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JMASM21: PCIC_SAS: Best Subsets Using Information Criteria 
 

C. Mitchell Dayton            Xuemei Pan 
Department of Measurement & Statistics 

University of Maryland 
 
 
PCIC_SAS is a SAS program for identifying optimal subsets of means based on independent groups. All 
possible configurations of ordered subsets of groups are considered and a best model is identified using 
both the AIC and BIC information criteria. Results for models with homogeneous variances as well as 
models with heterogeneity of variance in the same pattern as the means are reported.   
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Introduction 
 
Researchers often use analysis of variance 
(ANOVA) to investigate mean differences 
among several groups. If the null hypothesis of 
equality of means is rejected, it is common 
practice to employ multiple comparison 
techniques to further study the pattern of 
differences among the means. For example, Kirk 
(1995) described 22 multiple comparison 
procedures including nine pairwise comparisons 
such as the Tukey honestly significantly 
different (HSD) procedure and Dunnett’s T3 
test. Statistical packages often include a variety 
of competing procedures with, for example, SAS 
8.1 allowing the user to choose among 12 
distinct methods for pairwise comparisons. 
Often, these procedures depend upon 
interpreting    multiple    significance   tests.   As  
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detailed in the next section, Dayton (1998, 2003) 
advocated replacing these procedures by a 
holistic model selection approach based on 
information criteria. The purpose of this article 
is to describe and make available to applied 
researchers a SAS program, PCIC_SAS, that 
implements this modern information theoretic 
approach for comparisons among means. 
  
Application of Information Criteria to the 
Paired-Comparisons of Means 
 The widely-used Tukey Honestly 
Significantly Different (HSD) procedure for K 
independent group means involves the 
computation of q statistics for the K(K – 1)/2 
different pairs of means and refers these 
statistics to the appropriate null distribution of 
the studentized range statistic for a span of K 
means. Like similar pair-wise comparison 
procedures, Tukey HSD entails testing K(K – 
1)/2 hypotheses of the form µk = µk′ for k ≠ k′. 
Often  this  is   done  subsequent  to  testing  the 
omnibus hypothesis of equality of means (i.e., µk 
= µ for k = 1,…,K) using analysis of variance 
techniques. Theoretically, the omnibus test is not 
required since the K-range pairwise comparison 
is an equivalent, although less powerful, test. 
There are many optional procedures based on 
modifications to the Tukey procedure or based 
on related notions using stepwise procedures. 
See, for example, the Kirk (1995) reference cited 
above for   details of many of these procedures.  
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 Among the problems with pairwise 
comparison procedures cited by Dayton (1998, 
2003) are: 
 

(1) Some arbitrary technique is utilized 
to control the family-wise type I 
error rate for the set of correlated 
pairwise tests; 

(2) The issues of homogeneity of 
variance and differential sample size 
pose problems for many paired-
comparison procedures; 

(3) Intransitive decisions (e.g., 
outcomes suggesting mean 1 = 
mean 2, mean 2 = mean 3, but mean 
1 < mean 3) are the rule rather than 
the exception with typical paired 
comparison procedures because they 
entail a series of discrete, pairwise 
significance tests; 

(4) There exists a large variety of 
competing procedures that differ in 
how type I error is controlled and, 
consequently, in power (e.g., SPSS 
11.5 for Windows offers eighteen 
distinct procedures to choose 
among). 

 
 For K independent groups, there is a 
total of 2K-1 patterns of ordered subsets with 
equal means within subsets. For example, with 
four groups with means ranked and labeled 1, 2, 
3, 4, the 23 = 8 distinct ordered subsets are 
{1234}, {1,234}, {12,34}, {123,4}, {1,2,34}, 
{1,23,4}, {12,3,4} and {1,2,3,4}, where a 
comma is used to separate subsets with unequal 
means. Dayton (1998, 2003) proposed using 
model-selection criteria such as the Akaike 
(1973) AIC statistic for selecting the most 
appropriate ordering of subsets of means for 
purposes of interpretation. In particular, this 
approach avoids many of the objections that can 
be raised with respect to conventional pairwise 
comparison procedures. Information criteria 
such as AIC are based on the logarithm of the 
likelihood of the data, Loge(likelihood). Sclove 
(1987) noted that AIC represents a penalized 
log-likelihood function of the general form:   
 

-2LogeL(likelihood) + a(n)p 
 

where a(n) is a function that may depend upon 
the total sample size, n, and p is the number of 
independent parameters estimated in fitting the 
model to the data. Akaike’s AIC is equal to  
 

-2LogeL(likelihood) + 2p 
 
which does not directly depend upon sample 
size. Various adaptations of or alternatives to 
AIC have been suggested that, unlike AIC, are 
explicitly dependent upon sample size. In 
particular, the Schwarz (1978) BIC statistic and 
the Bozdogan (1987) CAIC statistic use penalty 
terms equal to Loge(n) and Loge(n) + 1, 
respectively. As noted by Bozdogan (1987), 
these latter procedures are asymptotically 
consistent in the sense that, when the null case is 
the true model, the probability of selecting the 
true model approaches one, rather than an 
arbitrary significance level, as is true for 
conventional hypothesis testing procedures. It is 
beyond the scope of this article to discuss the 
basis for selecting among alternative information 
criteria. However, these issues are discussed in 
Dayton (2003). 
 In practice, AIC (or, BIC) is computed 
for all competing models that the researcher 
wishes to compare. Then, from an information 
theoretic perspective, the model satisfying a 
min(AIC) (or, min(BIC)) criterion is selected as 
the best approximating model for the data being 
analyzed. Note that the min(AIC) (or, min(BIC)) 
strategy does not suggest that the selected model 
either fits or does not fit the data but that, among 
the models being compared, it is, in the 
information sense, the best choice. If additional 
models were added to the basis of comparison, a 
different selection might occur although the 
previously computed AIC values would not be 
altered. 

The program, PCIC_SAS, computes 
both the Akaike AIC and the Schwarz BIC 
statistics for all 2K-1 distinct ordered subsets. 
Since the number of ordered subsets can, in 
practice, become quite large (e.g., 512 for K = 
10 groups but 524,288 for K = 20 groups), only 
the ordered subsets corresponding to the 
smallest AIC and BIC values, as specified by the 
user (e.g., 5), are printed out. There is no limit to 
the number of groups that can be analyzed but, 
of course, execution time can become relatively 
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long for large K. In PCIC_SAS, it is assumed 
that the observations arise from normal 
densities.  

Note, that the log-likelihood is 
maximized for any given model when variance 
estimates are computed using the sample size, n, 
rather than n-1, in the denominator. PCIC_SAS 
calculates AIC and BIC based on the usual 
assumption of homogeneity of variance as well 
as based on a restricted heterogeneous variance 
model in which it is assumed that there is a 
unique population variance for each of the 
distinct subsets of means. For the homogeneous 
case, the conventional analysis of variance 
within-groups sum of squares, SSw, is converted 
to a variance estimate, SSw/n, where n is the 
total sample size. For the restricted, 
heterogeneous variance case, an estimated 
variance for a subset of means can be obtained 
(a) by pooling the estimates from the separate 
groups or (b) by computing the sample variance 
for the combined sample. The latter approach is 
illustrated in Dayton (1998, 2003) and is the 
procedure incorporated into PCIC_SAS.  

For a model with T subsets of means, 
the number of independent parameters, p, is 
equal to T+1 for the homogeneous case and 2T 
for the restricted heterogeneous case. Because 
Loge(n) is greater than 2 for n greater than 7, 
AIC and BIC may, and often do, result in 
different orderings of subsets of means with, 
predictably, simpler models being favored by 
BIC because of the larger penalty term. In 
Dayton (1998), results of a limited simulation 
with AIC and CAIC (the slightly different 
criterion than BIC with penalty term Loge(n+1)p 
suggested by Bozdogan (1987)), it was found 
that: “Overall…the accuracy of CAIC is always 
approximately equal to or superior to Tukey 
HSD but tends to be lower than AIC when there 
are relatively many clusters of means, especially 
with smaller sample sizes.” For a more extensive 
simulation providing favorable results for PCIC, 
see Cribbie and Keselman (2003).  
 
 
 
 
 
 
 

Using the PCIC_SAS Program 
 PCIC_SAS is written in the SAS 
programming language. For general-purpose 
analysis with a major statistical computer 
package, there is no other program that 
computes AIC and/or BIC for the models 
available in PCIC_SAS. For a small number of 
groups (e.g., 5 or less), it is reasonably easy to 
program the computations in a spreadsheet as 
was reported by Dayton (1998). For users of the 
matrix-language, Gauss (Aptech Systems, 1997), 
appropriate code that provides input from 
spreadsheets such as Microsoft Excel is 
available (Dayton, 2001).  

Data for analysis with PCIC_SAS can 
be in a SAS data base or imported into SAS 
from a spreadsheet or database program. It is 
conventional to code the groups with names, or 
1, 2, etc., or A, B, etc. but PCIC_SAS rearranges 
the groups in rank order of means, from smallest 
to largest, and presents groups in ranked order, 
1, 2, etc., in the output. Results are directed to 
the SAS output screen that can be printed and/or 
saved. 

 
Example 
 Summary statistics for five ethic groups, 
based on a 5% random sample of cases from the 
NELS88 database, are presented below (see 
//nces.ed.gov/surveys/nels88/ for information 
about the longitudinal study of youth). The 
dependent variable is mathematics achievement 
on a standardized scale with population mean of 
about 50 and standard deviation of about 10. The 
five groups, as documented with the database, 
are: (1) API (Asian/Pacific Islander), (2) 
Hispanic, (3) Black-Non-Hispanic, (4) White-
Non-Hispanic, and (5) American Indian. In rank 
order of means from low to high on the output 
these become: (3) Black-Non-Hispanic, (2) 
Hispanic, (5) American Indian, (4) White-Non-
Hispanic and (1) API. The PCIC_SAS summary 
table and output for the five smallest values of 
AIC and BIC are summarized below: 
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 Summary Table - group means in original order                     
Obs race _FREQ_ mean sd n varunb varmle sum ss 

1 1 75 53.25 10.26 75.00 105.19 103.79 3993.45 7783.89 
2 2 139 47.00 8.28 139.00 68.50 68.01 6532.98 9453.36 
3 3 153 45.63 8.37 153.00 70.09 69.63 6981.58 10654.00 
4 4 798 52.96 10.14 798.00 102.78 102.65 42258.81 81913.54 
5 5 44 47.21 7.22 44.00 52.15 50.96 2077.40 2242.25 

  1209      112047.04  
 

 Summary Table - group means in rank order                                           

Obs race _FREQ_ mean sd n varunb varmle sum ss 
1 3 153 45.63 8.37 153.00 70.09 69.63 6981.58 10654.00 
2 2 139 47.00 8.28 139.00 68.50 68.01 6532.98 9453.36 
3 5 44 47.21 7.22 44.00 52.15 50.96 2077.40 2242.25 
4 4 798 52.96 10.14 798.00 102.78 102.65 42258.81 81913.54 
5 1 75 53.25 10.26 75.00 105.19 103.79 3993.45 7783.89 

 
 

AIC and BIC for Homogeneous Case 
Rank of AIC, value of AIC and ordered subsets for homogeneous variance case: 

AIC_HOMOG 
1 8914.598       1       1       1       2       2 
2 8914.785       1       2       2       3       3 
3 8916.240       1       1       2       3       3 
4 8916.535       1       1       1       2       3 
5 8916.722       1       2       2       3       4 

 
Rank of BIC, value of BIC and ordered subsets for homogeneous variance case: 

BIC_HOMOG 
1 8929.890       1       1       1       2       2 
2 8935.175       1       2       2       3       3 
3 8936.630       1       1       2       3       3 
4 8936.926       1       1       1       2       3 
5 8942.210       1       2       2       3       4 

 
AIC and BIC for Heterogeneous Case 

Rank of AIC, value of AIC and ordered subsets for patterned heterogeneous variance case: 
AIC_HETEROG 

1 8895.898       1       1       1       2       2 
2 8897.075       1       2       2       3       3 
3 8897.724       1       1       2       3       3 
4 8899.729       1       2       3       4       4 
5 8899.838       1       1       1       2       3 

 
Rank of BIC, value of BIC and ordered subsets for patterned heterogeneous variance case: 

BIC_HETEROG 
1 8916.288       1       1       1       2       2 
2 8927.660       1       2       2       3       3 
3 8928.309       1       1       2       3       3 
4 8930.423       1       1       1       2       3 
5 8936.311       1       1       2       2       2 
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Interpretation 
 For AIC, all five reported 
heterogeneous-variance models have smaller 
values than the best homogeneous-variance 
model and for BIC this is true for the first three 
heterogeneous models. Thus, models with 
variances that differ among subsets of means are 
favored over homogeneous-variance models. 
Based on both AIC and BIC, the preferred 
model is reported as: 1, 1, 1, 2, 2. This suggests 
that there are two subsets of means comprised of 
the groups with the three smallest means in one 
subset and the groups with the two largest means 
in the second subset. This corresponds to the 
pattern {Black-Non-Hispanic, Hispanic, 
American Indian} in the subset with smaller 
means and {White-Non-Hispanic, API} in the 
subset with larger means. Note that the 
conclusion should not be drawn that, for 
example, the means are equal for the White-
Non-Hispanic and API groups but, rather that 
the data are not sufficiently reliable to permit an 
ordering within that subset. The variances for 
the two subsets are not reported but can be easily 
computed from the output (see Dayton, 1998) 
and are equal to 67.02 and 102.75, respectively. 
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Appendix 
 The theoretical background for AIC 
derives from information-theoretic concepts 
originally presented by Kullback and Leibler 
(1951). The mathematical material presented in 
this section is supplementary to that presented 
above and can be skimmed or omitted without 
any serious loss of understanding of the PCIC 
technique.  
 Adapting the notation of Akaike (1973, 
1974, 1987) for univariate data, the Kullback-
Leibler information for the true distribution, 
gt(x), of random variable x, relative to some 
other distribution, go(x), is: 
 
(1) I(gt; go) = E(Loge[gt(x)]) - 

E(Loge[go(x)]) 
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where all expectations are taken with respect to 
gt(x). In statistical applications making use of 
maximum likelihood estimation, let x = {xi} be 
n values of an iid random variable, x, with true 
density function g(· | θ) based on the parameter 
vector, θ, and let θx be the usual maximum 
likelihood estimator (MLE) of θ found by 
maximizing g(x | θ) over the sample by treating 
θ as variable. Assuming p independent 
parameters, a large-sample result for the 
distribution of likelihood ratios is:  
 
(2) L1 = 2{Loge[g(x | θx)] - Loge[g(x | θt)]} 
                  = χp

2 
 
where χp

2 is central chi-square with p degrees of 
freedom.  

Let y be an additional observation from 
the same distribution as x. Akaike (1974) shows 
that, asymptotically: 

 
(3) L2 = 2{EyLoge[g(y | θx)]  
 - EyLoge[g(y | θt)]} =  - χp

2 

Then: 

 
(4) E(L1 - L2) = 2Loge[g(x | θx)]  
 - 2EyLoge[g(y |  θx)] ≈ 2p. 
  

Noting that the first term in Equation (1) 
is constant for any model, Akaike defines the 
AIC estimator of Kullback-Leibler information 
as:  

 
(5) Constant - EyLoge[g(y |  θx)] ≈  
 -2Loge[g(x | θx)] + 2p = AIC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For M different models for the same 
data, the Akaike min(AIC) procedure involves 
using Equation (5) to calculate AICm, m = 
1,…,M, for the models and selecting the model 
with min(AICm) as the preferred model. The 
conventional interpretation of AIC is as an 
estimate of the loss of precision (or, increase in 
information) that results when θx, the MLE, is 
substituted for the true parametric value, θt, in 
the likelihood function. 

Sclove (1987) notes that AIC represents 
a penalized log-likelihood function of the 
general form: 

 
 (6) -2Loge[g(x | θx)] + a(n)p  
 
where a(n) is a function that may depend upon 
the total sample size, n. Various adaptations of 
AIC have been suggested that, unlike AIC, make 
the statistic dependent upon sample size. In 
particular, the Schwarz (1978) BIC statistic and 
the Bozdogan (1987) CAIC statistic use penalty 
terms equal to Loge(n) and Loge(n) + 1, 
respectively. As noted by Bozdogan (1987), 
these latter procedures are asymptotically 
consistent in the sense that, when the null case is 
the true model, the probability of selecting the 
true model approaches one, rather than an 
arbitrary significance level, as is true for 
conventional hypothesis testing procedures.  
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