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CHAPTER 1 INTRODUCTION

Most process and design optimization approachds asithe response surface methodology
(RSM) require a complete experimental design tadégrmined prior to the experimentation
process (Spendley, Hex and Himsworth, 1962). Theseset designs offer ease of
implementation and good performance over a widgea applications. However, they lack the
ability to adapt the design based on the charatiesiof application and experimental space so
as to reduce the number of experiments necesséuig, h particular, constitutes a major
disadvantage in many industrial applications wttkeecost of experimentation is high or when
the experimentation resources are limited. Thedasimial experiments share the following two
main characteristics: (1) prior to the experimém, behavior of the experimental design space is
not well known; (2) the cost of each experimental is prohibitively high and the experimental
budget is limited. An example for such industrigberiments is the combustion test for aircraft
engine or turbines where prototypes are very experand the behavior of different designs are
highly unpredictable (See Figure 1). The computei@xperimentation approach is commonly
resorted as a cost effective alternative to phydiesting of complex engineering systems.
However, these computational experiments may tate 2D hours per simulation run as in the
case of FEA of etc. (Gramacy and Lee 2009). Gu XR0€ports that one crash simulation on a

full passenger car takes 36-160 hours at Ford Motonpany.



(a) Turbine (b) Combustion Chamk

Figure 1 Turbine and aircraft engine

The focus of this dissertation is mainly on the usigial experiments with high
experimentation cost, limited experimental resosire@d requiring high design optimization
performance. In designing industrial experimenkg traditional RSM methodologies (CCD,
Box-Behnken optimal designs, etc.) are often pretefor various advantages, e.g., rotatability
and variance of error estimation. However, theséhaas rely on “one-shot” designs and thus
fall short in providing efficient experimental dgss for highly engineered complex systems.
This has been pointed out by George E. P. Box &&rfl should be more studies of statistics
from the dynamic point of view” in Box (1999) arftht “I think we have spent too much time on
one-shot statistical procedures designed to tdstrshan to learn.” in response to Myers (1999).
Further, these methods fit a regression model ®fsifstem responses to accurately predict the
response curve over the entire domain of feagibililowever, the prediction in the
neighborhood of the optimum is often more importéiman prediction in the domain of

feasibility.

In this dissertation, we propose a number of adaequential experimentation strategies
based on global optimization concepts, nonparametgression methods, and response surface

methodology for different type’s response surfalmesndustrial experiments with, noise, high



experimentation cost, and requiring high designnaigation performance. We consider the
experimentation as successive series of smallatdiection efforts. At each step, we learn from
the previous results, refine our understanding dawlop a new model for the next experiment
to reduce uninformative experiments and improvedhality of results. The idea of adaptive
experimental design is not new. Beginning with #eguential RSM experimentation with
multiple blocks in Box and Wilson (1951), there Baeen many ideas such as one-factor-at-a-
time (OFAT) (Friedman and Savage 1947, Daniel 19d@8aptive OFAT (Frey, Engelhardt, and
Greitzer, 2003), adaptive RSM (Wang, Dong andAston 2001, Wang 2003), successive RSM
(Stander, 2001), evolutionary operation (Box andgder, 1969), steepest ascent based methods
(Box and Wilson, 1951), and sequential and adapapproximation methods from the

engineering design discipline.

The Adaptive Sequential Response Surface MethogdlA§RSM) approach presented in
this dissertation is a local optimization approdchphysical experiments where the region of
interest is formed by a number of input factorslieady determined. Furthermore, in most
practical applications, the current settings offeaetor values are usually determined and known
to produce a stable response and a satisfactolid. yi@wever, due to extraneous changes over
time, the current conditions may become less robndtsub-optimal. Hence there might be easy
gains in yield by moving in the surrounding regiointhe design space. We do not make any
assumptions regarding the noise in response. Hencegoal is to precisely estimate the
relationship between important factors and respamnskidentify the most likely location for the

process/product to be optimized in the detailed R&pkrimentation stage.

The most salient aspect of the proposed stratgestsi experimentation efficiency.

Specifically, the proposed approach identifies, &iven response target, the input factor



combination (or containing region) in less numbgexrperiments than its counter parts. This
sequential adaptive approach uses the informataned from the previous experiments to
design the subsequent experiment by simultaneoreslyicing the region of interest and
identifying factor combinations for new experimentis reduction is achieved through rank
ordering of the responses of preceding experimantsuse of polynomial (mostly quadratic)
behavior of the underlying function near the regatirna. Throughout the process, we consider a
fixed design (i.e. two levels or multi-levels fada design, or space-filling design) which allows
inheriting some of the experiments from the presiouns. As a result this method efficiently
increases the accuracy and precision of the esdnaptimal point by reducing the region of

interest.

The strategies in this research differ from earéipproaches on adaptive and sequential
RSM in three different ways. First, the reductiohtlee region of interest is optimal if the
relationship between the response and input facsoggiadratic (within each small sub-region
inside the factor space) and response is detetisiniSpecifically, the optimal factor
combination is always contained in the reducedoregbecond, the proposed strategies typically
require fewer experiments in each run as the reduttheriting previous experiments and fixed
design structure. Lastly, the proposed strategiestify the reduced region of interest with a
combination of nonparametric (ranking based metlasd) parametric (model based) methods
rather than the response levels obtained from eapkriment solely. This is indeed similar to
using not the value of a parameter but its rantobust statistics (Hettmansperger and McKean,

1998).

The structure of the dissertation is as followsthe remainder part of this chapter the

preliminaries to the study are briefly discusseliofeed by a short literature survey on the



advancements in RSM with a special emphasis ordagtive experimentation methodologies.
Chapter 2 presents the proposed ASRSM methodologyhe case of quadratic underlying
function with two variables, which is the basis tbe strategies in the following chapters.
Chapter 3 explains the proposed strategies forcdse of quadratic and cubic underlying
functions withn variables (N-ASRSM), which is an extension of Gleaj2 methodology into

higher dimensions. Chapter 4, describes stratégiemisy black-box functions with variables

which is gained extending both the complexity ahd humber of variables in the previous

chapters. Finally, Section 5 discusses the reanlispresents directions for future research.

1.1 Relevant Background

This section presents the relevant literature lier proposed adaptive experimental design
methodology. We first review the classical respossgace methodologies and then more
advanced methods including optimal design, Bayegesign and incomplete design strategies.
Finally, we briefly describe other adaptive desigrethodologies such as steepest ascent,
simplex-based methods, evolution operation methadaptive OFAT methods, adaptive RSM,
sequential RSM, and sequential and adaptive appedion methods from the engineering

design domain

1.1.1 Response Surface Methodology

RSM has been used as one of the most effective fobprocess and product development
since its introduction by Box and Wilson (1951). NRSconsists of statistical and
numerical/mathematical optimization techniquesdwamining the relationship between one or

more response variables and a set of quantitakperenental variables or factors. Since the



literature on RSM is vast, we herein refer the eedd a number of good review studies. Box
(1999) provides a retrospective on the origins 8MRwith a general philosophy of sequential
learning. Myers, Khuri, and Carter (1989) presetiiaough discussion of RSM from 1966 to
1988. Myers (1999) discusses the RSM state in98teand gives some directions for future
research. Myers, Montgomery, Vining, Borror and Kadski (2004) presents a retrospective and

literature survey on RSM.

Central Composite Design (CCD) and Box and Behrixesign (BBD) are the most popular
class of designs used for fitting second order rh@ex and Behnken, 1960). Generally, the
CCD consists of &F factorial or fractional factorials of resolutidhwith np runs,2k axial or
star runs, anek. center runs (Figure 2). There are usually two petars in CCD that must be
specified: the distancae of the axial runs from the design center and tmalver of center points.
It is common to sett = (nz)/* to make the design rotatable. Also three to fiuasrare
recommended in the literature (Montgomery, 2008)e humber of runs in CCD increases
exponentially with the number of design variablasd hence becomes inefficient for high
dimensional design problems. One alternative to GE€Bmall composite designs (SCD) that
consist of a fraction of CCD points. However, theé[5has significant difficulty in estimating
linear and interaction coefficients (Myers and Myorhery, 1995). BBD is another design
approach which requirek > 3 (Box and Behnken, 1960). BBD is formed by combinizf
factorials with incomplete block designs. This destloes not contain any points at the vertices

of the region created by the upper and lower lifatseach variable.



1.1.2 Optimal Designs

Optimal design methodologies select designs whidh “best” with respect to some
statistical criterion, which is related to the waagte-matrix of the estimator. This selection
process includes: specifying the model; determirtireggregion of interest, selecting the number
of runs to make, specifying the optimality criteri@nd choosing the design points from a set of
candidate points spaced over the feasible desigiormreKiefer (1959, 1961) and Kiefer and

Wolfowitz (1959) greatly contribute to the develogmm of the idea of optimal designs.

Optimal designs offer three advantages over suimrapexperimental designs (Atkinson et
al., 2007): (1) Optimal designs reduce the cosexpkerimentation by allowing statistical models
to be estimated with fewer experimental runs. (BJi®al designs can accommodate multiple
types of factors, such as process, mixture, andretis factors. (3) Optimal designs can be
optimized when the design-space is constrainedexample, when the mathematical process-

space contains factor-settings that are practicafbasible.

It is known that the least squares estimator miréithe variance of mean-unbiased
estimators. In the estimation theory for stati$troadels with one real parameter, the reciprocal
of the variance of an (efficient) estimator is edllthe “Fisher information” for that estimator.

Because of this reciprocity, minimizing the variarmorresponds to maximizing the information.

When the statistical model has several parametensever, the mean of the parameter-
estimator is a vector and its variance is a maifhe inverse matrix of the variance-matrix is
called the “information matrix”. Because the vagarof the estimator of a parameter vector is a
matrix, the problem of “minimizing the variance” omplicated. Using statistical theory,
statisticians compress the information-matrix usiegl-valued summary statistics; being real-

valued functions, these “information criteria” cae maximized. The traditional optimality-



criteria are invariants of the information matratgebraically, the traditional optimality-criteria

are functions of the Eigen values of the informatieatrix (Pukelsheim, 2006).

D-optimal design is the most widely used criterioroptimal designs. A design is said to be
D-optimal if [(X'X)~1| is minimized which is equivalent to minimizing tkelume of the joint
confidence region of the vector of regression coeffits or equivalently maximizing the
differential Shannon information content of the graeter estimates. Andere-Rendon,

Montegomery, and Rollier (1997) uBeoptimal design for mixture experiments.

A-optimality seeks to minimize the trace of the isee of the information matrix
(Min tr(X'X)™1). This criterion results in minimizing the averaggriance of the estimates of

the regression coefficients.

There are also other types of optimal criteriom;ewampleG-optimal design minimizes the
maximum scaled prediction variance over the degiggion, andV-optimal design that
minimizes the average prediction variance overddteofm points of interest. More recently,
Ginsburg and Ben-Gal (2006) suggest a new designqaériment optimality criterion, termed
Vs-optimal, for the robust design of empiricallytéd models. Pukelsheim (2006) provides an

excellent source on the optimal design of experismen

1.1.3 Space Filling Design

Space filling designs are part of computerizedgtesi experiments. Unlike classical design
which use replication and blocking to control faise, and randomization to control for bias, in
space filling designs and in general computer erpets, blocking and randomization are not
considered, since computerized experiments aremessio be deterministic. In general such

designs have the following properties (Santnet.2G93):



» The only source of error is assumed to be modsl bia
» Designs should not take more than one observéiioeny set of inputs
» Designs should allow one to fit a variety of models

» Designs should provide information about all paricof experimental region (Designs

should spread points evenly throughout experimeatabn)

Some of the reasons for using space filling desagas

» Predictors for response are often based on intziqsl
» Prediction error at any point is relative to itstdhce from closest design point

* Uneven designs can yield predictors that are veagdurate in sparsely observed parts of

experimental region
There are quite a few numbers of spaces fillingghess yet most of them may be clustered

into the following groups (Santner et al.2003):

» Simple Designscluding regular grid, random sampling, stratifrandom sampling.

» Latin Hypercube Designs (LHDyhich can be shown (at least under some assunsption
to work better that random sampling, while beinglejable to situation where space
filling assumptions may be violated

» Distance-based Designsuch as maxi-min distance design, mini-max distagesign,
and optimal average distance design, which use uneasd spread to assess quality of
design

+ Uniform Designssuch ad.., discrepancy and,, discrepancy which measure uniformity

of design by comparison against uniform distribatising discrepancy measures
» Designs with multiple criteria

For more information about space filling design caa refer to (Santner et al. 2003).
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1.1.4 One-Factor-At-a-Time

One-Factor-At-a-Time (OFAT) can be considered as #arliest adaptive sequential
experimentation approach proposed (Friedman anddgea\i947). OFAT changes one variable
at a time while keeping others constant at fixeldesto find the best response. Once a factor is
changed, its value is fixed in the remainder of ghecess. This process is repeated until all the
variables are tried. However, OFAT experimentatgogenerally discouraged in the literature on
the experimental design in comparison with factadesign and fractional factorial design. Box,
Hunter, Hunter (1978) and Montgomery (2008) tallowtbadvantages of factorial experiment
over OFAT experimentation. Czitrom (1999) writefavor of factorial experiment over OFAT
experiments in terms of finding the behavior of siystem. Frey, Engelhardt and Greitzer (2003)
introduce Adaptive One-Factor-At-A-Time (AOFAT) expmentation method. They compare
adaptive OFAT (AOFAT) technique with orthogonalays through computer simulations and
concluded that AOFAT technique tends to achievatgregains than those of orthogonal arrays
when experimental error is small or the interadi@mong control factors are large. Frey and
Jugulum (2006) investigate the mechanisms by wWACHAT technique led to improvement.
The parameters that they investigated were comditionain effect, exploitation of an effect,
synergistic interaction, anti-synergistic interanti and overwhelming effect. Frey and Wang
(2006) present the models of AOFAT and factor effend illustrate with theorems that AOFAT
method exploits main effects if interactions areapand exploits two-factor interactions when

two-factor interactions are large.
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1.1.5 Adaptive Experimental Design

The idea of sequential and adaptive experimentabdas not new. Box and Wilson (1951)
suggest a two-stage sequential CCD where the diegie is a 2-level factorial or fractional
factorial design and the axial points constitute $kcond stage. The axial points are then used if
the lack-of-fit test indicates curvature in thetsys. The method of steepest ascent (Box and
Wilson, 1951) is another adaptive sequential expemtation approach in which the
experimental points move sequentially along thedigra direction. Evolutionary operation
(EVOP), another adaptive experimental approachatiteely builds a response surface around
the optimum from the previous iteration by driftifagtorial experiments with center points (Box
1957, Box and Draper 1969). Both these approaatgegramarily used for shifting the region of
interest close to the optimum and replicate theesarperimental design iteratively in different

regions of the factor space.

Spendley, Hex and Himsworth (1962) discuss the esgiipl application of simplex designs
in optimization and evolutionary operation. Thepprse using a simplex pattern instead of a
factorial pattern as in Box (1957). A simplex ia & 1 dimensional form in n dimensions, e.g. a
triangle in two dimensions and a tetrahedron ie¢hgimensions. They present a simplex search
method where a sequence of experimental desigihe iform of a regular or irregular simplex is

used.

Moore et al. (1998) suggest an algorithm, knowr@asfor optimizing the expected output
of a multi-input noisy continuous functio@2 is designed to need only a few experiments and
avoids strong assumptions on the form of the fonctiTheir algorithm uses instance-based
determination of a convex region of interest forrf@ening experiments. To define a

neighborhood, they use a geometric procedure dyatuces the size and shape of the zone of
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possible optimum location/s. Their algorithm alses to optimize weighted combinations of

outputs, and finds inputs to produce target outputs

Anderson et al. (2000) develop a nonparametricaggbr called Pairwise Bisection (PB1)
for optimizing expensive noisy function with fewnfction evaluations. Their algorithm uses
nonparametric reasoning about simple geometricioekhips to find minima efficiently. They
use nonparametric statistics since for its indepeod from the traditional assumptions of
continuousness and Gaussian noise. They also as®dge bisection as an attempt to automate

the process of robust and efficient experimentgiesi

Wang, Dong and Aitchison (2001) develop an adaf@®d methodology, called Adaptive
Response Surface Method (ARSM). ARSM is a sequeexiperimentation method, where, at
each iteration, ARSM discards portions of the dessgace that correspond to the response
values worse than a given threshold value. Suchirgition reduces the design space gradually
to the neighborhood of the global design optimurRSM performs a CCD experiment at each
iteration and thus the number of required desigoegments increases exponentially with the
number of design variables. Further ARSM does mio¢iiit any of the previous runs and requires

a completely new set of CCD points.

Wang (2003) proposes a modified ARSM where the Ci&Dsubstituted with Latin
Hypercube Design (LHD). Stander (2001) proposestiteessive RSM method (SRSM) which
uses a region of interest, a subspace of the dep@re, to determine an approximate optimum.
A range is chosen for each variable to determménitial size. Then a new region of interest is
centrally built on each successive optimum. Therowpment in response is attained by moving
the center of the region of interest as well asiced its size through panning and zooming

operations, respectively. At each sub-regiom)-aptimal experimental design is used to best
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utilize the number of available runs together wither-sampling to maximize the predictive

capability.

1.1.6 Bayesian Optimization

The mainstream literature on Response Surface @gatiilon is classical or “frequentist”
given that it considers parameters as unknown aatssthat need to be estimated from data. The
sampling variability or experimental error is retied in the sampling distributions of the
estimates. This sampling variability can (and stipble considered in optimization. In contrast,
the Bayesian approach to statistical inference iders model parameters (and in fact, any
unknowns) as random variables. This has considerativantages over the classical approach
when optimizing a process based on a fitted maaete depending on the estimated parameters
different optimal conditions will be determined.tlre Bayesian approach, the uncertainty in the
model’s parameters is directly incorporated indhalysis. Prior knowledge can be incorporated,
if desired, into the optimization process. Othemyigson-informative priors can be used for
optimization purposes Del Castillo (2007).

az

maxf p(J|data,w)dy
WER a;

1)
wherey is a vector of future responseisjs a vector of controllable factors, amganda, show
the specification region q response/s. Solving saptimization problem provides a solution that

satisfies the specifications or tolerances onélspaonses of interest.
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1.1.7 Global Optimization Methods Based on Response Surtas

Another adaptive and sequential experimentatioreareh stream emerges from the
engineering design community. In the engineerirglgie computation-intensive design analyses
are commonly expensive computer “experiments” &g tequire experimental optimization for
design optimization. Chen, Tsui, Barton and Meckéskr (2006) provide a review on design,
modeling and applications of computer experimefitsee response surface models based on
computer experiments are called surrogates and omiynused in multidisciplinary design
optimization. Sobieszczanski-Sobieski (1988) pregosoncurrent subspace optimizations
(CSSO) where the multidisciplinary systems aredrhedecoupled for concurrent optimization.
Renaud and Gabriele (1994) modify this algorithnbtdd response surface approximations of
the objective function and the constraints. Rod¥lgRenaud, and Watson (1998) introduce a
general framework for surrogate optimization withrast region approach. The database for
surrogate construction is generated by samplindittearly decoupled disciplines. Rodriguez,
Pérez, Padmanabhan, and Renaud (2001) presentatwpliisg strategies, e.g., variable and
medium fidelity samplings. Jones (2001) presentmxanomy of existing approaches for using
response surfaces for global optimization. Two otheview studies in this field include
Sobieszczanski-Sobieski and Haftka (1997) and SimpBooker, Ghosh, Giunta, Koch, and

Yang (2002).

1.2 Preliminaries

This Section briefly introduces some of the pretiaries required to comprehend the
proposed strategies. In order to increase the ipeaioce of the proposed strategies, most of the

methods explained here have had some modificagéord being used in the proposed models.
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1.3 Least-Square Regression Spline (LSRS)

Least square spline is a way of using spline fanstifor data smoothing. These estimators
have local fitting qualities similar to those foerkel and smoothing spline estimators. However

they do not admit kernel or series representatievesn asymptotically.
Assuming a basic nonparametric regression modetextg y;) ,i = 1, ..., n satisfy:

yi=ulx) +eg,i=1,..,n
(2)

with & representing zero mean, uncorrelated random eh@ving common variance? and
0<x; < <x,<1. Then, ifu € WJ*[0,1] (polynomial of degreen with first and second

derivatives existence) a Taylor expansion allowiousrite the regression model as follows:

Vi=Xj=1 Bjxij_l + Rem(x;) +&,i=1,..,n

3)

where

1
Mm@=um—nwﬁﬁm%wu—aﬁw€

0

4)
If Rem(t,), ..., Rem(t,) are uniformly small in magnitude, polynomial reggi®n provides
a reasonable methods of analyzing the data. The pasmise is that the integral in equation (4)
can be approximated using the quadrature forifila &; (¢ — E,-)T_lfor coefficientss, ..., 8

and pointd < & < -+ < & < 1. Combining this with original polynomial approxitien leads

to an overall approximation of the general functogn(Eubank, 1999):

SE=ZTL 62+ T 8 (x - )T
5)
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2
Another formulation which iused more often in practice X5 w; (yj - f(xj)) wherew; is

weight, andf(x;)=X, & (x; —Ej):n_l where §; < x; < &j4,. The multivariate case can

obtained from univariate splines by the tensor pobdonstruc

1.4 Sequential Simplex Optimization

A simplex is a geometrifeature that has a number of vertices (corneygaleto one mor
than the number of dimensions in the factor sp&wmplex can be defined for any numl
factors: for zero dimension it would be a dot, éove dimension it would be a straight line,
two dimension it would be a triangle, for three disien it would be a tetrahedron and hy

tetrahedron for higher dimensions (See Figur

C L 0
Figure 2 Simplexes in (A) zer-dimension, (B) onedimensions, (C) tw-dimension and (D)
three-dimension(Walters et al. 1991

Simplex can be moved into an adjacent area bytnegeone vertexusually the vertex that
gave the worst response) and projecting it thraihghaverage of remaining vertices to crea
one new vertex on the opjite side of the simplex (See Figure (8yalters et al., 1991 This

new vertex corresponds to a new set of experimenotaditions that can then be evalue
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Figure 3 The simplex reflection move for (A) on-dimension (B) twodimension, and (C)
three-dimension factor spaces. Dashed line represents thil simplex. Open circle show:
the average of the remaining vertice (Walters et al. 1991)

Two fundamental ideas that should be rememberexigiout simplex procedure are:
the smplex reflection is that of a point through poifttis not a mirra-image reflection across
line, plane or hyper plane. (The purpose of simples is to move rapidly into the oegof the
optimum. Hence it can be very effective and effitifor this purpose. But when the simplex t

located the region of the optimum, it becomes ingdét inefficient.

Nelden and Mead (1965) ke two modifications to the original simplex algbnt of
Spendley, Hex and Homsworth (1962) which allowsdineplex to expad in the directions that
are favorable and contract in the directions that anfavorable. TheAlgorithm below and

Figure 4 present the rules of varie-size simplex.
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Variable-Size Simplex Algorithm

1. Rank the vertices of the first simplex and find tharst (W)
2. Calculate the reflection of the worst (R) usingufe4 as follows:
* If N=<R=<B use simplex B...NR and got to 3
» If R>B, calculate and evaluate E:
0 If E>=B use simplex B...NE and goto 3
0 If E<B, use simplex B...NR and got to 3
* IfR<N
o If R>=W calculate and evaluategr@se simplex R...Ngand go to 3
o If R<W calculate and evaluate CW use simplex B.wN{Dd go to 3
3. Transfer the current N (Never transfer the curk&rtb the next iteration). rank the remaining
retained vertexes in order of decreasing response

7

6

€«<——HR > B : Try E

Value of X2
5

4

«<——B >= R >= N : BNR

«————W<=R <N : BNCR

€e—— R < W . BNCy

Value of X1

Figure 4 (a) Possible moves in the variable-sizengplex algorithm, (b) logic of the possible
moves in the variable-size simplex algorithm (Waltes et al. 1991)

1.5 Multiple Adaptive Regression Spline (MARS)

Multiple Adaptive Regression Spline (MARS) is axilde regression modeling of high
dimensional data introduced by Jerome Friedmar®91 {Friedman, 1991). The model take the
form of an expansion in product spline basis furctiwhere the number of basis functions as

well as the parameters associated with each oredypt degree and knot locations) are
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automatically determined by the data. The procedaimotivated by the recursive partitioning
approach to regression and shares its attractiepepiies. Unlike recursive partitioning,

however, this method produces continuous modell wiintinuous derivatives. It has more
power and flexibility to model relationship thataadditive or involve interactions in at most a
few variables. In addition, the model can be regméed in a form that separately identifies the

additive contributions and those associated wighdifferent multivariate interactions.

MARS builds models of the forny (x) = ¥¥ , ¢;B;(x) which is a weighted sum of basis
functions B;(x) and with constant coefficient. Each basis functiom®;(x) takes one of the

following three forms (Friedman, 1991):
» Constantwhere is just one such term, the intercept

* Hinge functionwith the formmax (0, x — const) or max(0,const — x) wherec is a

constant, called the knot

* Product of two or more hinge functignshich can model interaction between two or

more variables

MARS builds a model in two phases: the forward #mel backward pass. This two stage

approach is the same as that used by recursiviigrany trees.

In the forward pass, MARS starts with a model whicmsists of just the intercept term
(which is the mean of the response values). MARS tiepeatedly adds basis function in pairs to
the model. At each step it finds the pair of bésigtions that gives the maximum reduction in
sum-of-squares residual error (it is a greedy dgm). The two basis functions in the pair are
identical except that a different side of a mircbrenge function is used for each function. Each

new basis function consists of a term already énrtiodel (which could perhaps be the intercept)
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multiplied by a new hinge function. A hinge functies defined by a variable and a knot, so to
add a new basis function, MARS must search overaatibinations of the following: (1) existing
terms (called parent terms in this context); (2)valriables (to select one for the new basis

function); and, (3) all values of each variable (fee knot of the new hinge function).

This process of adding terms continues until thange in residual error is too small to
continue or until the maximum number of terms igckteed. The maximum number of terms is

specified by the user before model building starts.

The forward pass usually builds an overfit moda&h Everfit model has a good fit to the
data used to build the model but will not genemlizell to new data.) To build a model with
better generalization ability, the backward passes the model. It removes terms one by one,
deleting the least effective term at each step urfinds the best submodel. Model subsets are
compared using th6CV criterion described below. The backward pass haadwantage over
the forward pass: at any step it can choose any terdelete, whereas the forward pass at each

step can only see the next pair of terms.

The backward pass usé€V to compare the performance of model subsets ierail
choose the best subset: lower value&©F are better. Th&CV is a form of regularization: it
trades off goodness-of-fit against model complexTiye raw residual sum-of-squard&S$ on
the training data is inadequate for comparing nmdeécause th&SS always increases as
MARS terms are dropped. In other words, if the R&3e used to compare models, the

backward pass would always choose the largest modelformula for th&CV is:

RSS
N(l_ENOP)Z
N

GCV =

(6)
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whereRSS is the residual sum-of-squares measured on thengadata andv is the number of
observations andNOP is the effective number of parameters which igndef in theMARS

context as:

ENOP =P + =2

(7)

whereP is the number of MARS terms aridis the penalty which is usually set about 2 or 3.

Note that(P:)

is the number of hinge-function knots, so the falanpenalizes the addition of

knots. Thus th& CV formula adjusts the trainingSSto take into account the flexibility of the

model.
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CHAPTER 2 THE PROPOSED STRATEGY FOR QUADRATIC MODELS
WITH TWO VARIABLES (ASRSM)

2.1 Introduction

In this chapter, we discuss the elements of theggeed Adaptive Sequential Response
Surface Methodology (ASRSM) for bivariate quadrdtinctions. This methodology presented
here will be used as the basis of approaches pedpos considering more sophisticated models
in the following chapters. We start the chaptehwierminology and assumptions in Section 2.2.
Next, we provide an overview of the methodologyettion 2.3, followed by explaining the two
core strategies embedded in ASRSM; (1) Paramepoach in Section 2.4, and (2) Non-
parametric approach in Section 2.5. In Section &&,describe how these two strategies are
integrated within ASRSM. Finally, in Section 2.7 weovide the result of several numerical

examples conducted to evaluate the performandeegfrioposed strategy.

2.2 Terminology and Assumptions
The definitions and terminology used in the propoASRSM methodology is as follows.
Some of the notation is illustrated in Figure 5 fortwo-dimensional factor space with 5

experiments in each run:

FS, : Factor space at runand expressed as Cartesian product of factor sangenr

fs; :Initial range of factor

COP : A corner point experiment run at the intersectbextrema of factor ranges

CEP : Center point experiment run at the center of iyanf the factor space

: Index of runs, e.g: = 1,2, ..., R whereR is the total number of runs
: Index of experiments in a given run, e2gl,2,...,EwhereE is the total number of experiments

: The experiment with the best response levelgivan run
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N, : The experiment with thk" best response level in a given r@ek < e — 1)

W : The experiment with the worst response level given run

OR, : Optimal region in rum containing the estimated optimal experimémR,. < FS,

0 : Optimal experiment, e.g. best experiment in thigail factor space

EO, : Estimated optimal experiment in rane.g., best incumbent estimation of the optimalesxnent
BCE : Best at Center classification of th&,. where the location @ is atCEP

BCO: Best at Corner classification of th&,. where the location d is at the corner of factor space

Legend

I:I FS of 1" run
OR of 1™ run

Figure 5 An illustration of terminology of the ASRSM on a two dimensional factor space
with E=5

As in most RSM approaches, the proposed ASRSM rdetbgy relies on a number of
simplifying assumptions. The extensions due tordtaxation of these assumptions are beyond
the scope of this paper and some of these extensi@tussed in the conclusion. For the

proposed methodology we consider the following agxions:

1. There are two significant and controllable factors.

2. The underlying relation between a single respons# tavo factors can be represented by a
guadratic modelRSM models are usually employed in a sufficiestiyall region around the
optimal region. As a result, it is quite commonR$M applications to assume that the
underlying model can be approximated via a quadfatction. Such assumption also holds
for this study.
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3. The response is convex in the region of inteMst.assume that the region of interest is
shifted close to the optimum a priori using ancéint method (e.g., steepest descent). Since
for most of the nonlinear minimization problemse tanderlying model is locally convex
around the optimal solution, we assume that thporese is convex in the region of interest.
Our empirical test results show that the proposmoraach is robust with respect to this
assumption such that the proposed method is eféetticases where the underlying model is

non-convex.

4. The factor space in the region of interest is felasi

2.3 Algorithm and Initial Run Design

Figure 6 illustrates the structure of the propo$&RSM methodology. The procedure is
initialized with a region of interest, e.g., a fides factor space which is guaranteed to contain
the O. The goal is to reach to the vicinity 6fwith a finite set of runsR). Each rurr is set up
on a given factor spac€&$) with a specific experimental desigD)( e.g. a modified version of
the factorial design augmented with a center pdihe experiments in each rurare taken one
at a time and th&S is not finalized until all experiments are tak€nce an experimerd is
taken, theEQ; is obtained from the parametric model fitting gsthe all experiments in all runs.
For all but last experiment in run (i.e., efE), the EQ; is tested for belonging t&S.
Accordingly, FS is updated (e.g. expanded) HG is outsideFS. For the last experiment (i.e.,
e=E), the approach follows two concurrent strategeeg,, non-parametric ranking strategy and
parametric model fitting strategy. According to tteanking of experiments andO; from the
guadratic model fitting, a reduced factor spacetaioing theEQ (i.e., OR) is determined for
the next run. This procedure continues until theveogence criteria based on estimated optimal
experiment or coefficient of determination of thitefl model is attained. The motivation for the

dual strategy (e.g., parametric vs. non-parameisi¢hat, while the information from ranking
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strategy is accurate but not precise, the informnafrom model fitting is precise but not

accurate.

[ Label the first runrel) ]

v

Take the experiments one at a timal
-

Are all experiments

taken and r>1?
Parametric Approach No Non-pgrametric Approach
(Rdnking Strategy)
e I B B A 1
| A 4 : I N
1 . .
| Fit the Quadratic Model il Rank the experiments (in the current runBas| !
! [ Q ] ' : N2, N3, N4,W |
: I EEAN J
| |
! v v 3 i .
CalculateR*-Adjusted Solve the fitted model to estimate the ! [~ . . N !
timal point | Identify the estimated !
optimal point £Q) : optimal region OR) :
| | | X |
| 0 J !
|
: : 1 + |
1 ! 1
1 | 1 . \
| 0l If all experiments are complete |
| Converged? 0! + CompareEQ, with OR, ; UpdateOR :
| [ARZ 4| < 8gz, o7 |A(EO)| < 8o | Else I
. or R‘zu’” > 0,0 . « CompareEQ with FS ; UpdateFS !
- ad, 1
! ’ RN i
1 (] 4 |
1 : 1 \ !
X il If all experiments are complete I
:_______________________ ________________________:: * FS:+1:=0R, :
| e Goto next runy:=r+1 }
1 Else !
: »  Continue with the next experiment :
NS v
I

[ Determine the optimal point ] L

Figure 6 Scheme of the proposed ASRSM methodology
The factor space of each ruRS() can be expressed as a mappipg ©f the factor space of
the preceding runfs,_;). In most general form, the proposed methodolagyegates a series of
factor spaces which are nested, €§. = ¢, ((pr_l(...<p0(FSl))). The output of this mapping

¢, depends on the current factor space, the experati@mtdesign D), the outcome of ranking

of experiments as well as the result of parametriategy described in the next subsection. The
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latter two, the ranking and the parametric straggare described the in the next two sections,
respectively. Before discussing tBeused in each run and the initial factor space, vieflip
present the algorithm using the illustration inu¥egy 7 for a special case. The proposed approach
is initialized withFS; and the indicated fivexperimentyB, N2, N3, N4, W) are taken from the
corresponding desigD. Once the responses are ranked, the non-paramatiing strategy
identifies theOR;. Next the parametric model fitting approach deteas theE 0, using the first
five experiments. Lastly, th@R; and EO, are compared to determine the new factor space

(FS,). Note that the design +2 inherits two experiments from the first run, naynglandN2.

2" run CEP
4

Figure 7 lllustration of the factor space reductionacross runs r=1, 2, and 3

The proposed ASRSM method uses the s@mia each run which is the factorial design
augmented with a center point. Hence we maintarsttime experimental desiBrand consider
a constant number of experiments (d&g5) throughout the process. In practice, none of the
existing methods for setting the initial point iegsiential optimization procedures is superior to
the corner initial point as in factorial design (NMées, Parker, Morgan, and Deming, 1991).
Furthermore, experiments conducted on corner pdiatgefit from fractional factorial design,
especially when the design is orthogonal. In paldic the designs maximize the amount of

information gained from each experiment. On theeptand central points are essential for the
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modeling the curvature of the underlying functioMloftgomery, 2008). Lastly, the five
experiments im=1 are not sufficient to estimate the full quadragspgonse model. Hence, we
estimate th&O, by fitting a quadratic response model without tbestant term.

The design of the initial factor space in the psgzbapproach is adapted such that a rational
comparison with traditional RSM methods (e.g. CAB)possible. In the traditional CCD
approach, the corner points are takentdt unit distance from the center point (0,0). In

comparison, the proposed methodology starts witiromder initial region around the center

point, e.g. at-/2 unit distance from the center. Figure 8a illugtsathe initial factor space of the
traditional CCD and the proposed method with light dark experiment points, respectively.
While beginning with a larger space is initially sddvantageous, experimental results
demonstrate that the reduction in the factor speite the same number of experiments far
exceeds initial difference. An additional benddithat this modification may decrease the effect
of random error on the initial results. Let's calesithe diagonal cross-section of these two
designs as illustrated in Figure 8b and assumeth®anoise is identically distributed on this
cross-section. Then, it can be shown that the impathe noise on prediction of the optimal

experiment point is less with the proposed methaglds factor space.

Proposed Aggroasp
initial rapge
T
<. £CD % S

<+
initial-range S

A

v

-1.4142 -1 0 +1 +1.4142

(a) (b)
Figure 8 (a) Initial factor space and design strutire and (b) Diagonal cross-section of the
traditional CCD and proposed ASRSM approach
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2.4 Non-parametric Approach: Ranking Strategy

At each runr of the proposed ASRSM approach, we first rank 3hexperiments (e.g., 4
factorial and 1 center) @ N2,N3, N4 andW according to their response levels. Based on the
ranking, we identify the implied optimal region whicontains th&Or. This region is a polygon
contained inFSr and can be convex or non-convex in the spaceatdbrfm We then identify a
rectangle which contains the implied optimal regaod denote it as the optimal regiddR(),
which determines the factor space of the next run.

This process of encapsulating the implied optinedion with a rectangle is a form of
relaxation and is not efficient in terms of factpace reduction. However, there are valid
reasons which motivate this relaxation. The fordmesson is the reduced need for new
experiments due to the inheritance of experimentsnfthe previous run. Secondly, the
rectangularFS preserves the orthogonality of factorial experitaérdesign. Further, this
rectangular form facilitates the recursive chanara¢ion of the same rectangular structure
throughout the process. In addition, we can useséimee experimental design structure, e.g. full
factorial with a center point. Specifically, witkeatangular envelope, the mapping across runs
will be identical, e.g@(:) = ¢,(-) for Vr. This is because we maintain the same experiment
design structure and there is a finite number dintgd regions as a result of ranking outcomes.
Lastly, the relaxation reduces the risk of selecain optimal region which excludes the optimal
experiment.

An alternative to the rectangular envelope is tievex hull of implied optimal region. Due
to its convexity, it also allows for easier tess#tin of theF'S. While the convex hull reduces the
optimal region more than the rectangular envelope&loes not reduce the number of new

experiments as much. Furthermore, the experime@gesign used in each run will be different
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since the convex hulls of the implied optimal regavill vary in shape. Clearly the choice of the
right form is a trade-off between the rate of cadtion of the optimal region and the total
number of experiments conducted. To better illastthis trade-off, let's consider the implied
optimal region in Figure 9a. The convex hull ofsthinplied optimal region is identified in
Figure 9b with six vertices (corner points). In trast, we adopted the rectangular envelope
which is illustrated in Figure 9c. Comparison betgweFigure 9b and 9c reveals that, while
convex hull base®R leads to the greatest factor space reductiorisat leads to an increased
number of new experiments (7 vs. 3 new experimeas) cannot inherit experiments from
previous runs. Note that it is not practical to rop@ the design and choose only 3 new
experiments (e.g. 2 vertices and one at the ceafitgravity) for the convex hull in Figure 9b.
This is because we assume that@s contained in the current factor space, andgHnosing

fewer number of vertices, we would then be imgdijaieducing the implied optimal region.

(a)

Figure 9 (a) Implied optimal region (b) Convex hulenvelope of the implied optimal region
(c) Rectangular envelope of the implied optimal reign based on a two dimensional factor
space

In what follows, we present the optimal region m&tives based on the ranking of the

experiments and the location Bfin the currenfsS.
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2.4.1 Best at Center (BCE) Optimal Regions

An important information obtained from the rankin experiments is the location &f.
When theB is located at the center, the curréstis then classified as havingBCE optimal
region. Depending on the location 812, N3, N4, and W, there are three possibl@Rs as
illustrated in Figure 10. We first determine thepirad optimal region as illustrated as dotted
regions in Figure 10. Next we characterize @R as the rectangle which contains the this

implied optimal region.

4 N4 3
(a) Central Design with N2 (b) Central Design with N2 (c) Central Design with
cornered with N3 and cornered with N3 and N2 cornered with N4

Figure 10 BCE ORs (dotted region: impliedOR, shaded regionOR)

The implied optimal regions are guaranteed to doritee optimal experiment in the absence
of random noise. The mathematical proofs of thenugdity of these implied optimal regions is
involved and thus excluded. Instead, we provideeaegal proof sketch of the rectangular
optimal regions and illustrate it for ti@R in Figure 10a. The proofs are accomplished through
the following steps: (1) Divide the non-optimal i@ginto smaller rectangular sub-regions using
factor centerlines; (2) Assume that the optimalnpdalls in one of these sub-regions; (3)
Relocate the origin to that region and formulate tasponses &, N;,..., andW based on their
displacement from the new origin; (4) Show thatledst one pairwise comparison of the
responses violate the initial ranking (5) Replictihe steps (2-5) until all sub-regions are

evaluated. The proof @R in Figure 10a is as follows.
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Proposition: For BCE optimal region with ranking in Figure 10#e optimal experiment is
located in the optimalegioncharacterized as the quadrant with corners at B &2 when there
is no random noise.

Proof. Consider that theFS is divided into equal quadrantd,lilll,1V) which have
(N2,N4,W,N3 as the corners, respectively. Further supposeQha located inFS outside the
OR For the case, whef@is inll, we consider the responseN&= (xy,, Yn2), N3= (xy3, Yn3)
and N4= (xy4, Yna) @SZyz, Zys andzy,, respectively. We havey, = A(dx,)? + B(dy,)? +
C(dxy)(dy,), zys = A(dx3)? + B(dy3)? + C(dx3)(dys), and zy, = A(dx,)? + B(dy,)? +
C(dx,)(dy,) where (@x,dy,)=(XnzXo,Yn2Yo), (d%s,dYs)=(XnaXo,YnaYo) and  (Ixa,dys)=(Xna-
Xo,YnaYo) and optimal experiment locatidd= (x,,y). We considerdzy,ys = Zyz — Zyg =
Al(dxz)? — (dx4)?] + Bl(dy2)? — (dya)?] + Cl(dx2)(dy2) — (dxs)(dys)], anddzysy, =

zys — zyg = Al(dx3)? — (dx,)?] + B[(dy3)? — (dys)?] + C[(dx3)(dys) — (dxg)(dy)].

Since the response is convex (e4.B > 0), we consider three response scenar@s0,
C<0, C>0. Note that wherD is in Il, we haveldx,| > |dx,|, dx, < 0 anddy, = dy, making
second termizy,y, zero. ForC=0, we have the first term idzy,y, positive, thusizy,y, > 0
which is a contradiction to the rankiag, < zy,. ForC<0, the third term irdzy,n4 IS positive
sincedx, < 0 thus makinglzy,n, > 0 which is also a contradiction. Lastly, f6,0, first and
second terms idzy;y, are positive sinc@dx;| > |dx,| and|dys| > |dy,|. Last term indzysna
is also positive sincelxsdy; > 0 and |dxs;dy;| > |dx,dy,|. Thus dzysy, > 0 which is a
contradiction to the rankingy; < zy4. For the case, where O is in lll, we considerrgsponses
atN2, N3and W azN2, zN3&and zw, respectively. Let's define ey, dzyow, anddzy,ys
as before. For cage=0, it can be shown thatz,,,, > 0 which is a contradiction faty; < z,.

Similarly, for C<0 and C>0, we havedzy,, > 0 and dzy,y; > 0 are contradictions for
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Zn2 < Zw andzy, < zy;. Last case is wher@ is in V. We consider the responsedNa N3, N4
andW. Let definedzy,,, as before. For cage=0, it can be shown thatzy,y; > 0 which is a
contradiction forzy, < zys. Similarly, for C<0 andC>0, we havedzy,y; > 0 anddzy,y > 0

are contradictions fary, < zy; and zy,.

2.4.2 Best at Corner (BCO) Optimal Regions
The case when tH&is located at a corner is referred &G0 optimal region. IBCO, either
N2 or N3 can occur at the center. iR at center, there are three possi@Rs based on the

locationof B, N3, N4, andW (Figure 11).

L/2

4 N4 N3
(a) Corner Design with B (b) Corner Design with B (c) Corner Design with B
cornered with N3 and N4 cornered with N4 and W cornered with N3 and W

Figure 11 BCO ORswhenN2 is at center (dotted region: impliedOR, shaded region:OR)

In case withN3 at center, there are two possiblRs based on the location &, N2, N4, andW

(Figure 12).

N4

(a) Corner Design with B (b) Corner Design with B
cornered with N2 and W cornered with N2 and N¢

Figure 12 BCO ORswhenN3 is at center (dotted region: impliedOR, shaded region:OR)
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The proving strategy faBCOS ORs is the same a8CE and is thus excluded. Note that the
implied optimal regions are identical to ti&Rs in Figures 8a, 8b, and 9b, thus there is no

relaxation due to rectangular envelope.

2.5 Parametric Approach: Model Fitting Strategy

We use a parametric approach based on model fittirgddition to the ranking approach.
This strategy not only allows us to increase thexision ofEOr but also supports backtracking
throughFSr correction as explained in previous section. Beigign with the completion of all
first run experiments, this parametric approaalsisd after each experiment. In this approach we

q1

fit a quadratic modet = [a; a] [;C,] +[x Y] a0

Zﬂ [;] + ¢ + u, with e~N(0,02), to the
experimental data to analyze the underlying fumctmf data and efficacy of conducted
experiments. In fitting the quadratic model, twgealives are being sought in particular: (1)
estimating the estimated optimal experimé&@r; (2) calculating the adjusted coefficient of
determination(Rédj). EOr, the minimum of the fitted model, not only showe tpredicted
optimal solution, but can also be used for cornecthe FS of the next run. Furthermore, the
change in thé&Or in consecutive runs is also used as a stoppingriont. In comparison, the
Rfldj shows how well the information gained from the emments explain the behavior of the

underlying system (Seber and Alan, 2003). We at®this measure as a stopping rule in the

proposedASRSMmethodology and for comparing the explanatomygroof different methods.
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2.6 Design Structure for the Next Runs

Following the characterization @Rr through ranking approach and estimation of Haar
from parametric approach, we determine the dedigictsre for the next run. In particular, we
compare théeOr from the model fitting with th®©Rr from the experiment ranking. EOr is
contained in theRr, then we use the region as the factor space of¢ierun. IfEOr is not
contained in theORr, we then expand the optimal region to a largetaregie envelope
containing theEOr and use the region d&S, of the next run (Figure 13). Next we conduct
experiments on the un-experimented corners andcémer of the newFsS,. After each
experiment, we fit the quadratic model and checletiwdrEOTr is contained irORr. If EOr is
outsideORYr, then we expand th@Rr as before. This expansion serves as a backtraskamy

These steps are repeated monitor the changédip and theEOr using the fitted model. The
stopping condition for the proposé&d&SRSMapproach is the convergenceRﬁdj or EOr with

thresholdsSz, anddy: .
adj

N4 L/2 B
e}
L2 <——
w 3
(a) Initial FS, not (b) IncreasedFsS, based on
including EO,. EO, location

Figure 13 Expansion of the ORwhen the EQ from model fitting falls outside
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2.7 lllustrative Example, Simulated Experiments and Cae Studie:

In this section, we first illstrate the proposed ASRSM approach using a stiyixample an:
compare its performance with the traditional CCprapch. Next, we report on the results
extensive simulation experiments comparing the gsed ASRSM, CCD and three optin
designs usinglifferent response models. We then experiment tidse approaches using -
well-known paper helicopter experiment. Lastly, we repor the results of a rat brain trau

case study comparing ASRSM and CCD approac

2.7.1 lllustrative Example

We considerthe quadratic response model of the forZ = X2 + 2Y2 — 2Y + ¢ with
e~N(0,22%) which is desired to be minimized. The starting oagbf interest is selected
X € [-3,3]and Y [—3,3] and the contour plot of the response is presemdeigure 14aWe
first conducted a typical CCD with 13 experimenéntered at (0,0) and contains the opti

experiment O=(0,0.5) with mean response -0.5 (Figure 14a).

- - - 1
(a) Real contours (b) CCD contours (c) ASRSM contoul

Figure 14 The (a) Actual, (b) CCD, and (c) ASRSM estimated edours of the responseZ
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Based on 13 experiments, the CCD atta-1|§§j =60.86% with(X*,Y*) = (0.5,0.8428) as

estimation of the optimal experiment. Figure 14bstrates the estimated contours using CCD
design. The reason that CCD could not estimatetieatation of the quadratic response is the

large magnitude of the variance of error term mdhnadratic surface equation.

Next we employ the ASRSM and present the resulf@ble 1. The first 5 rows correspond to
the initial run design. Note that the ASRSM is petis described in previous Section and without

any additional information than used in the CCD. \N&aeRédj ngRﬁdj = %85 as the

convergence criteria in this example. We now descgach run in detalil.

Table 1 The Runs and experiments of the ASRSM methko

Run No of New Factor Combination Respons
No Experiment X Y Z
1 -1.4142 1.4142 8.2950
2 1.4142 -1.4142 10.2316
1 3 -1.414: 1.414: 2.196:
4 1.4142 1.4142 6.8961
5 0 0 2.213%
6 -1.4142 0 -0.4552
2 7 1.414: 0 -0.168:
8 -0.707: 0.707: 0.871¢
3 9 0 .353¢ 0.411%

Run 1: Given the initial design, we obtain t¥R, using the non-parametric approach (Figure
15a). The constrained quadratic fit estimates thteral experiment£O,) as(-0.3572, 1.4142)
illustrated with a small point on the ed§eN3 (Figure 15b). Note that since the number of
experiments is not sufficient to estimate the fabbdel, theEO, is estimated by the quadratic
response model without the constant term. SinceEtbeis contained in th®©R,, the OR; is

final. The new factor spades; is determined a®R;.
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Run 2: Figure 15c shows the location of the first new expent inr=2 which corresponds
to (-1.4142,0) Using the constrained quadratic fit as beforeesttmate the optimal experiment
as(-1.4142,0.5930ilustrated with a small point (Figure 15c¢). Sirthés experiment is contained
in FS;, there is no update of the factor space. The senew experiment is illustrated in Figure

15d and the corresponding estimate of the optimgeement (-0.7, 0.6428)with Rédj =

51.96% . This estimated optimum is still containedr&. The third and final experiment of2
is shown on Figure 15e together with the estimatetimal experiment (-.5571, 0.7857) and

RZyj = 84.44%.

(a) Experiment Ranking=1 (b) EOforr=1 and finalOR, (c) 1stnewexperimen{(r=2)
andOR;

(d) 2nd new experiment£2) (e) 3rd newexperimen(r=2) () Experiment ranking and EO
forr=2, and finalOR,=FS;
Figure 15 lllustration of the steps of ASRSM for uns 1 and 2
The second run of the experiment terminates wighestimated optimal experiment in Figure
15e. Continuing to the third run, the fin@R, andFS; are illustrated in Figure 15f. The first
experiment in r=3 is the corner point B%; indicated with dotted point. This point is thetlas

experiment in Table 1. The estimated optimal expent with this experiment is

(0.5571,0.7851vith Rédj=89.06which satisfies the termination criteria. The Fgyd#c shows
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the estimated contours using the proposed apprdaearly, the response model estimation

based on ASRSM is better than CCD.

2.7.2 Simulated Experiments
We now describe the simulated experiments perfortnecompare the performance of the
proposed ASRSM approach with those of CCD, A- Dd ®roptimal designs. In the simulated
experiments, we have considered six response madéhs varying variance of error and
function type (i.e., convex, non-convex). Thesgoese models are presented in Table 2. All
response models have a quadratic relatione4? + BY? + CX + DY + EXY + F + b , with

a normal error terra~N (0, 02).

Table 2 The response models used in the simulatexberiments

Optimal Experiment
Exp. No. Response Relation Error ( g) Response Type| O=(Xo,Yo) Z5
1 Z=-2X+3y +2x-y+2xy-1+4¢ N(0,0.0.1) Nonconvex (-3.0,1.25) -29.063
2 Z=x2+2yP-2y+e N(0,1) Convex (0.0,0.5) -0.500
3 Z=-2X+3y+2x-y+2xy-1+4¢ N(0,2) Nonconvex (-3.0,1.25) -29.063
4 Z=-3X+2y+x-2y+2xy-1+4¢ N(0,2) Nonconvex (-3.0,2.0) -39.000
5 Z=25C+YP+X+2Xy e N(0,2) Convex (0.5,-0.5) 0.750
6 Z=x2+2yP-2y+e N(0,2) Convex (0.0,0.5) -0.500

Whereas the ASRSM is an adaptive sequential metth@d CCD, A-, D-, and V-optimal
designs are essentially preset designs. In ordentrstand the effect of this difference, we

have carried out two sets of analyses. In the $iest we have fixed the number of observations
for each approach and compared the performancderims of averageRﬁdj and average
optimality gap (i.e., deviation from the optimabp®nse). Given the optimal response (ZO), the

optimality gap of a method is defined @%— ZO)/ZO , whereZ is the mean predicted response
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at the estimated optimal point. All simulated expents are repeated five times and average
results are reported. For each response model bike T3 the design points in A-, D- and V-
optimal designs are generated by optimizing théwagity criteria over the starting factor space
with a fine grid system spaced with 0.01 intervalse CCD design consists of 4 corners, 4 axial

and 1 center design points as in the illustrativangle. Note that, the starting factor space

expands the initial region of intere&t[—3,3] and Y [—3,3], by a factor of/2 in all directions

as explained before.

Table 3 presents the results of the first set afymes. The ASRSM has a bet@rdj in 4 out
of the 6 response models and Iﬂﬁ§j = 94.5% on the average. The A- and D-optimal designs
are also competitive and CCD has the worst avgragermance. With respect to the optimality

gap, the proposed ASRSM has the best performanak Iout one of the response models with

an average gap of 21.2%. The results indicate itt@easing the variance of the response

2

decreases thB,; for all approaches, e.g. response models 1 vesared models 2 versus 6.

However, this reduction is least with ASRSM. In ttese of optimality gap, the increase in the
variance of response increases (decreases) theabipfi gap in convex (non-convex) response
models. While the generalization of these effeetguires further analysis, we note that the
increase (decrease) in the optimality gap is lgaest) with the proposed ASRSM. These results
show that the ASRSM is competitive with the threatimal designs and outperforms the
classical CCD design. In addition, the performaot&SRSM is more robust with respect to

changes in the error variance and convexity ofésponse model.
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Table 3 TheRﬁ(jli and optimality gap results of simulated experimerg with 9 observations
determined a priori for CCD and optimal designs

Adjusted R? Optimality Gap

Exp. No. | ASRSM cCD A-Opt. D-Opt. V-Opt. | ASRSM cCD A-Opt. D-Opt. V-Opt.
1 99.98% 99.95% 99.92% 99.94% 99.94% 19.1% 105.9% 19.1% 73.4% 92.3%

2 96.62% 92.00% 96.97% 93.04% 94.52% 19.0% 100.2% 11.7% 432.4% 8.9%
3 92.91% 88.48% 94.30% 93.04% 86.64% 1.4% 77.3% 1.4% 3.1% 84.4%
4 94.17% 82.17% 80.59% 88.96% 85.17% 19.1% 107.0% 19.1% 19.1% 15.9%
> 94.26% 37.03% 80.14% 82.38% 81.46% 45.2% 1119.7% 822.6% 100.0% 139.1%
6 88.92% 49.40% 84.63% 75.88% 64.98% 23.2% 312.9% 592.6% 738.9% 725.0%
Ave. 94.48% 74.84% 89.43% 88.87% 85.45% 21.2% 303.8% 244.4% 227.8% 177.6%

According to Table 3, the ASRSM’s average perforogaimprovement over other methods is
more significant in optimality gap than Rﬁdj. This is because the ASRSM searches for the
optimal design point by sequentially contracting thctor space whereas other approaches select
the design points using the initial factor spacente, the design points used in ASRSM are
more densely distributed than other methods. lertra capture this difference, we have carried
another set of analyses for the optimal designghisisecond set, we initially fixed the number
of design points at 7 and then incrementally adoleel design point at a time until we have a
total of 9 design points. The initial set of 7 dgspoints is optimally generated as before. Next,
each of the additional point is generated by oging the optimality criterion given the existing
design points and the response model. At eachwerave compared the performances in terms
of averageRﬁdj and average optimality gap. Note that we have dleckarlier results of the

ASRSM for consistency. For the CCD, we initiallyeds7 of the earlier observations by

excluding two axial points and then include backme at a time.
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The results of theRfldj are presented in Table 4. For ASRSM and CCD, tictusion of

additional design points increases the averﬁﬁ]g across all response models. In comparison,
the averageRfldj decreases with additional design points for theaAd D-optimal designs.
Tables 3 and 4 show that applying A- and D-optigegigns sequentially reduces the average
R34;. The performance of the V-optimal design is obsdrto increase. Table 5 presents the
optimality gap results of the final 9 design poiimsTable 4. Tables 3 and 5 show that the
optimality gap of A- and D-optimal designs have mnged when applied in sequence. In
contrast, the optimality gap of V-optimal designshslightly decreased when applied in
sequence. The results in Tables 4 and 5 also #tetwhe ASRSM method exhibit monotonous
behavior with respect to increasing the number lifeovations and is thus more suitable for

sequential experimentation.
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Table 4 TheRﬁ(jli results of simulated experiments beginning with design points and then
incrementally adding one design point at a time

Adjusted R?

Exp. | No
No. | Obs.| ASRSM CCD A-Opt. D-Opt. V-Opt.

99.99% 99.96% 99.94% 99.96% 99.92%
99.99% 99.96% 99.95% 99.98% 99.95%
99.98% 99.95% 99.92% 99.97% 99.94%
93.67% 92.69% 90.69% 95.01% 94.85%
94.97% 92.48% 86.86% 89.20% 95.86%
96.62% 92.00% 86.58% 90.42% 95.42%
79.57% 69.77% 97.71% 92.96% 72.11%
86.53% 70.60% 79.86% 91.06% 74.92%
92.91% 88.48% 82.00% 89.02% 80.89%
91.68% 92.87% 94.21% 91.09% 85.12%
92.39% 88.49% 89.27% 91.69% 88.76%
94.17% 82.17% 89.49% 92.58% 85.47%
90.15% 24.61% 87.19% 87.21% 86.05%
89.16% 35.75% 89.97% 76.74% 71.97%
94.26% 37.03% 86.66% 67.96% 84.95%
86.18% 35.45% 50.38% 85.31% 85.08%
86.44% 43.17% 57.23% 78.71% 86.04%
88.92% 49.40% 64.49% 67.65% 82.05%
90.21% 69.22% 86.69% 91.92% 87.19%
91.58% 71.74% 83.86% 87.90% 86.25%
94.48% 74.84% 84.86% 84.60% 88.12%

Ave.

I
©|o|N]Jo|o|N]o|w|N]wo| o N]o|lo|N]oloN]o|o|l~N

Table 5 The optimality gap results of simulated exgriments for the final 9 design points in

Table 4
Optimality Gap
Exp.
No. ASRSM CCD A-Opt. D-Opt. V-Opt.
1 19.1% 105.9% 14.0% 45.9% 140.2%
2 19.0% 100.2% 19.0% 17.6% 48.5%
3 1.4% 77.3% 1.4% 3.1% 363.4%
4 19.1% 107.0% 19.1% 19.1% 19.1%
5 45.2% 1119.7% 101.2% 139.0% 434.5%
6 23.2% 312.9% 779.0% 47.7% 95.4%
Ave. 21.2% 303.8% 155.6% 45.4% 183.5%
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2.7.3 Paper Helicopter

Paper helicopter problem is a simple practical erpent which is frequently used fc
teaching as well as testing for different methdesper helicopter problem consists of study
the effect of a number of factors, i.e. the winggth, body length and etc, on the flying time «
paper helicopter (Figure L8Jsing this practical experiment, we now compaeeperformance

of ASRSM, CCD, A-, D; and \-optimal designs.

Wing Length Nz s

!

| Paper-clip S |z D

: AN N

v Gl | 1 1 11
(a) Completed desig (b) Design templatt

Figure 16 Paper helicopter

The paper &licopter problem is originally designed for thesid@ of experiments. In order
apply alternative approaches to this problem, wst &xtended it to the RSM domain. For tl
we first chose the wing length and the body leraghthe two controllableactors under study.
Next, we conducted a number of experiments to &ndnitial feasible range for each of 1
designated variables: wing leng(4.50 cm < X; < 10.25 cm) and body length(3.75 cm <
X, < 9.25 cm) which contains the optimal region. Fing, we have applied the ASRSM, CC

A-, D-, and Veoptimal designs to the coded factor space and cadgheir performances. Nc
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that, we are reporting on the CCD results with @ 48 experiments, where the latter has 4

additional center experiments. All other approadresbased on 8 experiments. In total, we have

conducted 53 experiments. Tables 6 and 7 presemoithed design points and the corresponding

responses for each method, respectively.

Table 6 The runs and experiments of ASRSM, CCD, AD-, and V-optimal designs for the
paper helicopter experiment.X’; and X', correspond to the coded wing length and body

length factors, respectively
ASRSM CCD-9 CCD-13 A-Optimal D-Optimal V-Optimal
B | . , Fly , I , A | , e L
No. X'y X' time X'y X' time X'y X' time X'y X' time X'y X' time X'y X'y time
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.)
1 1.4_114 -1.414 1.47 -1 -1 1.85 -1 -1 1.8 1.4:4 1.4142.41 1.414 1.414 2.41 1.41.14 1.414 24
2 1414 -1.414 2.34 1 -1 2.19 1 -1 2.1 -1414 14 150 -1.414 -1.41¢ 15 0.141 0.2€3 2.4
1.4-114 1.414 1.53 -1 1 1.75 -1 1 1.7 -1.414 1414 541] -1414 -0.141 1.47 1.414 -0.9¢0 2.7]
j 1.414 1.414 2.50 1 1 2.22] 1 1 2.2p 1414 -1.414 602 0 -1.414 2.22 -1.41.. -1.414 1.5
5 0 0 2.46 -1.414 0 1.59 -1.414 0 1.5 0.233 ¢ 205 0 0.141 2.32 -1.414 -0.141 1.47
6 0 1 2.13 1.414 0 2.6 1.4144 0 2.6 -0.141 1414 911} -1.414 1.414 1.54 0 -1.414 2.2
7 0 -1.414 241 0 -1.41«. 2.41 0 -1.4:4 24 -1.2.149.000 1.60 1.414 -1.4144 2.6 0 0.141 2.3
8 1 0 2.57 0 1.414 2.13 0 1.411% 2.1 -0.141  -1.142.10 1.414 -0.141 2.63 -1.273 1.414 1.3
9 0 0 25 0 0 2.50
10 0 0 2.28
11 0 0 2.25
12 0 0 1.94
13 0 0 2.46
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Table 7 The fly time responses obtained for the pagp helicopter experiment

Fly time ( sec.)
'f\f:‘ ASRSM | CCD-9 | CCD-13 | A-Opt. | D-Opt. | V-Opt.

1 1.47 1.85 1.85 241 241 241
2 2.34 2.19 2.19 1.50 15 2.06
3 1.53 1.75 1.75 1.54 1.47 2.75
4 25 2.22 2.22 2.60 2.22 15

5 2.46 1.59 1.59 2.15 2.32 1.47
6 2.13 2.60 2.6 191 154 2.22
7 241 241 241 1.60 2.6 2.32
8 2.57 2.13 2.13 2.10 2.63 1.34
9 25 2.5

10 2.28

11 2.25

12 1.94

13 2.46

Table 8 presents the prediction results of the pdgécopter experiment. Since the true
response model is unknown, we have estimated arafimdesponse surface using all 53
experiments. Based on this estimated response,oftienal experiment is identified at
0=(1.0714,-0.007) with mean respond®=2.59487 seconds. Both tlﬁédj and optimality gap
results show that the ASRSM method outperformsrgiheset and optimal designs. The D- and
V-optimal designs are the second and third bedopeing approaches, respectively. Whereas
the differences in the optimality gap is small, thiferences in the Euclidean distance between

the predicted optimal experimei, and optimal experimen®, e.g. ||0 — X,||, is more
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substantial. This is attributable to the fact thaadratic convex functions are flat around the

optimum and the response is relatively insensitiveeviations from the optimum.

Table 8 The prediction results of ASRSM, CCD, and jgtimal designs for the paper
helicopter case study.

ASRSM | CCD9 | CCD-13 _ A-Opt. D-Opt. V-Opt.

Adjusted R 86.5% 55.2% 50.8% 62.1% 66.3% 70.4%

. X, 1.0427 0.8624 0.9571 1.1142 1.1635 1.2456
Predicted
Optimum ==~ 0.0429 -0.1021 -0.2428 -0.3842 -0.4124 -0.5451
[0 =%, 0.0576 0.2296 0.2620 0.3796 0.4158 0.5192
Pred. RespZ 2.5931 2.5783 2.5842 2.5904 25917 2.5402
Opt. Gap 0.07% 0.64% 0.41% 0.17% 0.12% 0.14%

Based on the 13 experiments, CCD achieR§§j = 50.81% with the estimated coded
optimal solution(0.957094, —0.02132) and the contours of the estimated fly time respons
model is shown in Figure 17a. On the other hanel,ABRSM required only 8 experiments in
two runs to attailRédj = 86.54 with the estimated coded optin{dl.0427,0.0429). The contour
plot of the estimated fly time response model swahin Figure 17b. These results clearly show

that the ASRSM outperform the traditional RSM CCEBthod in terms of both the number of

experiments and the accuracy of the results.
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-2 -1 0

(a) (b)
Figure 17 The (a) CCD and (b) ASRSM estimated contws of the paper helicopter fly time
response

2.7.4 Traumatic Brain Injury (TBI): Design of Controlled Cortical Impact
Model

TBI continues to be a serious societal problem #fifgicts more than 1.4 million Americans
each year (Mao, Zhang, Yang, King, and 2006). Tdrgrolled cortical impact (CCI) rat model
is one of the most frequently used animal modelss Thodel is used to correlate real world
injuries with predictions from a validated finiteement (FE) model in order to establish injury
threshold. In CCI model, the impact depth (potédiytisanging 1-3 mm) and the impactor
diameter (potentially ranging 2.5-7.5 mm) are bale to be two main factors in determining
injury severity. However, the percent of increasefdase in size of rat brain contributes to
variances observed in post-impact tissues. Sineestlect of this external parameter is largely
unknown, it can be considered as noise. In CClistijcbne common problem is to find the
specific levels of factors that result in specpircent of injury in animal brain. However, these

experiments are not only very expensive, but ase abry time consuming.

In this case study, we used the proposed apprdadl & find the parameter setting that
result in 30% injury in the rat brain. We also cootd CCD experiments to compare the

performance with the proposed approach. The teahditails of the experiments can be found
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in Mao, Zhang, Yang, King, and 2006. Table 9 shtiwesconducted experiments of CCD and

the proposed ASRSM approach at different runs.

Table 9 The runs and experiments of (a) CCD and (lASRSM method for the brain
trauma case study

(@) (b)
Controllable Factors Random Controllable Factors Random
Coded Original Factor Response RN Coded Original Factor Response
. . impact | impactor brain . . . impact | impactor brain .
meact | 660" | o | ameter | sze | BN meact | 600 | gepuy | ameter | sz | SN
(mm) (mm) variation (mm) (mm) variation
1 -1 0.7 1.8 0% 900.0( -1.41 -1.41 1 25 -1% 877.92
1 -1 2.1 1.8 1% 306.37 1.41 1.41 3 7.5 0% 51595.49
-1 1 0.7 5.3 -2% 900.0(9 1 1.41 -1.41 3 25 0% 78.93
1 1 2.1 5.3 0% 11.54 -1.41 1.41 1 7.5 0% 761.34
-1.41 0 1.0 5.0 1% 894.44 0 0 2 5 1% 10.19
1.41 0 3.0 5.0 1% 1080.0B -1.41 0.71 1 6.25 0% 852.10
0 -1.41 2.0 2.5 1% 280.54 2 1.41 0.71 3 6.25 1% 19476.43
0 1.41 2.0 7.5 0% 206.04 0 -0.35 2 4375 1% 51.51
0 0 2.0 5.0 0% 6.57
0 0 2.0 5.0 -1% 3.40
0 0 2.0 5.0 1% 10.19
0 0 2.0 5.0 2% 16.29
0 0 2.0 5.0 -2% 0.875

Using 13 experiments, the CCD fits a quadraticemﬁfwithRidj =68.31% and identifie80

= (0.1857, 0.3286). Figure 18a shows the 3D plo€CGD estimated surface. In comparison,
using 8 experiments in 2 runs, the proposed apprétcthe quadratic model shown in Figure
18b with Rgdj =82.59% andEO = (0, 0.0505). As shown in the Figure 18, althoubhk
estimated optimal experiments of both approacheslase, the estimated response models of

the two methods are significantly different. Théfetences are even more apparent from the

contours of the two response model estimates (EifjBy).

To compare the estimated functions, we aggregaée etkperimental data from both
approaches (e.g. Table 9) and used the Radial Basistion (RBF) to find the best fit. Figure

15c illustrates the model fit using RBF and theraggted experimental data. From Figure 15 it
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can be seen that, the estimated function of thpgsed approach is much more similar to F
with aggregated experimental data. Meanwhile, ws® alote that the¢EO of the proposed
approach is very close to that of RBF td on the contour plots in Figure 18b and 18c. G
that the underlying response model is potentialighly nonlinear, the results are ve

encouraging for the effectiveness of the propogguiaach in real world applicatiol

R | [ e

N
7

(@) (b) (©)
Figure 18 3D plots of the estimated response for ( CCD, (b) ASRSM, (c RBF in the
brain trauma case study

Figure 19The (a) CCD and (b) ASRSM estimated contours of theesponse inthe brain
trauma case study

2.8 Discussion

In this chapter of Bsertatiol we developed and presented an adaptive methoddto¢

response surface optimizati (ASRSM). The proposed approach combines conciepts



50

nonlinear optimization, design of experiments, asponse surface optimization. The ASRSM
is a sequential adaptive experimentation approach wses the information gained from the
previous experiments to design the subsequent iexgetr by simultaneously reducing the region
of interest and identifying factor combinations feew experiments. Its major advantage is the
experimentation efficiency such that, for a giveisponse target; it identifies the input factor
combination (or containing region) in less numbkexperiments than the classical single-shot
RSM designs. It differs from earlier studies in @ptimality (under certain assumptions),
inheritance of results from previous experiments] @s robustness due to experiment ranking
based reduction of the region of interest. Throegtensive simulated experiments and real-
world case studies, we showed that it outperformesgopular CCD method in terms of both
optimality as well as the experimentation efficignthese results further demonstrate that the
ASRSM is competitive with the A-, D-, and V-optin@dgsigns. In particular, the performance of
ASRSM is found to be more robust with respect tangies in the error variance and convexity
of the response model, and more monotonous witltiadal experiments. In the following
chapters, the proposed methodology will be extendddgher dimensional problems as well as

higher order of response functions which can deeeitonvex or non-convex.
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CHAPTER 3 THE PROPOSED STARTEGIES FOR QUADRATIC AND
CUBIC FUNCTIONS WITH N-VARIABLES (N-ASRSM)

This chapter presents the detailed elements ofptbposed adaptive sequential response
surface methodology for n-dimensional problems (8RSM). We first describe the
terminology, most of which has been kept from poasi Chapter, and state the assumptions.
Next, we provide an overview of the methodologyd @dnen describe the two core strategies
embedded in N-ASRSM: (1) Parametric approach, aBj Non-parametric approach.
Afterwards, we describe how these two strategiesraegrated within N-ASRSM. Finally, we
compare the performance of the N-ASRSM with a nunabgopular methods in the literature
on various numerical examples. We also extend tbpgsed methods to N-ASRSM2 which use

optimal designs to consider factor spaces witrediifit shapes.

3.1 Terminology and Assumptions

The definitions and terminology used in the propoNeASRSM methodology is very similar
to ASRSM with a few new items. For more conveniemoe show the complete notations below.
Figure 20 illustrates some of the notations foheee-dimensional factor space with 5 initial

experiments in each run:

FS, : Factor space at runand expressed as Cartesian product of factor sangenr
fs; :Initial range of factoi

D  : Design of most current rt

d : minimum number of required pointsfn
COP : A corner point experiment run at the intersectibextrema of factor rang
CEP : A center point experiment runthe center of gravity of the factor sp

T : Index of runs, e.g: = 1,2, exR whereR is the total number of runs
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RO
EO,
sb
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: Index of experiments in a given run, €e=1,2,....E whereE is the total number of experime

: The experiment with the beresponse level in a given 1

: The experiment with thie™® best response level in a given rdek < e — 1)

: The experiment with the worst response level givan rur

: Optimal region in rum containing the estimated optimal experimé&mR,. € FS,

: Nor-optimal regiol

: Optimal experiment, e.g. best experiment in tiiail factor spac

: Realoptimumof the functiol

: Estimated optimal experiment in rr, e.g., best incumbent estinon of the optimal experime
: index of sub-regions in a given factor , where tihtal number of sub-regions2®

: Number of coefficients of the underlying mc

: Probability of losingR0 but cutting out

N B
~-p1st Run COP
Legend
-------- ~p 2nd Run COP
I:I FS of 1% run
< - » 1st Run CEP
rrrrrrrrr > 2nd Run CEP | | orofrun
fs3
w - OR of 1* run

. 1% Run Primary points*

Al

Axisg !

] 1 run Secondary points

fs1 ¥ © 2" Run Primary points

. 2" run Secondary points

* Based on fractional factorial design

Figure 20 An illustration of terminology on a three dimensional factor space

The proposed N-ASRSM methodology relies on the Biyipg assumption of quadratic

relation between the single response and inpubfactHHowever in the numerical example we

show that the proposed method is acceptably rdbuke violation of this assumption.
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3.2 Proposed N-ASRSM Algorithm

The following algorithm illustrates the general sofe of the proposed methodology. A

graphical representation of the algorithm is alsoven in Figure 21.

n — ASRSM Algorithm

Initialize
- Label the first runr=1)
- Determine the desigd based on the fractional design with smallest regni
Repeat until convergence

Take experiment(s) one at a time base@®on
1. Parametric Strategy (PS)
- Fit a quadratic model based on experiments,
- CalculateR?-adjusted of the model,
- Determine the Estimated Optimal poi&idr),
- Check for convergencex1):

If |fRaqj| < 6R§djor |ACEO)| < 65, Stop.

- Else, Goto Check EO in step 3.
2. Non-parametric Strategy (NPS)
- Rank the experiments & N2,..., NK,...,W
- ldentify and eliminate non-optimal regiof$@R) by solving a system of quadratic
inequalities using a Max-Min Optimization approach,
- Check for hyper-rectangular Optimal Regi@R{):
If OR: can be characterized as a hyper-rectangle,
[0Go to 3 Check EO.
Else,
Oteratively find furthest projections of experintetin an alternating ranking order,
beginning withw, until a hyper-rectangul@Ris obtained. Repeat NPS.
3. Check ifEQ; is contained inOR (Check_EO)
If EG: is contained iOR, FS+1 :=OR
Else, Expan®R to containEQ, andFS.1:= OR.
Return.
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Label the first runr=1)
Determine the desigh based on the

lowest resolution fractional design

J

4

Take the experiment/s one at a time
based on design

J

Parametric Appreaeh

(Model Fitting Strategy) a

i Yes ' r-—-—=-=-=-=-=---
! . ) . e !
, Fit the quadratic model using E :I Partition the factor space into a set of- !
! . : regions §b) with similar structure t&S, :
| | i i
[} |
! P : '
1
! . : Rank the experiments in the current rur |
Calculate R2- Solve the fitted model to estima} B, N2,..., Nk, W :
Adjusted the optimal point (EOr) ) |
L |

[ ] e ) : )

Check the sub-regions one at a time using :
the ranking to find if it cannot contain the |
No optimal point 1
Converged? . J !

[ACEO)| < 650

Yes

A 4

Determine the optimal point

Project the first available \ |
or B of FS, to its most
opposite empty corner |

Is it possible to identify a
sub optimal region inside
the FS,?

No

Do risk adjustment and determine the r
factor space

v

Compare th&0,andOR,, finalizeFS,,
andr=r+1

Figure 21 The general scheme of N-ASRSM

3.3 Design Structure of the First and Subsequent Runs

The designD structure of the factor spaés,. in the proposed approach is adapted from the

minimum resolution fractional factorial design awggrted with a center point both to minimize

the number of experiments and take advantage afrdestructure discussed in Chapter 2. This
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design may be further augmented with few more expts on the empty cornersi@s$, which

will be discussed in later.

Similar to Chapter 2, the factor space of each (#f}) in the proposed approach can be

expressed as a mapping.J of the factor space of the preceding riS,(,) maintaining similar
design structure, e.d.S, = @, ((pr_l(...ch(FSI))). Regarding thé&'S size,t is suggested to

start with a broader initial region around the eergoint in comparison to classic approached,

k=f
e.g. £27= unit distance from the center whe2é-fthe number of points is in the chosen

fractional factorial design (above relation is lmhem the calculation axial points in rotatable
CCD with a single replicate at all designated pi(i¥lontgomery, 2005). Considering the
diagonal cross-section of these two designs imatdmension as illustrated in Figure 22b and
assuming that the noise is identically distribubecthis cross-section. Then, it can be shown that
the impact of the noise on prediction of the optieygeriment point is less with the proposed
methodology’s factor space. Figure 22a comparesnitial factor space of the traditional CCD

and the proposed (See also section 2.3 for mooennation).

Proposed Approach
initial range

A

£€D & BBD >
initial range

v

k=f k=f
-2 -1 0 +1 +27%

Figure 22 (a) Initial factor space and design streture and (b) Diagonal cross-section of the
traditional CCD and proposed N-ASRSM approach
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3.4 Non-parametric Approach: Ranking Strategy

At each runr of the proposedN-ASRSMapproach, we first rank the experiments (e.g., kth
point fractional factorial and one center points)Nd (we would call)B, N2, ...,N(k — 1) and
N(k —1) (we would callW) according to their response levels. Based onrém&ing, we
identify the implied optimal region which contaitie EO,.. This region is a polygon contained
in FS, and can be convex or non-convex in the space a@brfm We then identify a hyper
rectangle which contains the implied optimal regaod denote it as the optimal regiaghR(),

which determines the factor space of the next run.

Similar to Chapter 2 model, this process of enciapisg the implied optimal region with a
hyper-rectangle is a form of relaxation and is efficient in terms of factor space reduction.
However, there are valid reasons that motivatergiexation. Again, the foremost reason is the
reduced need for new experiments due to the irdmaat of experiments from the previous run.
Secondly, the hyper-rectangul@$ preserves the orthogonality of factorial experitaédesign.
Further, this hyper-rectangular form facilitatese thecursive characterization of the same
rectangular structure throughout the process. dilitian, we can use the same experimental
design structure, e.g. full factorial with a cenpmint. Specifically, with a hyper-rectangular
envelope, the mapping across runs will be identeal ¢(-) = ¢,.(+) for Vr. This is because we
maintain the same experiment design structure tlagré are a finite number of optimal regions
as a result of ranking outcomes. Lastly, the rdlarareduces the risk of selecting an optimal
region that excludes the optimal experiment. Fig2Ballustrates the trade-off among implied
optimal region, convex hull envelope of the implmatimal region, and rectangular envelope of

the implied optimal region.
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Figure 23 (a) Implied optimal region (b) Convex hll envelope of the implied optimal

region (c) Rectangular envelope of the implied optial region based on a three dimensional
factor space

In what follows, we first present the methodologed to reduce the factor space. Next, we

describe how to choose additional experimentstiaracterizing a hyper-rectangh®.

3.4.1 Reducing Factor SpacgFS)

The reduction of the factor space to a sub-regmmaining0 is achieved through the ranking
of experiments of the current run. This reductienperformed by elimination of those sub-
regions that do not contain the optimal point, ,e.gon-optimal regions NOR). The
determination of such sub-regions is exact astpeassumption stated in Chapter 2. Intuitively,
the sub-regions in the vicinity of high and low karg experiments are more simply
characterized as AOR or not. In particular, the vicinity oB has a higher probability of
containingO while the other regions, e.g., the vicinity ¢f, have considerably less chance of
containing0. Such confidence decreases in the vicinity of é&édseeme points. This intuition can

be formalized in an algorithm as follows:



58

NORs Elimination Procedure
Step 1. Divide FS into 2" sub-regions of the same size and structure bytomgetheFS usingn

hyperplanes orthogonal to thefactor dimensions (See Figure 24).

Step 2. For each of th@" sub-regions, repeat:
2.1.ldentify a hypothetical optimal poirdt in the current sub-region.

2.2. For each experiment< e < E, express the response model in a canonical form as

Zo =¥ Anj(xE — x2) (XF — XP) + R¢, whered, ; € R andR® is a constant term.

2.3. Sort the parametric canonical forms of the expemisien ascending orde(rZeB <

< ZeW). (Because the canonical form should comply witipieical ranks of the

Zoy, <

experimentéB < N, < -+ < N < W).
2.4. Rewrite the sorted canonical forms of the expents in the form of a system of

inequalities with——= ( palrW|se comparisons of experiments as follows:

= 21 Ay (X2 = X0) (X2 = XP) = ey Ay (X = X0) (X2 = xP) <0
0

( ZeB “Ldepn
lnj 1 lJ(XeNZ XO) ( X —X ) iJ=1AiJ(XieN3 _Xio) (XjeN3 —X ) <0

{ZeNZ ~Zoy, =

lZeNk Tley T Z?j 1 lJ(XeNZ XO) ( X on) - g}':lAi,j(XieW _Xié) (Xjew _XJ'O) <0

(In above systerd; ; andXO are the unknowns, whevg\o is bounded by the boarders of the
current sub-regions)

2.5. Check the feasibility of above system by looking & negativesolution of the following
Max-Min optimization model:

Min Max Z = (Zey = Zey,, Zey = Zeyy = Zen, — Zey )
Subjected to:
A;j € R,Xj(j € Current Subregion

9)
(Positive solution of above optimization model iguevalent to non-existence of a feasible
solution for above system of quadratic inequaliied vice versa).
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P2

(@) (b)

Figure 24 8 sub-regions of a 3 dimensionalS using 1 orthogonal hyper plane (b) 16 sub-
regions of a 3 dimensionaFs$ using 2 orthogonal hyper planes

Feasible solution of above system of quadratic uabties means that the real optima
(RO) can occur in the sub-region stated by step 2.1netke that sub-region is not feasible and
can be eliminated from th@R. It can be shown that above procedure eliminate tihdge sub-
regions not containing the optimal point by conitidn as per the assumptions stated in
Chapter 2. In particular, we first assume thateahexists a sub-region containing the optimal
point, which leads to an inconsistent ranking dkast one experiment pair. Next, we show that

the A4; ;-;» determined for the experiment pair contradicts ¢bavexity assumption of the

guadratic response forms.

The NOR elimination steps are repeated for all sub-regiansl those sub-regions not
eliminated or not checked form a hyper-rectangtégion inside thé"S. When such a hyper-
rectangular region is obtainable, we then desigitaés theFS of the next run. If a hyper-
rectangular region is not available upon the cheglof all sub-regions foNOR elimination,
then additional corner experiments are necessang fiext section discusses how those

additional experiments are determined.
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3.4.2 Selecting Additional Corner Points

When theNOR elimination procedure terminates without a candide/per-rectangulars or
very small eliminated sub-region, then additionalngs are needed. These additional points
enable eliminating more of the sub-regions in a feays. First, they increase the number of
pair-wise ranking comparisons of experiments sudt the likelihood of a previously non-
eliminated sub-region becomingMOR is increased. Second, with these additional ppihts
new ranking of the experiments leads to a betteerage ofFS. Finally additional points
generally result in more reliable ranking of theesments that potentially allow elimination of
more sub-regions. However, since one of the gdais-0e ASRSM is to reduce the total number
of experiments, the number of additional pointsudthdoe kept as small as possible. This can be
achieved by selecting the additional points thaivigle maximum potential for eliminating

NORs. Figure 25 illustrates the process of selecting &gditional points.

w w
N Na
N2 N2 -
: ' /
() (b) (©)

Figure 25 Cut out regions using the ranking stratgy based on two additional points

We select additional points one at a time until tlext FS as a hyper-rectangle can be
inferred. The selection strategy employed is basedthe simplex optimization method in
Walters, Parker, Morgan, and Deming (1962) and aamhsmaximizing the potential of

eliminating moreNORs. This strategy is executed by using the currenkirgy information of
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the experiments and subsequently identifying thdsections with most improvement and
worsening of response based on the current expetsm€learly, the highesBj or lowest )
ranking experiments are ideal candidates for ifjgng such directions for two reasons. First,
the most opposite corner projectionsBoandW provide the most information on the orientation
of the diagonals of the underlying function. Them®l reason is, as in the simplex optimization
method, the projection in the opposite of leasbfable (/) and most favorableB(), is likely to
produce a new ranking with a more precise rangeesfponse orientation. Once the opposite
projections ofB andW are taken as additional points, we continue takitgjtional points in the
opposite reflections of next alternate ranking expent pairs, e.g.N;_, andN,, and so on.
Figure 25 illustrates the two additional pointseiakas the opposite projections of fikgt and

thenB.

The most opposite projections of corner point expents are determined according to the
cosine similarity measure (Tan, Steinbach and KurB@06). To illustrate, the most opposite
corner projection of the worst/best experimenbisnd by:

Cy = arg ming cos(a),

(10)

whereqa is the angle betweef), andCy, vectors connecting the experiments to the ceyugnt.
Above procedure works while the candidate expertmera corner points. If the candidate
experiment, e.gBor W, is a center point then opposite projection of tlext candidate

experiment should be considered.
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3.4.3 Risk Adjustment
Reducing factor space is exact when there is nsenioiside the model, however when data
are erroneous, there is a probability that two orevof the rankings be incorrect so the cut off

region may be inaccurate or even invalid as shawfigure 26 (a) and (b).

(b) (©)
Figure 26 The effect of incorrect ranking on theVOR

Knowing the probability of incorrectly ranking tleperiments can help to change the size of
the NOR to adjust the risk of not containing tiR®. The challenge is that the variance of the
noise is unknown and the number of experimentsiglly not enough (especially in the early
runs) to estimate the it. In the rest of this settfirst, we present a novel approach for findang
(pessimistic) estimate of variance when there i$ @oough data to estimate the model
parameters. Next, we will show how the estimatathwae can be used for adjusting the risk of

missing theRO when shrinking thé@R.

3.4.3.1 Estimating the Variance with Not Enough Data

When the number of experiments is not enough tionat all parameters of the model, we

can design a system of two equations for obtaithiegoessimistic estimate of variance. The first
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equation is from decomposing total sum of squa&T{3nto sum of square regression (SSR)
and sum of square error (SSE) which is shown below:

SST = SSE + SSR
(11)

The second equation is derived based on minimunifigignce level of the hypothesis testing

SSR
Jie=1

W wherekthe number of

on meaningfulness of the regression. The testiaiissts iSF =

parameters in the canonical form of response mauheln is the total number of experiments.
The reason for using canonical model for calcutpkinis that since we assumed the optima is
occurring in one of the sub-regions, canonical rindewill reduce the number of parameters to
be estimatedk). The critical value of the hypothesis testFjs,_;,—x, SO at the significance
level a considering the minimum value of the statisticdolvimakes the regression meaningful

the following equation can be written as:

SSR SSE

k_ 1_Fa,k—1,n—k-n_k =

(12)

In equations 11 and 18ST, k —1,n—k andF, ;_1,-, are known andSR andSSE are
unknown, so combining 11 and 12 will result in atsyn of two equations and two unknowns.

One of the solutions of above system wouldSS8& which can be used for estimating the

variance Var = MSE < %).
3.4.3.2Calculating the Probability of Incorrect Ranking and Risk Adjustment

Having a set of ranked experimerts i = B, N,, ..., N,_1, W) and the estimate of variance

(MSE) available, the probability of incorrect rankingy feach pair of experimentsj (i < j) can
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Ze

i~ Ze; . . . .
be easily approximated m(ej < ei) =@ (ﬁ) Using this information we want to estimate

the probability of losing th&0 by cutting off the sub-region chosen by the preploapproach.
While there are many ways to approximate the pritibabf cutting off the RO using estimates

of incorrect ranking we use the following strategy:

| ncorrect Ranking Estimation Procedure

Step 1.Setr = 1.

Step 2.For each experiments froii to B flip the rank (and observed value) of each expenim
with its nextr" higher and lower rank experiment one at time.

Step 3.I1f NOR changes, find the probability of rank rotation gsabove formula and go to step
4.1fnotgotostep5

Step 4 From all possible rotations finds the one withxmaum probability f;) as estimate of
cutting off RO.

Step 5.Setr=r+1 and go to step 2

Above strategy is based on one factor at a timéysisavhich has the complexity @f(n),
though showing good performance in many numerixah®les comparing to exhaustive search
which has a(m™) complexity. Next, we explain how to incorporateoad probability for risk

adjustment.

The risk adjustment for cutting oNOR is based on a simple intuitive idea. If we donit ¢
any region the probability of cutting oRO is zero. If we cut of the nominatedddOR the
probability of losingRO is P,. So shrinking the size of nominat§@R will decrease?; which is

also shown in Figure 27 (c).

To approximate the rate of reduction Bp by shrinking the size of nominatéddOR, we

incorporate the Gauss error function as shownguaréi 27 and defined in Equation (13):
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erf(x) = —fxe_tzdt
° (13)

,7]/3 : -

% of size reduction of nominated NOR

(@) (b) (€)

Figure 27 Application of Gauss error function on isk adjustment

% of increasing the probability of

taking RO

Therefore, by setting an acceptable level of canfad on takin®0, e. g. 95%, we can easily
find the reasonable amount of shrinkage in theoffutegion. The final point in risk adjustment
of cutting off NOR is that above steps are applied to every noming@®l in section 3.4.1. As a
result multiple sub-regions with differeRt might be nominated for cutting off. In this case w
consider the union of candidate sub-regions andimax of P; of different regions for risk

adjustment

3.5 Parametric Approach: Model Fitting Strategy

We use a parametric approach based on model fitbngurrent to the nonparametric ranking
approach described in Section 3.4. This strategyonly allows us to increase the precision of
EO, but also supports backtracking through the expansf OR,. to contain estimated optimal
EO,. Beginning with the completion of all first runmiments, this parametric approach is used

after each experiment. In this approach we fit adgatic model:
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Z =31=1Qixix; + Xi Pix + R+ &, with e~N(0, d?), to the experimental data to
analyze the underlying function and efficacy of @octed experiments. In fitting the quadratic
model, two objectives are being sought in particuld) finding the estimated optimal
experimentEOr; and (2) calculating the adjusted coefficient etaﬂminatio:ﬁRﬁdj). EO,, the
minimum of the fitted model, not only shows thedgcéed optimal solution, but is also used for
the expansion ofR,. Furthermore, the change in tB6, in consecutive runs is also used as a
stopping criterionRgdj, shows how well the information gained from th@exments explain

the behavior of the underlying system (Seber araoh A2003).

3.6 Expansion of OR to contain EO
As described in the N-ASRSM algorithm in the prexcection, we check the consistency of
the EO,.obtained from the parametric approach, and thenestd optimal regio@R,.obtained
from the non-parametric strategy. When B®. is found to be outsidiR,., we then expand the
OR, to containE 0, while preserving its hyper-rectangular structdigis expansion is illustrated

in Figure 28.

(a) Initial FS,. not including EO, (b) IncreasedFS, based onEO, location

Figure 28 Expansion ofOR in N-ASRSM when theE 0O falls outside
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3.7 Numerical Examples

In this section, we describe two sets of simulatggeriments performed to evaluate the
performance of the proposed N-ASRSM approach. énfitist set of simulations N-ASRSM s
compared to well-known classical methods includ@®@D, BBD and A, D, and V optimal
designs on different quadratic response models waitiiing variance of errors. The second set of
simulations study the performance of the proposppraach along with classical models,
optimal designs and two global optimization meth@@tsindler et al. (2002), Wang et al. (2003))

on a number of nonlinear response models with uaresrors.

3.7.1 Quadratic Response Models

We now describe the simulated experiments perfortnecompare the performance of the
proposed ASRSM approach with those of CCD, BBDPAand V-optimal designs on quadratic
response models. We have considered 6 problemstwihand 5 problems three variables.
These problems cover different type functions aadous range of standard deviation (See
Table 10). As noted earlier, all response models e quadratic relation with a normal error

terme~N (0, 02). Figure 29 also shows the contour plot of twohef tesponses.
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Table 10 The response models used in the simulatedperiments of N-ASRSM

No. of | Exp. ;
variables | No. Response Relation Error (¢) | Response Type
1.1 W=-25C+3y/+2x-y+2xy-14¢ N(0,0.1) Non-convex
1.2 W=x2+2yP-2y+e N(0,1) Convex
Two 1.3 W=-2)2+3yP+2x-y+2xy-14¢ N(0,2) Non-convex
Variable
Response| 1.4 =-3)C+2yP+x-2y+2xy-1+4¢ N(0,2) Non-convex
15 W=2)C+y?+x+2Xy+e N(0,2) Convex
1.6 W=xP+2y-2y+e N(0,2) Convex
2.1 W=2 3-1y2-274X-2y+3Z-Xy+3Xz+2yz+24 N(0,2) Non-convex
2.2 W=2 X+3yP+57+x+2y+1z-5xy+1xz+1yz+14 N(0,3) Convex
Three
Variable | 2.3 W=1 X+1y+57+x+2y-52-5xy+1xz+1yz+1s N(0,3) Non-convex
Response
2.4 W=-1.5 ¥-3.5y+37+0.5x-3.5y-1.52-3xy+1.3xz+1.4yz+2+ N(0,2.5) Non-convex
25 W=2 ¥+1.7y/+1.67-4.4x-5.75y-2.232-1.2xy+1.3xz-1.1yz+6+| N(0,2) Convex

X242 y2-2 y

2 x%43 y242 x-y+2 x y-1
: ! ——

~—

) |

0.5F

I ~ — — L
-1 -0.5 0 05 1 -1 -0.5 0 0.5 1

Figure 29 the contour plot of responses 1.1, 1.3

Whereas N-ASRSM is an adaptive sequential methoel, GCD, A-, D-, and V-optimal
designs are essentially preset designs. In ordexvéduate the effect of this difference, we

initially fixed the number of design points at 7 frases with two variables and 11 for cases with
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three variables and then incrementally added osgydeoint at a time for two more times. For
optimal designs, the initial set of design poingsdptimally generated by optimizing the
optimality criteria over the starting factor spasgh a fine grid system spaced with 0.01
intervals. Next, each of the additional points énherated by optimizing the optimality criterion
given the existing design points and the responsdein For the CCD and BBD, we initially

used either 7 or 11 of the complete design by ekeusome of the points and then re-including

them one at a time.

For the analysis, we have studied the performanceésrms of averag@fldj, and average
optimality gap (i.e., deviation from the optimalsponse). All simulated experiments are
repeated three times, and average results aretedpdihe starting factor space is considered

with the range of—3,3] in all dimensions for both two and three variabl@amples. Table 11

presents the averagg,, ; performances for the consecutive trials.
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Table 11 TheRfldj for trials 7, 8, 9 of responses with two variableand trials 11, 12 and 13

of the ones with three variables

Adjusted R?
Exp. No. No Obs. CCD | BBD n-ASRSM D-Opt. V-Opt. A-Opt.
7 99.96% N/A 99.99% 99.96% 99.92% 99.94%
11 8 99.96% N/A 99.99% 99.98% 99.95% 99.95%
9 99.95% N/A 99.98% 99.97% 99.94% 99.92%
7 92.69% N/A 93.67% 95.01% 94.85% 90.69%
1.2 8 92.48% N/A 94.97% 89.20% 95.86% 86.86%
9 92.00% N/A 96.62% 90.42% 95.42% 86.58%
7 69.77% N/A 79.57% 92.96% 72.11% 97.71%
1.3 8 70.60% N/A 86.53% 91.06% 74.92% 79.86%
9 88.48% N/A 92.91% 89.02% 80.89% 82.00%
7 92.87% N/A 91.68% 91.09% 85.12% 94.21%
14 8 88.49% N/A 92.39% 91.69% 88.76% 89.27%
9 82.17% N/A 94.17% 92.58% 85.47% 89.49%
7 24.61% N/A 90.15% 87.21% 86.05% 87.19%
15 8 35.75% N/A 89.16% 76.74% 71.97% 89.97%
9 37.03% N/A 94.26% 67.96% 84.95% 86.66%
7 35.45% N/A 86.18% 85.31% 85.08% 50.38%
1.6 8 43.17% N/A 86.44% 78.71% 86.04% 57.23%
9 49.40% N/A 88.92% 67.65% 82.05% 64.49%
7 69.22% N/A 90.21% 91.92% 87.19% 86.69%
Avg. 8 71.74% N/A 91.58% 87.90% 86.25% 83.86%
9 74.84% N/A 94.48% 84.60% 88.12% 84.86%
11 87.30% 76.11% 96.78% 98.18% 92.66% 98.42%
2.1 12 88.10% 81.32% 97.31% 98.61% 95.60% 96.60%
13 91.09% 79.87% 96.66% 97.66% 95.67% 97.79%
11 80.64% 79.93% 91.44% 94.33% 97.16% 87.40%
2.2 12 86.42% 81.86% 93.40% 93.39% 81.34% 90.36%
13 86.93% 81.16% 94.48% 94.03% 77.13% 88.66%
11 89.36% 63.23% 98.38% 89.15% 84.79% 93.59%
2.3 12 85.69% 63.75% 96.24% 90.78% 88.26% 91.80%
13 85.06% 60.24% 93.84% 92.79% 90.96% 91.38%
11 89.02% 53.12% 99.38% 89.25% 84.88% 90.50%
2.4 12 87.06% 56.04% 94.99% 92.93% 86.88% 91.76%
13 86.50% 49.48% 94.27% 91.74% 88.27% 90.12%
11 92.77% 89.21% 97.21% 96.54% 98.08% 96.58%
25 12 93.44% 91.03% 97.39% 97.51% 96.99% 97.95%
13 92.59% 91.61% 97.90% 97.53% 97.32% 97.22%
11 87.82% 72.32% 96.64% 93.49% 91.51% 93.30%
Ave. 12 88.14% 74.80% 95.87% 94.64% 89.81% 93.69%
13 88.43% 72.47% 95.43% 94.75% 89.87% 93.03%

Table 12 also presents the average optimality daghed consecutive trials of comparing
methods. The optimality gap is measured as theatiewi of the response at the fiad from

the response at true optimal experimeat The experiments show that the optimality gaphef t
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proposed N-ASRSM is almost the most competitive ragnall methods. The V- and A-optimal

designs are slightly better performing than N-ASRigNhe fifth response model.

Table 12 The optimality gap for trials 7, 8 and 9 bresponses with two variables and trials
11, 12, and 13 of the ones with three variables

Optimality gap
Exp. No. | No Obs. ccD | BBD | nAsRsM | D-Opt. V-Opt. A-Opt.
7 3.84 N/A 0.00 0.00 31.76 0.00
11 8 3.84 N/A 0.07 0.0C 18.3¢ 4.7C
9 0.23 N/A 0.04 0.26 0.00 0.00
7 70.52 N/A 0.01 0.00 0.61 40.19
1.2 8 70.52 N/A 0.72 0.5¢ 0.7¢ 29.9¢
9 70.52 N/A 0.00 7.69 0.83 8.24
7 909.82 N/A 0.31 0.31 0.31 1260.68
13 8 909.8: N/A 0.31 0.31 0.31 492.0¢
9 909.82 N/A 0.31 0.31 0.31 5.00
7 810.23 N/A 30.79 30.79 30.79 30.79
14 8 2578.2: N/A 30.7¢ 30.7¢ 30.7¢ 30.7¢
9 363.90 N/A 30.79 30.79 30.79 30.79
7 1.59 N/A 0.01 0.01 0.07 0.00
15 8 0.01 N/A 0.03 0.02 0.00 0.29
9 0.38 N/A 0.02 0.01 0.00 0.21
7 874.36 N/A 30.79 16.50 16.50 790.25
16 8 756.48 N/A 16.50 16.50 16.50 3583.36
9 900.70 N/A 16.50 696.57 16.50 779.73
7 445.06 N/A 10.32 7.94 13.34 353.65
Avg. 8 719.81 N/A 8.07 8.03 11.12 690.20
9 374.26 N/A 7.94 122.61 8.07 137.33
11 19.24 18.99 9.86 11.95 13.84 13.50
21 12 19.46 19.02 10.10 10.88 13.84 12.66
13 13.09 19.42 9.95 10.56 14.01 11.81
11 25.00 25.46 21.89 23.99 26.16 32.82
2.2 12 25.05 23.51 22.19 24.06 26.51 33.21
13 27.84 22.44 22.36 23.17 26.19 32.92
11 3.64 12.48 0.25 1.01 12.65 0.54
23 12 3.64 12.48 0.25 1.43 12.72 1.25
13 8.59 12.22 0.35 1.40 12.72 2.20
11 19.30 20.28 0.90 6.39 1.40 1.43
2.4 12 19.30 20.64 1.03 6.37 1.37 1.41
13 19.53 19.75 1.08 6.40 1.39 1.43
11 4.13 5.72 1.51 1.48 0.87 1.23
25 12 3.71 5.72 1.44 1.46 0.87 1.26
13 4.60 5.72 1.44 1.58 0.90 1.17
11 14.26 16.59 6.88 8.96 10.98 9.90
Ave. 12 14.23 16.27 7.00 8.84 11.06 9.96
13 14.7¢ 15.9] 7.0¢ 8.62 11.04 9.91




72

3.7.2 Non-linear Response Models

Here we compare the performance of the proposedSR&M approach with two global

optimization methods: Standler et al. (2002), Wah@l. (2003), as well as classical methods

CCD, and BBD, and A- D- and V-optimal designs orefnonlinear response models with two

and three variables, with different variance andcfion type. These response models are

presented in Table 13. Figure 30 illustrates theaar plot of two of the responses.

Table 13 The non-linear response models used fouslying N-ASRSM

No. of Res. . Error
: Response Relation
variables | No.
Response| 1.1 | W=(y-(1/(8r%).*x?)+(10)(x-2)*+10(3-1/(12))cos(x) N(0,3.5)
with Two
variable | 1.2 | W=0.75(x-0.15% +.25%(x-0.15)*+ 1.3.%(x-0.15\°+1.8(x-0.15) (y-1¥-2.66 (y-1§+1.9(y-0.15% N(0,2)
2.1 | W=(x-0.55% + (y+0.7)? + (z-0.33F -cos(18(x-0.55))-cos(18(y+0.7))-cos(18(z-0.33)) N(0,2)
Response
with three | 2.2 | W=(x-1)2- 3(y-1)*(z+1)% -2(x-1) - 2(y-1)? +(z+1F-(x-1)+5(y-1)+6(z+1)+2(x-1)(y-1)+(x-1)(z+1)-4(y-B¢1)+1 N(0,1)
variable
2.3 | W=x?+ exp(y/10 + 10) + sin(zy) N(0,3)

-.15)2 -.15)4 _15)2
e le) x2)+(10l(ru) x-2)2+10 (3112 1) cos(x) .75 (x .1‘5) +.25 (x .‘15) +...+1.? (x-.15)’

T

4 1 4
s J 2

o

L it L L | i L
6 -4 2 o 2 4 6 - -4

Figure 30 The contour plot of Responses 1.1 and 2.2

For the following analysis, we have examined thégomances based average optimality gap

and Euclidian distance of the estimated optima he teal optimal point. All simulated

experiments are repeated two times, and averagdsese reported. To keep the consistency
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with the preceding section, the result of trial8,79 of the cases with two variables and trials 11
12, and 13 of the cases with three variables haen veported. Table 14 shows the average

optimality gap results of the consecutive trialshef comparing methods.

Table 14 The average optimality gap of the proposed-ASRSM and comparing methods

) Run cco BBD | N-ASRSM Sta(”zdggrzet ol W?znc?o? al- | p_optimal | A-optimal | V-Optimal
7 1504.46 N/A 0.00 750.68 702.68 0.05 0.05 0.00
11 8 0.00 N/A 0.00 536.36 190.23 0.00 0.03 0.00
9 0.00 N/A 0.00 536.36 9725.89 0.00 4.47 0.00
7 464.8 N/A 6.4¢ 471.2¢ 370.1( 893.1" 4.4¢ 37.3:
12 8 27.14 N/A 5.11 377.45 503.17 893.17 7.32 9.48
9 8.37 N/A 4.6t 377.4¢ 494.7: 893.1; 8.4¢ 5.87
7 984.65 N/A 3.24 610.99 536.39 446.61 2.26 18.67
Ave. 8 1357 N/A 2.55 456.90 346.70 446.59 3.68 474
9 4.19 N/A 2.32 456.90 5110.31 446.59 6.48 2.93
11 41.4¢ 3.47 2.9¢ 4.9: 25.3¢ 824 60.47 4.97
2.1 12 29.81 3.34 3.21 0.55 2.40 11.72 22.77 5.09
13 6.73 5.78 4.62 0.55 5.26 11.38 18.76 5.39
11 272.12 348.36 0.08 1114.19 14444.60 6.75 9.83 9.33
2.2 12 366.53 348.36 5.40 1596.96 1137.59 7.06 8.97 9.69
13 746.6: 404.5¢ 9.3 1596.9( 730.67 8.2¢ 9.3t 8.1t
11 Inf. Inf. 15.0C Inf. Inf. Inf. Inf. Inf.
2.3 12 Inf. Inf. 0.74 Inf. 0.69 Inf. Inf. Inf.
13 Inf. Inf. 0.37 Inf. 0.38 Inf. Inf. Inf.
11 Inf. Inf. 6.00 Inf. Inf. Inf. Inf. Inf.
Ave. 12 Inf. Inf. 3.12 Inf. 380.00 Inf. Inf. Inf.
13 Inf. Inf. 4.77 Inf. 245.0( Inf. Inf. Inf.

Table 15 also shows the average Euclidean distahtee estimated optima of the comparing

methods to the real optima of the underlying fuscsi
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Table 15 The average Euclidean distance of the estted optima from the real optima for
N-ASRSM and comparing methods

fix) | Run| ccD | BBD | N-ASRSM | Standler et al. (2002| Wang et al. (20031 D-optimal | A-optimal | V-Optimal
7 3.99 N/A 0.01 1.88 2.06 0.22 0.01 0.02
1.1 ] 8 0.01 N/A 0.01 2.00 461 0.01 0.17 0.00
9 0.01 N/A 0.00 2.00 5.76 0.01 211 0.00
7 2.92 N/A 0.47 2.09 1.63 2.18 0.44 0.82
1.2 ] 8 0.78 N/A 0.41 1.67 215 2.18 0.51 0.33
9 0.53 N/A 0.38 1.67 2.85 2.18 0.54 0.48
7 3.46 N/A 0.24 1.99 1.85 1.20 0.22 0.42
Ave. | 8 0.39 N/A 0.21 1.83 3.38 1.09 0.34 0.17
9 0.27 N/A 0.19 1.83 431 1.09 1.33 0.24
11 0.27 0.83 0.19 1.83 4.30 1.09 1.33 0.24
21 | 12 2.46 0.71 055 0.94 237 0.92 1.94 0.98
13 1.37 0.63 1.07 1.27 0.36 0.99 113 0.26
11 0.77 0.56 1.09 1.27 0.61 1.25 1.32 023
22 | 12 1.82 1.60 0.29 1.98 4.26 0.76 0.85 0.88
13 1.56 1.60 0.73 2.28 1.62 0.76 0.82 0.90
11 1.90 1.02 1.01 2.28 1.86 0.83 083 082
23 | 12 3.33 3.42 1.92 1.95 232 371 371 3.80
13 4.15 3.43 0.83 1.94 0.23 3.72 3.71 3.80
11 | 329 310 0.83 1.94 0.59 3.80 3.69 3.80
Ave.| 12 | 254 1.91 0.92 1.62 2.98 1.80 217 1.89
13 | 236 1.89 0.88 1.83 0.74 1.82 1.89 1.65

3.8 Discussion

So far in this Chapter, we have developed and ptedean adaptive methodology for n-
dimensional quadratic response surface optimizalibe proposed approach combines concepts
from nonlinear optimization, design of experimerasd response surface optimization. The N-
ASRSM is a sequential adaptive experimentation@gpr and uses the information gained from
previous experiments to design the subsequent iexg@etr by simultaneously reducing the region
of interest and identifying factor combinations feew experiments. Its major advantage is the
experimentation efficiency such that, for a giveisponse target; it identifies the input factor

combination (or containing region) in a smaller f@mof experiments than the classical single-
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shot RSM designs. It differs from earlier studiesits optimality (under certain assumptions),
inheritance of results from previous experimentsl abustness due to experiment ranking
based reduction of the region of interest. Throlaghbe set simulated experiments, we showed
that in modeling quadratic responses it outperfotmaespopular CCD, BBD and optimal designs
in terms optimality. Based on another set of sithotes we also showed that— ASRSM
performs considerably well in comparison to globptimization approaches in estimating the
optima of non-linear responses. In the followingtss we extend the proposed strategy to work
based on optimal designs which provides more figtyibn dealing with non-rectangular factor

spaces and constraints.

3.9 An Extension of the Proposed Strategy with OptimaDesign (N-
ASRSM2)

This section extends the proposed N-ASRSM strategywork based on optimal design
instead of fractional factorial design (N-ASRSMZor this purpose, we first describe the
terminology in Section 3.9.1. Next, we discuss ¢lxéended algorithm and its step in Section
3.9.2. Finally we provide a set of numerical exagsgh Section 3.9.3 to study the performance

of the proposed strategy.

3.9.1 Terminology and Assumptions

Below we defined the additional notations requifedextending the N-ASRSM method to

N-ASRSM2. Figure 31 also shows a graphical reptesien of the notation:

OR, : Optimal region aftee" experiment
EO0, : Estimated optimal experiment after experiment

e* :Index of augmenting experiments , et=1,2,...E* whereE™ is the total number of
augmenting experiments



76

Legenc

- NOR after 3 additional experiments

. Initial run points
J Additional points

Figure 31 An illustration of the terminology of the N-ASRSM2 on a two dimensional factor
space

Similar to N-ASRSM, the extended methodology iseoben the quadratic relation between
the response and input factors. Though, the strateg be built upon cubic assumption as well
without any changes. The trade off is that the gigsinbic function as the underlying function
provides the strategy with more flexibility in mditg nonlinearity while requires more
experiments (because of its flexibility it is malficult for cubic function to identiyWOR with

same number of experiments).

3.9.2 Algorithm

Figure 32 illustrates the general scheme of thegsed methodology. The initial run is setup
with a modified version of optimal design, e\¢. optimal design, augmented with additional
experiment in following stages. Once the experimgon is completed, the approach follows
two concurrent strategies, e.g., non-parametrikingnstrategy and parametric model fitting
strategy. Based on the ranking of experiments ardestimated optimal point from quadratic

model fitting, a reduced factor space containirggebtimated optimal experiment is determined
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for the next experiments. This procedure continuesl the convergence criteria based on

estimated optimal experiment or coefficient of deti@ation of the fitted model is attained.

Determine the desigb based on a V-
optimal design with smallest number of
experiments

v
Take the experiment/s one at a time ]‘
"""""""" based on design D J‘

Parametric Approach

———— 2 (-S-=i-hup GGG g U U e ey e |

(Model Fitting Strategy (Ranking Strategy)

No A 4

Yes

Partition the factor space into a set of sub-regio|
(sb) with similar structure t&S,

A |

[ Fit the quadratic model using E ]

A 4 h 4
Calculate R2-Adjusted] [ Solve the fitted model to estimateJ

Rank the experiments in the current run as B,
N2,..., Nk, W

the optimal point (EOr) v

[ Check the sub-regions one at a time using the]

| E— T

ranking to find if it cannot contain the optimal
point

v

Do risk adjustment and determine the new fact]wr

Converged?
[ACEO)]| < 6o

space

Yes

v

No
DesignE*augmenting experiments based on th
new factor space

[ Determine the optimal point ]

Figure 32 The general scheme of the proposed N-ASRIZ strategy

The details of the steps shown in Figure 30 ardélairo what discussed for N-ASRSM (See
also Figures 31 and 32). Though, one of the feferdihces is that there is no separate runs here
(each experiment can be considered as a run). Atsoaugmenting the design, the new

experiments are taken (based on the optimal desigtheFS-NOR (the remaining factor space
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3.10Numerical Examples

Here, we present two small sets of simulated erpenis to evaluate the performance of the
proposed N-ASRSM2 approach. In the first set ofuations N-ASRSM2 is compared to CCD,
and A, D, and V optimal designs on quadratic respanodels. In the second set, the proposed
strategy is compared to the classical models, @ptidesigns and two global optimization

methods (Standler et al. (2002), Wang et al. (2008)a number of non-linear response models.

3.10.1Quadratic Response Models

We now describe the simulated experiments perfortnecompare the performance of the
proposed N-ASRSM2 with those of CCD, and optimaligies on quadratic response models. In
the simulated experiments, we have consideredrgdsgonse models of the ones studied in the

previous section. These response models are peelsientable 16.

Table 16 The quadratic response models used in tkamulated experiments of the N-
ASRSM2

No. of | Res. Response Relation Error Response
variables | No. (g) Type
1.1 | W=-2xX+3y*+2x-y+2xy-14 N(0,0.1) | Non-convex
Two
Variable | 1.2 | W=x?+2y*-2y+e N(0,1) Convex
Responsd
1.3 |  W=-2x+3yP+2x-y+2xy-14¢ N(0,2) Non-convex

Table 17 compares the averdggj of the comparing methods. Each of the experimeass
been replicated 3 times, so each number in the ialihe average of three replicates. Similar to
the previous study the bold numbers in each rowessmts the best of the row. Based on the

Table, N-ASRSM2 performs very well oﬁﬁdj in comparison to other methods. Figure 35
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illustrates a graphical representation of the NABRSyrid, FS, OR andNOR during 7" to 9"

experiments.

Table 17 The averagd?ﬁdj of the N-ASRSM2 an comparing methods for trials 78 and 9 of
responses for quadratic functions

Adjusted R?
Exp. No. No Obs. CCD | N-ASRSM2| N-ASRSM D-Opt. V-Opt. A-Opt.
7 99.96% 99.99% 99.99% 99.96% 99.92% 99.94%
1.1 8 99.96% 99.99% 99.99% 99.98% 99.95% 99.95%
9 99.95% 99.99% 99.98% 99.97% 99.94% 99.92%
7 92.69% 99.99% 93.67% 95.01% 94.85% 90.69%
1.2 8 92.48% 99.99% 94.97% 89.20% 95.86% 86.86%
9 92.00% 98.00% 96.62% 90.42% 95.42% 86.58%
7 69.77% 99.44% 79.57% 92.96% 72.11% 97.71%
1.3 8 70.60% 99.67% 86.53% 91.06% 74.92% 79.86%
9 88.48% 92.55% 92.91% 89.02% 80.89% 82.00%
7 69.22% 99.81% 90.21% 91.92% 87.19% 86.69%
Avg. 8 71.74% 99.88% 91.58% 87.90% 86.25% 83.86%
9 74.84% 96.85% 94.48% 84.60% 88.12% 84.86%
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Figure 35 The graphical representation of the N-ASBM2 on 2 and 3° response surface;
the blue cells showdR, greens showdR not robust to miss-ranking (in risk adjustment),
Yellows show non-robustVOR and Reds show robusNOR

Table 18 presents the average optimality gap offthe 9" trials of the comparing methods
gained based on the average of three replicateseXperiments show that the optimality gap of

the proposed N-ASRSM2 is comparable to the be$bmeing methods.
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Table 18 The Average optimality gap of the N-ASRSM2nd comparing methods for trials
7, 8 and 9 of responses for quadratic responses

Optimality gap

Exp. No. | No Obs. CCD | N-ASRSM2 |  N-ASRSM D-Opt. V-Opt. A-Opt.
7 3.84 0.00 0.00 0.00 31.76 0.00

1.1 8 3.84 0.00 0.07 0.00 18.35 4.70
9 0.23 0.00 0.04 0.26 0.00 0.00

7 70.52 0.23 0.01 0.00 0.61 40.19

1.2 8 70.52 0.86 0.72 0.53 0.76 29.94
9 70.52 0.41 0.00 7.69 0.83 8.24

7 909.82 0.31 0.31 0.31 0.31 1260.68

1.3 8 909.82 0.31 0.31 0.31 0.31 492.09
9 909.82 0.31 0.31 031 0.31 5.00

7 328.06 0.18 0.11 0.10 10.89 433.62

Avg. 8 328.06 0.39 0.37 0.28 6.47 175.58
9 326.8¢ 0.2 0.1z 2.7¢ 0.3¢ 4.41

Here we compare the performance of the proposed SR3M2 approach with the same two
dimensional examples as the previous section anddme comparing methods. These response

models are presented in Tablel9. Again all the lsitauns has been replicated three times and

3.10.2Non-linear Response Models

the comparisons are based on the average of #ypéeates.

Table 19 The non-linear response surface models ustor studying N-ASRSM2

performance
EXp. Response Relation Error
No.
1| W=(y-(1/(8r%).*x?)+(10ht) (x-2)*+10(3-1/(1Z))cos(x) N(0,2)
2 | W=0.75(x-0.15f +.25%(x-0.15)*+ 1.3.%(x-0.15)°+1.8(x-0.15) (y-1¥-2.66 (y-1¥+1.9(y-0.15§ N(0,2)

Table 20 shows the average optimality gap of theseoutive trials of the comparing

methods. Based on the results N-ASRSM and N-ASRM&2the best performing methods

while N-ASRSM performs slightly better. Figure 36osvs the changes in tl#&R, NOR of the

FS in the N-ASRMS2 through different experiments.
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Table 20 The average optimality gap of the propose-ASRSM2 and comparing methods

) Run ccD | N-ASRSM2 | N-ASRSM Sta&d(;grz)e‘ Ex W?znc?ogt) al | p_optimal | A-optimal | V-Optimal
7 1504.460 0.000 0.000 750.680 702.682 0.050 0.051 0.001
11 8 0.004 0.000 0.000 536.355 190.227 0.003 0.029  0.000
9 0.004 0.000 0.000 536.355 9725.895 0.003 4470  0.000
7 464.841 9.662 6.478 471.292 370.099 893.174 4.478 37.333
12 8 27.141 8.303 5.109 377.449 503.172 893.174 7.322 9.480)
9 8.367 5.347 4.650 377.449 494,735 893.174 8.488 5.866
7 984.650 4.831 3.239 610.986 536.391 446.612 2.264 18.667
Ave. 8 13.573 4.152 2555 456.902 346.699 446.589 3.676 4.740
9 4.186 2.674 2.325 456.902 5110.315 446.589 6.479 2.933
Optimal Design
e 26,0167 20.231
@ Og 48.na71 3912851
N et ot e teleial et 68 gssm |
1 05 0 05 2 1 0 1 2
X1 (x1) []
23. 167,
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Figure 36 The graphical representation of the N-ARSM2 on T and 2 response surface;
the blue cells showdR, greens showdR not robust to miss-ranking (in risk adjustment),
Yellows show non-robustVOR and Reds show robusNOR
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Table 21 presents the average Euclidean distantte @stimated optima from the real optima
of the comparing methods which have almost simm#¢gult to Table 20. Again on average both

proposed methods works on a par with or better tptiimal designs and CCD.

Table 21 The average Euclidean distance of the estted optima from the real optima for
the N-ASRSM2 and comparing methods

fx) | Run | ccD | N-ASRSM2 | N-ASRSM Sta(”z‘ggrzft al. W?anogt) al | p.optimal | A-optimal | v-Optimal
7 | 3.994 0.008 0.005 1.877 2.063 0.224 0.007 0.016
11 8 | 0.00¢ 0.00¢ 0.00¢ 1.99¢ 4.60¢ 0.00: 0.171 0.00¢
9 | 0.00¢ 0.00¢ 0.00¢ 1.99¢ 5.75¢ 0.007 2.11¢ 0.00¢
7 2.92 0.56 0.47 2.09 1.63 2.18 0.44 0.82
12 8 0.78 0.32 0.41 1.67 2.15 2.18 0.51 0.33
9 | os: 042 0.3¢ 1.67 2.8¢ 2.1¢ 0.5 0.4¢
7| 3.4¢ 0.2¢ 0.2 1.9¢ 1.8t 1.2 0.2 0.4z
Ave. | 8 | 039 0.162 0.21 1.83 3.38 1.09 0.34 0.17
9 | o027 0.21 0.19 1.83 4.31 1.09 1.33 0.24

3.11 Discussion

Here, we have extended the N-ASRSM to considermmgbtidesign instead of fractional
factorial design. Compared to N-ASRSM, the propoSeASRSM2 approach provides more
flexibility in working with non-rectangular fact@paces, and grids with different resolution. In
addition to getting benefited from optimal desigadvantage N-ASRSM2 can employ cubic
underlying function instead of quadratic functiomigh can enable it to model nonlinearity
better (although there the trade of increasingntimaber of experiments required for eliminating
non-optimal regions). Based on the simulation &sidihe proposed N-ASRSM2 strategy works
robustly well on both quadratic and non-linear meges, in comparison to classical and optimal
designs. However its performance on quadratic mesgmis slightly worse than its counterparts

while on nonlinear responses N-ASRSM works sligktiperior.
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CHAPTER 4 THE PROPOSED STRATEGIES FOR BLACK BOX
FUNCTIONS WITH N-VARIABLES (B-ASRSM)

This chapter presents the detailed elements optbgosed adaptive sequential strategies for
noisy expensive black-box function (B-ASRSM). Fdnist purpose, we first describe the
terminology that is mostly borrowed from previoukapters. Next, we provide an overview of
the methodology and its core components. Then, waam how these components are
integrated together to form B-ASRSM. Finally, weoyide a small numerical example to
examine the performance of the proposed strategy.aldb extend the proposed strategy (B-
ASRSM2) to consider multiple adaptive regressiolmsp which provides the proposed model

more flexibility in dealing with high dimension.

4.1 Terminology and Assumptions

As expected the definitions and terminology usedthie proposed strategy has many
commonalities with previous Sections. For more emience we provide the complete notations
below. Figure 37 illustrates some of the notationsa two-dimensional factor space with 9

initial experiments. The only assumption that wasider here is the normality of error, e.qg.

e~(0,02).
di : Number of factors (dimensions) in tR&
ks, =1  : Number of knots in each fact
El : Expected improveme
FS, : Factor space at runand expressed as Cartesian product of factor sangenr
SFSE : s™ sub-factor space of at rem
fsi - Initial range of factoi

D : Design of most current rt
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D : minimum number of required pointsin
COP : A corner point experiment run at the intersecttbextrema of factor rang
CEP : A center point experiment run at the center of fjyanf the factor spac
r : Index of runs, e.g: = 1,2, exR whereR is the total number of runs
e : Index of experiments in a given run, ee=1,2,....EwhereE is the total number ¢
experiments
B : The experiment with the best response levelSA%iand a given run
Ny, : The experiment with the*" best response level ins&S and a given run2ek < e — 1)
w : The experiment with the worst response level§ir& and a given run
OR, : Optimal region/s in run containing the estimated optimal experimé&R,. < FS,

NOR : Nor-optimal region/

0 : Optimal experiment, e.g. best experiment in thitail factor spac
RO : Real optima of the functic
EO, : Estimated optimal experiment in rr, e.g., best incumbent estimation of the opti
experiment

sp™s) 1 sub-regions in s SFS ot therth run in a given factor , e.gib = 1,2, ..., mn, wherem™ is
l .
the total number of sub-regions

c : Number of coefficients of the underlying mc
P : Probability of losingR0 but cutting out
__.A AA 'B ® Legend

|:| FSin the ¥ run divided int 4
SF¢
I:l SFS with maxEI chosen for
non parametric strategy
‘( The newSFS formed by additional
. experiments and ranking strategy

fs2 . ‘ . . Initial run points

J Additional point:

Sub-regions considered for next
run ofLS Spline fitting would be
A, B, C, D, and AA

e o 9

fs1 I

Figure 37 An illustration of the terminology of the proposed B-ASRSM strategy
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4.2 Algorithm

Figure 38 illustrates the general scheme of thegsed strategy. The initial run is setup with
a modified version of level factorial design which divides the factoase intok; X ... X kg,
sub (hyper) rectangular regions. Once the expetetien is completed, considering each of the
divisions as a spline sub-region, a quadratic Iegsaire regression spline (LSRS) is fitted. The
next step is considering each divisions as sulpfagpace {FS) and candidate th8FS with
maximum expected improvement for further breakifigs step is followed by applying chapter
3 non-parametric and parametric approaches totfiacbptimal and non optimal sub-regions in
the candidatéFS, and taking experiment on its empty corners toereakew sub-regions for the
next run of the algorithm (fitting LSRS). This pemfure continues until the convergence criteria

based changes in the expected improventgitl)| < 6z, is attained.
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Figure 38 the general scheme of the proposed B-ASRIS

4.3 Design structure of the first and subsequent runs
The designD structure of the factor spaés, in the proposed approach is adapted fiom
level factorial design (here we uge, ..., ky; to differentiate among the number of levels along

different factors (dimensions). The choiég is important and contains tradeoff between
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accuracy and expense. Setting edghto a very small value, e.g. 2 or 3, save a lot of
experimentation cost while may result in not capwitrue curvature of the underlying function
and as consequence exploring wrong region/s. itr&sinsetting; to a larger value, e.g. 5 or
more, provides enough confidence about the undeylgiurvature but with a lot of cost of
experimentation. Based on the simulated experimémisd 5 can be good choice when there is
no information about the underlying function bungss. Figure 35 shows the effect of different

choice ofk on the estimation of surface for two examples.

AT
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Figure 39 The effect of number of levelk; on the estimated surfaces: (13 = x. exp(x? —
y?) with k=(2,2), (3,3) and (4,4) in (a), (b) and (c) and, X2 = sin(0.83mx). cos(1.25my)
with k=(2,2), (3,3) and (4,4) in (e), (f) and (g)

The initial design may be further augmented wetv fmore experiments inside of tRES

which is more probable to contain tR@ to break it down further and provide better estiora
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This result in a nested set of factor spaces inferdifit runs like before, e.g.

ES, = ¢, ((pr—l(---(pO(Fsl)))-

Regarding thé'S size, since in general spline functions do notknary well on boundaries,
also to alleviate the effect of noise, similar toner strategies, it is suggested to start with a
broader initial region where applicable. Based lo& simulated experimentsk$s of %5-%10

larger than the typical setting can result in betteuracy.

4.4 Fitting Least Square Regression Spline (LSRS)

After taking the experiments based on the degligrconsidering each (hyper) rectangular
region inside thé'S as a spline sub-region, a multivariate quadratst square regression spline
is fitted to the data (See Chapter 1 for detailmiglation of LSRS). Since each (hyper)
rectangular region inside th& is considered as a spline sub-region, in the fust the breaks
in each factor (dimension) would be equal to thetdia levels in that dimension. This
combination is changed in the subsequent runs dingda patch after breaking down one or
more of theSFS (See Figure 40). As a consequence, the quadegiiession model fitted to the
patch, estimate the system behavior within thelphtiundaries while Least Square Regression
Spline (SRS) fitted to rest ofFS estimate for the remaining part. The patch modakhv is
formulated by fitting a quadratic function to datahin its boundaries gets connected to the rest
of spline by applying continuity conditions at the@tersections which is done by making the

estimated function values a first well as the faistl second derivative agrees at the intersections:
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(Fpatch (Xintersection) = FSpline (Xintersection)

6Fpatch(Xintersection) _ aFSpline(Xintersection)
X X

l aszafCh(Xintersection) — 62FSpline(Xintersection)
(8x)? (8x)2
(15)
Added Spline
? Patct
Applying contin t’ DV 4 ® _ _
PP )(/:Ior?ditionl‘ A /E‘A B Spline relation for
i SFS sub-regiorB
A — T
E Possible split
Spline relation for ! of SFS
SFS sub-regiom @ c ' ? 5 o

Figure 40 An example of the fitted LSRS with a sjihe patch added

In order to reduce the number of experiments (gpiahd comply further with the original
guadratic regression function, in the proposed mibageterms with total order more than two in
the regression spline (which occurs in the probletls two or more factors) can be taken out.
For example in a two dimensional factor space w#hofK knots{¢,, ..., ¢k} and the regression
spline relationy;_, ¥7_, Z?:o Cijic (g — 104 (xp — Ek)i the termscyy, (o, — &% (xz — §)3
and cy1(x; — &2 (x, — EDY andcy, (6 — &)L (x, — &)2 may be omitted from the further
consideration without affecting the model accuraeyy much (the reason is that all these term
are related to interactions of high order which &ypically of very small effect). This

consideration can be easily added to i88S by adding constraint imposing zero value for the

coefficients of the above terms.
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4.5 Identify the SFS with Maximum Expected Improvement

One of the advantages of fittikgRS is having a set simple quadratic regression fondibr
eachSFS as a result. Based on the fitted quadratic regmegsnction, the response at each point
(of eachSFS) will have the followingt-student distribution:

Fo~tn—p(XoB, 62X (X'X) 71 X,)
(16)

WhereX is the matrix of experiments input in the quadrédrm (only the point fallen in each
SFS contribute to th& matrix of thatSFS), X, is the query input which should also be in
quadratic formg is the fitted regression parameters, @i the estimated standard deviation
(MSE).

Knowing the distribution of response, the expectegrovement of each point can be

calculated as follows:

[ee]

EI(X) =f d.p(y < d)dd

° 17)
whered = min(f(x)) — @(Fpax — Fin) andmin(f(x)) is the minimum of the fitted spline
over the whole&'S, a is coefficient related to the rate of reductionggestedr values are 0.1 to
0.25), andf,,qx, Finin @are the minimum and maximum of the observatioosr(fore information
aboutd See Jones (2001)). In our proposed strategySH$ewhich contains the point with
maximum expected improvement is the candidateuidhér break down (It should be noted that

other measures such as estimated mininH@nor maximum variance can also be used for

identifying theSFS for breaking down).
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4.6 Taking New Experiments and Breaking down Structureof the
Methodology
After finding theSFS with maximum expected improvement, it should behkered explored

to:

1. Check if the speculation on the location of theimanis correct
2. Monitor the convergence of the algorithm

3. Improve the estimation of the underlying functioespecially around the global
minimum

This is typically done by adding one or more poittghe SFS. However, the location of the
points should be chosen with the goal of quicklyaling at least one smaller (hyper) rectangular
region containing th&R inside the candidat&F'S (the region is used as a new spline patch in
the fittedLSRS). For this purpose, the first additional point Wbbe chosen at the center of the
candidateSFS, and the next points would be chosen based oratiléng strategy in Chapter 2.
In this sense the algorithm for the breaking dolenAS to SFSs towards theRO can be seen as

a form of big square small square optimizationgPia 1992) (See Also Figure 41).

4.7 Design of the Next Runs and Stopping Criteria
Completing the initial run of the algorithm aftedfding each new point theSRS is fitted to
the data to check the location $fS with maximum improvement and to form a spline patc
around theEO. This procedure continues until the expected impneent at two consecutive

points gets lower than a threshdWl(El)| < 6z, is attained or the pre-specified number of
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experiments is reached. Figure 41 presents a sigmalehical representation of the proposed

strategy steps.

® ® ® ¢ & ® ¢ g ®
® ® ® o 4 ® ¢ ¢ ?
® O O 0 > e © ® ®
(1) Taking experiments based (2) Find the SFS with (3) Using Ranking Strategy
on multilevel factorial design Maximum Expected find the OR and NOR of the
and fit LSRS Improvement based on the identified SFS
@ P @ ® | P ® ® we 9 ®
[ & ® & ‘ ® ® ® o ®
@ @ O @ @ o @ Q@ 0
(4) Take new experiments on (5) Apply nging Strategy (6) Add the new patch to the
the empty corners of OR to and LSFS fitting after each model and look for new SFS
make a patch new experiment for breakdown

Figure 41 the graphical representations of the propsed B-ASRSM strategy steps

4.8 Numerical Examples

In this section, we describe a small set of sinedlaxperiments performed to evaluate the
performance of the proposed strategy along with pepular global optimization methods
Radial Basis Function (RBF) and Gaussian ProceB3. (8r modeling RBF we used ARESLab
toolbox version 1.5 for Matlab/Octave written bykdlesons. Also for modeling GP we use
Gaussian Toolbox version 3.1 for Matlab/Octave temtby Rasmussen and Nickisch. The

response models are presented in Table 16 andeH@ur



Table 22 The response relation considered for thenalysis of the B-ASRSM

95

No. of Res. .
var:s\b?es N?)s Response Relation Range | Error
Response| 1 | W=(y-(2/(8.%pi2)5x.2)+(L/(pi)).*x-2)."2+10%(2-1(12*Pi)). *c0s(x)"2 [-5,5] | N(©O.3)
with Two W=sin(x) cos(x y) [(33] | N(0,0.05)
variable W=x.* exp(-x/2 - y.A2) [2 2] N(0,0.1)

Figure 42 The contour and function plot of the respnses considered for the analysis of the
B-ASRSM; a, b, ¢ represents %, 2'* and 3¢ response relations respectively
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For the following analysis, we have compared théopmances based on average optimality
gap and Euclidian distance of the estimated optim#he real optimal point. All simulated
experiments are repeated two times, and the averagee results is reported. To have a fair
comparison, same initial design structure (mulglefactorial design) has been considered for all
three comparing methods. Figure 43 illustrateddbation of the experiments and the estimated
surface of RBF and GP methods in different iteretioTable 23 shows the average optimality
gap results and average Euclidian distance tRth@f the consecutive trials of the comparing
methods. As can be seen from the Table the proposéubd not only have an acceptable rate of

convergence toward the real optima, but also itdoasparable results to those of RBF and GP.

Table 23 The average optimality gap and average Elidean distance toRO of the
proposed B-ASRSM methods along with the comparing ethods

Optimality gap of Response Euclidean distance toR0O

Exp.No. | NoObs. | BASRSM | RBF | GP B-ASRSM| RBF | GP
25 8.72 4.99 2.63 1.75 3.44 6.93

26 3.30 11.53 3.80 1.26 3.80 7.21

27 39.36 10.10 2.86 1.54 0.91 0.92

! 28 12.95 29.56 2.26 1.34 1.46 0.98
29 2.30 6.27 6.27 0.75 1.86 0.98

30 1.29 4.23 0.24 0.34 2.68 0.70

141 0.69 0.53 0.04 1.89 2.00 0.33

142 0.90 0.50 0.03 3.74 1.68 0.29

143 0.17 0.07 0.08 1.56 2.27 0.08

2 144 3.63 0.59 0.01 0.10 2.31 0.12
145 0.07 0.07 0.08 0.09 0.44 0.10

146 0.14 0.55 0.01 0.10 0.79 0.09

25 1.65 10.02 0.63 1.64 0.39 0.02

26 0.06 15.20 5.79 0.85 0.44 0.12

27 0.27 4.43 7.17 0.99 0.42 0.20

3 28 0.09 0.08 7.67 0.54 0.59 0.26
29 0.13 10.50 2921.03 0.53 0.41 0.61

30 0.12 0.32 1.37 0.07 0.66 0.07
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Figure 43 the estimated response of problem 3 atftiérent iteration using (a) RBF and (b)
GP

4.9 Discussion

So far in this chapter we developed a strategyasea hybrid of quadratic least square
regression spline and the ranking strategy, digclgs previous chapters, for expensive noisy
black-box function optimizations. In a set of itiwa, the proposed strategy breaks down the
factor space of the black-box function into a desroall regions (smaller than the factor space)
in a way that each of them can be accurately appaied using quadratic functions. It will then
identify the most promising sub-region/s, assunthrg the real optimum is located there. This
step may be followed by conducting new experimanis further breaking down the identified
sub-region/s to improve the estimation of the lwmeatof the real optimum. Using three
numerical examples we examine the performance efpitoposed strategy along with two
popular global optimizations methods, Gaussiangs®@nd radial basis functions, and shows B-
ASRSM effectiveness both in terms of number of expents and accuracy. The proposed

method is easy to understand and implement. It I$® dlexible with using different
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implementation criteria. In the remaining part afst chapter we will extend the proposed

strategy to work based on space filling designranttiple adaptive regression splines (MARS).

4.10 An Extension of the Proposed Strategy with Space lkhg Design and
Multiple Adaptive Regression Splines (B-ASRSM2)

Here we extend the proposed strategy to a moréfexonfiguration which is specifically
useful in modeling problems of high dimension byplgmg some changes to the original
algorithm: (1) Using space filling designs insteafd multi-level factorial design, (2) Using
multiple adaptive regression splines (MARS) instedd SRS, and finally (3) Using optimal
design for augmentation instead of factorial desigrthe following Sections we will first briefly
describe the extended algorithm. Next, we exantiagperformance of the proposed B-ASRSM2

strategy on the same numerical examples as f@{ASRSM strategy.

4.10.1Algorithm

Figure 44 illustrates the algorithm of the propo&ASRSM2 strategy based on the few
changes mentioned above. As can be seen, the getraure of the algorithms has not been
modified however comparing Figure 45 to Figure 4dhich is a pictorial view of the
implementation of B-ASRSM2 and B-ASRSM, reveals difeerence between the two proposed

strategies in practice.
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Figure 44 The general scheme of the proposed B-ASR)




100

® @ ® ® @ @
@ @ )
@ @ @
o ® ® , © ® 0
@ ) )
@ o @ O o
(1) Taking experiments based (2) Find the SFS with (3) Using Ranking Strategy to
on space filling design and fit Maximum Expected find the OR and NOR of the
MARS Improvement based on the identified SFS
® ® o ® 9 o |
@ @ A
w 4
® ® ®
o) o ) 9 ] ®
® ® *
® o °
(4) Take new experiments on (5) Apply MARS fitting after (6) Apply Raking Strategy
The OR of the SFS using each new experiment after each new experiment

optimal design corners of OR

Figure 45 The graphical representations of the propsed B-ASRSM strategy steps

4.10.Numerical Examples

Here, we evaluate the proposed B-ASRSM2 on the noateexamples in section 4.8. Table
24 shows the average optimality gap of the consextiials of the comparing methods. Figure
45 also illustrates the distribution of the poirtse estimated surface as well as the result of
ranking strategy at different runs of the B-ASRSNEthe 3° function. As can be seen from the
table, like B-ASRSM, the performance of B-ASRSMZzeptable for both optimality gap and

Euclidian distance to the real optima, and comgdarebRBF and GP.
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Table 24 The average optimality gap and average Elidean distance toRO of the proposed
B-ASRSM2 methods along with the comparing methods

Optimality gap of Response Euclidean distance tRO

f\fg’_- NoObs. | B-ASRSM2 | B-ASRSM | RBF GP B-ASRSM2 | B-ASRSM| RBF GP
25 96.36 8.72 4.99 2.63 421 1.75 3.44 6.93
26 3.70 3.30 11.53 380 | 122 1.26 3.80 7.21

27 2.20 39.36 10.10 286 | 261 154 091 092

! 28 17.10 12.95 29.56 226 | 172 1.34 146  0.98
29 217 2.30 6.27 627 | 157 0.75 1.86 0.98

30 0.45 1.29 4.23 024 | 093 0.34 2.68 0.70

141 0.32 0.69 0.53 0.04 \ 0.65 1.89 200 033

142 0.19 0.90 0.50 003 | om 3.74 168 029

143 0.07 0.17 0.07 008 | 143 1.56 227 008

2 144 071 3.63 0.59 001 | 140 0.10 231 0.12
145 0.21 0.07 0.07 008 | 024 0.09 0.44 0.10

146 0.12 0.14 0.55 0.01 ‘ 0.19 0.10 079  0.09

25 3076.37 1.65 10.02 0.63 ‘ 0.79 1.64 039 002

26 3127.79 0.06 15.20 579 | o085 0.85 044 012

27 0.23 0.27 4.43 747 | 030 0.99 042 020

3 28 0.08 0.09 0.08 767 | o016 0.54 059  0.26
29 3195.78 0.13 10.50 202103 | 019 053 0.41 0.61

30 0.15 0.12 0.32 1.37 ‘ 0.07 0.07 066 007
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Figure 46 The graphical representation of the B-ASBM2 on 3° response surface; the blue
cells showOR, greens showdR not robust to miss-ranking (in risk adjustment), Yellows
show non-robustNOR and Reds show robusNOR

4.10.3Discussion

Here we extended the strategy developed in theeepdrt of this chapter to a more flexible
hybrid system of space filling design and multigldaptive regression splines (MARS) to
estimate the minimum of expensive noisy black-baxcfion. The proposed B-ASRSM2 starts
with a space filling design and based on the resphirtition the factor space into a set of small
sub-regions. Assuming quadratic behavior of thection in each small sub-region, B-ASRSM2
fits a MARS to the factor space. Next, it idensfilie most promising sub-regions and augments
the design with a single point in that sub-regi@mg optimal design and previously discussed
ranking strategy. This procedure continues unthERSM2 gets to the vicinity of the real

optima. Similar to B-ASRSM, we compare the perfanceof the B-ASRSM2 along with RBF
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and GP on three numerical examples and show ittefémess both in terms of number of

experiments and accuracy.
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CHAPTER 5 CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation we have developed and predeatenumber of adaptive sequential
strategies for response surface optimization (ASRSIMe proposed approaches combine the
concept of nonlinear optimization, non-parametegression and response surface optimization.
The proposed strategies uses the information gdiedthe previous experiments to design the
subsequent experiment by simultaneously reduciagegion of interest and identifying factor
combinations for new experiments. Its major advgetes the experimentation efficiency such
that, for a given response target; it identifies itput factor combination (or containing region)
in less number of experiments than the classicahtawparts. It differs from earlier studies in its
optimality, inheritance of results from previousperments, and its robustness due to
experiment ranking based reduction of the regionntérest. Through extensive simulated
experiments and real-world case studies, we shdhetdthe strategies clearly outperform the
classical methods such as BBD and CCD method msteaf both optimality as well as the
experimentation efficiency. These results also akvtkat the proposed strategies on average
perform superior to A-, D-, and V-optimal desigiaurther analysis demonstrates that the
ASRSM is competitive with popular global optimizati methods such as RBF and Gaussian
Process. In particular, the performance of ASRSNbisd to be very robust with respect to
changes in the error variance and convexity ofrésponse model, and more monotonous with
additional experiments. For future studies, theppsed methodology will be further extended by

adding Bayesian inference capability into it.
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Most preset RSM designs offer ease of implementadiod good performance over a wide
range of process and design optimization applinatidhese designs often lack the ability to
adapt the design based on the characteristics mfcapon and experimental space so as to
reduce the number of experiments necessary. Hémeg are not cost effective for applications
where the cost of experimentation is high or wHendxperimentation resources are limited. In
this dissertation, we present a number of selfriear strategies for optimization of different
types of response surfaces for industrial experimesith noise, high experimentation cost, and
requiring high design optimization performance. pheposed approach is a sequential adaptive
experimentation approach which combines conceptsn fmonlinear optimization, non-
parametric regression, statistical analysis, arspaese surface optimization. The proposed
strategies uses the information gained from the@ipus experiments to design the subsequent

experiment by simultaneously reducing the regiomterest and identifying factor combinations
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for new experiments. Its major advantage is theegrpentation efficiency such that, for a given
response target, it identifies the input factor boration (or containing region) in less number of
experiments than the classical designs. Througéneite simulated experiments and real-world
case studies, we show that the proposed ASRSM nhetllearly outperforms the classical CCD
and BBD methods, works superior to optimal A- Ddaw optimal designs on average and

compares favorably with global optimizations methotluding Gaussian Process and RBF.
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