߮ܺ[2;݇−1] − ⋯ − ܻ߰[݇−1;݇−1],  ݇ = 3, … , ܭ − [11]1+݇,݇ݓ ;1 = ܻ߰[݇;݇−1], ݇ = 1, … , ܭ − [11]݇,1+݇ݓ   ;1 = ܻ߮[݇−1;݇], ݇ = 2, … , ,ܭ  ;݁ݎℎ݁ݓ݁ݏ݈݁ 0

1ܹ2 = ݀݅ܽ݃[ܻ߰[2;1], ܻ߰[3;1], … ,  ;[[1;ܭ]ܻ߰

2ܹ1 = ݀݅ܽ݃ൣܻ߮[1;1], ܻ߮[2;1], … , [22]݅+ܭ,݅+ܭݓ ;൧[1;1−ܭ]ܻ߮ = ߮ܺ[1;1], ݅ = 1, … , ܭ − [22]ܭ2,ܭ2ݓ ; 1 = തതതതതതതതതതതതതതത[1−ܭ2;ܭ2]ܻ߰ − [ܭ2;1−ܭ2]ܺ߰ − [22]݇݇ݓ,[ܭ2;1−ܭ2]ܺ߮ = തതതതതതതതതതതതതതത[ܭ−݇;ܭ−݇]ܺ߰ − [ܭ−݇;ܭ−݇]ܺ߮ − [݇;ܭ−݇]ܻ߰ − ݇ ,[ܭ−݇;ܭ−݇]ܻ߮ = ܭ + 2, , … , ܭ2 − ݇݇]݇,݇ݓ ,…… ,1 ] = ݇  ,[݇;ܭ−݇]ܺ߮ = ܭ) − ܭ(1 + 1, … , 2ܭ − ݇݇]݇,݇ݓ  ,1 ] = 1തതതതതതതതതതതതതതതതതതതതത+(1−ܭ)ܭ;1−ܭ]ܺ߰ − 1+(1−݇)ܭ;1]ܻ߮ − ݇   ,[݇;1−ܭ]ܺ߰ = ܭ)ܭ  − 1) + 1, … , 2ܭ − [ܭܭ]2ܭ,2ܭݓ ,1 = തതതതതതതതതതതതത[2ܭ;1−ܭ]ܺ߰ −  .[2ܭ;1−ܭ]ܻ߰
 

 
Note that W is a block tri-diagonal matrix. 
 
Bias-Adjusted Cell Proportion 

Using equation 8, a bias-adjusted cell 
proportion (BACP) estimator for p is given by 
 

, 
(10a) 

 
where p̂  is defined by (2) and V is defined by 
 

2,...,1,

1 ][ KjiijvVW =
− =≡ .          (10b) 

 

The appendix shows how to calculate its inverse 
V of the misclassification matrix W for K = 3, 
which was used to analyze the data for Table 1. 
When K = 3, then for i, j = 1, 2, 3 
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(11) 
 
where { ijv }, i, j = 1, 2, …, 9 are given 

respectively by equation A5 in the appendix 
with 
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(13 & 14) 
 

Where { }[ ]i
jkδ , i = 1, 2 are given, respectively, by 

equations A5 and A6 in the appendix. 
A set of MPs is said to be feasible if the 

values of all three determinants, )det( 11W , 

)det( 1Δ  and )det( 2Δ , from (12), (13) and (14), 
are nonzero for the given set of equation 6. 
Furthermore, a set of MPs is said to be 
admissible if - for all feasible [ ; ]Z i jϕ  and [ ; ]Z j iψ  

- where Z = X, Y, the constraint of the sum of 
total probability { ijp }, i , j = 1, 2, 3, that is, 

1
3

1

3

1

=
= =i j

ijp , is satisfied where 10 << ijp . 

 
Bias-Adjusted Generalized Odds Ratio 

By substituting (11) into (3), a bias-
adjusted generalized odds ratio (BAGOR) is 
thus defined by 
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where { ijp̂ } are given by (2), { *
ijv } and { **

ijv } 

are given respectively for j = 1, 2, 3, by 
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and { ijv } are given by equation A7 in the 

appendix. Using the delta method (Goodman & 
Kruskal, 1972), the asymptotic variance of 

)ln(ζ


 is given by 
ም൯൯ߞ2൫ln൫ߪ  =∑ ∗݆∗݅ݒ ∑ ݆∗݅ݒ ݆݅ −∑ ݆∗݅ݒ ∑ ݆,3݆݅݅∗݆∗݅ݒ =13݅,݆ =13݅,݆ =13݅,݆ =1 ߞ)݊ ∑ ݆,3݆݅݅∗݆∗݅ݒ =1 )2 ,

 
(15d) 

 

where { *
ijv } and { **

ijv } are given, respectively, 

by equations 15(b-c). A large sample Wald’s 
100(1- α)% confidence interval is given by 
2ߙݖ−) ምexpߞ]  2ߙݖ−) ምexpߞ,(ም൯ߞln൫)෬2ߪ√ ,(ም൯ߞln൫)෬2ߪ√

 
(15e) 

where 
 

ijij pp 


== |))(ln())(ln( 22 ζσζσ . 

 
 
 
 

Bias-Adjusted Test for Marginal Homogeneity 
Substituting equation (11) into (5) 

for ijp̂ , a bias-adjusted test for marginal 

homogeneity (BATMH) is given by 
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(16) 
 
where { ijp } are given by equation (11), and 

iii ppP ++ += 
. 

 
Results 

Table 1 shows the first and second lambing 
records of a flock of 227 Merino ewes from 
1952-1953 (Tallis, 1962). If the data in Table 1 
are not misclassified, then the naïve GOR can be 
calculated as 1.22 (95% CI: 1.12–1.32) using 
equations 3 and 4. This implies that a significant 
association exists between the number of 
lambing records in 1952 and 1953. Also, the test 

value of equation 5 is obtained as Ŝ  = 70.0 with 
p < 0.0001 which indicates that the marginal 
distribution of the lambing records in 1952 is 
significantly different from that of 1953. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Cross-Classification of Ewes 
According to Number of Lambs Born in 

Consecutive Years 
 

Number 
of Lambs 

(1953) 

Number of Lambs 
(1952) Total 

0 1 2 

0 58 52 1 111 

1 26 58 3 87 

2 8 12 9 29 

Total 92 122 13 227 
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Suppose that errors are present in the 
classification of the lambing records in Table 1; 
in that case, the bias-adjusting method would be 
applied. In order to use the formula of equation 
11, the true MPs must be calculated. In order to 
accomplish this task, it is necessary to know the 
true cell counts; Through the use of theory of 
counterfactuals it is intuitively clear that the 
issue of getting a true table is simply a 
counterfactual of the observed [misclassified] 
table which is thought the factual one (Lewis, 
1973). Hence, the above idea may be applied to 
obtain the hypothetically true cell counts by 
reshuffling the number of misclassified subjects 
in the observed table.  

Because the row/column marginal totals 
in case-control studies have to be kept as being 
fixed, four out of nine cells can be chosen as free 
parameters to construct the true (counterfactual) 
table.  By noting that there are two cells (1,3) 
and (2,3) with small observed counts, these two 
cells and two other cells (2,1) and (3,2) are 
selected as free parameters to construct ten true 
tables (column 2, Table 2). With 1 in the (1,3)  
cell to be kept unchanged, the assumed number 
of under- or over-misclassified subjects starts 
with the (2,3) cell and then increases one by one 
up to seven in that cell, while the assumed 
number of under- or over-misclassified subjects 
the other two cells (2,1) and (3,2) are chosen  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

discreetly we ended up with eight true cell count 
tables (#1 to #8, column 2 of Table 2); True cell 
counts in #9 and #10 of Table 2 are similarly 
constructed.  

With the true cell counts as given, it is a 
matter of straightforward calculation to obtain 
true MPs; the MPs are calculated as the ratio of 
difference between true and observed marginal 
totals divided by their sum. These corresponding 
MPs were calculated (column 3, Table 2): the 
details are similar to that of Lee (2009a, 2010) 
and are hence omitted here. In order to check the 
feasibility of the MPs, three determinants 
(equations 12-14), )det( 11W , )det( 1Δ  and 

)det( 2Δ , were calculated. After examining their 
values, they are all feasible because all the 
determinant values are positive (columns 2-4, 
Table 3). 
Although all MPs are feasible, it is interesting to 
note that only five out of ten (#1 to #5) are 
admissible because (1) they are positive real 
numbers between 0 and 1, and (2) they satisfy 
the constraint on the total probability sum: 

1
3

1

3

1

=
= =i j

ijp  (column 5, Table 3). As a result, 

BAGORs and BATMHs were calculated for 
models #1 to #5 (columns 2 and 3, Table 4).  
number of under- or over-misclassified subjects  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Ten Assumed True Cell Counts and their Corresponding MPs for Table 1 
 

# 11 12 13 21, 22 23 31 32 33( , , ; , , ; , , )n n n n n n n n n  ( )[1] [1] [1] [2] [2] [2] [3] [3] [3], , ; , , ; , , *X X X X X X X X Xa b d a b d a b d  

1 (57,53,1;27,57,3;8,12,9) (0.8,3,0;6,2,0;0,0,0) 

2 (57,53,1;27,56,4;8,13,8) (0.8,3,0;6,4,50;0,1,30) 

3 (56,54,1;27,55,5;9,13,7) (9,6,0;6,7,80;30,10,60) 

4 (55,55,1;28,53,6;9,14,6) (10,9,0;10,10,110;30,30,10) 

5 (54,56,1;29,51,7;9,15,5) (20,10,0;20,20,130;30,40,140) 

6 (48,62,1;30,49,8;14,11,4) (50,30,0;20,20,150;140,10,190) 

7 (45,65,1;31,47,9;16,10,3) (60,40,0;30,30,170;170,30,250) 

8 (49,61,1;25,52,10;18,9,2) (40,30,0;7,20,180;190,50,320) 

9 (55,54,2;24,60,3;13,8,8) (10,6,170;10,4,0;120,70,30) 

10 (55,54,2;22,61,4;15,7,7) (10,6,170;30,6,50;150,90,60) 
*All entries inside the parenthesis defined by equations A1 and A2 in the appendix need to multiply by 10-3. 
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The value of BAGOR/BATMH was not 
computed if the corresponding BACPs were 
inadmissible. 

Table 4 shows that admissible BACPs 
the BAGOR (ς = 2.08) is biased further away 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from the value of the null hypothesis than the 
classical estimator ( 22.1ˆ =ς ), but the 

BATMHs ( S


= 12.0 is biased toward the null 

value than the classical estimator ( Ŝ = 70.0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Feasibility and Admissibility of MPs and/or BACP in Table 2 
 

# )det( 11W  )det( 1Δ  )det( 2Δ  ),,,,,,,,( 333231232221131211 ppppppppp 
 

1 0.99 0.96 0.96 (0.260, 0.0008, 0.004, 0.11, 0.26, 0.22, 0.03, 0.05, 0.04) 

2 0.99 0.82 0.74 (0.26, 0.007, 0.005, 0.11, 0.26, 0.22, 0.03, 0.05, 0.03) 

3 0.96 0.69 0.54 (0.27, 0.02, 0.008, 0.11, 0.26, 0.21, 0.03, 0.04, 0.03) 

4 0.95 0.58 0.39 (0.27, 0.04, 0.02, 0.11, 0.26, 0.22, 0.02, 0.04, 0.03) 

5 0.93 0.49 0.28 (0.27, 0.07, 0.04, 0.11, 0.26, 0.22, 0.02, 0.03, 0.02) 

6 0.82 0.38 0.15 (0.32, 0.13, 0.06, 0.10, 0.25, 0.21, 0.02, -0.01, 0.02) 

7 0.77 0.32 0.08 (0.34, 0.22, 0.14, 0.09, 0.22, 0.21, 0.01, -0.04, 0.006) 

8 0.84 0.36 0.05 (0.37, 0.59, 0.54, 0.10, 0.11, 0.20, 0.008, -0.06, -0.002) 

9 0.64 0.60 0.34 (0.32, -0.09, 0.02, 0.10, 0.28, 0.19, 0.01, -0.008, 0.04) 

10 0.64 0.48 0.21 (0.34, -0.11, 0.006, 0.10, 0.28, 0.19, -0.003, -0.04, 0.03) 

 
 

Table 4: Estimated BAGORs with 95% Confidence Interval (CI) and BATMHs 
with p-value for Table 3 

 

# ζ


 (95% CI) ምܵ ) −   (݁ݑ݈ܽݒ

1 0.74 (0.26 – 2.12) 0.49 (0.31) 

2 1.17 (0.66 – 2.08) 2.05 (0.02) 

3 1.34 (0.72 – 2.48) 4.05 (< 0.0001) 

4 1.60 (0.86 – 3.00) 6.80 (< 0.0001) 

5 2.08 (1.06 – 4.07) 12.0 (< 0.0001) 

6-10 -* -* 

*MPs are not admissible; thus values of 
˘ ˘

/ Sζ  are not calculated.  
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Conclusion 
A new method is presented here to study the 
misclassification problem associated with 
matched-pair case-control studies for the 
polytomous exposure variable. Based on results 
from this study, the following conclusions are 
put forth: 
 
1. Determining whether there are classification 

errors in the collected data is a difficult 
issue. Strictly, this requires the principal 
investigator using personal expertise to 
exercise subjective judgment on the 
collected data. However, from the sensitivity 
analysis of this data set of lambing records, 
the method presented herein can vindicate 
itself empirically. Note that this example 
indicates that, at most, one record in the 
(1,3) cell can be under- or over-
misclassified. It is impossible to have more 
than one record misclassified in that cell due 
to the occurrence of inadmissible MPs.  

 
2. This method does not require non-

differential misclassification as an 
assumption. In fact, differential 
misclassification is inclined to be the norm 
rather than exception in practical 
applications. Indeed, the example provided 
shows that, even if both the column and the 
row marginal totals misclassify, just the 
same number of records to their 
corresponding MPs are not the same because 
they have different marginal totals for the 
column and row respectively.  

 
3. The direction of the bias is not the same for 

two measures of association - it depends on 
which measure is used.  

 
4. The close-form formula for this method are 

derived only for K = 3. For K = 4, 5, 6 it is 
workable to obtain the closed-form formula 
by hand. For much bigger values of K, it is a 
formidable task to work out all the details by 
hand. Fortunately, there is an alternative 
way to bypass the necessity of getting 
closed-form formula. Taking a closer look at 
two criteria for MA: feasibility and 
admissibility, it is found that feasibility is 
not essential, but admissibility is critical, 

meaning that it is not necessary to pay much 
attention to feasibility, the main focus is 
only on admissibility. Hence, instead of 
getting closed-form formula, equation 10 
can be solved numerically for BACP and the 
admissibility of MP checked by examining 
whether all components of BACP are 
positive real numbers between 0 and 1.  

 
5. The confidence interval given by equations 

4 or 15(e) is large sample asymptotic. If the 
sample sizes are small, an exact confidence 
interval should instead be used (Lui, 2002). 

 
Although the traditional naïve estimator 

can be viewed as a special case of bias-adjusted 
estimator when all misclassification probabilities 
are zero, a huge difference exists between these 
two estimators. Note that a bias-adjusted 
generalized odds ratio as shown in equation (11) 
uses both the concordant and discordant data in 
the observed table, while the naïve estimator 
shown in (3) uses only the discordant data. As a 
result, a bias-adjusted generalized odds ratio will 
be more efficient than the naïve one.  

Finally, a limitation of this study is that 
the results presented do not apply to a situation 
in which more than two adjacent columns/rows 
are misclassified in the contingency table. 
Clearly, the question remains open regarding 
how to adjust the naïve estimator for the 
misclassification bias if the assumption of only 
two adjacent columns/rows being misclassified 
is not satisfied. 
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Appendix 
For j = 1, 2, 3, let ܽ തܼ[݆ ] = ݆;1]ݖ߮ ], ܾ തܼ[݆ ] = ܼ߮[2;݆ ], ܿ തܼ[݆]തതതതതത =ܼ߰[2;݆ ], ݀ തܼ[݆ ] = ܼ߰[3;݆ ],  

(A1) 

Where   Z Y if Z X= = , and vice versa. 
Because of the symmetry in matched-pair 
studies, it is reasonable to assume that 
 ܼܽ[1] = ܽ തܼ[1], ܽ തܼ[2] = ܾܼ[1] = ܼܿ[1], ܾܼ[2] =ܾ തܼ[2] = ܼܿ[2] = ܿ തܼ[2], ܾܼ[3] = ܼܿ[3] =݀ തܼ[2] , ܼܽ[3] = ݀ തܼ[1], ܼ݀[3] = ݀ തܼ[3].  

(A2) 
 
For K = 3, the matrix W in equation 9 was given 
by 
















=×

3332

232221

1211

99

0

0

WW
WWW

WW
W ,          (A3) 

 
where 
 

1ܹ1 = 1 − 2ܽܺ[1] ܾܺ[1] 0ܽܺ[1] 1 − 3ܾܺ[1] ݀ܺ[1]0 ܾܺ[1] 1 − 2݀ܺ[1],

 
 1ܹ2 = ݀݅ܽ݃ൣܻܿ[1], ܻܿ[2], ܻܿ[3]൧, 1ܹ3 = 3ܹ1 =[0], 2ܹ1 = ݀݅ܽ݃[ܽܺ[1], ܾܺ[1], ݀ܺ[1]]; 

 
 

2ܹ2 = 1 − 3ܽܺ[2] ܾܺ[2] 0ܽܺ[2] 1 − 4ܾܺ[2] ݀ܺ[2]0 ܾܺ[2] 1 − 3݀ܺ[2],
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2ܹ3 =݀݅ܽ݃ൣܻ݀[1], ܻ݀[2], ܻ݀[3] =݀݅ܽ݃[ܽܺ[3], ܾܺ[3], ݀ܺ[3]]൧, 3ܹ2 =݀݅ܽ݃ൣܾܻ[1], ܾܻ[2], ܾܻ[3]൧ =݀ܽ݅݃[ܽܺ[2], ܾܺ[2], ݀ܺ[2]];  
 

3ܹ3 = 1 − 2ܽܺ[3] ܾܺ[3] 0ܽܺ[3] 1 − 3ܾܺ[3] ݀ܺ[3]0 ܾܺ[3] 1 − 2݀ܺ[3],

 
 
where diag[d11, d22, d33] denotes a 3 × 3 diagonal 
matrix. 

Solving the matrix equation of 

999999 ××× =⋅ IVW , where V9×9 was given by 

equation 10(b) and I9×9 was a 9 × 9 identity 
matrix, results in 

1
31 2 32 21

1
21 1 11 23 31 21

1
11 11 3 3 12 21

1
32 2 32 11

1
22 1 11 3 3 23 32

1
12 11 12 22

1
33 2 1

1
23 1 11 23 33

1
13 11 12 23

,

( ),

( ),

,

( ),

,

,

,

.

V W W
V W W V W
V W I W V
V W W
V W I W V
V W W V
V
V W W V
V W W V

−

−

−
×

−

−
×

−

−

−

−

= Δ

= −Δ +

= −

= −Δ

= Δ −

= −

= Δ Δ

= −Δ

= −

     (A4) 

 
where 1Δ  and 2Δ  were defined, respectively, by 
 

122122111 WWWW −=Δ , 
and 

2311323312 WWWW −Δ=Δ . 

 

If [1]{ }ijδ  and { }[2]
ijδ  denote the (i, j)th 

entry of Δ1 and Δ2., then 
[1]11ߜ  = 1 − 2ܽܺ[1] − 3ܽܺ[2] + 5ܽܺ[1]ܽܺ[2] +ܽܺ[2]ܾܺ[1], 

 
[1]12ߜ  = ܾܺ[2](1 − 2ܽܺ[1]) + ܾܺ[1](1 − 4ܾܺ[2]),

 

[1]13ߜ = ܾܺ[1]݀ܺ[2],  
[1]21ߜ  = ܽܺ[1]൫1 − 3ܽܺ[2]൯ + ܽܺ[2](1 − 3ܾܺ[1]),

 
[1]22ߜ  = ܽܺ[1]ܾܺ[2] + 1 − 3ܾܺ[1] − 4ܾܺ[2] +11ܾܺ[1]ܾܺ[2] + ݀ܺ[1]ܾܺ[2],  

(A5) 
[1]23ߜ  = ܾܺ[1]൫1 − 4ܾܺ[2]൯ + ܾܺ[2](1 − 2݀ܺ[1]); 
[1]31ߜ  = ܾܺ[1]ܽܺ[2], 
[1]32ߜ  = ܾܺ[1]൫1 − 4ܾܺ[2]൯ + ܾܺ[2](1 − 2݀ܺ[1]),
[1]33ߜ  = ܾܺ[1]݀ܺ[2] + 1 − 2݀ܺ[1] − 3݀ܺ[2] +5݀ܺ[1]݀ܺ[2]; 
[2]11ߜ  = ൫1 − 2ܽܺ[3]൯[1]11ߜ + [1]12ߜ[3]ܺܽ −ܽܺ[2]ܽܺ[3](1 − 2ܽܺ[1]), 
[2]12ߜ  = [1]11ߜ[3]ܾܺ + ൫1 − 3ܾܺ[3]൯[1]12ߜ [1]13ߜ[3]ܾܺ+ − ܾܺ[1], 
[2]13ߜ  = [1]12ߜ[3]ܺ݀ + (1 −  ,[1]13ߜ([3]2݀ܺ
[2]21ߜ  = ൫1 − 2ܽܺ[3]൯[1]21ߜ + [1]22ߜ[3]ܺܽ − ܽܺ[1], 
[2]22ߜ  = [1]21ߜ[3]ܾܺ + ൫1 − 3ܾܺ[3]൯[1]22ߜ [1]23ߜ[3]ܾܺ+ − ܾܺ[2]ܾܺ[3](1 − 3ܾܺ[1]),  

(A.6) 
[2]23ߜ  = [1]22ߜ[3]ܺ݀ + ൫1 − 2݀ܺ[3]൯[1]23ߜ − ݀ܺ[1];

[2]31ߜ  = ൫1 − 2ܽܺ[3]൯[1]31ߜ +  ,[1]32ߜ[3]ܺܽ
[2]32ߜ  = [1]31ߜ[3]ܾܺ + ൫1 − 3ܾܺ[3]൯[1]32ߜ [1]33ߜ[3]ܾܺ+ − ܾܺ[1], 
[2]33ߜ  = [1]32ߜ[3]ܺ݀ + ൫1 − 2݀ܺ[3]൯[1]33ߜ −݀ܺ[2]݀ܺ[3](1 − 2݀ܺ[1]).  



MATCHED-PAIR STUDIES WITH MISCLASSIFIED ORDINAL DATA 

76 
 

The nine equations in A4 were solved 
by grouping them into three sets. First, the first 
three equations were solved together in A4 
letting the entries for V31, V21, and V11 be 
denoted, respectively, by {aij}, {sij}, and {xij}, 
namely, ][31 ijaV = , ][21 ijsV = , and 

11 [ ].ijV x=  Next the second set of three 

equations in A4 were solved for V32, V22, and 
V12; the entries of these matrices are given, 
respectively, by ][32 ijbV = , ][22 ijtV =  and 

][12 ijyV = . Finally, after solving equations A4 

for V33, V23, and V13, the entries of these 
matrices are given, respectively, by ][33 ijcV = , 

][23 ijuV =  and ][13 ijzV = . 

Putting together the above result, the 
inverse of the misclassification matrix W was 
thus obtained as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A.7) 
 
 
where the closed-form solutions for all the 
entries { ijv } can be found in the appendix of 

Lee (2009b). 
 
 
 
 

9 9

11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

11 12 13

21 22 23

31 32 33

[ ]ijV v

x x x y y y z z z
x x x y y y z z z
x x x y y y z z z
s s s t t t u u u
s s s t t t u u u
s s s t t t u u u
a a a
a a a
a a a

× =

=

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

.

b b b c c c
b b b c c c
b b b c c c
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