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CHAPTER 1 INTRODUCTION 
 

Most process and design optimization approaches such as the response surface methodology 

(RSM) require a complete experimental design to be determined prior to the experimentation 

process (Spendley, Hex and Himsworth, 1962). These preset designs offer ease of 

implementation and good performance over a wide range of applications. However, they lack the 

ability to adapt the design based on the characteristics of application and experimental space so 

as to reduce the number of experiments necessary. This, in particular, constitutes a major 

disadvantage in many industrial applications where the cost of experimentation is high or when 

the experimentation resources are limited. These industrial experiments share the following two 

main characteristics: (1) prior to the experiment, the behavior of the experimental design space is 

not well known; (2) the cost of each experimental trial is prohibitively high and the experimental 

budget is limited. An example for such industrial experiments is the combustion test for aircraft 

engine or turbines where prototypes are very expensive and the behavior of different designs are 

highly unpredictable (See Figure 1). The computational experimentation approach is commonly 

resorted as a cost effective alternative to physical testing of complex engineering systems. 

However, these computational experiments may take 5 to 20 hours per simulation run as in the 

case of FEA of etc. (Gramacy and Lee 2009). Gu (2001) reports that one crash simulation on a 

full passenger car takes 36-160 hours at Ford Motor Company. 
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Figure 1  Turbine and aircraft engine 

The focus of this dissertation is mainly on the industrial experiments with high 

experimentation cost, limited experimental resources and requiring high design optimization 

performance. In designing industrial experiments, the traditional RSM methodologies (CCD, 

Box-Behnken optimal designs, etc.) are often preferred for various advantages, e.g., rotatability 

and variance of error estimation. However, these methods rely on “one-shot” designs and thus 

fall short in providing efficient experimental designs for highly engineered complex systems. 

This has been pointed out by George E. P. Box as “There should be more studies of statistics 

from the dynamic point of view” in Box (1999) and that “I think we have spent too much time on 

one-shot statistical procedures designed to test rather than to learn.” in response to Myers (1999). 

Further, these methods fit a regression model of the system responses to accurately predict the 

response curve over the entire domain of feasibility. However, the prediction in the 

neighborhood of the optimum is often more important than prediction in the domain of 

feasibility.  

In this dissertation, we propose a number of adaptive sequential experimentation strategies 

based on global optimization concepts, nonparametric regression methods, and response surface 

methodology for different type’s response surfaces for industrial experiments with, noise, high 

(a) Turbine (b) Combustion Chamber 
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experimentation cost, and requiring high design optimization performance. We consider the 

experimentation as successive series of small data collection efforts. At each step, we learn from 

the previous results, refine our understanding and develop a new model for the next experiment 

to reduce uninformative experiments and improve the quality of results. The idea of adaptive 

experimental design is not new. Beginning with the sequential RSM experimentation with 

multiple blocks in Box and Wilson (1951), there have been many ideas such as one-factor-at-a-

time (OFAT) (Friedman and Savage 1947, Daniel 1973), adaptive OFAT (Frey, Engelhardt, and 

Greitzer,  2003), adaptive RSM (Wang, Dong and Aitchison 2001, Wang 2003), successive RSM 

(Stander, 2001), evolutionary operation (Box and Draper, 1969), steepest ascent based methods 

(Box and Wilson, 1951), and sequential and adaptive approximation methods from the 

engineering design discipline. 

The Adaptive Sequential Response Surface Methodology (ASRSM) approach presented in 

this dissertation is a local optimization approach for physical experiments where the region of 

interest is formed by a number of input factors is already determined. Furthermore, in most 

practical applications, the current settings of the factor values are usually determined and known 

to produce a stable response and a satisfactory yield. However, due to extraneous changes over 

time, the current conditions may become less robust and sub-optimal. Hence there might be easy 

gains in yield by moving in the surrounding region of the design space. We do not make any 

assumptions regarding the noise in response. Hence our goal is to precisely estimate the 

relationship between important factors and response and identify the most likely location for the 

process/product to be optimized in the detailed RSM experimentation stage. 

The most salient aspect of the proposed stratgies is its experimentation efficiency. 

Specifically, the proposed approach identifies, for a given response target, the input factor 
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combination (or containing region) in less number of experiments than its counter parts. This 

sequential adaptive approach uses the information gained from the previous experiments to 

design the subsequent experiment by simultaneously reducing the region of interest and 

identifying factor combinations for new experiments. This reduction is achieved through rank 

ordering of the responses of preceding experiments and use of polynomial (mostly quadratic) 

behavior of the underlying function near the real optima. Throughout the process, we consider a 

fixed design (i.e. two levels or multi-levels factorial design, or space-filling design) which allows 

inheriting some of the experiments from the previous runs. As a result this method efficiently 

increases the accuracy and precision of the estimated optimal point by reducing the region of 

interest. 

The strategies in this research differ from earlier approaches on adaptive and sequential 

RSM in three different ways. First, the reduction of the region of interest is optimal if the 

relationship between the response and input factors is quadratic (within each small sub-region 

inside the factor space) and response is deterministic. Specifically, the optimal factor 

combination is always contained in the reduced region. Second, the proposed strategies typically 

require fewer experiments in each run as the result of inheriting previous experiments and fixed 

design structure. Lastly, the proposed strategies identify the reduced region of interest with a 

combination of nonparametric (ranking based method) and parametric (model based) methods 

rather than the response levels obtained from each experiment solely. This is indeed similar to 

using not the value of a parameter but its rank in robust statistics (Hettmansperger and McKean, 

1998).  

The structure of the dissertation is as follows, in the remainder part of this chapter the 

preliminaries to the study are briefly discussed followed by a short literature survey on the 
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advancements in RSM with a special emphasis on the adaptive experimentation methodologies. 

Chapter 2 presents the proposed ASRSM methodology for the case of quadratic underlying 

function with two variables, which is the basis of the strategies in the following chapters. 

Chapter 3 explains the proposed strategies for the case of quadratic and cubic underlying 

functions with � variables (N-ASRSM), which is an extension of Chapter 2 methodology into 

higher dimensions. Chapter 4, describes strategies for noisy black-box functions with � variables 

which is gained extending both the complexity and the number of variables in the previous 

chapters. Finally, Section 5 discusses the results and presents directions for future research. 

1.1 Relevant Background 
 

This section presents the relevant literature for the proposed adaptive experimental design 

methodology. We first review the classical response surface methodologies and then more 

advanced methods including optimal design, Bayesian design and incomplete design strategies. 

Finally, we briefly describe other adaptive design methodologies such as steepest ascent, 

simplex-based methods, evolution operation methods, adaptive OFAT methods, adaptive RSM, 

sequential RSM, and sequential and adaptive approximation methods from the engineering 

design domain 

1.1.1 Response Surface Methodology  

RSM has been used as one of the most effective tools for process and product development 

since its introduction by Box and Wilson (1951). RSM consists of statistical and 

numerical/mathematical optimization techniques for examining the relationship between one or 

more response variables and a set of quantitative experimental variables or factors. Since the 
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literature on RSM is vast, we herein refer the reader to a number of good review studies. Box 

(1999) provides a retrospective on the origins of RSM with a general philosophy of sequential 

learning. Myers, Khuri, and Carter (1989) present a thorough discussion of RSM from 1966 to 

1988. Myers (1999) discusses the RSM state in late 90s and gives some directions for future 

research. Myers, Montgomery, Vining, Borror and Kowalski (2004) presents a retrospective and 

literature survey on RSM. 

Central Composite Design (CCD) and Box and Behnken Design (BBD) are the most popular 

class of designs used for fitting second order model (Box and Behnken, 1960). Generally, the 

CCD consists of a 2� factorial or fractional factorials of resolution � with �� runs, 2� axial or 

star runs, and �� center runs (Figure 2). There are usually two parameters in CCD that must be 

specified: the distance � of the axial runs from the design center and the number of center points. 

It is common to set � 
 �����/� to make the design rotatable. Also three to five runs are 

recommended in the literature (Montgomery, 2008). The number of runs in CCD increases 

exponentially with the number of design variables, and hence becomes inefficient for high 

dimensional design problems. One alternative to CCD is small composite designs (SCD) that 

consist of a fraction of CCD points. However, the SCD has significant difficulty in estimating 

linear and interaction coefficients (Myers and Montgomery, 1995). BBD is another design 

approach which requires � � 3 (Box and Behnken, 1960). BBD is formed by combining 2� 

factorials with incomplete block designs. This design does not contain any points at the vertices 

of the region created by the upper and lower limits for each variable. 
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1.1.2 Optimal Designs 

Optimal design methodologies select designs which are “best” with respect to some 

statistical criterion, which is related to the variance-matrix of the estimator. This selection 

process includes: specifying the model; determining the region of interest, selecting the number 

of runs to make, specifying the optimality criterion, and choosing the design points from a set of 

candidate points spaced over the feasible design region. Kiefer (1959, 1961) and Kiefer and 

Wolfowitz (1959) greatly contribute to the development of the idea of optimal designs.  

Optimal designs offer three advantages over sub-optimal experimental designs (Atkinson et 

al., 2007): (1) Optimal designs reduce the costs of experimentation by allowing statistical models 

to be estimated with fewer experimental runs. (2) Optimal designs can accommodate multiple 

types of factors, such as process, mixture, and discrete factors. (3) Optimal designs can be 

optimized when the design-space is constrained, for example, when the mathematical process-

space contains factor-settings that are practically infeasible. 

It is known that the least squares estimator minimizes the variance of mean-unbiased 

estimators. In the estimation theory for statistical models with one real parameter, the reciprocal 

of the variance of an (efficient) estimator is called the “Fisher information” for that estimator. 

Because of this reciprocity, minimizing the variance corresponds to maximizing the information. 

 When the statistical model has several parameters, however, the mean of the parameter-

estimator is a vector and its variance is a matrix. The inverse matrix of the variance-matrix is 

called the “information matrix”. Because the variance of the estimator of a parameter vector is a 

matrix, the problem of “minimizing the variance” is complicated. Using statistical theory, 

statisticians compress the information-matrix using real-valued summary statistics; being real-

valued functions, these “information criteria” can be maximized. The traditional optimality-
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criteria are invariants of the information matrix; algebraically, the traditional optimality-criteria 

are functions of the Eigen values of the information matrix (Pukelsheim, 2006). 

�-optimal design is the most widely used criterion in optimal designs. A design is said to be 

�-optimal if |��′����| is minimized which is equivalent to minimizing the volume of the joint 

confidence region of the vector of regression coefficients or equivalently maximizing the 

differential Shannon information content of the parameter estimates. Andere-Rendon, 

Montegomery, and Rollier (1997) use �-optimal design for mixture experiments.  

 -optimality seeks to minimize the trace of the inverse of the information matrix 

(!"� $%��′����). This criterion results in minimizing the average variance of the estimates of 

the regression coefficients.  

There are also other types of optimal criterion; for example &-optimal design minimizes the 

maximum scaled prediction variance over the design region, and �-optimal design that 

minimizes the average prediction variance over the set of ' points of interest. More recently, 

Ginsburg and Ben-Gal (2006) suggest a new design-of-experiment optimality criterion, termed 

Vs-optimal, for the robust design of empirically fitted models. Pukelsheim (2006) provides an 

excellent source on the optimal design of experiments. 

1.1.3 Space Filling Design 

Space filling designs are part of computerized design of experiments. Unlike classical design 

which use replication and blocking to control for noise, and  randomization to control for bias, in 

space filling designs and in general computer experiments, blocking and randomization are not 

considered, since computerized experiments are assumed to be deterministic. In general such 

designs have the following properties (Santner et al. 2003): 
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• The only source of error is assumed to be model bias 

•  Designs should not take more than one observation for any set of inputs 

• Designs should allow one to fit a variety of models 

• Designs should provide information about all portions of experimental region (Designs 

should spread points evenly throughout experimental region) 

Some of the reasons for using space filling designs are: 

• Predictors for response are often based on interpolators  

• Prediction error at any point is relative to its distance from closest design point 

• Uneven designs can yield predictors that are very inaccurate in sparsely observed parts of 

experimental region 

There are quite a few numbers of spaces filling designs, yet most of them may be clustered 

into the following groups (Santner et al.2003): 

• Simple Designs including regular grid, random sampling, stratified random sampling. 

• Latin Hypercube Designs (LHD) which can be shown (at least under some assumptions) 

to work better that random sampling, while being applicable to situation where space 

filling assumptions may be violated 

• Distance-based Designs such as maxi-min distance design, mini-max distance design, 

and optimal average distance design, which use measure of spread to assess quality of 

design 

• Uniform Designs such as () discrepancy and (* discrepancy which measure uniformity 

of design by comparison against uniform distribution using discrepancy measures  

• Designs with multiple criteria 

For more information about space filling design one can refer to (Santner et al. 2003). 
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1.1.4 One-Factor-At-a-Time 

One-Factor-At-a-Time (OFAT) can be considered as the earliest adaptive sequential 

experimentation approach proposed (Friedman and Savage, 1947). OFAT changes one variable 

at a time while keeping others constant at fixed values to find the best response. Once a factor is 

changed, its value is fixed in the remainder of the process. This process is repeated until all the 

variables are tried. However, OFAT experimentation is generally discouraged in the literature on 

the experimental design in comparison with factorial design and fractional factorial design. Box, 

Hunter, Hunter (1978) and Montgomery (2008) talk about advantages of factorial experiment 

over OFAT experimentation. Czitrom (1999) write in favor of factorial experiment over OFAT 

experiments in terms of finding the behavior of the system. Frey, Engelhardt and Greitzer (2003) 

introduce Adaptive One-Factor-At-A-Time (AOFAT) experimentation method. They compare 

adaptive OFAT (AOFAT) technique with orthogonal arrays through computer simulations and 

concluded that AOFAT technique tends to achieve greater gains than those of orthogonal arrays 

when experimental error is small or the interactions among control factors are large. Frey and 

Jugulum (2006) investigate the mechanisms by which AOFAT technique led to improvement. 

The parameters that they investigated were conditional main effect, exploitation of an effect, 

synergistic interaction, anti-synergistic interaction, and overwhelming effect. Frey and Wang 

(2006) present the models of AOFAT and factor effects and illustrate with theorems that AOFAT 

method exploits main effects if interactions are small, and exploits two-factor interactions when 

two-factor interactions are large.  
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1.1.5 Adaptive Experimental Design 

The idea of sequential and adaptive experimental design is not new.  Box and Wilson (1951) 

suggest a two-stage sequential CCD where the first stage is a 2-level factorial or fractional 

factorial design and the axial points constitute the second stage. The axial points are then used if 

the lack-of-fit test indicates curvature in the system. The method of steepest ascent (Box and 

Wilson, 1951) is another adaptive sequential experimentation approach in which the 

experimental points move sequentially along the gradient direction. Evolutionary operation 

(EVOP), another adaptive experimental approach, iteratively builds a response surface around 

the optimum from the previous iteration by drifting factorial experiments with center points (Box 

1957, Box and Draper 1969). Both these approaches are primarily used for shifting the region of 

interest close to the optimum and replicate the same experimental design iteratively in different 

regions of the factor space.  

Spendley, Hex and Himsworth (1962) discuss the sequential application of simplex designs 

in optimization and evolutionary operation. They propose using a simplex pattern instead of a 

factorial pattern as in Box (1957). A simplex is a � + 1 dimensional form in n dimensions, e.g. a 

triangle in two dimensions and a tetrahedron in three dimensions. They present a simplex search 

method where a sequence of experimental designs in the form of a regular or irregular simplex is 

used.  

Moore et al. (1998) suggest an algorithm, known as -2, for optimizing the expected output 

of a multi-input noisy continuous function. -2 is designed to need only a few experiments and 

avoids strong assumptions on the form of the function. Their algorithm uses instance-based 

determination of a convex region of interest for performing experiments. To define a 

neighborhood, they use a geometric procedure that captures the size and shape of the zone of 
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possible optimum location/s. Their algorithm also tries to optimize weighted combinations of 

outputs, and finds inputs to produce target outputs. 

Anderson et al. (2000) develop a nonparametric approach called Pairwise Bisection (PB1) 

for optimizing expensive noisy function with few function evaluations. Their algorithm uses 

nonparametric reasoning about simple geometric relationships to find minima efficiently. They 

use nonparametric statistics since for its independence from the traditional assumptions of 

continuousness and Gaussian noise. They also used pairwise bisection as an attempt to automate 

the process of robust and efficient experiment design.   

Wang, Dong and Aitchison (2001) develop an adaptive RSM methodology, called Adaptive 

Response Surface Method (ARSM). ARSM is a sequential experimentation method, where, at 

each iteration, ARSM discards portions of the design space that correspond to the response 

values worse than a given threshold value. Such elimination reduces the design space gradually 

to the neighborhood of the global design optimum. ARSM performs a CCD experiment at each 

iteration and thus the number of required design experiments increases exponentially with the 

number of design variables. Further ARSM does not inherit any of the previous runs and requires 

a completely new set of CCD points.  

Wang (2003) proposes a modified ARSM where the CCD is substituted with Latin 

Hypercube Design (LHD). Stander (2001) proposes the successive RSM method (SRSM) which 

uses a region of interest, a subspace of the design space, to determine an approximate optimum. 

A range is chosen for each variable to determine its initial size. Then a new region of interest is 

centrally built on each successive optimum. The improvement in response is attained by moving 

the center of the region of interest as well as reducing its size through panning and zooming 

operations, respectively. At each sub-region, a �-optimal experimental design is used to best 



13 
 

 

utilize the number of available runs together with over-sampling to maximize the predictive 

capability.  

1.1.6 Bayesian Optimization 

The mainstream literature on Response Surface Optimization is classical or “frequentist” 

given that it considers parameters as unknown constants that need to be estimated from data. The 

sampling variability or experimental error is reflected in the sampling distributions of the 

estimates. This sampling variability can (and should) be considered in optimization. In contrast, 

the Bayesian approach to statistical inference considers model parameters (and in fact, any 

unknowns) as random variables. This has considerable advantages over the classical approach 

when optimizing a process based on a fitted model, since depending on the estimated parameters 

different optimal conditions will be determined. In the Bayesian approach, the uncertainty in the 

model’s parameters is directly incorporated in the analysis. Prior knowledge can be incorporated, 

if desired, into the optimization process. Otherwise, non-informative priors can be used for 

optimization purposes Del Castillo (2007). 

max123 4 5�67|8�$�, :�867;<
;=

 
 

 

(1) 
 
where 6 is a vector of future response/s, : is a vector of controllable factors, and �� and �	 show 

the specification region q response/s. Solving such optimization problem provides a solution that 

satisfies the specifications or tolerances on the responses of interest.  
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1.1.7 Global Optimization Methods Based on Response Surfaces 

Another adaptive and sequential experimentation research stream emerges from the 

engineering design community. In the engineering design, computation-intensive design analyses 

are commonly expensive computer “experiments” and thus require experimental optimization for 

design optimization. Chen, Tsui, Barton and Meckesheimer (2006) provide a review on design, 

modeling and applications of computer experiments. The response surface models based on 

computer experiments are called surrogates and commonly used in multidisciplinary design 

optimization. Sobieszczanski-Sobieski (1988) proposes concurrent subspace optimizations 

(CSSO) where the multidisciplinary systems are linearly decoupled for concurrent optimization. 

Renaud and Gabriele (1994) modify this algorithm to build response surface approximations of 

the objective function and the constraints. Rodríguez, Renaud, and Watson (1998) introduce a 

general framework for surrogate optimization with a trust region approach. The database for 

surrogate construction is generated by sampling the linearly decoupled disciplines. Rodríguez, 

Pérez, Padmanabhan, and Renaud (2001) present two sampling strategies, e.g., variable and 

medium fidelity samplings. Jones (2001) presents a taxonomy of existing approaches for using 

response surfaces for global optimization. Two other review studies in this field include 

Sobieszczanski-Sobieski and Haftka (1997) and Simpson, Booker, Ghosh, Giunta, Koch, and 

Yang (2002). 

1.2 Preliminaries 

This Section briefly introduces some of the preliminaries required to comprehend the 

proposed strategies. In order to increase the performance of the proposed strategies, most of the 

methods explained here have had some modification before being used in the proposed models.   
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1.3 Least-Square Regression Spline (LSRS) 

Least square spline is a way of using spline functions for data smoothing. These estimators 

have local fitting qualities similar to those for kernel and smoothing spline estimators. However 

they do not admit kernel or series representations, even asymptotically.  

Assuming a basic nonparametric regression model where �>?, 6?� , " 
 1, … , � satisfy: 

6? 
 A�>?� + B? , " 
 1, … , � 
(2) 

with B? representing zero mean, uncorrelated random errors having common variance C	 and 

0 E >� E F E >G E 1. Then, if A 2 H	IJ0,1K (polynomial of degree ' with first and second 

derivatives existence) a Taylor expansion allows us to write the regression model as follows: 

6?=∑ MN>?N��INO� + PQ'�>?� + B? , " 
 1, . . , � 
(3) 

where 

PQ'�$� 
 J�' � 1�!K�� 4 A�I��>��> � S�TI��8S�
U  

(4) 
 

If PQ'�$��, … , PQ'�$V� are uniformly small in magnitude, polynomial regression provides 

a reasonable methods of analyzing the data. The basic premise is that the integral in equation (4) 

can be approximated using the quadrature formula ∑ WNX$ � SNYT
I���NO� for coefficients W�, … , W� 

and points 0 Z S� Z F Z S� Z 1. Combining this with original polynomial approximation leads 

to an overall approximation of the general function by (Eubank, 1999): 

[�>�=∑ MNINO� >N�� + ∑ WNX> � SNYT
I���NO�  

(5) 



 

 

Another formulation which is 

weight, and \X>NY=∑ W?X>NI?O�
obtained from univariate splines by the tensor product construct.

1.4 

A simplex is a geometric feature that has a number of vertices (corners) equal to one more 

than the number of dimensions in the factor space. Simplex can be defined for any number 

factors: for zero dimension it would be a dot, for one dimension it would be a straight line, for 

two dimension it would be a triangle, for three dimension it would be a tetrahedron and hyper 

tetrahedron for higher dimensions (See Figure 2).

Figure 2 Simplexes in (A) zero
three-dimension (Walters et al. 1991)

Simplex can be moved into an adjacent area by rejecting one vertex 

gave the worst response) and projecting it through the average of remaining vertices to create a 

one new vertex on the oppos

new vertex corresponds to a new set of experimental conditions that can then be evaluated.
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Another formulation which is used more often in practice is ∑ :N ]6NN

X N � SNYT
I��

 where SN Z >N Z SNT�. The multivariate case can be 

obtained from univariate splines by the tensor product construct. 

  Sequential Simplex Optimization 

c feature that has a number of vertices (corners) equal to one more 

than the number of dimensions in the factor space. Simplex can be defined for any number 

factors: for zero dimension it would be a dot, for one dimension it would be a straight line, for 

wo dimension it would be a triangle, for three dimension it would be a tetrahedron and hyper 

tetrahedron for higher dimensions (See Figure 2). 

 
Simplexes in (A) zero-dimension, (B) one-dimensions, (C) two

(Walters et al. 1991) 

Simplex can be moved into an adjacent area by rejecting one vertex (usually

gave the worst response) and projecting it through the average of remaining vertices to create a 

one new vertex on the opposite side of the simplex (See Figure 3) (Walters et al., 1991).

new vertex corresponds to a new set of experimental conditions that can then be evaluated.

] N � \X>NY^	
where :N  is 

The multivariate case can be 

c feature that has a number of vertices (corners) equal to one more 

than the number of dimensions in the factor space. Simplex can be defined for any number 

factors: for zero dimension it would be a dot, for one dimension it would be a straight line, for 

wo dimension it would be a triangle, for three dimension it would be a tetrahedron and hyper 

dimensions, (C) two-dimension and (D) 

(usually the vertex that 

gave the worst response) and projecting it through the average of remaining vertices to create a 

(Walters et al., 1991). This 

new vertex corresponds to a new set of experimental conditions that can then be evaluated. 



 

 

Figure 3 The simplex reflection move for (A) one
three-dimension factor spaces. Dashed line represents the old simplex. Open circle shows 
the average of the remaining vertices

Two fundamental ideas that should be remembered throughout simplex procedure are: (1) 

the simplex reflection is that of a point through point. It is not a mirror

line, plane or hyper plane. (2) 

optimum. Hence it can be very effective and efficient for this

located the region of the optimum, it becomes relatively inefficient.

Nelden and Mead (1965) ma

Spendley, Hex and Homsworth (1962) which allows the simplex to expan

are favorable and contract in the directions that are unfavorable. The 

Figure 4 present the rules of variable
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The simplex reflection move for (A) one-dimension (B) two-dim
dimension factor spaces. Dashed line represents the old simplex. Open circle shows 

the average of the remaining vertices (Walters et al. 1991) 

Two fundamental ideas that should be remembered throughout simplex procedure are: (1) 

implex reflection is that of a point through point. It is not a mirror-image reflection across a 

line, plane or hyper plane. (2) The purpose of simples is to move rapidly into the region of the 

optimum. Hence it can be very effective and efficient for this purpose. But when the simplex has 

located the region of the optimum, it becomes relatively inefficient. 

Nelden and Mead (1965) make two modifications to the original simplex algorithm of 

Spendley, Hex and Homsworth (1962) which allows the simplex to expan

are favorable and contract in the directions that are unfavorable. The 

Figure 4 present the rules of variable-size simplex. 

 
dimension, and (C) 

dimension factor spaces. Dashed line represents the old simplex. Open circle shows 

Two fundamental ideas that should be remembered throughout simplex procedure are: (1) 

image reflection across a 

purpose of simples is to move rapidly into the region of the 

purpose. But when the simplex has 

e two modifications to the original simplex algorithm of 

Spendley, Hex and Homsworth (1962) which allows the simplex to expand in the directions that 

are favorable and contract in the directions that are unfavorable. The Algorithm below and 
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Variable-Size Simplex Algorithm 

1. Rank the vertices of the first simplex and find the worst (W) 
2. Calculate the reflection of the worst (R) using Figure 4 as follows: 

• If N=<R=<B use simplex B...NR and got to 3 

• If R>B, calculate and evaluate E: 
o If E>=B use simplex B…NE and go to 3 
o If E<B, use simplex B…NR and got to 3 

• If R<N 
o If R>=W calculate and evaluate  CR use simplex R…NCR and go to 3 
o If R<W calculate and evaluate CW use simplex B...NCW and go to 3 

3. Transfer the current N (Never transfer the current W to the next iteration). rank the remaining 
retained vertexes in order of decreasing response 
 

 
Figure 4 (a) Possible moves in the variable-size simplex algorithm, (b) logic of the possible 
moves in the variable-size simplex algorithm (Walters et al. 1991) 

 

1.5 Multiple Adaptive Regression Spline (MARS) 

Multiple Adaptive Regression Spline (MARS) is a flexible regression modeling of high 

dimensional data introduced by Jerome Friedman in 1991 (Friedman, 1991). The model take the 

form of an expansion in product spline basis function, where the number of basis functions as 

well as the parameters associated with each one (product degree and knot locations) are 
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automatically determined by the data.  The procedure is motivated by the recursive partitioning 

approach to regression and shares its attractive properties. Unlike recursive partitioning, 

however, this method produces continuous models with continuous derivatives. It has more 

power and flexibility to model relationship that are additive or involve interactions in at most a 

few variables. In addition, the model can be represented in a form that separately identifies the 

additive contributions and those associated with the different multivariate interactions. 

MARS builds models of the form  \_�>� 
 ∑ `?a?�>��?O�  which is a weighted sum of basis 

functions a?�>� and with constant coefficient `?. Each basis function a?�>� takes one of the 

following three forms (Friedman, 1991): 

• Constant where is just one such term, the intercept 

• Hinge function with the form '�>�0, > � `b�c$� or '�>�0, `b�c$ �  >� where ̀  is a 

constant, called the knot  

•  Product of two or more hinge functions, which can model interaction between two or 

more variables  

MARS builds a model in two phases: the forward and the backward pass. This two stage 

approach is the same as that used by recursive partitioning trees. 

In the forward pass, MARS starts with a model which consists of just the intercept term 

(which is the mean of the response values). MARS then repeatedly adds basis function in pairs to 

the model. At each step it finds the pair of basis functions that gives the maximum reduction in 

sum-of-squares residual error (it is a greedy algorithm). The two basis functions in the pair are 

identical except that a different side of a mirrored hinge function is used for each function. Each 

new basis function consists of a term already in the model (which could perhaps be the intercept) 
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multiplied by a new hinge function. A hinge function is defined by a variable and a knot, so to 

add a new basis function, MARS must search over all combinations of the following: (1) existing 

terms (called parent terms in this context); (2) all variables (to select one for the new basis 

function); and, (3) all values of each variable (for the knot of the new hinge function). 

This process of adding terms continues until the change in residual error is too small to 

continue or until the maximum number of terms is reached. The maximum number of terms is 

specified by the user before model building starts. 

The forward pass usually builds an overfit model. (An overfit model has a good fit to the 

data used to build the model but will not generalize well to new data.) To build a model with 

better generalization ability, the backward pass prunes the model. It removes terms one by one, 

deleting the least effective term at each step until it finds the best submodel. Model subsets are 

compared using the &d� criterion described below. The backward pass has an advantage over 

the forward pass: at any step it can choose any term to delete, whereas the forward pass at each 

step can only see the next pair of terms. 

The backward pass uses &d� to compare the performance of model subsets in order to 

choose the best subset: lower values of &d� are better. The &d� is a form of regularization: it 

trades off goodness-of-fit against model complexity. The raw residual sum-of-squares (RSS) on 

the training data is inadequate for comparing models, because the P[[ always increases as 

MARS terms are dropped. In other words, if the RSS were used to compare models, the 

backward pass would always choose the largest model. The formula for the &d� is: 

     &d� 
 3ee
f]��ghijh ^<     

(6) 
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where P[[ is the residual sum-of-squares measured on the training data and k is the number of 

observations  and lkmn is the effective number of parameters which is defined in the ! P[ 

context as: 

     lkmn 
 n + d �o���
	                 

(7) 
 

where n is the number of MARS terms and d is the penalty which is usually set about 2 or 3. 

Note that 
�o���

	  is the number of hinge-function knots, so the formula penalizes the addition of 

knots. Thus the &d� formula adjusts the training RSS to take into account the flexibility of the 

model. 
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CHAPTER 2 THE PROPOSED STRATEGY FOR QUADRATIC MODELS 
WITH TWO VARIABLES (ASRSM) 

2.1 Introduction 

In this chapter, we discuss the elements of the proposed Adaptive Sequential Response 

Surface Methodology (ASRSM) for bivariate quadratic functions. This methodology presented 

here will be used as the basis of approaches proposed for considering more sophisticated models 

in the following chapters. We start the chapter with  terminology and assumptions in Section 2.2. 

Next, we provide an overview of the methodology in Section 2.3, followed by explaining the two 

core strategies embedded in ASRSM; (1) Parametric approach in Section 2.4, and (2) Non-

parametric approach in Section 2.5. In Section 2.6, we describe how these two strategies are 

integrated within ASRSM. Finally, in Section 2.7 we provide the result of several numerical 

examples conducted to evaluate the performance of the proposed strategy.  

2.2 Terminology and Assumptions 

The definitions and terminology used in the proposed ASRSM methodology is as follows. 

Some of the notation is illustrated in Figure 5 for a two-dimensional factor space with 5 

experiments in each run: 

p[q : Factor space at run % and expressed as Cartesian product of factor ranges in run r 

\c? : Initial range of factor i  

dmn : A corner point experiment run at the intersection of extrema of factor ranges 

dln : Center point experiment run at the center of gravity of the factor space 

% : Index of runs, e.g. % 
 1,2, … , P where R is the total number of runs 

Q : Index of experiments in a given run, e.g. e=1,2,...,E where E is the total number of experiments 

a : The experiment with the best response level in a given run 
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k� : The experiment with the �rs best response level in a given run (2Q� E Q � 1� 

H : The experiment with the worst response level in a given run 

mPq : Optimal region in run r containing the estimated optimal experiment, mPq t p[q 

m : Optimal experiment, e.g. best experiment in the initial factor space 

lmq : Estimated optimal experiment in run r, e.g., best incumbent estimation of the optimal experiment 

BCE : Best at Center classification of the mPq where the location of B is at CEP 

BCO : Best at Corner classification of the mPq where the location of B is at the corner of factor space 

 

 

Figure 5 An illustration of terminology of the ASRSM on a two dimensional factor space 
with E=5 

 

As in most RSM approaches, the proposed ASRSM methodology relies on a number of 

simplifying assumptions. The extensions due to the relaxation of these assumptions are beyond 

the scope of this paper and some of these extensions discussed in the conclusion. For the 

proposed methodology we consider the following assumptions: 

1. There are two significant and controllable factors. 

2. The underlying relation between a single response and two factors can be represented by a 

quadratic model. RSM models are usually employed in a sufficiently small region around the 

optimal region. As a result, it is quite common in RSM applications to assume that the 

underlying model can be approximated via a quadratic function. Such assumption also holds 

for this study. 
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3. The response is convex in the region of interest. We assume that the region of interest is 

shifted close to the optimum a priori using an efficient method (e.g., steepest descent). Since 

for most of the nonlinear minimization problems, the underlying model is locally convex 

around the optimal solution, we assume that the response is convex in the region of interest. 

Our empirical test results show that the proposed approach is robust with respect to this 

assumption such that the proposed method is effective in cases where the underlying model is 

non-convex. 

4. The factor space in the region of interest is feasible. 

2.3 Algorithm and Initial Run Design 

Figure 6 illustrates the structure of the proposed ASRSM methodology. The procedure is 

initialized with a region of interest, e.g., a feasible factor space which is guaranteed to contain 

the O. The goal is to reach to the vicinity of m with a finite set of runs (P�. Each run r is set up 

on a given factor space (FSr) with a specific experimental design (D), e.g. a modified version of 

the factorial design augmented with a center point. The experiments in each run r are taken one 

at a time and the FSr is not finalized until all experiments are taken. Once an experiment e is 

taken, the EOr is obtained from the parametric model fitting using the all experiments in all runs. 

For all but last experiment in run r (i.e., e≠E), the EOr is tested for belonging to FSr. 

Accordingly, FSr is updated (e.g. expanded) if  EOr is outside FSr. For the last experiment (i.e., 

e=E), the approach follows two concurrent strategies, e.g., non-parametric ranking strategy and 

parametric model fitting strategy. According to the ranking of experiments and EOr from the 

quadratic model fitting, a reduced factor space containing the EOr (i.e., ORr) is determined for 

the next run. This procedure continues until the convergence criteria based on estimated optimal 

experiment or coefficient of determination of the fitted model is attained. The motivation for the 

dual strategy (e.g., parametric vs. non-parametric) is that, while the information from ranking 
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strategy is accurate but not precise, the information from model fitting is precise but not 

accurate.  

 

Figure 6 Scheme of the proposed ASRSM methodology 

 
The factor space of each run (p[q) can be expressed as a mapping (�q) of the factor space of 

the preceding run (p[q��). In most general form, the proposed methodology generates a series of 

factor spaces which are nested, e.g. p[q 
 �q ]�q��X… �U�p[��Y^. The output of this mapping 

�q  depends on the current factor space, the experimentation design (D), the outcome of ranking 

of experiments as well as the result of parametric strategy described in the next subsection. The 
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latter two, the ranking and the parametric strategies, are described the in the next two sections, 

respectively. Before discussing the D used in each run and the initial factor space, we briefly 

present the algorithm using the illustration in Figure 7 for a special case. The proposed approach 

is initialized with p[� and the indicated five experiments �a, k2, k3, k4, H) are taken from the 

corresponding design D. Once the responses are ranked, the non-parametric ranking strategy 

identifies the mP�. Next the parametric model fitting approach determines the lm� using the first 

five experiments. Lastly, the mP� and lm� are compared to determine the new factor space 

(p[	). Note that the design in r=2  inherits two experiments from the first run, namely B and N2. 

 

Figure 7 Illustration of the factor space reduction across runs r=1, 2, and 3 

 

The proposed ASRSM method uses the same D in each run which is the factorial design 

augmented with a center point. Hence we maintain the same experimental design D and consider 

a constant number of experiments (e.g. E=5) throughout the process. In practice, none of the 

existing methods for setting the initial point in sequential optimization procedures is superior to 

the corner initial point as in factorial design (Walters, Parker, Morgan, and Deming, 1991). 

Furthermore, experiments conducted on corner points benefit from fractional factorial design, 

especially when the design is orthogonal. In particular, the designs maximize the amount of 

information gained from each experiment. On the other hand central points are essential for the 
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modeling the curvature of the underlying function (Montgomery, 2008). Lastly, the five 

experiments in r=1 are not sufficient to estimate the full quadratic response model. Hence, we 

estimate the EO1 by fitting a quadratic response model without the constant term. 

The design of the initial factor space in the proposed approach is adapted such that a rational 

comparison with traditional RSM methods (e.g. CCD) is possible. In the traditional CCD 

approach, the corner points are taken at �� unit distance from the center point (0,0). In 

comparison, the proposed methodology starts with a broader initial region around the center 

point, e.g. at �√2 unit distance from the center. Figure 8a illustrates the initial factor space of the 

traditional CCD and the proposed method with light and dark experiment points, respectively. 

While beginning with a larger space is initially disadvantageous, experimental results 

demonstrate that the reduction in the factor space with the same number of experiments far 

exceeds initial difference. An additional benefit is that this modification may decrease the effect 

of random error on the initial results. Let's consider the diagonal cross-section of these two 

designs as illustrated in Figure 8b and assume that the noise is identically distributed on this 

cross-section. Then, it can be shown that the impact of the noise on prediction of the optimal 

experiment point is less with the proposed methodology’s factor space.  

  

          (a)                                                                     (b) 
Figure 8  (a) Initial factor space and design structure and (b) Diagonal cross-section of the 

traditional CCD and proposed ASRSM approach 
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2.4 Non-parametric Approach: Ranking Strategy 

At each run % of the proposed ASRSM approach, we first rank the 5 experiments (e.g., 4 

factorial and 1 center) as a, k2, k3, k4 and H according to their response levels. Based on the 

ranking, we identify the implied optimal region which contains the EOr. This region is a polygon 

contained in FSr and can be convex or non-convex in the space of factors. We then identify a 

rectangle which contains the implied optimal region and denote it as the optimal region (ORr), 

which determines the factor space of the next run.  

This process of encapsulating the implied optimal region with a rectangle is a form of 

relaxation and is not efficient in terms of factor space reduction. However, there are valid 

reasons which motivate this relaxation. The foremost reason is the reduced need for new 

experiments due to the inheritance of experiments from the previous run. Secondly, the 

rectangular FS preserves the orthogonality of factorial experimental design. Further, this 

rectangular form facilitates the recursive characterization of the same rectangular structure 

throughout the process. In addition, we can use the same experimental design structure, e.g. full 

factorial with a center point. Specifically, with rectangular envelope, the mapping across runs 

will be identical, e.g. ��·� � �q�·� for �%. This is because we maintain the same experiment 

design structure and there is a finite number of optimal regions as a result of ranking outcomes. 

Lastly, the relaxation reduces the risk of selecting an optimal region which excludes the optimal 

experiment.  

An alternative to the rectangular envelope is the convex hull of implied optimal region. Due 

to its convexity, it also allows for easier tessellation of the p[. While the convex hull reduces the 

optimal region more than the rectangular envelope, it does not reduce the number of new 

experiments as much. Furthermore, the experimental design used in each run will be different 
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since the convex hulls of the implied optimal regions will vary in shape. Clearly the choice of the 

right form is a trade-off between the rate of contraction of the optimal region and the total 

number of experiments conducted. To better illustrate this trade-off, let's consider the implied 

optimal region in Figure 9a. The convex hull of this implied optimal region is identified in 

Figure 9b with six vertices (corner points). In contrast, we adopted the rectangular envelope 

which is illustrated in Figure 9c. Comparison between Figure 9b and 9c reveals that, while 

convex hull based OR leads to the greatest factor space reduction, it also leads to an increased 

number of new experiments (7 vs. 3 new experiments) and cannot inherit experiments from 

previous runs. Note that it is not practical to change the design and choose only 3 new 

experiments (e.g. 2 vertices and one at the center of gravity) for the convex hull in Figure 9b. 

This is because we assume that the O is contained in the current factor space, and, by choosing 

fewer number of vertices, we would then be implicitly reducing the implied optimal region.  

 

Figure 9  (a) Implied optimal region (b) Convex hull envelope of the implied optimal region 
(c) Rectangular envelope of the implied optimal region based on a two dimensional factor 
space  

 

In what follows, we present the optimal region alternatives based on the ranking of the 

experiments and the location of a in the current p[.  
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2.4.1 Best at Center (BCE) Optimal Regions 

An important information obtained from the ranking of experiments is the location of a. 

When the a is located at the center, the current p[ is then classified as having a BCE optimal 

region. Depending on the location of k2, k3, k4, and H, there are three possible mPs as 

illustrated in Figure 10. We first determine the implied optimal region as illustrated as dotted 

regions in Figure 10. Next we characterize the OR as the rectangle which contains the this 

implied optimal region. 

 

Figure 10 �x{ y~s (dotted region: impliedy~, shaded region:y~� 
 

The implied optimal regions are guaranteed to contain the optimal experiment in the absence 

of random noise. The mathematical proofs of the optimality of these implied optimal regions is 

involved and thus excluded. Instead, we provide a general proof sketch of the rectangular 

optimal regions and illustrate it for the mP in Figure 10a. The proofs are accomplished through 

the following steps: (1) Divide the non-optimal region into smaller rectangular sub-regions using 

factor centerlines; (2) Assume that the optimal point falls in one of these sub-regions; (3) 

Relocate the origin to that region and formulate the responses at a, k�,..., and H based on their 

displacement from the new origin; (4) Show that at least one pairwise comparison of the 

responses violate the initial ranking (5) Replicate the steps (2-5) until all sub-regions are 

evaluated. The proof of OR in Figure 10a is as follows. 

B 

N2 

N3 

W 

N4 

N2 

N4 

B 

N2 

N3 

N4 

W 

B 

W 

N3 
(c) Central Design with 

N2 cornered with N4 
and W 

L 

L/2 

L/4 L/4 

L/4 

L/4 

L/4 

(a) Central Design with N2 
cornered with N3 and 

(b) Central Design with N2 
cornered with N3 and 
W 



31 
 

 

Proposition: For BCE optimal region with ranking in Figure 10a, the optimal experiment is 

located in the optimal region characterized as the quadrant with corners at B and N2 when there 

is no random noise. 

Proof. Consider that the FS is divided into equal quadrants (I,II,III,IV ) which have 

(N2,N4,W,N3) as the corners, respectively. Further suppose that O is located in FS outside the 

OR. For the case, where O is in II , we consider the responses at N2� �>f	, 6f	�, N3� �>f�, 6f��  

and N4� �>f�, 6f�� as �f	, �f� and �f�, respectively. We have �f	 
  �8>	�	 + a�86	�	 +
d�8>	��86	�, �f� 
  �8>��	 + a�86��	 + d�8>���86��, and �f� 
  �8>��	 + a�86��	 +
d�8>���86�� where (dx2,dy2)=(xN2-xO,yN2-yO), (dx3,dy3)=(xN3-xO,yN3-yO) and (dx4,dy4)=(xN4-

xO,yN4-yO) and optimal experiment location O� �>�, 6��. We consider 8�f	f� 
 �f	 � �f� 

 J�8>	�	 � �8>��	K + aJ�86	�	 � �86��	K + dJ�8>	��86	� � �8>���86��K, and 8�f�f� 

�f� � �f� 
  J�8>��	 � �8>��	K + aJ�86��	 � �86��	K + dJ�8>���86�� � �8>���86��K. 

Since the response is convex (e.g.,  , a � 0), we consider three response scenarios: C=0, 

C<0, C>0. Note that when O is in II, we have |8>	| � |8>�|, 8>	 E 0 and 86	 
 86� making 

second term 8�f	f� zero. For C=0, we have the first term in 8�f	f� positive, thus 8�f	f� � 0 

which is a contradiction to the ranking �f	 Z �f�. For C<0, the third term in dz�	�� is positive 

since 8>	 E 0  thus making 8�f	f� � 0 which is also a contradiction. Lastly, for C>0, first and 

second terms in 8�f�f� are positive since |8>�| � |8>�| and |86�| � |86�|. Last term in dz���� 

is also positive since 8>�86� � 0 and |8>�86�| � |8>�86�|. Thus 8�f�f� � 0 which is a 

contradiction to the ranking �f� Z �f�. For the case, where O is in III, we consider the responses 

at N2, N3 and W as zN2, zN3 and zw, respectively. Let's define the 8�f��, 8�f	�, and 8�f	f� 

as before. For case C=0, it can be shown that 8�f�� � 0 which is a contradiction for �f� Z ��. 

Similarly, for C<0 and C>0, we have 8�f	� � 0 and 8�f	f� � 0 are contradictions for 
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z�	 Z z� and �f	 Z �f�. Last case is where O is in IV. We consider the responses at N2, N3, N4 

and W. Let define 8�f�� as before. For case C=0, it can be shown that 8�f	f� � 0 which is a 

contradiction for �f	 Z �f�. Similarly, for C<0 and C>0, we have 8�f	f� � 0 and 8�f�� � 0 

are contradictions for �f	 Z �f� and �f�. 

2.4.2 Best at Corner (BCO) Optimal Regions 

The case when the B is located at a corner is referred as a BCO optimal region. In BCO, either 

N2 or N3 can occur at the center. For N2 at center, there are three possible mPs based on the 

location of a, k3, k4, and H (Figure 11).  

 

Figure 11 �xy y~s when N2 is at center (dotted region: implied y~, shaded region: y~� 
 

In case with N3 at center, there are two possible mPs based on the location of  a, k2, k4, and H 

(Figure 12).  

 

Figure 12 �xy y~s when N3 is at center (dotted region: implied y~, shaded region: y~� 
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The proving strategy for adms’  mPs is the same as adl and is thus excluded. Note that the 

implied optimal regions are identical to the mPs in Figures 8a, 8b, and 9b, thus there is no 

relaxation due to rectangular envelope.  

2.5 Parametric Approach: Model Fitting Strategy 

We use a parametric approach based on model fitting in addition to the ranking approach. 

This strategy not only allows us to increase the precision of EOr but also supports backtracking 

through FSr correction as explained in previous section. Beginning with the completion of all 

first run experiments, this parametric approach is used after each experiment. In this approach we 

fit a quadratic model � 
 J�� �	K �>6� + J> 6K ��� �	�	 ��� �>6� + ` + �, with B~k�0, C	�, to the 

experimental data to analyze the underlying function of data and efficacy of conducted 

experiments. In fitting the quadratic model, two objectives are being sought in particular: (1) 

estimating the estimated optimal experiment EOr; (2) calculating the adjusted coefficient of 

determination �P��N	 �. EOr, the minimum of the fitted model, not only shows the predicted 

optimal solution, but can also be used for correcting the p[ of the next run. Furthermore, the 

change in the EOr in consecutive runs is also used as a stopping criterion. In comparison, the 

P;�N	  shows how well the information gained from the experiments explain the behavior of the 

underlying system (Seber and Alan, 2003). We also use this measure as a stopping rule in the 

proposed ASRSM  methodology  and for comparing the explanatory power of different methods.  
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2.6 Design Structure for the Next Runs 

Following the characterization of ORr through ranking approach and estimation of the EOr 

from parametric approach, we determine the design structure for the next run. In particular, we 

compare the EOr from the model fitting with the ORr from the experiment ranking. If EOr is 

contained in the ORr, then we use the region as the factor space of the next run. If EOr is not 

contained in the ORr, we then expand the optimal region to a larger rectangle envelope 

containing the EOr and use the region as p[q of the next run (Figure 13). Next we conduct 

experiments on the un-experimented corners and the center of the new p[q. After each 

experiment, we fit the quadratic model and check whether EOr is contained in ORr. If EOr is 

outside ORr, then we expand the ORr as before. This expansion serves as a backtracking step. 

These steps are repeated monitor the change in P;�N	  and the EOr using the fitted model. The 

stopping condition for the proposed ASRSM approach is the convergence of P;�N	  or EOr with 

thresholds W�� and W3���< .  

 

Figure 13  Expansion of the ORr  when the EOr from model fitting falls outside 
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2.7 Illustrative Example, Simulated Experiments and Case Studies

In this section, we first illustrate the proposed ASRSM approach using a stylized example and 

compare its performance with the traditional CCD approach. Next, we report on the results of 

extensive simulation experiments comparing the proposed ASRSM, CCD and three optimal 

designs using different response models. We then experiment with these approaches using the 

well-known paper helicopter experiment. Lastly, we report on the results of a rat brain trauma 

case study comparing ASRSM and CCD approaches.  

We consider the quadratic response model of the form, 

B~k�0, 2	� which is desired to be minimized. The starting region of interest is selected as 

X 2 J�3,3K and Y J�3,3K and the contour plot of the response is presented in Figure 14a. 

first conducted a typical CCD with 13 experiments centered at (0,0) and contains the optimal 

experiment O=(0,0.5) with mean response ZO=

 

 

 

 

 

(a) Real contours        

Figure 14   The (a) Actual, (b) CCD, and (c) ASRSM estimated contours of the response 
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Illustrative Example, Simulated Experiments and Case Studies

ustrate the proposed ASRSM approach using a stylized example and 

compare its performance with the traditional CCD approach. Next, we report on the results of 

extensive simulation experiments comparing the proposed ASRSM, CCD and three optimal 

different response models. We then experiment with these approaches using the 

known paper helicopter experiment. Lastly, we report on the results of a rat brain trauma 

case study comparing ASRSM and CCD approaches.   

2.7.1 Illustrative Example 

the quadratic response model of the form, ¤ 
 �	
which is desired to be minimized. The starting region of interest is selected as 

K and the contour plot of the response is presented in Figure 14a. 

first conducted a typical CCD with 13 experiments centered at (0,0) and contains the optimal 

experiment O=(0,0.5) with mean response ZO=-0.5 (Figure 14a).  

 

      (b) CCD contours                 (c) ASRSM contours

The (a) Actual, (b) CCD, and (c) ASRSM estimated contours of the response 

Illustrative Example, Simulated Experiments and Case Studies 

ustrate the proposed ASRSM approach using a stylized example and 

compare its performance with the traditional CCD approach. Next, we report on the results of 

extensive simulation experiments comparing the proposed ASRSM, CCD and three optimal 

different response models. We then experiment with these approaches using the 

known paper helicopter experiment. Lastly, we report on the results of a rat brain trauma 

+ 2¥	 � 2¥ + B with  

which is desired to be minimized. The starting region of interest is selected as 

and the contour plot of the response is presented in Figure 14a. We 

first conducted a typical CCD with 13 experiments centered at (0,0) and contains the optimal 

(c) ASRSM contours 

The (a) Actual, (b) CCD, and (c) ASRSM estimated contours of the response ¦ 
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Based on 13 experiments, the CCD attains R���	 
60.86% with �X§, Y§� 
 �0.5,0.8428� as 

estimation of the optimal experiment. Figure 14b illustrates the estimated contours using CCD 

design. The reason that CCD could not estimate the orientation of the quadratic response is the 

large magnitude of the variance of error term in the quadratic surface equation. 

Next we employ the ASRSM and present the results in Table 1. The first 5 rows correspond to 

the initial run design. Note that the ASRSM is setup as described in previous Section and without 

any additional information than used in the CCD. We use P;�N	 � 8M3���< 
 %85 as the 

convergence criteria in this example. We now describe each run in detail. 

Table 1 The Runs and experiments of the ASRSM method 

Run 
No 

No of New 
Experiment   

Factor Combination Response 

X Y Z 

1 

1 -1.4142 1.4142 8.2950 

2 1.4142 -1.4142 10.2316 

3 -1.4142 1.4142 2.1963 

4 1.4142 1.4142 6.8961 

5 0 0 2.2137 

2 

6 -1.4142 0 -0.4552 

7 1.4142 0 -0.1682 

8 -0.7071 0.7071 0.8719 

3 9 0 .3535 0.4117 

 

Run 1: Given the initial design, we obtain the OR1 using the non-parametric approach (Figure 

15a). The constrained quadratic fit estimates the optimal experiment (EO1) as (-0.3572, 1.4142) 

illustrated with a small point on the edge B-N3 (Figure 15b). Note that since the number of 

experiments is not sufficient to estimate the full model, the EO1 is estimated by the quadratic 

response model without the constant term. Since the EO1 is contained in the OR1, the OR1 is 

final. The new factor space FS2 is determined as OR1.  
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Run 2: Figure 15c shows the location of the first new experiment in r=2  which corresponds 

to (-1.4142,0). Using the constrained quadratic fit as before we estimate the optimal experiment 

as (-1.4142,0.5930) illustrated with a small point (Figure 15c). Since this experiment is contained 

in FS2 , there is no update of the factor space. The second new experiment is illustrated in Figure 

15d and the corresponding estimate of the optimal experiment (-0.7, 0.6428) with P;�N	 

51.96% . This estimated optimum is still contained in FS2. The third and final experiment of r=2  

is shown on Figure 15e together with the estimated optimal experiment (-.5571, 0.7857) and 

P;�N	 
 84.44%.  

 
Figure 15  Illustration of the steps of ASRSM for runs 1 and 2 

 

The second run of the experiment terminates with the estimated optimal experiment in Figure 

15e. Continuing to the third run, the final OR2 and FS3 are illustrated in Figure 15f. The first 

experiment in r=3 is the corner point of FS3 indicated with dotted point. This point is the last 

experiment in Table 1. The estimated optimal experiment with this experiment is 

(0.5571,0.7851) with P;�N	 =89.06 which satisfies the termination criteria. The Figure 14c shows 

(a)  Experiment Ranking r=1  
and OR1 

(b) EO for r=1  and final OR1 (c) 1st new experiment (r=2) 
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the estimated contours using the proposed approach. Clearly, the response model estimation 

based on ASRSM is better than CCD. 

2.7.2  Simulated Experiments 

We now describe the simulated experiments performed to compare the performance of the 

proposed ASRSM approach with those of CCD, A- D- and V-optimal designs. In the simulated 

experiments, we have considered six response models with varying variance of error and 

function type (i.e., convex, non-convex). These response models are presented in Table 2. All 

response models have a quadratic relation, e.g. 
  �	 + a¥	 + d� + �¥ + l�¥ + p + ­ , with 

a normal error term B~k�0, C	�. 

Table 2 The response models used in the simulated experiments 

        Optimal Experiment 

Exp. No. Response Relation Error ( ε) Response Type O=(XO,YO) ZO 

1 Z=-2x2+3y2+2x-y+2xy-1+ε N(0,0.0.1) Nonconvex (-3.0,1.25) -29.063 

2 Z=x2+2y2-2y+ε N(0,1) Convex (0.0,0.5) -0.500 

3 Z=-2x2+3y2+2x-y+2xy-1+ε N(0,2) Nonconvex (-3.0,1.25) -29.063 

4 Z=-3x2+2y2+x-2y+2xy-1+ε N(0,2) Nonconvex (-3.0,2.0) -39.000 

5 Z=2x2+y2+x+2xy+ε N(0,2) Convex (0.5,-0.5) 0.750 

6 Z=x2+2y2-2y+ε N(0,2) Convex (0.0,0.5) -0.500 

Whereas the ASRSM is an adaptive sequential method, the CCD, A-, D-, and V-optimal 

designs are essentially preset designs. In order to understand the effect of this difference, we 

have carried out two sets of analyses. In the first set, we have fixed the number of observations 

for each approach and compared the performances in terms of average P;�N	  and average 

optimality gap (i.e., deviation from the optimal response). Given the optimal response (ZO), the 

optimality gap of a method is defined as X¤_ � ¤�Y/¤� , where ¤_  is the mean predicted response 
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at the estimated optimal point. All simulated experiments are repeated five times and average 

results are reported. For each response model in Table 2, the design points in A-, D- and V-

optimal designs are generated by optimizing the optimality criteria over the starting factor space 

with a fine grid system spaced with 0.01 intervals. The CCD design consists of 4 corners, 4 axial 

and 1 center design points as in the illustrative example. Note that, the starting factor space 

expands the initial region of interest, � J�3,3K and ¥ J�3,3K, by a factor of √2 in all directions 

as explained before.  

Table 3 presents the results of the first set of analyses. The ASRSM has a better P;�N	  in 4 out 

of the 6 response models and has P;�N	 
 94.5% on the average. The A- and D-optimal designs 

are also competitive and CCD has the worst average performance. With respect to the optimality 

gap, the proposed ASRSM has the best performance in all but one of the response models with 

an average gap of 21.2%. The results indicate that increasing the variance of the response 

decreases the P;�N	  for all approaches, e.g. response models 1 versus 3 and models 2 versus 6. 

However, this reduction is least with ASRSM. In the case of optimality gap, the increase in the 

variance of response increases (decreases) the optimality gap in convex (non-convex) response 

models. While the generalization of these effects requires further analysis, we note that the 

increase (decrease) in the optimality gap is least (most) with the proposed ASRSM. These results 

show that the ASRSM is competitive with the three optimal designs and outperforms the 

classical CCD design. In addition, the performance of ASRSM is more robust with respect to 

changes in the error variance and convexity of the response model.   
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Table 3 The ®¯°±w  and optimality gap results of simulated experiments with 9 observations 
determined a priori for CCD and optimal designs 

 
Adjusted R2 Optimality Gap 

Exp. No. ASRSM CCD A-Opt. D-Opt. V-Opt. ASRSM CCD A-Opt. D-Opt. V-Opt. 

1 99.98% 99.95% 99.92% 99.94% 99.94% 19.1% 105.9% 19.1% 73.4% 92.3% 

 2 96.62% 92.00% 96.97% 93.04% 94.52% 19.0% 100.2% 11.7% 432.4% 8.9% 

 
3 92.91% 88.48% 94.30% 93.04% 86.64% 1.4% 77.3% 1.4% 3.1% 84.4% 

 4 
94.17% 82.17% 80.59% 88.96% 85.17% 19.1% 107.0% 19.1% 19.1% 15.9% 

 
5 

94.26% 37.03% 80.14% 82.38% 81.46% 45.2% 1119.7% 822.6% 100.0% 139.1% 
 
6 88.92% 49.40% 84.63% 75.88% 64.98% 23.2% 312.9% 592.6% 738.9% 725.0% 

Ave. 
94.48% 74.84% 89.43% 88.87% 85.45% 21.2% 303.8% 244.4% 227.8% 177.6% 

 

According to Table 3, the ASRSM’s average performance improvement over other methods is 

more significant in optimality gap than in P;�N	 . This is because the ASRSM searches for the 

optimal design point by sequentially contracting the factor space whereas other approaches select 

the design points using the initial factor space. Hence, the design points used in ASRSM are 

more densely distributed than other methods. In order to capture this difference, we have carried 

another set of analyses for the optimal designs. In this second set, we initially fixed the number 

of design points at 7 and then incrementally added one design point at a time until we have a 

total of 9 design points. The initial set of 7 design points is optimally generated as before. Next, 

each of the additional point is generated by optimizing the optimality criterion given the existing 

design points and the response model. At each run, we have compared the performances in terms 

of average P;�N	  and average optimality gap. Note that we have used the earlier results of the 

ASRSM for consistency. For the CCD, we initially used 7 of the earlier observations by 

excluding two axial points and then include back in one at a time. 
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The results of the P;�N	  are presented in Table 4. For ASRSM and CCD, the inclusion of 

additional design points increases the average P;�N	  across all response models. In comparison, 

the average P;�N	   decreases with additional design points for the A- and D-optimal designs. 

Tables 3 and 4 show that applying A- and D-optimal designs sequentially reduces the average 

P;�N	 . The performance of the V-optimal design is observed to increase. Table 5 presents the 

optimality gap results of the final 9 design points in Table 4. Tables 3 and 5 show that the 

optimality gap of A- and D-optimal designs have improved when applied in sequence. In 

contrast, the optimality gap of V-optimal design has slightly decreased when applied in 

sequence.  The results in Tables 4 and 5 also show that the ASRSM method exhibit monotonous 

behavior with respect to increasing the number of observations and is thus more suitable for 

sequential experimentation.  
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Table 4 The ®¯°±w  results of simulated experiments beginning with 7 design points and then 
incrementally adding one design point at a time 

    Adjusted R2 

Exp. 
No. 

No 
Obs. ASRSM CCD A-Opt. D-Opt. V-Opt. 

1 

7 99.99% 99.96% 99.94% 99.96% 99.92% 

8 99.99% 99.96% 99.95% 99.98% 99.95% 

9 99.98% 99.95% 99.92% 99.97% 99.94% 

2 
7 93.67% 92.69% 90.69% 95.01% 94.85% 
8 94.97% 92.48% 86.86% 89.20% 95.86% 
9 96.62% 92.00% 86.58% 90.42% 95.42% 

3 
7 79.57% 69.77% 97.71% 92.96% 72.11% 
8 86.53% 70.60% 79.86% 91.06% 74.92% 
9 92.91% 88.48% 82.00% 89.02% 80.89% 

4 
7 91.68% 92.87% 94.21% 91.09% 85.12% 

8 92.39% 88.49% 89.27% 91.69% 88.76% 
9 94.17% 82.17% 89.49% 92.58% 85.47% 

5 

7 90.15% 24.61% 87.19% 87.21% 86.05% 

8 89.16% 35.75% 89.97% 76.74% 71.97% 

9 94.26% 37.03% 86.66% 67.96% 84.95% 

6 

7 86.18% 35.45% 50.38% 85.31% 85.08% 

8 86.44% 43.17% 57.23% 78.71% 86.04% 

9 88.92% 49.40% 64.49% 67.65% 82.05% 

Ave. 

7 90.21% 69.22% 86.69% 91.92% 87.19% 

8 91.58% 71.74% 83.86% 87.90% 86.25% 

9 94.48% 74.84% 84.86% 84.60% 88.12% 

 
 

Table 5 The optimality gap results of simulated experiments for the final 9 design points in 
Table 4 

 
Optimality Gap 

Exp. 
No. 

ASRSM CCD A-Opt. D-Opt. V-Opt. 

1 19.1% 105.9% 14.0% 45.9% 140.2% 

2 19.0% 100.2% 19.0% 17.6% 48.5% 

3 1.4% 77.3% 1.4% 3.1% 363.4% 

4 19.1% 107.0% 19.1% 19.1% 19.1% 
5 45.2% 1119.7% 101.2% 139.0% 434.5% 

6 23.2% 312.9% 779.0% 47.7% 95.4% 

Ave. 21.2% 303.8% 155.6% 45.4% 183.5% 

 



 

 

Paper helicopter problem is a simple practical experiment

teaching as well as testing for different methods. Paper helicopter problem consists of studying 

the effect of a number of factors, i.e. the wing length, body length and etc, on the flying time of a 

paper helicopter (Figure 16). Using this practical experiment, we now compare the performances 

of ASRSM, CCD, A-, D-, and V

  (a) Completed design

 

The paper helicopter problem is originally designed for the design of experiments. In order to 

apply alternative approaches to this problem, we first extended it to the RSM domain. For this, 

we first chose the wing length and the body length as the two controllable f

Next, we conducted a number of experiments to find an initial feasible range for each of the 

designated variables: wing length 

�	 Z 9.25 cm� which contains the optimal region. Finally

A-, D-, and V-optimal designs to the coded factor space and compared their performances. Note 

Wing Length 

Body Length 
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2.7.3 Paper Helicopter 

Paper helicopter problem is a simple practical experiment which is frequently used for 

teaching as well as testing for different methods. Paper helicopter problem consists of studying 

the effect of a number of factors, i.e. the wing length, body length and etc, on the flying time of a 

). Using this practical experiment, we now compare the performances 

, and V-optimal designs. 

(a) Completed design     (b) Design template

Figure 16  Paper helicopter 

elicopter problem is originally designed for the design of experiments. In order to 

apply alternative approaches to this problem, we first extended it to the RSM domain. For this, 

we first chose the wing length and the body length as the two controllable f

Next, we conducted a number of experiments to find an initial feasible range for each of the 

designated variables: wing length �4.50 cm Z �� Z 10.25 cm� and body length 

which contains the optimal region. Finally, we have applied the ASRSM, CCD, 

optimal designs to the coded factor space and compared their performances. Note 

Paper-clip 

which is frequently used for 

teaching as well as testing for different methods. Paper helicopter problem consists of studying 

the effect of a number of factors, i.e. the wing length, body length and etc, on the flying time of a 

). Using this practical experiment, we now compare the performances 

 
(b) Design template 

elicopter problem is originally designed for the design of experiments. In order to 

apply alternative approaches to this problem, we first extended it to the RSM domain. For this, 

we first chose the wing length and the body length as the two controllable factors under study. 

Next, we conducted a number of experiments to find an initial feasible range for each of the 

and body length �3.75 cm Z
, we have applied the ASRSM, CCD, 

optimal designs to the coded factor space and compared their performances. Note 
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that, we are reporting on the CCD results with 9 and 13 experiments, where the latter has 4 

additional center experiments. All other approaches are based on 8 experiments. In total, we have 

conducted 53 experiments. Tables 6 and 7 present the coded design points and the corresponding 

responses for each method, respectively.  

Table 6 The runs and experiments of ASRSM, CCD, A-, D-, and V-optimal designs for the 
paper helicopter experiment. ́ µ� and ́ µw correspond to the coded wing length and body 
length factors, respectively 

ASRSM CCD-9 CCD-13 A-Optimal D-Optimal V-Optimal 

Exp. 
No. 

X' 1 X' 2 
Fly 
time      

( sec.) 
X' 1 X' 2 

Fly 
time    

( sec.) 
X' 1 X' 2 

Fly 
time    

( sec.) 
X' 1 X' 2 

Fly 
time     
( sec.) 

X' 1 X' 2 
Fly 
time    

( sec.) 
X' 1 X' 2 

Fly 
time    

( sec.) 

1 
-

1.414 -1.414 1.47 -1 -1 1.85 -1 -1 1.85 1.414 1.414 2.41 1.414 1.414 2.41 1.414 1.414 2.41 

2 1.414 -1.414 2.34 1 -1 2.19 1 -1 2.19 -1.414 -1.414 1.50 -1.414 -1.414 1.5 0.141 0.283 2.06 

3 

-
1.414 1.414 1.53 -1 1 1.75 -1 1 1.75 -1.414 1.414 1.54 -1.414 -0.141 1.47 1.414 -0.990 2.75 

4 1.414 1.414 2.50 1 1 2.22 1 1 2.22 1.414 -1.414 2.60 0 -1.414 2.22 -1.414 -1.414 1.50 

5 0 0 2.46 -1.414 0 1.59 -1.414 0 1.59 0.283 0 2.15 0 0.141 2.32 -1.414 -0.141 1.47 

6 0 1 2.13 1.414 0 2.6 1.414 0 2.60 -0.141 1.414 1.91 -1.414 1.414 1.54 0 -1.414 2.22 

7 0 -1.414 2.41 0 -1.414 2.41 0 -1.414 2.41 -1.414 0.000 1.60 1.414 -1.414 2.6 0 0.141 2.32 

8 1 0 2.57 0 1.414 2.13 0 1.414 2.13 -0.141 -1.414 2.10 1.414 -0.141 2.63 -1.273 1.414 1.34 

9       0 0 2.5 0 0 2.50                 

10         0 0 2.28                 

11         0 0 2.25                 

12         0 0 1.94                 

13         0 0 2.46                 
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Table 7 The fly time responses obtained for the paper helicopter experiment 

  Fly time ( sec.) 

Exp. 
No. 

ASRSM CCD-9 CCD-13 A-Opt. D-Opt. V-Opt. 

1 1.47 1.85 1.85 2.41 2.41 2.41 

2 2.34 2.19 2.19 1.50 1.5 2.06 

3 1.53 1.75 1.75 1.54 1.47 2.75 

4 2.5 2.22 2.22 2.60 2.22 1.5 

5 2.46 1.59 1.59 2.15 2.32 1.47 

6 2.13 2.60 2.6 1.91 1.54 2.22 

7 2.41 2.41 2.41 1.60 2.6 2.32 

8 2.57 2.13 2.13 2.10 2.63 1.34 

9   2.5 2.5       

10     2.28       

11     2.25       

12     1.94       

13     2.46       

 

Table 8 presents the prediction results of the paper helicopter experiment. Since the true 

response model is unknown, we have estimated a quadratic response surface using all 53 

experiments. Based on this estimated response, the optimal experiment is identified at 

O=(1.0714,-0.007) with mean response ZO=2.59487 seconds. Both the P;�N	  and optimality gap 

results show that the ASRSM method outperforms other preset and optimal designs. The D- and 

V-optimal designs are the second and third best performing approaches, respectively. Whereas 

the differences in the optimality gap is small, the differences in the Euclidean distance between 

the predicted optimal experiment �¶� and optimal experiment O, e.g. ||m � �¶�|| , is more 
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substantial. This is attributable to the fact that quadratic convex functions are flat around the 

optimum and the response is relatively insensitive to deviations from the optimum. 

Table 8 The prediction results of ASRSM, CCD, and optimal designs for the paper 
helicopter case study. 

  ASRSM CCD-9 CCD-13 A-Opt. D-Opt. V-Opt. 

Adjusted R2 86.5% 55.2% 50.8% 62.1% 66.3% 70.8% 

Predicted 
Optimum 

X1 1.0427 0.8624 0.9571 1.1142 1.1635 1.2856 

X2 0.0429 -0.1021 -0.2428 -0.3842 -0.4124 -0.5451 

·y � ¹̧º· 

 

0.0576 0.2296 0.2620 0.3796 0.4158 0.5792 

Pred. Resp. »¹ 

 

2.5931 2.5783 2.5842 2.5904 2.5917 2.5902 

Opt. Gap 0.07% 0.64% 0.41% 0.17% 0.12% 0.18% 

 

Based on the 13 experiments, CCD achieves P;�N	 
 50.81% with the estimated coded 

optimal solution �0.957094, �0.02132� and the contours of the estimated fly time response 

model is shown in Figure 17a. On the other hand, the ASRSM required only 8 experiments in 

two runs to attain P;�N	 
 86.54 with the estimated coded optimal �1.0427,0.0429�. The contour 

plot of the estimated fly time response model is shown in Figure 17b. These results clearly show 

that the ASRSM outperform the traditional RSM CCD method in terms of both the number of 

experiments and the accuracy of the results. 
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                                        (a)                                                                          (b) 

Figure 17 The (a) CCD and (b) ASRSM estimated contours of the paper helicopter fly time 
response 

 

2.7.4 Traumatic Brain Injury (TBI): Design of Controlled Cortical Impact 
Model 

TBI continues to be a serious societal problem that affects more than 1.4 million Americans 

each year (Mao, Zhang, Yang, King, and 2006). The controlled cortical impact (CCI) rat model 

is one of the most frequently used animal models. This model is used to correlate real world 

injuries with predictions from a validated finite element (FE) model in order to establish injury 

threshold. In CCI model, the impact depth (potentially ranging 1-3 mm) and the impactor 

diameter (potentially ranging 2.5-7.5 mm) are believed to be two main factors in determining 

injury severity. However, the percent of increase/decrease in size of rat brain contributes to 

variances observed in post-impact tissues. Since the effect of this external parameter is largely 

unknown, it can be considered as noise. In CCI studies, one common problem is to find the 

specific levels of factors that result in specific percent of injury in animal brain. However, these 

experiments are not only very expensive, but are also very time consuming.  

In this case study, we used the proposed approach along to find the parameter setting that 

result in 30% injury in the rat brain. We also conducted CCD experiments to compare the 

performance with the proposed approach. The technical details of the experiments can be found 
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in Mao, Zhang, Yang, King, and 2006. Table 9 shows the conducted experiments of CCD and 

the proposed ASRSM approach at different runs. 

Table 9 The runs and experiments of (a) CCD and (b) ASRSM method for the brain 
trauma case study 

(a)        (b) 

Controllable Factors Random 
Factor 

Response 
 

Run 
 

Controllable Factors Random 
Factor 

Response 
 Coded  Original   Coded  Original 

impact 
depth 

impactor 
diameter  

impact 
depth 
(mm) 

impactor 
diameter 

(mm) 

brain 
size 

variation  

Brain 
Injury  

 
impact 
depth 

impactor 
diameter  

impact 
depth 
(mm) 

impactor 
diameter 

(mm) 

brain 
size 

variation  

Brain 
Injury  

1 -1 0.7 1.8 0% 900.00  

1 

-1.41 -1.41 1 2.5 -1% 877.92 

1 -1 2.1 1.8 1% 306.37  1.41 1.41 3 7.5 0% 51595.49 

-1 1 0.7 5.3 -2% 900.00  1.41 -1.41 3 2.5 0% 78.93 

1 1 2.1 5.3 0% 11.54  -1.41 1.41 1 7.5 0% 761.34 

-1.41 0 1.0 5.0 1% 894.44  0 0 2 5 1% 10.19 

1.41 0 3.0 5.0 1% 1080.03  

2 

-1.41 0.71 1 6.25 0% 852.10 

0 -1.41 2.0 2.5 1% 280.58  1.41 0.71 3 6.25 1% 19476.43 

0 1.41 2.0 7.5 0% 206.08  0 -0.35 2 4.375 1% 51.51 

0 0 2.0 5.0 0% 6.57   

0 0 2.0 5.0 -1% 3.40  

0 0 2.0 5.0 1% 10.19  

0 0 2.0 5.0 2% 16.29  

0 0 2.0 5.0 -2% 0.875  
 

Using 13 experiments, the CCD fits a quadratic surface with R���	 
68.31% and identifies lm 

= (0.1857, 0.3286). Figure 18a shows the 3D plot of CCD estimated surface. In comparison, 

using 8 experiments in 2 runs, the proposed approach fits the quadratic model shown in Figure 

18b with P;�N	 
82.59% and lm = (0, 0.0505). As shown in the Figure 18, although the 

estimated optimal experiments of both approaches are close, the estimated response models of 

the two methods are significantly different. The differences are even more apparent from the 

contours of the two response model estimates (Figure 19).  

To compare the estimated functions, we aggregate the experimental data from both 

approaches (e.g. Table 9) and used the Radial Basis Function (RBF) to find the best fit. Figure 

15c illustrates the model fit using RBF and the aggregated experimental data. From Figure 15 it 



 

 

can be seen that, the estimated function of the proposed approach is much more similar to RBF 

with aggregated experimental data. Meanwhile, we also note that the 

approach is very close to that of RBF base

that the underlying response model is potentially highly nonlinear, the results are very 

encouraging for the effectiveness of the proposed approach in real world applications.

(a )             
Figure 18  3D plots of the estimated response for (a)
brain trauma case study 
 

 

 

 

 

 
 
 
 

(a) 

Figure 19 The (a) CCD and (b) ASRSM estimated contours of the response in 
trauma case study 

In this chapter of Dissertation

response surface optimization (ASRSM). The proposed approach combines concepts from 
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can be seen that, the estimated function of the proposed approach is much more similar to RBF 

with aggregated experimental data. Meanwhile, we also note that the 

approach is very close to that of RBF based on the contour plots in Figure 18b and 18c. Given 

that the underlying response model is potentially highly nonlinear, the results are very 

encouraging for the effectiveness of the proposed approach in real world applications.

                               (b)                                             
3D plots of the estimated response for (a) CCD, (b) ASRSM, (c)

 
                                      (b) 

The (a) CCD and (b) ASRSM estimated contours of the response in 

2.8 Discussion 

issertation we developed and presented an adaptive methodology for 

on (ASRSM). The proposed approach combines concepts from 

can be seen that, the estimated function of the proposed approach is much more similar to RBF 

with aggregated experimental data. Meanwhile, we also note that the EO of the proposed 

d on the contour plots in Figure 18b and 18c. Given 

that the underlying response model is potentially highly nonlinear, the results are very 

encouraging for the effectiveness of the proposed approach in real world applications.  

 
                           (c) 
ASRSM, (c) RBF in the 

 

The (a) CCD and (b) ASRSM estimated contours of the response in the brain 

we developed and presented an adaptive methodology for 

on (ASRSM). The proposed approach combines concepts from 
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nonlinear optimization, design of experiments, and response surface optimization. The ASRSM 

is a sequential adaptive experimentation approach and uses the information gained from the 

previous experiments to design the subsequent experiment by simultaneously reducing the region 

of interest and identifying factor combinations for new experiments. Its major advantage is the 

experimentation efficiency such that, for a given response target; it identifies the input factor 

combination (or containing region) in less number of experiments than the classical single-shot 

RSM designs. It differs from earlier studies in its optimality (under certain assumptions), 

inheritance of results from previous experiments, and its robustness due to experiment ranking 

based reduction of the region of interest. Through extensive simulated experiments and real-

world case studies, we showed that it outperforms the popular CCD method in terms of both 

optimality as well as the experimentation efficiency. These results further demonstrate that the 

ASRSM is competitive with the A-, D-, and V-optimal designs. In particular, the performance of 

ASRSM is found to be more robust with respect to changes in the error variance and convexity 

of the response model, and more monotonous with additional experiments. In the following 

chapters, the proposed methodology will be extended to higher dimensional problems as well as 

higher order of response functions which can be either convex or non-convex. 

 

 

 

 

 



51 
 

 

CHAPTER 3 THE PROPOSED STARTEGIES FOR QUADRATIC AND 
CUBIC FUNCTIONS WITH N-VARIABLES (N-ASRSM) 

 

This chapter presents the detailed elements of the proposed adaptive sequential response 

surface methodology for n-dimensional problems (N-ASRSM). We first describe the 

terminology, most of which has been kept from previous Chapter, and state the assumptions. 

Next, we provide an overview of the methodology, and then describe the two core strategies 

embedded in N-ASRSM: (1) Parametric approach, and (2) Non-parametric approach. 

Afterwards, we describe how these two strategies are integrated within N-ASRSM. Finally, we 

compare the performance of the N-ASRSM with a number of popular methods in the literature 

on various numerical examples. We also extend the proposed methods to N-ASRSM2 which use 

optimal designs to consider factor spaces with different shapes. 

3.1 Terminology and Assumptions 

The definitions and terminology used in the proposed N-ASRSM methodology is very similar 

to ASRSM with a few new items. For more convenience, we show the complete notations below. 

Figure 20 illustrates some of the notations for a three-dimensional factor space with 5 initial 

experiments in each run: 

p[q : Factor space at run % and expressed as Cartesian product of factor ranges in run r 

\c? : Initial range of factor i  

� : Design of most current run  

d : minimum number of required points in �  

dmn : A corner point experiment run at the intersection of extrema of factor ranges 

dln : A center point experiment run at the center of gravity of the factor space 

% : Index of runs, e.g. % 
 1,2, Q>P where R is the total number of runs 
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Q : Index of experiments in a given run, e.g. e=1,2,...,E where E is the total number of experiments 

a : The experiment with the best response level in a given run 

k� : The experiment with the �rs best response level in a given run (2Q� E Q � 1� 

H : The experiment with the worst response level in a given run 

mPq : Optimal region in run r containing the estimated optimal experiment, mPq t p[q 

kmP : Non-optimal region 

m : Optimal experiment, e.g. best experiment in the initial factor space 

Pm : Real optimum of the function 

lmq : Estimated optimal experiment in run r, e.g., best incumbent estimation of the optimal experiment 

c­ : index of sub-regions in a given factor , where the total number of sub-regions is 2G 

` : Number of coefficients of the underlying model 

n½ : Probability of losing Pm but cutting out  

 

 

Figure 20  An illustration of terminology on a three dimensional factor space 

The proposed N-ASRSM methodology relies on the simplifying assumption of quadratic 

relation between the single response and input factors. However in the numerical example we 

show that the proposed method is acceptably robust to the violation of this assumption.  
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3.2 Proposed N-ASRSM Algorithm 

The following algorithm illustrates the general scheme of the proposed methodology. A 

graphical representation of the algorithm is also shown in Figure 21. 

É � Á}~}Í Algorithm  

Initialize 
− Label the first run (r=1) 
− Determine the design D based on the fractional design with smallest resolution 

Repeat until convergence 
− Take experiment(s) one at a time based on D 
1.  Parametric Strategy (PS) 
− Fit a quadratic model based on experiments, 
− Calculate R2-adjusted of the model, 
− Determine the Estimated Optimal point (EOr), 
− Check for convergence (r>1): 

If  |\P;�N	 |  E W3���< b% |∆�lm�| E W��, Stop. 

− Else, Goto Check_EO in step 3.  
2.  Non-parametric Strategy (NPS) 
− Rank the experiments as B, N2,…, Nk,…,W, 
− Identify and eliminate non-optimal regions (NOR) by solving a system of quadratic 

inequalities using a Max-Min Optimization approach,  
− Check for hyper-rectangular Optimal Region (ORr): 

If ORr can be characterized as a hyper-rectangle,  

    ⋅ Go to 3 Check_ EO. 
Else, 

⋅ Iteratively find furthest projections of experiments in an alternating ranking order, 
beginning with W, until a hyper-rectangular OR is obtained.  Repeat NPS. 

3.  Check if EOr is contained in OR (Check_EO) 
If EOr is contained in ORr, FSr+1 := ORr 
Else, Expand ORr to contain EOr and FSr+1:= ORr. 

Return. 
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Figure 21 The general scheme of N-ASRSM 

3.3 Design Structure of the First and Subsequent Runs 

The design � structure of the factor space p[q in the proposed approach is adapted from the 

minimum resolution fractional factorial design augmented with a center point both to minimize 

the number of experiments and take advantage of designs structure discussed in Chapter 2. This 

Label the first run (r=1) 
Determine the design D based on the 
lowest resolution fractional design  

Take the experiment/s one at a time 
based on design D 

Partition the factor space into a set of sub-
regions (sb) with similar structure to FSÐ 

 

Fit the quadratic model using E  

Calculate R2-
Adjusted  

Solve the fitted model to estimate 
the optimal point (EOr) 

|∆�lm�| E W�� 
Converged?      

 

Determine the optimal point Compare the EOÐand ORÐ, finalize FSÐT� 
,and  r 
 r + 1 

 

Yes 

Non-parametric Approach  
(Ranking Strategy) 

Q �  8 
Yes 

Project the first available W 
or B of FSÐ to its most 
opposite empty corner 

Is it possible to identify a 
sub optimal region inside 

the  p[q? 

No 

Yes 

l � `  

Yes 

Rank the experiments in the current run as 
B, N2,…, Nk, W 

 

Check the sub-regions one at a time using 
the ranking to find if it cannot contain the 

optimal point 
 

Do risk adjustment and determine the new 
factor space 

No 

No 
No 

Parametric Approach  
(Model Fitting Strategy) 
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design may be further augmented with few more experiments on the empty corners of p[q which 

will be discussed in later.  

Similar to Chapter 2, the factor space of each run (p[q) in the proposed approach can be 

expressed as a mapping (�q) of the factor space of the preceding run (p[q��) maintaining similar 

design structure, e.g. p[q 
 �q ]�q��X… �U�p[��Y^. Regarding the p[ size, $ is suggested to 

start with a broader initial region around the center point in comparison to classic approached, 

e.g. �2ÑÒÓÔ  unit distance from the center where 2Õ�Öthe number of points is in the chosen 

fractional factorial design (above relation is based on the calculation axial points in rotatable 

CCD with a single replicate at all designated points (Montgomery, 2005). Considering the 

diagonal cross-section of these two designs in at one dimension as illustrated in Figure 22b and 

assuming that the noise is identically distributed on this cross-section. Then, it can be shown that 

the impact of the noise on prediction of the optimal experiment point is less with the proposed 

methodology’s factor space.  Figure 22a compares the initial factor space of the traditional CCD 

and the proposed (See also section 2.3 for more information). 

 

Figure 22  (a) Initial factor space and design structure and (b) Diagonal cross-section of the 
traditional CCD and proposed N-ASRSM approach 

+1 +2ÑÒÓÔ    -2ÑÒÓÔ    -1 0 

Proposed Approach 

initial range 

CCD & BBD 

initial range 
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3.4 Non-parametric Approach: Ranking Strategy 

At each run % of the proposed N-ASRSM approach, we first rank the experiments (e.g., kth 

point fractional factorial and one center points) as k1 (we would call) a, k2, … , k�� � 1) and 

k�� � 1) (we would call H) according to their response levels. Based on the ranking, we 

identify the implied optimal region which contains the lmq. This region is a polygon contained 

in p[q and can be convex or non-convex in the space of factors. We then identify a hyper 

rectangle which contains the implied optimal region and denote it as the optimal region (mPq), 

which determines the factor space of the next run.  

Similar to Chapter 2 model, this process of encapsulating the implied optimal region with a 

hyper-rectangle is a form of relaxation and is not efficient in terms of factor space reduction.  

However, there are valid reasons that motivate this relaxation. Again, the foremost reason is the 

reduced need for new experiments due to the inheritance of experiments from the previous run.  

Secondly, the hyper-rectangular p[ preserves the orthogonality of factorial experimental design.  

Further, this hyper-rectangular form facilitates the recursive characterization of the same 

rectangular structure throughout the process.  In addition, we can use the same experimental 

design structure, e.g. full factorial with a center point. Specifically, with a hyper-rectangular 

envelope, the mapping across runs will be identical, e.g.  ��·� � �q�·� for �r. This is because we 

maintain the same experiment design structure, and there are a finite number of optimal regions 

as a result of ranking outcomes. Lastly, the relaxation reduces the risk of selecting an optimal 

region that excludes the optimal experiment. Figure 23 illustrates the trade-off among implied 

optimal region, convex hull envelope of the implied optimal region, and rectangular envelope of 

the implied optimal region. 
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Figure 23  (a) Implied optimal region (b) Convex hull envelope of the implied optimal 
region (c) Rectangular envelope of the implied optimal region based on a three dimensional 
factor space  
 

In what follows, we first present the methodology used to reduce the factor space. Next, we 

describe how to choose additional experiments for characterizing a hyper-rectangle mP. 

3.4.1 Reducing Factor Space �×Ø�  
The reduction of the factor space to a sub-region containing m is achieved through the ranking 

of experiments of the current run. This reduction is performed by elimination of those sub-

regions that do not contain the optimal point, e.g., non-optimal regions (kmP). The 

determination of such sub-regions is exact as per the assumption stated in Chapter 2. Intuitively, 

the sub-regions in the vicinity of high and low ranking experiments are more simply 

characterized as a kmP or not. In particular, the vicinity of a has a higher probability of 

containing m while the other regions, e.g., the vicinity of H, have considerably less chance of 

containing m. Such confidence decreases in the vicinity of less extreme points. This intuition can 

be formalized in an algorithm as follows: 
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NORs Elimination Procedure  

Step 1.  Divide p[ into 2G sub-regions of the same size and structure by bisecting the p[ using � 
hyperplanes orthogonal to the � factor dimensions (See Figure 24).   

Step 2.  For each of the 2V sub-regions, repeat: 

2.1. Identify a hypothetical optimal point m¶ in the current sub-region. 

2.2. For each experiment 1E Q E l, express the response model in a canonical form as 

¤Ù 
 ∑  ?,NX�?Ù � �?�¶Y X�NÙ � �N�¶YG?,NO� + PÙ, where  ?,N 2 P and PÙ is a constant term. 

2.3. Sort the parametric canonical forms of the experiments in ascending order ]¤ÙÚ Z
¤Ùh< Z F Z ¤ÙÛY.  (Because the canonical form should comply with empirical ranks of the 

experiments�a Z k	 Z F Z k� Z H�. 

2.4.  Rewrite the sorted canonical forms of the experiments in the form of a system of 

inequalities with  
������

	  pairwise comparisons of experiments as follows: 

                   

ÜÝ
Þ
Ýß ¤ÙÚ � ¤Ùh< 
 ∑  ?,NX�?ÙÚ � �?�¶ Y ]�NÙÚ � �N�¶ ^G?,NO� � ∑  ?,NX�?Ùh< � �?�¶ Y ]�NÙh< � �N�¶ ^ Z 0G?,NO�

¤Ùh< �¤Ùhà 
 ∑  ?,NX�?Ùh< � �?�¶ Y ]�NÙh< � �N�¶ ^G?,NO� � ∑  ?,N]�?Ùhà � �?�¶ ^ ]�NÙhà � �N�¶ ^ Z 0G?,NO�á¤ÙhÑ � ¤ÙÛ 
 ∑  ?,NX�?Ùh< � �?�¶ Y ]�NÙh< � �N�¶ ^ � ∑  ?,NX�?ÙÛ � �?�¶ Y ]�NÙÛ � �N�¶ ^G?,NO� Z 0G?,NO�

â                         
 

(8) 

(In above system  ?,N and �N�¶  are the unknowns, where �N�¶  is bounded by the boarders of the 

current sub-regions) 

2.5.   Check the feasibility of above system by looking for a negative solution of the following  
Max-Min optimization model: 

!"� !�> ¤ 
 ]¤ÙÚ � ¤Ùh< , ¤ÙÚ � ¤Ùh< , … , ¤ÙhÑ � ¤ÙÛ^                    
[�­ãQ`$Q8 $b:                                                                    ?,N 2 P, �N�¶ 2 d�%%Q�$ [�­%Qå"b�                                     

 

 

 (9) 
(Positive solution of above optimization model is equivalent to non-existence of a feasible 
solution for above system of quadratic inequalities and vice versa).   
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(a)                                                                       (b) 

Figure 24  8 sub-regions of a 3 dimensional |} using 1 orthogonal hyper plane (b) 16 sub-
regions of a 3 dimensional |} using 2 orthogonal hyper planes 
 

Feasible solution of above system of quadratic inequalities means that the real optima 

�Pm� can occur in the sub-region stated by step 2.1 otherwise that sub-region is not feasible and 

can be eliminated from the mP.  It can be shown that above procedure eliminate only those sub-

regions not containing the optimal point by contradiction as per the assumptions stated in 

Chapter 2.  In particular, we first assume that there exists a sub-region containing the optimal 

point, which leads to an inconsistent ranking of at least one experiment pair.  Next, we show that 

the  ?,NO�,…,G determined for the experiment pair contradicts the convexity assumption of the 

quadratic response forms.   

The kmP elimination steps are repeated for all sub-regions until those sub-regions not 

eliminated or not checked form a hyper-rectangular region inside the p[. When such a hyper-

rectangular region is obtainable, we then designate it as the p[ of the next run. If a hyper-

rectangular region is not available upon the checking of all sub-regions for kmP elimination, 

then additional corner experiments are necessary. The next section discusses how those 

additional experiments are determined. 
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3.4.2 Selecting Additional Corner Points 

When the kmP elimination procedure terminates without a candidate hyper-rectangular p[ or 

very small eliminated sub-region, then additional points are needed. These additional points 

enable eliminating more of the sub-regions in a few ways. First, they increase the number of 

pair-wise ranking comparisons of experiments such that the likelihood of a previously non-

eliminated sub-region becoming a kmP is increased. Second, with these additional points, the 

new ranking of the experiments leads to a better coverage of p[. Finally additional points 

generally result in more reliable ranking of the experiments that potentially allow elimination of 

more sub-regions. However, since one of the goals of � �  [P[! is to reduce the total number 

of experiments, the number of additional points should be kept as small as possible. This can be 

achieved by selecting the additional points that provide maximum potential for eliminating 

kmPc. Figure 25 illustrates the process of selecting two additional points.  

 
(a)     (b)    (c) 

Figure 25  Cut out regions using the ranking strategy based on two additional points 

We select additional points one at a time until the next p[ as a hyper-rectangle can be 

inferred. The selection strategy employed is based on the simplex optimization method in 

Walters, Parker, Morgan, and Deming (1962) and aims at maximizing the potential of 

eliminating more kmPc. This strategy is executed by using the current ranking information of 
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the experiments and subsequently identifying those directions with most improvement and 

worsening of response based on the current experiments. Clearly, the highest (a) or lowest (H) 

ranking experiments are ideal candidates for identifying such directions for two reasons. First, 

the most opposite corner projections of a and H provide the most information on the orientation 

of the diagonals of the underlying function. The second reason is, as in the simplex optimization 

method, the projection in the opposite of least favorable (H) and most favorable (a), is likely to 

produce a new ranking with a more precise range of response orientation. Once the opposite 

projections of a and H are taken as additional points, we continue taking additional points in the 

opposite reflections of next alternate ranking experiment pairs, e.g., k��	 and k	, and so on. 

Figure 25 illustrates the two additional points taken as the opposite projections of first H and 

then a. 

The most opposite projections of corner point experiments are determined according to the 

cosine similarity measure (Tan, Steinbach and Kumar, 2006). To illustrate, the most opposite 

corner projection of the worst/best experiment is found by: 

d� 
 �%å '"��� `bc�æ�, 
(10) 

where æ is the angle between d1 and d�, vectors  connecting the experiments to the center point. 

Above procedure works while the candidate experiment is a corner points. If the candidate 

experiment, e.g. a or H, is a center point then opposite projection of the next candidate 

experiment should be considered.  



62 
 

 

3.4.3 Risk Adjustment 

Reducing factor space is exact when there is no noise inside the model, however when data 

are erroneous, there is a probability that two or more of the rankings be incorrect so the cut off 

region may be inaccurate or even invalid as shown in Figure 26 (a) and (b).  

 
(a)    (b)    (c)    

Figure 26  The effect of incorrect ranking on the ¿y~ 

 

Knowing the probability of incorrectly ranking the experiments can help to change the size of 

the kmP to adjust the risk of not containing the Pm. The challenge is that the variance of the 

noise is unknown and the number of experiments is usually not enough (especially in the early 

runs) to estimate the it. In the rest of this section, first, we present a novel approach for finding a 

(pessimistic) estimate of variance when there is not enough data to estimate the model 

parameters. Next, we will show how the estimated variance can be used for adjusting the risk of 

missing the Pm when shrinking the mP. 

3.4.3.1  Estimating the Variance with Not Enough Data 

When the number of experiments is not enough to estimate all parameters of the model, we 

can design a system of two equations for obtaining the pessimistic estimate of variance. The first 
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equation is from decomposing total sum of square (SST) into sum of square regression (SSR) 

and sum of square error (SSE) which is shown below: 

[[ç 
 [[l + [[P 
(11) 

The second equation is derived based on minimum significance level of the hypothesis testing 

on meaningfulness of the regression. The testing statistics is p 
 ee3 ���èee� G��è  where �the number of 

parameters in the canonical form of response model, and � is the total number of experiments. 

The reason for using canonical model for calculating � is that since we assumed the optima is 

occurring in one of the sub-regions, canonical modeling will reduce the number of parameters to 

be estimated (�). The critical value of the hypothesis test is p;,���,G��, so at the significance 

level α considering the minimum value of the statistics which makes the regression meaningful 

the following equation can be written  as: 

[[P� � 1 � p;,���,G�� . [[l� � � 
 0 

(12) 
 

In equations 11 and 12, [[ç, � � 1, � � � and p;,���,G��  are known and [[P and [[l are 

unknown, so combining 11 and 12 will result in a system of two equations and two unknowns. 

One of the solutions of above system would be [[l which can be used for estimating the 

variance (��%ê 
 ![l E ee�
G��). 

3.4.3.2 Calculating the Probability of Incorrect Ranking and Risk Adjustment 

Having a set of ranked experiments Q?  � " 
 a, k	, … , k���, H� and the estimate of variance 

(MSE) available, the probability of incorrect ranking for each pair of experiments ", ã �i Z ã� can 
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be easily approximated by 5XQN Z Q?Y 
 � íîï��îïðñe� ò. Using this information we want to estimate 

the probability of losing the Pm by cutting off the sub-region chosen by the proposed approach. 

While there are many ways to approximate the probability of cutting off the Pm using estimates 

of incorrect ranking we use the following strategy: 

Incorrect Ranking Estimation Procedure 

Step 1. Set % 
 1. 

Step 2. For each experiments from H to a flip the rank (and observed value) of each experiment 
with its next %th higher and lower rank experiment one at time. 

Step 3. If kmP changes, find the probability of rank rotation using above formula and go to step 
4. If not go to step 5 

Step 4. From all possible rotations finds the one with maximum probability (n½) as estimate of 
cutting off Pm. 

Step 5. Set r=r+1  and go to step 2  

 
Above strategy is based on one factor at a time analysis which has the complexity of m���, 

though showing good performance in many numerical examples comparing to exhaustive search 

which has a m�'G� complexity. Next, we explain how to incorporate above probability for risk 

adjustment.  

The risk adjustment for cutting off kmP is based on a simple intuitive idea. If we don’t cut 

any region the probability of cutting off Pm is zero. If we cut of the nominated kmP the 

probability of losing Pm is n½. So shrinking the size of nominated kmP will decrease n½  which is 

also shown in Figure 27 (c).   

To approximate the rate of reduction in n½ by shrinking the size of nominated NOR, we 

incorporate the Gauss error function as shown in Figure 27 and defined in Equation (13): 
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erf�>� 
 2
√ô 4 Q�r<8$õ

U  

(13) 
 

 
(a)      (b)       (c)  

Figure 27  Application of Gauss error function on risk adjustment 
 

Therefore, by setting an acceptable level of confidence on taking Pm, e. g. 95%,  we can easily 

find the reasonable amount of shrinkage in the cut off region. The final point in risk adjustment 

of cutting off kmP is that above steps are applied to every nominated kmP in section 3.4.1. As a 

result multiple sub-regions with different n½ might be nominated for cutting off. In this case we 

consider the union of candidate sub-regions and maximum of  n½ of different regions for risk 

adjustment 

3.5 Parametric Approach: Model Fitting Strategy 

We use a parametric approach based on model fitting concurrent to the nonparametric ranking 

approach described in Section 3.4. This strategy not only allows us to increase the precision of 

lmq but also supports backtracking through the expansion of mPq to contain estimated optimal 

lmq. Beginning with the completion of all first run experiments, this parametric approach is used 

after each experiment. In this approach we fit a quadratic model: 
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 ¤ 
 ∑ -?,N>?>NG?,NO� + ∑ n?>?G?O� + P + B , with B~k�0, C	�, to the experimental data to 

analyze the underlying function and efficacy of conducted experiments. In fitting the quadratic 

model, two objectives are being sought in particular: (1) finding the estimated optimal 

experiment EOr; and (2) calculating the adjusted coefficient of determination�P;�N	 �. lmq, the 

minimum of the fitted model, not only shows the predicted optimal solution, but is also used for 

the expansion of mPq. Furthermore, the change in the lmq in consecutive runs is also used as a 

stopping criterion. P;�N	 , shows how well the information gained from the experiments explain 

the behavior of the underlying system (Seber and Alan, 2003).  

3.6 Expansion of OR to contain EO 

As described in the N-ASRSM algorithm in the previous section, we check the consistency of 

the lmqobtained from the parametric approach, and the estimated optimal region mPqobtained 

from the non-parametric strategy. When the lmq is found to be outsidemPq, we then expand the 

mPq to contain lmq while preserving its hyper-rectangular structure. This expansion is illustrated 

in Figure 28. 

 

Figure 28  Expansion of y~ in N-ASRSM when the {y falls outside 
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3.7 Numerical Examples  

In this section, we describe two sets of simulated experiments performed to evaluate the 

performance of the proposed N-ASRSM approach. In the first set of simulations N-ASRSM is 

compared to well-known classical methods including CCD, BBD and A, D, and V optimal 

designs on different quadratic response models with varying variance of errors. The second set of 

simulations study the performance of the proposed approach along with classical models, 

optimal designs and two global optimization methods (Standler et al. (2002), Wang et al. (2003)) 

on a number of nonlinear response models with various errors. 

3.7.1 Quadratic Response Models 

We now describe the simulated experiments performed to compare the performance of the 

proposed ASRSM approach with those of CCD, BBD, A- D- and V-optimal designs on quadratic 

response models. We have considered 6 problems with two and 5 problems three variables. 

These problems cover different type functions and various range of standard deviation (See 

Table 10). As noted earlier, all response models have a quadratic relation with a normal error 

term B~k�0, σ	�. Figure 29 also shows the contour plot of two of the responses. 
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Table 10  The response models used in the simulated experiments of N-ASRSM 

No. of 
variables 

Exp. 
No. 

Response Relation Error ( ε) Response Type 

Two 
Variable 
Response 

1.1 W=-2x2+3y2+2x-y+2xy-1+ε N(0,0.1) Non-convex 

1.2 W=x2+2y2-2y+ε N(0,1) Convex 

1.3 W=-2x2+3y2+2x-y+2xy-1+ε N(0,2) Non-convex 

1.4 W=-3x2+2y2+x-2y+2xy-1+ε N(0,2) Non-convex 

1.5 W=2x2+y2+x+2xy+ε N(0,2) Convex 

1.6 W=x2+2y2-2y+ε N(0,2) Convex 

Three 
Variable 
Response 

2.1 W=2 x2-1y2-2z2+x-2y+3z-xy+3xz+2yz+2+ε N(0,2) Non-convex 

2.2 W=2 x2+3y2+5z2+x+2y+1z-5xy+1xz+1yz+1+ε N(0,3) Convex 

2.3 W=1 x2+1y2+5z2+x+2y-5z-5xy+1xz+1yz+1+ε N(0,3) Non-convex 

2.4 W=-1.5 x2-3.5y2+3z2+0.5x-3.5y-1.5z-3xy+1.3xz+1.4yz+2+ε N(0,2.5) Non-convex 

2.5 W=2 x2+1.7y2+1.6z2-4.4x-5.75y-2.23z-1.2xy+1.3xz-1.1yz+6+ε N(0,2) Convex 

 

 
Figure 29 the contour plot of responses 1.1, 1.3 

 

Whereas N-ASRSM is an adaptive sequential method, the CCD, A-, D-, and V-optimal 

designs are essentially preset designs. In order to evaluate the effect of this difference, we 

initially fixed the number of design points at 7 for cases with two variables and 11 for cases with 
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three variables and then incrementally added one design point at a time for two more times. For 

optimal designs, the initial set of design points is optimally generated by optimizing the 

optimality criteria over the starting factor space with a fine grid system spaced with 0.01 

intervals. Next, each of the additional points is generated by optimizing the optimality criterion 

given the existing design points and the response model. For the CCD and BBD, we initially 

used either 7 or 11 of the complete design by excluding some of the points and then re-including 

them one at a time.  

For the analysis, we have studied the performances in terms of average P;�N	 , and average 

optimality gap (i.e., deviation from the optimal response). All simulated experiments are 

repeated three times, and average results are reported. The starting factor space is considered 

with the range of J�3,3K in all dimensions for both two and three variable examples. Table 11 

presents the average P;�N	  performances for the consecutive trials.  
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Table 11 The ~ûÄüw  for trials 7, 8, 9 of responses with two variables and trials 11, 12 and 13 
of the ones with three variables 

Exp. No. No Obs. 

Adjusted R2 

CCD BBD n-ASRSM D-Opt. V-Opt. A-Opt. 

1.1 

7 99.96% N/A 99.99% 99.96% 99.92% 99.94% 

8 99.96% N/A 99.99% 99.98% 99.95% 99.95% 

9 99.95% N/A 99.98% 99.97% 99.94% 99.92% 

1.2 

7 92.69% N/A 93.67% 95.01% 94.85% 90.69% 

8 92.48% N/A 94.97% 89.20% 95.86% 86.86% 

9 92.00% N/A 96.62% 90.42% 95.42% 86.58% 

1.3 

7 69.77% N/A 79.57% 92.96% 72.11% 97.71% 

8 70.60% N/A 86.53% 91.06% 74.92% 79.86% 

9 88.48% N/A 92.91% 89.02% 80.89% 82.00% 

1.4 

7 92.87% N/A 91.68% 91.09% 85.12% 94.21% 

8 88.49% N/A 92.39% 91.69% 88.76% 89.27% 

9 82.17% N/A 94.17% 92.58% 85.47% 89.49% 

1.5 

7 24.61% N/A 90.15% 87.21% 86.05% 87.19% 

8 35.75% N/A 89.16% 76.74% 71.97% 89.97% 

9 37.03% N/A 94.26% 67.96% 84.95% 86.66% 

1.6 

7 35.45% N/A 86.18% 85.31% 85.08% 50.38% 

8 43.17% N/A 86.44% 78.71% 86.04% 57.23% 

9 49.40% N/A 88.92% 67.65% 82.05% 64.49% 

Avg. 

7 69.22% N/A 90.21% 91.92% 87.19% 86.69% 

8 71.74% N/A 91.58% 87.90% 86.25% 83.86% 

9 74.84% N/A 94.48% 84.60% 88.12% 84.86% 

2.1 

11 87.30% 76.11% 96.78% 98.18% 92.66% 98.42% 

12 88.10% 81.32% 97.31% 98.61% 95.60% 96.60% 

13 91.09% 79.87% 96.66% 97.66% 95.67% 97.79% 

2.2 

11 80.64% 79.93% 91.44% 94.33% 97.16% 87.40% 

12 86.42% 81.86% 93.40% 93.39% 81.34% 90.36% 

13 86.93% 81.16% 94.48% 94.03% 77.13% 88.66% 

2.3 

11 89.36% 63.23% 98.38% 89.15% 84.79% 93.59% 

12 85.69% 63.75% 96.24% 90.78% 88.26% 91.80% 

13 85.06% 60.24% 93.84% 92.79% 90.96% 91.38% 

2.4 

11 89.02% 53.12% 99.38% 89.25% 84.88% 90.50% 

12 87.06% 56.04% 94.99% 92.93% 86.88% 91.76% 

13 86.50% 49.48% 94.27% 91.74% 88.27% 90.12% 

2.5 

11 92.77% 89.21% 97.21% 96.54% 98.08% 96.58% 

12 93.44% 91.03% 97.39% 97.51% 96.99% 97.95% 

13 92.59% 91.61% 97.90% 97.53% 97.32% 97.22% 

Ave. 

11 87.82% 72.32% 96.64% 93.49% 91.51% 93.30% 

12 88.14% 74.80% 95.87% 94.64% 89.81% 93.69% 

13 88.43% 72.47% 95.43% 94.75% 89.87% 93.03% 
 

Table 12 also presents the average optimality gap of the consecutive trials of comparing 

methods. The optimality gap is measured as the deviation of the response at the final lm from 

the response at true optimal experiment Pm. The experiments show that the optimality gap of the 
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proposed N-ASRSM is almost the most competitive among all methods. The V- and A-optimal 

designs are slightly better performing than N-ASRSM in the fifth response model.  

Table 12 The optimality gap for trials 7, 8 and 9 of responses with two variables and trials 
11, 12, and 13 of the ones with three variables 

Exp. No. No Obs. 

Optimality gap 

CCD BBD n-ASRSM D-Opt. V-Opt. A-Opt. 

1.1 

7 3.84 N/A 0.00 0.00 31.76 0.00 
8 3.84 N/A 0.07 0.00 18.35 4.70 
9 0.23 N/A 0.04 0.26 0.00 0.00 

1.2 

7 70.52 N/A 0.01 0.00 0.61 40.19 
8 70.52 N/A 0.72 0.53 0.76 29.94 
9 70.52 N/A 0.00 7.69 0.83 8.24 

1.3 

7 909.82 N/A 0.31 0.31 0.31 1260.68 
8 909.82 N/A 0.31 0.31 0.31 492.09 
9 909.82 N/A 0.31 0.31 0.31 5.00 

1.4 

7 810.23 N/A 30.79 30.79 30.79 30.79 
8 2578.21 N/A 30.79 30.79 30.79 30.79 
9 363.90 N/A 30.79 30.79 30.79 30.79 

1.5 

7 1.59 N/A 0.01 0.01 0.07 0.00 
8 0.01 N/A 0.03 0.02 0.00 0.29 
9 0.38 N/A 0.02 0.01 0.00 0.21 

1.6 

7 874.36 N/A 30.79 16.50 16.50 790.25 
8 756.48 N/A 16.50 16.50 16.50 3583.36 
9 900.70 N/A 16.50 696.57 16.50 779.73 

Avg. 

7 445.06 N/A 10.32 7.94 13.34 353.65 
8 719.81 N/A 8.07 8.03 11.12 690.20 
9 374.26 N/A 7.94 122.61 8.07 137.33 

2.1 

11 19.24 18.99 9.86 11.95 13.84 13.50 
12 19.46 19.02 10.10 10.88 13.84 12.66 
13 13.09 19.42 9.95 10.56 14.01 11.81 

2.2 

11 25.00 25.46 21.89 23.99 26.16 32.82 
12 25.05 23.51 22.19 24.06 26.51 33.21 
13 27.84 22.44 22.36 23.17 26.19 32.92 

2.3 

11 3.64 12.48 0.25 1.01 12.65 0.54 
12 3.64 12.48 0.25 1.43 12.72 1.25 
13 8.59 12.22 0.35 1.40 12.72 2.20 

2.4 

11 19.30 20.28 0.90 6.39 1.40 1.43 
12 19.30 20.64 1.03 6.37 1.37 1.41 
13 19.53 19.75 1.08 6.40 1.39 1.43 

2.5 

11 4.13 5.72 1.51 1.48 0.87 1.23 
12 3.71 5.72 1.44 1.46 0.87 1.26 
13 4.60 5.72 1.44 1.58 0.90 1.17 

Ave. 
11 14.26 16.59 6.88 8.96 10.98 9.90 

12 14.23 16.27 7.00 8.84 11.06 9.96 
13 14.73 15.91 7.04 8.62 11.04 9.91 
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3.7.2 Non-linear Response Models 

Here we compare the performance of the proposed N-ASRSM approach with two global 

optimization methods: Standler et al. (2002), Wang et al. (2003), as well as classical methods 

CCD, and BBD, and A- D- and V-optimal designs on five nonlinear response models with two 

and three variables, with different variance and function type. These response models are 

presented in Table 13. Figure 30 illustrates the contour plot of two of the responses. 

Table 13 The non-linear response models used for studying N-ASRSM 

No. of 
variables 

Res. 
No. 

Response Relation 
Error 

Response 
with Two 
variable 

1.1 W=(y-(1/(8π2).*x2)+(10/π)(x-2)2+10(3-1/(12π))cos(x) N(0,3.5) 

1.2 W=0.75(x-0.15) 2 +.25*(x-0.15) 4+ 1.3.*(x-0.15) 6+1.8(x-0.15) (y-1) 2-2.66 (y-1)2+1.9(y-0.15)2 N(0,2) 

Response 
with three 
variable 

2.1 W=(x-0.55)2 + (y+0.7) 2 + (z-0.33) 2 -cos(18(x-0.55))-cos(18(y+0.7))-cos(18(z-0.33)) N(0,2) 

2.2 W=(x-1) 3 - 3(y-1) 3+(z+1) 3 -2(x-1)2 - 2(y-1) 2 +(z+1)2-(x-1)+5(y-1)+6(z+1)+2(x-1)(y-1)+(x-1)(z+1)-4(y-1)(z+1)+1 N(0,1) 

2.3 W=x2 + exp(y/10 + 10) + sin(zy) N(0,3) 

 

 
Figure 30 The contour plot of Responses 1.1 and 2.2 

For the following analysis, we have examined the performances based average optimality gap 

and Euclidian distance of the estimated optima to the real optimal point. All simulated 

experiments are repeated two times, and average results are reported. To keep the consistency 
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with the preceding section, the result of trials 7, 8, 9 of the cases with two variables and trials 11, 

12, and 13 of the cases with three variables have been reported. Table 14 shows the average 

optimality gap results of the consecutive trials of the comparing methods.  

Table 14 The average optimality gap of the proposed N-ASRSM and comparing methods 

f(x) Run CCD BBD N-ASRSM 
Standler et al. 

(2002) 
Wang et al. 

(2003) 
D-optimal A-optimal V-Optimal 

1.1 

7 1504.46 N/A 0.00 750.68 702.68 0.05 0.05 0.00 

8 0.00 N/A 0.00 536.36 190.23 0.00 0.03 0.00 

9 0.00 N/A 0.00 536.36 9725.89 0.00 4.47 0.00 

1.2 

7 464.84 N/A 6.48 471.29 370.10 893.17 4.48 37.33 

8 27.14 N/A 5.11 377.45 503.17 893.17 7.32 9.48 

9 8.37 N/A 4.65 377.45 494.73 893.17 8.49 5.87 

Ave. 

7 984.65 N/A 3.24 610.99 536.39 446.61 2.26 18.67 

8 13.57 N/A 2.55 456.90 346.70 446.59 3.68 4.74 

9 4.19 N/A 2.32 456.90 5110.31 446.59 6.48 2.93 

2.1 

11 41.48 3.47 2.93 4.93 25.35 8.24 60.47 4.97 

12 29.81 3.34 3.21 0.55 2.40 11.72 22.77 5.09 

13 6.73 5.78 4.62 0.55 5.26 11.38 18.76 5.39 

2.2 

11 272.12 348.36 0.08 1114.19 14444.60 6.75 9.83 9.33 

12 366.53 348.36 5.40 1596.96 1137.59 7.06 8.97 9.69 

13 746.63 404.56 9.32 1596.96 730.67 8.29 9.35 8.15 

2.3 

11 Inf. Inf. 15.00 Inf. Inf. Inf. Inf. Inf. 

12 Inf. Inf. 0.74 Inf. 0.69 Inf. Inf. Inf. 

13 Inf. Inf. 0.37 Inf. 0.38 Inf. Inf. Inf. 

Ave. 

11 Inf. Inf. 6.00 Inf. Inf. Inf. Inf. Inf. 

12 Inf. Inf. 3.12 Inf. 380.00 Inf. Inf. Inf. 

13 Inf. Inf. 4.77 Inf. 245.00 Inf. Inf. Inf. 

 

Table 15 also shows the average Euclidean distance of the estimated optima of the comparing 

methods to the real optima of the underlying functions.  
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Table 15 The average Euclidean distance of the estimated optima from the real optima for 
N-ASRSM and comparing methods 

f(x) Run CCD BBD N-ASRSM Standler et al. (2002) Wang et al. (2003) D-optimal A-optimal V-Optimal 

1.1 

7 3.99 N/A 0.01 1.88 2.06 0.22 0.01 0.02 

8 0.01 N/A 0.01 2.00 4.61 0.01 0.17 0.00 

9 0.01 N/A 0.00 2.00 5.76 0.01 2.11 0.00 

1.2 

7 2.92 N/A 0.47 2.09 1.63 2.18 0.44 0.82 

8 0.78 N/A 0.41 1.67 2.15 2.18 0.51 0.33 

9 0.53 N/A 0.38 1.67 2.85 2.18 0.54 0.48 

Ave. 

7 3.46 N/A 0.24 1.99 1.85 1.20 0.22 0.42 

8 0.39 N/A 0.21 1.83 3.38 1.09 0.34 0.17 

9 0.27 N/A 0.19 1.83 4.31 1.09 1.33 0.24 

2.1 

11 0.27 0.83 0.19 1.83 4.30 1.09 1.33 0.24 

12 2.46 0.71 0.55 0.94 2.37 0.92 1.94 0.98 

13 1.37 0.63 1.07 1.27 0.36 0.99 1.13 0.26 

2.2 

11 0.77 0.56 1.09 1.27 0.61 1.25 1.32 0.23 

12 1.82 1.60 0.29 1.98 4.26 0.76 0.85 0.88 

13 1.56 1.60 0.73 2.28 1.62 0.76 0.82 0.90 

2.3 

11 1.90 1.02 1.01 2.28 1.86 0.83 0.83 0.82 

12 3.33 3.42 1.92 1.95 2.32 3.71 3.71 3.80 

13 4.15 3.43 0.83 1.94 0.23 3.72 3.71 3.80 

Ave. 

11 3.29 3.10 0.83 1.94 0.59 3.80 3.69 3.80 

12 2.54 1.91 0.92 1.62 2.98 1.80 2.17 1.89 

13 2.36 1.89 0.88 1.83 0.74 1.82 1.89 1.65 

3.8 Discussion 

So far in this Chapter, we have developed and presented an adaptive methodology for n-

dimensional quadratic response surface optimization. The proposed approach combines concepts 

from nonlinear optimization, design of experiments, and response surface optimization. The N-

ASRSM is a sequential adaptive experimentation approach and uses the information gained from 

previous experiments to design the subsequent experiment by simultaneously reducing the region 

of interest and identifying factor combinations for new experiments. Its major advantage is the 

experimentation efficiency such that, for a given response target; it identifies the input factor 

combination (or containing region) in a smaller number of experiments than the classical single-
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shot RSM designs. It differs from earlier studies in its optimality (under certain assumptions), 

inheritance of results from previous experiments, and robustness due to experiment ranking 

based reduction of the region of interest. Through large set simulated experiments, we showed 

that in modeling quadratic responses it outperforms the popular CCD, BBD and optimal designs 

in terms optimality. Based on another set of simulations we also showed that � �  [P[!  
performs considerably well in comparison to global optimization approaches in estimating the 

optima of non-linear responses. In the following section we extend the proposed strategy to work 

based on optimal designs which provides more flexibility in dealing with non-rectangular factor 

spaces and constraints. 

3.9 An Extension of the Proposed Strategy with Optimal Design (N-
ASRSM2) 

This section extends the proposed N-ASRSM strategy to work based on optimal design 

instead of fractional factorial design (N-ASRSM2). For this purpose, we first describe the 

terminology in Section 3.9.1. Next, we discuss the extended algorithm and its step in Section 

3.9.2. Finally we provide a set of numerical examples in Section 3.9.3 to study the performance 

of the proposed strategy. 

3.9.1 Terminology and Assumptions 

Below we defined the additional notations required for extending the N-ASRSM method to 

N-ASRSM2. Figure 31 also shows a graphical representation of the notation:  

mPÙ : Optimal region after Qrs experiment 

lmÙ : Estimated optimal experiment after experiment e 

Q§ : Index of augmenting experiments , e.g. Q§=1,2,...,l§ where l§ is the total number of 
augmenting experiments 
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Figure 31 An illustration of the terminology of the N-ASRSM2 on a two dimensional factor 
space 
 

Similar to N-ASRSM, the extended methodology is based on the quadratic relation between 

the response and input factors. Though, the strategy can be built upon cubic assumption as well 

without any changes. The trade off is that the using cubic function as the underlying function 

provides the strategy with more flexibility in modeling nonlinearity while requires more 

experiments (because of its flexibility it is more difficult for cubic function to identify kmP with 

same number of experiments).  

3.9.2 Algorithm 

Figure 32 illustrates the general scheme of the proposed methodology. The initial run is setup 

with a modified version of optimal design, e.g. V- optimal design, augmented with additional 

experiment in following stages. Once the experimentation is completed, the approach follows 

two concurrent strategies, e.g., non-parametric ranking strategy and parametric model fitting 

strategy. Based on the ranking of experiments and the estimated optimal point from quadratic 

model fitting, a reduced factor space containing the estimated optimal experiment is determined 
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for the next experiments. This procedure continues until the convergence criteria based on 

estimated optimal experiment or coefficient of determination of the fitted model is attained.  

 

Figure 32 The general scheme of the proposed N-ASRSM2 strategy 
 

The details of the steps shown in Figure 30 are similar to what discussed for N-ASRSM (See 

also Figures 31 and 32). Though, one of the few differences is that there is no separate runs here 

(each experiment can be considered as a run). Also, for augmenting the design, the new 

experiments are taken (based on the optimal design) on the p[-kmP (the remaining factor space 
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after taking out non optimal regions). This can be easily done by adding a set of constraint to the 

objective function of optimal design for the following run. For instance if we are using a �-

optimal design and the first few experiments result in the Figure 31(a) kmP. The optimization 

model for choosing the next point can be written as follows: 

!"� ¤ 
 |��ý����|                                                                                                       [. ç                                                                                                                                I;õþX������Y,U�

X������Y �
I;õþX�—U.��Y,U�

X�—U.��Y �
I?GþX���U.���Y,U�

X���U.���Y �
I?GþX���U.��Y,U�

X���U.��Y 
 0
I;õþX�—U.�Y,U�

X���U.��Y �
I;õþX�—U.�Y,U�

X�—U.�Y �
I?GþX���U.	��Y,U�

X���U.	��Y �
I?GþX���U.	��Y,U�

X���U.	��Y 
 0    

(14) 

                                                                                                        
Figure 33 (a) NOR of the N-ASRSM2 factor space after 6th experiments (b) a grid of 64 
sub-regions of a 2 dimensional FS (c) a grid of 16 sub-regions of a 2 dimensional FS in the 
proposed N-ASRSM strategy 
  

 

Figure 34 Cut out regions of N-ASRSM2 using the ranking strategy based on two 
additional points. 
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3.10 Numerical Examples  

Here, we present two small sets of simulated experiments to evaluate the performance of the 

proposed N-ASRSM2 approach. In the first set of simulations N-ASRSM2 is compared to CCD, 

and A, D, and V optimal designs on quadratic response models. In the second set, the proposed 

strategy is compared to the classical models, optimal designs and two global optimization 

methods (Standler et al. (2002), Wang et al. (2003)) on a number of non-linear response models. 

3.10.1 Quadratic Response Models 

We now describe the simulated experiments performed to compare the performance of the 

proposed N-ASRSM2 with those of CCD, and optimal designs on quadratic response models. In 

the simulated experiments, we have considered 3 of response models of the ones studied in the 

previous section. These response models are presented in Table 16.  

Table 16 The quadratic response models used in the simulated experiments of the N-
ASRSM2 

No. of 
variables 

Res. 
No. 

Response Relation 
Error 

(ε) 
Response 

Type 

Two 
Variable 
Response 

1.1 W=-2x2+3y2+2x-y+2xy-1+ε N(0,0.1) Non-convex 

1.2 W=x2+2y2-2y+ε N(0,1) Convex 

1.3 W=-2x2+3y2+2x-y+2xy-1+ε N(0,2) Non-convex 

 

Table 17 compares the average P;�N	  of the comparing methods. Each of the experiments has 

been replicated 3 times, so each number in the table is the average of three replicates. Similar to 

the previous study the bold numbers in each row represents the best of the row.  Based on the 

Table, N-ASRSM2 performs very well on P;�N	  in comparison to other methods. Figure 35 
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illustrates a graphical representation of the NASRSM2 grid, p[, mP and kmP during 7th to 9th  

experiments. 

Table 17 The average ~ûÄüw  of the N-ASRSM2 an comparing methods for trials 7, 8 and 9 of 
responses for quadratic functions 

Exp. No. No Obs. 

Adjusted R2 

CCD N-ASRSM2 N-ASRSM D-Opt. V-Opt. A-Opt. 

1.1 

7 99.96% 99.99% 99.99% 99.96% 99.92% 99.94% 

8 99.96% 99.99% 99.99% 99.98% 99.95% 99.95% 

9 99.95% 99.99% 99.98% 99.97% 99.94% 99.92% 

1.2 

7 92.69% 99.99% 93.67% 95.01% 94.85% 90.69% 

8 92.48% 99.99% 94.97% 89.20% 95.86% 86.86% 

9 92.00% 98.00% 96.62% 90.42% 95.42% 86.58% 

1.3 

7 69.77% 99.44% 79.57% 92.96% 72.11% 97.71% 

8 70.60% 99.67% 86.53% 91.06% 74.92% 79.86% 

9 88.48% 92.55% 92.91% 89.02% 80.89% 82.00% 

Avg. 

7 69.22% 99.81% 90.21% 91.92% 87.19% 86.69% 

8 71.74% 99.88% 91.58% 87.90% 86.25% 83.86% 

9 74.84% 96.85% 94.48% 84.60% 88.12% 84.86% 
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(a) 

 

 
(b) 

Figure 35 The graphical representation of the N-ASRSM2 on 2nd and 3rd response surface; 
the blue cells show y~, greens show y~ not robust to miss-ranking (in risk adjustment), 
Yellows show non-robust ¿y~ and Reds show robust ¿y~ 

 

Table 18 presents the average optimality gap of the 7th to 9th trials of the comparing methods 

gained based on the average of three replicates. The experiments show that the optimality gap of 

the proposed N-ASRSM2 is comparable to the best performing methods.  
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Table 18 The Average optimality gap of the N-ASRSM2 and comparing methods for trials 
7, 8 and 9 of responses for quadratic responses 

Exp. No. No Obs. 
Optimality gap 

CCD N-ASRSM2 N-ASRSM D-Opt. V-Opt. A-Opt. 

1.1 
7 3.84 0.00 0.00 0.00 31.76 0.00 
8 3.84 0.00 0.07 0.00 18.35 4.70 
9 0.23 0.00 0.04 0.26 0.00 0.00 

1.2 
7 70.52 0.23 0.01 0.00 0.61 40.19 
8 70.52 0.86 0.72 0.53 0.76 29.94 
9 70.52 0.41 0.00 7.69 0.83 8.24 

1.3 
7 909.82 0.31 0.31 0.31 0.31 1260.68 
8 909.82 0.31 0.31 0.31 0.31 492.09 
9 909.82 0.31 0.31 0.31 0.31 5.00 

Avg. 
7 328.06 0.18 0.11 0.10 10.89 433.62 
8 328.06 0.39 0.37 0.28 6.47 175.58 
9 326.86 0.24 0.12 2.75 0.38 4.41 

 

3.10.2 Non-linear Response Models 

Here we compare the performance of the proposed N-ASRSM2 approach with the same two 

dimensional examples as the previous section and the same comparing methods. These response 

models are presented in Table19. Again all the simulations has been replicated three times and 

the comparisons are based on the average of three replicates. 

Table 19 The non-linear response surface models used for studying N-ASRSM2 
performance 

Exp. 
No. 

Response Relation 
Error 

1 W=(y-(1/(8π2).*x2)+(10/π)(x-2)2+10(3-1/(12π))cos(x) N(0,2) 

2 W=0.75(x-0.15) 2 +.25*(x-0.15) 4+ 1.3.*(x-0.15) 6+1.8(x-0.15) (y-1) 2-2.66 (y-1)2+1.9(y-0.15)2 N(0,2) 

 

Table 20 shows the average optimality gap of the consecutive trials of the comparing 

methods. Based on the results N-ASRSM and N-ASRMS2 are the best performing methods 

while N-ASRSM performs slightly better. Figure 36 shows the changes in the mP, kmP of the 

p[ in the N-ASRMS2 through different experiments. 
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Table 20 The average optimality gap of the proposed N-ASRSM2 and comparing methods 

f(x) Run CCD N-ASRSM2 N-ASRSM 
Standler et al.    

(2002) 
Wang et al.    

(2003) 
D-optimal A-optimal V-Optimal 

1.1 

7 1504.460 0.000 0.000 750.680 702.682 0.050 0.051 0.001 

8 0.004 0.000 0.000 536.355 190.227 0.003 0.029 0.000 

9 0.004 0.000 0.000 536.355 9725.895 0.003 4.470 0.000 

1.2 

7 464.841 9.662 6.478 471.292 370.099 893.174 4.478 37.333 

8 27.141 8.303 5.109 377.449 503.172 893.174 7.322 9.480 

9 8.367 5.347 4.650 377.449 494.735 893.174 8.488 5.866 

Ave. 

7 984.650 4.831 3.239 610.986 536.391 446.612 2.264 18.667 

8 13.573 4.152 2.555 456.902 346.699 446.589 3.676 4.740 

9 4.186 2.674 2.325 456.902 5110.315 446.589 6.479 2.933 

 
(a) 

 
(b) 

Figure 36  The graphical representation of the N-ASRSM2 on 1st and 2nd response surface; 
the blue cells show y~, greens show y~ not robust to miss-ranking (in risk adjustment), 
Yellows show non-robust ¿y~ and Reds show robust ¿y~ 
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Table 21 presents the average Euclidean distance of the estimated optima from the real optima 

of the comparing methods which have almost similar result to Table 20. Again on average both 

proposed methods works on a par with or better than optimal designs and CCD. 

Table 21 The average Euclidean distance of the estimated optima from the real optima for 
the N-ASRSM2 and comparing methods 

f(x) Run CCD N-ASRSM2 N-ASRSM 
Standler et al.    

(2002) 
Wang et al.    

(2003) 
D-optimal A-optimal V-Optimal 

1.1 

7 3.994 0.008 0.005 1.877 2.063 0.224 0.007 0.016 

8 0.006 0.004 0.005 1.996 4.606 0.007 0.171 0.004 

9 0.006 0.004 0.004 1.996 5.758 0.007 2.114 0.004 

1.2 

7 2.92 0.56 0.47 2.09 1.63 2.18 0.44 0.82 

8 0.78 0.32 0.41 1.67 2.15 2.18 0.51 0.33 

9 0.53 0.42 0.38 1.67 2.85 2.18 0.54 0.48 

Ave. 

7 3.46 0.28 0.24 1.99 1.85 1.20 0.22 0.42 

8 0.39 0.162 0.21 1.83 3.38 1.09 0.34 0.17 

9 0.27 0.21 0.19 1.83 4.31 1.09 1.33 0.24 

 

3.11 Discussion 

Here, we have extended the N-ASRSM to consider optimal design instead of fractional 

factorial design. Compared to N-ASRSM, the proposed N-ASRSM2 approach provides more 

flexibility in working with non-rectangular factor spaces, and grids with different resolution. In 

addition to getting benefited from optimal designs advantage N-ASRSM2 can employ cubic 

underlying function instead of quadratic function which can enable it to model nonlinearity 

better (although there the trade of increasing the number of experiments required for eliminating 

non-optimal regions). Based on the simulation studies, the proposed N-ASRSM2 strategy works 

robustly well on both quadratic and non-linear responses, in comparison to classical and optimal 

designs. However its performance on quadratic responses is slightly worse than its counterparts 

while on nonlinear responses N-ASRSM works slightly superior. 
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CHAPTER 4 THE PROPOSED STRATEGIES FOR BLACK BOX 
FUNCTIONS WITH N-VARIABLES (B-ASRSM) 

 

This chapter presents the detailed elements of the proposed adaptive sequential strategies for 

noisy expensive black-box function (B-ASRSM). For this purpose, we first describe the 

terminology that is mostly borrowed from previous Chapters. Next, we provide an overview of 

the methodology and its core components. Then, we explain how these components are 

integrated together to form B-ASRSM. Finally, we provide a small numerical example to 

examine the performance of the proposed strategy. We also extend the proposed strategy (B-

ASRSM2) to consider multiple adaptive regression splines which provides the proposed model 

more flexibility in dealing with high dimension.  

4.1 Terminology and Assumptions 

As expected the definitions and terminology used in the proposed strategy has many 

commonalities with previous Sections. For more convenience we provide the complete notations 

below. Figure 37 illustrates some of the notations on a two-dimensional factor space with 9 

initial experiments. The only assumption that we consider here is the normality of error, e.g.  

ε~�0, σ	�.  

8" : Number of factors (dimensions) in the p[ 

��ð � 1 : Number of knots in each factor  

l	 : Expected improvement 

p[q : Factor space at run % and expressed as Cartesian product of factor ranges in run r 

[p[q
 : cth sub-factor space of at run %  

\c? : Initial range of factor i  

� : Design of most current run  
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D : minimum number of required points in �  

dmn : A corner point experiment run at the intersection of extrema of factor ranges 

dln : A center point experiment run at the center of gravity of the factor space 

% : Index of runs, e.g. % 
 1,2, Q>P where R is the total number of runs 

Q : Index of experiments in a given run, e.g. e=1,2,...,E where E is the total number of 
experiments 

a : The experiment with the best response level in a [p[ and a given run 

k� : The experiment with the �rs best response level in a [p[  and a given run (2Q� E Q � 1� 

H : The experiment with the worst response level in a [p[  and a given run 

mPq : Optimal region/s in run r containing the estimated optimal experiment, mPq t p[q 

kmP : Non-optimal region/s 

m : Optimal experiment, e.g. best experiment in the initial factor space 

Pm : Real optima of the function 

lmq : Estimated optimal experiment in run r, e.g., best incumbent estimation of the optimal 
experiment 

c­?�q,
� : sub-regions " in cth [p[ ot the %th run in a given factor , e.g,  c­ 
 1,2, … , '�, where 'G is 
the total number of sub-regions 

` : Number of coefficients of the underlying model 

n½ : Probability of losing Pm but cutting out  

 
Figure 37 An illustration of the terminology of the proposed B-ASRSM strategy 

The new [p[ formed by additional 
experiments and ranking strategy 

uv� 

p[ in the 1st run divided into 4 
SFS [p[ with max l	 chosen for 
non parametric strategy 

Legend 

Initial run points  

Additional points 

uvw 

• Sub-regions considered for next 
run  of ([ Spline fitting would be  
A, B, C , D, and AA  

AA A B 

C D 
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4.2 Algorithm 

Figure 38 illustrates the general scheme of the proposed strategy. The initial run is setup with 

a modified version of � level factorial design which divides the factor space into �� � … � ��ð 

sub (hyper) rectangular regions. Once the experimentation is completed, considering each of the 

divisions as a spline sub-region, a quadratic least square regression spline (LSRS) is fitted. The 

next step is considering each divisions as sub-factor space ([p[) and candidate the [p[ with 

maximum expected improvement for further breaking. This step is followed by applying chapter 

3 non-parametric and parametric approaches to find the optimal and non optimal sub-regions in 

the candidate [p[, and taking experiment on its empty corners to make a new sub-regions for the 

next run of the algorithm (fitting LSRS). This procedure continues until the convergence criteria 

based changes in the expected improvement |∆�l	�| E W��  is attained.  
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Figure 38 the general scheme of the proposed B-ASRSM 

4.3 Design structure of the first and subsequent runs 

The design � structure of the factor space p[q in the proposed approach is adapted from � 

level factorial design (here we use ��, … , ��?  to differentiate among the number of levels along 

different factors (dimensions). The choice �? is important and contains tradeoff between 

Using the fitted Spline estimate 
Quadratic parameters of each [p[ 

Calculate R2-Adjusted  Solve the fitted model to estimate the 
optimal point (EOr) 

|∆�lm�| E W�� 
Converged?      

Identify the SFS with second 
maximum expected improvement  

 

Yes 

Non-parametric Approach  
(Ranking Strategy) 

Identify the SFS with maximum expected improvement  
No 

Rank the experiments in each sub-factor space [p[ as B, 
N2,…, Nk,W 

 

Build a system of quadratic equations for each [p[ and 
indentify non-optimal (kmP) regions 

 

Do risk adjustment and determine the feasible regions 

Is it possible to fit 
appropriate spline?  

Yes No 

Parametric Approach  
(Model Fitting Strategy) 

Determine the design D based on a minimal (hyper) 
rectangular grid of size X�� � … � ��ðY assuming a point on 

each intersection 

Take the experiments one at a time 
based on design � (in a way that set of points can further 
split the p[ in two or more (hyper) rectangular regions) 

Fit a Quadratic least square regression spline (for the first 
run letting each data points on axis’s to be a knot) 

Consider each region formed by grid as a small factor 
space ([p[) and partition it into a set of  2� (hyper) 

rectangular sub-regions  
 

Take the new experiments on an empty corner point of mP 
of  [a[ (in a way that set of points can further split the p[ 

in two or more (hyper) rectangular regions) 
 

Is the possible to find at least 
one (hyper) rectangular regions 
inside [p[ with filled corners? 

Refine the knots 
 

|∆�l	�| E W�� 
Converged?      

Determine the optima 
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accuracy and expense. Setting each �? to a very small value, e.g. 2 or 3, save a lot of 

experimentation cost while may result in not capturing true curvature of the underlying function 

and as consequence exploring wrong region/s. in contrast setting �? to a larger value, e.g. 5 or 

more, provides enough confidence about the underlying curvature but with a lot of cost of 

experimentation. Based on the simulated experiments 4 and 5 can be good choice when there is 

no information about the underlying function bumpiness. Figure 35 shows the effect of different 

choice of � on the estimation of surface for two examples. 

 

 
(a)    (b)    (c) 

 
(e)    (f)    (g) 

 
Figure 39 The effect of number of levels �Ã on the estimated surfaces: (1) 
 
 Â. ÅÂ��Âw �
�w� with �=(2,2), (3,3) and (4,4) in (a), (b) and (c) and, (2) 
 
 vÃÉ�º. ���Â�. ÆÈv��. wË��� 
with �=(2,2), (3,3) and (4,4) in (e), (f) and (g)  

 
 The initial design may be further augmented with few more experiments inside of the [p[ 

which is more probable to contain the Pm to break it down further and provide better estimation. 
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This result in a nested set of factor spaces in different runs like before, e.g. 

p[q 
 �q ]�q��X… �U�p[��Y^. 

Regarding the p[ size, since in general spline functions do not work very well on boundaries, 

also to alleviate the effect of noise, similar to former strategies, it is suggested to start with a 

broader initial region where applicable. Based on the simulated experiments a p[ of %5-%10 

larger than the typical setting can result in better accuracy. 

4.4 Fitting Least Square Regression Spline (LSRS) 

After taking the experiments based on the design �, considering each (hyper) rectangular 

region inside the p[ as a spline sub-region, a multivariate quadratic least square regression spline 

is fitted to the data (See Chapter 1 for detail formulation of LSRS). Since each (hyper) 

rectangular region inside the p[ is considered as a spline sub-region, in the first run, the breaks 

in each factor (dimension) would be equal to the factor levels in that dimension. This 

combination is changed in the subsequent runs by adding a patch after breaking down one or 

more of the [p[ (See Figure 40). As a consequence, the quadratic regression model fitted to the 

patch, estimate the system behavior within the patch boundaries while Least Square Regression 

Spline (([P[) fitted to rest of p[ estimate for the remaining part. The patch model which is 

formulated by fitting a quadratic function to data within its boundaries gets connected to the rest 

of spline by applying continuity conditions at their intersections which is done by making the 

estimated function values a first well as the first and second derivative agrees at the intersections:  
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(15) 

 

Figure 40  An example of the fitted LSRS with a spline patch added 
 

In order to reduce the number of experiments (points) and comply further with the original 

quadratic regression function, in the proposed model the terms with total order more than two in 

the regression spline (which occurs in the problems with two or more factors) can be taken out. 

For example in a two dimensional factor space with set of � knots  S�, … , S!" and the regression 

spline relation ∑ ∑ ∑ `?N��>� � S��T? �>	 � S��TN	NOU	?OU!�O�  the terms ̀ 		��>� � S��T	 �>	 � S��T	  

and  ̀ 	���>� � S��T	 �>	 � S��T�  and ̀ �	��>� � S��T� �>	 � S��T	  may be omitted from the further 

consideration without affecting the model accuracy very much (the reason is that all these term 

are related to interactions of high order which are typically of very small effect). This 

consideration can be easily added to the ([P[ by adding constraint imposing zero value for the 

coefficients of the above terms. 

AA A B 

C D 

Added Spline 
Patch 

Spline relation for [p[ sub-region   

Spline relation for [p[ sub-region a 

Applying continuity 
condition 

Possible split 
of [p[ 
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4.5 Identify the SFS with Maximum Expected Improvement  

One of the advantages of fitting LSRS is having a set simple quadratic regression function for 

each [p[ as a result. Based on the fitted quadratic regression function, the response at each point 

(of each [p[) will have the following $-student distribution: 

6$U~$G�*X�Uý%_ , C$	�Uý ��µ�����UY 
(16) 

Where � is the matrix of experiments input in the quadratic form (only the point fallen in each 

SFS contribute to the � matrix of that [p[), �U is the query input which should also be in 

quadratic form, %_  is the fitted regression parameters, and C$ is the estimated standard deviation 

(![l).  

Knowing the distribution of response, the expected improvement of each point can be 

calculated as follows: 

l	��� 
 4 8. 5�6 Z 8�)
U 8d 

(17)    
where 8 
 '"�X\�>�Y � æ�pI;õ � pI?G� and '"�X\�>�Y is the minimum of the fitted spline 

over the whole p[, æ is coefficient related to the rate of reduction (suggested æ values are 0.1 to 

0.25), and pI;õ , pI?G are the minimum and maximum of the observations (for more information 

about 8 See Jones (2001)). In our proposed strategy, the [p[ which contains the point with 

maximum expected improvement is the candidate for further break down (It should be noted that 

other measures such as estimated minimum lm or maximum variance can also be used for 

identifying the [p[ for breaking down). 
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4.6 Taking New Experiments and Breaking down Structure of the 
Methodology 

 

After finding the [p[ with maximum expected improvement, it should be furthered explored 

to:  

1. Check if the speculation on the location of the minima is correct  

2. Monitor the convergence of the algorithm  

3. Improve the estimation of the underlying function, especially around the global 

minimum 

This is typically done by adding one or more points to the [p[. However, the location of the 

points should be chosen with the goal of quickly locating at least one smaller (hyper) rectangular 

region containing the mP inside the candidate [p[ (the region is used as a new spline patch in 

the fitted ([P[). For this purpose, the first additional point would be chosen at the center of the 

candidate [p[, and the next points would be chosen based on the ranking strategy in Chapter 2. 

In this sense the algorithm for the breaking down the p[ to [p[c towards the Pm can be seen as 

a form of big square small square optimization (Plastria 1992) (See Also Figure 41). 

4.7 Design of the Next Runs and Stopping Criteria 

Completing the initial run of the algorithm after adding each new point the ([P[ is fitted to 

the data to check the location of [p[ with maximum improvement and to form a spline patch 

around the lm. This procedure continues until the expected improvement at two consecutive 

points gets lower than a threshold |∆�l	�| E W�� is attained or the pre-specified number of 
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experiments is reached. Figure 41 presents a simple graphical representation of the proposed 

strategy steps. 

 
Figure 41 the graphical representations of the proposed B-ASRSM strategy steps 

4.8 Numerical Examples  

In this section, we describe a small set of simulated experiments performed to evaluate the 

performance of the proposed strategy along with two popular global optimization methods 

Radial Basis Function (RBF) and Gaussian Process (GP). For modeling RBF we used ARESLab 

toolbox version 1.5 for Matlab/Octave written by Jekabsons. Also for modeling GP we use 

Gaussian Toolbox version 3.1 for Matlab/Octave written by Rasmussen and Nickisch. The 

response models are presented in Table 16 and Figure 42.  

(1) Taking experiments based 
on multilevel factorial design 
and fit LSRS 

(2) Find the SFS with 
Maximum Expected 
Improvement based on the 
fitted LSRS 

(3) Using Ranking Strategy 
find the OR and NOR of the 
identified SFS 

(4) Take new experiments on 
the empty corners of OR to 
make a patch 

(5) Apply Raking Strategy 
and LSFS fitting after each 
new experiment 

(6) Add the new patch to the 
model and look for new SFS 
for breakdown 
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Table 22 The response relation considered for the analysis of the B-ASRSM 

No. of 
variables 

Res. 
No. 

Response Relation Range Error 

Response 
with Two 
variable 

1 W=(y-(1/(8.*pi.^2).*x.^2)+(1/(pi)).*x-2).^2+10*(2-1/(12*pi)).*cos(x)^2 [-5, 5] N(0,3) 

2 W=sin(x) cos(x y) [-3 3] N(0,0.05) 

3 W=x.* exp(-x.^2 - y.^2) [-2 2] N(0,0.1) 

 

 
(a) 

 
(b) 

 
(c) 

Figure 42 The contour and function plot of the responses considered for the analysis of the 
B-ASRSM; a, b, c represents 1st, 2nd and 3rd response relations respectively 
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For the following analysis, we have compared the performances based on average optimality 

gap and Euclidian distance of the estimated optima to the real optimal point. All simulated 

experiments are repeated two times, and the average of the results is reported. To have a fair 

comparison, same initial design structure (multilevel factorial design) has been considered for all 

three comparing methods. Figure 43 illustrates the location of the experiments and the estimated 

surface of RBF and GP methods in different iterations. Table 23 shows the average optimality 

gap results and average Euclidian distance to the Pm of the consecutive trials of the comparing 

methods. As can be seen from the Table the proposed method not only have an acceptable rate of 

convergence toward the real optima, but also it has comparable results to those of RBF and GP. 

Table 23  The average optimality gap and average Euclidean distance to ~y of the 
proposed B-ASRSM methods along with the comparing methods 

  
Optimality gap of Response Euclidean distance to ~y 

Exp. No. No Obs. B-ASRSM RBF GP B-ASRSM RBF GP 

1 

25 8.72 4.99 2.63 1.75 3.44 6.93 

26 3.30 11.53 3.80 1.26 3.80 7.21 

27 39.36 10.10 2.86 1.54 0.91 0.92 

28 12.95 29.56 2.26 1.34 1.46 0.98 

29 2.30 6.27 6.27 0.75 1.86 0.98 

30 1.29 4.23 0.24 0.34 2.68 0.70 

2 

141 0.69 0.53 0.04 1.89 2.00 0.33 

142 0.90 0.50 0.03 3.74 1.68 0.29 

143 0.17 0.07 0.08 1.56 2.27 0.08 

144 3.63 0.59 0.01 0.10 2.31 0.12 

145 0.07 0.07 0.08 0.09 0.44 0.10 

146 0.14 0.55 0.01 0.10 0.79 0.09 

3 

25 1.65 10.02 0.63 1.64 0.39 0.02 

26 0.06 15.20 5.79 0.85 0.44 0.12 

27 0.27 4.43 7.17 0.99 0.42 0.20 

28 0.09 0.08 7.67 0.54 0.59 0.26 

29 0.13 10.50 2921.03 0.53 0.41 0.61 

30 0.12 0.32 1.37 0.07 0.66 0.07 
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(a)      (b) 

Figure 43 the estimated response of problem 3 at different iteration using (a) RBF and (b) 
GP 

4.9 Discussion  

So far in this chapter we developed a strategy based on a hybrid of quadratic least square 

regression spline and the ranking strategy, discussed in previous chapters, for expensive noisy 

black-box function optimizations. In a set of iteration, the proposed strategy breaks down the 

factor space of the black-box function into a set of small regions (smaller than the factor space) 

in a way that each of them can be accurately approximated using quadratic functions. It will then 

identify the most promising sub-region/s, assuming that the real optimum is located there. This 

step may be followed by conducting new experiments and further breaking down the identified 

sub-region/s to improve the estimation of the location of the real optimum. Using three 

numerical examples we examine the performance of the proposed strategy along with two 

popular global optimizations methods, Gaussian process and radial basis functions, and shows B-

ASRSM effectiveness both in terms of number of experiments and accuracy. The proposed 

method is easy to understand and implement. It is also flexible with using different 
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implementation criteria. In the remaining part of this chapter we will extend the proposed 

strategy to work based on space filling design and multiple adaptive regression splines (MARS). 

 

4.10 An Extension of the Proposed Strategy with Space Filling Design and 
Multiple Adaptive Regression Splines (B-ASRSM2) 

 

Here we extend the proposed strategy to a more flexible configuration which is specifically 

useful in modeling problems of high dimension by applying some changes to the original 

algorithm: (1) Using space filling designs instead of multi-level factorial design, (2) Using 

multiple adaptive regression splines (MARS) instead of LSRS, and finally (3) Using optimal 

design for augmentation instead of factorial design. In the following Sections we will first briefly 

describe the extended algorithm. Next, we examine the performance of the proposed B-ASRSM2 

strategy on the same numerical examples as for the B-ASRSM strategy. 

4.10.1 Algorithm 

Figure 44 illustrates the algorithm of the proposed B-ASRSM2 strategy based on the few 

changes mentioned above. As can be seen, the general structure of the algorithms has not been 

modified however comparing Figure 45 to Figure 41, which is a pictorial view of the 

implementation of B-ASRSM2 and B-ASRSM, reveals the difference between the two proposed 

strategies in practice. 
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Figure 44 The general scheme of the proposed B-ASRSM(2) 
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Figure 45 The graphical representations of the proposed B-ASRSM2 strategy steps 

4.10.2 Numerical Examples  

Here, we evaluate the proposed B-ASRSM2 on the numerical examples in section 4.8. Table 

24 shows the average optimality gap of the consecutive trials of the comparing methods. Figure 

45 also illustrates the distribution of the points, the estimated surface as well as the result of 

ranking strategy at different runs of the B-ASRSM2 for the 3rd function. As can be seen from the 

table, like B-ASRSM, the performance of B-ASRSM2 is acceptable for both optimality gap and 

Euclidian distance to the real optima, and comparable to RBF and GP. 

 

(1) Taking experiments based 
on space filling design and fit 
MARS 

(2) Find the SFS with 
Maximum Expected 
Improvement based on the 
fitted MARS 

(3) Using Ranking Strategy to 
find the OR and NOR of the 
identified SFS 

(4) Take new experiments on 
The OR of the SFS using 
optimal design corners of OR 
to make a patch 

(5) Apply MARS fitting after 
each new experiment 

(6) Apply Raking Strategy 
after each new experiment 
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Table 24 The average optimality gap and average Euclidean distance to ~y of the proposed 
B-ASRSM2 methods along with the comparing methods 

 
 

Optimality gap of Response Euclidean distance to ~y 

Exp. 
No. 

No Obs. B-ASRSM2 B-ASRSM RBF GP B-ASRSM2 B-ASRSM RBF GP 

1 

25 96.36 8.72 4.99 2.63 4.21 1.75 3.44 6.93 

26 3.70 3.30 11.53 3.80 1.22 1.26 3.80 7.21 

27 2.20 39.36 10.10 2.86 2.61 1.54 0.91 0.92 

28 17.10 12.95 29.56 2.26 1.72 1.34 1.46 0.98 

29 2.17 2.30 6.27 6.27 1.57 0.75 1.86 0.98 

30 0.45 1.29 4.23 0.24 0.93 0.34 2.68 0.70 

2 

141 0.32 0.69 0.53 0.04 0.65 1.89 2.00 0.33 

142 0.19 0.90 0.50 0.03 0.71 3.74 1.68 0.29 

143 0.07 0.17 0.07 0.08 1.43 1.56 2.27 0.08 

144 0.71 3.63 0.59 0.01 1.40 0.10 2.31 0.12 

145 0.21 0.07 0.07 0.08 0.24 0.09 0.44 0.10 

146 0.12 0.14 0.55 0.01 0.19 0.10 0.79 0.09 

3 

25 3076.37 1.65 10.02 0.63 0.79 1.64 0.39 0.02 

26 3127.79 0.06 15.20 5.79 0.85 0.85 0.44 0.12 

27 0.23 0.27 4.43 7.17 0.30 0.99 0.42 0.20 

28 0.08 0.09 0.08 7.67 0.16 0.54 0.59 0.26 

29 3195.78 0.13 10.50 2921.03 0.19 0.53 0.41 0.61 

30 0.15 0.12 0.32 1.37 0.07 0.07 0.66 0.07 
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Figure 46 The graphical representation of the B-ASRSM2 on 3rd response surface; the blue 
cells show y~, greens show y~ not robust to miss-ranking (in risk adjustment), Yellows 
show non-robust ¿y~ and Reds show robust ¿y~ 

4.10.3  Discussion  

Here we extended the strategy developed in the earlier part of this chapter to a more flexible 

hybrid system of space filling design and multiple adaptive regression splines (MARS) to 

estimate the minimum of expensive noisy black-box function. The proposed B-ASRSM2 starts 

with a space filling design and based on the results, partition the factor space into a set of small 

sub-regions. Assuming quadratic behavior of the function in each small sub-region, B-ASRSM2 

fits a MARS to the factor space. Next, it identifies the most promising sub-regions and augments 

the design with a single point in that sub-region using optimal design and previously discussed 

ranking strategy. This procedure continues until B-ASRSM2 gets to the vicinity of the real 

optima. Similar to B-ASRSM, we compare the performance of the B-ASRSM2 along with RBF 
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and GP on three numerical examples and show it effectiveness both in terms of number of 

experiments and accuracy. 
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CHAPTER 5 CONCLUSIONS AND FUTURE DIRECTIONS 

In this dissertation we have developed and presented a number of adaptive sequential 

strategies for response surface optimization (ASRSM). The proposed approaches combine the 

concept of nonlinear optimization, non-parametric regression and response surface optimization. 

The proposed strategies uses the information gained from the previous experiments to design the 

subsequent experiment by simultaneously reducing the region of interest and identifying factor 

combinations for new experiments. Its major advantage is the experimentation efficiency such 

that, for a given response target; it identifies the input factor combination (or containing region) 

in less number of experiments than the classical counterparts. It differs from earlier studies in its 

optimality, inheritance of results from previous experiments, and its robustness due to 

experiment ranking based reduction of the region of interest. Through extensive simulated 

experiments and real-world case studies, we showed that the strategies clearly outperform the 

classical methods such as BBD and CCD method in terms of both optimality as well as the 

experimentation efficiency. These results also reveal that the proposed strategies on average 

perform superior to A-, D-, and V-optimal designs. Further analysis demonstrates that the 

ASRSM is competitive with popular global optimization methods such as RBF and Gaussian 

Process. In particular, the performance of ASRSM is found to be very robust with respect to 

changes in the error variance and convexity of the response model, and more monotonous with 

additional experiments. For future studies, the proposed methodology will be further extended by 

adding Bayesian inference capability into it. 
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Most preset RSM designs offer ease of implementation and good performance over a wide 

range of process and design optimization applications. These designs often lack the ability to 

adapt the design based on the characteristics of application and experimental space so as to 

reduce the number of experiments necessary. Hence, they are not cost effective for applications 

where the cost of experimentation is high or when the experimentation resources are limited. In 

this dissertation, we present a number of self-learning strategies for optimization of different 

types of response surfaces for industrial experiments with noise, high experimentation cost, and 

requiring high design optimization performance. The proposed approach is a sequential adaptive 

experimentation approach which combines concepts from nonlinear optimization, non-

parametric regression, statistical analysis, and response surface optimization. The proposed 

strategies uses the information gained from the previous experiments to design the subsequent 

experiment by simultaneously reducing the region of interest and identifying factor combinations 
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for new experiments. Its major advantage is the experimentation efficiency such that, for a given 

response target, it identifies the input factor combination (or containing region) in less number of 

experiments than the classical designs. Through extensive simulated experiments and real-world 

case studies, we show that the proposed ASRSM method clearly outperforms the classical CCD 

and BBD methods, works superior to optimal A- D- and V- optimal designs on average and 

compares favorably with global optimizations methods including Gaussian Process and RBF.  
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