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CHAPTER 1 

INTRODUCTION 

1.1 Cancer Immunotherapy 

     Cancer immunotherapy, or the use of the immune system to fight tumors, has 

emerged as a promising strategy in the war on cancer in the last decade. However, 

different forms of immunotherapy in clinical trials, aimed at boosting antitumor immunity, 

have been only partially successful and have generally failed to trigger an immune 

response sufficient to eradicate all cancer cells, especially in patients with advanced 

disease1. This is usually attributed to the organism’s inability to mount a robust effector 

antitumor immune response. A growing tumor does not usually go unnoticed by the 

immune system, although the response is relatively weak2. Various immunotherapy 

techniques take advantage of this response by providing help in the form of vaccines, 

adjuvants or passive transfer of immune effector components. One major obstacle 

encountered however, is that the immune response induced is relatively weak because 

the immune system is somewhat tolerant to immunogenic molecules on the tumor 

surface named tumor associated antigens (TAA). This may be due to the fact that these 

antigens are simply normal self-proteins expressed in greater quantity or mutated self-

proteins with only slight variations in structure. In addition, unlike a bacterial or viral 

infection, TAAs are usually found in a weakly immunogenic context, making them poor 

activators of the immune system. Vaccine and adjuvant strategies that are aimed at 

increasing their immunogenicity usually have only moderate effects in enhancing the 

immune response3. In a different mechanism, the tumor itself, with its high capability for 
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mutation, will adapt by “hiding” its TAAs and/or downregulating expression of the major 

histocompatibility complex (MHC), (a molecule that enables the immune system to “see” 

these antigens), via a phenomenon called immune evasion. This is the case in triple-

negative breast cancer, which lacks expression the surface antigens: estrogen and 

progesterone receptors as well as the epidermal growth factor receptor Her-24. 

     While poor response to self-proteins and immune evasion are important obstacles, 

perhaps the main barrier to cancer immunotherapy remains the suppression of the 

immune system, a mechanism that is directed in large part by the tumor itself and takes 

place in the surrounding environment5. The tumor microenvironment (TME) is an area 

of relative proximity to the tumor, characterized by an interaction of cancer cells with 

cells in the surrounding normal tissue, the immune system as well as various 

components of the extracellular matrix and soluble cell signaling factors. Tumor cells 

direct the components of the TME to work in its favor by suppressing the immune 

system, among other mechanisms67. One way is by induction of enzymes such as 

indoleamine 2,3-dioxygenase or arginase that have the effect of starving the immune 

cells of important biochemical building blocks as well as triggering of direct 

immunosuppressive pathways8. Another important mechanism is the release of soluble 

factors (called cytokines) with suppressive function such as transforming growth factor 

beta (TGF-β) and interleukin-10 (IL-10)9 10. These cytokines act primarily by recruiting or 

converting immune cells whose duty is to suppress the effector cells of the immune 

system. Prominent among these are the regulatory T cells (Treg)11, which are 

characterized by expression of the master transcription factor Foxp3 and by their ability 

to dampen an overly stimulated immune response, maintain tolerance to self antigens 
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as well as enable tumor immune escape12 13. Overcoming this suppression by Treg in 

order to generate a stronger immune response and better anti-tumor protection remains 

one of the main goals of cancer immunotherapy. 

 

1.2 Her-2 positive cancers and DNA vaccination 

     Her-2, also known as ErbB-2 or E2, is an important proto-oncogene and tumor 

associated antigen (TAA). It is the second of the four-member family of ErbB receptors 

where another prominent member is Epidermal Growth Factor Receptor (EGFR or Her-

1). The human ErbB-2 homologue Her-2, a 185 kDa transmembrane protein14 whose 

version in the rat is called neu, is found at moderate levels in normal cells and 

participates in tissue growth and organ formation. Excessive Her-2 signaling however 

contributes to malignant growth and this receptor was shown to be indeed 

overexpressed in various types of cancer, notably in 25-30% of breast malignancies as 

well as in ovarian tumors15. Gene amplification is responsible for Her-2 overexpression 

in some but not all tumor cases. Regardless of the mechanism however, excessive Her-

2 expression has been associated with more aggressive cancers16.  Upon dimerization 

with other ErbB family members on the cell surface, Her-2 will transduce signaling 

through its receptor tyrosine kinase activity to the PI3 and MAP kinase pathways to 

increase cell survival and proliferation and inhibit apoptosis (Fig. 1.1 A, B). Anti-Her-2 

antibody has been detected in cancer patients and Her-2 has become an important 

immunogenic TAA. In fact, treatment with humanized monoclonal anti-Her-2 antibody 

Trastuzumab (Herceptin) that blocks receptor activity has shown some clinical efficacy 
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especially when combined with other chemotherapeutic agents17. Herceptin resistance 

has emerged in a portion of treated tumors however as cells evolve alterations in the 

PI3 kinase and PTEN pathways to overcome the blocked Her-2 signaling18.  

                             A                                                                    B 

                   

Figure 1.1 The Her-2 oncoprotein. A The Her-2 extracellular portion contains a dimerization domain that 
allows it to bind to other ErbB family members and signal through its intracellular tyrosine kinase domain. 
B Dimerization triggers signaling through the MAP kinase pathway to induce proliferation and through the 
PI3 kinase pathway (inhibited by PTEN) to increase survival and reduce apoptosis. 

 

     Due to the observed resistance to passively transferred antibody such as 

Trastuzumab, induction of a native anti-Her-2 immune response has become a sought-

after alternative. One way to induce an immune response is via injection of a DNA 

plasmid that encodes the desired antigen. This has several advantages over native 

peptide immunization such as lower cost, the ability to induce a good T cell response in 

addition to antibody as well as the immunogenicity of DNA CpG-rich sequences 

themselves19. In an attempt to take advantage of these features our lab has developed 
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several variants of a Her-2 DNA vaccine. These include a version that encodes a 

mutated Her-2 at the intracellular domain tyrosine kinase active site (pE2A), a truncated 

protein that is missing the intracellular domain entirely (pE2TM) as well as a secreted 

version that has only part of the extracellular domain (psecE2)20. In addition, a fusion 

DNA vaccine between Her-2 and its rat homologue neu was generated (pE2N), which 

induced the strongest anti-Her-2 immune response and protection from tumor in mice21. 

Vaccination of human Her-2 positive breast cancer patients with pE2A in a pilot clinical 

trial demonstrated vaccine safety and long-lasting anti-Her-2 immune response19. 

     Her-2 DNA vaccination is carried out in conjunction with pGM-CSF, a plasmid coding 

for Granulocyte-Monocyte Colony Stimulating Factor, a cytokine that helps induce a 

stronger immune response. In mice the plasmids are injected intramuscularly (i.m.) 

followed by electroporation, a technique by which an electric current runs through the 

injected muscle to increase DNA uptake (Fig. 1.2) Subsequent expression of the 

plasmids will attract cells of the immune system and induce an immune response to 

Her-2. If combined with other modulations of the immune system, DNA vaccination may 

prove to be a potent weapon in cancer therapy.  

 

 
Figure 1.2 DNA vaccination. Plasmid encoding the desired antigen (Her-2) is injected into mouse 
hamstring muscles. An electroporator is used to deliver an electric current by electrodes placed on either 
side of the injected muscle. Subsequent uptake and expression of the plasmid by muscle cells will attract 
cells of the immune system and induce an immune response to the antigen (Her-2). 
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1.3 The Immune System: B cells 

     The most common role of the different components of the immune system is to clear 

infections by pathogenic microorganisms. It is these same cells and soluble products of 

the immune system that carry out an anti-cancer immune response as well. In either 

case the effector response can be categorized into humoral (soluble) or cellular22. The 

humoral immune response is based on the action of antibodies, small globular proteins 

produced by B cells that recognize and bind to their specific target. The cellular arm of 

the immune system on the other hand works by the direct action of T cells in killing 

specific target cells or by releasing mediators that direct other components of the 

immune system and coordinate the entire response. Both of these branches of an 

effector immune response are important for successful cancer immunotherapy23.  

     The B cells are generated in the bone marrow from hematopoietic stem cells (HSC) 

and they undergo several maturation steps until they become capable of producing 

antibody in response to antigenic stimuli. Starting out as pro-B cells, they rearrange 

their antibody genes in a random fashion in order to generate antibodies specific to a 

particular portion of a foreign molecule (epitope), at which stage they are called pre-B 

cells. Once a productive antibody gene rearrangement is complete and can be 

expressed on the cell surface as a B cell receptor (BCR), the cell is defined as an 

immature B cell. After further differentiation and selection, the B cell leaves the bone 

marrow to go to the spleen and lymph nodes in the periphery as a functional, non-self-

reactive, naïve (or mature) B cell where it will wait for eventual encounter with an 

antigen via its BCR. Upon proper stimulation the B cell will be induced to produce 

antibody which will bind with great affinity to the epitope on the target antigen. This can 
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cause elimination of the target cell simply by neutralizing it from carrying out its actions, 

calling in another system of plasma proteins called complement to lyse the cell or by 

marking the cell for phagocytosis by other cells of the immune system (opsonization) 

(Fig. 1.3 A). 

     An antibody is a protein composed of globular structures called immunoglobulin 

domains and contains two heavy and two light chains held together by disulfide bonds. 

Each has a variable N-terminus region which recognizes the antigen and a constant C-

terminus region which, in the case of the heavy chain, determines the antibody type or 

class (Fig. 1.3 B, C). There are five classes of antibody, IgG, IgA, IgE, IgD and IgM 

corresponding to γ, α, ε, δ and µ heavy chains. The class determines the function of the 

antibody with respect to the stage of the immune response or the body tissue where the 

antibody is most active. In addition, each class can comprise more subclasses 

representing more minor variations in their heavy chain such as the IgG1, 2, 3 and 4 

subclasses of IgG. These also differ in the type of response, their abundance as well as 

the stage of the immune response they partake in22
. 
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               A                                     B                                                  C 

             

Figure 1.3 The humoral immune response. A Encounter with antigen and proper stimulation induces the 
B cell to produce antibodies with the same specificity that can bind and cause destruction of the target 
cell. B Structure of an antibody molecule with the variable and constant regions of heavy and light chains. 
C The five antibody classes are determined by the constant region of their heavy chain. 

 

1.4 The Immune System: T cells 

     In contrast to the humoral immune system, the cellular arm of the immune response 

is represented by the T cells which are also generated from HSCs in the bone marrow 

but migrate to the thymus to undergo development and differentiation22. Their 

develpmental stages are based on the presence of the surface marker CD3, (a 

component of the T cell receptor (TCR)), and the co-receptors CD4 and CD8. During 

these stages, there are gene rearrangements (similar to those in B cells) of the α and β 

chains of the TCR in order to make receptors specific for one foreign epitope. After 

several steps of differentiation and selection, functional, non-self-reactive naïve T cells 

will travel to the periphery expressing either CD4 or CD8 (single-positive cells). CD8+ 

cells have direct cytotoxic function to infected or cancer cells. CD4+ cells, also called T 

helper cells, act as coordinators of the entire immune response including that of B cells, 

Constant  
domains 
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cytotoxic CD8 T cells and other cells by virtue of cytokines, the soluble products they 

release (Fig. 1.4 A).  

     While B cell receptors recognize antigen in its native form, T cell receptors can only 

recognize a portion of an antigen that has been derived from the native form after 

intracellular biochemical processing by and presentation on the cell surface of the so-

called antigen-presenting cells (APC). In the case of a protein, this processed and 

presented portion can be as small as an 8 amino acid peptide. The surface molecules 

on APCs that present processed antigen are part of the major histocompatibility 

complex (MHC) and come in two kinds, MHC class I and II (Fig. 1.4 B). Antigen 

processing and presentation to the T cells via MHC I is carried out by virtually all cells of 

the body and requires binding of MHC I to the CD8 co-receptor on cytotoxic T cells. 

MHC II is only found on the 3 so-called professional APCs: 1) B cells, 2) the dendritic 

cells (DC) which specialize in antigen presentation and 3) macrophages, cells of the 

immune system with phagocytic function.  MHC II has affinity for the CD4 co-receptor 

on T helper cells and activates these cells to produce cytokines that orchestrate the 

immune response. (Fig. 1.4 C) 

     T helper cells are divided into several groups depending on the cytokines they 

release and the type of immune response they orchestrate. T helper 1 (Th1) cells are 

mainly under the control of the transcription factor T-bet and are characterized by the 

elaboration of the cytokine interferon-γ (IFN-γ).  This cytokine directs macrophages to 

kill their ingested intracellular pathogens among other functions. Th2 cells, via the 

transcription factor GATA-3, produce IL-4, IL-5 and IL-13 to activate B cells that have 
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already had contact with the antigen via their BCR. Another type of T helper cells, Th17, 

is involved in allergic or autoimmune responses via their cytokine IL-1722.  

                  A                                  B                                                 C 

                   

Figure 1.4 The cellular immune response. A Encounter with antigen presenting cells induces the T helper 
cell to produce cytokines that can activate B cells, cytotoxic T cells or macrophages. B Structure of the 
MHC – peptide – TCR complex. C CD4 and CD8 co-receptors on T cells restrict presentation to MHC II 
and MHC I respectively. 

 

     While engagement of the TCR with the antigen peptide-carrying MHC on antigen 

presenting cells is an essential signal for T cell activation, it is usually not sufficient. 

Additional signaling is required and that is accomplished by the interaction of co-

stimulatory molecules on APCs with their counterparts on T cells. Some important co-

stimulatory  interactions are those of CD80 and CD86 (also called B7.1 and B7.2) on 

APCs with CD28 on T cells or binding of CD40 on APCs with CD40-L (ligand) on T 

cells. Other interactions may be inhibitory to T cells such as those between the same 

CD80/CD86 mentioned above with the co-inhibitor CTLA-4 on T cells. 
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1.5 The Immune System: Immune Suppression 

     While the cells described above have effector functions in an immune response, 

another type of T helper cell, regulatory T cells (Treg) carry out immune supressive 

functions under the control of Foxp3, a member of the forkhead/winged-helix family of 

transcription factors24 25. Treg express the CD25 surface marker in addition to CD426, 

although not exclusively. The evidence for Treg’s suppressive function rests on 3 key 

pieces of evidence: 1) their ability to inhibit autoimmune pathological conditions in vivo, 

2) the in vitro inhibition of proliferation of naïve T cells stimulated via the T cell receptor 

and 3) the observation that induced expression of Foxp3 in naïve T cells converts them 

into cells with suppressive Treg phenotype27. The mechanisms by which Treg suppress 

are still somewhat debatable and evidence has been found for several of them. Treg 

can interact in a contact-dependent manner via surface molecules such as CTLA-4 to 

send negative signaling to antigen presenting cells or even have direct cytotoxic effects 

on cells of the immune system. Alternatively they can release immunosuppressive 

cytokines such as TGF-β, IL-10 and IL-35 in a contact-independent manner27 (Fig. 1.5 

A, B, C). 

     As T cells, Treg have T cell receptors with specific antigen recognition ability. 

Polyclonal populations of Treg with varying antigen specificities are perfectly capable of 

suppression, although there is evidence that monoclonal antigen-specific Treg may be 

even more efficient in inhibiting an immune response28. Regardless of which of the 

above mechanisms are prevalent, there is little debate that Treg are essential in 

dampening an overy stimulated immune response, providing immune tolerance to self-

antigens and inhibiting antitumor immunity29 30. In fact depletion of Treg has been 



                                 

 

12 

 

accompanied by some autoimmune side effects. It has been shown however, that 

elimination of Treg greatly enhances anti-tumor immunity31 32 33.  

 

A                        B           

C             D                                 

Figure 1.5 Immunosuppressive mechanisms. Treg are thought to exert their suppressive functions via 
contact mediated cell-to-cell signaling such as A through the co-inhibitory molecule CTLA-4, B cytotoxic 
activity by a Granzyme B mechanism or C via soluble cytokines such as TGF-β, IL-35 and IL-10, among 
other mechanisms. D Myeloid-Derived Suppressor Cells (MDSC) are immature cells of myeloid origin that 
are CD11b+ Gr-1(Ly6G)+ and suppress T cells. MDSC and Treg are thought to have mutually beneficial 
interactions. 

 

     Treg are divided into two groups, natural Treg (nTreg) generated in the thymus 

during T cell development and adaptive or induced Treg (iTreg) induced by TGF-β with 

IL-2 in the periphery from naïve CD4+CD25- T cells34. nTreg are maintained at rather 

constant levels in circulation and have stable expression of Foxp3. iTreg on the other 

hand are converted from naïve T cells usually during an immune response by inducing 

expression of Foxp3 via the TGF-β signaling pathway. Although iTreg are 

immunosuppressive like nTreg, their Foxp3 expression is more transient, allowing thus 

Treg cell 

Treg cell EffectorT cell 

Treg cell 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the immune system to have a temporary or localized suppression of the immune 

response. The stable vs. transient expression of Foxp3 in Treg is controlled by 

epigenetic regulation at its promoter. CpG methylation at a certain enhancer element is 

important in preventing stable Foxp3 expression in all non-nTreg cells35 36. Another 

enhancer region has been shown to undergo histone acetylation in order to induce 

expression of Foxp3. Signaling via the TGF-β receptor, which participates in iTreg 

conversion, has been implicated in this epigenetic-level control of Foxp3 expression37. 

Interestingly, conditions that combine TGF-β with IL-6, an inflammatory cytokine, direct 

naïve CD4+CD25- T cells to convert to Th17 cells, thus diverting the immune response 

from a suppressive into a pro-inflammatory one38 39 40 41.    

     The immunosuppressive functions described above are carried out by T cells, which 

are part of the lymphoid lineage of immune cells (as are B cells). The myeloid lineage is 

another important branch of bone marrow-derived cells and it includes cells mentioned 

earlier such as macrophages and dendritic cells as well as the granulocytes, comprising 

the neutrophils, basophils, eosinophils etc. A more recently discovered population of the 

myeloid lineage was shown to be a potent inhibitor of T cell effector functions and is 

recognized as an important branch of the suppressive immune system. This population 

of cells is named Myeloid-Derived Suppressor Cells (MDSC) and was initially shown to 

expand in cancer42. These cells are characterized by expression of the surface markers 

CD11b and Gr-1/Ly6G in mice and have since been implicated in immune suppression 

during inflammation as well as infection43. Rather than being a distinct subset of myeloid 

cells, MDSC are a heterogeneous mixture of macrophages, dendritic cells and 

granulocytes maintained at an immature stage of their development. MDSC are 
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activated by cytokines such as IFN-γ, Granulocyte-Monocyte Colony-Stimulating Factor 

(GM-CSF) and TGF-β. MDSCs themselves may be a source of TGF-β and are thought 

to have a mutually beneficial interaction with Treg44 (Fig. 1.5 D). 

 

1.6 Inducible Regulatory T cells, TGF-β and Cancer 

     As mentioned earlier, Treg play an important role in helping tumors escape the 

immune system and are considered a major target in cancer immunotherapy. In fact, 

depletion of Treg with antibodies directed at CD25 has shown improvement in antitumor 

response45. Although CD25 is generally a reliable marker for Treg, it is also transiently 

expressed on all activated T cells, including the effector anti-tumor T cells one hopes to 

generate, thus making depletion of all CD25-bearing cells problematic46. In addition, 

pan-depletion of Treg carries with it the risk of autoimmunity especially in a susceptible 

organism31 32. Evidence shows that the naturally occurring nTreg are not the only 

immunosuppressive cells associated with cancer. In fact iTreg play a very important role 

in this regard and their contribution is independent of that of nTreg47 48. As previously 

described, iTreg are formerly naïve CD4+CD25- T cells that have been converted to 

suppressive, Foxp3-expressing CD4+CD25+ Treg by the action of TGF-β and IL-2 

following TCR stimulation. It is conceivable that naïve T cells in the TME are induced to 

express Foxp3 in the right cytokine environment and that this would be beneficial to a 

growing tumor trying to evade immune control. The tumor would have an advantage in 

releasing or causing other cells of the surrounding stroma to release cytokines that 

create an environment that is conducive to iTreg conversion. In fact iTreg are present in 
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the TME and have been shown to contribute to this tumor-directed 

immunosuppression49 50 51.  

     The action of TGF-β is key in order for the tumor to hi-jack the iTreg 

immunosuppressive mechanism and the presence of this cytokine has been 

documented in the tumor microenvironment52 53. Different kinds of cells elaborate TGF-β 

in the tumor vicinity and these include the tumor cells themselves as well as the 

surrounding stroma, with tumor-infiltrating immune cells prominent among them49. 

Targeting TGF-β in cancer immunotherapy however is not straightforward since it is a 

ubiquitous molecule with rather pleiotropic effects. The actions of TGF-β in cancer can 

be pro-tumorigenic as well as tumor-suppressive. In addition to aiding tumors to evade 

the immune response as described above, TGF-β also helps cancer spread by assisting 

in the tumor epithelial to mesenchymal transition (EMT), whereby epithelial cancer cells 

break the barrier of the lamina propria and invade the connective tissue underneath 

paving the way for metastasis54. On the other hand, activation of the TGF-β pathway in 

cancer cells sends tumor suppressive signals that cause decrease in proliferation 

among other actions53. This is demonstrated by the fact that inactivation of the TGF-β 

receptor or other upstream components of the pathway induces malignant 

transformation in cells that already have other oncogenic mutations55. These pro and 

anti-tumorigenic effects depend on the context and make specific targeting of the iTreg-

dependent immunosuppressive function of TGF-β difficult to tease out. Targeting 

downstream elements of the TGF-β pathway that lead to induction of Foxp3 in iTreg 

becomes a more feasible alternative.  
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1.7 TGF-β-inducible early gene 1 (TIEG1)  

    The TGF-β pathway evolved in vertebrates to participate in various processes such 

as development, wound-repair and the immune system53. The ligand family includes 

TGF-β itself which is active in immune modulation among other functions, as well as 

factors such as bone morphogenetic proteins (BMP) that participate in bone formation, 

nodal and lefty that determine left-right asymmetry during organogenesis etc. The active 

TGF-β ligand is a 25 kDa dimeric protein that binds to and brings together two 

serine/threonine kinase receptors, the TGF-β receptors type I and II thus triggering their 

autophosphorylation. The receptors then phosphorylate and activate members 2 and 3 

of the Smad family which form a complex and after partnering with Smad4 are 

translocated to the nucleus. Upon associating with or activating other general or tissue-

specific transcription factors from various families (bHLH, homeobox, zinc-finger etc.), 

the Smad complex triggers a specific pattern of gene expression56. 

     One of the earliest proteins to be activated by TGF-β signaling (within 30 minutes) is 

TIEG1 (TGF-β-Inducible Early Gene 1) also known as KLF10 (Krϋppel-Like Factor 10). 

TIEG1 (KLF10) is a transcription factor that was originally discovered in the Spelsberg 

lab at the Mayo clinic as a gene important in human bone mineralization by osteoblasts 

and differentiation of osteoclasts57. This 72 kDa protein is a member of the KLF family, a 

subgroup of the zinc-finger transcription factors that is characterized by a C-terminal 

DNA binding domain composed of 3 C2H2 zinc-finger motifs with a highly conserved 7-

residue sequence (TGEKP(Y/F)X) between them58. This gene has been shown to mimic 

some actions of TGF-β by being pro-apoptotic and anti-proliferative59 60. Deficiency of 
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TIEG1 has been linked to some signs of cardiac hypertrophy61 and skeletal weakness62 

63. 

     In a T cell context, Venuprasad et al. have shown that upon signaling from the TGF-

β-Smad pathway, cytoplasmic TIEG1 is mono-ubiquitinated by the E3 ubiquitin ligase 

Itch and is thus marked for nuclear localization where it can carry out its function as a 

transcription factor. A major function of TIEG1 in the nucleus is activation of the 

promoter of Foxp3, the master regulator of T cells with a suppressive phenotype (Fig. 

1.6) They also demonstrated that when TGF-β is combined with IL-6, (a condition which 

directs the naïve T cell away from the Treg phenotype and toward Th17) this will in fact 

cause poly-ubiquitination of TIEG1 (as opposed to mono-ubiquitination) and prevent its 

nuclear translocation and Foxp3 induction64. Knocking out TIEG1 or Itch in CD4+ T cells 

severely impairs their ability to induce expression of Foxp3 and to convert iTreg from 

naïve CD4+CD25- T cells. As a result, TGF-β-treated naïve T cells from TIEG1-/- mice 

had reduced suppressive activity in vitro and were unable to keep in check the immune 

response in a model of induced allergic inflammation of the airways65. Furthermore Cao 

et al. showed that in addition to Foxp3, the TGF-β promoter itself is another activation 

target of TIEG1 in a positive feedback mechanism of iTreg conversion. In fact 

overexpression of TIEG1 induced expression of both TGF-β and Foxp3 and this caused 

a reduction of markers for other competing effector T cell lineages, such as Th1 and 

Th2, whereas TIEG1 ablation had the opposite effect. Transfer of CD4+CD25- naïve T 

cells from TIEG1-/- mice into a mouse model of inflammatory atherosclerosis increased 

atherosclerotic lesions, indicating inability of TIEG1-/- naïve T cells to be converted to 

the immunosuppressive iTreg66 58. Further studies by the Venuprasad group showed 
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that growth of TRAMP-C2 tumor in unimmunized TIEG1-/- mice was inhibited, indicating 

a stronger antitumor immune response, an effect attributed to the absence of 

immunosuppression by iTreg64.  

 

 

Figure 1.6 TGF-β induction of Foxp3 via TIEG1 in naïve CD4+ T cells. Upon ligand binding and 
autophosphorylation of the TGF-β receptor, a Smad2/3 complex, later helped by Smad4, will eventually 
activate TIEG1. This transcription factor will be marked for nuclear transport where it will bind to the 
Foxp3 promoter and will be essential in inducing its expression.   

 

Thanks to Dr. K. Venuprasad, our lab has obtained the TIEG1 knock-out line of mice, 

(generated and generously provided by the laboratory of Dr. Thomas C. Spelsberg63) a 

line which, as mentioned above, is unable to induce expression of Foxp3 via TGF-β 

signaling and thus cannot convert iTreg from naïve CD4+CD25- T cells. This project 

aims to combine the absence of immunosuppression by iTreg in TIEG1-/- mice with our 

Her-2 DNA vaccination platform in order to induce a potent antitumor immune response. 
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TIEG1-/- and wild type mice will be vaccinated with Her-2 + GM-CSF DNA, and their B 

and T cell immune response as well as tumor growth will be assessed. In addition, in 

vitro testing of spleen cells from TIEG1-/- and wild type mice will be performed.  
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CHAPTER 2 

MATERIALS AND METHODS 

 

Mice 

All procedures involving mice were conducted in accordance with institutional guidelines 

and under the supervision and/or approval of the Wayne State University Division of 

Laboratory Animal Resources (WSU DLAR). Wild type C57Bl/6 and BALB/C mice were 

purchased from the National Institutes of Health (NIH) or generated in house from 

breeding. C57BL/6 TIEG1 knockout mice, generated in the laboratory of Dr. T. C. 

Spelsberg, were generously provided by Dr. K. Venuprasad. TIEG1-/- were maintained 

by inbreeding with other TIEG1-/- mice. A selected sub strain of TEIG1-/- mice with 

severely impaired antibody response was generated from the original TIEG1-/- line and 

is maintained by inbreeding with other TIEG1-/- mice from this selected sub strain. 

C57BL/6 Her-2 transgenic mice were generated in our laboratory and are maintained as 

heterozygous mice by back-cross breeding with wild type C57Bl/6. C57BL/6 TIEG1-/- 

Her-2 Tg mice were generated in our laboratory by two rounds of breeding from TIEG1-

/- males and Her-2 Tg females and are maintained by breeding of TIEG1-/- Her-2 Tg 

males with TIEG1-/- females. 
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Plasmids and Vaccinations 

pE2TM, pE2N and empty vector pVax (control) were previously described20 21. pGM-

CSF encoding murine GM-CSF was provided by Dr. N. Nishisaki at Osaka University, 

Osaka, Japan. In the allogeneic immunization, mice received 5x106 splenocytes from 

BALB/C or C57Bl/6 (control) background via i.p. injection 3 times at 2 week intervals. In 

the tumor cell immunization mice received 3x106 irradiated TC-1/E2 cells (20x103 rad) 

i.p. twice with a 10 week interval between injections. In the DNA vaccination mice 

received 50 µg of pE2TM/pE2N/pVax and pGM-CSF plasmid DNA each (in 50 ul PBS) 

via i.m. injection in the hamstring muscles 3 times at 2 week intervals. Each vaccination 

was immediately followed by square wave electroporation over the injection site using a 

BTX830 (BTX Harvard Apparatus, Holliston, MA) electroporator apparatus. A tweezer 

electrode was used to deliver 8 pulses at 100 V at 25 ms per pulse, 4 in each direction. 

 

Cell Lines and Reagents 

All tissue culture reagents were purchased from Invitrogen and Gibco BRL. Cell lines 

were maintained in vitro in a starting medium composed of DMEM supplemented with 

5% cosmic calf serum (HyClone, Logan, UT), 5% fetal bovine serum (Hyclone, Logan, 

UT), 2 mM l-glutamine, 0.1 mM non-essential amino acids, 100 units/ml penicillin, 100 

µg/ml streptomycin, 0.5 mM sodium pyruvate (SDME 5+5). Variations from this medium 

are noted below for each cell line. E0771/Her-2 cells were maintained in DMEM with 

20% fetal bovine serum and 0.1mg/ml neomycin. TC-1 cells (generously provided by Dr. 

T. C. Wu, The Johns Hopkins University, Baltimore, MD) were maintained in SDME 5+5 
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with 0.4 mg/ml neomycin. TC-1/E2 cells were generated by transfecting TC-1 cells with 

Her-2 and maintained in TC-1 media (see above) + 7.5 µg/ml puromycin. 3T3 cells were 

maintained in SDME 5+5 media. 3T3/KB cells were maintained in SDME 5+5 with 0.6 

mg/ml neomycin and 7.5 µg/ml puromycin. Other reagents were purchased from Sigma. 

Antibodies were purchased from BD biosciences and Invitrogen. PCR reagents were 

purchased from Qiagen. 

 

CD25 Depletion 

To deplete CD25+ regulatory T cells (Treg), mice were injected twice i.p. with 0.5 mg of 

PC61 mAb (in 0.3 ml volume) at a one week interval with the second injection given 3 

days before the first vaccination. 

 

Tumor Challenge and Measurement 

Ten days after the third vaccination, mice were inoculated s.c. in the flank with 2×105 

E0771/Her-2 cells. Tumor growth was monitored by palpation, and tumor diameter was 

measured in two perpendicular dimensions with a caliper at 3-day or weekly intervals. 

Tumor volume was calculated as width2 x length x ½. Mice were sacrificed when any 

one dimension of the tumor reached 20mm. 
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Measurement of Antibody Response by Flow Cytometry 

In allogeneic immunization, sera from the immunized mice were used to stain BALB/C 

splenocytes and detected with fluorophore-conjugated Fcγ secondary antibody by a BD 

Canto II flow cytometer. We constructed the standard curve by staining BALB/C 

splenocytes with anti-Kd (clone SF1-1.1) antibody and used regression analysis to 

calculate serum IgG antibody concentrations (see note in text). In the Her-2 tumor cell 

and DNA vaccine experiments sera from the immunized mice were used to stain TC-

1/E2 cells and detected with fluorophore-conjugated Fcγ secondary antibody. We 

constructed the standard curve by staining TC-1/E2 cells with anti-Her-2 (clone Ab-5) 

antibody and used regression analysis to calculate serum IgG antibody concentrations. 

 

Measurement of T Cell Response by IFN-γ ELISPOT Assay 

96-well HTS IP plates (Millipore, Bedford, MA), were pre-coated with 2.5 µg/ml rat anti-

mouse IFN-γ. Spleen cells were added to the wells in the presence of 3T3 or 3T3/KB 

cells for allogeneic immunization and TC-1 or TC-1/E2 cells for Her-2 immunization at 

1:10 APC : lymphocyte ratio in R10 media (RPMI1640 supplemented with 10% FBS, 

100 units/ml penicillin, 100 µg/ml streptomycin and 10mM HEPES). Other control wells 

had medium or Concanavalin A. Following 48 hr incubation, cells were removed and 

captured IFN-γ was detected with biotinylated rat anti-mouse IFN-γ, avidin-HRP and the 

substrate 3-amino-9-ethylcarbazole. The visualized cytokine spots were counted with 

the ImmunoSpot analyzer (CTL, Cleveland, OH), and the results were expressed as 

number of cytokine-producing cells per 106 splenocytes.  
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Statistical Analysis 

Data were analyzed using the student’s t-test (or Kruskall-Wallis test where appropriate, 

see note in text). Select data were analyzed with the help of Dr. Judith Abrams, 

(Biostatistics Core, Karmanos Cancer Institute, Detroit, MI). 
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CHAPTER 3 

RESULTS 

 

3.1 PCR genotyping of TIEG1-/- line 

     In order to test our hypothesis that inhibition of iTreg will improve antitumor immunity, 

we used TIEG1-/- mice, a complete and stable knockout line that was generously 

provided by Dr. T. C. Spelsberg and Dr. K. Venuprasad. This KO line was generated in 

the Spelsberg laboratory63 by homologous recombination with a targeting vector 

comprising two homology regions flanking an insertion cassette. The two homology 

regions in the wild type allele are located upstream of the TIEG1 coding sequence on 

the 5’ end and downstream of the second TIEG1 intron, a region that includes exons 3 

and 4 as well as regions downstream of the gene on the 3’ end (Fig. 3.1 A). The 

insertion cassette is composed of the Neomycin resistance gene flanked by loxP 

sequences and has been inserted into the wild type allele replacing regulatory 

sequences immediately upstream of TIEG1 as well as exons 1 and 2, thus inactivating 

the gene. We maintained the KO allele in a homozygous mouse line of C57Bl/6 genetic 

background and we genotyped the KO or wild type mice by PCR of genomic DNA 

extracted from tail tissue. The reaction was carried out using the three primers 

positioned as shown in Fig. 3.1 A. A common reverse primer is complementary to a 

region in exon 3 and two forward primers for the KO and wild type alleles bind to the 

Neo region and intron 2 respectively. This yielded a KO amplicon that was longer than 
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that of the wild type allele (Fig. 3.1 B). Heterozygous mice (TIEG1+/-) yielded both PCR 

products. 

 

A TIEG1-/- allele generation (adapted from Subramaniam et al., 2005) 

 

 

B PCR genotyping 

 
 

Figure 3.1 Generation and genotyping of TIEG1-/- mouse line.  A Schematic depiction for the generation 
of TIEG1 Knock Out allele by homologous recombination between the wild type allele and the targeting 
vector. (Generated in and generously provided by the T. C. Spelsberg laboratory at the Mayo Clinic, 
Rochester, MN; scheme adapted with simplifications from Subramaniam et al.63) B Mouse tail tissue was 
genotyped for the TIEG1 null or wild type allele by PCR using two different forward and one common 
reverse primers (see scheme). The PCR was carried out at 94oC x 1 min denaturation, 55oC x 2 min 
annealing and 72oC x 3 min extension, repeated for 41 cycles. The KO allele amplicon was slightly longer 
than the product of the wild type allele based on the positions of the forward primers (see A). 
Heterozygous mice show both PCR products. Examples of each allele combination are marked. 
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3.2 Stronger T cell response but comparable antibody response to immunization 

with allogeneic splenocytes in TIEG1-/- mice  

     TIEG1-/- mice were shown to be incapable of converting naïve CD4+ T cells into 

Foxp3-expressing iTreg with immunosuppressive phenotype. In order to test whether 

this impairment in immune suppression has an effect on our antitumor vaccination we 

first tested the immune response of TIEG1-/- mice to a common antigen such as 

allogeneic (foreign) MHC. MHC is the cell surface protein used to present antigen to T 

cells and is encoded by a gene with great allelic variability between individuals making it 

a strong immunogen and the basis for immunological transplant rejection. TIEG1-/- and 

wild type mice were immunized with spleen cells from mice of a different genetic 

background (BALB/C) where the MHC molecules serve as the main immunogenic 

molecule. 5x106 cells/mouse were injected i.p. 3 times, at 2-week intervals. T cell and 

antibody responses specific to the allogeneic antigens were measured 2 weeks after 

each immunization (Fig. 3.2 A).  

     T cell response was measured by ELISPOT, an assay that detects antigen-specific T 

cells, in our case to the Kd allele of BALB/C MHC class I. In this assay, T cells specific 

for the desired antigen will be activated to produce cytokine when the antigen is 

presented to them (Fig. 3.2 B). Splenocytes from the immunized mice are co-cultured 

with other cells that present the Kd protein or release it into the culture medium. Kd-

specific T cells will be activated either directly by this presentation or by professional 

APC from the splenocyte population that phagocytose, process and present the 

released Kd antigen to them. Activated T cells produce cytokine (in our case IFNγ) that is 

captured by the anti-IFNγ antibody coating the membrane and later detected with a 
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secondary antibody linked to an enzymatic colorimetric reaction that creates a spot on 

the membrane. The density of spots is proportional to the concentration of Kd-specific T 

cells generated during the immunization. 

     Antibody response was measured by flow cytometry, which we used to detect 

antibody specific to the antigens on BALB/C splenocytes. In this assay, the antibody 

specific for the desired antigen binds to antigen-expressing cells and is detected by 

fluorescence (Fig. 3.2 C). Sera from the immunized mice are used to stain BALB/C 

splenocytes that express the various BALB/C MHC molecules and other antigens that 

elicit the immune response in the mouse. The bound serum antibody is stained with a 

fluorophore-conjugated secondary antibody specific for the IgG constant region of the 

heavy chain of the serum antibody and the cells are fed into a flow cytometer in which 

they flow in single file and are excited by a laser. The strength of the emitted signal is 

proportional to the concentration of antigen-specific IgG antibody in the sera generated 

during the immunization. In order to convert the emitted fluorescence into serum 

antibody concentration we construct a standard curve by staining the antigen-

expressing cells with varying concentrations of antigen-specific, purified, commercial 

antibody. The curve obtained is fitted to a linear or polynomial equation, which is then 

used to calculate serum antibody concentrations corresponding to a particular mean 

fluorescence value (Fig. 3.2 D). (Note: for our allogeneic immunization, we constructed 

the standard curve by staining BALB/C splenocytes with anti-Kd (clone SF1-1.1) 

antibody. This represents only one of several MHC and other molecules that serve as 

antigens so an absolute antibody concentration cannot be easily obtained and the 

values given are only relative to the anti-Kd antibody.) 
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A Experimental time scheme                                                              B ELISPOT assay scheme 

                

 

 

                                                 C Flow cytometry scheme 
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D Flow cytometry standard curve 

 

 

 

 

E H-2Kd-specific IFN-γ-producing T cells in spleen                             F Representative ELISPOT wells 
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  G anti-BALB/C MHC serum antibody                                                    H Representative antibody histograms             

          

 

Figure 3.2 Superior IFN-γ T cell response but similar antibody levels in TIEG1-/- mice immunized with 
allogeneic splenocytes. A TIEG1-/- and wild type mice, both of C57Bl/6 genetic background, were 
immunized with 5x106 splenocytes from BALB/C mice via i.p. injection 3 times at 2 week intevals. 
Allogeneic MHC-specific antibody and T cell responses were measured at 2 weeks following each 
injection via flow cytometry and ELISPOT respectively. B ELISPOT assay to measure concentration of T 
cells that are specific for the desired antigen. Splenocytes from immunized animals are loaded onto a 
membrane coated with antibody to desired cytokine (IFN-γ) and are stimulated with the purified antigen or 
cells expressing and presenting the antigen. The cytokine produced by the stimulated antigen-specific T 
cells is captured on the membrane and detected with secondary antibody linked to an enzyme-substrate 
system that leaves a spot on the membrane. C Flow cytometry to measure concentration of serum 
antibody that is specific for the desired antigen. Cells expressing antigen transfected into them are 
stained with diluted sera from immunized animals then with a secondary antibody conjugated to a 
fluorophore. Laser excites fluorophores on cells flowing in single file and fluorescence is detected. D 
Standard curve for calculation of antibody concentration built by staining the same cells as above with 
known concentrations of antigen-specific antibody (anti-H-2Kd clone SF1-1.1) (E) Plot and (F) 
representative ELISPOT well images of IFNγ-producing T cells in spleens of immunized TIEG1-/- and wild 
type mice. T cells are specific to BALB/C MHC molecule H-2Kd. (G) Plot and (H) representative flow 
cytometry histograms of anti-BALB/C MHC polyclonal antibody levels in sera of immunized TIEG1-/- and 
wild type mice. 

 

 

     Immunization with allogeneic (BALB/C) splenocytes resulted in a considerably 

stronger IFNγ T cell response in TIEG1-/- mice as measured by ELISPOT of Kd-specific 

T cells (Fig. 3.2 E, F). No significant difference in T cell response was observed after 

the first immunization (data not shown), but it became apparent after the second round 
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of immunizations and especially after the third. The concentration of Kd-specific T cells 

in spleens of some TIEG1-/- mice was as high as 2500 cells/106 splenocytes or 

approximately 0.85% of all T cells in the spleen whereas in the wild type mice the 

concentration did not exceed 800 cells/106 splenocytes or 0.27% of T cells. (T cell 

response in TIEG1-/- mice showed a greater variability than in wild type mice also.) 

Absence of iTreg however, did not have the same effect in the IgG antibody response of 

TIEG1-/- mice as compared to their wild type counterparts (Fig. 3.2 G, H). No significant 

difference between the two strains of mice was observed. Each successive 

immunization increased the antibody response in both the knockout and wild type 

strains but any possible difference between the two groups was not noticeable with the 

flow cytometric method we used. 

 

3.3 Stronger T cell response but comparable antibody response to immunization 

with Her-2-expressing tumor cells in TIEG1-/- mice  

     In order to test whether absence of iTreg has an effect on immunity to the 

oncoprotein Her-2, we conducted a small, pilot experiment to test the immune response 

of TIEG1-/- mice to injection with Her-2 in the context of tumor cells expressing this 

protein. TIEG1-/- and wild type mice were vaccinated with TC-1/E2, a mouse epithelial 

lung cell line that has been transformed with Human Papilloma Virus-16 oncogenes E6 

and E7 as well as ras to become immortalized (generously provided by Dr. T. C. Wu) 

and then transfected to express the Her-2 (E2) protein. Mice received 3x106 TC-1/E2 

cells (irradiated to prevent tumor growth), i.p., twice with a 10 week interval between 
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injections. Her-2-specific antibody and T cell responses were measured by flow 

cytometry and ELISPOT, two weeks post injection. T cell response was measured with 

ELISPOT by stimulating splenocytes with TC-1/E2 cells. Antibody response was 

measured with flow cytometry by staining TC-1/E2 cells with sera from the vaccinated 

mice. We constructed the standard curve by staining TC-1/E2 cells with purified 

commercial anti-Her-2 (clone Ab-5) antibody to obtain absolute serum Her-2 antibody 

concentrations. 

     As in the case of allogeneic splenocytes, immunization with irradiated TC-1/E2 cells 

resulted in a stronger IFNγ T cell response in TIEG1-/- mice (after the second 

immunization) (Fig. 3.3 A). The concentration of Her-2-specific T cells in spleens of 3 

TIEG1-/- mice was nearly 2000 cells/106 splenocytes with only one mouse responding 

at around 800cells/106 splenocytes. On the other hand, T cell response in the two wild 

type mice tested was around 700 cells/106 splenocytes. As with allogeneic splenocyte 

immunization, absence of iTreg or TIEG1 did not make a difference in the antibody 

response of TIEG1-/- mice as compared to their wild type counterparts (Fig. 3.3 B). 

Serum IgG concentrations in response to TC-1/E2 were comparable in the two groups 

after the first and second immunizations. In conclusion, a pilot experiment testing anti-

Her-2 immunity via immunization with Her-2-expressing irradiated tumor cells yielded a 

more robust T cell response but comparable antibody levels. 
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    A  Her-2 specific IFN-γ-producing T cells in spleen                    B  anti-Her-2 serum antibody                     

               
 

 

Figure 3.3 Stronger IFN-γ T cell response and equal antibody production in TIEG1-/- mice vaccinated 
with TC-1/E2 cells. TIEG1-/- and wild type mice were immunized with 3x106 irradiated TC-1/E2 cells i.p. 
twice, with a 10-week interval between injections. Her-2-specific antibody and T cell responses were 
measured by flow cytometry and ELISPOT respectively. A Her-2-specific IFN-γ-producing T cell 
concentration in ELISPOT of spleens from immunized TIEG1 KO and wild type mice, (no statistical 
analysis was performed due to the small number of mice). B Anti-Her-2 IgG antibody levels in flow 
cytometry-analyzed sera from immunized TIEG1-/- and wild type mice. 

 

3.4 Stronger T cell response but lower antibody response to Her-2 DNA 

vaccination in TIEG1 -/- mice  

     In order to test whether the absence of iTreg has an effect on DNA vaccination we 

tested the immune response of TIEG1-/- mice to our Her-2 DNA vaccine. TIEG1-/- and 

wild type mice were vaccinated with a cocktail of two plasmids pE2TM and pGM-CSF. 

pE2TM codes for a truncated portion of the Her-2 tumor antigen that comprises its 

extracellular and transmembrane domains. pGM-CSF codes for Granulocyte Monocyte 

Colony-Stimulating Factor, a growth factor for immune cells of myeloid lineage that will 

serve as antigen presentig cells. 50 µg DNA from each plasmid was delivered via i.m. 
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injection in the hamstring region and electroporation for 3 times at 2 week intevals. Her-

2-specific antibody and T cell responses were measured at 2 weeks following each 

injection via flow cytometry and ELISPOT as before. T cell response was measured with 

ELISPOT by stimulating splenocytes with the TC-1/E2 cell line which expresses Her-2. 

Antibody response was measured with flow cytometry, by staining TC-1/E2 cells with 

sera from the vaccinated mice. We constructed the standard curve by staining TC-1/E2 

cells with anti-Her-2 (clone Ab-5) antibody to obtain absolute serum Her-2 antibody 

concentrations. 

     As in the case of allogeneic splenocyte immunization, vaccination with pE2TM + 

pGM-CSF resulted in a stronger IFNγ T cell response in TIEG1-/- mice (Fig. 3.4 A). No 

significant difference in T cell response was observed after the first (data not shown) or 

second vaccination, but it became apparent after the third immunization. The 

concentration of Her-2-specific T cells in spleens of TIEG1-/- mice was as high as 1100 

cells/106 splenocytes with a mean of approximately 500 cells/106 splenocytes. T cell 

response in the wild type mice on the other hand did not exceed 500 cells/106 

splenocytes with a mean of only 200cells/106 splenocytes. As with the allogeneic 

splenocyte immunization, T cell response to DNA vaccine in TIEG1-/- mice showed a 

greater variability than in wild type mice with a few non-responders present. In fact the 

Kruskall-Wallis test showed good statistical significance of the difference in the third 

vaccination T cell response between the two groups (p-value shown in figure), whereas 

a student’s t-test, a statistical test that is more sensitive to outlying data, did not, (not 

shown).   
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     As in the case of allogeneic splenocyte immunization, absence of iTreg or TIEG1 did 

not have the same positive effect in the antibody response of TIEG1-/- mice as 

compared to their wild type counterparts (Fig. 3.4 B). In fact, IgG response to Her-2 

DNA vaccine was surprisingly lower in TIEG1-/- mice starting as early as the first 

vaccination and continuing throughout the experiment with strong statistical 

significance. Several of the TIEG1-/- mice in particular showed a strikingly impaired 

initial antibody response after one vaccination. The same mice tracked throughout the 

experiment were very slow to initiate production of anti Her-2 IgG, showing any 

detectable antibody levels only after 3 vaccinations. This indicated that, while absence 

of iTreg may allow a more robust T cell response, TIEG1 might be involved in other 

pathways important in the immune response, specifically that of B cells. 

 

A  Her-2 specific IFN-γ-producing T cells in spleen 
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B anti-Her-2 serum antibody 

 
 

Figure 3.4 Stronger IFN-γ T cell response and lower antibody production in TIEG1-/- mice vaccinated 
with Her-2 DNA. TIEG1-/- and wild type mice were vaccinated with 50 µg of pE2TM (Her-2 extracellular 
and transmembrane domains) and pGM-CSF (Granulocyte Monocyte Colony-Stimulating Factor) plasmid 
DNA each via i.m. injection and electroporation 3 times at 2 week intevals. Her-2-specific antibody and T 
cell responses were measured at 2 weeks following each injection via flow cytometry and ELISPOT 
respectively. A Plot of Her-2-specific IFN-γ-producing T cells in ELISPOT of spleens from immunized 
TIEG1 KO and wild type mice, (*p value shown for Kruskall-Wallis test). B Plot of anti-Her-2 IgG antibody 
levels in flow cytometry-analyzed sera from immunized TIEG1-/- and wild type mice. 

 

 

3.5 Deficient IgG1 subclass antibody production and impaired switch to subclass 

IgG2c in Her-2 DNA vaccination of TIEG1-/- mice 

     Given that the IgG response to Her-2 DNA vaccination was impaired in TIEG1-/- 

mice, we further investigated weather this disparity was due to different contributions 

among the IgG subclasses. We measured levels of IgG1, IgG2c and IgG3 in the sera of 

the vaccinated mice by flow cytometry using labeled secondary antibodies specific for 

each subclass. (Mice of the C57Bl/6 strain have only the c version of the IgG2 gene). 

Given that the purified commercial anti-Her-2 antibody (Ab-5) used to construct the 

standard curve is an IgG1, we could calculate the real IgG1 serum concentrations, 
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whereas the other IgG subclasses could only be measured as relative fluorescence 

intensities.  

     IgG1 was the subclass that appeared earliest in the anti-Her-2 IgG response in both 

the TIEG1-/- and wild type strains (Fig. 3.5 A). In keeping with the trend observed in 

total IgG (Fig. 3.4 B), IgG1 levels were significantly lower in TIEG1-/- mice starting with 

the first vaccination and continuing to stay impaired for the rest of the experiment. 

Levels of IgG2c were negligible after the first and second vaccinations for both the 

TIEG1-/- and wild type groups, indicating that a switch to this subclass happens in later 

stages of Her-2 DNA vaccination (Fig. 3.5 B). Indeed IgG2c showed a strong response 

in wild type mice after the third vaccination. However, this increase was almost absent 

in the TIEG1-/- group indicating an inability of TIEG1-/- mice to switch to production of 

an antibody of a different subclass. IgG3 is a relatively minor component of the IgG 

response and its levels in our sera were negligible (data not shown). In conclusion, 

lower IgG levels in TIEG1-/- mice are due to an impaired IgG1 response as well as a 

later inability to switch on production of IgG2c. 
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A  anti-Her-2 IgG subclass 1 antibody                        B  anti-Her-2 IgG subclass 2c antibody 

                                 

 

Figure 3.5 Impaired anti-Her-2 IgG response in TIEG1-/- mice vaccinated with Her-2 DNA is due to lower 
initial IgG1 levels and a later inability to switch on IgG2c production. Sera from mice in Figure 3.4 were 
analyzed by flow cytometry for anti-Her-2 IgG subclass 1 and 2c antibody. Shown are plots of anti-Her-2 
antibody levels in sera of immunized TIEG1-/- and wild type mice for (A) IgG1 and (B) IgG2c subclasses.  

 

3.6 Normal B cell numbers and in vitro B cell proliferation in TIEG1-/- mice 

     Although iTreg-deficient TIEG1 knockout mice had a superior IFNγ T cell response to 

both allogeneic splenocyte and Her-2 DNA and tumor cell vaccination, this did not also 

translate to a stronger antibody response. In fact we observed severely impaired 

antibody production in the case of DNA vaccination. In order to elucidate the 

mechanism behind this observation we began to investigate whether TIEG1-/- B cells 

have intrinsic defects that are unrelated to the action of iTreg. We first checked B cell 

levels in naïve mouse spleens and a collection of lymph nodes (inguinal and mesentery) 

as these organs are major resting stations for B cells in the body. Freshly collected and 

untreated TIEG1-/- and wild type spleen and lymph node cells were stained with 

antibody to CD19, a pan-B cell surface marker and activating receptor. Flow cytometry 
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analysis revealed that B cell counts in TIEG1-/- mice were not different than those in 

wild type mice as percentage of total cells (Fig. 3.6 A). Thus B cells in TIEG1-/- mice 

appear to be present at adequate levels relative to other cell types in the spleen and 

lymph nodes. We next tested B cell stimulation in spleen and lymph nodes via PMA 

(Phorbol Myristate Acetate) + Ionomycin treatment in vitro. These molecules in 

combination act as inducers of cell activation and proliferation by stimulation of Protein 

Kinase C by PMA and increase of intracellular Ca2+ levels by Ionomycin. A 48-hour 

stimulation of whole spleen and lymph node cell populations from both TIEG1-/- and 

wild type mice increased B cell levels as percentage of total cells in both groups, but no 

difference between the groups was observed (Fig. 3.6 B). In conclusion, B cells in 

TIEG1-/- mice have adequate counts and they proliferate normally in vitro in response 

to a PMA + Ionomycin stimulation, thus these factors cannot explain the impaired 

antibody production we observed in our vaccination. 

      A  B cell levels in naïve mice                         B  B cells in PMA+Ionomycin stimulation 

                  

            
Figure 3.6 In vivo B cell count and in vitro B cell proliferation after PMA+Ionomycin stimulation. Antibody 
surface staining and flow cytometry measurement of (A) CD19+ cells (B cells) from spleens and lymph 
nodes of naïve TIEG1-/- and wild type mice as % of total cells, (B) CD19+ cells (B cells) as % of total 
cells after stimulation of spleen and lymph node whole cell populationsfrom naïve TIEG1-/- and wild type 
mice with PMA (10 ng/ml) + Ionomycin (500 ng/ml) for 48 hrs. 
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3.7 TIEG1-/- mice have normal levels of natural Treg but more resilient Myeloid-

Derived Suppressor Cells 

     Given that TIEG1 is involved in immune suppression, we investigated whether other 

aspects of the suppressive arm of the immune system were affected in TIEG1 knockout 

mice. As natural Treg (nTreg) are by far the most abundant regulatory T cells in naïve 

animals, we measured nTreg levels in mouse spleens. Freshly collected and untreated 

TIEG1-/- and wild type spleen cells were surface stained as before with antibodies to 

CD4 and CD25 and underwent overnight membrane permeabilization and intracellular 

staining for the Treg transcription factor Foxp3. Flow cytometry analysis revealed that 

Foxp3+ cell counts in naïve TIEG1-/- mice were not different than those in wild type 

mice as percentage of CD4+ cells (Fig. 3.7 A, B) which had also been shown before by 

Venuprasad et al65. Furthermore Foxp3+ cells were depleted equally well by treatment 

with the anti-CD25 antibody PC61 with counts in both TIEG1-/- and wild type spleens 

being reduced by over 50%. Thus no difference in nTreg levels was present in TIEG1-/- 

mouse spleens in naïve mice and after CD25 depletion. 

    A  Foxp3+ spleen cells in naïve mice                       B  Representative dot plots of Foxp3+ spleen cells 
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            C  Spleen  MDSC                                              D  Representative dot plots of spleen MDSC 

                                                                                                                                  post PC61 depletion 

            

 

 

E  MDSC in PMA+Ionomycin stimulation 

 
 

Figure 3.7 TIEG1-/- have normal levels of Foxp3+ cells but more resilient MDSC. TIEG1-/- and wild type 
mice were depleted with 0.5 mg anti-CD25 (clone PC61) i.p. twice, one week apart. Intracellular and 
surface markers were measured with flow cytometry (A) Plot and (B) representative dot plot of Foxp3+ 
cells as % of CD4+ T cells in spleens of TIEG1-/- and wild type mice before and 2 weeks post PC61 
treatment (C) Plot and (D) representative dot plot of CD11b+ Ly6G+ cells (MDSC) as % of total cells in 
spleens of TIEG1-/- and wild type mice before, 2 weeks and 4 weeks post PC61 treatment. E CD11b+ 
Ly6G+ cells (MDSC) as % of total cells after stimulation of spleen whole cell populations from naïve 
TIEG1-/- and wild type mice with 10 ng/ml PMA + 500 ng/ml Ionomycin for 48 hrs. 
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     Next we tested whether Myeloid-Derived Suppressor Cells (MDSC), the other 

component of the suppressive immune system was normal in TIEG1-/- mice. Freshly 

collected and untreated TIEG1-/- and wild type spleen cells were stained for the MDSC 

surface markers CD11b and Ly6G (Gr-1). Flow cytometry analysis revealed that MDSC 

counts in naïve TIEG1-/- mice were not statistically different than those in their wild type 

counterparts as percent of total cells, although the knockout group showed a large 

degree of variability. Treatment with the CD25-depleting antibody PC61 also showed 

decreased levels of MDSC at two and four weeks after depletion in wild type mice. This 

was possibly due to depletion of Treg as these cells are known to cooperate with MDSC 

in a mutually beneficial relationship. Interestingly however, MDSC in TIEG1-/- mice 

maintained their count to pre-depletion levels without showing any reduction in 

association with decreasing nTreg (Fig. 3.7 C, D). Furthermore, a 48-hour PMA + 

Ionomycin stimulation of whole spleen cell populations from TIEG1-/- and wild type mice 

boosted MDSC levels as percentage of total cells in both groups but the knock out 

group showed a greater increase (Fig. 3.7 E). Thus Myeloid-Derived Suppressor Cells 

in TIEG1-/- mice appear to be more resilient and eager to proliferate upon PMA + 

Ionomycin stimulation. 

 

 

3.8 Comparable overall antitumor immune response in TIEG1-/- and wild type 

mice 

     In order to test whether absence of TIEG1/iTreg had an effect on antitumor immunity 

we tested tumor growth in vaccinated TIEG1-/- and wild type mice. To mimic a system 
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where a tumor associated antigen such as the human oncoprotein Her-2 is tolerated by 

the immune system as self (similar to a human patient with Her-2+ cancer), we used a 

human Her-2 transgenic (Tg) line of mice generated in our lab. In these mice, 

expression of the Her-2 transgene is under the control of the whey acidic protein (WAP) 

promoter67. We first generated mice that are both TIEG1 knock out and Her-2 Tg by two 

rounds of breeding of TIEG1-/- mice with Her-2 Tg heterozygous mice (both of C57Bl/6 

genetic background) as shown in Fig. 3.8 A. Mice were genotyped by TIEG1 and Her-2 

PCR and knock out-transgenic offspring were selected to test the antitumor response 

with Her-2 Tg mice as control (Fig. 3.8 B). 

     In order to induce an adequate immune response to a self antigen such as Her-2 in 

transgenic mice it is necessary to temporarily deplete nTreg prior to DNA vaccination. 

TIEG1 KO Her-2 Tg mice and Her-2 Tg controls were injected i.p. with 0.5 mg anti-

CD25 (PC61) antibody twice with a 7 day interval between treatments (Fig. 3.8 C). 

Three days after the second injection mice were started on a vaccination scheme with 

pE2N plasmid which codes for a hybrid fusion between human Her-2 and its rat 

homologue neu as well as pGM-CSF plasmid as in the earlier vaccination experiment. 

50 µg DNA of each plasmid was delivered via i.m. injection in the hamstring region and 

electroporation for 3 times at 2 week intevals as described earlier. 10 days after the 

third vaccination mice were challenged with 2x105 E0771/Her-2 cells, a mouse C57Bl/6 

tumor line that has been transfected to express Her-2 thus mimicking a Her-2 positive 

malignancy. By this time the effect of PC61 on CD25+ cells is over and CD25+ iTreg 

can be normally converted in wild type mice but are unable to do so in TIEG1 knock 

outs. Tumor growth was measured over the next several weeks at 3-7 day intervals. 
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A  Genetic breeding scheme to generate TIEG1-/- Her-2 Tg mice                B  PCR genotyping 

 

                          

 

 

 

C  Experimental time scheme 
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D  Tumor volume 

 

       

 

Figure 3.8 TIEG1-/- mice have a comparable antitumor immune response to wild type mice. A TIEG1 KO 
Her-2 Tg mice were generated by two rounds of breeding starting with TIEG1-/- and Her-2+/- mice to 
make TIEG1-/- Her2+/- offspring. B Pups were screened separately by PCR for the TIEG1 KO allele as 
described in Figure 3.1 and for the Her-2 transgene (94oC x 30 sec denaturation, 65oC x 1 min annealing 
and 72oC x 1 min extension, repeated for 33 cycles). C TIEG1 KO Her-2 Tg mice (and Her-2 Tg controls) 
were depleted with 0.5 mg anti-CD25 (clone PC61) i.p. twice, one week apart. 3 days later they started 
Her-2 DNA vaccination with 50 µg of pE2N (human Her-2 - rat neu hybrid) and pGM-CSF (Granulocyte 
Monocyte Colony-Stimulating Factor) plasmid DNA each via i.m. injection and electroporation 3 times at 
2-week intevals. 10 days later mice were challenged with 2x105 E0771/Her2 tumor cells at the flank and 
tumor size was measured at 3-day or weekly intervals after that. D Tumor volume in mm3 (log scale) 
calculated as the product of tumor width2 x length x 1/2, showed no major difference between TIEG1-/- 
and wild type mice. 

 

     Initially tumors became palpable and grew more slowly in TIEG1-/- mice compared 

to wild type controls up to the third week post challenge when the tumor burden in these  

mice was smaller than in the wild type group in a statistically significant manner (Fig. 3.8 

D). After this point, tumor growth in TIEG1 -/- mice accelerated and caught up with that 

in control mice and the two groups remained not different statistically for the rest of the 

experiment. The slight advantage in initial antitumor immune response to Her-2 DNA 

vaccination that we observed in TIEG1-/- mice, possibly due to absence of iTreg, may 

have been erased later by inadequate anti-Her-2 antibodies and perhaps greater 
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immune suppression by Myeloid-Derived Suppressor Cells in these mice as was shown 

earlier. In conclusion, TIEG1-/- mice were not able to mount a stronger overall antitumor 

immune response. 

 

3.9 A selection process yielded a sub strain of TIEG1-/- mice with a more severely 

impaired antibody response 

     Although TIEG1 KO mice had a generally stronger T cell response, as noted earlier 

we observed a greater degree of variability in these mice compared to their wild type 

counterparts. An analysis of the earlier Her-2 DNA vaccination experiment showed that 

strong IFNγ response in individual mice did not correlate with excessively impaired 

antibody production in the same animal (data not shown). A possible explanation for the 

variability in T cell response could be genetic factors unknown to us. For this reason we 

sought to select for TIEG1-/- mice that have a particularly robust T cell response to DNA 

vaccination. Given that the splenectomy we perform in mice in order to obtain cells for 

our ELISPOT assay is a terminal procedure, we used inguinal lymph nodes obtained by 

survival surgery. Mice were vaccinated similarly to earlier experiments with 50 µg DNA 

each of pE2TM + pGM-CSF delivered via i.m. injection in the hamstring region followed 

by electroporation for 3 times at 2 week intevals. T cell response was measured at 2 

weeks following the third vaccination via ELISPOT as before (Fig. 3.9 A). One male and 

two females with the strongest IFNγ response (data not shown) were selected for 

breeding. Offspring of the selected mice as well as non-selected TIEG1-/- and wild type 
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controls underwent Her-2 DNA vaccination according to the same scheme as above, 3 

times at 2-week intervals.  

 

A  Selection scheme to generate strong                 B Her-2 specific IFN-γ-producing T cells in spleen 

             TIEG1-/- T cell responders  

          

                                                                C  anti-Her-2 antibody                      

 

Figure 3.9 A selection process yields a sub strain of TIEG1-/- mice with more severely impaired antibody 
response. A Selection scheme for strong TIEG1-/- T cell responders. TIEG1-/- mice were vaccinated with 
50 µg of pE2TM (Her-2 extracellular and transmembrane domains) and pGM-CSF (Granulocyte 
Monocyte Colony-Stimulating Factor) plasmid DNA each via i.m. injection and electroporation 3 times at 
2-week intervals. Inguinal lymph nodes were collected via survival surgery and Her-2 ELISPOT was 
performed on lymph node cells. One male and 2 females with the strongest response were bred and the 
offspring (as well as regular non-selected TIEG1-/- and wild type controls) were vaccinated with Her-2 
DNA three times at 2-week intevals as above. Her-2-specific antibody and T cell responses were 
measured at 2 weeks following each vaccination via flow cytometry and ELISPOT respectively. B IFNγ 

response of splenocytes (after 3 vaccinations), stimulated with Her-2-expressing TC-1/E2 (dark bars) and 
control TC-1 cells (gray bars) as well as unstimulated media (Med) (open bars). Selected TIEG1-/- mice 
do not show a superior T cell response compared to non-selected mice. C Selected TIEG1-/- mice have a 
severely impaired antibody response after 1 and 2 vaccinations. 



                                 

 

49 

 

 

     As observed earlier, TIEG1-/- mice as a whole had a stronger T cell response than 

wild type controls (Fig. 3.9 B). Selected TIEG1-/- mice however, did not show any 

superiority in their T cell response compared to the non-selected, knockout group. In 

addition, the variability in IFN-γ T cell response in the selected group seemed to be just 

as great among the non-selected mice. Interestingly however, selected mice had 

severely impaired levels of anti-Her-2 IgG that continued to stay almost at baseline for 

the duration of the experiment (Fig. 3.9 C). That the selection process yielded mice with 

almost inexistent antibody response to Her-2 DNA vaccination was unlikely to be due to 

the selection criteria for strong T cell response. As mentioned earlier, strong IFNγ 

response did not correlate with low IgG levels in individual mice. Furthermore, as 

mentioned above, the selected pups themselves did not show a superior ELISPOT 

response. Earlier in the project we identified a group of TIEG1-/- mice with particularly 

low antibody response to DNA vaccination. We believe that the selection process 

inadvertently yielded TIEG1-/- mice with more severely impaired antibody response. 
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CHAPTER 4 

DISCUSSION 

 

     In this study we tested tumor growth and immune response to various antigens and 

immunization methods in mice lacking the TGF-β-Inducible Early Gene 1 (TIEG1). 

These mice have normal development and lifespan and showed no signs of disease. 

One important immune system defect in TIEG1-/- mice however is their inability to 

convert naïve CD4+ T cells into inducible regulatory T cells (iTreg) with immune 

suppressive function under the action of the cytokine TGF-β. This conversion happens 

normally during an immune response and is an important one among the few immune 

suppressive mechanisms an organism employs in order to prevent immune-mediated 

tissue damage. Since many suppressive effects of Treg are geared toward T cells 

directly or indirectly (via antigen presenting cells), we tested T cell INFγ production in 

response to allogeneic splenocytes, Her-2 expressing tumor cells and Her-2 DNA 

vaccine. T cells in TIEG1-/- mice responded more strongly to all three immunizations. 

This was in line with our hypothesis that iTreg are important in keeping these immune 

responses in check and their absence will allow greater activation of T cells. Upon 

encountering antigen such as various MHC molecules or Her-2 fragments, antigen 

presenting cells will travel to lymph nodes where they will interact with T cells that have 

receptors specific for these antigens normally present in the T cell repertoire. How many 

and how strongly T cells will be activated and will proliferate depends in part on the 

effector or suppressive character of the local microenvironment which is determined by 
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a variety of cell types and the cytokines they produce. We showed that after a few 

immunizations, mice lacking iTreg allowed a more robust specific effector T cell 

activation and proliferation without any observable adverse effects. It is likely that the 

IFNγ-producing T cells we detected in our ELISPOT assay are from a mixture of CD4+ 

(helper) and CD8+ (cytotoxic) cells since the antigen is probably both presented by our 

APC to CD8+ cells via MHC I as well as released in the medium where it can be picked 

up by native APC among the mouse splenocytes and presented to CD4+ cells via MHC 

II. Of note, although the T cell response was generally higher in TIEG1-/- mice, there 

was a great variability in the response in all three types of immunization with a few mice 

responding very weakly. In fact, although the T cell difference showed strong statistical 

significance for the allogeneic immunization, the same difference was not 

straightforward to establish statistically in Her-2 DNA vaccination due to this variation. 

Out of two statistical tests employed, student’s t-test and the Kruskall-Wallis test, only 

the latter yielded a p-value of less than 0.05 in the case of Her-2 DNA vaccination. We 

saw however that the great majority of TIEG1-/- mice had levels of Her-2-specific IFNγ-

producing T cells in their spleens that were much higher than those in the wild type 

group. 

     If absence of iTreg made a difference in T cell response, the effect on B cells was 

not as straightforward. The antibody levels we observed in response to the cell-based 

immunizations with allogeneic splenocytes and Her-2 expressing tumor cells were not 

higher in TIEG1-/- mice compared to wild type controls. Specific IgG levels in the two 

groups were in fact equivalent. In the case of DNA vaccination we observed an antibody 

response that was actually inferior in TIEG1-/- mice. Furthermore, we showed that this 
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lower IgG concentration in TIEG1-/- sera was due to an initial impaired IgG1 subtype 

response as well as an inability to switch to IgG2c after a few rounds of vaccination. 

Deficiency in iTreg conversion is unlikely to be responsible for any of these observations 

regarding the B cell response in TIEG1-/- mice. As mentioned previously, the first step 

for B cell activation and eventual antibody production is encounter with antigen. In 

respect to B cells, antigens can be T cell independent (T-I) or -dependent (T-D)22. A T-I 

antigen, usually a bacterial cell wall polysaccharide with many repeating units (called a 

Type 2 T-I antigen), can crosslink many B cell receptors on the cell surface and does 

not require further help. A T-D antigen, usually of protein origin, in addition to 

recognition by the BCR, also requires processing and presentation by the B cell to a 

CD4+ T helper cell with TCR specific for the same antigen. The three methods of 

immunization we performed will eventually produce protein antigens that will require 

CD4+ T cell help and are thus T-D antigens. As observed, the immunization-induced 

antigen-specific T cells in TIEG1-/- mice were more abundant than in wild types. This 

would argue for a stronger B cell response and not an equal or weaker one, which is 

what we observed. In addition, the inability of the TIEG1-/- humoral immune system to 

later switch to IgG2c, an IgG subclass associated with a Th1 response in mice, also 

argues against our observations. Th1-type responses are orchestrated by CD4+ T cells 

that elaborate cytokines such as IFNγ which was abundant in our T cell response to 

Her-2 DNA vaccination, especially later in the experiment. Thus an explanation for our 

defective antibody response based on ineffective T cell help and iTreg deficiency 

becomes implausible. 
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    The observed deficiency in antibody production indicates rather that TIEG1 might be 

involved in other cellular pathways intrinsic to the B cell response. Since we observed 

no abnormalities in in vivo B cell numbers or in vitro pan-stimulation via PMA + 

Ionomycin, we looked for reported effects of TIEG1 on B cells in literature that were 

previously unknown to us. A report by Rian et al.68 showed that TIEG1 is temporally 

expressed during B cell development with high levels in early B and Pro-B cells but 

undergoes a marked downregulation thereafter, namely in the pre-B and immature B 

cell stages. As mentioned earlier, TGF-β and TIEG1 have antiproliferative effects. In 

fact the above study showed that TGF-β/TIEG1 stimulation or ectopic overexpression in 

pre-B acute lymphoblastic leukemia (ALL) cells inhibited their proliferation and allowed 

them to escape chemotherapy that targets dividing cells. Thus, a tight regulation of 

TIEG1 expression in specific stages of B cell lymphopoiesis is necessary. The absence 

of TIEG1 in our knock out line may interfere with B cell development and be responsible 

for our findings in antibody levels. Furthermore, Rian et al. implicated in this process the 

transcription factor Id3 whose mRNA induction parallels that of TIEG169. Id3 is one of 4 

members of the Id proteins (Inhibitors of Differentiation) which are part of the basic-

helix-loop-helix (bHLH) family of transcription factors. Id proteins dimerize with the other 

family members (bHLH and E-proteins) and prevent them from acting as transcription 

activators70. Id3 is indeed linked to TIEG1 by the fact that a minor variant of TIEG1 

called EGRα (or EGR1), a gene that uses an alternative exon 1 via a different 

promoter71 induces expression of Id372. Interestingly, a study of Id3-/- mice by Zhuang 

et al. revealed defects in B cell response similar to our observations in the TIEG1-/- 

line73. Thus, although Id3-/- mice had normal B cell numbers (as did TIEG1-/- mice), 
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they showed reduced levels of IgG1 and IgG2a in naïve sera. These mice had a 

severely impaired response to a Type 2 T-independent antigen in all antibody classes 

and IgG subclasses. More importantly to our project Id3-/- mice showed impaired ability 

to switch to IgG2a (another version of IgG2c) and IgG3 in response to a T-dependent 

antigen. In vitro, their B cells showed proliferation defects in response to BCR 

stimulation (unless it was delivered in conjunction with IL-4) but they had normal 

proliferation with PMA + Ionomycin and other generic non-BCR stimulants as did 

TIEG1-/- B cells. This indicates that defects in the TIEG1/EGR1-Id3 pathway could be 

responsible for the abnormal antibody responses we observed. 

     The fact that absence of TIEG1 did not necessarily cause a defective antibody 

response in the two cell-based immunizations seems to contradict the above argument. 

One explanation could be that these mice were immunized with rather large doses of 

allogeneic spleen cells or Her-2 expressing tumor cells (3-5x106/mouse). Differences in 

strong antibody responses may not be detectable with our flow cytometric method and 

may require analysis of further diluted serum samples with other techniques such as 

ELISA. Another explanation could be that defective B cell responses in Her-2 DNA-

vaccinated TIEG1-/- mice are due to factors intrinsic to DNA vaccination. A DNA-

induced immune response requires cross-presentation by a special kind of antigen 

presenting cell among other features typical for DNA vaccination and TIEG1 could be 

involved in pathways governing this mechanism.  

     A direct effect of TIEG1 in T cells, independent of iTreg suppression, should not be 

discounted also. Specifically Id3, supposedly a downstream protein of TIEG1, is an 

inhibitor of GATA3, the Th2 transcription factor. Indeed, Id3-/- T cells have much higher 
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levels of GATA3 mRNA74. Th2 cytokines favor antibody over T cell responses, however 

this is inconsistent with our finding of lower antibody levels. The TIEG1/EGR1-Id3 

pathway was also shown to be important in the generation of γδ T cells75 (a special kind 

of TCR), however we did not observe any differences in γδ T cells in naïve mice (data 

not shown). Lastly, Id3 was also shown to be important in the generation of a Th17 

response74, however we did not test for these cells. Addressing these issues will require 

testing of TIEG1-/- B or T cells in vitro in response to various stimuli. Mice from the 

selected sub strain that have a severely impaired immune response should be used for 

these studies. 

     The fact that we did not observe a superior antitumor immune response in TIEG1-/- 

mice challenged with E0771/Her-2 cancer cells is perhaps not surprising considering 

the apparent pleiotropic and sometimes contradictory effects of absence of TIEG1 in 

immunity. The potent antitumor effects of the stronger T cell response we showed in the 

knockout mice could have been obviated by a weaker antibody response as well as 

higher levels of immunosuppressive MDSC, which we observed in these mice in vitro. In 

conclusion, targeting the transcription factor TIEG1 in cancer immunotherapy showed 

some encouraging features, but these were accompanied by other undesirable effects. 
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ABSTRACT 

MODULATION OF ANTI-TUMOR IMMUNE RESPONSE BY TGF-β-INDUCILE EARLY 
GENE 1 (TIEG1) 
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Major: Biochemistry and Molecular Biology 
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     Cancer immunotherapy has had limited clinical efficacy partly because regulatory T 

cells (Treg) suppress the immune response to tumor-associated antigens. Inducible 

regulatory T cells (iTreg), which are converted from naïve CD4 T cells by TGF-β, an 

abundant cytokine in the tumor microenvironment, may contribute to this immune 

suppression. Induction of Foxp3 by TGF-β is mediated by the transcription factor TIEG1 

and abrogation of this protein prevents Foxp3 expression.  We are testing the 

hypothesis that blockade of TIEG1 to prevent iTreg conversion will enhance immune 

response in DNA vaccination to the tumor associated antigen Her-2. Wild type and 

TIEG1 knockout mice in C57BL/6 background were immunized with three different 

antigens, then immune responses were compared. In TIEG1-/- mice, immunization with 

allogeneic spleen cells resulted in a stronger T cell response with comparable levels of 

antibody.  Similarly, Her-2-expressing irradiated tumor cells induced a stronger anti-Her-

2 T cell response in TIEG1-/- mice, without a significant difference in antibody levels. 

DNA vaccine encoding human Her-2 also induced a stronger T cell response but with 
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reduced IgG antibody titers specifically in IgG1 and deficient switching to IgG2c. B cells 

in TIEG1-/- mice had adequate counts in vivo and they proliferated normally in vitro in 

response to PMA + Ionomycin stimulation. Foxp3+ cells had adequate numbers in 

TIEG1-/- mice whereas Myeloid Derived Suppressor Cells had stronger proliferation to 

PMA + Ionomycin stimulation. Initially tumors grew more slowly in TIEG1-/- mice but the 

difference disappeared later. A new sub strain of TIEG1-/- mice was derived that has 

similar T cell response but more severely impaired antibody response. Together, these 

data suggest an amplified T (but not B) cell response in TIEG1-/- mice, indicating 

pleiotropic immune modulating effects of TIEG1. 
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