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Estimating The Slope Of Simple Linear Regression In The Presence Of Outliers   
 

   Mohammed Al-Haj Ebrahem Amjad D. Al-Nasser 
Department of Statistics, Faculty of Science, Yarmouk University 

Irbid, Jordan 
 

 
In this article, an estimation procedure to simple linear regression in the presence of outliers is proposed. 
The performance of the proposed estimator, the AM estimator, is compared with other traditional 
estimators: least squares, Theil type repeated median, and geometric mean. A numerical example is given 
to illustrate the proposed estimator. Simulation results indicate that the proposed estimator is accurate and 
has a high precision in the presence of outliers. 
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Introduction 
 
Regression analysis was first developed by Sir 
Francis Galton in the later part of the 19th 
century. Galton had studied the relation between 
heights of parents and children and noted that 
the heights of children of both tall and short 
parents appeared to revert or regress to the mean 
of the group. Galton developed a mathematical 
description of this tendency, the precursor of 
today’s regression models (Neter, et. al., 1996). 
 Consider the simple linear regression 
model: 
 

iii xy εβα ++= , i = 1,2,…,n                       (1)                                                                        

 
where yi is the response variable in the ith trial, 
α (intercept) and β(slope) are parameters. Xi is a 
known constant, namely; the value of the 
predictor variable in the ith trial. iε is a random 

error term with mean zero and variance 2σ .   
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 Most of the methods used in the 
literature to estimate the model parameters are 
based on the normality assumption. However, in 
some situations it is unreliable to use the 
normality assumption to identify the model; 
instead one may use non-parametric estimation 
approach. Moreover, if the data contains outlier 
observations, then robust methods are needed to 
polish the effect of the outliers. More details can 
be found in Montgomery and Peck (1992), 
Rousseeuw and Leroy (1987), Davies (1993), 
Fernandez (1997), and Olive (2005). A new non-
parametric procedure is proposed in order to 
estimate the slope of model (1).  
 
Estimation Methods for Simple Linear 
Regression Model 
 The various estimators that have been 
suggested for the slope are as follows: 
 
(1) Method of Least Squares (LS) 
 The least square criterion requires that 
one consider the sum of n squared deviations; 
this criterion is denoted by Q 
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ii xyQ βα  

 
According to the method of least squares, the 
estimates of  α (intercept) and β(slope) are those 

values lsα̂ , lsβ̂ respectively, that minimize the 

criterion Q for the given sample observations 
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),(),...,,(),,( 2211 nn yxyxyx , using the 

analytical approach it can be shown that the 
estimate values of  α (intercept) and β(slope) are 
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Note that lsβ̂ is unbiased estimator of β. 

However, regression outliers (either in x or in y) 
pose a serious threat to least squares analysis.  
 
(2) The Geometric Mean Functional 
Relationship (GM) 
 This estimator was proposed by Dent 
(1935). This estimator has been widely used, 
especially in fisher’s researches:  

2/1

2

2

)(

)(
*)),((ˆ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

=
∑

∑
xx

yy
yxCovSign

i

i
GMβ  

 
It can be noted that this estimator is symmetric 
in x and y. Where Cov(x,y) is the covariance of 

x and y. )(ˆ
ijT Bmedian=β  

 
(3) Repeated Median Theil-Type Method (T) 
 Theil (1950) proposed this method. The 
data are ordered either to the x variable or the y 
variable. Find all possible pairs of observations, 
assuming that all ix ’s are distinct,  
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n
slope values, then where m 

can be chosen to be  the maximum divisor of  n 
such that rm ≤ . For example, when n = 20 then 
m = 4 and r =5 are selected. 
 
(4) Proposed Method (AM) 
 This method consists of ordering the 
observed pairs ),( ii yx ’s, i = 1,2,…,n;  by the 

magnitude of  ix ’s , assuming that all ix ’s are 

distinct, then divide the observation into some 
groups and find all possible paired slopes. The 
procedure can be described as follows:  
a) Arrange the observations in ascending order 
on the basis of the values of ix ; i.e., 

)()2()1( ... nxxx ≤≤≤  and the associated 

][]2[]1[ ,...,, nyyy of the original data are taken; 

then the new pairs will be ),( ][)( ii yx  

 
b) Divide the data into m-subgroup each of size r 
such that m*r = n; then the sample can be 
rewritten in the form in Figure 1 on the 
following page. 
 
c) Find all possible paired slopes 
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d) Then the estimated value of the slope can be 
defined as follows:  
 

{ }ˆ ( ) , 1,2..., 1; 2,3,..., ;

1,2,...,

AM ij
k
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 Note that the suggested estimator is in 

the form of Theil’s estimator with ⎟⎟
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slopes to be evaluated. If the sample size n is a 
prime number, then the estimates leads exactly 
to the repeated median Theil type estimator. 
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However the advantage of the proposed one is in 
abstracting the number of paired slopes to be 
evaluated, for example when n = 100, 4950 
paired slopes are needed to be evaluated by 
using T method.  By using the suggested method 
(AM), where r = m = 10, only 450 paired slopes 
are needed, which is a good advantage for this 
method. 
 
Numerical Example 
 In order to compare various estimation 
methods, the so-called Pilot-Plant data from 
Daniel and Wood (1971) is considered. The 
observed (y) corresponds to acid content 
determined by titration and the observed (x) is 
the organic acid content determined by 
extraction and weighing. Moreover, Rousseeuw 
and Leroy (1987) analyzed this data further by 
assuming that one of the observations is wrongly 
recorded, i.e. the x-value of the sixth observation 
might   have   been   wrongly  recorded   as   370 
instead of 37. Based on the data which consist of 
20 observations, and for the fact the x’s data 
point should be distinct, x20 is substituted to be 
168 instead of 167. The various estimated slopes 
yielded the results as shown in Table.1.  
 In this example, for the proposed 
method, the original sample is divided into 4 
sub-samples, each of size 5. The results showed 
that traditional LS and GM methods have been 
strongly affected by the single outliers. On the 
other hand, AM and T are hardly affected by the 
wild observation. 

 
 

 
Simulation Study 
 To illustrate the performance of the 
proposed method in the presence of outliers, a 
simulation study was carried out as follows: it 
begins by generating 100 observations according 
to the model; iii xy ε++= 1 , where 

n

i
xi 10=  and )1,0(~ Niε . Then, the data is 

contaminated; at each step a certain percentage 
of the observations are deleted and replaced with 
outliers’ observations. The contaminated data 
point was generated according to the given 
relationship where )25,20(~ Niε . Table.2 

presents the values of the estimated slopes: 
The properties of these methods were 

investigated further by looking at the mean 
square of error (MSE) in 10000 trials. For each 
10000 trials, samples of size 20 and 50 were 
generated, the simulation results are represented 
in Table.3. 

 
Table.1 The slope estimates using different 
methods for Pilot-Plant data 

 
Slope 3706 =x

 

376 =x  

Least Squares 
(LS) 

0.0808 0.3211 

Geometric Mean 
(GM) 

0.2148 0.3220 

Theil (T) 0.3170 0.3194 
Proposed method 

(AM) 
0.3273 0.3480 
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Figure 1 
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                         Table.2. Slope Estimates with n= 100 and β =1 
 

Contamination (%) LS GM T AM 
0 0.9977 1.0590 0.9906 0.8491 

10 -0.1176 -1.9339 0.8585 0.7911 
20 -0.9760 -2.4261 0.6003 0.7675 
30 -1.6041 -2.7429 -.05473 0.7574 
40 -1.9215 -2.7781 -1.4783 0.5783 
50 -2.0421 -2.8190 -1.7236 0.5214 

 
                   Table.3. MSE of the Slope in the presence of outliers 
 

Contamination 
(%) 

Sample Size 
 

Slope 

20 50 

0 LS 6.0016E-03 2.3847E-03 
 GM 8.4800E-03 5.4053E-03 
 T 6.5697E-03 2.5118E-03 
 AM 1.2690E-01 7.1048E-02 
    

10 LS 1.2115E+00 1.1850E+00 
 GM 6.1172E+00 6.5467E+00 
 T 2.7433E-02 2.1701E-02 
 AM 2.7372E-01 1.9499E-01 
    

20 LS 3.7599E+00 3.7167E+00 
 GM 1.1129E+01 1.1212E+01 
 T 1.8782E-01 1.7369E-01 
 AM 2.3882E-01 1.0105E-01 
    

30 LS 6.4511E+00 6.3880E+00 
 GM 1.3218E+01 1.3285E+01 
 T 2.4676E+00 2.2527E+00 
 AM 3.2630E-01 3.0625E-01 
    

40 LS 8.4146E+00 8.3348E+00 
 GM 1.4609E+01 1.4647E+01 
 T 5.8036E+00 5.6501E+00 
 AM 2.1543E-01 1.5468E-01 
    

50 LS 9.12418E+00 9.04105E+00 
 GM 1.52952E+01 1.53539E+01 
 T 7.13609E+00 7.00981E+00 
 AM 5.62811E-01 3.85401E-01 
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Conclusion 

 
Our simulation results from Table.3 indicate 
that, in terms of MSE the performance of the 
four estimators in the absences of outliers are 
comparable. However, as the degree of 
contamination increases LS and GM methods 
became very sensitive to the presence of 
outliers. Theil-Type estimator (T), clearly 
affected with the outliers when the 
contamination became 30% or more. It is very 
clear that the proposed estimator (AM) is very 
robust in the presence of outliers. As a 
conclusion, the AM estimator can be consider as 
a good alternative to the traditional methods 
because it is able to produce satisfactory results 
even in the presence of a large amount of 
outliers.  
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