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Limitations Of The Analysis Of Variance 
 

Phillip I. Good    Cliff Lunneborg 
           Information Research          Department of Statistics 
          Huntington Beach, C.A.                          University of Washington 
 
 
Conditions under which the analysis of variance will yield inexact p-values or would be inferior in power 
to a permutation test are investigated. The findings for the one-way design are consistent with and extend 
those of Miller (1980). 
 
Key words: Analysis of variance, permutation tests, exact tests, robust tests, one-way designs, k-sample 
designs. 
 
 

Introduction 
 
The analysis of variance has three major 
limitations: 
 

1. It is designed to test against any and all 
alternatives to the null hypothesis and 
thus may be suboptimal for testing 
against a specific hypothesis. 

 
2. It is optimal when losses are 

proportional to the square of the 
differences among the unknown 
population means, but may not be 
optimal otherwise. For example, when 
losses are proportional to the absolute 
values of the differences among the 
unknown population means, expected 
losses would be minimized via a test 
that makes use of the absolute values of 
the differences among the sample 
means; see, for example, Good (2005). 
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3. It is designed for use when the 
observations are drawn from a normal 
distribution and though it is remarkably 
robust, it may not yield exact p-values 
when the observations come from 
distributions that are heavier in the tails 
than the normal. Even in cases when the 
analysis of variance yields almost exact 
p-values, it may be less powerful than 
the corresponding permutation test when 
the observations are drawn from non-
normal distributions under the 
alternative. 

 
The use of the F-distribution for 

deriving p-values for the analysis of variance is 
based upon the assumption of normality; see, for 
example, the derivation in Lehmann (1986). 
Nevertheless, Jagers (1980) shows that the F-
ratio is almost exact in many non-normal 
situations. 

The purpose of the present note is to 
explore the conditions under which a 
distribution would be sufficiently non-normal 
that the analysis of variance applied to 
observations from that distribution would be 
either inexact or less powerful than a 
permutation test.  
    
Findings: General Hypotheses 

When the form of the distribution is 
known explicitly, one often can transform the 
observations to normally-distributed ones and 
then apply the analysis of variance; see, Lehman 
(1986) for a list of citations. Consequently, the 
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present investigation is limited to the study of 
observations drawn from contaminated normal 
distributions, both because such distributions are 
common in practice and because they cannot be 
readily transformed. 

In R, examples of samples such 
distributions would include the following: 
 
 
rnorm(n,2*rbinom(n,1,0.3)) 
ifelse(rbinom(n,1,0.3),rnorm(n,0.5), 
   rnorm(n,1.5,1.5)) 
 

 
for both of which the analysis of variance was 
exact in 1000 simulations of an unbalanced 1x3 
design with 3, 4, and 5 observations per cell. 

Regardless of the underlying 
distribution, providing the observations are 
exchangeable under the null hypothesis, one can 
always make use of the permutation distribution 
of a test statistic to obtain an exact test. Let Xij 
denote the jth observation in the ith cell of a 
one-way design. Eliminating factors from the F-
ratio that are invariant under rearrangement of 
the observations between cells, such as the 
within sum of squares that forms its 
denominator, a permutation test based on the F-
ratio reduces to a test based on the 

sum 2( )iji j
X∑ ∑ . It was this test that was 

used in head-to-head comparisons with the one-
way analysis of variance. 

When a 1x3 design was formed using 
the following code 
 
 
s1=rnorm(size[1],rbinom(size[1],1,0.3)) 
s2=ifelse(rbinom(size[2],1,0.3), 
   rnorm(size[2],0.5),rnorm(size[2],1.5,1.5))  
s3=ifelse(rbinom(size[2],1,0.3), 
   rnorm(size[3],1),rnorm(size[3],2,2)) 
 

 
the power of the analysis of variance and the 
permutation test based upon 1000 simulations 
were comparable for a balanced design with as 
few as three observations per cell (α=10%, 
β=22%). But for an unbalanced design with 3, 4, 
and 5 observations per cell, the permutation test 
was more powerful at the 10% level with 

β=30%, compared to 18% for the analysis of 
variance. 
 When a 1x4 design was formed using the 
following code: 
 
 
s0=rnorm(size[1],rbinom(size[1],1,0.5)) 
s1=rnorm(size[2],rbinom(size[2],1,0.5)) 
s2=rnorm(size[3],rbinom(size[3],1,0.5)) 
s3=rnorm(size[4],2 + rbinom(size[4],1,0.5)) 
 

 
the power of the analysis of variance and the 
permutation test were comparable for a balanced 
design with as few as three observations per cell 
(α=10%, β=57%). However, for an unbalanced 
design with 2, 3, 3, and 4 observations per cell, 
the permutation test was more powerful at the 
10% level with β=86%, compared with 65% for 
the analysis of variance. 
 If the designs are balanced, the 
simulations support Jagers (1980) result, that the 
analysis of variance is both exact and powerful, 
whether observations are drawn from a 
contaminated normal distribution, a distorted 
normal distribution (z=2*z if z>0), a censored 
normal distribution (z = -0.5 if z< -0.5), or a 
discrete distribution such as would arise from a 
survey on a five-point Likert scale. When the 
design is unbalanced, Jagers’ result does not 
apply, and the permutation test has superior 
power. The results confirm and extend the 
findings of Miller (1986). 
 
Findings: Specific Hypotheses 

When testing for an ordered dose 
response, the Pearson’s product moment 
correlation coefficient is usually employed as a 
test statistic with p-values obtained from a t 
distribution. Alternatively, the exact permutation 
procedure due to Pitman (1937) could be 
employed. In the simulations with contaminated 
normal distributions, it was found that the 
parametric procedure for testing for an ordered 
dose response was both exact (to within the 
simulation error) and as powerful as the 
permutation method. 

For testing other specific hypotheses, 
the permutation method may be preferable, 
simply because no well-tabulated parametric 
distribution  exists.  An  example  would  be  the  
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alternative that exactly one of the k-populations 
from which the samples are drawn is different 
from the others for which an exact test based on 

the distribution of .max | |k kX X− is readily 

obtained by permutation means. 
To further explore the possibilities, a 

copy of the code along with a complete listing of 
the simulation results is provided at 
mysite.verizon.net/res7sf1o/AnovPower.txt. (A 
manuscript assessing the robustness of the two-
way analysis of variance is in preparation.) 
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