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Confidence intervals must be robust in having nominal and actual probability coverage in close 
agreement. This article examined two ways of computing an effect size in a two-group problem: (a) the 
classic approach which divides the mean difference by a single standard deviation and (b) a variant of a 
method which replaces least squares values with robust trimmed means and a Winsorized variance. 
Confidence intervals were determined with theoretical and bootstrap critical values. Only the method that 
used robust estimators and a bootstrap critical value provided generally accurate probability coverage 
under conditions of nonnormality and variance heterogeneity in balanced as well as unbalanced designs. 
 
Key words: Effect size, confidence interval, trimmed means, Winsorized variance, noncentral distribution 
 
 

Introduction 
 
Estimating effect size (ES) and setting intervals 
for such estimates has become a requirement in 
many scientific journals as a result of the 
American Psychological Association’s (APA) 
Task Force on Statistical Inference (Wilkinson 
& APA Task Force on Statistical Inference, 
1999). Indeed, according to Thompson (2003, 
personal communication) at least 23 journals 
require authors to follow the recommendation 
put forth by the task force. 
 
 
James Algina (algina@ufl.edu) is Professor of 
Educational Psychology. His research interests 
are in applied statistics and psychometrics. H. J. 
Keselman (kesel@ms.umanitoba.ca) is Professor 
of Psychology. His research interests are in 
applied statistics. Randall D. Penfield 
(penfield@miami.edu) is Assistant Professor of 
Education. His research interests are in 
educational measurement and psychometrics. 

 Not surprisingly, there has been a 
renewed interest in ES estimates and 
accompanying confidence intervals (CIs). See, 
for example, Algina and Keselman (2003), Bird 
(2002), Cumming and Finch (2001), and Steiger 
and Fouladi (1997). 

Glass (1976) used a control group 
standard deviation (in a two-group problem) to 
standardize the difference between the group 
means. However, other values have been used to 
standardize the mean difference. For example, 
Hedges (1981) used the square root of the 
pooled variance, which is referred to as the 
pooled standard deviation. If the variance 
equality assumption is not met, then the standard 
deviation for either one of the groups could be 
used as the standardizer. In the context of 
comparing an experimental and control 
treatment, Glass, McGaw, and Smith (1981) 
recommended using the standard deviation for 
the control group, but pointed out that the 
experimental group standard deviation could be 
used. Glass et al. (1981) presented an example 
demonstrating that the value of the ES estimate 
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can vary depending on which group’s standard 
deviation is used as the standardizer. As well, 
they point out that both ES estimates would be 
correct. As Glass et al. (1981) noted, “These 
facts are not contradictory; they are two distinct 
features of a finding which cannot be expressed 
by one number” (p 107). 

Thus, Olejnik and Algina (2000) noted 
that when the equality of variance assumption is 
violated, the researcher will have to select one 
standard deviation that expresses the contrast 
(i.e., the effect) on the scale the researcher 
imagines is most important, or will have to 
report the mean difference standardized by 
several standard deviations and discuss the 
implications of these ESs. Before turning to 
methods that can be used when variances appear 
to be heterogeneous, it is important to point out 
that heterogeneity of variance can occur due to 
some additional factor in the data that is not 
modeled in the analysis. It is better to model 
such factors than to uncritically use methods that 
are appropriate for heterogeneous variances. 

When the population variances are 
assumed to be equal for the two levels of the 
factor, the population ES (PES) is 

 

2 1
Pooled

µ µδ
σ
−=  

 
where jµ  is the population mean for level j and 

σ  is the population standard deviation, which is 
assumed to be equal for the two levels of the 
factor. The PES can be estimated by  
 

2 1ˆ
Pooled

Pooled

Y Y

S
δ −=  

 
where jY  ( )1,2j =  is a treatment level group 

mean, jn  ( )1 2n n N+ =  is the sample size for 

the jth group, and PooledS  is the pooled standard 
deviation. 

According to Steiger and Fouladi 
(1997), a CI for the PES, which is exact under 
the assumptions for the independent samples t 
test, can be derived by using the noncentral t 
distribution with N – 2 degrees of freedom. 
First, a CI for the noncentrality parameter 

1 2 2 1 1 2

1 2 1 2
Pooled

n n n n

n n n n

µ µλ δ
σ
−⎛ ⎞= =⎜ ⎟+ +⎝ ⎠

 

 
is obtained. Then, by multiplying the limits of 
the interval for λ  by the inverse of 
 

1 2

1 2

n n

n n+
 

 
a CI for Pooledδ  is obtained. The lower limit of 
the CI for λ  is the noncentrality parameter for 
the noncentral t distribution in which the 
calculated t statistic 
 

1 2 2 1

1 2 Pooled

n n Y Y
t

n n S

⎛ ⎞−= ⎜ ⎟+ ⎝ ⎠
 

 
is the 1 2α−  quantile. For example, if 

2.131t =  and 2 15N − = , the lower limit of the 
95% CI for λ is zero, because 2.131 is the .975 
quantile of the t distribution with a noncentrality 
parameter equal to zero. The upper limit of the 

( )100 1 2 %α−  interval for λ  is the 

noncentrality parameter for the noncentral t 
distribution in which the calculated t statistic is 
the 2α  quantile of the distribution (See Steiger 
& Fouladi, 1997).  

The PES based on the standard 
deviation for the jth group is 

 

2 1
j

j

µ µδ
σ
−=  

 
and can be estimated by 
 

2 1ˆ
j

j

Y Y

S
δ −=  

 
where jS  is the square root of the usual 

unbiased sample variance. With this ES, the 
noncentral t-based interval for δ  is no longer 
correct. However, under the assumptions that the 
data  in  each group are normally distributed and 
all data are distributed independently, a 
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noncentral t-based approximate CI for δ j  can be 

derived. Thus, the CI does not assume equal 
variances, but the interval is based on normal 
distribution theory. This normality assumption is 
likely to be problematic because 2 1Y Y−  and jS  

are not distributed independently when the 
distribution is skewed for the jth treatment. For 
example, if the distribution is positively skewed 
for the first treatment, the sampling correlation 
between 2 1Y Y−  and 1S  will be negative. 

 Therefore, large values for 2 1Y Y−  will 

tend to be associated with small values for 1S  

and δ̂1  will tend to be positively biased. 
Moreover, the distribution theory used in 
deriving the CI will no longer apply. As a result 
the CI may not have the correct probability 
coverage. In fact, in an investigation of CIs for 
ESs in dependent samples designs, Algina, 
Keselman, and Penfield (2005a) showed that 
nonnormality has a negative impact on coverage 
probability for a noncentral t based approximate 
CI for jδ . 

 
Purposes of this article 
 Therefore, one purpose of the research 
was to investigate coverage probability for the 
noncentral t-based CI for δ j  when data are 

sampled in an independent samples design from 
a nonnormal distribution. Considering the 
prediction that the noncentral t-based CI for jδ  

is likely to be negatively impacted by 
nonnormality, a second purpose of the article 
was to investigate alternatives to the interval. 
 One reasonable alternative is to use the 
percentile bootstrap to construct a CI for jδ . A 

second alternative is to replace the least squares 

estimates in ˆ
jδ  with robust estimates. This 

approach was recommended by Algina et al. 
(2005a) in the context of CIs for jδ in repeated 

measures designs and by Algina, Keselman, and 
Penfield (2005b) in the context of CIs for δ in 
independent samples and is consistent with the 
observation in Wilcox and Keselman (2003) that 
the common population definition and sample 

estimate of ES (i.e., Pooledδ  and ˆ
Pooledδ  or jδ  and 

ˆ
jδ  for the two-group problem), based on least 

squares estimators, are not robust to distribution 
shape. That is, skewed distributions and 
distributions containing outliers can cause the 
PES value and its estimate to be grossly 
misleading (Wilcox, 2003, Sec 8.11). 

Accordingly, in place of ˆ
jδ  , the following is 

used 
 

2 1ˆ .642
j

j

t t
R

W

Y Y

S
δ

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (1) 

 
where tjY is the 20% trimmed mean for the jth 

group ( )1,2j =  and 2

jWS is the 20% Winsorized 

variance for group j. Twenty percent refers to 
the percentage trimmed from each tail. The 
constant .642 is the population value for the 
Winsorized standard deviation for a standard 
normal distribution for 20% trimming. (See 
Wilcox, 2003, for a justification of 20% 
trimming and computational definitions of the 
trimmed mean and Winsorized variance). For a 

normal distribution, both ˆ
jRδ and ˆ

jδ  converge to 

jδ  as the sample sizes increase. Probability 

coverage for a noncentral t-based CI and for a 
percentile bootstrap CI for 

jRδ  was investigated 

(defined later in equation (2)).  
 
A Noncentral t-Based CI forδ j  

If the variances are unequal, in a two-
group independent samples design, the 
population and sample ES is defined as 

 

2 1
1

1

µ µδ
σ
−

=  

and 
 

2 1
1

1

ˆ Y Y

S
δ −= , 

 
respectively. (The standard deviation for the 
second group could also be used. Glass et al. 
(1981) pointed out that these ESs provide 
different information.) 
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It is well known that 
if ( )~ ,1U N µ , ( )2~V kχ , and U and V are 

independently distributed, then  
 

( )~ ,
U

t k
V
k

µ  

 
where ( ),t k µ  is the noncentral t distribution 

with degrees of freedom k and noncentrality 
parameter µ . Using this result with 
 

2 1

2 2
1 2

1 2

Y Y
U

n n

σ σ
−=

+
 

 
and 
 

( ) 2
1

2
1

1 in S
V

σ
−

=  

 
then 
 

( )

2 1

2 2
1 2

1 2 2 1
12 2

1 2
12 2

1 1 2 1

~ 1,
1

Y Y

n n Y Y
t n

S
S

n n

σ σ

λ
σ

σ σ

−

+
−

= −
+

 

 
where 
 

2 1

2
2

1 2
1 2 1

1
n n

µ µλ
σσ
σ

−=
+

. 

 
If the estimate of λ is calculated as 
 

2 1 1

2 2
2 2

1 2 2
1 2 1 1 2 1

ˆ
ˆ

1 1

Y Y

S S
S

n n S n n S

δλ −= =

+ +
 

 

the noncentral t distribution, with 1 1n −  degrees 
of freedom, can be used to find a CI on λ . 
Specifically, the upper limit of a ( )100 1 %α−  

interval for λ  is the noncentrality parameter for 
the noncentral t distribution with 1 1n −  degrees 

of freedom in which λ̂  is the 2α  quantile of 
the distribution; the lower limit is the 
noncentrality parameter for the noncentral t 

distribution in which λ̂  is the ( )1 2α−  

quantile. Then, multiplying the lower and upper 

limit by
2
2

2
1 2 1

1 S

n n S
+ , an approximate CI for 1δ is 

obtained. The interval is approximate because 
the limits of the CI for λ  are multiplied by a 
random variable.  

To obtain an estimate of the robust ES, 

let .2 jn⎡ ⎤⎣ ⎦  indicate that .2 jn  is rounded down to 

the nearest integer, .2j jg n⎡ ⎤= ⎣ ⎦ , 2j j jh n g= − , 

and then let 
 

( ) 2

2
1

1
jj W

j
j

n S
S

h

−
=

−
�  

 
and 
 

( ) 2

2
1

1
jj W

j
j

n

h

σ
σ

−
=

−
�  

 
where 2

jWσ is the population Winsorized variance 

for treatment j. To obtain a CI for 
 

                         
1

1

2 1.642 t t
R

w

µ µδ
σ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
             (2) 

 
define 
 

 12 1

2 2
2 1 2

1 2 2
1 2 1 1 1 2 1

1 1 1
.642

1

Rt t
R

n
h h h h h

δµ µλ
σ σσ
σ σ

−= =
⎛ ⎞−+ +⎜ ⎟− ⎝ ⎠

�
�

�

�
�

(3) 

 



CONFIDENCE INTERVALS FOR AN EFFECT SIZE 6 

where tjµ  is the population trimmed mean. Also 

define 
 

12 1

2 2
2 1 2

1 2 2
1 2 1 1 1 2 1

ˆ
ˆ

1 1 1
.642

1

Rt t
R

Y Y

S n SS
h h S h h h S

δ
λ −

= =
⎛ ⎞−+ +⎜ ⎟− ⎝ ⎠

�
�

�

�
�

.  (4) 

 

The upper limit of a ( )100 1 %α−  interval for 

Rλ  is the noncentrality parameter for the 

noncentral t distribution, with 1 1h −  degrees of 

freedom, in which ˆ
Rλ  is the 2α  quantile of the 

distribution; the lower limit is the noncentrality 
parameter for the noncentral t distribution in 

which ˆ
Rλ  is the ( )1 2α−  quantile. An 

approximate CI for 
1Rδ  is obtained by 

multiplying the lower and upper limit by  
 

2
1 2

2
1 1 2 1

1 1
.642

1

n S

h h h S

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

�

�

. 

 
The interval is approximate for two reasons. 
First, when trimmed means and Winsorized 
variances are used, there is no guarantee that the 
noncentral t distribution is the appropriate 
distribution for calculating a CI for Rλ . Second, 
the interval is approximate because the limits of 
the CI for Rλ  are multiplied by a random 
variable.  
 The investigations of these intervals 
were carried out in three studies.  

 
Study 1 

Methodology 
 

Probability coverage of CIs for 1δ  and 
1Rδ  

based on the noncentral t distribution were 
investigated. It is important to recognize that 1δ  

and
1Rδ  are different parameters. When applied 

to normal distributions, the parameters will be 
equal, but otherwise will most likely be unequal. 
Thus, there is no attempt to compare the interval 
estimates of the 1δ and

1Rδ . 

Probability coverage was investigated 
for all combinations of the following three 
factors: 1 2 20n n= = to 100 in steps of 20, PESs 

( )
11  and Rδ δ  ranging from 0 to 1.6 in steps of .4, 

and population distribution (four cases from the 
family of g and h distributions). The nominal 
confidence level for all intervals was .95 and 
each condition was replicated 5000 times. 

The data were generated from the g and 
h distribution (Hoaglin, 1985). Specifically, four 
g and h distributions were chosen for 
investigation: (a) 0g h= = , a standard normal 
distribution; (b) .76g =  and .098h = − , a 
distribution with skew and kurtosis equal to that 
for an exponential distribution ( )1 22,  6γ γ= = ; 

(c) g 0=  and .225h = , a long-tailed symmetric 

distribution ( )1 20 and 154.84γ γ= = ; and (d) 

.225g =  and .225h = , a long-tailed skewed 

distribution ( 1 4.90 γ = and 2 4673.80γ = ). To 
generate data from a g and h distribution, 
standard unit normal variables ijZ  were 

converted to g and h distributed random 
variables via 

 

( ) 2exp 1
exp

2
ij ij

ij

gZ hZ
Y

g

− ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
when both g and h were non-zero. When g was 
zero 
 

2

exp
2

ij
ij ij

hZ
Y Z

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. 

 

ijZ  scores were generated by using RANNOR in 

SAS (SAS, 1999). For simulees in treatment 2, 
the 2iY  scores were transformed to 
 

               ( )2 2 2 1 1iPVR Y µ µ σ δ− + + ×           (5) 

 
where PVR is the ratio of the population 
variance for the transformed 2iY  scores to the 

variance of the 1iY  scores and was set equal to 4 
for all conditions in Study 1. The scores 
generated by using equation (5) were used in the 
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CI for 1δ . Additional levels of PVR were 

planned for investigation. Because the results for 
4PVR =  indicated poor probability coverage in 

some conditions and the focus should be to find 
intervals that work well in a wide variety of 
conditions, the intervals being estimated were 
dismissed.  

To facilitate reporting of results for the 
CI for 

1Rδ , the 2iY  scores were transformed to 

 

         ( ) 1

2 2 2 1.642
W

i t tPVR Y
σ

µ µ δ− + + .          (6) 

 
This method of generating the scores in 
treatment 2 results in

11 Rδ δ= . The CI for 
1Rδ was 

also investigated using equation (5) to generate  

2iY  scores, 
11 Rδ δ≠ . The general pattern of 

results was the same in the two sets of 
conditions. 

 
Results 

 
Estimated coverage probability for the two CIs 
are reported in Table 1 for the four g and h 
distributions, all sample size values, and all 
values of the PES (The CI for 

1Rδ is based on 2iY  

generated by using equation (6)). The results 
show that both CIs had estimated probability 
coverage near the nominal confidence level 
when the data were normally 
distributed ( )0g h= = , but both could have poor 

probability coverage when the data were 
nonnormal. As the PES increased, both CIs had 
increasingly worse coverage probability. 
Coverage probability appeared to be largely 
unaffected by sample size. 
 
Study 2 
 Both noncentral t-based CIs had good 
coverage probability when the data were normal 
despite the fact that both CIs are only 
approximately correct. However, both could 
have poor coverage probability when the data 
were nonnormal. Therefore, the use of a 
percentile bootstrap CI to construct an interval 
on 1δ was investigated.  

 

Methodology 
 

Probability coverage of a percentile bootstrap CI 
for all combinations of the following 

1 2 20n n= =  to 100 in steps of 20, population 
distribution (four cases from the family of g and 
h distributions), and 1δ  ranging from 0 to 1.6 in 
steps of .4 was investigated. In all conditions, 

4PVR = . The distributions from Study 1 were 
investigated and the data was generated by using 
the procedure described for Study 1. Because a 
CI for 1δ was being investigated, the data for 
treatment 2 were generated by using Equation 
(5). As in Study 1, 5000 replications were 
conducted for each condition combination. 600 
bootstrap replications were used. In all 
conditions, the nominal confidence level was 
.95. 
 

Results 
 

Estimated coverage probability for the bootstrap 
CI for 1δ  is reported in Table 2 for all sample 
size values and all levels of PES. The results 
show that the percentile CI for 1δ  can have poor 

coverage probability and therefore should not be 
used. These intervals were particularly poor 
when the sample size was small and 1δ  was 
large. 
 
Study 3 

The results indicate that each of the 
noncentral t-based and percentile bootstrap CIs 
for 1δ  and the noncentral t-based CI for 

1Rδ can 

have poor coverage probability with nonnormal 
data. Therefore, coverage probability for a 
percentile bootstrap interval for 

1Rδ was 

investigated.  
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Table 1. Estimated Coverage Probabilities for Noncentral t Distribution-Based CIs for 1δ  and 

1Rδ  

 
Note: 4PVR = . 
 

  .000g = , 

.000h =  
.000g = , 

.225h =  
.760g = , 

.098h = −  
.225,g =  

.225h =  

1δ  
1Rδ  

1δ  
1Rδ  

1δ  
1Rδ  

1δ  
1Rδ  

0.00 20 .954 .955 .954 .954 .943 .949 .956 .962 
 40 .959 .955 .955 .954 .948 .951 .957 .957 
 60 .954 .957 .956 .955 .947 .950 .954 .958 
 80 .953 .954 .952 .948 .949 .953 .951 .953 
 100 .954 .951 .955 .952 .948 .948 .952 .949 
          

0.40 20 .948 .950 .955 .955 .924 .932 .940 .954 
 40 .955 .952 .949 .951 .920 .925 .932 .952 
 60 .957 .953 .943 .951 .928 .928 .931 .943 
 80 .945 .943 .937 .952 .930 .932 .921 .948 
 100 .948 .946 .937 .953 .920 .926 .918 .944 
          

0.80 20 .949 .949 .936 .948 .900 .913 .906 .937 
 40 .948 .947 .927 .948 .894 .907 .891 .927 
 60 .952 .951 .919 .949 .895 .911 .874 .933 
 80 .949 .943 .915 .951 .895 .915 .872 .931 
 100 .953 .948 .913 .948 .893 .902 .859 .934 
          

1.20 20 .951 .943 .914 .940 .871 .890 .876 .925 
 40 .953 .943 .893 .941 .867 .892 .843 .925 
 60 .953 .948 .885 .940 .858 .894 .825 .922 
 80 .950 .939 .877 .938 .859 .887 .809 .920 
 100 .946 .940 .871 .933 .858 .886 .799 .914 
          

1.60 20 .956 .949 .883 .931 .836 .866 .837 .915 
 40 .948 .941 .862 .920 .836 .872 .802 .911 
 60 .953 .945 .843 .932 .831 .875 .773 .909 
 80 .948 .939 .836 .933 .823 .860 .764 .915 
 100 .947 .941 .834 .928 .830 .865 .749 .917 
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Methodology 
 

Probability coverage was investigated for all 
combinations of: sample size n1 = 20, 40, and 60 
in combination with 2 1 n n= and 2 1 20n n= + ; 
population distribution (four cases from the 
family of g and h distributions), various PESs, 

1
.00Rδ = , .40, .80, 1.20 and 1.60, and 

.25PVR = , .5, 1, 4, and 8. As in Study 2, 
0g h= = ,  .76g =   and  .098h = − ,  0g =   and      

.225h = ,   and   .225g =    and   .225h =    were 

 
 
investigated. Because a CI for 

1Rδ was being 

investigated, the data for treatment 2 were 
generated by using Equation (6). In all 
conditions the nominal confidence level was .95. 
As in the previous study, 5,000 replications and 
600 bootstrap replications were used. 
 

Results 
 

Table 3 contains estimated coverage 
probabilities for the percentile bootstrap CI for 
all conditions with 8PVR = . Estimated coverage  

Table 2. Estimated Coverage Probabilities for the Bootstrap Percentile CI for 1δ  
 

1δ  1 2n n=  .000g = , 

.000h =  
.000g = , 

.225h =  
.760g = , 

.098h = −  
.225,g =  

.225h =  
0.0 20 .936 .929 .920 .921 

 40 .942 .937 .939 .935 
 60 .939 .935 .935 .938 
 80 .948 .946 .935 .940 
 100 .945 .939 .940 .941 
      

0.4 20 .934 .922 .926 .915 
 40 .939 .929 .930 .928 
 60 .942 .935 .937 .932 
 80 .950 .941 .940 .933 
 100 .948 .936 .947 .931 
      

0.8 20 .931 .904 .915 .900 
 40 .934 .921 .928 .904 
 60 .943 .921 .933 .916 
 80 .945 .933 .940 .907 
 100 .944 .929 .938 .916 
      

1.2 20 .929 .882 .905 .862 
 40 .937 .901 .922 .874 
 60 .943 .905 .925 .884 
 80 .938 .918 .930 .880 
 100 .949 .913 .934 .892 
      

1.6 20 .926 .861 .883 .824 
 40 .940 .881 .911 .838 
 60 .945 .889 .908 .850 
 80 .943 .895 .927 .850 
 100 .942 .893 .927 .848 
      

Note: 4PVR =  
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Table 3. Estimated Coverage Probabilities for the Percentile Bootstrap CI for 

1Rδ  

 
Note. 8PVR = . 
 

 

1n , 2n  
 

1Rδ  
.000g = , 
.000h =  

.000g = , 
.225h =  

.760g = , 
.098h = −  

.225,g =  

.225h =  

20, 20 .00 .943 .945 .945 .950 
 .40 .950 .956 .954 .951 
 .80 .948 .955 .952 .954 
 1.20 .961 .964 .957 .966 
 1.60 .960 .966 .962 .960 
      

20, 40 .00 .949 .957 .949 .952 
 .40 .951 .954 .956 .958 
 .80 .953 .959 .951 .961 
 1.20 .967 .964 .958 .965 
 1.60 .959 .969 .957 .963 
      

60, 60 .00 .949 .947 .947 .948 
 .40 .953 .944 .943 .952 
 .80 .949 .950 .948 .957 
 1.20 .952 .951 .952 .949 
 1.60 .947 .959 .954 .958 
      

60 80 .00 .945 .952 .944 .950 
 .40 .952 .949 .946 .951 
 .80 .949 .959 .951 .959 
 1.20 .955 .954 .953 .956 
 1.60 .955 .961 .954 .953 
      

100,100 .00 .950 .948 .949 .947 
 .40 .947 .948 .953 .951 
 .80 .950 .946 .949 .957 
 1.20 .951 .953 .951 .952 
 1.60 .953 .956 .953 .956 
      

100,120 .00 .948 .955 .947 .948 
 .40 .939 .951 .948 .948 
 .80 .955 .949 .950 .948 
 1.20 .951 .947 .955 .955 
 1.60 .956 .960 .959 .959 
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probabilities for other values of PVR were not 
noticeably different from those in Table 3. Over 
the 120 conditions reported in Table 3, empirical 
coverage ranged from .939 to .969, with an 
average coverage value of .953. The results 
suggest coverage probability increased as 

1Rδ  

increased, but was largely unaffected by the 
sampled distribution and whether the sample 
sizes were equal.  

 
Conclusion 

 
Estimating the magnitude of a treatment effect 
has become a required mode of analysis for 
many scientific journals in the social and 
behavioral sciences as a result of 
recommendations made by the APA Task Force 
regarding statistical inference. Not surprisingly, 
issues related to estimating the magnitude of an 
effect have become of paramount interest to 
applied researchers. One issue is what standard 
deviation to use in the denominator of the ES 
statistic. That is, since Glass’s (1976), which 
used the control group’s standard deviation to 
standardize the mean difference, other 
approaches have been recommended. Hedges 
(1981) recommended using the pooled standard 
deviation when the variances are homogeneous. 
Glass et al. (1981) recognized that if 
homogeneity of variances is not a reasonable 
assumption, the standard deviation for either 
group could be used as the denominator. This 
applies regardless of whether one of the 
treatment groups is a control group. 

A second issue is how to use the ES 
measures to construct a CI. It is well known that 
when the pooled standard deviation is used in 
the denominator, CIs can be constructed by 
using the noncentral t distribution and will be 
exact when the scores are independently drawn 
from normal distributions and with equal 
variances. As shown in this article, an alternative 
interval based on the noncentral t distribution 
can be used when the standard deviation for one 
of the groups is used in the denominator, as 
would be done if Glass’s (1976) ES were used or 
if the recommendation of Glass et al. (1981) 
were used when the variances are not 
homogeneous. However, the theory underlying 
this interval assumes data that are normal in 

form, which implies that the numerator and 
denominator of the ES are independently 
distributed. Independence does not hold when 
the data for the group that contributes the 
standard deviation are skewed. Accordingly, the 
interval could not be recommended without first 
examining its operating characteristics under 
nonnormality 

As Wilcox and Keselman (2003) 
indicated, ES measures can be inaccurate when 
the data are drawn from nonnormal distributions 
because of the effects of nonnormality on means 
and standard deviations. Therefore, CIs 

calculated from a robust effect size ( )1

ˆ
Rδ in 

which trimmed means replace means and the 
square root of the Winsorized variance replaces 
the standard deviation were also investigated. 
An additional issue considered was whether one 
could obtain accurate probability coverage for 
CIs for ES when coverage was based on 
theoretically obtained critical values (i.e., based 
on the noncentral t distribution) or obtained 
through a bootstrapping method. This was an 
important issue because others have 
demonstrated the benefits of using bootstrapping 
methodology (See, e.g., Keselman et al., 2002). 

It this article, it was found that: (1) the 
classical approach, which divides the mean 
difference by a standard deviation from one 

group ( )1̂i.e., δ in combination  with the interval 

based on the noncentral t distribution had poor 
probability coverage when data were skewed, 
(2) the robust approach, which divides the 
difference of the trimmed means by the square 
root of the Winsorized variance from one group 

( )1

ˆi.e., Rδ in combination with the interval based 

on the noncentral t distribution also had poor 
probability coverage when data were nonnormal, 
(3) bootstrap CIs for 1δ  can perform poorly, and 

(4) the percentile bootstrap interval for 
1Rδ  was 

very little affected by nonnormality, providing a 
very good interval for 

1Rδ . 

An emphasis must be placed on the 
belief that it is important to estimate a robust 
parameter, that is, the robust PES, rather than the 
usual parameter of ES, when data are 
nonnormal. Researchers should be interested in 
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estimates of a parameter that is robust to 
conditions of skewness and outlying values. 
Inferences pertaining to robust parameters may 
be more valid than inferences pertaining to the 
least squares derived parameters when dealing 
with populations that are nonnormal (e.g., 
Hample, Ronchetti, Rousseeuw & Stahel, 1986; 
Huber, 1981; Staudte & Sheather, 1990). Hogg 
(1974, p. 919) maintained that most distributions 
are skewed in practice, and Tukey (1960) argued 
that most distributions will have heavy tails. 
Therefore, according to this perspective, the 
justification for (testing hypotheses and) setting 
robust intervals for robust parameters is that 
(testing the usual hypotheses and) setting 
intervals around the usual parameters is a 
mistake or at least shortsighted when other 
robust methods are available, methods that are 
not generally affected by a relatively few data 
points in a distribution or some minor 
characteristic of the distribution, points and 
characteristics that need not affect the quantity 
researchers are interested in.  

As well, it was found that the natural 
sample estimate of the robust parameter, one 
based on trimmed means and a Winsorized 
variance, provides probability coverage that is 
fairly close to the target value of .95, when 
upper and lower critical values for the interval 
were obtained through a percentile bootstrap 
method. Despite the preference for a robust 
parameter, others may feel that, given a 
hypothesis about the least square means (which 
is not recommended with nonnormal data), δ is 
the appropriate effect size measure. These 
researchers must face the fact that neither the 
noncentral t distribution-based CI nor the 
percentile bootstrap CI will necessarily have 
coverage probability near the nominal value. 
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