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Comparing the Strength of Association of Two Predictors via Smoothers 
or Robust Regression Estimators 
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Consider three random variables, Y , 1X  and 2X , having some unknown trivariate distribution and let 2

jh  

(j = 1, 2) be some measure of the strength of association between Y  and jX . When 2
jh  is taken to be 

Pearson’s correlation numerous methods for testing 2 2
1 2:oH h h=  have been proposed. However, 

Pearson’s correlation is not robust and the methods for testing 0H  are not level robust in general. This 

article examines methods for testing 0H  based on a robust fit. The first approach assumes a linear model 

and the second approach uses a nonparametric regression estimator that provides a flexible way of dealing 
with curvature. The focus is on the Theil-Sen estimator and Cleveland’s LOESS smoother. It is found that 
a basic percentile bootstrap method avoids Type I errors that exceed the nominal level. However, 
situations are identified where this approach results in Type I error probabilities well below the nominal 
level. Adjustments are suggested for dealing with this problem. 
 
Key words: Explanatory power, Theil-Sen estimator, nonparametric regression, bootstrap methods, kernel 

density estimators. 
 
 

Introduction 
Consider three random variables, Y , 1X  and 

2X  having some unknown trivariate distribution 
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and let 2

jh  be some measure of association 

between Y  and jX  (j=1, 2). This article 

considers the problem of testing 
 

2 2
0 1 2:H h h=                     (1.1) 

 
when 2

jh  is a robust version of explanatory 

power, which is estimated via the Theil (1950) 
and Sen (1968) regression estimator or the 
robust version of Cleveland’s (1979) smoother 
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(LOESS). For the special case where 2
jh  is 

Pearson’s correlation, r , numerous methods for 

testing 0 1 2:H r r= , as well as 2 2
0 1 2:H r r= , 

have been proposed by many authors (Hittner, 
May & Silver, 2003; Hotelling, 1940; Olkin, 
1967; Dunn & Clark, 1971; Meng, Rosenthal & 
Rubin, 1992; Steiger, 1980; Wilcox & Tian, 
2008; Wilcox, 2009; Williams, 1959; Zou, 
2007). A general concern, however, is that r  – 
the usual estimate of r  – is not robust, roughly 
meaning that even a single outlier can result in a 
large value for r  when there is little or no 
association among the bulk of the points. 
Similarly, a strong association among the bulk 
of the points can be masked by one or more 
outliers (Wilcox, 2005). Thus, r  is not robust in 
the general sense as summarized by Huber 
(1981) and as illustrated by Wilcox (2005, p. 
385). 

Another concern is curvature. 
Experience with smoothers indicates that 
approximating the regression line with the usual 
parametric models can be unsatisfactory, which 
in turn raises concerns about how to measure the 
overall strength of association. A relatively 
simple strategy is to approximate the regression 
line with some type of nonparametric regression 
estimator or smoother (e.g., Efromovich, 1999; 
Eubank, 1999; Fan & Gijbels, 1996; Fox, 2001; 
Green & Silverman, 1993; Gyöfri, et al., 2002; 
Härdle, 1990; Hastie & Tibshirani, 1990) that 
can be used to estimate a robust measure of the 
strength of the association; this is the approach 
employed herein. 

It is noted that there is a vast literature 
on identifying and ordering the importance of 
predictor variables; see for example Lafferty and 
Wasserman (2008) and the references they cite. 
It seems that none of these methods are based on 
a robust measure of association. Moreover, the 
precision of the resulting ordering is typically 
unclear. Thus, an additional goal of this research 
is to consider a formal hypothesis testing 
approach for determining which of two 
predictors has a stronger association with the 
outcome variable of interest, in contrast to 
merely estimating which has the stronger 
association. 
 

Background 
Basic results and methods used to 

measure and estimate the strength of an 
association are first reviewed. Consider the 
situation where the conditional mean of Y , 
given X , is assumed to be 0 1Y Xb b= +  and 

ordinary least squares is used to estimate the 
unknown slope, 1b , and intercept, 0b . Let 

0 1Ŷ b b X= + , where 0b  and 1b  are the least 

squares estimates of 0b  and 1b , respectively, 

based on the random sample 
1 1( , ), ,( , ).n nX Y X Y  It is well known (and 

readily verified) that 
 

2
2

2

ˆˆ ( )
,

ˆ ( )
Y

r
Y

s
s

=                       (2.1) 

 

where 2 ˆˆ ( )Ys  is the usual sample variance based 

on 0 1
ˆ ,i iY b b X= +  1, ,i n=  . Slightly 

extending an approach to measuring the strength 
of an association used by Doksum and Samarov 
(1995), there is a simple and seemingly natural 

robust generalization of 2r . First, replace Ŷ  
with Y , where Y  is any fit to the data, which 
might be obtained via a robust regression 
estimator (using a linear model) or some 
smoother that deals with curvature in a 

reasonably flexible manner. Next, let 2( )Yt  be 
some robust measure of variation associated 
with the marginal distribution of Y . It is 

assumed that 2( )Yt  has been chosen so that if 

there is no variation, 2( )Yt  = 0. A general 
approach to measuring the strength of the 
association between Y  and X  is then 
 

2
2

2

( )
( )
Y
Y

th
t

=                          (2.2) 

 
which Doksum and Samarov (1995) call 

explanatory power. To make 2h  practical, there 
are the issues of choosing t  and some method 
for computing Y . First consider t . There are 
many robust alternatives to the usual variance 
(Wilcox, 2005). Lax (1985) compared the 
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efficiency of many scale estimators and 
concluded that two so-called A-estimators are 
best, one of which corresponds to what 
Shoemaker and Hettmansperger (1982) term the 
percentage bend midvariance. The other A-
estimator found to perform well by Lax 
corresponds to what Shoemaker and 
Hettmansperger call the biweight midvariance. 

Bickel and Lehmann (1976) argue that if 
both X  and Y  have symmetric distributions 
about zero, and if | |X  is stochastically larger 

than | |Y , then it should be the case that a 
measure of scale should be larger for X  than it 
is for Y . Bickel and Lehmann define a measure 
of scale that satisfies this property to be a 
measure of dispersion. Shoemaker and 
Hettmansperger show that the percentage bend 
midvariance is a measure of dispersion but the 
biweight midvariance is not. A possible reason 
for preferring the biweight midvariance is that it 
has the highest possible breakdown point, 
namely .5. Here the focus is on the percentage 
bend midvariance, but this is not to suggest that 
all other measures of scale be eliminated from 
consideration. 

Recently, Randal (2008) expanded on 
Lax’s study and concluded that the two A-
estimators recommended by Lax perform 
relatively well. However, Randal’s study did not 
include Rocke’s (1996) TBS (translated 
biweight S) estimator, and the tau measure of 
scale introduced by Yohai and Zamar (1988). As 
a partial check on the relative merits of these 
estimators, simulations based on 5,000 
replications were used to estimate the standard 
error of the logarithm of these estimators when 

20n =  for the same distributions used by Lax 
and Randal. (For this study the tau estimator was 
computed as described by Marrona & Zamar, 
2002.) For a standard normal distribution, the 
results were 0.402, 0.388 and 0.530 for the 
percentage bend midvariance, tau and TBS, 
respectively.  

For a 1-wild distribution (generate data 
from a normal distribution and multiply one 
value by 10), the results were 0.398, 0.420 and 
0.516. For a slash distribution ( /Z U , where Z  
has a standard normal distribution and U  a 
uniform distribution), the results were 0.744, 
0.631 and 0.670. No single estimator dominates. 

Although the focus here is on the percentage 
bend midvariance, it seems that the tau measure 
of scale deserves serious consideration based on 
these limited results. 

For a random sample 1, , nY Y , the 

percentage bend midvariance is computed as 
follows. Let f  be the value of (1 ) .5nb- +  
rounded down to the nearest integer. The 
parameter b  determines the finite breakdown 
point of the percentage bend midvariance, 
meaning the proportion of points that must be 
altered to make the estimate arbitrarily large. 
Roughly, b  reflects the proportion of outliers 
that can be tolerated. Here b  = 0.2 is used, 
which is motivated in part by the desire to obtain 
good efficiency under normality. Let 

| |i iW Y M= - , 1, ,i n=  , and let 

(1) ( )nW W£ £  be the iW  values written in 

ascending order. Let 
 

( ),ˆ fWbw =  

 
be the fth largest of the iW  values, let M  be the 

usual sample median based on 1, , nY Y  and let 

 

ˆ
i

i
Y M

U
bw

-
=  

 
where 1ia =  if | | 1iU < ; otherwise 0ia = . 

The estimated percentage bend midvariance is 
 

2 2

2

2

( )ˆ
ˆ

( )

i

i

n U

a

bw
z

Y
=

å

å
,              (2.3) 

 
where ( ) max[ 1,min(1, )]x xY = - . 

Henceforth, it is assumed that 2t  is the 

percentage bend midvariance and that 2h  is 
estimated with 
 

2
2

2

ˆ ( )
ˆ .

ˆ ( )
Y
Y

th
t

=                        (2.4) 
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There remains the problem of choosing a 
method for computing Y . First consider the 
situation where 
 

0 1 ,Y Xb b e= + +               (2.5) 

 
where X  and e  are independent random 
variables. If 0b  and 1b  are estimates of 0b  and 

1b , respectively, 0 1iY b b X e= + +  

( )1, ,i n=  can be used to compute 2ˆ ( )Yt  , 

which in turn can be used to compute 2ĥ . 
Wilcox (in press b) considered several robust 
regression estimates of 0b  and 1b  with the goal 

of estimating 2h  with 2ĥ . Based on mean 
squared error and bias, it was found that the 
Theil-Sen estimate of 0b  and 1b  performs 

relatively well, thus it is used here. 
Consider all pairs of points for which 

the two predictor values differ. The Theil-Sen 
estimator computes the slope for all such pairs 
of points and the estimate of 1b , for example 

1tsb , is taken to be the median of all these 

slopes. The intercept is taken to be 

0 1ts y ts xb M b M= - , where yM  is the usual 

median of 1, , nY Y . The breakdown point of 

this estimator is approximately 0.29, where 
roughly, the breakdown point of an estimator is 
the proportion of points that must be altered to 
make it arbitrarily large or small. Moreover, the 
Theil-Sen estimator has excellent efficiency 
compared to many other robust estimators that 
have been proposed. 

Next consider the more general case 
 

( )Y m X e= +                  (2.6) 
 
where ( )m X  is some unknown function of X  
and e  is some random variable that is 
independent of X . Wilcox (in press b) 
considered various nonparametric regression 

estimators with the goal of estimating 2h . In 
terms of mean squared error and bias, a so-called 
running interval smoother (Wilcox, 2005), as 
well as a method based on a cubic B-spline 

(Hastie & Tibshirani, 1990) were found to be 
relatively unsatisfactory. Bootstrap bagging 
combined with these estimators was considered, 
but was found to perform poorly. No method 
dominated, but a rough guideline is that , when a 
linear model holds , the Theil-Sen estimator is a 
good choice, otherwise use Cleveland’s (1979) 
LOESS. A nonparametric estimator derived by 
Wood (2004) was found to perform relatively 
well when a linear model holds, but the Theil-
Sen estimator seems preferable. Finally, when 
there is curvature LOESS was generally more 
satisfactory. 

To briefly outline Cleveland’s method, 
consider the random sample 1 1( , ), ,( , )n nX Y X Y . 

For any x , let 
 

| |i iX xd = - . 

 
Put the id  values in ascending order and retain 

the nk  pairs of points that have the smallest id  

values, where k  is some number between 0 and 
1 and is called the span. Let 
 

| |i
i

m

x X
Q

d
-

= , 

 
where md is the maximum of the retained id  

values. If 0 1iQ£ < , set 

 
3 3(1 )i iw Q= - , 

 
otherwise 0iw = . Let ( )m X  be the estimate of 

Y  given X x=  and use weighted least squares 
to estimate ( )m X  using iw  as weights. Both R 

and S-PLUS provide access to a function, called 
lowess, that performs a robust version proposed 
by Cleveland, and the R version was used in the 
simulations reported here using the default value 

.75k = . Cleveland’s robust method in effect 
gives little or no weight to extreme Y  values. 
(An outline of these additional computations 
also can be found in Härdle, 1990, p. 192.) 
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Methodology 
Testing (1.1) when (2.5) Is True 

Consider the case where (2.5) is true and 
2h  is estimated via the Theil-Sen estimator. The 

initial strategy considered for testing (1.1) was a 
basic percentile bootstrap method (Efron & 
Tibshirani, 1993). Let 1 2( , , )i i iX X Y , 1, ,i n=  , 

be a random sample. A bootstrap sample is 
obtained by resampling with replacement n  
vectors from this random sample yielding, for 

example, * * *
1 2( , , )i i iX X Y . Let 2

jh  be the estimate 

of 2
jh  based on this bootstrap sample. Repeat 

this process B  times yielding 2
jbh , 1, ,b B=  . 

Let 

1
bP I

B
= å  

 

where the indicator function 1bI =  if 2 2
1 2b bh h>  , 

otherwise 0bI = . A (generalized) p-value is 

(Liu & Sing, 1997) is then: 
 

2min( ,1 ).p P P= -  
 

Let 12r  be Pearson’s correlation 

between 1X  and 2X . Initial simulations revealed 

that when testing at the .05a =  level, the basic 
percentile bootstrap method described performs 
reasonably well when 12r  = 0. However, as 12r  

increases, the estimate of the actual Type I error 
probability decreased. For 12r  = 0.7 the 

estimates were less than 0.01. 
The first attempt at reducing this 

problem was to use a bootstrap estimate of the 

squared standard error of 2 2
1 2h h- , say, 2¡̂ , and 

then use the test statistic 2 2
1 2

ˆ( ) /h h- ¡ . 

However, in simulations with B = 100, Type I 
errors were found to be relatively sensitive to the 
distributions generating the data; increasing B to 
400 reduced this problem somewhat but did not 
eliminate it, thus this approach was abandoned. 

Consider the case 12r  = 0 and let 
2 2
1 2ˆ ˆD h h= - . It was found that Type I error 

control is improved if, rather than a single 

bootstrap sample, two independent bootstrap 
samples are used. That is, take a bootstrap 
sample from 1( , )i iX Y  and compute a bootstrap 

estimate of 2
1h , for example, 2

1h , take a new, 

independent bootstrap sample from 2( , )i iX Y  

yielding 2
2h   and let 2 2

1 2D h h= -  . Repeating this 

process B times yields 1, , BD D , which can be 

used to estimate ( 0)P P D= <  in the manner 
already described. This in turn yields the 
generalized p value. Once again control over the 
probability of a Type I error was found to be 
unsatisfactory. However, it was found that 
control over the Type I error probability was 
improved if, instead of estimating 

( 0)P P D= <  with the bootstrap samples in the 
usual way, a kernel density estimate is used; this 
strategy was based on results from Racine and 
MacKinnon (2007). 

Generally, kernel density estimates of 
the distribution of D  take the form 
 

1(̂ ) ( )i
d D

f d K
nh l

-
= å , 

 
where K  is some probability density function 
and l  is a constant to be determined called the 
span or smoothing parameter. Given h  and a 
choice for K , which is assumed to be defined 
over some known interval ( , )u , an estimate of 

( 0)P D <  is 
 


0

1

1
( 0) .

n i
i

t D
P D K dt

nh l=

æ ö- ÷ç ÷< = ò ç ÷ç ÷çè ø
å  

 
The focus here is on the Epanechnikov kernel 

where, for | | 5t < , 
 

23 1( ) 1
54 5

K t t
æ ö÷ç ÷ç ÷ç ÷çè ø

= - , 

 
otherwise ( ) 0K t = . 

Following Silverman (1986, pp. 47-48), 
the span is taken to be 
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1/5
1.06 A
n

l = , 

where 
 

min( , / 1.34)A s IQR=  
 
and s  is the standard deviation, and IQR is the 
interquartile range. 

From Silverman (1986), one possible 
way of improving on the basic kernel density 
estimator, is to use an adaptive method. Let 
( )if X be an initial estimate of ( )if X . Here, 

( )if X  is based on the so-called expected 

frequency curve (Wilcox, 2005, pp. 48-49). Let 
 

1log( ) log( ( ))ig f X
n

= å  

and 
( / ) ai if X gw -=  

 
where a  is a sensitivity parameter satisfying 
0 1a£ £ . Based on comments by Silverman 
(1986), if α = 0.5 is used, then the adaptive 
kernel estimate of the probability density 
function f  is taken to be 
 

1 1(̂ ) { ( )}.i if t K t Xl w- -= -  

 
Henceforth, it is assumed that the adaptive 
method described is used to estimate P(D<0) 

based on * *
1 , , BD D , and the corresponding p-

value is denoted by p . 
There remains the problem of dealing 

with the general case 12 0r ¹ . If it is assumed 

that there is normality and 12r  is known, then 

simulations can be used to determine adjp  so 

that for some choice for a , ( )adjP p p a£ = . In 

particular, imagine that simulations with N 
replications are performed resulting in the p-
values, 1, , Np p . Arranging these N values in 

ascending order yielding (1) ( )Np p£ £  and 

letting C Na=  round to the nearest integer 
results in the adjusted p-value ( )adj Cp p= . 

 

A simple approach when dealing with 

12r  unknown is to replace 12r  with 12r  in such a 

simulation. Execution time was found to be 
reasonably low, but to reduce it further, the 
following approach was considered when 

.05a = . The value of adjp  was determined with 

n = 20 for 12r  = 0, 0.2, 0.5 and 0.8. When 12r  is 

known, it was found that adjp  is given 

approximately by 0.352| adjp |+0.049. But when 

.05a =  the actual level can exceed 0.075 due to 
situations where | 12r | exceeds | 12r | resulting in 

over adjusting the critical p-value. In this 
situation, the additional concern is that 12r  is not 

robust, and there is the issue of how to adjust the 
critical p-value when n > 20. 

To deal with the lack of robustness 
associated with Pearson’s correlation, 12r  was 

replaced by Kendall’s tau, resulting in 12kr . The 

population analog of 12kr  is denoted by 12kr . 

Next, a 0.95 confidence interval for 12kr  was 

computed using a basic percentile bootstrap 
method (Wilcox, 2005, p. 403), which has low 
execution time, even when the sample size is 
large. If this interval contains zero, let p  = 0.05, 

Otherwise, let 12.352 | | .049kp r= + . Rejecting 

(1) when the p-value is less than or equal to p  
will be called method BTS. 

This approximation depends on the 
sample size, n, but a convenient feature is that it 
was found to change slowly as n gets large. In 
particular, it continues to perform well when n = 
100. For n = 200 this is no longer the case, but 
with 100n ³  the adjustment makes little 
difference. So the suggestion is to use method 
BTS when 100n £ , otherwise reject if the p-
value is less than or equal to a . 
 
Testing (1.1) when (2.6) Is True 

Consider now the more general case 
where the regression line is given by (2.6). 
Method BTS can be extended in an obvious 
way. In particular, again the strategy is to use 

independent bootstrap samples to estimate 2
1h  

and 2
2h  and the adaptive kernel density 
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estimation method for computing a p-value is 
used. However, now the actual level of the test is 
more sensitive to 12r  and for the case .05a = , a 

modification of p  is required. As was the case 
when (2.5) is assumed, simulations indicate that 
if (1.1) is rejected when the p-value is less than 
or equal to a , the actual level will be less than 
or equal to a ; avoiding actual Type I error 
probabilities substantially less than the nominal 
level is more difficult in this case. Based on 
preliminary simulations, under normality, when 
testing at the .05a =  level, the following 
approach performed best among the methods 
considered. Let 
 


12.25 | | .05 (100 ) / 10000kp r n= + + - , 

 
max(.05, )p p=  , and reject (1.1) if p p£  . For 

n>200, p  is taken to be 0.05 and this will be 
called method SM. Note that in contrast to 
method BTS, a confidence interval for 12kr  is 

not used. 
 

Results 
Simulations were used as a partial check on the 
actual level of methods SM and BTS when 
testing at the 0.05 level. Values for 1X  and 2X  

were generated from a bivariate distribution for 
which the marginal distributions belong to the 
family of g-and-h distributions, which contains 
the standard normal as a special case. The R 
function rmul was used, in conjunction with the 
function ghdist, which are part of the library of 
R functions described in Wilcox (2005). 

The R function rmul generates data from 
an m-variate distribution having a population 
correlation matrix R  by first forming the 
Cholesky decomposition ¢ =UU R , where U  is 
the matrix of factor loadings of the principal 
components of the square-root method of 
factoring a correlation matrix, and ¢U is the 
transpose of U . Next, an n m´  matrix of data, 
X , for which the marginal distributions are 
independent, is generated, then XU  produces an 
n m´  matrix of data that has population 
correlation matrix R . 

To elaborate, let Z  be a standard 
normal distribution. For 0g > , let 

2exp( ) 1
exp( / 2)

gZ
X hZ

h
-= , 

 
and for 0g = , let 
 

2exp( / 2)X hZ= , 
 
in which case X  has a g-and-h distribution 
where g and h are parameters that determine the 
first four moments. When g = h = 0, X  has a 
standard normal distribution. With g = 0 this 
distribution is symmetric and it becomes 
increasingly skewed as g gets large. As h gets 
large, the g-and-h distribution becomes more 
heavy-tailed. Table 1 shows the skewness ( 1k ) 

and kurtosis ( 2k ) for each distribution 

considered in the simulations used herein. They 
correspond to a standard normal (g = h = 0), a 
symmetric heavy-tailed distribution (h = 0.2, g = 
0.0), an asymmetric distribution with relatively 
light tails (g = 0.2, h = 0) and an asymmetric 
distribution with relatively heavy tails (g = h = 
0.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulations were run with 12r  = 0 and 

0.7, where e  has the same distribution as 1X  

and 2X . Additional simulations were run where 

1X  is normal but 2X  has one of the non-normal 

g-and-h distributions previously described. 
Table 2 shows the estimated probability 

of a Type I error based on 1,000 replications 
when using method BTS, n = 50 and 

1 2Y X X e= + + . The columns headed by 

1 2X X  indicate that 1X  and 2X  have 

Table 1: Some Properties of the 
g-and-h Distribution 

 

g h 1k  2k

0.0 0.0 0.00 3.0 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 
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identical distributions, while 1 (0,1)X N  

means that 1X  has a standard normal 

distribution and 2X  has the g-and-h distribution 

indicated. Table 3 shows the results when using 
method SM when 1 2Y X X e= + +  and 

2 2
1 2Y X X e= + +  with n = 60. As is evident, 

method BTS performs reasonably well in terms 
of avoiding a Type I error well above the 
nominal level, at least for the situations 
considered. A deficiency of the method is that 
the estimates drop below 0.025 in some 
situations. Method SM also performs reasonably 
well, but the actual level drops well below the 
nominal level in some situations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Estimated Type I Error Rates, n=50, 
Method BTS, a =0.05 

 

   1 2X X  1 (0,1)X N  

g h 12r  â  â  

0.0 0.0 0.0 0.039 - 

- - 0.7 0.048 - 

0.0 0.2 0.0 0.026 0.054 

- - 0.7 0.023 0.059 

0.2 0.0 0.0 0.041 0.027 

- - 0.7 0.063 0.048 

0.2 0.2 0.0 0.064 0.056 

- - 0.7 0.044 0.071 

 

Table 3: Estimated Type I Error Rates, n=60, a =0.05, Method SM 
 

   1 2X X  1 2X X  1 (0,1)X N  1 (0,1)X N  

g h 12r  1 2Y X X e= + + 2 2
1 2Y X X e= + + 1 2Y X X e= + +  2 2

1 2Y X X e= + +

0.0 0.0 

0.0 0.036 0.026 - - 

0.5 0.020 0.034 - - 

0.7 0.008 0.014 - - 

0.0 0.2 

0.0 0.036 0.012 0.048 0.049 

0.5 0.014 0.020 0.022 0.054 

0.7 0.008 0.012 0.014 0.021 

0.2 0.0 

0.0 0.032 0.024 0.036 0.022 

0.5 0.014 0.024 0.023 0.036 

0.7 0.014 0.016 0.008 0.022 

0.2 0.2 

0.0 0.026 0.014 0.040 0.024 

0.5 0.004 0.016 0.026 0.042 

0.7 0.008 0.008 0.010 0.023 

 



COMPARING THE STRENGTH OF ASSOCIATION OF TWO PREDICTORS 

16 
 

Power 
There is the issue of how much power is 

sacrificed if method SM is used rather than BTS 
when the regression line is straight. Table 4 
shows the probability of rejecting when 

1Y X e= + . As is evident, both methods have 

fairly high power for this special case and BTS 
can offer a substantial gain in power when the 
regression line is straight. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An Illustration 

In an unpublished study by Doi, a 
general goal was to identify good predictors of 
reading ability in children. Two of the predictors 
were a measure of letter naming speed and the 
speed at which lowercase letters could be 
identified. The outcome of interest was a 
measure of reading comprehension. A 
scatterplot of the data and the LOESS estimate 
of the regression strongly suggests that there is 
curvature, and a test of the hypothesis that the 
regression line is straight (using the method in 
Wilcox, 2005, section 11.5.1) is rejected at the 
0.05 level; thus method SM is used and it rejects 
at the 0.05 level. The estimated explanatory 
power for the plot in the left panel is 0.444, and 
in the right panel it is 0.171. These results 
suggest that naming speed has a stronger 
association with comprehension. 

If the apparent curvature is ignored, 
BTS also rejects at the 0.05 level, but now the 
estimated explanatory is 0.351 for the left panel 
and 0.142 for the right. That is, the estimated 

difference in explanatory power is substantially 
smaller compared to using a smoother. If instead 
Pearson correlations are compared using the 
method in Zou (2007), the 0.95 confidence 
interval for the difference is (−0.490, 0.024). 
Therefore,  fail to reject at the 0.05 level. 
 

Conclusion 
In summary, numerous methods for comparing 
two predictors were considered based on a 
robust measure of the strength of the association. 
Two methods were found that perform 
reasonably well in simulations, one of which is 
based on a smoother and so provides a flexible 
approach to curvature. All indications are that 
Type I errors that exceed the nominal level are 
avoided using a basic percentile bootstrap 
method; however, there is a practical problem 
that the actual level can drop well below the 
nominal level, particularly when the sample size 
is small. Adjustments were suggested that 
substantially reduce this problem among the 
situations considered. The adjustment used by 
method BTS performed reasonably well in 
simulations, but when using method SM, 
situations occurred where the actual level drops 
well below the nominal level even with n = 60. 
In principle, if there are p predictors and the goal 
is to compare subsets of k predictors, a strategy 
similar to those used here could be used, but it 
remains to be determined whether reasonable 
control over the probability of a Type I error can 
be achieved. 

Regarding the use of a bootstrap 
method, Hall and Wilson (1991) argue in favor 
of using a pivotal test statistic, which is not done 
here. When working with means, more recent 
results, summarized in Wilcox (2005), also 
support the conclusion that a pivotal test statistic 
be used. When working with robust estimators, 
however, there are general situations where a 
percentile bootstrap method has a substantial 
advantage. In addition, when using a percentile 
bootstrap method, there is no need to 
approximate the null distribution of some test 
statistic (Liu & Singh, 1997). Roughly, the 
percentile bootstrap method is based on 
determining how deeply the null value is nested 
within the sampling distribution of some 
estimator. Finally, R functions for applying the 
methods considered are available from the 

Table 4: Power Comparisons, 
n=60, a =0.05, 1Y X e= +  

 

g h 12r  BTS SM 

0.0 0.0 0.0 0.960 0.833 
- - 0.5 0.861 0.659 

0.0 0.2 0.0 0.930 0.668 
- - 0.5 0.777 0.467 

0.2 0.0 0.0 0.968 0.807 
- - 0.5 0.836 0.710 

0.2 0.2 0.0 0.942 0.672 
- - 0.5 0.772 0.460 
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author; download the file Rallfun-v17 from 
www-rcf.usc.edu~rwilcox. The function 
sm2strv7 performs method SM, and the function 
ts2str performs methods BTS. 
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