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Abstract
Increasing attention is focusing on chromosomal and genome structure in cancer research due to
the fact that genomic instability plays a principal role in cancer initiation, progression and response
to chemotherapeutic agents. The integrity of the genome (including structural, behavioral and
functional aspects) of normal and cancer cells can be monitored with direct visualization by using
a variety of cutting edge molecular cytogenetic technologies that are now available in the field of
cancer research. Examples are presented in this review by grouping these methodologies into four
categories visualizing different yet closely related major levels of genome structures. An integrated
discussion is also presented on several ongoing projects involving the illustration of mitotic and
meiotic chromatin loops; the identification of defective mitotic figures (DMF), a new type of
chromosomal aberration capable of monitoring condensation defects in cancer; the establishment
of a method that uses Non-Clonal Chromosomal Aberrations (NCCAs) as an index to monitor
genomic instability; and the characterization of apoptosis related chromosomal fragmentations
caused by drug treatments.

Introduction
Cytogenetic visualization technologies have traditionally
played an important role in cancer research. Both the
chromosomal number changes or aneuploidy, and the
telomeric deficient mediated chromosomal breakage-
fusion-bridge cycle has long been linked to the cancer
phenotype and chromosomal instability by T. Boveri and
B. McClintock. Many chromosomal aberrations, particu-
larly translocations or inversions are closely associated
with a specific morphological or phenotypic subtype of
leukemia, lymphoma or sarcoma [1]. As a result, chromo-
somal analysis of patient samples has become an essential
component of cancer research. The identification of a
chromosome translocation involving a reciprocal rear-

rangement of chromosomes 8 and 21 in patients with a
form of acute myelogenous leukemia (AML), and the
identification of a translocation involving chromosomes
9 and 22 in patients with chronic myeloid leukemia
(CML), has initiated more than 100 translocation break-
points cloned with the genes on both partner chromo-
somes identified. In the past three decades, over 30,000
cancer cases have been analyzed by chromosomal karyo-
typing employing one basic visualization method using
normal chromosomes as a standard, to search for the cor-
relation between a specific karyotype and a specific type of
cancer, which revealed more than 600 acquired, recurrent,
balanced chromosome rearrangements [2]. Among these
analyses, a great deal of attention has been focused on
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clonal chromosomal changes in the identification of both
primary and secondary abnormalities. These clonal
abnormalities, particularly if complex, are significant to
neoplasia. As a result, these chromosomal visualization
methods have served as an important tool for both cancer
research and diagnosis.

In recent years, extensive research has been performed
with molecular probes targeting specific regions of the
genome for detecting gene deletions and amplifications.
With the development of live images as well as the matu-
ration of FISH related technologies, more direct visualiza-
tion approaches are available to cancer biology [3-6]. In
this mini-review, we will introduce some of the current
visualization methodologies utilized in this field includ-
ing a discussion on several recent developments initiated
by our laboratory, specifically using DNA-protein co-
detection to define the chromatin loop domain, using
Defective Mitotic Figures to study the condensation proc-
ess, and using Non-Clonal Chromosome Aberrations
(NCCA) to monitor the genomic instability in cancer.

New approaches and challenges
With the completion of the sequencing phase of both
human and mouse genome projects, one of the next pri-
orities is the systematic study of genomic structure relative
to function as well as abnormalities associated with the
cancer phenotype based on recent emerging genomic
information. A powerful application of newly available
technology is the use of microarrays to correlate specific
genes or pathways to types or stages of cancer [7], particu-
larly when used in conjunction with the tissue micro-dis-
section method. The challenge for this approach is the
complexity of the karyotypic changes that occur and the
karyotypic heterogeneity that is associated with cancer cell
lines and tumor samples. It is therefore necessary to care-
fully karyotype the cell lines/tissues being studied before
microarray analysis is performed.

CGH technology has been effective in establishing possi-
ble karyotype patterns by pinpointing the gains or loses
within specific chromosomal regions [8]. Since CGH data
focuses on clonal karyotype changes it could miss non-
clonal changes that occur at an early stage of cancer devel-
opment (this is further discussed in the following sec-
tion). Similarly, the heterogeneity of tumor samples
makes the interpretation of data difficult with significant
exceptions occurring when various samples of the same
tumors are analyzed.

Gene knock out technology has produced a large collec-
tion of mouse models that can be used to study genomic
aberrations that occur during cancer development. Partic-
ularly with the recent development of RNA interference
technology [9], the correlation between different path-

ways defined by key genes and the genomic structure/
function can be analyzed in great detail. The technical
challenge for studies dealing with genome structure and
function that use this approach is to develop a system that
can monitor the genome structure and changes caused by
these targeted genes. It would be ideal to directly visualize
the changes occurring before and after dysfunction of
genes that are expected to be involved in the maintenance
of the integrity of the genome. Such a direct visualization
system will fill the gaps between molecular biology and
cytology, between studies using in vitro and in vivo assays,
and could be used for comparative analysis between nor-
mal and cancer conditions.

One re-emerging concept in cancer research is that epige-
netic events also play an important role in the evolution
of cancer [10]. Cancer often displays aberrant methylation
of promoter regions, which is linked to the loss of gene
function. Such heritable DNA changes are not mediated
by altered nucleotide sequences and might involve the
formation of transcriptionally repressive chromatin. Visu-
alization methods are urgently needed to study cancer
related epigenetic phenomena.

A new trend in cancer research is focusing on how genetic
instability causes cancer [11]. Since the majority of can-
cers reflect genomic instability at the chromosomal level,
the concept of aneuploidy and segmental aneuploidy
(unbalanced structural rearrangements) in tumors are
receiving increased attention, and accordingly, there has
been a reappraisal of genetic abnormalities at the chromo-
somal level. The establishment of a visualization system
capable of quantitatively monitoring genomic instability
at the chromosomal level (chromosome instability or
CIN) is a key challenge. This is especially crucial at the
early stages of cancer development when there are no
clonal chromosomal aberrations detectable. Another
important consideration for this system is the capability
of monitoring an entire genomic structure of an individ-
ual cell and the capability to monitor a mixture of isolated
cells in a heterogeneous population. This type of system
would be capable of addressing the heterogeneity of
genomic changes in cancer.

Multiple-level visualization for genome based 
cancer research
Most of the visualization technologies discussed here are
fluorescence based, even though various labeling and
detection mechanisms are involved for each of them
including antibody detection, DNA-DNA/DNA-RNA in
situ hybridization, photobleaching and differential labe-
ling (e.g. replication pulse-labeling). The significance of
the availability of these methodologies is to apply them to
a variety of experimental settings that address all aspects
of the genomic structure/function and abnormalities. For
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presentation purposes, the various types of visualization
technologies are grouped into four categories, with repre-
sentative examples of each major level of the genome
structure.

Visualization at the macro-molecular complex level
To monitor the specific protein-protein or protein-DNA/
RNA interactions, different approaches were developed
using direct and indirect visualization. An important tech-
nology is the monitoring of the DNA-protein and protein-
protein interactions in living cells. Using GFP fusion pro-
teins and FLIP (fluorescence loss in photobleaching) or
FRAP (florescence recovery after photobleaching), as well
as FRET (fluorescence resonance energy transfer) and FCS
(fluorescence correlation spectroscopy), the dynamic
interactions between proteins and genomic structure and
dynamic mRNA movement in the nuclei have been dem-
onstrated by monitoring the patterns of fluorescent
bleaching and recovery [5,6]. For example, FRET analysis
has demonstrated that the proteins of WRN and RAD52
form a complex in vivo that co-localizes in foci associated
with arrested replication forks [12]. FRET has also been
used to study the interaction of p53 with nuclear matrix
showing that the interaction of p53 with the nuclear
matrix is mediated by F-actin and modulated by DNA
damage [13]. One area of increasing interest is the study
of the mechanism of chromatin re-modeling and its rela-
tionship with improper gene expression and cancer [14].
The above-mentioned methods will play an effective role
characterizing elements of the remodeling complex and
its interactions under normal and pathological
conditions.

Protein-DNA interaction can also be visualized using
released chromatin fibers [15,16]. More advanced than
commonly used co-localization that uses interphase
nuclei, the released DNA or chromatin fibers offer a
higher resolution with significantly improved accuracy. As
demonstrated by Raderschall et al the recombination pro-
teins including Rad51 and RPA can be visualized as asso-
ciated with long stretches of ssDNA that appear after
treatment of cells with DNA-damaging agents [17]. The
methods are under development in our laboratory to
study the chromosome condensation process by cross
linking the protein complex prior to the release of chro-
matin fibers. We anticipate that this methodology will be
particularly useful to compare specific DNA-protein inter-
actions in normal and cancer cells to study the pathway of
tumorigensis.

Visualization at the chromatin loop domain level
The chromatin loop domain is an important concept for
understanding the structure and function of the chromo-
some. The loop domain has been suggested as the basic
unit of chromatin structure. To define the loop domain,

direct visualization is the key. By releasing proteins, the
nuclear halo structure allows us to measure the loop size,
study the distribution of both genes and regulatory
sequences on loop domains, correlate gene expression
with patterns of loops and to compare specific regions of
the chromosome [4,18-22]. Using transgenic and cell
transfection approaches, we recently demonstrated that
when multiple-copy nuclear matrix associated regions
(MARs) were introduced into the genome, these MARs
were selected and used as nuclear matrix anchors in a dis-
criminatory manner, which fits well with the gene expres-
sion profile of these transfected lines, despite the fact that
each contained identical primary sequences. Combined
with data on the dynamic feature of the chromatin loop
domain, our experiment suggested that MAR anchors are
necessary but not sufficient to cause loops to form that are
correlated with gene expression profiles [23].

The in situ hybridization and immunolocalization
approaches have been used to investigate the nuclear loca-
tion of specific DNA sequences connected to the chroma-
tin insulator. It has been shown that a DNA sequence that
is normally located inside the nucleus moved to the
periphery when a gypsy insulator was placed within the
sequence. In addition, it has been shown that the presence
of a gypsy insulator can bring two sequences from differ-
ent regions of the genome together. Interestingly, these
physical changes that were caused by the insulator corre-
lated to the gene expression profile [24]. The topology of
the Major Histocompatibility Complex (MHC) and its
surrounding genomic regions were investigated using
direct visualization. In contrast to the gene poor regions,
the gene rich MHC region displayed dynamic changes that
corresponded to the gene expression status. Specifically,
when MHC class II genes are expressed, the MHC genomic
region was located on a large chromatin loop extending
from the periphery of the human chromosome 6 domain
more often than when these genes were silent [25].

Focusing on loop structure formation and behavior, our
laboratory has been investigating the meiotic chromatin
loop structure and the relationship to the synaptonemal
complex (SC). Using transgenic and direct visualization
approaches, we demonstrated that certain anchor
sequences might be required for the formation of normal
meiotic loops and the organization of loop structure
depends on both DNA sequences and chromosomal posi-
tion [26,27]. Recently, the relationship between the
length of the SC, the AT/GC content of the genome and
the size of chromatin loops has been under investigation
to correlate the meiotic chromosome structure with
genetic recombination (Heng et al, personal
communication).
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Basic information regarding the loop domain in normal
cells can be used comparatively to visualize the pattern
changes of loop domains in cancer. It has been shown
with the use of special AT-rich sequence-binding protein
1 (SATB1) that the anchoring site to the nuclear matrix is
cell type dependent, and the overall loop organization is
different for breast cancer SK-BR-3 cells [20].

Another cancer related issue is the virus integration pat-
terns within the human genome. At the chromosomal
level, the integration patterns of a few types of virus have
been investigated using FISH detection [28]. It has been
shown that for the adeno-associated virus (AAV), the inte-
gration site is chromosomal region specific. Interestingly,
as demonstrated by FISH methods, such specificity as
observed in the wild type AAV are lost in recombinant
AAV [29]. Currently we are investigating the pattern of
viral integration using loop domain assays to illustrate the
basic mechanism for viral integration. We have noticed
that various types of virus have different patterns of inte-
gration relative to chromatin loop regions or loop anchor
regions as defined by the nuclear matrix. Further research
is underway to test whether such a pattern of integration
is related to the stability of the integration.

In addition to monitoring loop domains, interphase FISH
has been used to monitor the abnormality of DNA repli-
cation focusing on specific replication domains (Wu et al,
personal communication). The asynchronous replication
pattern between alleles of imprinted regions has also been
visualized by interphase FISH. Different from most loci
where the maternal and paternal alleles replicate syn-
chrony, the expressed allele of the imprinted regions rep-
licates earlier than the silenced one [30].

Visualization at the chromosome level to monitor structure 
and behavior
As mentioned in the introduction, chromosome structure
studies have traditionally played an important role for
cancer research. In recent years, additional details have
emerged to link specific chromosomal structural and
behavior changes to the cancer phenotype.

Specific chromosomal regions including the telomere and
centromere as well as regions hosting key cancer related
genes are under extensive study. A few visualization tech-
nologies are worth mentioning: 1) Quantitative fluores-
cence in situ hybridization (Q-FISH) can be used to
monitor the telomeric DNA length changes during aging
and cancer development [31]; 2) High-resolution fiber
FISH can be used to estimate the size of a gene amplifica-
tion and to define the translocation regions [15,16,32]; 3)
DNA-protein in situ co-detection on mitotic/meiotic
chromosomes as well as released chromatin fibers
[3,26,33,34]; 4) Rolling circle amplification in situ can be

used to detect gene copy number and single base muta-
tion in fixed cells with high efficiency (up to 90%). It can
also detect and quantify transcribed RNA in individual
cells making it a versatile tool for cancer research [35]; and
5) The recently developed experimental system of using
GFP and Lac repressors can be used to monitor chromo-
somal loci in live cells [36].

Chromosomal structure or aberrations capable of moni-
toring the condensation defect is an area of research that
has not received much attention. The four stages of the
chromosomal cycle including replication, condensation,
segregation and de-condensation are each essential steps
that are equally important to maintaining genomic insta-
bility. Yet, traditionally, there have been extensive studies
focusing only on the replication process and the segrega-
tion process as well as their regulation [37,38]. Despite
the recent dramatic developments in identifying genes
that are responsible for chromosome condensation [39],
there is still a shortage of biomarkers and experimental
systems that can monitor condensation defects in cancer.
Original work on the abnormal features of mitotic figures
was initially named as incompletely-packaged chromo-
somes, that are a result of abnormally condensed chromo-
somes (Fig 1) [40]. As demonstrated by Fig 1, the key
feature of this structure is the differential degree of con-
densation among chromosomes within the same mitotic
figure. Since the original description a great deal of work
has linked these structures to known chromosomal aber-
rations such as chromosomal breakages and transloca-
tions [41]. However, due to an unproven common
opinion that these structures represent artifacts, this work
has been overlooked, even though the concept of using
experimental manipulation to generate decondensed
chromatin fiber has lead to the successful development of
the high resolution fiber FISH [15,42]. The continuation
of this project has established a correlation between the
rate of these structures and the cancer phenotype (Heng et
al., unpublished data). A similar observation recently
reported involving delayed replication was investigated
using human and mouse hybrid cells and primary tumor
samples [43]. Chromosome condensation is an important
step affecting genome integrity and instability; therefore
the characterization of defective condensation is of
importance. In the past few years, our Laboratory has sys-
tematically studied these structures renamed defective
mitotic figures or DMFs. Extensive research has illustrated
the cause and biological consequences of DMFs, as well as
the connection to chromosomal instability.

Another example of chromosomal structural/behavior
errors causing karyotypical herterogenity comes from the
analysis of chromosomal breakage-fusion-bridge (BFB)
events in solid tumors. Various types of nonspecific chro-
mosome aberrations were detected in malignancies with
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frequent BFB events, as well as intra-tumor heterogeneity
[44], suggesting that the BFB events are responsible for the
karyotypical heterogenity.

Visualization at the level of the entire genome
Monitoring the entire genome is perhaps the most effec-
tive way to detect chromosomal instability. It can also
serve as a quick scanning tool to pinpoint regions of inter-
est for regional specific analysis. Due to its importance,
there are many visualization approaches available to can-

cer research. For the purpose of presentation, the four cat-
egories are summarized as follows:

Direct visualization of karyotype changes
One of the hallmarks of tumor cells is their highly rear-
ranged karyotypes. Karyotype analysis has been exten-
sively used to study clonal chromosomal aberrations in
cancer. It has been a great challenge to analyze solid
tumors due to the difficulties involving chromosome
preparation and karyotype heterogeneity. In the last

Examples of DMFsFigure 1
Examples of DMFs. Panels A-C are Giemsa stained images of the Defective Mitotic Figures (DMFs) detected from human lym-
phocyte cultures following brief treatment with inhibitors of Topo II. As illustrated by these images, the key feature of DMFs is 
the differential condensation status among various chromosomes, resulting in the coexistence of condensed metaphase chro-
mosomes and the uncondensed chromatin fibers within one mitotic figure. In normal mitotic figures all chromosomes con-
dense at the same rate with no evidence of uncondensed chromatin appearing with condensed chromosomes. It should be 
noted that there are two types of DMFs classified as polarized and non-polarized. Fig 1A,1B shows condensed chromosomes 
and uncondensed chromatin or less condensed chromosomes in a polarized pattern. Fig 1C shows a non-polarized DMF. One 
biological application that can be derived from the morphology of DMFs is that in the abnormally condensed regions, chroma-
tin fibers tangle with each other, which generates chromosomal breaks in later stages of the cell cycle when condensed chro-
mosomes begin to segregate as observed in many cancer cells.

A. B. C.
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decade, impressive progress has been made to introduce
new powerful methods. Two of the most significant devel-
opments are the establishment of CGH and SKY or M-
FISH technologies [8,45,46]. By avoiding preparation of
cell cultures and metaphase chromosomes derived from
tumor samples, CGH has been used for karyotype analysis
of primary tumors and even archived pathological sam-
ples. The limitation of CGH includes the inability to
detect translocations and detection is limited to large,
clonal, late-stage karyotype changes in cancer develop-
ment. These limitations can be overcome by using single
cell CGH combined with SKY. Single cell CGH has been
successfully used to study the heterogeneity of the genome
and its karyotype evolution among cancer cells. By analyz-
ing both primary tumors and later arising metastases,
Schmidt-Kittler et al analyzed the karyotypic link between
these two events. Surprisely, there is an increased hetero-
geneity when these two events occur. Disseminated cells
from patients after curative resection of the primary tumor
displayed significantly fewer chromosomal aberrations
than primary tumors or cells from patients with manifest
metastasis, which challenges the current view that the pre-
cursors of metastasis are derived from the most advanced
clone within the primary tumor [47].

The advantages of SKY or M-FISH are the efficient identi-
fication of the origin of complex marker chromosomes
and the ability to simultaneously screen the entire
genome for chromosomal aberrations. This new approach
serves as an effective screening tool to identify structural
abnormalities such as translocations and marker chromo-
somes. One recent development is the combinational use
of the SKY method with other visualization methods. Fol-
lowing the DNA-protein co-detection method initially
used by our laboratory and others to study the chromo-
some and chromatin structure [26], SKY combined with
FISH, protein detection and G-banding has been estab-
lished and tested in the clinical setting [48-50]. These
combined approaches allow us to monitor the entire
genome, as well as to focus on specific regions or biologi-
cal process (Fig 2). Further, the introduced protocols for
sequential multicolor FISH/SKY and reuse of FISHed
slides should be valuable for cytogenetic analysis with
tumor samples especially when the samples are limited.
An example of this was the use of SKY and protein co-
detection demonstrating that the SC length and the size of
mouse mitotic chromosomes were not correlated [51],
which served as a method to study the inconsistency
between meiotic and mitotic structure (Heng et al, per-
sonal communication). The same method combined with
DNA-protein co-detection has been successfully used to
monitor meiotic chromatin pairing behavior in ATM -/-
mouse. Even though the SC structures are clearly abnor-
mal for the ATM KO mouse, the chromatin alignment
seems normal shown by chromosome painting. Our data

further demonstrated that the precise paring was jeopard-
ized, suggesting the function of SC is not for the chroma-
tin alignment but the specific paring (Heng et al, 18th
International Congress of Genetics, Beijing, 1998). We
anticipate that the SKY-FISH and protein co-detection
methods will increasingly be used to monitor chromo-
somal aberrations, particularly when both overall genome
changes and specific gene deletions or amplifications
need to be simultaneously visualized when performing a
genomic screening.

One important application for SKY is the systematic anal-
ysis of the correlation between the functional status of
"caretaker" genes (DNA repair, carcinogen detoxification
and antioxidant genes) and specific karyotype changes.
With this approach, a number of knock out mouse cell
lines and various cancer cell lines that are genomically
unstable have been analyzed with SKY (including ATM,
p53, BRCA1 cell lines). The unsuccessful identification of
specific clonal karyotype changes, thought to be shared by
the same types of tumors, coupled with a lack of any
clonal changes at early stages of the cancer development,
has highlighted the importance of non-clonal chromo-
somal aberrations (NCCAs). NCCAs have been tradition-
ally thought to be not as important as clonal
chromosomal changes, since clonal changes, when com-
plex, are the signature of cancer [2]. NCCAs, on the other
hand, have not been used as an index to monitor tumor
progression particularly when the rate was low. According
to our recent data and the publications of others, the key
feature of an unstable genome is increasing rates of
NCCAs, as measured by random translocations, deletions
and aneuploidy. The increased rates of total chromosomal
aberrations including NCCAs have been considered in the
field of mutation research; however, NCCAs have received
less attention in the clinical cancer field. Currently, our
laboratory is focusing on the establishment of a new index
to monitor genomic instability based on the rates of
NCCAs, particularly at the early stages of cancer develop-
ment. Our preliminary results demonstrated that for ATM,
BRCA1, p53 deficient cells, that NCCAs signify the initial
detectable changes that occur in abundance well before
the appearance of any clonal aberrations. Our experi-
ments have also shown in selected test conditions that
NCCAs are the key elements initiating the formation of
clonal chromosomal changes and that NCCAs provide the
basis for various populations of clonal changes that
caused the formation of karyotypical heterogeneity in can-
cer. Thus, the concept of NCCAs reconciles the many
seemingly contradictory phenomena regarding the corre-
lation between specific karyotypes and types of cancer.

Direct visualization of the chromatin/chromosome behavior
Technologies have been developed to monitor chromo-
somal behavior changes and their consequences in
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disease conditions. A classic example was the tracing of
the order of chromosomal segregation using centromere
separation patterns. It has been shown that human cen-
tromeres of various chromosomes separated in a nonran-
dom apparently genetically controlled sequence. This
order does not correlate with the length of chromosomes
and the position of the centromere within the chromo-
somes. In humans, chromosomes 18, 17 and 2 separate
very early while chromosomes 1, 16, Y and some chromo-
somes from the D and G groups separate last. Accumulat-

ing evidence has further demonstrated that for a given
genome, there is a nonrandom, species-specific sequence
of segregation for the chromosomes. Based on a series of
studies, it has been proposed that aneuploidy may be the
result of out-of-phase separation of a given chromosome.
The order of separation has also been investigated using
mouse-human hybrid cell lines. The data clearly demon-
strated that human chromosomes separate early and
mouse chromosomes separate late. Interestingly, the
human genome also completed its DNA replication

Examples of SKY-FISH co-detectionFigure 2
Examples of SKY-FISH co-detection. A. SKY detection on human mitotic chromosomes prepared from a primary tumor show-
ing the high rate of translocations indicated by the mixed color on the same chromosomes. Over 30 translocation events can 
be detected. Particular attention should be paid to the high rate of Non-Clonal Chromosomal Aberrations (NCCAs) as well as 
the clonal translocations. In this case, the majority of the translocations were NCCAs. B. SKY-protein co-detection on meiotic 
mouse chromosomes. Both the synaptonemal complex (SC) and the centromere were highlighted by the antibody for SC spe-
cific proteins and centromeric protein prior to SKY detection (blue and green color respectively). The various colors can be 
used for chromosomal identification since each chromosome has been assigned a specific color. It should be noted that the 
subtle color differences can be recognized by the computer program, which is much more sensitive than human eyes. Pertain-
ing to the analysis of disrupted SCs from various defective mice, the SKY identification of individual meiotic chromosomes will 
permit the quantification of mis-pairing at meiotic prophase.

A. B.



Cell & Chromosome 2004, 3 http://www.cellandchromosome.com/content/3/1/1

Page 8 of 12
(page number not for citation purposes)

before the mouse genome did [52]. Since the segregation
defect has proven to be crucial for genomic instability, it
is worth reinvestigating this issue using newly available
concepts and molecular tools [53,54].

The order of chromosomal replication among all human
chromosomes has been extensively investigated using
BrdU pulse labeling and detection [55]. It is known that
the R-bands replicate early while the G-bands replicate
late. Interestingly, the input patterns of chromosomal
mutations are highly organized relative to the band pat-
terns along human chromosomes [56]. This strongly sug-
gests that cancer related chromosome aberrations are
closely related to the chromosomal structure and banding
patterns. Thus, It is essential to correlate the patterns with
abnormal DNA replication, chromosomal condensation
and segregation relevant to the temporal order.

Increasing research has focused on the studies of histone
modification including methylation, acetylation and
phosphorolation. The overall patterns of these modifica-
tions can be clearly visualized by applying specific anti-
bodies on normal and abnormal chromosomes. The
staining patterns of these antibodies on chromosomes
have been used to study the following: X chromosome
inactivation [57,58], the demethylation patterns of the
paternal and maternal genome [59], the chromosome
condensation status [60], as well as the complex relation-
ship between DNA methylation and chromatin/chromo-
some compaction [61].

We anticipate that this type of approach will have consid-
erable applications to cancer research. For example, the
less-well spread mitotic figures prepared from some
tumors have been observed with changed methylation
patterns. Using H3-phosphoralation as a marker, Smith et
al also demonstrated that delayed replication could cause
delayed condensation [43]. Using H3-phosphoralation
and SMC2 antibodies, our work on the characterization of
DMFs also demonstrated that condensation defects con-
tributed to the generation of DMFs in cancer cells.

In addition to monitoring histone modification, other
structural proteins or RNA complexes and their modifica-
tion status have been extensively studied using chroma-
tin/chromosomes as targets. The studies on chromosomal
condensin and cohesions are among the best examples
[54,62].

Direct visualization of chromosomal territories
To understand the systematic output of genetic informa-
tion generated from the genome project, one has to ana-
lyze overall genomic structure and function. Since the
genome is spatially organized within the nucleus and this
organization represents a critical dimension to genome

function, the definition of chromosomal territories and
linking structural features with gene function is a high pri-
ority. It is now accepted that chromosomes form distinct
substructures that occupy defined positions within the
nucleus [63]. Yet, such arrangements are highly dynamic
and the changes in patterns frequently occur dependent
on biologically functional requirements. Current
approaches to visualizing chromosomal territories
include the analysis of the relative positions of chromo-
somes, the relative positions of genes within chromatin
domains and the chromosomal or gene position changes
when physiological or expression status changes occur
[64,65].

By analyzing the nuclear organization of every human
chromosome, it was shown that the most gene-rich chro-
mosomes are concentrated at the center of the nucleus,
whereas the more gene-poor chromosomes are located
towards the nuclear periphery regardless of the chromo-
some size or position within the nucleus [66].

When comparing the relative positions of chromosomes
from normal and cancer cells that bear specific transloca-
tions, it has been demonstrated that the relative position
of chromosomes in a nucleus can be conserved between
normal and cancer cells [67]. It would be interesting to
investigate whether this conservation is retained when
additional chromosomes are involved in translocations
and if the spatial relationship changes when some chro-
mosomes are deleted. Recently, by using spatial mapping
of gene loci involving a particular chromosomal translo-
cation, Roix et al provided evidence that higher-order spa-
tial genome organization rather than any particular
property of individual genes is the key contributing factor
in the formation of recurrent translocations [68]. Tradi-
tional thinking was that translocations are random events
occurring among all chromosomes but that cancer related
specific translocations were the result of clonal selection
after the translocation formed.

Genes are also not randomly distributed on chromo-
somes. Highly expressed loci such as housekeeping genes
form large clusters on several chromosomes separated by
domains containing relatively low level expressed genes
[69]. In addition, for specific genes, the activities are also
associated with the location and behavior of dynamic
domain regulation.

With an over-whelming accumulation of information
developing from this emerging field, evaluation of data
and its integration is an important task. Systematic com-
parisons between normal and cancer cells, using different
types of cells, are essential. One priority is to incorporate
this new concept with classic cytology and cell biology
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phenomena, as well as the extensive biochemical and
molecular data that is available.

Direct visualization of karyotypic changes caused by physiological, 
pathological and environment challenges
One effective way to study genome structure is to monitor
the induced abnormalities by changing the specific path-
ways or physiological environment of the cell. Since the
abnormalities might be detected from structural, behavio-
ral and functional aspects, the different systems that we
have discussed in this review can be used for this purpose.
There are a variety of ways to introduce physiological and
environmental challenges. Increasing attention has
focused on the biological link between oxidative stress
and disease conditions [70]. Generated by normal physi-
ological processes including aerobic metabolism and
inflammatory responses, free radicals can target DNA,
proteins, RNA and lipids, which can cause cancer [71]. It
would be interesting to systematically monitor the impact
of oxidative stress on chromosomal instability. Using the
Q-FISH method, it has recently been shown that the rate
of telomere shortening was increased under 'normal' lev-
els of oxidative stress in Ataxia telangiectasia (ATM) cells.
Experimentally induced oxidative stress increased the rate
of telomere shortening in ATM cells but not in normal
fibroblasts and the telomere shortening rate decreased in
both normal and ATM fibroblasts if cultures were supple-
mented with the anti-oxidant [72]. To introduce a chemi-
cal challenge, any reagent that can interfere with any
essential cellular processes needed to maintain the nor-
mal state can be used, particularly with reference to cancer
therapeutic agents. Knock out technology including KO
mouse and RNAi that produce a defined challenge specific
to different pathways deserves special attention. These
challenges, when combined with the visualization of
chromosomal and karyotypical responses, particularly
with drug treatment to challenge the genome stability,
will uncover the mechanism behind genomic instability
and establish new biomarkers for cancer diagnosis.
Recently, by challenging ATM (+/+), (-/-) and p53 (+/+),
(-/-) with various drugs targeting DNA replication and
condensation, we have demonstrated that the ATM and
p53 deficit lines are extremely unstable on karyotypic
level comparing with the wild type lines (Stevens et al,
personal communication).

The availability of patient materials for cancer predisposi-
tion syndromes, including Ataxia Telangiectasia (AT),
Nijmegen Breakage Syndrome (NBS), Bloom Syndrome
(BS), Werner Syndrome (WS) and Fanconi Anemia (FA),
provide yet another important resource to study karyo-
typic changes particularly when combined with a variety
of experimental challenges [72]. Many of these cancer-
prone genetic disorders involve proteins associated with
homologous recombination [73], and some of the path-

ways are well connected with each other, yet the signature
chromosomal aberrations are quite different for each dis-
ease. In other words, even though the increased chromo-
some aberrations are common features for these diseases,
the dominant types of chromosome aberration as well as
the karyotypic response to chemical challenges are quite
different. For example, the most obvious karyotypic
changes seen in cells from BS patients are a significantly
increased frequency of sister-chromatid exchange (SCE)
and the presence of symmetrical quadri-radial configura-
tions at metaphase. In cells from WS patients, the greatly
increased spontaneous chromosome changes are detected
including extensive deletions, reciprocal translocations
and inversions. As for cells from FA patients, the karyo-
typic diagnosis is the chromosomal sensitivity to cross-
linking agents like mitomycin C [74,75].

One example of tracing karyotypic changes responding to
experimental challenges is our own research on character-
izing chromosomal fragmentations induced by chemo-
therapeutic agents. By studying the morphological
features and how they are generated, we aim to establish
metaphase mediated chromosome fragmentation, which
could represent another apoptotic pathway (Stevens et al,
personal communication)(Fig 3). Another example is the
experimental induction of condensation defects. When
incorporated into late-replicating DNA, 5-Azacytidine (5-
aza-C) and 5-azadeoxycytidine (5-az-dC) can inhibit con-
densation in mammalian constitutive heterochromatin
(human chromosomes 1,9,15,16 and Y) and facultative
heterochromatin (inactive X). When applying 5-iodode-
oxyuridine (IdU) or binding of AT-specific DNA ligands
(berenil, DAPI, distamycin A and Hoechest 33258), the
condensation of AT-rich constitutive heterochromatin
was interfered with. To study the mechanism of experi-
mentally induced condensation defects, it was proposed
that both DNA hypomethylation and steric alteration in
chromosomal DNA could interfere with the binding of
proteins or protein complexes responsible for chromo-
somal condensation [76]. Interestingly, a similar type of
condensation defect can be observed from lymphocyte
cultures of patients with ICF syndrome (immunodefi-
ciency, centromeric region instability, facial anomalies).
ICF is a unique DNA methylation deficiency disease diag-
nosed by an extraordinary collection of chromosomal
aberrations involving the vicinity of the centromeres of
chromosomes 1 and 16 in mitogen-stimulated lym-
phocytes. These chromosomal aberrations include
decondensation of centromere-adjacent (qh) heterochro-
matin, multi-radial chromosomes, and whole-arm dele-
tions [77]. It is also worth mentioning that 5-
azadeoxycytidine is an inhibitor of DNA methyltrans-
ferase, and hypermethylation of tumor suppressor genes
and hypomethylation of CpG islands in oncogenes is
linked to tumor initiation and cancer progression [78].
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Concluding remarks
Due to considerable number of publications on this sub-
ject, it would be extremely challenging to produce an all-
inclusive summary of all the new developments on direct
visualization technologies and their applications to can-
cer research. This concise review highlights current trends
focusing on areas of personal expertise and research inter-
est, plus revisited classical approaches that are presenting
new applications for cancer research. It should be empha-
sized that direct visualization methods as are currently
used in cancer research are reaching far beyond genomic
structure research. Currently, active research on monitor-
ing non-chromosomal cellular components also plays an
important role in the study of genomic organization and
integrity [38]. The extensive studies on the centrosome are

one such example [79]. In addition, the concept of visual-
ization has been developed beyond the direct use of chro-
mosomes or cells as targets. A new trend in cancer research
is the combinational visualization with microarray tech-
nology for high-throughput [7]. One example is the
development and application of array CGH [80], which
can monitor whole genome detection of chromosomal
gains and losses at high resolution. We believe that direct
visualization methods will be used to a greater extent in
cancer research in the near future and these new method-
ologies will be used to uncover new details on chromo-
somal and genome structure that will form the basis for
emerging novel concepts.

Examples of Chromosome fragmentation induced by drug treatmentFigure 3
Examples of Chromosome fragmentation induced by drug treatment. Two images from the same microscopic view represent 
different types of chromosome fragmentation following drug treatment. The upper image shows a large number of fragments 
coexisting with abnormal chromosomes. The lower image shows that extensive chromosome fragmentation has occurred with 
only a few identifiable fragments. These various images may represent different stages of chromosome fragmentation.
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