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A Combined Standard Deviation Based Data Clustering Algorithm 
 

                           Kuttiannan Thangavel     Durairaj Ashok Kumar 
                          Department of Mathematics                            Department of Computer Science  
           Gandhigram Rural Institute, Deemed University              Government Arts College 
 
 
The clustering problem has been widely studied because it arises in many knowledge management 
oriented applications. It aims at identifying the distribution of patterns and intrinsic correlations in data 
sets by partitioning the data points into similarity clusters. Traditional clustering algorithms use distance 
functions to measure similarity centroid, which subside the influences of data points. Hence, in this article 
a novel non-distance based clustering algorithm is proposed which uses Combined Standard Deviation 
(CSD) as measure of similarity. The performance of CSD based K-means approach, called K-CSD 
clustering algorithm, is tested on synthetic data sets. It compared favorably to widely used K-means 
clustering algorithm. 
 
Key words: Clustering algorithm; combined standard deviation. 
 
 

Introduction 
 
A fundamental problem that frequently arises in 
a great variety of fields, such as pattern 
recognition, image processing, machine learning 
and statistics in the clustering problem 
(Narasimha, Jain, & Flyinn, 1999). In its basic 
form, the clustering problem is defined as the 
problem of finding homogenous groups of data 
points in a given data set. Each of these groups 
is called a cluster and can be defined as a region 
in which the density of objects is locally higher 
than in other regions.  
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Clustering methods can be classified 
into two categories: Hierarchical and Non-
Hierarchical. The hierarchical methods can be 
further divided into agglomerative methods is 
viewed as a cluster and at each level, some 
clusters are divided into smaller clusters. There 
are also many non-hierarchical methods, which 
divide the set into clusters. These methods are 
further divided into two: the partitioning 
method, in which the clusters are mutually 
exclusive and the clumping method, in which 
overlap is allowed. 

The simplest form of clustering is 
partitional clustering which aims at partitioning 
a data set into disjoint subsets (clusters) so that 
specific clustering criteria are optimized. The 
most widely used criteria in this clustering is the 
error criterion, which for each point computes its 
squared distance from the corresponding cluster 
center and then takes the sum of these distances 
for all points in the data set. A popular clustering 
method that minimizes the clustering error is the 
K-means clustering algorithm. However, the k-
means clustering algorithm is a local search 
procedure and it is well known that its 
performance heavily depends on the initial 
starting conditions and centroid computed based 
on that (Pena & Larranaga, 1999). To treat this 
problem, several other techniques have been 
developed that are based on stochastic global 
optimization methods (eg. Genetic algorithm 
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simulated annealing). However, it must be noted 
that these techniques have not gained wide 
acceptance and in many practical applications 
the clustering method that is used in the K-
means clustering algorithm with multiple restarts 
(Maulik & Bandyopadhyay, 2000). 

The K-CSD clustering algorithm is 
proposed, which constitutes an effective 
clustering for minimization of the clustering 
error. The basic idea underlying the proposed 
method is that an optimal solution for a 
clustering problem with K clusters can be 
obtained using combined standard deviation. At 
each step, instead of placing the data point by 
minimum distance between centroid and the data 
point, the minimum combined standard 
deviation is used which leads to optimal clusters. 
In addition to effectiveness, the method is 
deterministic and does not depend on centroid. 
These are significant advantages over all 
clustering approaches mentioned above. 

 
Clustering 

Clustering has been always a key task in 
the process of acquiring knowledge. The 
complexity and especially the diversity of 
phenomena have forced society to organize the 
things based on their similarities (Spath, 1989). 
One can say that the objective of the cluster 
analysis is to sort out the observations into 
groups such that the degree of natural 
association is high among members of the same 
group and low between members of different 
groups. And clustering is a technique, which is 
used to find groups of clusters that are somehow 
similar in characteristic from the given data set 
for which the real structure is unknown.  

Clustering is often confused with 
classification, but there are some differences 
between the two. In classification, the data are 
assigned to predefined classes or clusters, 
whereas in clustering the classes or clusters are 
also to be defined and also when the only data 
available are unlabelled. The classification 
problems are, sometimes, referred to as 
unsupervised classification. Cluster analysis can 
be defined as a wide variety of procedures that 
can be used to create a classification. These 
procedures empirically form clusters of groups 
of highly similar entities.  In other words, it can 
be said that cluster analysis defines group of 

cases through a number of procedures, which are 
more similar among them than all the others.   
 The clustering methods can be basically 
classified into two categories: Hierarchical and 
Nonhierarchical. The hierarchical methods can be 
further divided into the agglomerative methods 
and the divisive methods. The agglomerative 
methods merge together the most similar clusters 
at each level and the merged clusters will remain 
in the same cluster at all higher levels. In the 
divisive methods, initially, the set of all object is 
viewed as a cluster and at each level, some 
clusters are divided into smaller clusters. There 
are also many nonhierarchical methods which 
divide the dataset into clusters. These methods 
are further divided into two: the partitioning 
method, in which the clusters are mutually 
exclusive and the clumping method, in which 
overlap is allowed.  
 For years, many clustering techniques 
were proposed in partitional clustering and are 
now available in the literature (Narasimha, Jain, 
& Flyinn, 1999). The methods are Forgy's 
algorithm, Kmeans algorithm, ISODATA and its 
variants. The extensive studies (Tseng & Yang, 
1999; Narashinha & Sridhar, 1991; Maulik & 
Bandyopadhyay, 2000) dealing with comparative 
analysis of different clustering methods suggests 
that there is no general strategy, which works 
equally well in the different problems domain. 
However, it has been found that it is usually 
beneficial to run schemes that are simpler, and 
execute them several times, rather than using 
schemes that are very complex but need to be run 
only once.  
 
K-Means Clustering Algorithm   
 The aim of this study is a clustering 
technique that will not assume any particular 
underlying distribution of the data set being 
considered. As well, it should be conceptually 
simple like the K-means algorithm (Duda & 
Hart, 1973; Macqueen, 1967). The searching 
through algorithm is explored in order to search 
for appropriate cluster centers in the feature 
space such that a similarity metric of the 
resulting cluster is optimized.  

In fact, to compare the performance or to 
check the optimality, one does not have the 
sufficient information regarding the structure of 
the data set. Thus, to determine the best clusters, 
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a better algorithm is devised which is more valid. 
It can be established by ranking the utility of 
clustering results obtained from different clusters 
algorithms, with respect to certain application 
domains, where utility can be measured. As the 
cluster centers are updated in the K-means and 
proposed algorithms, the distance between the 
cluster centers and each of its points can be 
treated as a unique measure. Mathematically, the 
clustering metric µ for K clusters C1, C2, …, CK  

 
K

1 2 K

i = 1 xj    Ci

µ( C , C ,..., C ) =     ||xj - zi||  
∈

∑ ∑  

 
where Ci are clusters and zi are cluster centers.  

The clustering algorithm searches for the 
appropriate cluster centers z1, z2, …, zK such that 
the clustering metric µ is minimized. The K-
means algorithm is briefly described below in the 
sequel:  
 
Input: Set of sample patterns {x1, x2, …, xm}, 
             xi ∈ Rn 

 
Output: Set of Clusters { C1, C2, …, CK }.  
 
Step 1: Choose K initial cluster centers z1, z2,     
            …, zK randomly from the m patterns 

 { x1, x2, …, xm } where K < m.  
 
Step 2:  Assign pattern xi to cluster Cj, where  i = 

1, 2, …, m and j ∈ {1, 2, …, K}, if and 
only if  ||xj - zj|| < ||xj - zp||, p = 1, 2, …, 
K and j ≠ p. Ties are resolved arbitrarily. 
Compute cluster centers for each point xi 
as follows,  
zi = (1/ni) ∑ xj , i = 1, 2 , … , K.  xj ∈ Ci  
Where ni is the number of elements 
belongs to cluster Ci.  

 
Step 3: Assign each pattern xi to cluster Cj, where 

i = 1, 2, …, m and j ∈ {1, 2, …, K} if and 
only if ||xj - zj|| < ||xj - zp||, p = 1, 2, …, K 
and j ≠  p, where || • || is an Euclidean 
metric norm. Ties are resolved arbitrarily, 
without changing the cluster centers zj, j 
= 1, 2, …, K  

 
Step 4: Stop.  
 

K-CSD Clustering Algorithm  
 In a nutshell, the clustering capability of 
proposed clustering technique using combined 
standard deviation (Gupta, 2001) is stated in the 
following steps:  
 
Input: Set of sample patterns {x1, x2, …, xm}, xi 

∈ Rn 
 
Output: Set of clusters { C1, C2, …, CK }.  
 
Step 1: Choose K initial cluster points z1, z2, …, 

zK randomly from the m patterns {x1, x2, 
…, xm} (where K < m) for each cluster. 

 
Step 2: Assign pattern xi to cluster Cj, where  i = 

1, 2, …, m and j ∈ {1, 2, …, K}, if and 
only if CSD(xj , Cj) < CSD(xj, Cp), p = 1, 
2, …, K and j ≠ p. Ties are resolved 
arbitrarily. The CSD(xj , Cj) is obtained 
by including point xi into Cluster Cj  and 
find the Combined Standard Deviation 
of new cluster Cj . 

 
Step 3: Compute cluster centers for each point xi                 
            as follows, zi = (1/ni)∑ xj , i = 1, 2 , … ,   
            K. xj ∈ Ci Where ni is the number of              
            elements belongs to cluster Ci.  
 
Step 4: Assuming zi are the new initial points to 

each cluster Cj. Assign each pattern xi to 
cluster Cj, where i = 1, 2, …, m and j ∈ 
{1, 2, …, K} if and only if CSD(xj , Cj) < 
CSD(xj, Cp), p = 1, 2, …, K and j ≠  p. 
Ties are resolved arbitrarily, without 
changing the cluster centers zj, j = 1, 2, 
…, K  

 
Step 5: Stop 
 
Experimental Results  
 The experimental results are carried out 
to compare the Proposed Algorithm clustering 
algorithm with the K-means clustering algorithm 
using two synthetic data sets: Data1 and Data2. 
These are described below:  
 
Data1:  This is a non-overlapping two 

dimensional data set where the number 
of classes is three. It has several 
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patterns which are selected from those 
classes by giving equal probabilities. 
The value of K is chosen to be 3 for this 
data set.  

 
Class 1: [ 0, 20] X [40, 60]  
Class 2: [40, 60] X [ 0, 20]  
Class 3: [80,100] X [60, 80]  

 
 

 
 

The results of K-means clustering 
algorithm  and  Proposed   Algorithm  clustering  
algorithm are shown in the following Tables: 
Table 1, Table 2, Table 3, and Table 4 for 30, 
60, 90, and 120 patterns of Data 1 respectively 
for different configurations of data sets 
generated. 

 
 
 

 
 
 

 
 

Table 1 :  30 patterns  
 

K-means K-CSD  
Configu-

ration 
 

Number of 
Clusters  

µ – Euclidean 
metric 

Number of 
Clusters  

µ - Euclidean 
metric 

1 3 186.17 3 115.69 
2 3 145.12 3 131.74 
3 3 156.12 3 130.42 
4 3 186.05 3 235.82 
5 3 77.52 3 129.23 

Total 15 750.98 15 742.90 
Average 3 150.196 3 148.58 

  
 
 
 

Table 2 : 60 patterns 
 

K-means K-CSD  
Configu-

ration 
 

Number of 
Clusters  

µ – Euclidean 
metric 

Number of 
Clusters  

µ - Euclidean 
metric 

1 3 282.32 3 320.43 
2 3 214.27 3 187.92 
3 3 274.54 3 201.53 
4 3 102.26 3 187.97 
5 3 224.85 3 179.29 

Total 15 1098.24 14 1077.14 
Average 3 219.648 2.8 215.428 
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Data2:  This is an overlapping two dimensional 
data set where the number of classes is 
three. It has several patterns which are 
selected from those classes by giving 
equal probabilities. In the K-means 
algorithms, the value of K is chosen to 
be 3 for this data set.  

 
Class 1: [-3.3,-0.7] X [ 0.7, 3.3]  
Class 2: [-1.3, 1.3] X [ 0.7, 3.3]  
Class 3: [-3.3,-0.7] X [-1.3, 1.3]  
 
 

 
 

 
 
The results of K-means clustering 

algorithm and the Proposed Algorithm clustering 
algorithm are shown in the following Tables: 
Table 5, Table 6, Table 7 and Table 8 for 30, 60, 
90 and 120 patterns of Data 2 respectively for 
different configurations of data sets generated. 

 
 
 
 
 
 
 

 
Table 3 :  90 patterns 

 
K-means K-CSD  

Configu-
ration 

 
Number of 

Clusters  
µ – Euclidean 

metric 
Number of 

Clusters  
µ - Euclidean 

metric 
1 3 264.46 3 216.52 
2 3 282.80 3 250.27 
3 3 187.65 3 140.41 
4 3 338.13 3 344.81 
5 3 128.46 3 128.94 

Total 15 1201.50 15 1080.95 
Average 3 240.30 3 216.19 

  
 

Table 4 :  120 patterns 
  

K-means K-CSD  
Configu-

ration 
 

Number of 
Clusters  

µ – Euclidean 
metric 

Number of 
Clusters  

µ - Euclidean 
metric 

1 3 252.87 3 272.63 
2 3 326.26 3 278.94 
3 3 371.83 3 272.04 
4 3 323.89 3 277.12 
5 3 276.22 3 248.57 

Total 15 1551.07 15 1349.30 
Average 3 310.214 3 269.86 
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Table 5 :  30 patterns 

 
K-means K-CSD  

 
Configu-

ration 
Number of 

Clusters  
µ Euclidean 

metric 
Number of 

Clusters  
µ Euclidean metric 

1 3 10.22 3 14.33 
2 3 13.55 3 9.40 
3 3 8.17 3 9.82 
4 3 14.27 3 14.21 
5 3 16.22 3 9.88 

Total 15 62.43 15 57.64 
Average 3 12.486 3 11.528 

  
 

Table 6 : 60 patterns  
 

K-means K-CSD  
 

Configu-
ration 

Number of 
Clusters  

µ Euclidean 
metric 

Number of 
Clusters  

µ Euclidean metric 

1 3 13.65 3 10.07 
2 3 13.54 3 12.92 
3 3 14.03 3 16.64 
4 3 13.25 3 17.64 
5 3 17.79 3 13.10 

Total 15 72.26 15 70.37 
Average 3 14.452 3 14.074 

  
 

Table 7 :  90 patterns  
 

K-means K-CSD  
 

Configu-
ration 

Number of 
Clusters  

µ Euclidean 
metric 

Number of 
Clusters  

µ Euclidean metric 

1 3 26.38 3 15.29 
2 3 21.22 3 27.18 
3 3 23.83 3 17.03 
4 3 20.83 3 16.55 
5 3 17.19 3 16.63 

Total 15 109.45 15 92.68 
Average 3 21.88 3 18.536 
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Conclusion 
 
The implemented K-means and proposed K-
CSD clustering algorithm is tested with two 
different synthetic datasets to optimize the 
clustering metric µ. The tested average metric 
measures of the Data 1 and Data 2 are tabulated 
in Table 9. 

  

 
 
 From the Table 9, it could be seen that 
the average metric is reduced in the proposed 
algorithm. Future work is planned to design and 
implement algorithms to cluster data sets with 
large amount of objects. Such algorithms are 
required in a number of data mining 
applications, such as partitioning very large 
heterogeneous  sets  of  objects  into a number of  

 
Table 8 :  120 patterns  

 
K-means K-CSD  

 
Configu-

ration 
Number of 

Clusters  
µ Euclidean 

metric 
Number of 

Clusters  
µ Euclidean metric 

1 3 28.63 3 24.74 
2 3 30.44 3 19.80 
3 3 18.56 3 18.37 
4 3 19.22 3 21.87 
5 3 20.13 3 20.72 

Total 15 116.98 15 105.5 
Average 3 23.396 3 21.10 

  
 
 
 

Table 9 
 

K-means K-CSD  
 

Data 

 
 

No. of 
Patterns 

Number of 
Clusters  

Average  
Euclidean 
metric - µ 

Number of 
Clusters  

Average   
Euclidean metric 

- µ  
30 3 150.196 3 148.580 
60 3 219.648 3 215.428 
90 3 240.30 3 216.190 

 
1 

120 3 310.214 3 269.860 
30 3 12.486 3  11.528 
60 3 14.452 3  14.074 
90 3 21.88 3  18.536 

 
2 

120 3 23.396 3  21.100 
Total 24 992.572 24 915.296 

Average 3 124.072 3 114.412 
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smaller and more manageable homogeneous 
subsets that can be more easily modeled and 
analyzed and detecting underrepresented 
concepts, e.g., fraud in a very large number of 
insurance claims. 
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