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Chapter I 

Introduction 

I. Introduction 

Accurate protein biosynthesis is a vital process to all cellular life. Aminoacyl-tRNAs 

are at the heart of this process. A correctly aminoacylated tRNA fulfills two important 

roles in protein synthesis – First, it establishes a connection between information in the 

genetic code and its accurate representation as amino acids in proteins. Second, as a 

chemical entity, it serves as an activated monomer to facilitate peptide bond formation 

in the ribosome with ease.  

The correct synthesis of aminoacyl-tRNAs requires matching of the cognate tRNA to 

the cognate amino acid. There are two challenges for such a task. Organisms can have 

tRNA encoding genes ranging from 15(ref) to as high as 620(ref). Aminoacylation thus 

requires selecting the correct tRNA from a large number of tRNAs. Similarly, the 

cognate amino acid has to be selected from a cellular pool of 20 amino acids and many 

structurally similar secondary metabolites. This complex task is carried out by a family 

of enzymes called the aminoacyl-tRNA synthetases (aaRSs). Once correctly formed, 

the aminoacyl-tRNA pair is shuttled to the ribosome by EF-Tu. Mechanisms to maintain 

the fidelity of these processes are essential for the integrity of the genetic code. An 

understanding of the above machinery is thus important for understanding the protein 

biosynthesis pathway of organisms.  

This chapter will provide a background on the agents involved in aminoacyl-tRNA 

synthesis and consumption. In particular, how Helicobacter pylori, a human pathogen, 

synthesizes its aminoacyl-tRNAs will be discussed. In conclusion, the chapter will 
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outline the dissertation research carried out on the indirect aminoacylation synthesis of 

Gln-tRNAGln in H. pylori using phylogenetic analyses and enzymatic assays.  



II. Transfer RNAs 
 

tRNAs have a distinctive secondary structure 

that consists of four regions. They are described below. 

 

The acceptor stem – This region contains both the 5’ and 3’ ends of the tRNA and is 

usually 7 bp long with four extra ribonucleotides on the 3’

are the last three for any tRNA molecule. They can be added post

a part of the encoded tRNA sequence. The identity of the fourth unpaired nucleotide 

varies for different tRNA molecules. This position is called the discriminator base and is 

important for substrate recognition by some aaRSs.

Figure 1.1 The secondary (a) and tertiary (b) structure of

shown in red; the D-stem/loop is

black; the variable loop is in gray; and the

Keng-Ming Chang) 
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ave a distinctive secondary structure – the cloverleaf shown in Figure 1.1a, 

that consists of four regions. They are described below.  

This region contains both the 5’ and 3’ ends of the tRNA and is 

usually 7 bp long with four extra ribonucleotides on the 3’-end. The trinucleotides CCA 

are the last three for any tRNA molecule. They can be added post-transcriptionally o

a part of the encoded tRNA sequence. The identity of the fourth unpaired nucleotide 

varies for different tRNA molecules. This position is called the discriminator base and is 

important for substrate recognition by some aaRSs.18, 19  

The secondary (a) and tertiary (b) structure of E. coli tRNA
Gln

. The a

is in blue; the anticodon stem/loop is in green with 

; and the TΨC stem/loop is in light blue. PDB ID: 1GTS

the cloverleaf shown in Figure 1.1a, 

 

This region contains both the 5’ and 3’ ends of the tRNA and is 

end. The trinucleotides CCA 

transcriptionally or be 

a part of the encoded tRNA sequence. The identity of the fourth unpaired nucleotide 

varies for different tRNA molecules. This position is called the discriminator base and is 

The acceptor stem is 

in green with the anticodon in 

PDB ID: 1GTS (Courtesy: Dr. 
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The D stem/loop – This region consists of 3-4 base pairs in the stem and about 8 

unpaired ribonucleotides in the loop. Most uridine bases in the loop are post-

transcriptionally reduced to dihydrouridine, abbreviated D. This region can also play a 

role in aaRS recognition depending on the length of the D stem.14, 16 The D loop makes 

several contacts with the variable loop to form the stable tertiary structure of tRNA (see 

below).  

The anticodon stem/loop – This region carries about 5 base pairs in its stem and a 

triplet of ribonucleotides (anticodon) in the loop that serves to decode the information in 

mRNA by Watson-Crick pairing with the corresponding codons. The anticodon loop is 

heavily modified post-transcriptionally and the nucleotides adjacent to the anticodon as 

well as the anticodon itself are often important identity elements for aaRSs. 6,9,18 The 

nucleotides in the anticodons can also be post-transcriptionally modified. For example, 

U34 in tRNAGln is thiolated and this modification is critical for tRNA aminoacylation and 

specificity.21 

The TψC stem/loop – This region has the conserved triplet UUC in its loop. Post-

transcriptional modifications convert the first uridine to thymidine (T) by methylation 

while the second uridine is converted to psuedouridine (Ψ). Hence, this region is called 

the TψC region. Three base pairs in the stem are important for recognition by EF-Tu 

(see section 1.7 below).  

Nearly all tRNAs fold into a characteristic L-shaped tertiary structure (Figure 1.1b). 

The anticodon is at one end in this structure while the free 3’ – hydroxyl of the terminal 

ribose in the acceptor stem is on the other end. The two ends are separated by a 

distance of approximately 70 Å. The tRNA variable loop, which can have 4-20 
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nucleotides, forms tertiary contacts with positions in the D stem and D loop to form the 

hinge (or elbow region) of the tRNA. This structure leaves the anticodon triplet unpaired 

and available for Watson-Crick base pair formation with codons in mRNA.   

A tRNA molecule typically encounters an average of 30 different enzymes after its 

transcription till its consumption. The selective recognition of a particular tRNA over 

others depends on the presence or absence of certain nucleotides in its primary 

sequence. The nucleotides that aid recognition are termed “determinants,” while the 

ones that disfavor it are called “antideterminants”. As noted above, the determinants 

and antideterminants for various enzymes (including aaRSs) are scattered throughout 

the body of tRNA. The presence of such an identity set for each protein that interacts 

with a particular tRNA thus constrains the primary sequence and the number of possible 

isoacceptors of tRNA for a particular anticodon.18 

Considerations about identity sets for various tRNA interacting proteins play an 

important role in the goal of engineering microbes with desired properties. For example,  

constraints on the primary tRNA sequence were exploited in designing a tRNA molecule 

capable of introducing phosphoserine into the genetic code of E Coli.22 With the 

accelerated pace of synthetic biology, such expanded genetic codes and their host 

microbes are expected to play a key role in uncovering and generating desired 

properties of living systems.27  

 

III. Aminoacyl-tRNA synthetases (aaRSs) 
 

Aminoacyl-tRNA synthetases synthesize aminoacyl-tRNAs by catalyzing two 

reactions. In the first reaction, the amino acid is activated by by ATP to form aminoacyl-
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adenylate (aa-AMP, Figure 1.2). For certain aaRSs like LysRS I, GluRS, GlnRS, and 

ArgRS this step requires the presence of the corresponding tRNA.1, 4 In the second 

step, the activated aa-AMP reacts with the 2’ or 3’ hydroxyl of the terminal ribose in the 

cognate tRNA to form the aminoacyl-tRNA (aa-tRNA).  

 

 

 

Since all aaRSs catalyze the same two reactions, the sequence-structure-function 

dogma11 leads to the expectation that these enzymes should share conserved features 

in their primary sequences, their overall structure, as well as their biochemical mode of 

catalysis. As will be discussed below, this is not the case. As a family of enzymes, 

aaRSs can thus be viewed as one of the counter-examples to the sequence-structure-

function dogma, among many others.12  

The family of aaRSs has been classified into two classes – Class I and Class II. 

Members of each class share sequence, structure, and mechanistic features. Subtle 

differences lead to a sub-division of classes; these will however not be discussed here.  

Class I synthetases have conserved HIGH and KMSKS signature sequences.1 

These sequences are a part of the nucleotide-binding domain – the Rossmann fold2 – 

that is  part of the active site of these enzymes. The Rossman fold binds ATP in an 

extended form, while the HIGH and KMSKS motifs stabilize the transition state of the 

Figure 1.2 Aminoacyl-tRNA synthesis by the aaRSs. (a) The aaRS activates its cognate amino acid 

using ATP to form aa-AMP. (b) This aa-AMP is then reacted with the cognate tRNA to form the aa-tRNA. 



7 

 

 

first reaction – aa-AMP formation1. The binding of Class I aaRSs to the minor groove of 

the acceptor stem of the tRNA is followed by nucleophilic attack by the 2’ hydroxyl of the 

3’ end of the tRNA towards the aa-AMP, generating the aa-tRNA2. The anticodon-

binding domain of most Class I aaRSs is an alpha-helix bundle. The only known 

exception is GlnRS, here the anticodon-binding domain is made of β-sheets. Four Class 

I synthetases – GluRS, GlnRS, ArgRS and LysRS I – require cognate tRNA binding1 

before aa-AMP formation.  

Class II aaRSs differ from their Class I counterparts on several counts. They have 

three conserved domains – domains I, II and III2. Domains II and III form the active site 

with an antiparallel β−fold2. Most Class II aaRSs are dimeric or multimeric in contrast to 

the monomeric Class I aaRSs. Domain I forms the dimer interface2. The rigid β-fold 

leads to ATP binding in a bent form with positioning of the amino acid for nucleophilic 

attack. The binding of Class II aaRSs to their cognate tRNAs is from the major groove 

leading to conformational changes in the anticodon loop1. The aminoacylation takes 

place on the 3’ hydroxyl of the 3’end of tRNA.  

 
IV. Expectation of ubiquity – and the revelation. 
 

Protein biosynthesis primarily relies on twenty encoded amino acids. Consequently, 

it seems reasonable to expect that twenty aaRSs are required to generate the required 

twenty aa-tRNA pairs for protein synthesis. Thus, all life would utilize twenty aaRSs in 

their protein biosynthesis machinery. Contrary to this expectation, however, “many 

organisms utilize a limited (<20) set of aaRSs or a non-standard set of aaRSs or tRNA 

aminoacylation mechanisms”. 6 
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It is no longer surprising that there are exceptions to the twenty aaRSs per organism 

rule. Eukaryotes almost exclusively follow this rule. Many bacteria and almost all 

archaea, however, do not have a complete set of aaRSs. Thus, most of the life that we 

know does not obey this rule. The remainder of this chapter as well as the rest of this 

thesis will discuss the possibilities raised by this revelation.   

The most ubiquitous of the missing synthetases are glutaminyl-tRNA synthetase 

(GlnRS) and asparaginyl-tRNA synthetase (AsnRS). These two aaRSs are missing in 

Helicobacter pylori,7 an organism whose tRNA aminoacylation pathways are of interest 

to our lab. The different route taken by H. pylori to the products of these enzymes  are 

discussed separately in the next section. 

V. Gln-tRNAGln and Asn-tRNAAsn biosynthesis in H. pylori 
 

The complete genome of the human pathogen Helicobacter pylori revealed that 

genes encoding for both GlnRS and AsnRS are missing.7 Like many other organisms 

that are missing these genes, H. pylori uses indirect pathways to synthesize Asn-

tRNAAsn and Gln-tRNAGln. 

For Asn-tRNAAsn production, a non-discriminating aspartyl-tRNA synthetase (ND-

AspRS) catalyzes the formation of both Asp-tRNAAsp and Asp-tRNAAsn (Figure 1.3). The 

misacylated Asp-tRNAAsn is then converted to the cognate Asn-tRNAAsn by 

transamidation (see section VI, below). 
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Figure 1.3 Reactions catalyzed by ND-AspRS: Both tRNAAsp and tRNAAsn are aspartylated by ND-

AspRS to give the cognate Asp-tRNAAsp and the non-cognate Asp-tRNAAsn (colored in red). 

 

Similar to ND-AspRS, organisms missing GlnRS usually utilize an analogous ND-

GluRS for synthesis of Glu-tRNAGlu and Glu-tRNAGln (Figure 1.4). Just like above, the 

misacylated Glu-tRNAGln is converted to Gln-tRNAGln by transamidation (see section VI) 

 

Figure 1.4 Reactions catalyzed by ND-GluRS: Both tRNAGlu and tRNAGln are glutamylated by ND-

GluRS to give the cognate Glu-tRNAGlu and the non-cognate Glu-tRNAGln (colored in red). 

 

However, H. pylori, a representative of the ε-proteobacteria, takes a slightly different 

path to produce Gln-tRNAGln. H. pylori has two copies of the gltX gene, apparently 

generated by a gene duplication event.9  GluRS1 catalyzes the direct aminoacylation of 

Glu-tRNAGlu and thus acts as a D-GluRS (Figure 1.5). GluRS2 (in contrast to ND-
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GluRS) selectively aminoacylates tRNAGln to form Glu-tRNAGln.9 (Figure 1.5) The 

misacylated Glu-tRNAGln is repaired by transamidation. 

 

Figure 1.5 Aminoacylation of tRNA
Gln

 and tRNA
Glu

 in H. pylori: The two tRNAGlu isoacceptors are 

glutamylated by GluRS1 (blue) to form cognate Glu-tRNAGlu. Transfer RNAGln is selectively 

glutamylated by GluRS2 to form the non-cognate Glu-tRNAGln. Protein structures are Rosetta 

models.28 

 

As discussed above, synthetases with relaxed or non-cognate specificities generate 

misacylated tRNAs, like Asp-tRNAAsn and Glu-tRNAGln. In organisms like H. pylori, they 

are converted to the cognate Asn-tRNAAsn and Gln-tRNAGln by transamidation. This 

reaction catalyzed by an amidotransferase is discussed below. For simplicity, only Gln-

tRNAGln synthesis is discussed. Similar discussion applies to Asn-tRNAAsn synthesis. 
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VI. The amidotransferase GatCAB in H. pylori 
 

As discussed above, the misincorporation of Glu-tRNAGln is prevented by its 

conversion into Gln-tRNAGln by a heterotrimeric protein complex called GatCAB (Figure 

1.6B).8 

 
 

Figure 1.6: Indirect aminoacylation pathway for H. pylori Gln-tRNA
Gln

. A: Hp GluRS2 glutamylates 

tRNAGln to generate Glu-tRNAGln. B. H. pylori GatCAB rescues this misacylation by a transamidation 

reaction, using glutamine as the ammonia donor, to convert Glu-tRNAGln into Gln-tRNAGln. 

 

GatCAB is a heterotrimeric amidotransferase consisting of 3 subunits – GatC, 

GatA, and GatB.10 GatCAB catalyzes three reactions: Glutaminase (glutamine 

hydrolysis, catalyzed by GatA); Phosphorylation of Glu-tRNAGln (catalyzed by GatB), 

and transamidation (transport of ammonia from GatA to GatB and its reaction with the 

phosphorylated intermediate to generate Gln-tRNAGln, catalyzed by GatB). The role of 

GatC is not known. The ammonia generated by glutamine hydrolysis in GatA remains 
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associated with the enzyme and is delivered through a tunnel to the active site of GatB. 

There, the ammonia nucleophilically attacks the phosphorylated amino acid to generate 

Gln-tRNAGln (Summarized in Figure 1.7).6 

 
 
 
Figure 1.7: Reactions catalyzed by GatCAB:

6  
Rxn 1: GatA catalyzes the hydrolysis of glutamine to 

generate ammonia. Rxn 2: GatB catalyzes the phosphorylation of Glu-tRNAGln to form a mixed anhydride. 

Rxn 3: The ammonia from GatA is transported to the active site of GatB where it acts as a nucleophile to 

generate Gln-tRNAGln. Figure from reference 6. 

 

Such a rescue of misacylation is not unique to bacteria. In archaea, transamidation 

is performed by GatDE23 while in organellar systems like mitochondria, etc (which are 

thought to be bacterial in origin) the heterotrimeric GatFAB performs the 

transamidation24. 

VII. Elongation factor (EF-Tu) 
 

Generation of a correctly aminoacylated tRNA is closely followed by its consumption 

in the ribosome for protein synthesis. These two processes are bridged by elongation 
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factor Tu (EF-Tu). EF-Tu, in its GTP bound form, shuttles the correctly formed aa-tRNA 

to the ribosome. Here, hydrolysis of the bound GTP by EF-Tu releases the aa-tRNA for 

protein biosynthesis. 25 

Elegant studies have shown that EF-Tu recognizes the correct pair by 

“thermodynamic compensation.”26 Briefly, the binding affinity of a given aa-tRNAaa to 

EF-Tu consists of the combined contributions of the amino acid and the first three base 

pairs in the TΨC stem of the tRNA. These contributions follow a bell-shaped distribution. 

An amino acid with a higher affinity for EF-Tu is matched with a tRNA with a lower 

affinity and vice-versa. The net effect is the uniform binding affinity of Ef-Tu to aa-

tRNAs. 

The Uhlenbeck model is thus another checkpoint in accurate protein biosynthesis. 

The power of such a model is that it allows engineering the three triplets so as to 

influence the binding of EF-Tu to a (cognate or non-cognate) tRNA pair.22  

 

VIII. Dissertation research 

This dissertation focuses on indirect aminoacylation and transamidation to produce 

Gln-tRNAGln in H. pylori.  A combination of phylogenetic analyses and enzymatic assays 

were used that contribute to a picture of this process. 

Chapter 2 discusses our examination of sequence conservation of gltX2 (the gene 

that encodes GluRS2) across different H. pylori strains. The conclusions of this 

sequencing effort are compared with trends in sequences of genes important in the 

aminoacylation step of protein synthesis.  
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Chapter 3 discusses one aspect of Gln-tRNAGln production – the mechanism of 

transport of ammonia from the active site of one subunit (GatA) to the active site of 

another (GatB) through an intramolecular hydrophilic tunnel. Site-directed mutagenesis 

of key residues lining this tunnel and their transamidation assays were performed. With 

these studies, a preliminary picture of ammonia transport through the tunnel can be 

constructed. 
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Chapter II 
 

Sequencing gltX2 genes in Hp strains 
I. Introduction 
 

It is evident from genomic analyses that known glutaminyl-tRNA synthetases 

(GlnRS) originated in eukarya. Some bacteria do possess a GlnRS (e.g.E.coli), however 

these enzymes are products of horizontal gene transfer from eukarya.1To date, no 

GlnRS has been found that originated in archaea or in most bacteria. 

The hypothesis, therefore, for the evolution of GlnRS is as follows: An ancient non-

discriminating glutamyl-tRNA synthetase (ND-GluRS) gene underwent a gene 

duplication event to give two ND-GluRSs. After branching from archaea, the eukarya 

were able to evolve these into a D-GluRS and D-GlnRS. A few  bacteria acquired this 

D-GlnRS through horizontal gene transfer, as mentioned above. Many archaea and 

bacteria continue to utilize a ND-GluRS for production of Glu-tRNAGlu and Gln-tRNAGln 

by direct and indirect aminoacylation pathways, respectively.2 

A few bacteria, including Helicobacter pylori (Hp), have retained duplicate copies of 

the gltX gene. In H. pylori, GluRS1 is a discriminating GluRS, while GluRS2 has been 

proposed to be a missing evolutionary link between an ND-GluRS and a forthcoming D-

GlnRS of bacterial origin.3 

Because Hp is a highly adaptive organism, it has a high rate of evolutionary 

variation between strains.  In fact, strains of H. pylori that have been isolated from 

different regions of the world differ substantially in infectivity and are genomically 

varied.4 This fact provides us with a unique opportunity to study the possible evolution 

of GluRS2 into a bacterial GlnRS. 
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Previously, Dr. Terry Cathopoulis had cloned (into the TOPO pCR2.1 vector, 

Invitrogen) and sequenced 16 GluRS2 genes from genomic DNA of different Hp strains 

(These strains were chosen because they are representative of the geographic 

distribution of Hp).5 Not surprisingly, most of these genes were highly homologous to 

the gltX2 gene from Hp26695, the strain used for our original characterization of 

GluRS1 and GluRS2.3 However, two sequences were potentially interesting. The first of 

these is called as the Cheetah strain, a strain of Hp that infects cheetahs. The Cheetah 

gltX2 gene contained a premature stop codon leading to a predicted open reading 

frame thatencoded a truncated copy of GluRS2 (only the first 150 of GluRS2’s 450 

amino acids were encoded). The same gene in another Hp strain called R7 also 

contained a premature stop codon and was predicted to encode protein 394 amino 

acids in length. Finally, adequate sequencing data for thegltX2 gene from the B3 strain 

was not obtained. Because these results were intriguing and were the result of only one 

evaluation, the goal of this aim was to revisit and hopefully confirm the Cheetah and R7 

truncations and to complete the evaluation of the gltX2 gene from strain B3. 

II. Results and Discussion 

The gltX2 gene was amplified from the B3 Hp strain using primers NJ201 and 

NJ202 and the polymerase chain reaction (PCR). The products were cloned into the 

TOPO pCR2.1 vector and sequenced. The alignment of B3 with Hp 26695 is shown in 

Figure 1A. The two genes were highly homologous and so further evaluations of B3 

were deemed unnecessary. 
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Figure 2.1: Alignment of DNA sequences for the gltX genes from Hp strain 26695 
versus B3. 
 
26695  ATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCACATAGGGAATTTAAGGGCAGCC 60 

B3     ATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCACATAGGGAATTTAAGGGCAGCC 60 

       ************************************************************ 

 

26695  ATTTTCAACTACATTGTGGCTAAACAGCAATATAAACCCTTTCTCATTCGCATTGAAGAC 120 

B3     ATTTTCAATTACATTGTGGCCAAACAGCAACACAAACCCTTTCTCATTCGCATTGAAGAC 120 

       ******** *********** ********* * *************************** 

 

26695  ACAGACAAAGAGCGCAACATTGAAGGCAAAGACCAAGAGATTTTAGAAATTTTAAAGCTT 180 

B3     ACGGACAAAGAGCGCAACGTTGAAGGCAAAGACCAAGAGATTTTAGAAATTTTAAAGCTT 180 

       ** *************** ***************************************** 

 

26695  ATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCATAATATAGATTACCACAGAGAA 240 

B3     ATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCATAACATAGATTATCACAGAGAA 240 

       ***************************************** ******** ********* 

 

26695  ATGGCAGAAAAATTACTGAAAGAAAATAAAGCGTTTTATTGTTATGCGAGTGCGGAGTTT 300 

B3     ATGGCAGAAAAATTACTGAAAGAACATAAAGCGTTTTATTGTTATGCGAGCGCGGAGTTT 300 

       ************************ ************************* ********* 

 

26695  TTAGAAAGAGAAAAAGAAAAAGCCAAAAATGAAAAACGCCCTTTCAGGTATTCAGACGAG 360 

B3     TTAGAAAGAGAAAAAGAAAAAGCCAAAAACGAGAAACGCCCTTTCAGGTATTTAGACGAG 360 

       ***************************** ** ******************* ******* 

 

26695  TGGGCCACTTTAGAAAAAGACAAGCACCATGCCCCTGTGGTGCGTTTAAAAGCCCCAAAT 420 

B3     TGGGCCACTTTAGAAAAAGACAAGCATCATGCCCCTGTGGTGCGTTTAAAAGCCCCAAAT 420 

       ************************** ********************************* 

 

26695  CATGCGGTGTCTTTCAACGATGCGATTAAAAAAGAAGTGAAATTTGAACCTGATGAATTG 480 

B3     CATGCGGTGTCTTTCAATGATGCGATTAAGAAAGAAGTGGAATTTGAGCCTGATGAATTG 480 

       ***************** *********** ********* ******* ************ 

 

26695  GATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACTTATAATTTCGCTTGCGCATGC 540 

B3     GATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACTTATAATTTCGCTTGCGCATGC 540 

       ************************************************************ 

 

26695  GATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGCGAAGATCATGTGAGTAACACC 600 

B3     GATGATTTGCTCTATGAAATCAGTCTGATTATTAGAGGCGAAGATCATGTGAGTAACACC 600 

       *********** *** ******************************************** 

 

26695  CCCAAACAAATCTTAATCCAGCAAGCTTTAGGCTCCAATGATCCGATTGTTTATGCGCAT 660 

B3     CCTAAACAAATCTTAATCCAGCAAGCTTTAGGCTCAAACGATCCGATTGTTTATGCGCAT 660 

       ** ******************************** ** ********************* 

 

26695  TTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATGAGTAAAAGAGATGAAGCCTCC 720 

B3     TTACCCATTATTTTAGATGAAACAAGCGGTAAAAAAATGAGCAAAAGAGACGAAGCCTCC 720 

       ** ******************  ************ ***** ******** ********* 

 

26695  AGCGTGAAATGGCTTTTGAATCAAGGGTTTTTACCGGTTGCGATTGCGAATTACCTCATC 780 

B3     AGCGTGAAATGGCTTTTGAATCAAGGGTTTTTGCCGGTTGCGATTGCAAATTACCTCATC 780 

       ******************************** ************** ************ 

 

26695  ACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGATGAAGCGATAGAATGGTTT 840 

B3     ACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGATGAAGCGATAGAATGGTTT 840 

       ************************************************************ 

 

26695  AGTTTAGAAAATCTTTCCAGTTCTCCGGCTCATTTTAATTTAAAATATTTAAAACACTTA 900 

B3     AGTTTAGAAAATCTTTCCAGTTCCCCGGCTCATTTTAATTTAAAATATTTAAAACACTTA 900 

       *********************** ************************************ 

 

 

 

26695  AACCACGAGCATTTAAAGCTTTTAGACGATGACAAGTTATTAGAACTCACTTCAATAAAA 960 

B3     AACCACGAGCATTTAAAGCTTTTAGACGATGAAAAGTTATTAGAACTCACTTCAATAAAA 960 

       ******************************** *************************** 

 

26695  GATAAAAACCTCTTAGGGCTTTTAAGATTGTTTATAGAAGAATGCGGCACGCTTTTAGAA 1020 
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B3     GATAAAAACCTCCTAGGGCTTTTAAGATTGTTTGTAGAAGAATGCGGTACGCTTTTAGAA 1020 

       ************ ******************** ************* ************ 

 

26695  TTGAGGGAAAAAATTTCGTTGTTTTTAGAGCCAAAGGATATTGTTAAAACTTATGAAAAT 1080 

B3     TTGAAAGAAAAAATTTCGTTGTTTTTAGAGCCAAAGGATATTGTTAAAACTTATGAGAAC 1080 

       ****  ************************************************** **  

 

26695  GAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACGCTCTAACAAGCATGGATTTTCAA 1140 

B3     GAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACGCCCTAAAAGGCATGGATTTTCAA 1140 

       ************************************** **** * ************** 

 

26695  GCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGCGATTAAGCCAGCTTAAGGGT 1200 

B3     GCGTATAAGGATTTTGAAAGCTTTAAAAAAGAAGCCATGCGATTAAGTCAGCTTAAGGGT 1200 

       ******************** ************************** ************ 

 

26695  AAGGATTTTTTCAAACCTTTGCGCATCCTTTTAACCGGGAACTCGCATGGCGTTGAATTG 1260 

B3     AAGGATTTTTTCAAACCTTTGCGCATTCTTTTAACCGGGAACTCGCATGGCATTGAATTG 1260 

       ************************** ************************ ******** 

 

26695  CCTTTGATTTTCCCCTATATCCAAAGCCATCATCAAGAAGTTTTAAGGCTCAAAGCATGA 1320 

B3     CCTTTGATTTTCCCCTATATCCAAAGCCACTATCAAGAAGTTTTAAGGCTCAAAGCATGA 1320 

       *****************************  ***************************** 

 

The gltX2 gene wasPCR amplified from the Cheetah Hp strain using primers NJ201 

and NJ202. The products were cloned into the TOPO pCR2.1 vector and sequenced. 

Surprisingly, the sequences showed a considerable number of mismatches compared 

to the previous data reported by Dr. Cathopoulis. In order to get an unambiguous 

sequence, we repeated the above experiment using primers S3 and S4 (the ones 

originally used by Dr. Cathopoulis). 

The sequences from the latter effort matched our own results and continued to 

show mismatches with the preliminary data. With one exception (below), our data 

aligned with very good agreement to the gltX2 gene fromHp 26695.These results are 

shown in Figures 2.2 and 2.3. Based on a 3:1 occurrence, we have concluded that gltX2 

gene from Cheetah is not truncated as originally suspected. 

Figure 2: Alignment of sequencing data using forward primers for the strain 

Cheetah gltx2. NJ; S3 and S4 – data from different sequencing trials. TC – Data from Dr. 

Terry Cathopulis. 26695 – Data from H pylori genome. 

NJ      ---NGNGANTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGC 

S3 & S4 NNGGGCGANTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGC 

26695   ------------------------------------------------------------ 

TC      ------------------------------------------------------------ 
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NJ      AGAATTCGCCCTTCGGGATCCATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCAC 

S3 & S4 AGAATTCGCCCTTCGGGATCCATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCAC 

26695   ---------------------ATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCAC 

TC      ---------------------ATGCTTCGTTTTGCGCCTTCGCCTACTGGGGATATGCAC 

                             ************************** ************ 

 

NJ      ATAGGGAATTTAAGGGCAGCCATTTTCAACTACATTGTGGCTAAACAGCAATATAAACCC 

S3 & S4 ATAGGGAATTTAAGGGCAGCCATTTTCAACTACATTGTGGCTAAACAGCAATATAAACCC 

26695   ATAGGGAATTTAAGGGCAGCCATTTTCAACTACATTGTGGCTAAACAGCAATATAAACCC 

TC      ATAGGGAATTTAAGGGCAGCCATTTTTAACTATATTGTGGCTAAACAGCAACATAAACCC 

        ************************** ***** ****************** ******** 

 

NJ      TTTCTCATTCGCATTGAAGACACAGACAAAGAGCGCAACATTGAAGGCAAAGACCAAGAG 

S3 & S4 TTTCTCATTCGCATTGAAGACACAGACAAAGAGCGCAACATTGAAGGCAAAGACCAAGAG 

26695   TTTCTCATTCGCATTGAAGACACAGACAAAGAGCGCAACATTGAAGGCAAAGACCAAGAG 

TC      TTTCTCATTCGCATTGAAGACACAGATAAAGAGCGCAATATTGAAGGCAAAGATCAGGAG 

        ************************** *********** ************** ** *** 

 

NJ      ATTTTAGAAATTTTAAAGCTTATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCAT 

S3 & S4 ATTTTAGAAATTTTAAAGCTTATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCAT 

26695   ATTTTAGAAATTTTAAAGCTTATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCAT 

TC      ATTTTAGAGATTCTAAAGCTCATGGGAATGAACTGGGATAAACTCGTGTATCAAAGCCAT 

        ******** *** ******* ***** ** * ****** ** ****************** 

 

NJ      AATATAGATTACCACAGAGAAATGGCAGAAAAATTACTGAAAGAAAATAAAGCGTTTTAT 

S3 & S4 AATATAGATTACCACAGAGAAATGGCAGAAAAATTACTGAAAGAAAATAAAGCGTTTTAT 

26695   AATATAGATTACCACAGAGAAATGGCAGAAAAATTACTGAAAGAAAATAAAGCGTTTTAT 

TC      AACATAGATTACCATAGGGAAATGGCAGAAAAATTGCTTAAAGAAAATAAGGCGTTTTAT 

        ** *********** ** ***************** ** *********** ********* 

 

NJ      TGTTATGCGAGTGCGGAGTTTTTAGAAAGAGAAAAAGAAAAAGCCAAAAATGAAAAACGC 

S3 & S4 TGTTATGCGAGTGCGGAGTTTTTAGAAAGAGAAAAAGAAAAAGCCAAAAATGAAAAACGC 

26695   TGTTATGCGAGTGCGGAGTTTTTAGAAAGAGAAAAAGAAAAAGCCAAAAATGAAAAACGC 

TC      TGTTATGCGAGTGTGGGATTTTTAGAACAAGAAAAAGAAAAAGCCAAAAACGAAAAACGC 

        ************* **  *********  ********************* ********* 

 

NJ      CCTTTCAGGTATTCAGACGAGTGGGCCACTTTAGAAAAAGACAAGCACCATGCCCCTGTG 

S3 & S4 CCTTTCAGGTATTCAGACGAGTGGGCCACTTTAGAAAAAGACAAGCACCATGCCCCTGTG 

26695   CCTTTCAGGTATTCAGACGAGTGGGCCACTTTAGAAAAAGACAAGCACCATGCCCCTGTG 

TC      CCTTTCAGGTATTTAGATGAATGGGCGGCTTTAGAGAAAAACCAGCACAATACCCCTGTG 

        ************* *** ** *****  ******* *** ** ***** ** ******** 

 

NJ      GTGCGTTTAAAAGCCCCAAATCATGCGGTGTCTTTCAACGATGCGATTAAAAAAGAAGTG 

S3 & S4 GTGCGTTTAAAAGCCCCAAATCATGCGGTGTCTTTCAACGATGCGATTAAAAAAGAAGTG 

26695   GTGCGTTTAAAAGCCCCAAATCATGCGGTGTCTTTCAACGATGCGATTAAAAAAGAAGTG 

TC      GTGCGTTTAAA-GCCCCAAATCATGCGGTGTCTTTTAACGATGCGATTAAAAAAGAAGTG 

        *********** *********************** ************************ 

 

 

 

NJ      AAATTTGAACCTGATGAATTGGATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACT 

S3 & S4 AAATTTGAACCTGATGAATTGGATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACT 

26695   AAATTTGAACCTGATGAATTGGATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACT 

TC      AAATTTGAGCCTTATGAATTGGATTCTTTTGTGCTTTTAAGAAAGGATAAGAGCCCTACT 

        ******** *** ************************* *** ******* ********* 

 

NJ      TATAATTTCGCTTGCGCATGCGATGATTTGCTTTATAAAATCAGTCTGATTATTTGCGGC 

S3 & S4 TATAATTTCGCTTGCGCATGCGATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGC 

26695   TATAATTTCGCTTGCGCATGCGATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGC 

TC      TATAATTTCGCTTGTGCATGCGATGATTTGCTTTATGAAATCAGTCTTATTATTAGGGGC 

        ************** ********************* ********** ****** * *** 

 

NJ      GAAGATCATGTGAGTAACACCCCCAAACAAATCTTAATCCAGCAAGCTTTAGGCTCCAAT 

S3 & S4 GAAGATCATGTGAGTAACACCCCCAAACAAATCTTAATCCAGCAAGCTTTAGGCTCCAAT 

26695   GAAGATCATGTGAGTAACACCCCCAAACAAATCTTAATCCAGCAAGCTTTAGGCTCCAAT 

TC      GAAGATCATGTGAGTAACACCCCTAAACAAATCTTAATCCAACAAGCTTTAGGCTCCAAC 

        *********************** ***************** *****************  

 

NJ      GATCCGATTGTTTATGCGCATTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATG 

S3 & S4 GATCCGATTGTTTATGCGCATTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATG 
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26695   GATCCGATTGTTTATGCGCATTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATG 

TC      AACCCTATTATTTATGCACATTTGCCCATTATCTTAGATGAAGCAAGCGGTAAAAAGATG 

* ** *** ******* ************** ********** **************** 

 

NJ      AGTAAAAGAGATGAAGCCTCCAGCGTGAAATGGCTTTTGAATCNANGGGTTTTTACCGGT 

S3 & S4 ANTAAAAGAGATGAAGCCTCCAGCGTGAAATGGCTTTTGAATCNANGGGTTTTTACCGGT 

26695   AGTAAAAGAGATGAAGCCTCCAGCGTGAAATGGCTTTTGAATCAAGGG-TTTTTACCGGT 

TC      AGCAAAAGGGATGAAGCCTCTAGCGTGAAATGGCTTTTAAATCAAGGG-TTTTTGCCGGT 

        *  ***** *********** ***************** **** * ** ***** ***** 

 

NJ      TGCGATTGCGAATTACCTCATCACTATCGGTAATAAAGTGCCNNANGGAAGTTTTTAGCC 

S3 & S4 TGCGATTGCGAATTACCTCATCACTATCGGTAATAAAGTGCCTAANN-AAGTTTTTAGCC 

26695   TGCGATTGCGAATTACCTCATCACTATCGGTAATAAAGTGCCTAAGG-AAGTTTTTAGCC 

TC      TGCTATTGTGAATTACCTCATCACTATTGGTAATAAAGTGCCTAAAG-AAGTTTTTAGCC 

        *** **** ****************** **************  *   ************ 

 

NJ      TTGATGAN-CGATAGAATGGNTTANTTTAGAAAATCTTTNCAGNNN--CNGNNTCNTTTN 

S3 & S4 NTGATGAAGCGATAGAATGGTTTANTTTAGAAAATCTTTNCA------------------ 

26695   TTGATGAAGCGATAGAATGGTTTAGTTTAGAAAATCTTTCCAGTTCTCCGGCTCATTTTA 

TC      TTGATGAAGCGTTAGAATGGTTTAGTTTAGAAAACCTTTCTAATTCCCCAGCTCATTTTA 

        ******  ** ******** *** ********* ****  * 

 

NJ      ANTTAAANNNTT--AAANNCTTNANCNNCGAGCATTTNANGCTTTTAGACNANGA----- 

S3 & S4 ------------------------------------------------------------ 

26695   ATTTAAAATATTTAAAACACTTAAACCACGAGCATTTAAAGCTTTTAGACGATGACAAGT 

TC      ATTTAAAATATTTAAAACACTTAAACCACCAGCATTTAAAGCGTTTAGATGATGAAAAAT 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   TATTAGAACTCACTTCAATAAAAGATAAAAACCTCTTAGGGCTTTTAAGATTGTTTATAG 

TC      TATTAGAGCTTTCTCAAATAAAAGATAGGAATCTTTTAGGGCTTTTAAGATTATTCATAG 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   AAGAATGCGGCACGCTTTTAGAATTGAGGGAAAAAATTTCGTTGTTTTTAGAGCCAAAGG 

TC      AAGAATGCGATACGCTTTTAGAATTGAAAGAAAAAATTTCGTTGTTTTTAGAGCCAAAAG 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   ATATTGTTAAAACTTATGAAAATGAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACG 

TC      ATATTGTTAAAACTTATGAAAACGAAGATTTTAAAGAGCGCTGCTCAATACTTTTTAACG 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   CTCTAACAAGCATGGATTTTCAAGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCA 

TC      CCCTAAAAAGCATGGATTTTCAAGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCA 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   TGCGATTAAGCCAGCTTAAGGGTAAGGATTTTTTCAAACCTTTGCGCATCCTTTTAACCG 

TC      TGTGATTAAGCCAGCTTAAAGGTAAAGATTTTTTTAAACCTTTGCGCATTCTTTTAATTG 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   GGAACTCGCATGGCGTTGAATTGCCTTTGATTTTCCCCTATATCCAAAGCCATCATCAAG 

TC      GGGATTCGCATGGCGTTGAATTGCCTTTGATTTTCCCTTATATTCAAAGCCATTATCAAG 

 

 

NJ      ----------------------- 

S3 & S4 ----------------------- 

26695   AAGTTTTAAGGCTCAAAGCATGA 

TC      AAGTTTTAAGGCTCAAAGCATGA 
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Figure 2.3: Alignment of sequencing data using reverse primers for the strain 

Cheetah gltx2. NJ; S3 and S4 – data from different sequencing trials. TC – Data from Dr. 

Terry Cathopulis. 26695 – Data from H pylori genome 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   ATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCACATAGGGAATTTAAGGGCAGCC 

TC      ATGCTTCGTTTTGCGCCTTCGCCTACTGGGGATATGCACATAGGGAATTTAAGGGCAGCC 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   ATTTTCAACTACATTGTGGCTAAACAGCAATATAAACCCTTTCTCATTCGCATTGAAGAC 

TC      ATTTTTAACTATATTGTGGCTAAACAGCAACATAAACCCTTTCTCATTCGCATTGAAGAC 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   ACAGACAAAGAGCGCAACATTGAAGGCAAAGACCAAGAGATTTTAGAAATTTTAAAGCTT 

TC      ACAGATAAAGAGCGCAATATTGAAGGCAAAGATCAGGAGATTTTAGAGATTCTAAAGCTC 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   ATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCATAATATAGATTACCACAGAGAA 

TC      ATGGGAATGAACTGGGATAAACTCGTGTATCAAAGCCATAACATAGATTACCATAGGGAA 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   ATGGCAGAAAAATTACTGAAAGAAAATAAAGCGTTTTATTGTTATGCGAGTGCGGAGTTT 

TC      ATGGCAGAAAAATTGCTTAAAGAAAATAAGGCGTTTTATTGTTATGCGAGTGTGGGATTT 

 

 

NJ      ------------------------------------------------------------ 

S3 & S4 ------------------------------------------------------------ 

26695   TTAGAAAGAGAAAAAGAAAAAGCCAAAAATGAAAAACGCCCTTTCAGGTATTCAGACGAG 

TC      TTAGAACAAGAAAAAGAAAAAGCCAAAAACGAAAAACGCCCTTTCAGGTATTTAGATGAA 

 

 

NJ      ------------------------------------GNGN-GNGNTNAAAAGCCCCAAAT 

S3 & S4 ------------------------NNCCATGCCCCNGNGN-GCGTTNAAAAGCCCCAAAT 

26695   TGGGCCACTTTAGAAAAAGACAAGCACCATGCCCCTGTGGTGCGTTTAAAAGCCCCAAAT 

TC      TGGGCGGCTTTAGAGAAAAACCAGCACAATACCCCTGTGGTGCGTTTAAA-GCCCCAAAT 

        * *  * * * *** ********* 

 

NJ      CATGNNNNNTNTTT-NNNGATGCGATTAAAAAG-AAGTGAAATTTGAANCNGATGAATNG 

S3 & S4 CNTGCGNNGTCTTC-AACGATGCGATTAAAAANGAAGTGAAATTTGANNNG-ATGAATNG 

26695   CATGCGGTGTCTTTCAACGATGCGATTAAAAAAGAAGTGAAATTTGAACCTGATGAATTG 

TC      CATGCGGTGTCTTTTAACGATGCGATTAAAAAAGAAGTGAAATTTGAGCCTTATGAATTG 

        * **     * **     **************  *************     ****** * 

 

NJ      GATTCTTTTGNGCTTTTGAGACAGGATAAAAGCCCTACTTATAATTTCGCTTGCGCATGC 

S3 & S4 GATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCNNACTTATAATTTCGCTTGCGCATGC 

26695   GATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACTTATAATTTCGCTTGCGCATGC 

TC      GATTCTTTTGTGCTTTTAAGAAAGGATAAGAGCCCTACTTATAATTTCGCTTGTGCATGC 

        ********** ****** *** ******* ****  ***************** ****** 

 

NJ      GATGATTTGCTTTATAAAATCAGTCTGATTATTTGCGGCGAAGATCATGTGAGTAACACC 

S3 & S4 GATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGCGAAGATCATGTGAGTAACACC 

26695   GATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGCGAAGATCATGTGAGTAACACC 

TC      GATGATTTGCTTTATGAAATCAGTCTTATTATTAGGGGCGAAGATCATGTGAGTAACACC 

        *************** ********** ****** * ************************ 

 

NJ      CCCCAAANCAANTCTTAATCCAGCAAGCTTTAGGCTCCAATGATCCGATTGTTTATGCGC 

S3 & S4 CCCCAAAC-AANTCTTANTCCAGCAAGCTTTAGGCTCCAATGATCCGATTGTTTATGCGC 

26695   CCC-AAAC-AAATCTTAATCCAGCAAGCTTTAGGCTCCAATGATCCGATTGTTTATGCGC 
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TC      CCT-AAAC-AAATCTTAATCCAACAAGCTTTAGGCTCCAACAACCCTATTATTTATGCAC 

        **  ***  ** ***** **** *****************  * ** *** ******* * 

 

NJ      ATTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATGAGTAAAAGAGATGAAGCCT 

S3 & S4 ATTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATGAGTAAAAGAGATGAAGCCT 

26695   ATTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATGAGTAAAAGAGATGAAGCCT 

TC      ATTTGCCCATTATCTTAGATGAAGCAAGCGGTAAAAAGATGAGCAAAAGGGATGAAGCCT 

        ************* ********** ****************** ***** ********** 

 

NJ      CCAGCGTGAAATGGCTTTTGAATCAAGGGTTTTTACCGGTTGCGATTGCGAATTACCTCA 

S3 & S4 CCAGCGTGAAATGGCTTTTGAATCAAGGGTTTTTACCGGTTGCGATTGCGAATTACCTCA 

26695   CCAGCGTGAAATGGCTTTTGAATCAAGGGTTTTTACCGGTTGCGATTGCGAATTACCTCA 

TC      CTAGCGTGAAATGGCTTTTAAATCAAGGGTTTTTGCCGGTTGCTATTGTGAATTACCTCA 

        * ***************** ************** ******** **** *********** 

 

NJ      TCACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGATGAAGCGATAGAATGGT 

S3 & S4 TCACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGATGAAGCGATAGAATGGT 

26695   TCACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGATGAAGCGATAGAATGGT 

TC      TCACTATTGGTAATAAAGTGCCTAAAGAAGTTTTTAGCCTTGATGAAGCGTTAGAATGGT 

        ******* ***************** ************************ ********* 

 

NJ      TTAGTTTAGAAAATCTTTCCAGTTCTCCGGCTCATTTTAATTTAAAATATTTAAAACACT 

S3 & S4 TTAGTTTAGAAAATCTTTCCAGTTCTCCGGCTCATTTTAATTTAAAATATTTAAAACACT 

26695   TTAGTTTAGAAAATCTTTCCAGTTCTCCGGCTCATTTTAATTTAAAATATTTAAAACACT 

TC      TTAGTTTAGAAAACCTTTCTAATTCCCCAGCTCATTTTAATTTAAAATATTTAAAACACT 

        ************* ***** * *** ** ******************************* 

 

NJ      TAAACCACGAGCATTTAAAGCTTTTAGACGATGACAAGTTATTAGAACTCACTTCAATAA 

S3 & S4 TAAACCACGAGCATTTAAAGCTTTTAGACGATGACAAGTTATTAGAACTCACTTCAATAA 

26695   TAAACCACGAGCATTTAAAGCTTTTAGACGATGACAAGTTATTAGAACTCACTTCAATAA 

TC      TAAACCACCAGCATTTAAAGCGTTTAGATGATGAAAAATTATTAGAGCTTTCTCAAATAA 

        ******** ************ ****** ***** ** ******** **  **  ***** 

 

NJ      AAGATAAAAACCTCTTAGGGCTTTTAAGATTGTTTATAGAAGAATGCGGCACGCTTTTAG 

S3 & S4 AAGATAAAAACCTCTTAGGGCTTTTAAGATTGTTTATAGAAGAATGCGGCACGCTTTTAG 

26695   AAGATAAAAACCTCTTAGGGCTTTTAAGATTGTTTATAGAAGAATGCGGCACGCTTTTAG 

TC      AAGATAGGAATCTTTTAGGGCTTTTAAGATTATTCATAGAAGAATGCGATACGCTTTTAG 

        ******  ** ** ***************** ** *************  ********** 

 

NJ      AATTGAGGGAAAAAATTTCGTTGTTTTTAGAGCCAAAGGATATTGTTAAAACTTATGAAA 

S3 & S4 AATTGAGGGAAAAAATTTCGTTGTTTTTAGAGCCAAAGGATATTGTTAAAACTTATGAAA 

26695   AATTGAGGGAAAAAATTTCGTTGTTTTTAGAGCCAAAGGATATTGTTAAAACTTATGAAA 

TC      AATTGAAAGAAAAAATTTCGTTGTTTTTAGAGCCAAAAGATATTGTTAAAACTTATGAAA 

        ******  ***************************** ********************** 

 

NJ      ATGAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACGCTCTAACAAGCATGGATTTTC 

S3 & S4 ATGAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACGCTCTAACAAGCATGGATTTTC 

26695   ATGAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACGCTCTAACAAGCATGGATTTTC 

TC      ACGAAGATTTTAAAGAGCGCTGCTCAATACTTTTTAACGCCCTAAAAAGCATGGATTTTC 

        * ***************** ** * *   *********** **** ************** 

 

NJ      AAGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGCGATTAAGCCAGCTTAAGG 

S3 & S4 AAGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGCGATTAAGCCAGCTTAAGG 

26695   AAGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGCGATTAAGCCAGCTTAAGG 

TC      AAGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGTGATTAAGCCAGCTTAAAG 

        ***************************************** **************** * 

 

NJ      GTAAGGATTTTTTCAAACCTTTGCGCATCCTTTTAACCGGGAACTCGCATGGCGTTGAAT 

S3 & S4 GTAAGGATTTTTTCAAACCTTTGCGCATCCTTTTAACCGGGAACTCGCATGGCGTTGAAT 

26695   GTAAGGATTTTTTCAAACCTTTGCGCATCCTTTTAACCGGGAACTCGCATGGCGTTGAAT 

TC      GTAAAGATTTTTTTAAACCTTTGCGCATTCTTTTAATTGGGGATTCGCATGGCGTTGAAT 

        **** ******** ************** *******  *** * **************** 

 

NJ      TGCCTTTGATTTTCCCCTATATCCAAAGCCATCATCAAGAAGTTTTTAAGGCTCAAAGCA 

S3 & S4 TGCCTTTGATTTTCCCCTATATCCAAAGCCATCATCAAGAAGTTTTTAAGGCTCAAAGCA 

26695   TGCCTTTGATTTTCCCCTATATCCAAAGCCATCATCAAGAAGTTTT-AAGGCTCAAAGCA 

TC      TGCCTTTGATTTTCCCTTATATTCAAAGCCATTATCAAGAAGTTTT-AAGGCTCAAAGCA 

        **************** ***** ********* ************* ************* 

 

NJ      TGACCCGGGGGAAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTNNNNNTCCGAG- 

S3 & S4 TGACCCGGGGGAAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTNNNNNTCCGAGN 

26695   TGA------------------------------------------------------- 
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TC      TGA------------------------------------------------------- 

        *** 
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One region of about 5 bp in the gltX2 gene in the Cheetah straingave ambiguous 

signals in every sequencing attempt (Red box in Figure 2). As these ambiguous bases 

are silent in the translated protein product, they do not impact conclusions about the 

variability of gltX2.  

The gltX2 gene from R7 was PCR amplified using primers NJ201 and NJ202. The 

products were cloned into the TOPO pCR2.1 vector and sequenced. Similar to the 

Cheetah strain, the sequences showed a number of mismatches compared to our 

earlier results and the data aligned with very good agreement to the gltX2 gene from Hp 

26695.These results are shown in Figures 4 and 5.  Based on these data, we have 

concluded that strain R7 gltX2 is not truncated as originally suspected. 

 

Figure 2.4: Alignment of sequencing data using M13forward(M13f) primer for the 

strain R7 gltx2. TC – Data from Dr. Terry Cathopoulis, 26695 – data from H. pylori genome 

M13f    NGGCGANTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAG 60 

26695   ------------------------------------------------------------ 

TC      ------------------------------------------------------------ 

 

 

M13f    AATTCGCCCTTCGGGATCCATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCACAT 120 

26695   -------------------ATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCACAT 41 

TC      -------------------ATGCTTCNTTTTGCGCCTTCGCCTACAGGGGATATGCACAT 41 

                           ******* ********************************* 

 

M13f    AGGGAATTTAAGGGCAGCCATTTTCAACTACATTGTGGCTAAACAGCAATATAAACCCTT 180 

26695   AGGGAATTTAAGGGCAGCCATTTTCAACTACATTGTGGCTAAACAGCAATATAAACCCTT 101 

TC      AGGGAATTTAAGGGCAGCCATTTTTAACTACATTGTGGCCAAACAGCAACATAAACCCTT 101 

        ************************ ************** ********* ********** 

 

M13f    TCTCATTCGCATTGAAGACACAGACAAAGAGCGCAACATTGAAGGCAAAGACCAAGAGAT 240 

26695   TCTCATTCGCATTGAAGACACAGACAAAGAGCGCAACATTGAAGGCAAAGACCAAGAGAT 161 

TC      TCTCATTCGCATTGAAGACACAGATAAAGAACGCAACATTGAAGGCAAAGATCAAGAGAT 161 

        ************************ ***** ******************** ******** 

 

M13f    TTTAGAAATTTTAAAGCTTATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCATAA 300 

26695   TTTAGAAATTTTAAAGCTTATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCATAA 221 

TC      TTTAGAGATTTTAAAGCTTATGGGGATAAGTTGGGATAAACTCGTGTATCAAAGCCATAA 221 

        ****** *********************** ***** ** ******************** 

 

M13f    TATAGATTACCACAGAGAAATGGCAGAAAAATTACTGAAAGAAAATAAAGCGTTTTATTG 360 

26695   TATAGATTACCACAGAGAAATGGCAGAAAAATTACTGAAAGAAAATAAAGCGTTTTATTG 281 

TC      CATAGATTACCACAGAGAAATGGCAGAAAAATTGCTTAAGGAAAATAAAGCGTTTTATTG 281 
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         ******************************** ** ** ******************** 

 

M13f    TTATGCGAGTGCGGAGTTTTTAGAAAGAGAAAAAGAAAAAGCCAAAAATGAAAAACGCCC 420 

26695   TTATGCGAGTGCGGAGTTTTTAGAAAGAGAAAAAGAAAAAGCCAAAAATGAAAAACGCCC 341 

TC      CTATGCGAGCGCGGAATTTTTAGAACAAGAAAAAGAAAAAGCCAAAAACGAAAAACGCCC 341 

         ******** ***** *********  ********************* *********** 

 

M13f    TTTCAGGTATTCAGACGAGTGGGCCACTTTAGAAAAAGACAAGCACCATGCCCCTGTGGT 480 

26695   TTTCAGGTATTCAGACGAGTGGGCCACTTTAGAAAAAGACAAGCACCATGCCCCTGTGGT 401 

TC      TTTCAGGTATTTAGACGAATGGGCGACTTTAGAAAAAGACAAGCACCATGATCCTGTGGT 401 

        *********** ****** ***** *************************  ******** 

 

M13f    GCGTTTAAAAGCCCCAAATCATGCGGTGTCTTTCAACGATGCGATTAAAAAAGAAGTGAA 540 

26695   GCGTTTAAAAGCCCCAAATCATGCGGTGTCTTTCAACGATGCGATTAAAAAAGAAGTGAA 461 

TC      GCGTTTAAAAGCCCCAAATCATGCGGTTTCTTTTAATGATGCGATCAAAAAAGAAGTGAA 461 

        *************************** ***** ** ******** ************** 

 

M13f    ATTTGAACCTGATGAATTGGATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACTTA 600 

26695   ATTTGAACCTGATGAATTGGATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACTTA 521 

TC      ATTTGAACCTTATGAATTGGATTCTTTTGTGCTTTTAAGAAAGGATAAAAGCCCGACTTA 521 

        ********** ************************* *** ************* ***** 

 

M13f    TAATTTCGCTTGCGCATGCGATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGCGA 660 

26695   TAATTTCGCTTGCGCATGCGATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGCGA 581 

TC      TAATTTCGCTTGCGCATGCGATGATTTGCTTTATGAAATCAGTCTGATTATTAGAGGCGA 581 

        ********************************** ************************* 

 

M13f    AGATCATGTGAGTAACACCCCCAAACAAATCTTAATCCAGCAAGCTTTAGGCTCCAATGA 720 

26695   AGATCATGTGAGTAACACCCCCAAACAAATCTTAATCCAGCAAGCTTTAGGCTCCAATGA 641 

TC      AGATCACGTGAGTAACACCCCTAAACAGATTTTAATCCAACAAGCTTTAGGCTCAAATGA 641 

        ****** ************** ***** ** ******** ************** ***** 

 

M13f    TCCGATTGTTTATGCGCATTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATGAG 780 

26695   TCCGATTGTTTATGCGCATTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATGAG 701 

TC      CCCTATTATTTATGCGCATTTACCCATTATCTTAGATGAAGCAAGCGGTAAAAAAATGAG 701 

         ** *** ************* ******** ********** ************ ***** 

 

M13f    TAAAAGAGATGAAGCCTCCAGCGTGAAATGGCTTTTGAATCAAGGGTTTTTANCGGTTGC 840 

26695   TAAAAGAGATGAAGCCTCCAGCGTGAAATGGCTTTTGAATCAAGGGTTTTTACCGGTTGC 761 

TC      CAAAAGAGACGAAGCCTCTAGCGTGAAATGGCTTTTAAATCAAGGGTTTTTGCCGGTTGC 761 

         ******** ******** ***************** **************  ******* 

 

M13f    GATTGCGAATTACCTCATCACTATCGGTAATAAAGTGCCTAANGAAGTTTTTAGCCTTGA 900 

26695   GATTGCGAATTACCTCATCACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGA 821 

TC      GATCGTGAATTACCTCATCACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGA 821 

        *** * ************************************ ***************** 

 

M13f    TGAAGCGATAGAATGGTTTAGTTTAGAAAATCTTTNCAGTNCTCNNNCTCNTTTTNATTT 960 

26695   TGAAGCGATAGAATGGTTTAGTTTAGAAAATCTTTCCAGTTCTCCGGCTCATTTTAATTT 881 

TC      TGAAGCGATAGAATGGTTCAGTTTGGAAAACCTTTCTAATTCCCCGGCTCATTTTAATTT 881 

        ****************** ***** ***** ****  * * * *   *** **** **** 

 

M13f    AAAATATTTAAAN--NCNNANNNNCNAGCATTTAA-GCTTTTNGACGATGANN------- 1010 

26695   AAAATATTTAAAACACTTAAACCACGAGCATTTAAAGCTTTTAGACGATGACAAGTTATT 941 

TC      AAAATACTTAAAACACTTAAACCACCAACATTTAAAGCGTTTAGACGATGAAAAATTATT 941 

        ****** *****       *    * * ******* ** *** ******** 

 

M13f    ------------------------------------------------------------ 

26695   AGAACTCACTTCAATAAAAGATAAAAACCTCTTAGGGCTTTTAAGATTGTTTATAGAAGA 1001 

TC      AGAACTCGCCCCAACAAAAGATAAAAATCTTTTAGGGCTTTTAAGGTTATTCATAGAAGA 1001 

 

 

M13f    ------------------------------------------------------------ 
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26695   ATGCGGCACGCTTTTAGAATTGAGGGAAAAAATTTCGTTGTTTTTAGAGCCAAAGGATAT 1061 

TC      ATGCGGCACGCTTTTAGAATTGAAAGAAAAAATTTCGTTGTTTTTAGAGCCAAAAGATAT 1061 

 

 

M13f    ------------------------------------------------------------ 

26695   TGTTAAAACTTATGAAAATGAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACGCTCT 1121 

TC      TGTTAAAACTTACGAAAACGAAGATTTTAAAGAGCGTTGCTCAATTCTTTTTAACGCCCT 1121 

 

 

M13f    ------------------------------------------------------------ 

26695   AACAAGCATGGATTTTCAAGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGCG 1181 

TC      AAAAAGCATGGATTTTCAAGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGTG 1181 

 

 

M13f    ------------------------------------------------------------ 

26695   ATTAAGCCAGCTTAAGGGTAAGGATTTTTTCAAACCTTTGCGCATCCTTTTAACCGGGAA 1241 

TC      ATTGAGCCAGCTTAAGGGTAAGGATTTTTTCAAACCCTTGCGCATTCTTTTAACCGGAAA 1241 

 

 

M13f    ------------------------------------------------------------ 

26695   CTCGCATGGCGTTGAATTGCCTTTGATTTTCCCCTATATCCAAAGCCATCATCAAGAAGT 1301 

TC      CTCGCATGGCGTTGAATTGCCGTTGATTTTCCCTTATATTCAAAGCCATTATCAAGAAGT 1301 

 

 

M13f    ------------------- 

26695   TTTAAGGCTCAAAGCATGA 1320 

TC      TTTAAGGCTCAAAGCATGA 1320 
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Figure 2.5: Alignment of sequencing data using M13reverse (M13r) primer for the 

strain R7 gltx2. TC – Data from Dr. Terry Cathopoulis, 26695 – data from H. pylori genome 

M13r    ------------------------------------------------------------ 

26695   ATGCTTCGTTTTGCGCCTTCGCCTACAGGGGATATGCACATAGGGAATTTAAGGGCAGCC 60 

TC      ATGCTTCNTTTTGCGCCTTCGCCTACAGGGGATATGCACATAGGGAATTTAAGGGCAGCC 60 

 

 

M13r    ------------------------------------------------------------ 

26695   ATTTTCAACTACATTGTGGCTAAACAGCAATATAAACCCTTTCTCATTCGCATTGAAGAC 120 

TC      ATTTTTAACTACATTGTGGCCAAACAGCAACATAAACCCTTTCTCATTCGCATTGAAGAC 120 

 

 

M13r    ------------------------------------------------------------ 

26695   ACAGACAAAGAGCGCAACATTGAAGGCAAAGACCAAGAGATTTTAGAAATTTTAAAGCTT 180 

TC      ACAGATAAAGAACGCAACATTGAAGGCAAAGATCAAGAGATTTTAGAGATTTTAAAGCTT 180 

 

 

M13r    ------------------------------------------------------------ 

26695   ATGGGGATAAGCTGGGACAAGCTCGTGTATCAAAGCCATAATATAGATTACCACAGAGAA 240 

TC      ATGGGGATAAGTTGGGATAAACTCGTGTATCAAAGCCATAACATAGATTACCACAGAGAA 240 

 

 

M13r    ------------------------------------------------------------ 

26695   ATGGCAGAAAAATTACTGAAAGAAAATAAAGCGTTTTATTGTTATGCGAGTGCGGAGTTT 300 

TC      ATGGCAGAAAAATTGCTTAAGGAAAATAAAGCGTTTTATTGCTATGCGAGCGCGGAATTT 300 

 

 

M13r    ------------------------------------------------------------ 

26695   TTAGAAAGAGAAAAAGAAAAAGCCAAAAATGAAAAACGCCCTTTCAGGTATTCAGACGAG 360 

TC      TTAGAACAAGAAAAAGAAAAAGCCAAAAACGAAAAACGCCCTTTCAGGTATTTAGACGAA 360 

 

 

M13r    -----------------------------------NNNNGNGCGTTTAAAAGCCCCAAAT 25 

26695   TGGGCCACTTTAGAAAAAGACAAGCACCATGCCCCTGTGGTGCGTTTAAAAGCCCCAAAT 420 

TC      TGGGCGACTTTAGAAAAAGACAAGCACCATGATCCTGTGGTGCGTTTAAAAGCCCCAAAT 420 

                                               * ******************* 

 

M13r    CNTGNGNNNTCTT-CAACGATGCGATTAAAAAAGAAGTGAAATT--GANNNGATGAATTG 82 

26695   CATGCGGTGTCTTTCAACGATGCGATTAAAAAAGAAGTGAAATTTGAACCTGATGAATTG 480 

TC      CATGCGGTTTCTTTTAATGATGCGATCAAAAAAGAAGTGAAATTTGAACCTTATGAATTG 480 

        * ** *   ****  ** ******** *****************   *    ******** 

 

M13r    GATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCNNACTTATAATTTCGCTTGCGCNTGC 142 

26695   GATTCTTTTGTGCTTTTGAGACAGGATAAAAGCCCTACTTATAATTTCGCTTGCGCATGC 540 

TC      GATTCTTTTGTGCTTTTAAGAAAGGATAAAAGCCCGACTTATAATTTCGCTTGCGCATGC 540 

        ***************** *** ************  ******************** *** 

 

M13r    GATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGCGAAGATCATGTGAGTAACACC 202 

26695   GATGATTTGCTTTATAAAATCAGTCTGATTATTAGAGGCGAAGATCATGTGAGTAACACC 600 

TC      GATGATTTGCTTTATGAAATCAGTCTGATTATTAGAGGCGAAGATCACGTGAGTAACACC 600 

        *************** ******************************* ************ 

 

M13r    CCCCAAACAANTCTTAATCCAGCAAGCTTTAGGCTCCAATGATCCGATTGTTTATGCGCA 262 

26695   CCC-AAACAAATCTTAATCCAGCAAGCTTTAGGCTCCAATGATCCGATTGTTTATGCGCA 659 

TC      CCT-AAACAGATTTTAATCCAACAAGCTTTAGGCTCAAATGACCCTATTATTTATGCGCA 659 

        **  *****  * ******** ************** ***** ** *** ********** 

 

M13r    TTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATGAGTAAAAGAGATGAAGCCTC 322 

26695   TTTGCCCATTATTTTAGATGAAGTAAGCGGTAAAAAGATGAGTAAAAGAGATGAAGCCTC 719 

TC      TTTACCCATTATCTTAGATGAAGCAAGCGGTAAAAAAATGAGCAAAAGAGACGAAGCCTC 719 
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        *** ******** ********** ************ ***** ******** ******** 

 

M13r    CAGCGTGAAATGGCTTTTGAATCAAGGGTTTTTACCGGTTGCGATTGCGAATTACCTCAT 382 

26695   CAGCGTGAAATGGCTTTTGAATCAAGGGTTTTTACCGGTTGCGATTGCGAATTACCTCAT 779 

TC      TAGCGTGAAATGGCTTTTAAATCAAGGGTTTTTGCCGGTTGCGATCGTGAATTACCTCAT 779 

         ***************** ************** *********** * ************ 

 

M13r    CACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGATGAAGCGATAGAATGGTT 442 

26695   CACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGATGAAGCGATAGAATGGTT 839 

TC      CACTATCGGTAATAAAGTGCCTAAGGAAGTTTTTAGCCTTGATGAAGCGATAGAATGGTT 839 

        ************************************************************ 

 

M13r    TAGTTTAGAAAATCTTTCCAGTTCTCCGGCTCATTTTAATTTAAAATATTTAAAACACTT 502 

26695   TAGTTTAGAAAATCTTTCCAGTTCTCCGGCTCATTTTAATTTAAAATATTTAAAACACTT 899 

TC      CAGTTTGGAAAACCTTTCTAATTCCCCGGCTCATTTTAATTTAAAATACTTAAAACACTT 899 

         ***** ***** ***** * *** *********************** *********** 

 

M13r    AAACCACGAGCATTTAAAGCTTTTAGACGATGACAAGTTATTAGAACTCACTTCAATAAA 562 

26695   AAACCACGAGCATTTAAAGCTTTTAGACGATGACAAGTTATTAGAACTCACTTCAATAAA 959 

TC      AAACCACCAACATTTAAAGCGTTTAGACGATGAAAAATTATTAGAACTCGCCCCAACAAA 959 

        ******* * ********** ************ ** ************ *  *** *** 

 

M13r    AGATAAAAACCTCTTAGGGCTTTTAAGATTGTTTATAGAAGAATGCGGCACGCTTTTAGA 622 

26695   AGATAAAAACCTCTTAGGGCTTTTAAGATTGTTTATAGAAGAATGCGGCACGCTTTTAGA 1019 

TC      AGATAAAAATCTTTTAGGGCTTTTAAGGTTATTCATAGAAGAATGCGGCACGCTTTTAGA 1019 

        ********* ** ************** ** ** ************************** 

 

M13r    ATTGAGGGAAAAAATTTCGTTGTTTTTAGAGCCAAAGGATATTGTTAAAACTTATGAAAA 682 

26695   ATTGAGGGAAAAAATTTCGTTGTTTTTAGAGCCAAAGGATATTGTTAAAACTTATGAAAA 1079 

TC      ATTGAAAGAAAAAATTTCGTTGTTTTTAGAGCCAAAAGATATTGTTAAAACTTACGAAAA 1079 

        *****  ***************************** ***************** ***** 

 

M13r    TGAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACGCTCTAACAAGCATGGATTTTCA 742 

26695   TGAAGATTTTAAAGAGCGTTGTTTAGCGCTTTTTAACGCTCTAACAAGCATGGATTTTCA 1139 

TC      CGAAGATTTTAAAGAGCGTTGCTCAATTCTTTTTAACGCCCTAAAAAGCATGGATTTTCA 1139 

         ******************** * *   *********** **** *************** 

 

M13r    AGCGTATAAGGATTTTGANAGTTTTAAAAAAGAAGCCATGCGATTAAGCCAGCTTAAGGG 802 

26695   AGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGCGATTAAGCCAGCTTAAGGG 1199 

TC      AGCGTATAAGGATTTTGAAAGTTTTAAAAAAGAAGCCATGTGATTGAGCCAGCTTAAGGG 1199 

        ****************** ********************* **** ************** 

 

M13r    TAAGGATTTTTTCAAACCTTTGCGCATCCTTTTAACCGGGAACTCGCATGGCGTTGAATT 862 

26695   TAAGGATTTTTTCAAACCTTTGCGCATCCTTTTAACCGGGAACTCGCATGGCGTTGAATT 1259 

TC      TAAGGATTTTTTCAAACCCTTGCGCATTCTTTTAACCGGAAACTCGCATGGCGTTGAATT 1259 

        ****************** ******** *********** ******************** 

 

M13r    GCCTTTGATTTTCCCCTATATCCAAAGCCATCATCAAGAAGTTTTTAAGGCTCAAAGCAT 922 

26695   GCCTTTGATTTTCCCCTATATCCAAAGCCATCATCAAGAAGTTTT-AAGGCTCAAAGCAT 1318 

TC      GCCGTTGATTTTCCCTTATATTCAAAGCCATTATCAAGAAGTTTT-AAGGCTCAAAGCAT 1318 

        *** *********** ***** ********* ************* ************** 

 

M13r    GACCCGGGGGAAAGGGCGAATTCCAGCACACNGGCGGCCGTTACTAGNGGNNCCGAGNNC 982 

26695   GA---------------------------------------------------------- 1320 

TC      GA---------------------------------------------------------- 1320 
 

III. Conclusion 
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While Dr.Cathopoulis’s original results were intriguing, upon further examination, 

they are unfortunately most likely the result of PCR errors. 

 The gltX2 genes from strains B3, R7, and Cheetah were shown to be full-length 

and highly homologous to gltX2 from Hp26695. 

Thus, the 16 strains of Hp that we analyzed have highly homologous gltX2 genes. 

Therefore, even though Hp has a high rate of evolution, gltX2 seems to be under robust 

selection pressures to maintain its current primary sequence.  
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IV. Materials and Methods 

Genes were PCR amplified using primers listed in Table 2.1 and Pfu polymerase 

according to the manufacturer’s instructions. Cloning into the TOPO pCR2.1 vector was 

done according to the procedure in the TOPO manual (Invitrogen).14 

Table 2.1: Primers used in this study. 

Primer Sequence 

NJ201 GCTTGGCGTTAGCCAAGTGCTAATCTCTTAAATGATGCC 

NJ202 CGTAATGAGCGAGCTTAAAATCACCGCTATCGC 

S3 CGGGATCCATGCTTCGTTTTGCGCCTTCG 

S4 TCCCCCGGGTCATGCTTTGAGCCTTAAAAACTTC 

NJ205 GCGTTTTATTGTTATGCG 

NJ206 GCCCCAAATCATGCGG 

NJ207 GCCATTTCACGC 

NJ208 CGCTTCATCAAGGC 

 

All sequencing was done by the sequencing facility at Wayne State University, 

Medical School using the M13forward and M13reverse primers. 

All alignments were performed using ClustalW2.6 
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Chapter III 

Investigating the mechanism of ammonia transport in the tunnel of H. pylori 

GatCAB 

I. Introduction 

The first crystal structure of GatCAB (from Staphylococcus aureus) was reported in 

2006.10 Recently, a second structure was reported, using the enzyme from Aquifex 

aeolicus.15 These structures show that the two distal active sites in GatA and GatB are 

connected by a putative hydrophilic tunnel that is filled with several ordered water 

molecules. While other enzymes with ammonia tunnels are known, 22 the GatCAB 

enzyme is the first example of a highly hydrophilic tunnel.10 This observation makes 

GatCAB an unusual enzyme with an apparently novel mechanism of ammonia delivery. 

The ammonia molecule, generated by hydrolysis of glutamine in the active site of 

GatA, is transported through a putative 37 Å tunnel, to the active site of GatB. The 

presence of ordered waters, as well as conserved acidic and basic amino acids, 

throughout this tunnel seem to suggest transport of ammonia by successive protonation 

and deprotonation steps.10 Glu125 (in GatB) lies close to the interface of GatA and 

GatB; this residue had been proposed to be a regulatory gate for the transport of 

ammonia.10 The crystal structure of Aquifex aeolicus 15 however, suggests that the 

channel connects the two active sites of GatA and GatB without the presence of a gate. 

No consensus regarding the role of glutamate has emerged so far. Furthermore, the 

presence of an active site base near GatB should be essential for the delivery of neutral 

ammonia for its nucleophilic attack, however this putative base remains unknown.  
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The goal of this project was to develop an understanding of the mechanism of 

ammonia transport through the H. pylori GatCAB tunnel. An alignment reveals that all 

the acidic and basic residues in the tunnel are conserved amongst all known bacterial 

GatCAB orthologs.10 Kinetic analyses will be used to quantify the impact of conservative 

and non-conservative mutations at these positions to gain insight into their roles in the 

mechanism of ammonia transport. The above goal will be accomplished in three steps: 

Step 1: Optimize an assay for H. pylori GatCAB-catalyzed transamidation of Glu-

tRNAGln.  

Step 2: Apply this assay to an analysis of point mutations throughout the GatCAB 

ammonia tunnel. 

Step 3: Combine kinetic results with molecular modeling to develop a mechanism for 

GatCAB-catalyzed ammonia transport.  

 

II. Results and Discussion 

A. Preparation of materials 

 E. coli BL21 (DE3) competent cells carrying the plasmid pSS003 (GatB) were 

transformed with pPTC032 (GatCA). (The plasmids introduce an N-terminal 6-His tag to 

GatB and GatC, respectively). The resultant cells were used to overexpress GatCAB 

and the enzyme was purified by Ni2+- affinity chromatography.. In order to isolate only 

the complex from the eluates, size-exclusion chromatography (SEC) was used as a 

second purification step (Figure 3.2). The concentration of GatCAB, as determined by 

UV absorbance, was 93 µM. 



36 

 

 

 

 

 

 

The plasmid encoding a six-histidine tagged variant of the CCA-adding enzyme was 

generously provided by Dr. Rebecca Alexander of Wake Forest University. The CCA-

adding enzyme, required for the first step of the [32P] tRNA/nuclease P1assay (Figure 

3.5, also see the discussion below), was over expressed and purified by cobalt affinity 

chromatography (Figure 3.3). The concentration was determined by UV absorbance to 

be 55 µM. 

 

Figure 3.2: Purification of 

HpGatCAB. A) SEC chromatogram 

of the eluate obtained from Ni2+ 

affinity chromatography. Five 

fractions were collected. Based on 

times of elution and molecular weight 

the boxed region was identified as 

GatCAB. B) SDS-PAGE of this region 

confirmed the presence of GatCAB. 

The impurity at 26 kD was attributed 

to a degradation product of GatB. 

Figure 3.3: Purification of CCA-adding enzyme. 

The CCA-adding enzyme was overexpressed and 

purified by cobalt affinity chromatography. Analysis 

by SDS-PAGE gel shows that the enzyme is pure. 
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B. Optimization of an assay for H. pylori GatCAB-catalyzed transamidation of Glu-

tRNAGln. 

The net reaction catalyzed by GatCAB is the transamidation of Glu-tRNAGln to 

produce Gln-tRNAGln.  This activity can be monitored by thin-layer electrophoresis (TLE) 

or two different thin-layer chromatographic (TLC) methods.16 We initially sought to 

optimize our TLE assay in order to use it as a quantitative measure of GatCAB kinetics. 

This technique separates 14C-labeled glutamate from glutamine (following hydrolysis 

from the tRNA) via electrophoresis on a TLC plate. However, several attempts (using a 

GatCAB concentration of 310 nM) failed to give clear resolution of time points over a 

reaction time course. A final assay, with 10 µM enzyme, was carried out over 120 min. 

In this case, only 12 – 25% conversion was observed and quantification by 

phosphorimager was inaccurate. These results led us to conclude that GatCAB was 

active, but that TLE/14C-phosphorimaging was not sensitive enough for kinetic 

resolution.  

 

 

Next, we decided to use the [32P] tRNA/nuclease P1 assay for our system. This 

assay is based on the incorporation of 32P-ATP into the 3’-end of the tRNA, using the 

Figure 3.4: TLE assay of transamidation 

catalyzed by 10 µM HpGatCAB. Time 

points of 30, 60, 90 and 120 min are shown. 

Control spots of 14C-labeled Glu and Gln are 

on the left and right, respectively. A no 

enzyme control (-ve) is also included. 

Conversion of Glu to Gln is observed but is 

non-linear. 
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CCA-adding enzyme, and subsequent treatment of the reaction with P1 nuclease.17 

Figure 3.5 shows a summary of this assay: the 3’ AMP of tRNA is exchanged with 32P-

ATP by the CCA adding enzyme, incorporating a 32P label between the last two 

nucleotides of the tRNA (Figure 3.5A). Aminoacylation and transamidation reactions 

take place on the radioactive terminal nucleotide of tRNAGln (Figures 3.5B and 3.5C). 

Digestion of tRNAGln with P1 nuclease cleaves the terminal nucleotide with the attached 

amino acids (Figure 3.5D). TLC and phosphorimaging are used to resolve, visualize, 

and quantify the starting material (Glu-AMP) and products (Gln-AMP) (Figure 3.5E). 

 

 

 

 

 

 

Figure 3.5:
17

 [
32

P] tRNA/nuclease P1 assay for transamidation catalyzed by H. pylori 

GatCAB. A) Transfer RNAGln is labeled with 32P by treatment with the CCA adding enzyme 

and α−
32P-ATP. B) The labeled tRNAGln is aminoacylated with Glu by GluRS2. C) Glu-tRNAGln 

is converted to Gln-tRNAGln by GatCAB. D) Digestion of by nuclease P1 gives three possible 

products in the form of labeled AMPs. E) These products are separated and visualized by 

TLC and phosphorimaging, respectively. 
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This assay required optimization before kinetic analyses were possible. The result of 

an initial attempt is shown in Figure 3.6. A spot above Glu-AMP did appear over time, 

suggesting that it is Gln-AMP. However, the two spots were not well resolved. 

 
 

Based on a report on the detection of nucleotides by mass spectrometry, 20 pre-

treatment of the TLC plates with ammonium hydroxide was tested to improve resolution. 

While this method afforded good resolution, ammonium hydroxide corroded the plates, 

causing the PEI-Cellulose matrix to disintegrate. Another report suggested pre-

treatment with water.21 This procedure yielded good resolution while maintaining plate 

integrity (Figure 3.7). 

Figure 3.6: Initial attempt at a 
32

P-based 

transamidation assay. Time points (5 µL) were 

quenched in a P1 nuclease mix and spotted 1 cm 

from the base of a PEI – cellulose plate. A no 

enzyme control was also conducted. The plate was 

run in 100 mM ammonium acetate in 5% acetic acid. 

Gln-AMP grows in over time, but with poor resolution 
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Next, we set out to identify conditions for measuring initial rates (Figure 3.8). 

Enzyme concentration and time points were varied. GatCAB concentrations below 10 

nM gave less than 10% conversion of Glu to Gln (ideal for measuring initial rate 

kinetics). The last optimization of the assay was focused on the observation of an extra 

spot in the no enzyme control lanes (Figure 3.9). This spot has the same Rf value as 

Gln-AMP and its intensity varied from 30% to 60% (normalized with respect to Glu-AMP 

and Gln-AMP). Such a high percentage was not desirable for kinetic analyses and 

efforts were sought to resolve this impurity. A number of steps summarized in Section III 

brought the intensity down to 3%. 

 

Figure 3.7: Improved resolution. Pre-treatment 

of the TLC plate with water improves resolution. 

The assay was performed with 200 nM of AdT. 

Time points were taken at one minute intervals. 
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Figure 3.8: Conditions for measuring initial rates. High concentrations of AdT (200 nM and 50 nM) 

show greater than 10% conversion of the substrate to the product in less than 1 min. Lowering the 

enzyme concentration to 20 nM or 10 nM leads to a slower increase (bottom left graph). The best 

results were observed with less than 10 nM GatCAB (1 nM GatCAB shown here). 
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A final assay with 5 nM GatCAB and all the conditions described above is shown in 
Figure 3.10.  

 

 
 

The conditions shown in Figure 3.10 were repeated in triplicate, however, large 

variations were observed from trial to trial. A representative triplicate assay is shown in 

Figure 3.11.  

 

Figure 3.9: High intensity of the negative control 

spot. A spot of comparable intensity (red box) with 

the time-points was observed for the no AdT control. 

The exact origin of this spot is unclear. A no P1 

nuclease treatment shows an absence of the spot 

indicating that this is not a small molecule 

contamination from the preparation of the Glu-

tRNAGln. 

Figure 3.10: Final conditions for the 

assay. The extra spot in the negative 

control lane is now reduced to 3%. Also, a 

positive control (prepared by using 400 nM 

GatCAB over 1 hr) confirms the identity of 

Gln-AMP. The increase is linear over the 

time range tested.  
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We attributed these deviations in slope (two-fold in Figure 3.11) to errors in pipetting 

small volumes (1 µL) of enzyme stored in 50% glycerol. Enzyme dilution led to higher 

reproducibility but much higher levels of conversion (Figure 3.12). Lowering the enzyme 

concentration to 1 nM resolved this issue (Figure 3.13). 

 

Figure 3.11: Representative triplicate 

assay. Each line represents one trial. 

Large deviations are seen from trial to trial.  

Figure 3.12: Eliminating effects of 

glycerol. Dilution of the enzyme in water 

leads to better agreement between 

various trials.  
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C. Hp GatCAB shows a biphasic response  

 

 

Figure 3.13: A representative image of a 

transamidation assay: A phosphorimage of 

transamidation with 1 nM AdT is shown. The 

negative control is of Glu-tRNAGln treated with P1 

nuclease (no AdT). The positive control is Gln-

tRNAGln formed by aminoacylation of Hp tRNAGln 

by E. coli GlnRS.   

Figure 3.14: Biphasic response of 

GatCAB: An initial rate profile of 

transamidation by 1 nM GatCAB. 

Transamidation shows a biphasic 

response, probably due to the 

accumulation of the misacylated product.  
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An initial rate profile of transamidation by GatCAB shows a biphasic response 

towards transamidation. This is most likely due to accumulation of the correctly acylated 

product. As Gln-tRNAGln accumulates over time, it is possible that it becomes a 

competing substrate to Glu-tRNAGln leading to a reduced rate of transamidation. 

 

D.  An analysis of point mutations throughout the GatCAB ammonia tunnel. 

QuikChange site-directed mutagenesis was used to construct two mutations in GatA 

(D185A and D185N) and four mutations in GatB (K89A, K89R, Y91A, and Y91F); the 

entire open reading frame of each clone was sequenced in its entirety. The remaining 

mutations in Table 3.1 were constructed by other members of the lab. 

GatA GatB 

T149A,T149S,T149V R79A,R79K 

R174A,R174K K80A,K80R 

S182A,S182T Y82A,Y82S 

D185A,D185N K89A,K89R 

R323A,R323K Y91A,Y91F 

 Q92A,Q92E 

 E125A,E125Q,E125D 

 D278A,D278N 

 

The four mutants in the GatB subunit, K89A, K89R, Y91A and Y91F, were co-

expressed with wild-type GatCA and purified as a complex by cobalt affinity 

chromatography. We found that using cobalt resin instead of  Nickel resin gave higher 

Table 3.1: Proposed 

mutations in GatCAB. 
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purity and SEC was not required to further purify these mutants (Figure 3.15). The 

remaining mutants in Table 3.1 were purified by other members of the lab. 

 

The impact of some of these mutants on initial rates of transamidation is shown in 

Figure 3.16. A general conclusion that can be drawn is that the ammonia tunnel is 

sensitive to mutagenesis. 

 

Figure 3.15: Purification of GatB mutants. Each 

of the GatB mutants was co-expressed with wild-

type GatCA. They were purified as a complex by 

cobalt affinity chromatography. SDS-PAGE of the 

purified fractions is shown here. 

Figure 3.16 Effect 

of mutants on 

GatCAB’s initial 

rate of 

transamidation: 

Most mutations are 

deleterious to 

enzyme activity. For 

a detailed discussion 

on each mutant, see 

text. 
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Residues in GatA: Conservative mutations in GatA (T149V, S182T and D185N) 

completely abolish transamidation activity. Alanine mutations, however, tend to have 

~40% activity. It remains to be seen if this is a general feature of the residues in GatA 

that line the tunnel.  

Residues in GatB: Out of all the mutants screened so far, K80R is the only mutant that 

shows wild-type activity. This result implies that a positive charge near the GatB active 

site is important for efficient transamidation. For the remaining residues, alanine 

mutations completely abolished transamidation activity implying an important role for 

these residues. Glu125, a residue at the interface of GatA and GatB, shows 50% 

activity when it is mutated to E125Q and E125D, implying that the charged side chain 

as well as its size play important roles. Tyr82, a potential base near the GatB active site 

that could deprotonate ammonium to the nucleophilic ammonia necessary for 

transamidation, shows 50% activity when mutated to phenylalanine. This result 

suggests that Tyr82 is not serving as a base, however, the role of its aromatic side 

chain seems important. Tyr91, another residue near the interface of GatA and GatB, 

has no transamidation activity upon alanine mutation. This residue has been implicated 

in domain-domain communication.13  

III. Conclusions 

Two mutations in GatA (D185A and D185N) and four mutations in GatB (K89A, 

K89R, Y91A, and Y91F) have been constructed. The GatB mutants were co-expressed 

with wild-type GatCA and purified by cobalt affinity chromatography. 

The [32P] tRNA/nuclease P1 assay was optimized for our system by making a 

number of changes: 
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• Dilution (10X) after synthesis of labeled tRNAGln and labeled Glu-tRNAGln followed 

by concentration by passing the mixture through a 3k spin column. This removes 

small molecule impurities as well as unreacted radioactive ATP. 

• Addition of 18 µM unlabeled Glu-tRNAGln to the GatCAB reaction mixture. 

• Pre-treatment of the TLC plate with water 

• Solvent system – Water:1M NH4Cl:Acetic acid (85:10:5)  

• Initiation of the reaction by adding Gln and ATP 

• Diluting AdT from a 50% glycerol stock to water and using a higher volume (5 µL) to 

avoid errors in pipeting solution containing glycerol 

Preliminary results suggest that T149, S182 and D185 in GatA while K80, Y82, Y91 

and E125 in GatB are important for transamidation.  

 

IV. Materials and Methods 

         Unless otherwise stated, all materials were purchased from Sigma-Aldrich or 

Fisher Scientific. 

Site-directed mutagenesis 

QuikChange site-directed mutagenesis was performed on the plasmids pPTC032 

(containing N-terminally tagged  gatCA genes in an operon)11 and pSS003 (N-terminally 

tagged gatB gene).12 The primers used for each mutation are listed in Table 2. 

Typically, a polymerase chain reaction (50 µL) was conducted under the following 

conditions: 95 °C10.00; [95 °C1.30;65 °C1.00;72 °C3.00]30; 72 °C10.00 . DNA (1 µL, OD=0.5), 4 

mM dNTPs, 1 mM primers and 1 µM Pfu polymerase(New England Biolabs) were used. 

The products were loaded on an agarose gel (treated with ethidium bromide).  Agarose 

gel chromatography was used to confirm the expected products.  The open reading 
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frames of each plasmid were confirmed by DNA sequencing at the sequencing facility at 

Wayne State University Medical School. 

 

 

Primer  Mutation Sequence 

NJ07 K89A ggaaaaattatttttaccctgatttgcctGCggcttatcaaatttcgc 

NJ08  gcgaaatttgataagccGCaggcaaatcagggtaaaaataatttttcc 

NJ26 K89R ggaaaaattatttttaccctgatttgcctCGggcttatcaaatttcgc 

NJ27  gcgaaatttgataagccCGaggcaaatcagggtaaaaataatttttcc 

NJ28 Y91A gatttgcctaaggctGCtcaaatttcgcagtttgaag 

NJ29  cttcaaactgcgaaatttgaGCagccttaggcaaatc 

NJ30 Y91F gatttgcctaaggcttTtcaaatttcgcagtttgaag 

NJ31  cttcaaactgcgaaatttgaAaagccttaggcaaatc 

NJ32 D185A cgcgtattgctctagttttgCtcaaatcgggcc 

NJ33  ggcccgatttgaGcaaaactagagcaatacgcg 

NJ34 D185N cgcgtattgctctagttttAatcaaatcgggcc 

NJ35  ggcccgatttgatTaaaactagagcaatacgcg 

 

Purification of wild-type and mutant GatCAB variants 

E. coli BL21 (DE3) competent cells carrying the plasmid pSS003 encoding GatB12 

were transformed with pPTC032 encoding GatCA.11 (These plasmids introduce N-

terminal 6-His tags onto GatB and GatC, respectively). These two plasmids contain two 

different antibiotic genes and two different origins of replication. Due to this, it is 

Table 3.2: Primers used for GatA and GatB mutagenesis. The capital letters in the primer 

sequence indicate the positions of the nucleotides that were mutated. 
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possible to introduce two plasmids in one cell. The resultant cells were used to 

overexpress GatCAB and the enzyme complex was purified by Ni2+-affinity 

chromatography. Eluted fractions were diluted to 1 mL in SEC buffer (50 mM Hepes, pH 

7.2, 30 mM KCl, 6 mM MgCl2, 0.1 mM EDTA, 5 mM β-mercaptoethanol). The sample 

was injected onto a Superdex 200 gel filtration column (Amersham). The fractions were 

analyzed by SDS-PAGE. The fractions containing pure GatCAB were concentrated 

using a YM-10 filter and stored in 50% glycerol. 

The GatCAB mutants were transformed similar to wild-type above. The resultant 

cells were used to overexpress the GatCAB mutants. The resulting complexes were 

purified using cobalt affinity chromatography, since concentration of the purified 

complex was found to be higher compared to nickel affinity chromatography. Also the 

complex thus obtained did not contain significant impurities, thus avoiding size 

exclusion chromatography. The purified fractions were stored in 50% glycerol. 

 

Thin layer electrophoresis (TLE) assay 

The TLE assay was performed as described previously.16 

 

[32P]-tRNA/nuclease P1 assay 

Polyethyleneimine-cellulose plates were purchased from EMD chemicals and P1 

nuclease was purchased from Sigma-Aldrich. [α-32P] ATP was purchased from 

American Radiolabeled Chemicals. 

Transfer RNAGln was labeled with 32P as previously reported with the following 

changes;17 after phenol/chloroform extraction, the aqueous layer was diluted 10-fold and 
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passed through a 3k spin column until the volume was reduced to 100 µL. Transfer 

RNAGln was precipitated by isopropanol.   

Glu-tRNAGln was prepared by mixing the 32P-labeled tRNAGln with 37 µM unlabelled 

tRNAGln. This mixture was incubated with 2 µM GluRS2, as described previously.9 The 

resulting Glu-tRNAGln was purified and precipitated similar to tRNAGln above.  

The efficiency of both tRNA labeling and Glu-tRNAGln synthesis was monitored by 

liquid scintillation counting. 

       The assay was performed with the key steps listed in section III.Briefly, the 

procedure was as follows. 18 µM unlabeled Glu-tRNAGln was added to the GatCAB 

reaction mixture. The reaction mixture also contained 1nM of GatCAB, this was 

prepared by diluting from a 50% glycerol stock to water and using a higher volume (5 

µL) to avoid errors in pipeting solution containing glycerol.. Other components of the 

reaction were as previously described.17 The reaction was initiated by adding glutamine 

and ATP. The reaction was quenched as described.17 The TLC plate was pretreated 

with water and dried. A solvent system of Water:1M NH4Cl:Acetic acid (85:10:5) was 

used to develop the plates. 

TLC plates were dried and exposed to a Kodak imaging screen for 16 hours. The 

screens were imaged using a Typhoon phosphoimager. ImageQuant software was used 

for analysis of the data. Kaleidagraph was used to plot and analyze the graphs shown in 

the above figures. 
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ABSTRACT 

INVESTIGATING THE GLUTAMINE-TRNA (GLUTAMINE) SYNTHESIS APPARTUS 
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Advisor: Tamara L. Hendrickson 

Major: Chemistry 

Degree: Master of Science 

 Accurate protein biosynthesis is a vital process to all cellular life. Aminoacyl-

tRNAs are at the heart of this process: A correctly formed aminoacyl-tRNA is critical for 

protein biosynthesis.  Organisms have evolved many mechanisms to repair misacylated 

tRNAs before they cause errors in protein biosynthesis, thus maintaining the integrity of 

the genetic code.  The human pathogen Helicobacter pylori (H. pylori) synthesizes Glu-

tRNAGln as an intermediate to producing Gln-tRNAGln.  This misacylated intermediate 

could cause lethal errors if used by the ribosome for protein synthesis. H. pylori repairs 

this intermediate by the amidotransferase GatCAB. 

 This dissertation focuses on indirect aminoacylation and transamidation to 

produce Gln-tRNAGln in H. pylori.  A combination of phylogenetic analyses and 

enzymatic assays were used that contribute to a picture of this process. 

Chapter 2 discusses our examination of sequence conservation of gltX2 (the gene 

that encodes GluRS2) across different H. pylori strains. The conclusions of this 

sequencing effort are compared with trends in sequences of genes important in the 

aminoacylation step of protein synthesis.  
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Chapter 3 discusses one aspect of Gln-tRNAGln production – the mechanism of 

transport of ammonia from the active site of one subunit (GatA) to the active site of 

another (GatB) through an intramolecular hydrophilic tunnel. Site-directed mutagenesis 

of key residues lining this tunnel and their transamidation assays were performed. With 

these studies, a preliminary picture of ammonia transport through the tunnel can be 

constructed.  
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