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CHAPTER 1 - INTRODUCTION 

1.1 Introduction to Kinetics.  

At the heart of every bimolecular gas phase reaction, is at least one 

collision between two molecules or atoms. Each collision in the process of 

transforming the reactants to products is an elementary step. The overall 

combination of elementary steps makes up the reaction mechanism, which must 

satisfy the overall balanced reaction equation. Because each elementary step is 

a collision of individual particles, a dynamic analysis of the reactive process is 

possible. Understanding the dynamics of chemical reactions is very important 

academically and to the advancement of many industries. The data collected 

during dynamics experiments help paint a picture of the forces that are acting on 

the system during the chemical reaction.  

The field of chemical kinetics began in 1886, when Cato Maximilian 

Guldberg Peter Waage published the law of mass action, rate = k [A]α [B]β.1  k is 

the rate constant, [A] and [B] are the concentrations, lastly α and β are the 

reaction orders. The physical interpretation of k, the reaction rate constant, was 

still a mystery at the time and was solved experimentally for each reaction.  With 

the development of the Arrhenius equation,2 there was a relation between the 

rate constant and the temperature of the system. The Arrhenius equation also 

introduced the concepts of activation energy (Ea) and frequency or the pre-

exponential factor (A). The activation energy is the spark that the reaction needs 
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to overcome a reaction barrier. These new concepts had a profound impact on 

the field of kinetics and for nearly a century chemists have used the Arrhenius 

equation, to plot the variance in the rate of reaction with temperature, to calculate 

the activation energy and pre-exponential factor of a reaction. The data has 

generated volumes of books about the elementary processes that could be 

isolated for any given macroscopic reaction. All the rate constants were 

determined for macroscopic systems at a controlled temperature. The data 

collected has been very useful to develop efficient synthesis techniques. The 

physical interpretation of the activation energy and pre-exponential factor where 

still not completely understood. Some systems do not follow Arrhenius behavior 

and have a non-linear or negative relation between rate constant and 

temperature, for these systems it is not possible to determine the activation 

energy and frequency factor of the reaction. The data collected from kinetics 

experiments, are average properties of the individual particles that make up the 

macroscopic system. The data is useful in making predictions about macroscopic 

systems but fails to give details of the individual encounters between reactants.3 

Information about the individual encounter between the molecules is lost in the 

averaging over the many energy states of the reactants. To experimentally 

examine the reaction dynamics we must reactively collide individual particles, 

with fixed velocity vectors and monitor the products velocity and direction.   
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1.2 Reactive Scattering 

A crossed beam machine coupled with dc slice velocity map imaging was 

used to experimentally collide two particles and monitor the speed and direction 

of the reactants and products. The images produced are a snapshot of the 

reaction, from an axis perpendicular to the reaction plane, a short time after the 

reactive collision.  

  We are interested in the direction and translational energy of the particles 

before and after the reactive collision, therefore no secondary collisions must 

occur. The only way to ensure single collision conditions is to create a mean free 

path much larger than the distance a particle must travel from the collision region 

to the detector. This is achieved through differential pumping, reaching a rest 

pressure of 10-7 torr and an operational pressure of 10-5 torr. The molecular 

beams are created to cross at a 90° angle, and are pulsed at 10Hz. The gas is 

pulsed from a piezo valve, and expands supersonically into the vacuum. The 

expansion causes a cooling of the internal degrees of freedom in the gas. The 

rotational temperature of the molecules in the beam is below 5K and the 

vibrational temperature is 50k.4 The velocity distribution of the gas is narrower 

compared to the distribution of gas molecules at room temperature. To better 

control the velocity of the reactants, a noble gas is used as a carrier gas. For 

example using helium gives a velocity of 2000m/s and using xenon gives a 

velocity of 340m/s. The use of a noble gas as a carrier, also serves to prevent 

clusters from forming in the molecular beam.   
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By measuring the velocities of the reactants and product, we can calculate 

the energy associated with the system. The results give details of the process 

that took place between the molecules, as new bonds are forming and old bonds 

are breaking.  

A simple model that describes the collision of two particles is the elastic 

hard sphere model. In this model the particles do not interact until the distance 

between them is equal to the combined radius of the two spheres. When the hard 

spheres collide, they are impenetrable and repel each other infinitely at that 

point. After the collision the direction of the velocity vector changes but the 

magnitude stays the same. As the particles fly towards each other the effective 

area of particle 1 as seen by particle 2, determines the probability of collision. 

The combined radius of the particles forms this effective area around each 

sphere. This area is the cross section and it is the effective measure of the 

probability and therefore the rate of collision between two spheres. The cross 

section of a hard sphere is given by 12 = d2. Figure 1 shows the relationship 

between the cross section and the radius of the colliding spheres.  
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Figure 1 The relationship between the cross section and the radius of the hard spheres 

 

When the distance of closest approach, the impact parameter (b), as 

measured perpendicularly to the velocity vector of the particles, is smaller than d 

a collision occurs.  For real molecules d is not a fixed distance; rather it is an 

effective range of interaction. As the hard spheres approach each other we can 

use b to specify the approach of the particles.  
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Figure 2 The relative position vector R and velocity v, at large separation. 

  

To describe the relative motion of two particles we will use the relative 

position vector (R) separating the two particles, the relative velocity vector (V) 

and the impact parameter (b) shown in Figure 2. When b = 0 the particles collide 

head on, as the impact parameter gets larger, the less of it is in the component of 

the velocity vector that is directed along the R vector, and the more likely the 

particles will miss each other. The total energy of the system at a large 
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separation can be calculated from the equation Et = ½V2, where µ = m1m2 / 

m1+m2 is the Reduced mass.  

0

 

Figure 3 The collision trajectory in the center of mass frame. 

The angle made by V and R is very important, this relation is shown in 

Figure 3. Also shown are the distance of closest approach (R0) and the deflection 

angle () between the initial and final relative velocity vectors. As the particles 

approach each other, both R and  change with time. The change in the position 

vector and the change in the orientation of this vector, have energy associated 

with each of them. The kinetic energy of the particles can now be written as, 

EKtotal = ½μ(dR/dt) 2 = ½μ[(dR/dt) 2 + R2 (dψ/dt) 2]. The first term is the translational 
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kinetic energy along the line of centers and the second is the centrifugal energy. 

The centrifugal energy will act as a force keeping the molecules apart. Measuring 

the change in both R and  will be an effective measure of the forces acting 

when the particles collide. To solve for d/dt, we use the conservation of angular 

momentum. L pre-collision = b = L post-collision = (d/dt)R2 and solving gives, (d/dt) 

= bv/R2. 

During the collisions of real molecules the energy term also involves the 

potential energy term between the particles. This energy term is weakly attractive 

at along range and strongly repulsive at a short distance. The potential energy 

term is commonly combined with the centrifugal energy term to give an effective 

potential energy term, Etotal = ½μ(dR / dt )2 + Veff (R). For reactive scattering the 

change in energy between the reactant and products ERxn, must also be taken 

into consideration. The total energy term becomes, Etotal = ½μ(dR/dt)2 + Veff(R) + 

ERxn. 

Using velocity map imaging, we can image the velocity vectors of the 

reactants and products in the center of mass. By comparing the velocity vectors 

and using the conservation of energy and momentum we ascertain the dynamics. 
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1.3 Frame of reference 

It is clearly visible when looking at images produced from our scattering 

experiment, that the post collision velocity vectors are centered on a point. This 

point is the center of mass (cm) of the system. One of the most remarkable 

aspects of dc slice imaging as used in crossed beam experiments, is that you 

directly see the cm of the system. The cm of the system moves with the direction 

of movement of the system at a fixed velocity Vcm. Measuring the product velocity 

vector relative to the center of mass, will simplify the kinematics of the collision. 

The center of mass reference frame is a reference frame in which the 

reference point is travelling on the cm of the system. In the cm frame the 

reactants appear to undergo a direct collision at the center of mass. The total 

momentum in this reference frame is always zero. This allows the determination 

of the velocity of the other particle that is not imaged. Another benefit of using 

this reference frame is that it is not dependent on the laboratory velocity of the 

reactants. Being independent of experimental geometry, allows results from 

different types of experiments to be compared, and also provides a much more 

intuitive picture of the collision dynamics. For these reasons, the scattering 

direction and translational energy is measured in the center of mass frame. 

The reactant velocity vector is measured in the laboratory frame and the 

product velocity is measured in the center of mass frame. Before the collected 

data can be analyzed we must convert the laboratory velocity into the cm 
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velocity. A simple diagram that is conventionally used in the transformation is the 

Newton diagram Shown below. 

 

Figure 4 Newton diagram 
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         Figure 4 shows the initial lab measured velocity vectors of the reactants 

and shows how the relative velocity is related to the initial velocity vectors in the 

lab frame, V = V1 - V2. The velocity vector of the center of mass is also shown 

and is calculated as Vcm = (m1V1 + m2V2 )/ (m1 + m2.) The cm will travel closer to 

the heavier particle, and it divides the relative velocity into the relative velocity in 

the cm frame of the reactants designated by U1 and U2, also for the products U’1 

and U’2 shown in Figure 5.  

 

Figure 5 Newton diagram showing product scattering in the lab and COM frame. 
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The relative velocity in the cm frame is V = U1 - U2 = V1 - V2, as in the lab 

frame.5 Using the relative velocity we calculate U1 and U2. U1 = Vm2/(m1+m2) 

and U2 = Vm1/(m1+m2). The laboratory velocity can be converted to the center of 

mass velocity simply by V1lab = Vcm + U1. Similarly for the products, V’1lab = 

Vcm+U’1.     

Because the center of mass is moving, it has energy associated with it. It 

is therefore not involved in overcoming a reaction barrier, because it is the part of 

the velocity vector not in the reaction coordinates. That is, there are no forces 

acting on the center of mass of the system, so its motion is not involved in the 

reaction. The energy of the center of mass can be calculated by K cm = 1/2µV2
cm. 

The other kinetic energy is that of the U1 and U2, given by K1 = 1/2m1U1
2, K2 = 

1/2m2U2
2, K’1 = 1/2m3U’1

2 and K’2 = 1/2m4U’2
2. We can calculate the total kinetic 

energy in the laboratory frame. K1total= K1 + K cm = 1/2m1U1
2 + 1/2µV2 and for the 

products, K’1total = K’1 + K cm = 1/2m3U’1
2 + 1/2µV2  

It is clear from the above equation that the energy involved in the reaction 

is from the relative motion of the colliding molecules rather than the overall 

kinetic energy. It is the relative motion in the cm frame that determines the value 

of the velocity vectors after the collision. Therefore when examining a hard 

sphere elastic collisions it is important that relative kinetic energy in the cm frame 

is conserved and you have 1/2m1U1
2 + 1/2m2U2

2 = 1/2m1U’1
2 + 1/2m2U’2

2. 

This means that the law of conservation of energy fixes the final position 

of the particle 1 after scattering. To describe the collision of atoms and molecules 
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the conservation of energy must include all the internal excitations of the atoms 

and molecules. Another energy term that must be included in the conservation of 

energy associated with the angular momentum. In reactive scattering, the radius 

of the maximum velocity circle that the products lie on changes depending on the 

nature of the reaction. Polyatomic systems have internal energy modes that can 

store energy and therefore the translational energy of the products is not 

conserved. Fortunately in the center of mass frame, even for reactive scattering, 

the conservation of momentum applies. The conservation of momentum is used 

to calculate the momentum and thus the kinetic energy of the undetected 

product.  

The angular distribution of products also changes for reactive scattering. 

Unlike the scattering of hard spheres, not every collision leads to reaction; you 

have selective regions for reaction, and therefore you have anisotropic angular 

distribution. 
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 1.4 DC slice velocity map imaging 

After the reactants collide, the resulting product particles velocity vectors 

change. The technique used here to Image the velocity of the particles is based 

on ion imaging, which was developed by Chandler and Houston.7 Using ion 

imaging they studied the photodisociation dynamics of CH3I, methyl iodide. The 

main limitation of the ion imaging technique was the large interaction region 

compared to the size of the micro-channel diameter on the MCP. This produced 

blurring, because products with the same velocity created at different points of 

the reaction region (which is on the order of 6mm3) arrived at different parts of 

the screen.  

A decade later a new technique developed by Eppink and Parker,8 termed 

velocity map imaging, overcame this problem with ion lenses. The ion lens 

focuses the ions with the same velocity to the same position on the MCP detector 

no mater where they were made in the interaction region.  This provided much 

more resolution in the images produced. The problem that remained was that the 

3D newton sphere created in the reaction region is projected on to a 2D detector. 

The 3D image has to be mathematically reconstructed using an inverse able 

transformation or equivalent mathematical procedure. Then the center slice is 

taken which contains the relevant information. The inverse able transformation 

adds noise to the images and also restricts the systems that can be examined to 

only those with cylindrical symmetry parallel to the imaging plane. Townsend et 

al.9 used multiple ion lenses to overcome this problem. In this approach the 
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expanding ion cloud is not only focused but is stretched along the time of flight 

direction enough that the MCP could be gated to catch only a central slice of the 

image. This eliminates the need to reconstruct the image. This technique allows 

the study of reactions with out any of the previous symmetry restrictions.  The dc 

slice set up is shown in figure 4 and is described more in the experimental 

section. The images collected from the dc slice imaging setup cannot be 

analyzed directly, but must be treated. First the background subtraction, that is 

performed by subtracting the signal intensity from the image generated with the 

193nm photodociation laser off. Next the density to flux correction is performed. 

The density to flux correction is performed because in our experimental setup, 

our laser determines the number density of products at a given time. During that 

time the slow particles with velocities close to zero will accumulate in the 

ionization region and will have a high density, this density is reflected as strong 

signal intensity.  While the fast moving fragments are continuously being 

removed from the ionization region and have a smaller density. The correction 

takes this into account and we scale the intensity at each point by the factor 

1/(+v) where v is the LAB velocity of the product and alpha is a simple 

correction factor introduced because the interaction volume and laser pulse width 

are finite: otherwise a singularity would occur at the LAB origin (v=0).  

The resolution of the images is improved further by megapixel ion imaging 

developed in this lab.10 This involves a real time calculation of the center of mass 

for each ion before recording the image. The treatment involves a program called 
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vision library, developed by Lab View. This program interpolates each pixel to 

achieve a resolution of up to 0.1 pixels. 



    
 

  

17 

1.5 The Cl + Alkane Reaction  

The abstraction of hydrogen by a free radical species from a saturated 

hydrocarbon is an important elementary step in many macroscopic reactions. 

This elementary reaction plays an important part in the chemistry of the 

atmosphere of our planet earth, particularly the chemistry of combustion. The 

interest in studying the chlorine, butane system is that the reaction energetics, 

reaction barrier and time scale of reaction are ideal for our detection setup. The 

data gathered provides valuable information about systems that cannot be 

experimentally determined using macroscopic techniques. Initially crossed beam 

studies were conducted on tri-atomic systems such as Cl+H2,11-13 O+H2,14-16 

H+H2,17-20 and F+H2.21-23 These reactions are small enough to calculate a 

complete ab initio potential energy surfaces,24,25 and perform quantum scattering 

calculations. 26,27 Results from theoretical and experimental data by Andresen 

and Luntz, 28 using a crossed beam experiment and laser induced florescence 

(LIF) detection, on the reaction of O (3P) with saturated hydrocarbons, showed 

that the OH produced was sometimes vibrationally excited but rotationally cold, 

and the vibrational excitation increased in the order primary-secondary-tertiary 

abstraction site. A study using diode laser absorption, measured the same low 

rotational state in the HCl, product. 29 The conclusion is that, the transition state 

of this reaction is a tight, with linear geometry between the reactants. Also a 

study by Zare and coworkers30 using Photoloc, showed the production of cold 

rotational HCl product. More importantly they showed that the HCl product is 
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back scattered with respect to the Cl relative velocity vector. The conclusion to 

the reaction between a radical and saturated ground state hydrocarbon is that 

only collisions that happen at a small impact parameter will lead to reaction. The 

smaller the impact parameter, the higher the velocity vector of the reacting 

molecules along the reaction coordinates. Therefore a reaction between ground 

state alkanes and radicals like O(3P) and Cl(3P) are said to proceed via a direct 

reaction. An interesting change can be seen in the imaged HCl product 

distribution, when the Alkane is excited vibrationally. Selectively exciting the V3=1 

vibrational mode on the hydrocarbon, causes a sharp drop in the backscattered 

product.  Where they only accounts for 30% of the total reaction products. The 

other 70% is produced in a forward scattered vibrationally cold and rotational 

excited state. This was explained by the larger reactive cross section of the 

vibrationally excited molecule. This type of mechanism is called a striping 

mechanism and it is where the CH3 product acts as a spectator during the 

reaction. Varley and Dagdigian 31,32 examined the difference between the 

reactivity of primary, secondary and tertiary Hydrogen from hydrocarbons. The 

study was conducted using a technique similar to photoloc and partially 

deuterated hydrocarbons; they found that the hydrogen abstraction of a primary 

hydrogen is less dynamically favorable than the abstraction from a secondary or 

tertiary.  
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CHAPTER 2 - EXPERIMENTAL 
SECTION 

2.1 The Molecular Beams 

The experiment was conducted on a crossed beam device that is 

described in more detail elsewhere. 33-48 Briefly explained here, the molecular 

beams are generated by the supersonic expansion of a gas through a small 

opening, by the differential pumping of the main chamber through the source 

chamber. Both beams start by seeding a precursor of the reactant in a noble gas 

that will control the translational energy of the reactants. We made mixtures of 

fixed concentrations. The butane beam is skimmed once before entering the 

reaction main chamber.  The Cl beam is generated by passing helium over a 

bubbler containing oxalyl chloride (COCl)2, which is held at 0C°. The oxalyl 

chloride beam is photo-dissociated, to form Cl radicals, using the 193nm output 

from an ArF excimer laser (60mj, 10 Hz). The laser is loosely focused, using a 

35cm MgF2 lens, on the tip the piezoelectric pulsed valve. Oxalyl chloride has a 

large absorption cross section at 193nm, and each oxalyl chloride molecule 

produces 2 Cl radicals. Both of which are entrained in and create an intense Cl 

radical beam.  The chlorine radicals are produced in two spin-orbit states, 2P3/2   

and 2P1/2. Where the 2P1/2 is 882cm-1 higher in energy than the 2P3/2   state.49-50 

The excited Cl radicals produced are quenched into the lower energy state, 

before entering the reaction chamber. Both beams are sent through the source 
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chambers so that they meet at 90 degrees in the main chamber. The spread in 

velocity for the reactant beams was 8% at FWHM. The pressure in the main 

chamber was held at 10-8 resting pressure and 10-6 operating pressure. Figure 6, 

below shows how the (COCl)2 is photo-dissociated with the 193nm laser.  
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Figure 6 Schematic of Cl beam created by the photodissociation  of (COCl)2 using a 193nm laser 
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2.2 Vacuum Chamber 

Velocity map imaging must be carried out under single collision 

parameters, in order to preserve the angular and translational energy 

distributions after the reactive scattering. The only way to achieve single collision 

conditions is to ensure a large enough free path for the reactants and products. 

The large mean free path is created, by evacuating the reaction chamber to a 

pressure of 10-6 torr.  

The crossed beam machine we are using was first called the “Universal 

Imaging Machine” and is described in earlier publication in more detail.9 The 

main chamber has 12” conflat cross openings on each face of the cubic center 

chamber. The main chamber also has 4 x 2.75” conflat ports at 45° to the main 

ports in the horizontal plane. The conflat openings along the vertical axis are 

used for the turbo pump and the TOF tube and detector. Two of the 12” ports, 

opposite each other are bolted up. The other two openings connect the main 

chamber to the two source chambers. The source chambers are connected to 

the main chamber only through a 1mm skimmer. The source chambers and the 

main chamber are differentially pumped using molecular turbo pumps (Osaka). A 

single, Welch 1397 oil roughing, pump takes the exhaust of all three pumps 

away. The source chambers are fitted with mounts that hold the piezo electric 

pulsed values. The tips of the nozzles are held 4cm away from the skimmer.   
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2.3 Direct current slice imaging and data analysis. 

The created radical products resulting from H abstraction with m/z=83, 

were ionized by single photon ionization, using a 157 nm F2 excimer laser 

(OPTEX, 0.5 mJ, 10 Hz) focused loosely with a MgF2 lens (f = 135 cm) into the 

reaction region. A dc slice imaging detection method coupled with the megapixel 

acquisition program IMACQ produced the images presented here. The dc slice 

imaging setup is described in previous publications of this lab and a schematic is 

shown.51 Briefly, the setup consists of three ion lenses and a repeller. Resistors 

were placed between the ion optics to create a more stable and homogeneous 

electrostatic field.  After ionization of the product molecules, the potential 

difference between the repeller and the first ion lens accelerates the molecules 

out of the interaction region. The second ion lens is used to focus ions with the 

same velocity to the same spot on the MCP detector regardless of where in the 

reaction region they where created. This gives sharp images without the blurring 

caused by the large area of the reaction region compared to the pixel size. The 

third ion lens is used to stretch the arrival time (t) of the ion sphere so that t is 

large enough to be gated, 40ns in our experiment. This is what allows us to 

collect the center slice of the ion sphere without needing to do any mathematical 

reconstruction. After passing through the ion lens 3, the ions enter a field free 

time of flight region that leads to the detector. The distance between the 

interaction region and the detector is 105cm. 

The detector is made up of a pair of 80mm diameter micro channel plates 
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(MCP), coupled to a P47 phosphor screen held at 6KV (Burle Electro-Optics). 

The front of the MCP is held at ground and the back is gated for ions with a 

specific mass by applying a high voltage pulse using a commercial pulsar (DEI 

PVX-4140, Fort Collins, CO). The voltage applied to the MCP is 2.5KV with a 

1KV bias. The timing of the gate of the MCP pulse with respect to the molecular 

beams and the firing both the 193nm photo dissociation laser and the 157nm 

probe laser are controlled by a commercial delay generator (BNC 555, San 

Rafael, CA). The images are produced by the bombardment of the ions, on the 

MCP assembly, are captured by a charge coupled device camera (Mintron 

2821e, 512, 480 pixels, Taipei, Taiwan). The image is than sent to the computer, 

where the dc slice imaging detection scheme, centroiding and megapixel 

acquisition program IMACQ were used to accumulate the raw images. 

The image accumulation required to reach a good signal to noise ratio 

took 1-3h for each collision energy. Additionally the images of the scattering with 

the 193nm laser off, essentially the elastic scattering of (COCl)2 with butane is 

also collected for background subtraction from the raw images. From previous 

studies the major contributor to the background was the photodissociation of the 

parent hydrocarbon; this photodissociation occurred in the vicinity of the 

hydrocarbon beam and made the signal in that area of the image unreliable. By 

using a higher intensity beam of Cl and lowering the focusing setup for the probe 

laser, we reduced the background intensity compared to the signal intensity. This 

makes it possible to extrapolate the results of scattering in the forward direction, 
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which show some remarkable aspects of the dynamics of the reaction.  
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CHAPTER 3 - RESULTS 

The most powerful aspect of dc slice imaging, as applied to crossed beam 

reactive scattering experiments, is to display in a single image the full coupling of 

the translational and angular distributions and the location of the center of mass.  

Previous techniques only elucidate the center of mass and use strategic 

methods, not based usually on the collected data, to fit the data. Using this 

technique, we studied the H abstraction reaction, Cl + C4H10 → HCl + C4H9 at two 

collision energies, 6.5 and 9.0 kcal/mol.  

The collected data will first go through a background subtraction, and then 

must be corrected using a density to flux correction. This correction takes into 

account that the slower fragments spend more time in the ionization region than 

the faster fragments. Therefore slower fragments accumulate in the ionization 

region from collisions that take place before the probe laser is fired. The 

correction is easily applied by scaling each pixel intensity by the factor 1/(+), 

where  is the laboratory velocity of the fragment.  Is an empirically determined 

parameter that accounts for the finite size of the reaction volume and prevents 

the signal from approaching infinity at low velocity.52  

  An issue that must be addressed is the difference in the ionization energy 

of the two products from the reaction. The primary radical has higher ionization 

energy than the secondary radicals; this means that the intensity of our signal will 

be composed of more 2-butyl radicals. This issue has been addressed before in 
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this lab. The study compared the relative ionization efficiency for several heptane 

isomers, using a 157 nm laser.53 Results showed little variation, less than 20%, in 

detection efficiency for the various isomeric radical products of heptane. This 

small variation will allow us to not consider this difference, and we will thus 

neglect this deviation in the current study. 

Figure 7 shows the dc sliced images of the butyl radical products, for both 

collision energies after background subtraction and density-to-flux correction. A 

newton diagram is superimposed on the images for reference.  
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Figure 7 Raw dc slice images. Top 9.0 kcal/mole. Bottom 6.5 kcal/mole. 
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  Figure 8 shows the total translational energy distributions, integrated over 

all angles. This shows that the translational energy distribution for the 6.5 

kcal/mole collision energy peaks at 5.0 kcal/mole and for the 9.0 kcal/mole 

collision energy the translational distribution peaks at 7.5 kcal/mol. At a 

translational energy of 12.5, the 6.5 and 9.0 kcal/mole distributions overlap and 

extend out to beyond 20 kcal/mol. Overall both distributions are very similar.  
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Figure 8 Total translational energy distributions, integrated over all angles. 

 

The center of mass angular distribution shown in Figure 9 is integrated 

over all recoil velocities. At 6.5 kcal/mole collision energy the distribution has 

slightly higher signal intensity in the backward direction. At the 9.0 kcal/mole 

collision energy, there are more products collected in the forward direction with 

an equal decrease in the backscattered intensity.  Overall both angular 

distributions looked very similar and show forward backward symmetric 

scattering, which indicates that  there is at least two different mechanisms 

involved.  
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Figure 9 Center of mass angular distributions, integrated over all recoil velocity. 

 

To further examine the coupling between the translational and angular 

distribution, we divided the images into three sectors the forward 0-60°, sideways 

60-120°, and backward 120-180° each individually normalized. These are shown 

in Figure 10-Figure 12 below. The forward scattering shows the strongest 

dependence on collision energy while the side scattered product show less 

dependence on collision energy. The back-scattered product shows the least 

dependence on the collision energy.  
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Figure 10 Forward distribution (0-60) red 9.0kcal/mole and black 6.5kcal/mole. 
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Figure 11 Sideways distribution (60-120) red 9.0 kcal/mole black 6.5kcal/mole. 
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Figure 12 Backward distribution (120-180) red 9.0kcal/mole and black 6.5kcal/mole 
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CHAPTER 4 - DISCUSSION 

4.1 Discussion 

We start by examining the translational energy distributions shown in 

Figure 8. This shows that the translational energy distributions at both collision 

energies are very similar.  The most obvious difference is that the higher collision 

energy peaks at a higher translational energy. The distributions also show that 

the collision energy is strongly coupled into the translational energy of the 

products. This behavior is typical for a collinear heavy-light-heavy (HLH) system, 

such as the one we are examining. Plotted in Figure 13 is the scaled translational 

energy distribution, which gives a better understanding of the energy disposition 

during the scattering particularly for a HLH system. For the 9.0 kcal/mole collision 

energy, it can be seen that 60% of the products have a translational energy less 

than or equal to the collision energy. At the 6.5 kcal/mole collision energy, 

approximately 80% of products have translational energy greater than the 

collision energy.  These results are expected because the exoergicity, averaged 

for the two sites is 4 kcal/mole. Some of the exoergicity is transformed into 

translational energy, and the remainder is converted to rotational and vibrational 

excitations in the product molecules. Previous studies have shown that the 

distribution preserves the collision energy into product recoil.54, 55 
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Figure 13 Reduced translational energy distribution integrated over all scattering angles, red 9.0 

kcal/mole, and black 6.5kcal/mole. 

To calculate the available energy for this reaction we must take into 

consideration the difference between the extractions of a primary or secondary 

hydrogen. Each extraction leads to different values of available energy.  If we 

take the average exoergicity for primary and secondary hydrogen as 4 kcal/mole, 

and we further assume that all reaction sites equally probable. This gives an 

available energy of 10.5 and 13 kcal/mole for the 6.5 and 9.0 kcal/mole collision 

energies respectively. We then find the fraction of available energy appearing in 

translation as 0.48, with forward, sideways, and backscattered contributions 
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calculated as 0.48, 0.38, and 0.57, for the low collision energy. At he high 

collision energy we found 0.58, 0.58, 0.42, and 0.54 for the total, forward, 

sideways, and backscattered contributions respectively. These results are lower 

than the 0.68 reported by Bass et al.52 for n-butane. 

Table 1 Average system energy, Ec collision energy, and <ET> Average translational energy, <ET>* 
Average reduced translational energy in kcal/mole. 

Ec <ET>total <ET>forward  <ET>sideways  <ET>back <ET>*total <ET>*forward  <ET>*sideways  <ET>*back 

6.5 5.0 4.5 4.0 6.0 0.77 0.90 0.61 1.2 

9.0 7.5 7.5 5.5 7.0 0.83 0.85 0.61 0.6 

 
 

A better indicator of the coupling in the energy of this reaction is the angle-

dependent scaled translational energy distributions, shown in Figure 14-Figure 

16.  By dividing the scattering into different regions forward, sideways and 

backward we can see more features of the energy distribution. The forward 

scattered product peaks at 0.85 Ec and 0.90 Ec for low and high collision energy 

respectively. Forward scattering is expected for a spectator striping mechanism. 

This happens when the product has similar momentum before and after the 

reaction. For the case of hydrogen abstraction by a chlorine the average 

expected translational energy is ET = Ec (35/36)2 = 0.95 Ec, the values we report 

are consistent with this. This suggests that with the striping mechanism the 

collision energy is strongly coupled into the translation and the reaction 

exoergicity is coupled into the internal degrees of freedom of the products. The 
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side scattered product distribution, shows little dependence on collision energy. 

At both collision energies the side-scattered product had the lowest average 

fractional translational energy with 0.8 and 0.4 kcal/mole for the low and high 

collision energies respectively. This is attributed to an intermediate impact 

parameter were there is rotational excitation of the butyl radical but no coupling 

of the exoergicity into the recoil.  For the back-scattered product low collision 

energy both have a broad distribution with an average scaled translational 

energy at high collision energy was 0.6Ec, and at the lower collision energy it was 

1.2 Ec. This result is to be expected because of the little difference in the 

translational energy of the back-scattered product at both collision energies as 

shown in Figure 12. Because of the weak dependence on collision energy in the 

backscattering the reduced translational energy shows the difference in average 

reduced translational energy. The 1.2Ec suggests a coupling of the reaction 

exoergicity into the translational energy. Evans et al developed a simple model 

used to model the backscattered product average energy 57  

<ET> = Ec cos2 β + ER sin2 β. Where β is the skew angle for the reaction, in the 

case of Hydrogen β is equal to 0.96, ER is the reaction energy and Ec is the 

collision energy. This model predicts the <ET> = 0.95. The deviation in our results 

from this simple model can be expected. The model was developed to describe 

collinear low impact parameter collisions or triatomic systems. For the butane 

system, the reaction exoergicity and the internal degrees of freedom in the 

reactants are strongly coupled into the backscattered product distribution. 
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Figure 14 Forward reduced energy distribution (0-60) red 9.0kcal/mole and black 6.5kcal/mole 
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Figure 15 Sideways-reduced translational energy distribution (0-60) red 9.0kcal/mole and black 
6.5kcal/mole. 
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Figure 16 Backward translational energy distribution (0-60) red 9.0kcal/mole and black 6.5kcal/mole. 

 

Many dynamics experiments have been conducted, on the reaction of 

alkanes with Cl radical. A study by Koplitz and coworkers 58 examined the relative 

reactivity of partially deuterated propane, butane, and isobutene. Assuming a 

single recoil energy and that the hydrocarbon has no internal energy, they 

showed enhanced scattering, for the HCl in the back scattered direction for the 

reaction of Cl + CD3CH2CD3, and side scattering was dominated by the DCl. 

Varley and Dagdigian 59,60 used photoloc to examine the relative reactivity at 

different sites of alkanes. Both groups argued that the secondary and tertiary 

sites are more reactive than the primary site.  The sensitivity of reaction site 

decreases with increasing collision energy.  
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A study by Hemmi and Suits using Cl + n-pentane at high collision energy 

reported forward scattering, much like the results shown here.  They argued that 

the forward scattering is due to the abstraction of secondary hydrogen and the 

backscattering is due to the abstraction of a primary H. The conclusion is similar 

to the one reached by Blank et al. in the case of propane. Using photoloc with ion 

imaging on the reaction of Cl + n-butane Bass et al,61 reached the opposite 

conclusion. Two experiments recently performed in this lab, using the same set 

up as this experiment, showed that the reaction dynamics at both sites to be 

similar. The first involved the reaction of Cl + n-pentane, isopentane and neo-

pentane; in the second reaction is that of Cl + 1,1,1,4,4,4-d, butane. Both 

reactions had angular and translational energy distributions that are very similar 

for the reaction at primary or secondary sites.54,55  

The angular distributions are also similar; both show nearly forward 

backward scattering symmetric scattering. This shows that both mechanisms are 

happening at both energies. The back scattering is stronger for the low collision 

energy and for the high collision energy the forward scattering becomes more 

active. As shown in previous studies, our results show that the backscattering 

contribution is still preferred even at high collision energy. These results are 

consistent with findings of this lab on previous Cl + alkane reactions and with the 

Hemmi and Suits’ n-pentane reaction. Bass et al, 56 using photoloc imaging 

experimental configuration showed sharp forward peaking, for the Cl + n-butane 

reaction. Bass associated this forward signal to the abstraction of a primary 
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hydrogen. This study is inconclusive because the experiment is not able to detect 

any backscattered product with translational energy less than the available 

collision energy because of interference with the HCl in the beam.62  

 Zare and coworkers developed a model that described the reaction of Cl + 

methane, using a combined line of centers hard spheres. In this model the 

translational energy vector, normal to the potential barrier determines the 

probability of crossing. The hard sphere model was used for the angular 

distribution in this model. This model can also be adjusted by including an 

opacity function to account for the forward scattering, high impact parameter 

collisions. This model must further be adjusted for the differences between 

methane and butane. The most important difference is that the reaction seems to 

be barrier-less for butane and exothermic; and it is endothermic with a significant 

reaction barrier for methane. The possibility of there being a submerged reaction 

barrier was investigated by Greaver et al.63 With any barrier, the line of centers 

model shows that enough energy must be along the line of centers to overcome 

the barrier. Therefore for low impact parameter collisions the reaction is likely. In 

the case of methane the collinear Cl-H-C collision is a low impact parameter 

collision. In the case of butane the same collision is necessarily off center. These 

collinear, off-center collisions lead to a rotational excitation of the butyl radical 

and a vibrationally excited HCl product. Further examination is needed to 

investigate the relation between the impact parameter and the rotational 

excitation in the butyl radical to deduce the rotational levels that can be achieved. 
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While examining the impact parameter for butane it is important to discuss the 

conformational isomers of the butane. The two conformational isomers of butane 

are the anti and gauche confirmation, with the anti conformation being 0.62 

kcal/mole lower in energy than the gauche confirmation, with a 3.5 kcal/mole 

energy barrier.64 The energy barrier is too high for the molecules to overcome 

during the supersonic expansion. Which means approximately 25% of the 

molecules are in the gauche conformation. The cross section for the collision is 

much larger almost double for anti-conformation; this would lead to a higher 

probability of a collision with a Cl radical. The gauche conformation has a 0.62 

kcal/mole energy level higher than the anti conformation. This energy and 

collision cross section difference between the anti and gauche conformation and 

their effect on the reaction need to be further investigated. 
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 4.2 Conclusion 

The symmetric back and forward scattering angular distribution shows that 

the reaction is proceeding via two different pathways. The first is the stripping 

mechanism in which the butane is acting as a spectator, which is what leads to 

forward scattered product. The rebound or direct mechanism involves a low 

impact parameter coupled with a collinear reaction trajectory, which gives the 

back and side scattered product. The translational energy distribution showed 

that the forward scattering was the most dependent on the collision energy, while 

the side scattered distribution showed slight dependence on collision energy. The 

backscattered products showed weak dependence on collision energy and the 

distributions for both high and low energy are almost overlapping. The 

backscattered distributions peak at a higher energy and show some of the 

reaction exoergicity associated with the translational energy of the product. A 

clear indication of a near zero impact parameter collision. The two conformational 

isomers of n-butane, and the change in impact parameter and energy levels 

associated with them, complicate the analysis of the results. More research 

needs to be conducted to isolate the correlation between the different impact 

parameter collisions, the conformational isomers, scattering direction and energy 

state of the product. Finally at the high collision energies used, all the reaction 

sites become equally probable and so you lose sensitivity. This means that any 

subtle differences that exist for different reaction sites, and any reaction barriers 

associated with them, are not distinguishable at the high Ec. This experiment was 
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limited by low signal to noise ratio at the lower collision energies. The solution will 

be to use state selective product detection of the HCl product. This will solve the 

problem of the high noise level at low collision energies and give a more detailed 

understanding of the selective energy release for this reaction. 
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We present an investigation of the reaction dynamics of Cl radicals with 

butane in crossed beams, were studied at two collision energies: ~ 6.5 and 9 

kcal/mol. Product were ionized using a 157 nm probe laser, and detection was 

through a dc slice detection setup. The translational energy distribution 

integrated over all scattering angles; look similar for both collision energies. The 

angular distribution shows that at high collision energy the there is a sharp 

increase in the forward scattering. At low collision energy there is more 

backscattering. The results show that the different scattering angles give different 

translational energy distribution. The forward scattered peaks at approximately 

85% of the collision energy, with a similar distribution for both collision energies. 

The sideways-scattered product shows the broader distribution that extends into 

higher energy. The back-scattered product showed the broadest distribution and 

a higher fraction of total energy showing up in translational energy. 
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