
Wayne State University

Wayne State University Associated BioMed Central Scholarship

2004

Incremental genetic K-means algorithm and its
application in gene expression data analysis
Yi Lu
Wayne State University, luyi@wayne.edu

Shiyong Lu
Wayne State University, shiyong@cs.wayne.edu

Farshad Fotouhi
Wayne State University, fotouhi@cs.wayne.edu

Youping Deng
University of Southern Mississippi, youping.deng@usm.edu

Susan J. Brown
Kansas State University, sjbrown@ksu.edu

This Article is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University
Associated BioMed Central Scholarship by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Lu et al. BMC Bioinformatics 2004, 5:172
doi:10.1186/1471-2105-5-172

Available at: http://digitalcommons.wayne.edu/biomedcentral/212

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/biomedcentral
http://dx.doi.org/10.1186/1471-2105-5-172

BioMed Central

Page 1 of 10
(page number not for citation purposes)

BMC Bioinformatics

Open AccessMethodology article
Incremental genetic K-means algorithm and its application in gene
expression data analysis
Yi Lu1, Shiyong Lu1, Farshad Fotouhi1, Youping Deng*2 and Susan J Brown3

Address: 1Dept. of Computer Science, Wayne State University, Detroit, MI 48202, USA, 2Department of Biological Sciences, the University of
Southern Mississippi, Hattiesburg 39406, USA and 3Division of Biology, Kansas State University, Manhattan, KS 66506, USA

Email: Yi Lu - luyi@wayne.edu; Shiyong Lu - shiyong@cs.wayne.edu; Farshad Fotouhi - fotouhi@cs.wayne.edu;
Youping Deng* - youping.deng@usm.edu; Susan J Brown - sjbrown@ksu.edu

* Corresponding author

Abstract
Background: In recent years, clustering algorithms have been effectively applied in molecular
biology for gene expression data analysis. With the help of clustering algorithms such as K-means,
hierarchical clustering, SOM, etc, genes are partitioned into groups based on the similarity between
their expression profiles. In this way, functionally related genes are identified. As the amount of
laboratory data in molecular biology grows exponentially each year due to advanced technologies
such as Microarray, new efficient and effective methods for clustering must be developed to
process this growing amount of biological data.

Results: In this paper, we propose a new clustering algorithm, Incremental Genetic K-means
Algorithm (IGKA). IGKA is an extension to our previously proposed clustering algorithm, the Fast
Genetic K-means Algorithm (FGKA). IGKA outperforms FGKA when the mutation probability is
small. The main idea of IGKA is to calculate the objective value Total Within-Cluster Variation
(TWCV) and to cluster centroids incrementally whenever the mutation probability is small. IGKA
inherits the salient feature of FGKA of always converging to the global optimum. C program is
freely available at http://database.cs.wayne.edu/proj/FGKA/index.htm.

Conclusions: Our experiments indicate that, while the IGKA algorithm has a convergence pattern
similar to FGKA, it has a better time performance when the mutation probability decreases to
some point. Finally, we used IGKA to cluster a yeast dataset and found that it increased the
enrichment of genes of similar function within the cluster.

Background
In recent years, clustering algorithms have been effectively
applied in molecular biology for gene expression data
analysis (see [1] for an excellent survey). With the
advancement in Microarray technology, it is now possible
to observe the expression levels of thousands of genes
simultaneously when the cells experience specific condi-
tions or undergo specific processes. Clustering algorithms

are used to partition genes into groups based on the simi-
larity between their expression profiles. In this way, func-
tionally related genes are identified. As the amount of
laboratory data in molecular biology grows exponentially
each year due to advanced technologies such as Microar-
ray, new efficient and effective methods for clustering
must be developed to process this growing amount of bio-
logical data.

Published: 28 October 2004

BMC Bioinformatics 2004, 5:172 doi:10.1186/1471-2105-5-172

Received: 10 March 2004
Accepted: 28 October 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/172

© 2004 Lu et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1471-2105/5/172
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15511294
http://database.cs.wayne.edu/~proj/FGKA/index.htm.
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 2 of 10
(page number not for citation purposes)

Among the various clustering algorithms, K-means [2] is
one of the most popular methods used in gene expression
data analysis due to its high computational performance.
However, it is well known that K-means might converge to
a local optimum, and its result is subject to the initializa-
tion process, which randomly generates the initial cluster-
ing. In other words, different runs of K-means on the same
input data might produce different solutions.

A number of researchers have proposed genetic algo-
rithms [3-6] for clustering. The basic idea is to simulate
the evolution process of nature and evolve solutions from
one generation to the next. In contrast to K-means, which
might converge to a local optimum, these genetic algo-
rithms are insensitive to the initialization process and
always converge to the global optimum eventually. How-
ever, these algorithms are usually computationally expen-
sive which impedes the wide application of them in
practice such as in gene expression data analysis.

Recently, Krishna and Murty proposed a new clustering
method called Genetic K-means Algorithm (GKA) [7],
which hybridizes a genetic algorithm with the K-means
algorithm. This hybrid approach combines the robust
nature of the genetic algorithm with the high performance
of the K-means algorithm. As a result, GKA will always
converge to the global optimum faster than other genetic
algorithms.

In [8], we proposed a faster version of GKA, FGKA that fea-
tures several improvements over GKA including an effi-
cient evaluation of the objective value TWCV (Total
Within-Cluster Variation), avoiding illegal string elimina-
tion overhead, and a simplification of the mutation oper-
ator. These improvements result that FGKA runs 20 times
faster than GKA [9]. In this paper, we propose an exten-
sion to FGKA, Incremental Genetic K-means Algorithm
(IGKA) that inherits all the advantages of FGKA including
the convergence to the global optimum, and outperforms
FGKA when the mutation probability is small. The main
idea of IGKA is to calculate the objective value TWCV and
to cluster centroids incrementally. We then propose a
Hybrid Genetic K-means Algorithm (HGKA) that combines
the benefits of FGKA and IGKA. We show that clustering
of microarray data by IGKA method has more tendencies
to group the genes with the same functional category into
a given cluster.

Results
Our experiments were conducted on a Dell PowerEdge
400SC PC machine with 2.24G Hz CPU and 512 M RAM.
Three algorithms, FGKA, IGKA and HGKA algorithm were
implemented in C language. GKA has convergence pattern
similar to FGKA and IGKA, but its time performance is
worse than FGKA, see [9] for more details. In the follow-

ing, we compare the time performance of FGKA and IGKA
along different mutation probabilities, and then we com-
pare the convergence property of four algorithms, IGKA,
FGKA, K-means and SOM (Self Organizing Map). At the
end, we check how we can combine IGKA and FGKA algo-
rithm together to obtain a better performance.

Data sets
The two data sets used to conduct our experiments are
serum data, fig2data, introduced in [11]and yeast data,
chodata, introduced in [2]. The fig2data data set contains
expression data for 517 genes. Each gene has 19 expres-
sion data ranges from 15 minutes to 24 hours. In other
words, the number of features D is 19. According to [11],
517 genes can be divided into 10 groups. The chodata is a
yeast dataset, composed of expression data for 2907 genes
and the expression data for each gene ranges 0 minutes to
160 minutes, which means that the number of features D
is 15. According to the description in [2], the genes can be
divided into 30 groups. Since the IGKA is a stochastic
algorithm, for each experiment in this study, we obtain
the results by averaging 10 independent run of the pro-
gram. The mutation probability, the generation number,
the population number all affect the performance and
convergence of FGKA and IGKA. The detailed discussion
of the parameters setting can be found in [8]. In this
paper, we simply adopt the result in [8], the population
number is set to 50, and the generation number is set to
100. These parameter setting are safe enough to guarantee
the algorithm converge to the optima.

Comparison of IGKA with FGKA on time performance
As indicated in the implementation section, the mutation
probability has great impact on IGKA algorithm. We
check the performance impact on IGKA in this section,
and the convergence in the next section. Figure 2 shows
the time performance results for these two algorithms. We
can see that when the mutation probability increases, the
running time increases accordingly for both algorithms.
However, when the mutation probability is smaller than
some threshold (0.005 for fig2data, and 0.0005 for chod-
ata), IGKA has a better performance. Figure 2 also indi-
cates the thresholds vary from one dataset to another. In
order to achieve better performance of IGKA in large data
set, mutation probability may need to be set to smaller
than that in small data set. For example, in larger data set
chodata, we should set the mutation probability to 0.0005
to have IGKA outperform FGKA. On the other hand, in
order to have IGKA outperform than FGKA, we only need
to set the mutation probability to 0.005 in the small data
set fig2data. In general, the threshold value depends on
the number of patterns and the number of features in the
data set. It is easy to understand that the performance
gained in IGKA is mainly dependent on how many pat-
terns change their cluster memberships. So, in a large data

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 3 of 10
(page number not for citation purposes)

The impacts of mutation probability on time performance for IGKA and FGKAFigure 2
The impacts of mutation probability on time performance for IGKA and FGKA. The population size is set to 50; the generation size is
set to 100. The mutation probability ranges from 0.001 to 0.1 for fig2data, and 0.0001 to 0.1 for chodata. (A) shows the running
time for FGKA and IGKA on fig2data. (B) shows the running time for FGKA and IGKA on chodata. (C) shows the average and
standard error of running time on fig2data when the mutation probability is set to 0.001 and 0.005. (D) shows the average and
standard error of running time on chodata when the mutation probability is set to 0.0001 and 0.0005. When the mutation
probability increases, the running time increases accordingly for both algorithms. However, when the mutation probability is
smaller than some threshold (0.005 for fig2data, and 0.0005 for chodata), the IGKA has better performance. It indicates the
thresholds vary from one dataset to another. It mainly depends on the number of patterns and the number of features in the
data set.

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 4 of 10
(page number not for citation purposes)

set, even small number of mutation probability may cause
many patterns change their cluster memberships.

Comparison of IGKA with FGKA, K-means and SOM on
convergence
Figures 3(A) and 3(B) show the convergence of IGKA ver-
sus FGKA across different mutation probabilities based on
fig2data and chodata, respectively. These two algorithms
have similar convergence results. When the mutation

probability changes in these two data sets, it has little
impact on these two algorithms during the range that is
given in Figure 3, except for the case when the mutation
probability is too large. It gives an opportunity to choose
IGKA with better performance without losing the conver-
gence benefit.

We also make an interesting comparison of IGKA with
FGKA, K-means and SOM on TWCV convergence. We treat

The impacts of mutation probability on convergence for IGKA and FGKAFigure 3
The impacts of mutation probability on convergence for IGKA and FGKA. The population size is set to 50; the generation size is set
to 100. The mutation probability ranges from 0.001 to 0.1 for fig2data, and 0.0001 to 0.1 for chodata. (A) shows the conver-
gence with different mutation probability for FGKA and IGKA on fig2data. (B) shows the convergence with different mutation
probability for FGKA and IGKA on chodata. These two algorithms have similar convergence results. When the mutation prob-
ability changes in these two data sets, it has little impact on two algorithms during the range that is given in the Figure, except
for the case when the mutation probability is too large. It gives an opportunity to choose IGKA with better performance with-
out losing the convergence benefit.

Table 2: Comparison of different algorithms on TWCV convergence with two data sets. Four algorithms, IGKA, FGKA, K-means and
SOM are experimented on the two data set, the fig2data, and chodata. The TWCVs of IGKA and FGKA algorithm are obtained by
averaging 10 individual runs while the generation number is set to 100, the population number is set to 50, the mutation probability is
set to 0.005 for fig2data, and 0.0005 for chodata. The TWCV of K-means algorithm is obtained by averaging 20 individual runs. The
TWCV of SOM is obtainedby 8 individual runs with different setting on X and Y dimension. The IGKA and FGKA algorithms have
better TWCV convergence than the K-means and SOM.

Algorithms Fig2data Chodata

IGKA (Average of 10 individual runs with generation 100, population 50, mutation probability 0.005 in fig2data,
and 0.0005 in chodata)

4991.53889 16995.7

FGKA (Average of 10 individual runs with generation 100, population 50, mutation probability 0.005 in fig2data,
and 0.0005 in chodata)

4992.13889 16995.4

K-means (Average of 20 individual runs) 5154.21434 17374.6758
SOM (Average of 8 individual runs with different setting) 24805.3661 21660.9049

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 5 of 10
(page number not for citation purposes)

each algorithm as a black box. Two data sets, the fig2data
and chodata, are fed into the algorithms, and the clustering
results are exported as a text file. We then use an in-house
program to calculate the TWCVs for each result. The exper-
iments on K-means and SOM algorithm are conducted on
an open source software [12]. As we can see in Table 2, the
IGKA and FGKA have almost similar convergence result,
and much better than the convergence of K-means algo-
rithm. The TWCV convergence of SOM is much worse
than the others although these four algorithms all use
Euclidian distance as their measurement. The reason why
we do not include another popular clustering algorithm,
hierarchical clustering algorithm is because it is hard to
define the boundary among the nested clusters, which
means we cannot simply define the number of cluster
before running the program.

Combination of IGKA with FGKA
Figure 4 compares three algorithms, IGKA, FGKA and
HGKA, based on the running times for 100 iterations. The
mutation probability is set to 0.0001 for all three algo-
rithms. It is clearly that the running time for each iteration
of FGKA is much stable than others. On the other hand,
the running time for IGKA is much higher than FGKA at
the beginning because there are a large number of patterns
change their cluster belonging during the K-means opera-
tor which cause the IGKA spend a lot of computation
time. However, the running time for each iteration of
IGKA decrease very sharply at late iterations. The HGKA
combines the advantage of two algorithms. The turning
point when HGKA uses IGKA instead of FGKA as work
horse is highly data dependent. In this particular case, we
check the computation time every 15 iterations. The result
shows that the performance can be really improved by
using HGKA when the mutation probability is small.

The performance comparison of IGKA, FGKA and HGKA based on iterationsFigure 4
The performance comparison of IGKA, FGKA and HGKA based on iterations. The comparison is based on the chodata data set, the
population number is set to 50 and the mutation probability is set to 0.0001. 100 iterations of three algorithms, IGKA, FGKA
and HGKA, are shown in the Figure. The running time for each iteration of FGKA is almost fixed while the running time for
IGKA is much higher than FGKA at the beginning and decrease very sharply at late iterations. The HGKA combines the advan-
tage of two algorithms. The turning point in this test case is at iteration 30.

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 6 of 10
(page number not for citation purposes)

Discussion
The clustering results of chodata using our IGKA algorithm
were evaluated according to the scheme of gene classifica-
tion of MIPS Yeast Genome Database [13]. We found that
genes of similar function were grouped into the same clus-
ter. Table 3 shows 8 main clusters including 16 functional
categories of genes. The results are comparable to the data
of [2]. The absolute number of ORFs with functional cat-
egories in some cluster may not be always higher than
Tavazoie's result, but we found that the percentage of the
ORF number within functional category of each cluster in
the total ORF number of each cluster is usually higher
than Tavazoie's result in most cases. For example, they
found that there are 40 genes in the functional category of
nuclear organization distributed in their cluster 2, in
which there are 186 ORFs, so their percentage is 21.5%.
But we found there are 50 genes of the same functional
category distributed in our cluster 16, in which there are
only 133 ORFs, and our percentage is 37.6% that is signif-
icantly higher than 21.5%.

Most interestingly, we found a remarkable enrichment of
ORFs for the functional category of organization of mito-
chondria. They are mainly located in two clusters: cluster
3 and cluster 18. Cluster 3 has 156 ORFs in total, and 111
ORFs belong to the category, resulting in a very high per-
centage, 71.2%. Cluster 18, has 184 ORFs in total, in
which there are 105 ORFs belonging to the category and
the percentage is 57.1%. The percentage of ORFs within

the same function category is only 18.8% in the previous
paper. It looks that our IGKA method is more likely to
increase the degree of enrichment of the genes within
functional categories, and to make more biological sense.
We also found a new function category: lipid and fatty iso-
prenoid metabolism distributed in cluster 25, which was
not listed in Tavazoie's paper.

Conclusions
In this paper, we propose a new clustering algorithm
called Incremental Genetic K-means Algorithm (IGKA).
IGKA is an extension of FGKA, which in turn was inspired
by the Genetic K-means Algorithm (GKA) proposed by
Krishna and Murty. The IGKA inherits the advantages of
FGKA, and it outperforms FGKA when the mutation prob-
ability is small. Since both FGKA and IGKA might outper-
form each other, a hybrid approach that combines the
benefits of them is very desirable. Our experimental
results showed that not only the performance of our algo-
rithm is improved but also the clustering result with gene
expression data has some interesting biological discovery.

Methods
The problem of clustering gene expression data consists of
N genes and their corresponding N patterns. Each pattern
is a vector of D dimensions recording the expression levels
of the genes under each of the D monitored conditions or
at each of the D time points. The goal of IGKA algorithm
is to partition the N patterns into user-defined K groups,

Table 3: Distribution of ORF function categories in the clusters. Chodata set was clustered using IGKA algorithm. We identified the
gene distribution of different functional categories into different clusters. The function categories were divided according to MIPS
(Mewes et al., 2000). The total number of ORFs in each function category was indicated in parentheses. The cluster number to which
the genes were grouped is denoted as "Cluster" column. The ORF number in each cluster is denoted as "Total". The ORF number
within each functional category is denoted as "Function ORFs". The percentage of the ORF number within functional category of each
cluster in the total ORF number of each cluster is denoted as "Percentage (%)".

Cluster MIPS functional category Total Function ORFs Percentage(%)

1 Mitotic cell cycle and cycle control(352) 86 24 27.9
Budding, cell polarity, filament form(170) 8 9.3

3 Organization of mitochondrion(366) 156 111 71.2
Respiration(88) 10 6.4
Nitrogen and sulpur metabolism(67) 9 5.6

16 Organization of nucleus(774) 133 50 37.6
17 Ribosome biogenesis(215) 88 50 56.8

Organization of cytoplasm(554) 31 35.2
18 Organization of mitochondrion(366) 184 105 57.1
25 DNA synthesis and replication(94) 164 23 14

DNA recombination and DNA repair(153) 11 6.7
Lipid and fatty isoprenoid metabolism(213) 9 5.5

29 Organization of nucleus chromosome(44) 93 14 15
Amino acid metabolism(204) 12 12.9

30 TCA pathway or Krebs cycle(25) 92 7 7.6
C-compound, carbohydrate metabolism(415) 14 15.2

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 7 of 10
(page number not for citation purposes)

such that this partition minimizes the Total Within-Clus-
ter Variation (TWCV, also called square-error in the litera-
ture), which is defined as follows.

Let be the N patterns, and Xnd denotes the
dth feature of pattern Xn(n = 1,...N). Each partition is rep-
resented by a string, a sequence of numbers a1....aN,,

where an is the number of the cluster that pattern
belongs to in this partition. Let Gk denote the kth cluster
and Zk denote the number of patterns in Gk. The centroid
ck = (ck1, ck2,...,ckD) of cluster Gk is defined as

, (d = 1,2,...D) where SFkd is the

sum of the dth features of all the patterns in Gk. and we use

 to denote the vector of sum of all patterns in cluster
Gk.

IGKA maintains a population (set) of Z coded solutions,
where Z is a parameter specified by the user. Each solu-
tion, also called a chromosome, is coded by a string a1...aN

of length N, where each an, which is called an allele, corre-
sponds to a gene expression data pattern and takes a value
from {1, 2, ..., K} representing the cluster number to
which the corresponding pattern belongs. For example,
a1a2a3a4a5= "33212" encodes a partition of 5 patterns in

which, patterns and belong to cluster 3, patterns

 and belong to cluster 2, and pattern belongs
to cluster 1.

Definition (Legal strings, Illegal strings)
Given a partition Sz = a1aN, let e(Sz) be the number of
non-empty clusters in Sz divided by K, e(Sz) is called legal-
ity ratio. We say string Sz is legal if e(Sz) = 1, and illegal oth-
erwise.

Hence, an illegal string represents a partition in which
some clusters are empty. For example, given K = 3, the
string a1a2a3a4a5 = "23232" is illegal because cluster 1 is
empty.

Figure 1 gives the flowchart of IGKA. It starts with the ini-
tialization phase, which generates the initial population
P0. The population in the next generation Pi + 1 is obtained
by applying genetic operators on the current population
Pi. The evolution takes place until a terminating condition
is reached. The following genetic operators are used in
IGKA: the selection, the mutation and the K-means
operator.

Selection operator
We use the so-called proportional selection for the selection
operator in which, the population of the next generation
is determined by Z independent random experiments.
Each experiment randomly selects a solution from the cur-
rent population (S1, S2, ..., Sz) according to the probability

distribution (p1, p2, ..., pK) defined by (z

= 1,...Z), where F(Sz) denotes the fitness value of solution
Sz with respect to the current population and will be
defined in the next paragraph.

X X XN1 2, , ...,

Xn

c
SF

Z

X

Zkd
kd

k

ndX G

k

n k= = ∈∑

SFk

X1 X2

X3 X5 X4

p
F S

F S
z

z

zz
Z

=
=∑
()

()
1

The flowchart of IGKA algorithmFigure 1
The flowchart of IGKA algorithm. It starts with the initialization phase, which generates the initial population P0. The population in
the next generation Pi + 1 is obtained by applying genetic operators on the current population Pi. The evolution takes place until
a terminating condition is reached. The selection, the mutation and the K-means operator are sequentially used in IGKA.

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 8 of 10
(page number not for citation purposes)

Various fitness functions have been defined in the litera-
ture [10] in which the fitness value of each solution in the
current population reflects its merit to survive in the next
generation. In our context, the objective is to minimize
the Total Within-Cluster Variation (TWCV). Therefore,
solutions with smaller TWCVs should have higher proba-
bilities for survival and should be assigned with greater fit-
ness values. In addition, illegal strings are less desirable
and should have lower probabilities for survival, and thus
should be assigned with lower fitness values. We define
fitness value of solution Sz, F(Sz) as

where TWCVmax is the maxim TWCV that has been
encountered till the present generation, Fmin is the smallest
fitness value of the legal strings in the current population
if they exist, otherwise Fmin is defined as 1. The definition
of fitness function in GKA [7] paper inspired our defini-
tion, but we incorporate the idea of permitting illegal
strings by defining the fitness values for them.

The intuition behind this fitness function is that, each
solution will have a probability to survive by being
assigned with a positive fitness value, but a solution with
a smaller TWCV has a greater fitness value and hence has
a higher probability to survive. Illegal solutions are
allowed to survive too but with lower fitness values than
all legal solutions in the current population. Illegal strings
that have more empty clusters are assigned with smaller
fitness values and hence have lower probabilities for
survival. The reason we still allow illegal solution survive
with low probability is that we believe the illegal solution
may mutate to a good solution and the cost of maintain
the illegal solution is very low.

We assume that the TWCV for each solution Sz (denoted
by Sz.TWCV) and the maximum TWCV (denoted by
TWCVmax), have already been calculated before the selec-
tion operator is applied.

Mutation operator
Given a solution (chromosome) that is encoded by a1
....aN, the mutation operator mutates each allele an(n = 1,
..., N) to a new value an (an might be equal to an) with
probability MP respectively and independently, where 0
<MP < 1 is a parameter called the mutation probability that
is specified by the user. The mutation operator is very
important to help reach better solutions. From the per-
spective of the evolutional theory, offsprings produced by
mutations might be superior to their parents. More
importantly, the mutation operator performs the function
of shaking the algorithm out of a local optimum, and
moving it towards the global optimum.

Recall that in solution a1aN, each allele an corresponds

to a pattern and its value indicates the number of the

cluster to which belongs. During mutation, we replace
allele an by an' for n = 1,...,N simultaneously, where an is a
number randomly selected from (1,....,K) with the proba-
bility distribution (p1, p2, ..., pK) defined by:

where is the Euclidean distance between pat-

tern and the centroid ck of the kth cluster, and

. If the kth cluster is empty,

then is defined as 0. The bias 0.5 is introduced
to avoid divide-by-zero error in the case that all patterns
are equal and are assigned to the same cluster in the given
solution. Our definition of the mutation operator is simi-
lar to the one defined in the GKA paper [7]. However, we
account for illegal strings, which are not allowed in the
GKA algorithm.

The above mutation operator is defined such that (1)
might be reassigned randomly to each cluster with a pos-
itive probability; (2) the probability of changing allele

value an to a cluster number k is greater if is closer to
the centroid of the kth cluster Gk; and (3) empty clusters

are viewed as the closest clusters to . The first property
ensures that an arbitrary solution, including the global
optimum, might be generated by the mutation from the
current solution with a positive probability; the second

property encourages that each is moving towards a
closer cluster with a higher probability; the third property
promotes the probability of converting an illegal solution
to a legal one. These properties are essential to guarantee
that IGKA will eventually converge to the global optimum
fast.

K-means operator
In order to speed up the convergence process, one step of
the classical K-means algorithm, which we call K-means
operator (KMO) is introduced. Given a solution that is
encoded by a1aN, we replace an by an' for n = 1,...,N
simultaneously, where an' is the number of the cluster

whose centroid is closest to in Euclidean distance.

More formally,

F S
TWCV TWCV S if S is leagal

e S F otherwisz
z z

z
()

. * (),

()*
max

min
=

−1 5

, ee

Xn

Xn

p
d X d X c

d X d
k

n n k

n

=
− +

−

1 5 0 5

1 5

. * () (,) .

(. * ()

max

max ((,) .)X cn kk
K
=∑ +
1

0 5

d Xn(,)ck

Xn

d X d X cn
k

n kmax() max{ (,)}=

d Xn(,)ck

Xn

Xn

Xn

Xn

Xn

d X C d X cn an
k

n k(,) min { (,)}’ =

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 9 of 10
(page number not for citation purposes)

To accommodate illegal strings, we define = +∞
if the kth cluster is empty. This definition is different from

mutation operator, in which we defined = 0 if
the kth cluster is empty. The motivation for this new defi-
nition here is that we want to avoid reassigning all pat-
terns to empty clusters. Therefore, illegal string will
remain illegal after the application of KMO.

In the following, we first present FGKA algorithm that is
proposed in [9]. We then describe the motivation for
IGKA based on the idea of incremental calculation of
TWCV and centroids. Finally, we present a hybrid
approach that combines the benefits of FGKA and IGKA.

Fast Genetic K-Means Algorithm (FGKA)
FGKA shares the same flowchart of IGKA given in Figure
1. It starts with the initialization of population P0 with Z
solutions. For each generation Pi, we apply the three oper-
ators, selection, mutation and K-means operator sequen-

tially which generate population , , and Pi + 1

respectively. This process is repeated for G iterations, each
of which corresponds to one generation of solutions. The
best solution so far is observed and recorded in So before
the selection operator. So is returned as the output solu-
tion when FGKA terminates.

Incremental Genetic K-Means Algorithm (IGKA)
Although FGKA outperforms GKA significantly, it suffers
from a potential disadvantage. If the mutation probability
is small, then the number of allele changes will be small,
and the cost of calculating centroids and TWCV from
scratch can be much more expensive than calculating
them in an incremental fashion. As a simple example, if a

pattern is reassigned from cluster k to cluster k', then
only the centroids and WCVs of these two clusters need to
be recalculated. Furthermore, the centroids of these two
clusters can be calculated incrementally since the mem-
berships of other patterns have not changed; The TWCV
can be calculated incrementally as well since the WCVs of
other clusters have not changed. In the following, we
describe how we can calculate TWCV and cluster centroids

 incrementally.

In order to obtain the new centroid , we maintain the

difference values of Zk
∆, for old solution and new

solution when allele changes. With these two values,

incremental update of Zk and can be achieved as Zk =

Zk + Zk
∆, and . Then the new centroids for

new solution can be achieved by .

Similarly, in order to obtain the new TWCV, we can main-
tain a difference value TWCV∆ that denotes the difference
between old TWCV and new TWCV for one solution. It is
obvious that TWCV∆ is attributed from the difference of
new WCVk and old WCVk for cluster k. However, WCVk

has to be calculated from scratch since is changed. In
this way, TWCV can be updated incrementally as well.
Since the calculation of TWCV dominates all iterations,
our incremental update of TWCV will have a better per-
formance when mutation probability is small (which
implies a small number of alleles changes). However, if
the mutation probability is large, too many alleles change
their cluster membership, the maintenance of Zk

∆ and

 becomes expensive and IGKA becomes inferior to
FGKA in performance, as confirmed in the experimental
study.

Hybrid Genetic K-Means Algorithm (HGKA)
The above discussion presents a dilemma – both FGKA
and IGKA are likely to outperform each other: when the
mutation probability is smaller than some threshold,
IGKA outperforms FGKA; otherwise, FGKA outperforms
IGKA.

The key idea of HGKA is to combine the benefits of FGKA
and IGKA. However, it is very difficult to derive the thresh-
old value, which is dataset dependant. In addition, the
running times of all iterations will vary as solutions con-
verge to the optimum. We propose the following solution:
we periodically run one iteration of FGKA followed by
one iteration of IGKA while monitoring their running
times, and then run the winning algorithm for the follow-
ing iterations until we reach another competition point.

It has been proved in [8] that FGKA will eventually con-
verge to the global optimum. By using the same flowchart
and operators, IGKA and HGKA will also converge to the
global optimum. We summarize the comparison of vari-
ous clustering algorithms in Table 1.

Availability and requirements
IGKA algorithm is available at http://data
base.cs.wayne.edu/proj/FGKA/index.htm. The source
code and database scheme are freely distributed to aca-
demic users upon request to the authors.

List of abbreviations
WCV: Within-Cluster Variation; TWCV: Total Within-

Cluster Variation; IGKA: Incremental Genetic K-means
Algorithm; FGKA: Fast Genetic K-means Algorithm;

d Xn(,)ck

d Xn(,)ck

′Pi ′′Pi

Xn

ck

ck

SFk
∆

SFk

SF SF SFk k k= +
∆

ck ck = SF Zk k/

ck

SFk
∆

http://database.cs.wayne.edu/proj/FGKA/index.htm
http://database.cs.wayne.edu/proj/FGKA/index.htm

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2004, 5:172 http://www.biomedcentral.com/1471-2105/5/172

Page 10 of 10
(page number not for citation purposes)

HGKA: Hybrid Genetic K-means Algorithm; ORF: Open
Reading Frame.

Authors' contributions
YL carried out the study and drafted the manuscript. SL
and FF designed the algorithms. YD designed the whole
project, participated in analyzing gene functional data
and wrote part of manuscript. SJB corrected English and
helped to interpret the data analysis results.

Acknowledgements
We thank Mr. Jun Chen for helping us in dividing the gene function catego-
ries. The project described was supported by NIH grant P20 RR16475 from
the BRIN Program of the National Center for Research Resources.

References
1. Shamir R, Sharan R: approaches to clustering gene expression

data. In Current Topics in Computational Biology Edited by: Jiang T,
Smith T, Y. Xu and Zhang MQ. , MIT press; 2001.

2. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM: System-
atic determination of genetic network architecture. Nat Genet
1999, 22:281-285.

3. Bhuyan JN, Raghavan VV, Elayavalli VK: Genetic algorithm for
clustering with an ordered representation: ; San Mateo, CA,
USA. ; 1991.

4. Hall LO, B. OI, Bezdek JC: Clustering with a genetically opti-
mized approach. IEEE Trans on Evolutionary Computation 1999,
3:103-112.

5. Maulik U, Bandyopadhyay S: Genetic algorithm based clustering
technique. Pattern Recognition 2000:1455-1465.

6. Jones D, Beltramo M: partitioning problems with genetic algo-
rithms: ; San Mateo, CA, USA. ; 1991.

7. Krishna K, Murty M: Genetic K-means algorithm. IEEE Transac-
tions on Systems, Man and Cybernetics - Part B: Cybernetics 1999,
29:433-439.

8. Lu Y, Lu S, Fotouhi F, Deng Y, Brown S: FGKA: A Fast Genetic K-
means Algorithm: March 2004. 2004.

9. Lu Y, Lu S, Fotouhi F, Deng Y, Brown S: Fast genetic K-means
algorithm and its application in gene expression data
analysis. Detroit, Wayne State University; 2003.

10. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM,
Staudt LM, Hudson JJ, Boguski MS, Lashkari D, Shalon D, Botstein D,
Brown PO: The transcriptional program in the response of
human fibroblasts to serum. Science 1999, 283:83-87.

11. de Hoon MJ, Imoto S, Nolan J, Miyano S: Open source clustering
software. Bioinformatics 2004, 20:1453-1454.

12. Mewes HW, Frishman D, Gruber C, Geier B, Haase D, Kaps A, Lem-
cke K, Mannhaupt G, Pfeiffer F, Schuller C, Stocker S, Weil B: MIPS:
a database for genomes and protein sequences. Nucleic Acids
Res 2000, 28:37-40.

13. Goldberg D: Genetic Algorithms in Search: Optimization and
Machine Learning. MA, Addison-Wesley; 1989.

Table 1: Comparison of different algorithms on performance, convergence and stability. Five apporaches are compared based on time
performance, convergence and stability. The K-means algorithm has better time performance than any other genetic algorithms, but
it suffers from converging to local optimum and initialization dependent. Among the four genetic clustering approaches, Hybrid
approach always has better time performance while FGKA performs well when the mutation probability is big, and IGKA performs
well when the mutation probability is small. IGKA and FGKA outperform GKA. The convergence of four genetic algorithms has
similar results, and all four are independent from the initialization.

K-means GKA FGKA IGKA Hybrid

Time Fastest Slow Good when the mutation Good when the mutation Good
Performance probability is large probability is small
Convergence Worse Good Good Good Good
Stability Unstable Stable Stable Stable Stable

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592176
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Wayne State University
	2004
	Incremental genetic K-means algorithm and its application in gene expression data analysis
	Yi Lu
	Shiyong Lu
	Farshad Fotouhi
	Youping Deng
	Susan J. Brown
	Recommended Citation

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Data sets
	Table 2

	Comparison of IGKA with FGKA on time performance
	Comparison of IGKA with FGKA, K-means and SOM on convergence
	Combination of IGKA with FGKA
	Table 3

	Discussion
	Conclusions
	Methods
	Definition (Legal strings, Illegal strings)
	Selection operator
	Mutation operator
	K-means operator
	Fast Genetic K-Means Algorithm (FGKA)
	Incremental Genetic K-Means Algorithm (IGKA)
	Hybrid Genetic K-Means Algorithm (HGKA)
	Table 1

	Availability and requirements
	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

