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INTRODUCTION 

The pharmaceutical business in today’s society is a billion-dollar industry due to the mindset 

that each health problem should be accompanied with a pharmaceutical resolution. Recent 

scientific research supports the view that nutrition plays a pivotal role in preventing, delaying, or 

regressing the development and progression of different cancers and other human related 

diseases. Most importantly, current health issues are influenced by our nutrition and diet. The 

possibility of an individual being at risk for cardiovascular disease, cancer and other chronic 

diseases depends on what types of food we consume on a daily basis.  

Folate has emerged as a major determinant in the pathogenesis of several malignancies, 

most convincing relates to colon cancer [1].  Human studies have shown that folate deficiency 

(serum folate less than 3 ng/ml or erythrocyte folate below 140 ng/ml) [2] is associated with 

cancers of the brain, breast, pancreas, lung, cervical, liver, and esophagus [3]. Other common 

diseases and developing anomalies as a result of folate deficiency include cardiovascular disease, 

intestinal cancers, Alzheimer’s disease, and neural tube defects (NTD’s) [9] as listed in Table 1 

by Barry Shane, Ph.D. Folate, a methyl group (-‐CH3)	   carrier	   involved	   in	  de	  novo	  nucleotide	  

syntesis,	   plays	   a	   significant	   role	   in	   several	   different	   body	   functions	   and	   biosynthetic	  

pathway	   reactions.	   Some	   of	   these	   biochemical	   processes	   include	   DNA	  metabolism,	   DNA	  

repair,	  DNA	  methylation,	  and	  cellular	  growth.	  Most	  importantly,	  folate	  deficiency	  has	  been	  

shown	   to	   increase	   uracil	   misincorporation	   in	   DNA	   and	   therefore	   induce	   DNA	   damage	  

repaired	  by	  the	  base	  excision	  repair	  (BER)	  pathway	  [1-‐3].	  	  
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S-‐adenosymethionine	  
(MTHFR,	  MS,	  B12	  

Deficiency)	  

Thymidylate	  

Purines	  (A,	  G)	  

Metabolic	  
Disruption	  

Biochemical	  
Markers	  

Clinical	  
Associations	  

Hypomethylation	  DNA	  
Elevated	  homocysteine	  
Reduced	  mythlation	  

Cancer	  
CVD	  

Demyelination	  
NTDs	  

Increased	  uracil	  in	  DNA	  
Decreased	  DNA	  synthesis	  &	  	  

Reduced	  cell	  division	  

Cancer	  
NTDs	  
Anemia	  

Increased	  uracil	  in	  DNA	  
Decreased	  DNA	  synthesis	  &	  	  

Reduced	  cell	  division	  
Anemia	  

Table	  1:	  Adverse	  health	  affects	  as	  a	  result	  of	  impaired	  folate	  status	  or	  metabolism.	  
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Folate, derived from the Latin word “folium” meaning leaf, is a water-soluble B vitamin 

that occurs naturally in foods [4]. Folic acid, also known as pteroylmono-glutamic acid (PGA), is 

the synthetic and completely oxidized form of folate that is found in supplements and used as an 

additive in fortified foods, typically in grains, breads, and ready-to-eat breakfast cereal [5]. 

Natural sources of folate include leafy green vegetables (especially spinach, peas, asparagus, and 

turnip greens); fruits such as strawberries, oranges, cantaloupes, and other melons; meats 

(essentially liver and other liver prodcuts) and legumes. Fruits and vegetables supply more than 

one-third of folate whereas grain products provide approximately one-fifth of folate in the 

American diet [6]. In 1996, the Food and Drug Administration (FDA) required the addition of 

folic acid in grain products such pastas, cereals, breads, flours, and rice in order to decrease the 

risk of birth defects in newborns[7,8]. Hence, cereals and grains have become a significant 

contributor of folic acid to the American diet since such products are most commonly consumed 

by today’s Western diet.   

Folic acid consists of a pterin ring that is attached to p-aminobenzoic acid (PABA) and 

connected to one or more residues of glutamate (Fig. 1) [10]. Since humans cannot produce 

PABA and conjugate the first glutamate, they are incapable of synthesizing folate endogenously. 

Folate in natural foods and tissues exists in the form of polyglutamates in order to keep the folate 

within the cells. However, in urine and plasma, folate is found in the monoglutamate form that 

can easily be transported across cell membranes. Polyglutamate, in the lumen of the small 

intestine, is converted by different enzymes to monoglutamate and then absorbed in the proximal 

jejunum through active and passive transport [10].  

Folate within the plasma exists as the inactive metabolite of 5-methylet-etrahydrofolate 

(5-methyl THF). Once 5-methyl THF enters the cell through several different folate transporters 
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with differing affinities and mechanisms, it is demethylated by the methyl cofactor B-12 

(cobalamin) to the active form of tetrahydrofolate (THF) that is responsible for the transferring 

of one carbon unit in the de novo synthesis of nucleotides [11]. With the absence of vitamin B-

12, the inactive form of 5-methyl THF cannot be converted to the active form of THF for further 

metabolic pathways. This is known as the folate trap (Figure 2). However, increase in folate 

supplements can bypass the folate trap. 
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Figure 1: Components of folic acid [10]. 
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Figure 2: Different folate pathways including “Folate Trap” [19].  
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Folic acid is the active form of tetrahydrofolic acid (THFA) and is considered more stable 

than dietary folate. THFA is generated by the 2-step reduction of folate using the enzyme 

dihydrofolate reductase. Dietary folate is approximately 50% bioavailable whereas folic acid is 

about 85% bioavailable when consumed with food [12]. The bioavailability of folate depends on 

the polyglutamate chain in which most of the dietary folate is attached. The bioavailability of 

dietary folate is reduced by as much as 25-35% once the polyglutamate chain has been removed 

by the intestinal conjugase [12]. Hence, food fortifications can significantly increase the amount 

of folic acid in the diet. For instance, at least 25% of the Recommended Dietary Allowance 

(RDA) for folate is generally found in ready-to-eat fortified breakfast cereals [6-8]. The	  USDA	  

created the Dietary Reference Intakes (DRIs) for recommended intake of folate [13]. Three 

singificant reference of values are found in the DRIs that include the Tolerable Upper Intake 

Levels (UL), Recommended Deitary Allowances (RDA), and Adequate Intakes (AI). The 

Dietary Folate Equivalent (DFE) is a term used to express the RDAs for folate in micrograms 

(µg). DFE was created in order to account for the difference of natural folate absorption and folic 

acid bioavailability. Table 2 lists the RDAs for folate intake for children and adults, expressed in 

micrograms (µg) of DEF among children and adults. One DEF is equivalent to 1 µg of food 

folate which equals to 0.6 µg of folic acid from supplements and fotified foods. As indicated in 

the table, pregnant women have a higher RDA for folate in order to prevent the incidence of birth 

defects such as NTD’s (neural tube defects) and other potential malformations in their babies 

such as cleft palate during pregnancy [8,10].  
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Folate RDAs Across the Life Cycle 
 
	   µg/day	  

Infants	  (AI)	   65	  -‐	  80	  

Children 150 – 300 

Adolescents and Adults 400 

Elderly Subjects 400 

Pregnant Women  600 

Lactating Women 500 

Table 2: Recommended Dietary Allowances for Folate. 
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Some people may also require a higher intake folic acid especially during medical conditions that 

either increase the need for folate or decrease folate absorption. For instance, individuals with 

alcohol abuse, kidney dialysis, malabsorption, sickle cell disease, celiac disease and liver disease 

require much more folic acid than recommended by the RDA [5]. Medications used to treat 

epilepsy, type II diabetes, asthma, lupus, rheumatoid arthritis, inflammatory bowel disease, and 

psoriasis affects folate metabolism and therefore may cause folate deficiency. Folate, in its 

reduced form THF, has the principal biochemical function of acting as a co-factor conveyor of 

one-carbon units at different states of oxidation and participating in one-carbon transfer (Fig. 3) 

[14]. Certain derivatives of THF are significant factors in different metabolic pathways. 5-methyl 

THF, 5,10-methylene THF, and 10-formyl are three of the one carbon substituted derivatives that 

play a huge role in the synthesis of methionine, thymidylate, and purine respectively [14].  
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Figure 3: Metabolic pathways involving different derivatives of folate [14].  
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The predominant circulating form of folate (5'-methyl-THF) is an essential cofactor in the 

conversion of homocysteine to methionine [11,14,15]. Once methionine reacts with ATP, it is 

then converted to its active form S-adenosylmethionine (SAM), the methyl donor (-CH3) in 

several different biosynthetic reactions such as cytosine methylation in DNA. Cytosine 

methylation, a nonspontaneous process, is a non-mutational epigenetic change that occurs within 

the cytosine-guanine dinucleotide CpG sequence, specifically at the 5’ carbon of the cytosine. It 

is hereditable and affects the hereditary information specified by the DNA base sequence. 

Complex enzymes such as DNA methyltrasferases (DNMTs) that catalyze the synthesis of 5' 

methylcytosine (the 'fifth' DNA base) are important for accurately copying the DNA-methylation 

sequence in normal cells during replication [14]. DNA methylation plays an important role in the 

inhibition of transcription initiation (chromatin remodeling) and stability of the genome.   

During folate deficiency, SAM becomes depleted, reducing the methylation of cytosine 

in DNA. Such hypomethylation may upregulate the expression of proto-oncogenes and 

eventually induce cancer as shown in Figure 7 [14-16]. Studies have shown that specific human 

genes such as proto-oncogenes and growth hormones from lung and colon tumors are 

substantially hypomethylated (less methylated) compared to genes from normal adjacent tissues 

[16]. Since folate has a fundamental role in the methylation of cytosine, it therefore has the 

ability of regulating gene expression. Rate of transcription is reduced or inhibited during the 

methylation of genes at specific locations in DNA. Gene expression and function is controlled by 

site-specific DNA methylation. Malignant transformation may increase as a result of alterations 

or disruptions in either global or site-specific methylation [16].  

Folate is also required for transferring one-carbon units in the de novo synthesis of the 

essential pyrimidine nucleoside, thymidine as shown in Fig. 4  [11,14-16]. Thymidylate is 
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produced by the de novo nucleotide synthesis that requires folate and the salvage pathway that 

does not require folate. 5,10-methylene- tetrahydrofolate, which is reduced to 5-methyl THF by 

methylene tetrahydrofolate reductase (MTHFR), is the methyl donor for the conversion of dUMP 

(dexoyuridine monophosphate or deoxyuridylate) to dTMP (deoxythymidine monophosphate or 

deoxythymidylate) by thymidylate synthase (TS) (Fig. 4). The conversion of dUMP to dTMP is 

an irreversible rate-limiting step. If levels of folate are low, dUMP accumulates resulting in 

uracil misincorporation into DNA in place of thymine. Decrease in folate leads to a decrease in 

the synthesis of thymidylate, increasing the cellular dUMP/dTMP ratio and DNA polymerase-

mediated dUTP misincorporation into DNA. Moreover, the de novo nucleotide synthesis of 

deoxythymidylate is important for the fidelity of the DNA message. Once uracil is removed from 

the DNA strand by Uracil-DNA glycosylase, transient single strand breaks called nicks are 

generated. Such nicks could lead to double stranded breaks that are less likely to be repaired and 

increasingly hazardous if two opposite nicks are formed. A continuous repeat of uracil 

misincorporation and repair due to folate deficiency may occur in a ‘catastrophic’ or ‘futile’ 

repair cycle [16], inducing breakage of the DNA molecule, malignant transformation, and 

chromosomal damage (Fig. 5). Several studies have shown that the misincorporation and 

removal of uracil in DNA cause chromosomal breaks in tumor cells that were not treated with 

folate [2,14-17].  
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Figure 4: Thymidylate synthase reaction.  
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Figure 5: Folate-mediated 1-carbon metabolism [14]. 
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Folate deficiency has been shown to induce uracil misincorporation by a virtue of 

thymidylate depletion. Majority of uracil lesion in DNA occur from the incorporation of dUMP 

instead of dTMP during replication, generating U: A pairs. Hydrolytic cytosine deamination may 

also enhance the amount of incorporated uracil in DNA, creating mutagenic U: G mismatches. 

Base excision repair (BER) is the sequential pathway initiated by a uracil-DNA glycosylase 

(UDG) to repair misincorporated uracil [3].  Base excision repair pathway is also responsible for 

repairing endogenous DNA damage and damages as a result of alkylation and oxidative stress. 

BER repairs small, non-helix distorting base lesions through either the short-patch or long-patch 

BER pathway. Short-patch BER involves the replacement of only one nucleotide at a time 

whereas the long-patch BER replaces 2-13 nucleotides (3,18). 
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Figure 6: BER pathway. 
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In the BER pathway, UDG cleaves the N-glycosidic bond between the base and 

deoxyribose, creating a transient abasic site (AP-site). AP-endonuclease 1 (APE1) then 

recognizes and cleaves the DNA 5' at the AP-site. APE1 leads to the formation of a strand break 

with a 3'-hydroxyl group and an abnormal 5'-abasic terminus. From then on, the BER may follow 

either the short-patch or long-patch route. During the short-patch pathway, BER continues with 

the DNA polymerase B (B-pol) that removes the 5'-abasic residue and fills in the single 

nucleotide gap. Then, a complex of XRCC1 and Ligase III seals the nick. The short patch, which 

accounts for 70-90% of the BER pathway, generally repairs uracil misincorporation in DNA due 

to folate deficiency [18]. Studies have shown that the initiation of BER is induced due to folate 

deficiency by upregulating uracil-DNA glycosylase (UDG) expression and activity while 

inhibiting the upregulation of the rate determining enzyme β-pol (DNA polymerase) of the BER 

pathway [3,18].  
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Figure 7: Affect of dietary folate on DNA methylation and 
synthesis [14].  
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The objective of this research is to determine the effect of cell growth in response to 

folate deficiency. Most importantly, to determine the impact of folate depletion on uracil 

accumulation, BER activity and UDG activity in wild type and UNG-/- knockout mouse 

embryonic fibroblasts (MEFs). Previous studies have shown that folate deficiency results in 

uracil misincorporation in DNA and therefore increasing genomic instability. Uracil is excised 

from DNA by the uracil DNA glycosylase (UDG) during the BER pathway. According to 

experimental evidence, the capacity of BER pathway is also impacted by folate deficiency. We 

therefore hypothesize that folate depletion will impact BER response through uracil 

accumulation in genotype-dependent manner. Our hypothesis will be investigated by the 

following aims: 

Specific Aim 1: to determine the effect of genotype on cell growth in response to folate 

depletion. 

 Specific Aim 2: to determine the effect of genotype on uracil accumulation in response to folate 

depletion.  

 Specific Aim 3: to determine the effect of genotype on BER in response to folate depletion. 
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MATERIALS AND METHODS 

Tissue Cultures: 

Transformed SV40 T-antigen mouse embryonic fibroblasts (MEFs) were derived from 

the embryos (ung+/+ and ung-/-) of the ung moused developed by Endres et al. [22]. These cells 

were grown in either folate added standard DMEM (GIBCO BRL, Grand Island, NY, USA) 

containing 4.5g/L glucose, 4mg/L folic acid, glutamax, glutamine, 10% un-dialyzed fetal bovine 

serum or customized folate-free DMEM (GIBCO BRL) media supplemented with 10% dialyzed 

fetal bovine serum, glutamax and glutamine. Each of the growth media was supplemented with 

1% penicillin-streptomycin and both UNG+/+ and UNG-/- cells were incubated at 37°C in 10% 

C02. Folate-free media was also supplemented with thymidine and adenosine at different 

concentrations in order for the cells to survive. The percentage of T/A was achieved over time 

through a stepwise reduction, 1X being the starting concentration. The mouse embryonic 

fibroblast cells were passaged three times for each T/A concentration until 0% T/A was 

achieved. Before each passage, the cells were grown until they became 75% confluent. The cells 

were passaged the same way as they were passaged for the doubling times.   

Harvesting Cells: 

The flasks of cells were first visualized under the microscope to determine if the cells 

were 75% confluent. The old media from the cells was removed and the flasks were washed with 

5 ml of pre-warmed 1X PBS-EDTA. Once the 1X PBS-EDTA was removed, 2 ml of trypsin was 

added. The flasks were then incubated for approximately 2-3 minutes at 37°C in order to detach 

the cells from the bottom of the flask. The cells were again viewed under the microscope to 

ensure that the cells were lifted off the flask. To stop the trypsin from working, 4-5 ml of 

complete growth media was added. Using a serological pipette, the cells were pipette up and 
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down several times for the cells to separate from each other. The cells along with the added 

complete media were transferred into a 15 ml conical tube for washing. The cells were 

centrifuged for 5 minutes at 1300 rpm at 4°C. The media was carefully removed without 

disturbing the white visible pellet on the bottom of the conical tube and 5 ml of 1X PBS was 

added to the pellet. The cells were again centrifuged at 1300 rpm for 5 minutes at 4°C and the 1X 

PBS was carefully removed without removing the pellet. A little bit of PBS was left behind 

covering the pellet in order for the pellet not to dry out. The pellet (cells) were then stored at -

80°C to freeze for the next step in DNA isolation.  

DNA Isolation: 

Once the cells were harvested, the genomic DNA was isolated using the QIAGEN gravity 

tip columns (Valencia, CA). The cells were removed from -80°C and thawed on ice. The cells 

were washed twice in PBS and resuspended in 0.5 ml cold PBS (4°C). Since our cell culture did 

not exceed more than 5x106 cells, 0.5 ml suspension was used to isolate the genomic DNA. One 

volume (0.5 ml) of ice-cold Buffer C1 and 3 volumes (1.5 ml) of ice-cold distilled water were 

added to the pellet along with the PBS. The tube was inverted several times to mix and incubated 

on ice for 10 minutes. The lysed cells were centrifuged at 4°C for 15 minutes at 1300 x g and the 

supernatant was discarded. Then, 0.25 ml of ice-cold Buffer C1 and 0.75 ml of ice-cold distilled 

water was added and vortexed. The pellet was then centrifuged again at 4°C for 15 minutes at 

1300 x g. The supernatant was removed and 1 ml of Buffer G2 was added. The nuclei was 

completely resuspended by vortexing for 30 seconds at maximum speed. Then, 25µl of QIAGEN 

Proteinase K stock solution was added and incubated at 50°C for 60 minutes. Slightly before the 

end of the 60 minute incubation period with Proteinase K, the QIAGEN Genomic-tip 20/G were 

equilibrated with 2 ml of Buffer QBT and allowed to empty by gravity flow. The samples were 
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vortexed for 10 seconds at maximum speed and applied to the equilibrated QIAGEN Genomic-

tips. The samples were allowed to enter the resin of the column tips by gravity flow. The 

Genomic-tips were washed 3X with 1 ml of Buffer QC. The genomic DNA was then eluted 2X 

with 1 ml of Buffer QF. The DNA was precipitated by adding 1.4 ml (0.7 volume) of room-

temperature isopropanol to the eluted DNA. The precipitated DNA was then recovered by 

inverting the tube 10-20 times and spooling the DNA using a glass rod. The spooled DNA was 

then immediately transferred to a microcentrifuge tube containing 0.1 ml of TE buffer (pH 8.0). 

The DNA was then left to dissolve overnight and stored at -20°C.  

Folate Microbiology Assay 

Folate was measured from the UNG +/+ and UNG -/- cells using the folate microbiological 

assay as described by Home et al [25]. This widely used microbiological assay measures folic 

acid derivatives in serum as well as other biological samples [25]. The folinic acid (calcium salt) 

[(6-ambo)-5-HCO-H4PteGlu] was prepared in water at a concentration of 6 mM (6×106 fmol/µ) 

and diluted to 6×103 fmol/µl, which was then diluted to 60 fmol/ µl and eventually to a final 

dilution of 2b fmol/µl (working solution). The single strength folic acid casei medium was 

prepared by dissolving 9.4 gram of the powder folic acid casei medium and 50 mg of sodium 

ascorbate (Vitamin C) into 100 ml of diH2O. The mixture was then filtered through a 0.22-µm 

sterile syringe filter. The working buffer was prepared by dissolving 3.2 gram of sodium 

ascorbate into 19 ml of diH2O and adding 1 ml potassium phosphate buffer (1mol/l, pH 6.1). The 

mixture was then sterilized through a 0.22-µm sterile syringe filter. Lastly, the L. casei inoculum 

was prepared. One vial of lyophilized Lactobacillus casei, stored at -80οC when first received, 

was suspended in 1 ml of the medium to grow overnight at 37οC. From this inoculum, 0.25 ml 

was added to the remaining 199 mL of medium and incubated for approximately 18 hours at 
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35οC. The mixture was then cooled down in an ice bath. An equal volume of cold (4οC) sterile 

glycerol (800ml/L) was added to the mixture. From the mixture, 2-ml aliquots were prepared and 

stored at -80οC.   

Once the L. casei inoculum was incubated overnight at 37οC, the OD was measured and 

diluted to an OD value of 0.5 (the standard OD value of the L. casei inoculum). The microtiter 

plate was then set up as shown in Table 3a. A multiple pipette was used to add the working 

buffer mixture (8 µl/sample) and media (150 µl/sample) along with either autoclaved or sterile 

water. As shown in Table 3a, 2 fmol/ µl of folate with the corresponding volume was added to 

each designated well on the plate. Due to folate being light sensitive, the lights were turned off 

during the procedures of this assay. Using a multiple pipette, 20 µl of Lactobacillus casei 

(OD=0.05) was added to the standards and samples for the exception of one blank. Autoclaved 

or sterile water was added around the well of the microtiter plate to create enough humidity 

whereas parafilm was used to cover the plate in order to keep the humidity within the microtiter 

plate. The plate was also covered with oil film to prevent the degrading of folate from light. The 

plate was incubated overnight at 37οC for approximately 18 hours. Before the plate was read at 

an absorbance of approximately 570-635 using a Dynatech Model MR600 reader, the pellet of 

the bacteria was resuspended using a pipette. 

Doubling Times: 

The MEF cells, using proper sterile techniques, were examined daily under a light 

microscope, observing the morphology, density of the cells, and color of the media. Once the 

cells became 75% confluent, the 10 mm petri dishes containing the cells were carefully removed 

from the incubator. Under the laminar flow hood, the media was carefully discarded and the 

plates were washed in 5 ml pre-warmed 1X PBS-EDTA. Following the removal of 1X PBS-
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EDTA, 2 ml of the pre-warmed dissociation reagent, trypsin, was gently added and left to 

incubate for 3-5 minutes so the cells could completely detach from the flasks. The cells were 

then observed under the microscope for detachment and gently rocked or tapped against a nearby 

object in order to completely lift the cells from the flasks and 3 ml of pre-warmed complete 

growth media was added. Once a single cell suspension was achieved, the cells were transferred 

into a 15-ml conical tube. Trypan blue (10µl), which is rejected by live cells but accumulates in 

dead cells, was transferred into a 1.5 ml eppendorf tube along with 20µl of cells and counted in 

the TC 10 Automated Cell counter. The total number of cells/ml was then calculated and used to 

determine the amount of cells to plate for the next passage.  
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Live conc. cell count x 2 (1:2 trypan blue dilution) = # of cells/ml  
 EX: 2.56 x 105cells/ml x 2 = 512,000 cells/ml 

# of cells to be plated = amt of cells in ml or µl to be plated  
 # of cells/ml        for next doubling time passage  

Must be consistent throughout each passage when 
performing doubling time 

EX:   250, 00 cells             =  0.4822 ml or 488 µl of cells to be  
         512,000 cells/ml         plate in order to grow 250,000 cells  
                                                   in the next passage  

 
Total # of cells/flask = (# of cells/ml) x 2 (trypan blue dilution) x total volume  
 

Calculations: 
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UDG-ASB (Uracil Assay): 

Uracil was measured as described by Cabelof et al. [24] Once the DNA was isolated 

using the QIAGEN gravity tip columns, the DNA concentration was measured and quantified 

using the Thermo Scientific NanoDropTM 1000 Spectrophotometer. From the 

spectrophotometer readings, 4µg of total DNA was taken from each group sample and brought 

up to 100µl in TE buffer (pH 7.6). The 4µg of DNA was then blocked in a freshly made 2X 

tris/methoxyamine buffer (final concentration: 100mM methoxyamine (Sigma-Aldrich, St. 

Louis, MO) and 50mM Tris-HCl) for 2 hours at 37°C while covered completely with aluminum 

foil due to the methoxyamine being light sensitive. DNA was then precipitated with 10% volume 

of 2 M NaCl and .4µg/µl of glycogen was added followed by 1 volume of isopropanol. The DNA 

was then inverted or mixed gently, held at -70°C for 15 minutes and then centrifuged at 14000 x 

g for 15 minutes at 4°C. The supernatant was then removed and the visible white pellet of DNA 

was left to air dry at room temperature for 2 minutes. DNA was then washed with 4 volumes of 

70% ice cold ethanol, centrifuged again at 14000 x g for 15 minutes at 4°C. Once the ethanol 

was removed, the white pellet of DNA was left to air dry again at room temperature for 5 

minutes. The dry pellet of DNA was resuspended in TE buffer, pH 7.6. DNA was then treated 

with 0.4 units of Uracil DNA Glycosylase (UDG) (New England Biolabs, Ipswich, MA) for 15 

minutes at 37°C heat block. DNA was immediately precipitated again as previously described 

(NaCl, 0.8µg/µl glycogen, isopropanol), washed with ethanol and resuspended in TE buffer, pH 

7.6. DNA was then probed with 2 mM aldehydic reactive probe (ARP) (Dojindo Molecular 

Technology, Gaithersburg, MD) and incubated in 37°C heat block for 15 minutes. DNA was 

again precipitated as previously described (NaCl/0.4µg/µl glycogen, isopropanol). However, the 

DNA pellet this time was washed twice with ethanol to completely remove any left over probe 
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residues before it was re-suspended one last time in TE buffer (pH 8.0) and quantified.  

 From the probed DNA quantifications, the volume of DNA required for 0.5µg DNA was 

calculated and brought to a volume of 220µl with TE buffer (pH 7.6). DNA was then heat 

denatured at 100°C for 10 minutes in a heat block. Before the DNA samples were removed from 

the heat block, an equal volume of 2 M ammonium acetate was added to the DNA samples 

(prevent re-annealing of the DNA when cooling down), immediately vortexed well and chilled 

on ice. A nitrocellulose membrane (Schleicher and Schuell, Dassel, Germany) was pre-wet in 

deionized water and washed for 10 minutes in 1 mM ammonium acetate before it was placed on 

the slot blot apparatus. While the nitrocellulose membrane was being washed, the slot blot 

apparatus was properly attached to the vacuum. Before loading the samples, the clamp on the 

slot blot apparatus was tightened while maintaining the vacuum OFF, 220µl of 1 mM ammonium 

acetate was added to each individual well of the slot bot and then vacuumed. The entire genomic 

DNA/ammonium acetate was then applied gently to each slot well while keeping the vacuum 

OFF. Before the vacuum was applied, the samples from each group were pipetted up and down 

several times in each well to eliminate air bubbles, therefore, to ensure much sharper and tighter 

bands on the nitrocellulose membrane. Once all the samples were loaded and the vacuum was 

applied, each slot was washed with 200µl of 1 M ammonium acetate and vacuumed again. The 

nitrocellulose membrane was then washed in pre-warmed (37°C) 5 X SSC (saline sodium citrate) 

solution, incubated for 15 minutes at 37°C at 50 rpm while being completely covered in 

aluminum foil, and baked on a blotting paper under vacuum at 80°C for 30 min. The dried 

nitrocellulose membrane was then incubated in a 40 ml prehybridization buffer (1 mM Tris, 

pH7.5, 5 M NaCl, 0.5 mM EDTA, 0.5% (w/v) casein, 0.25% (w/v) bovine serum albumin, 0.1% 

(w/v) Tween 20) for 30 minutes at room temperature. The nitrocellulose membrane was 
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incubated in a freshly made 40 ml hybridization buffer containing 20µl of streptavidin-

conjugated horseradish peroxide (Roche, Indianapolis, IN) for 45 minutes at room temperature 

with continuous shaking while completely covered. Afterwards, the nitrocellulose membrane 

was washed three times in TBS/TWEEN-20, pH 7.5 (5 M NaCl, 0.5 M EDTA, 1 M Tris, pH 7.5, 

0.1% Tween) for 5 minutes each at 37°C and incubated in ECL (enhanced chemiluminescent 

substrate) (Pierce-Thermo Fisher, Rockford, IL) solution for 5 minutes at room temperature. 

Using a ChemiImager TM system (AlphaInnotech, San Leandro, CA), the nitrocellulose 

membrane was visualized and quantified. Results were expressed as the integrated density value 

(IDV) of the band per microgram of DNA that was loaded on the nitrocellulose membrane.  

UDG-Activity Assay: 

UDG activity was measured as described by Stuart et al. [23]. A 20µl reaction contained 

70 mM HEPES (pH 7.5), 1 mM EDTA, 1 mM DDT, 75 mM NaCl, 0.5% bovine serum albumin 

(BSA), 90 fmol of 5′-end-labeled single-stranded uracil oligonucleotide and 5µg of nuclear 

extract. The reaction was incubated for 1 hour at 37°C. Then, the reaction was discontinued by 

adding 5µg of proteinase K and 1µl of 10% SDS and incubated at 55°C for 30 minutes. DNA 

was then precipitated in glycogen, ammonium acetate, and ethanol at −20°C overnight. 

Following precipitation, DNA was resuspended in a loading buffer consisting of 80% 

formamide, 10 mM EDTA, and 1µg/ml each of bromphenol blue and xylene cyanol FF. The 

reaction mixture was loaded on a 20% denaturing sequencing gel for separation. Using a 

Molecular Imager System (Bio-Rad), the glycosylase activity, indicated by the presence of an 

11-mer band, was visualized and quantified. The glycosylase activity was determined by 

calculating the relative amount of the 11-mer oligonucleotide product with the unreacted 30-mer 

substrate (product/product + substrate). The data was expressed as machine counts per µg of 
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protein. The reaction mixture and the oligonucleotide without the nuclear extract was the 

negative control. In order to show that the incision activity was specifically due to UDG and not 

by another uracil specific glycosylase such as SMUG, 1 unit of uracil DNA glycosylase inhibitor 

was added to one sample in each reaction.   

DNA Base Excision Repair Assay: 

A purified 30 base pair oligonucleotide (upper strand, 5′-ATATACCGCGGUCGGCCG 

ATCAAGCTTATTdd-3′; lower strand, 3′ddTATATGGCGCCGGCCGGCTAGTTC 

GAATAA-5′) with its ends labeled radioactive and dideoxy ends, contains a G: U mismatch and 

an HpaII restriction site (CCGG) that is secured by the 3′ amino spacer. The 30 base pair 

oligonucleotide was incubated with 50 µg of isolated nuclear extract from ung+/+ and ung-/- MEFs 

in a BER reaction mixture (100 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 25 mM DTT, 0.1 mM 

EDTA, 100 mM ATP, 10 mM NAD, 1 mM dNTPs, 50 mM diTris-phosphocreatine, 10 units/µl 

of Creatine phosphokinase). The reaction mixtures were incubated for 30 minutes at 37°C and 5 

minutes at 95°C in order to end the reaction. The duplex oligonucleotides were then treated with 

20 units of HpaII for 1 hour at 37°C in order to determine if the G: U mismatch was repaired to 

the actual G: C base pair. Electrophoresis with a 20% denaturing gel (19:1 acrylamide: bis-

acrylamide gel) was used to separate the duplex oligonucleotides. Repair activity indicated by 

the presence of a 16-mer-band on the denaturing gel was visualized and then quantified using a 

Bio-Rad Molecular Imager. The ratio of the 16-mer oligonucleotide product along with the 30-

mer substrate (product/substrate) was determined. Data is expressed as machine counts per 

microgram of protein.  
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   Table 3: Folate assay reaction mixture 

 

 

 

 

 

 
 
 
 
 
 
 
Table 4: Folate assay microtiter plate setup 

      
 
 
  

Final folate 
amount (fmol ) 

0  10 20 40 60 80 100 120  

Working buffer 8 µl 8 8 8 8 8 8 8 
Folate (2fmol/µl) --- 5 µl 10 20 30 40 50 60 
DiH2O 122 µl 117 112 102 92 82 72 62 
Media 150 µl 150 150 150 150 150 150 150 
L.casei 20 µl 20 20 20 20 20 20 20 

	   	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	  
Folate	  
(fmol)	  

	   standard	   standard	   Standard	   blank	   sample	   s	   s	   s	   s	   s	   s	   s	  

0	   A	   	   	   	   	   	   	   	   	   	   	   	   	  
10	   B	   	   	   	   	   	   	   	   	   	   	   	   	  
20	   C	   	   	   	   	   	   	   	   	   	   	   	   	  
40	   D	   	   	   	   	   	   	   	   	   	   	   	   	  
60	   E	   	   	   	   	   	   	   	   	   	   	   	   	  
80	   F	   	   	   	   	   	   	   	   	   	   	   	   	  
100	   G	   	   	   	   	   	   	   	   	   	   	   	   	  
120	   H	   	   	   	   	   	   	   	   	   	   	   	   	  
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Real	   Time	  RT-‐PCR:	  Once total RNA was isolated from the MEF cells, 2µg of isolated RNA 

was used to synthesize cDNA using random hexamer primers and an RT-PCR kit (Perkin Elmer, 

Waltham, MA). The newly synthesized cDNA was then purified using the QIAquick PCR 

Purification Kit (Qiagen, Valencia, CA). A LightCycler real time PCR machine (Roche, 

Indianapolis, IN) was used to quantitate the transcripts. Each PCR reaction consisted of 2µL of 

purified cDNA, 4mM MgCl2, 0.5µM each of sense and antisense primers, and 2µL of FastStart 

DNA master SYBR Green I enzyme-SYBR reaction mix (Roche). Table 3 details the sequenced 

primers used. The parameters for all of the amplifications are detailed in Table 3. All the 

transcripts were normalized to the housekeeping gene, RPL-4.	  
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Table 5: Primer sequences in quantitative real time RT-PCR 

 

 

 

 

Table	  6:	  PCR	  parameters	  for	  all	  amplifications.	  
	  
 

 

 

 

 

 

 

 

 

  

Gene Sense-primer 5′-3′ Anti-sense primer 5′-3′ 
UNG ttcgggaagccgtacttcg catctgggtccatgtaacac 
SMUG cactggggcctacccatga ctcccaagcataatccaccg 
B-pol (exon 12-13) agcgagaaggatggaaaggaa cgtgcgctctcatgttcttat 
TDG gtctgttcatgtcggggctgagtgag ctgcagtttctgcaccaggatgcgc 
MBD4 gatggatccatgggcacgactgggctg gatctcgaggatgagcttgaaagctgcag 
APE1 tagagaattcatgccgaagcgtggga gcggaagctttcacagtgctaggtat 
Ligase3 tgcctgaaaaaggtactgttgg atgccacaaagtagcgtttga 
Housekeeping gene   
Rpl4 ccgtcccctcatatcggtgta gcatagggctgtctgttgttttt 

 Duration Temperature 
Initial denaturing step  10 minutes 99°C 
Denature  10 seconds 96°C 
Annealing 10 seconds 62°C 
Extension 5 seconds 72°C 
Melting  40°C-99°C 
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RESULTS 

Doubling time was measured in UNG+/+ and UNG-/- mouse embryonic fibroblasts to 

determine the effect of cell growth in response to folate deficiency. UNG+/+ folate depleted 

significantly increased (p<0.01) in doubling time compared to UNG+/+ folate added. Similarly, 

UNG-/- depleted also increased (p<0.01) in doubling time compared to UNG-/- folate added. As 

shown in Figure 1, cell growth is inhibited since doubling time increased in response to folate 

depletion.  

Folate levels in both UNG+/+ and UNG-/- folate added and folate depleted mouse 

embryonic fibroblasts were measured using a Lactobacillus casei microbiology assay. The folate 

added group contained 4 mg/L of folic acid in the media where as the folate-depleted cells 

consisted of no folate in the media. The UNG+/+ folate depleted cells were significantly lower 

(p=0.033) in folate (fmol/cell) compared to UNG+/+ folate added group. We observed 

approximately a 3% reduction in folate in UNG+/+ folate depleted cells compared to UNG+/+ 

folate added cells. On the other hand, the UNG-/- cells expressed a higher reduction in folate 

levels compared UNG+/+. Folate levels in UNG-/- folate depleted cells decreased by 10 % 

compared to the UNG-/- folate added cells. UNG-/- folate depleted was significantly low 

(p=0.023) in folate compared to the UNG-/- folate added group. Such results in Figure 2 as 

expected, strongly indicate that the absence of folate in growing media induces folate depletion 

in cells since folate levels in UNG -/- and UNG +/+ folate depleted groups were found to be 

significantly lower.  

The aim of this study was to determine uracil accumulation in response to folate 

deficiency. Previous research has shown that folate deficiency induces uracil misincorporation 

into DNA (4 million per cell), [2] resulting in double strand breaks and chromosomal 
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aberrations. The UDG-ASB assay was used to measure uracil levels in UNG-/- and UNG +/+ 

folate added and folate depleted mouse embryonic fibroblasts. As expected and shown in Figure 

3, UNG+/+ folate depleted group significantly increased (p<0.01) in uracil accumulation 

compared to the UNG+/+ folate added. Additionally, UNG-/- folate depleted also exhibited a 

significant increase (p<0.01) in uracil accumulation compared to UNG-/- folate added group. The 

UNG-/- folate added was also significant with respect to UNG+/+ folate added. Similarly, UNG-/- 

folate deplete was significant with respect to UNG+/+ folate depleted. As clearly stated, in Figure 

3 and in the provided representative image, uracil accumulation increased significantly in UNG-/- 

and UNG+/+ folate depleted cells. Levels of uracil were much higher in UNG+/+ and UNG-/- folate 

depleted mouse embryonic fibroblasts in comparison to UNG+/+ and UNG-/- folate added cells.    

Folate deficiency alters the synthesis of thymidylate, which then causes dUMP to 

accumulate in nucleotide pools. As a result, uracil is misincorporated into DNA. In response, the 

specific and effective enzyme UDG, excises the uracil from the genome.  The removal of uracil 

by UDG represents the first step in the BER sequential pathway. In response to folate deficiency, 

we observed a decrease in UDG activity. UDG activity (the presence of an 11-mer band) was 

visualized in UNG+/+ group whereas the UNG-/- group did not exhibit UDG activity since the 

UNG gene that encodes the enzyme UDG was knocked out from this group. As shown in Figure 

4, UDG activity decreased in UNG+/+ folate depleted group compared to the control. UDG 

activity decreased significantly (p<0.05) in UNG+/+ folate depleted group. This corresponds to a 

decrease in nuclear UDG protein levels in response to folate deficiency as shown in Figure 6a.  

Since BER is a sequential pathway involved in removing folate-induced damage from 

DNA, BER capacity was measured in response to folate depletion. Repair activity was quantified 

by calculating percent product over product plus substrate. Previous research has shown BER to 
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induce DNA damage [23]. Thus, we should expect BER to up-regulated in response to increased 

levels of DNA damage due to folate deficiency. However, as indicated in Figure 5, BER capacity 

significantly (p<0.001) decreased in response to folate depletion in UNG+/+. UNG-/- did not 

exhibit BER activity since the UNG gene was knocked out from this group sample. Moreover, β-

pol has been determined to be the rate-limiting step in the BER pathway [20]. Recent studies 

have shown that the lack of BER induction in response to folate deficiency is followed by a lack 

of induction in β-pol as well.  

In order to determine the impact of folate deficiency on BER, the mRNA expression 

levels of the genes involved in the BER pathway were quantified using real time PCR. All of the 

BER genes in UNG+/+ an UNG-/-were normalized to the housekeeping gene RPL-4. The 

monofunctional glycosylase (Ung) that removes misincorpoarted uracil and oxidized cytosines 

from DNA, showed a significant decrease (p<0.05) in mRNA expression in UNG+/+ folate 

depleted group compared to the folate added UNG+/+ cells. As for the UNG-/- cells, Ung was not 

expressed at all as expected since Ung in this group was knocked out. As for the next enzyme in 

the BER pathway, APE1 significantly decreased (p<0.01) in UNG+/+ folate depleted group 

compared to UNG+/+ folate added group. Similarly, APE1 also significantly decreased (p<0.01) 

in UNG-/- folate depleted compared to UNG-/- folate added. As shown in Figure 6a, β-pol 

significantly decreased in UNG+/+ folate depleted group compared to UNG+/+ folate added group. 

On the other hand, β-pol significantly increased in UNG-/- folate depleted group compared to 

UNG-/- folate added group. Hence, folate depletion downregulates β-pol, in the presence of UNG 

and upregulates β-pol in the absence of UNG. The mRNA expression levels for the scaffolding 

protein, XRCC-1 that forms a complex with Ligase3 have not yet been measured since the gene 

has not yet been cloned. However, it is a working progress. As for Ligase3, we observed a 
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significantly decrease in UNG+/+ folate depleted group compared to UNG+/+ folate added group. 

Lgase3 expression also decreased significantly in UNG-/- folate depleted group in comparison 

with UNG-/- folate added group. Levels of mRNA expression of other uracil DNA glycosylases 

such as TDG, MDB4, and SMUG were also measured using real time PCR. TDG significantly 

decreased in folate depleted UNG+/+ compared to the control. Additionally, TDG expression was 

also significantly downregulated in UNG-/- folate depleted group. Smug was down regulated in 

the presence of UNG and down regulated in the absence of UNG in response to folate depletion. 

Lastly, there was no significant change in MDB4 expression in the presence of UNG in response 

to folate depletion. However, MBD4 was upregulated in absence of UNG in response to folate 

depletion. Such results strongly demonstrate that genes involved in the BER pathway were 

differently regulated during folate deficiency.   
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Figure 8: Absence of Folate in media induces folate depletion in cells. Folate levels in 
UNG +/+ and UNG -/- MEFS was measured using the microbiological assay as described 
in methods. The level of folate is expressed as fold difference relative to UNG+/+/FA. 
Data is obtained from 4 samples in each group. Folate depletion resulted in greater than 
90% reduction in folate in both genotypes. FA=☐, FD=n.  *p value < 0.01.  
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Figure 9: Folate depletion inhibits cell growth. UNG +/+ and UNG -/- decreased in cell 
growth due to folate depletion. Doubling time was determined as described in methods in 
UNG +/+ and UNG -/- cells. *All values for FD UNG +/+ and FD UNG -/- both significantly 
different from control at p <0.01. FA=☐, FD=n.    

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
 
 
 

0 

10 

20 

30 

40 

50 

60 

FA FD FA FD 

H
ou

rs
 

UNG+/+ UNG-/- 



	  

 

39 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: UNG deficiency intensifies accumulation of uracil in response to folate 
depletion. Uracil was measured in DNA isolated from folate added and depleted cells 
with UNG +/+ or UNG -/- genotypes as described in methods. Image is a representative 
sample from both FA and FD of UNG+/+ and UNG-/- cells. * p<0.05. # p<0.01. FA=☐, 
FD=n.  
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Figure 11: Folate depletion significantly reduces Udg activity UNG+/+in mouse 
embryonic fibroblasts. UDG activity was measured as described in methods. FA=☐, 
FD=n. *Significantly difference at p<0.05 
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Figure 12: Folate depletion inhibits BER capacity in MEF’s. The in vitro G: U 
mismatch BER assay was conducted using nuclear extracts obtained from MEFs grown 
either in folate added or folate depleted media. The reaction products were resolved on a 
sequencing gel. Repair activity was quantified by calculating percent product over 
product plus substrate. FA=☐, FD=n. Significantly difference at p<0.001 
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Figure 13: Effect of Folate depletion on Base Excision Repair in Ung-/- mouse 
embryonic fibroblasts. The in vitro G:U mismatch BER assay was conducted using 
nuclear extracts obtained from Ung-/- MEFS grown either in folate added or Folate 
depleted media. The reaction products were resolved on a sequencing gel. No repair 
activity was visualized by the appearance of a 16 mer fragment. Folate added: FA; 
Folate Depleted: FD.  
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Figure 14: Effect of folate deficiency on the expression of uracil-excising enzymes of 
BER in UNG+/+cells. mRNA expressions from folate-added and folate-deficient UNG+/+ 

cells. Transcripts were quantified using real-time PCR and normalized to RPL-4. FA=☐, 
FD=n. *Significantly difference at p<0.05.   
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Figure 15: Effect of folate deficiency on the expression of uracil-excising enzymes of 
BER in UNG -/- cells. mRNA expressions from folate-added and folate-deficient UNG-/- 
cells. Transcripts were quantified using real-time PCR and normalized to RPL-4. FA=☐, 
FD=n. *Significantly difference at p<0.05.  
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Discussion  

Folate or folic acid is critical in maintaining cell growth in the body, especially during the 

development of a human embryo. It is necessary in the early development of the spinal cord and 

the brain to prevent birth neural tube defects (NTDs) and spina bifida [26]. Folate is also 

essential for the production of DNA that is required for cell growth during the development of 

fetal organs and tissues in early pregnancy. To determine the effect of cell growth in response to 

folate deficiency, doubling time was measured in folate depleted UNG +/+ and UNG -/- mouse 

embryonic fibroblasts. We observed a significant increase in doubling time in both folate 

depleted UNG+/+ and UNG-/- mouse embryonic fibroblasts, suggesting that cell growth decreased 

in response to folate depletion.  

Folate levels in folate depleted and folate added UNG +/+ and UNG -/- mouse embryonic 

fibroblasts were measured using the Lactobacillus casei microbiological assay to ensure that our 

folate depleted cells contained no folate. Such assay measures different folic acid derivatives in 

serum and other biological samples with the use of a 96-well microtiter plate. Our data showed 

that both UNG +/+ and UNG -/- cells significantly decreased in folate in response to folate 

depletion. Folate depletion resulted in greater than 90% reduction in folate in both genotypes. 

Such results strongly suggest that folate depletion was induced in our UNG +/+ and UNG -/- when 

folate was absent in our growing media.    

Folate has a fundamental role in DNA metabolism [31]. Folate is necessary for the 

synthesis of dTMP from dUMP. In the absence of folate, the synthesis of thymidylate decreases, 

creating an imbalance in the deoxyribonucleotide pool. Uracil as a result is misincorporated into 

DNA during replication and repair [25, 28]. Additionally, uracil is misincorporated into DNA as 

a result from spontaneous hydrolytic deamination of cytosine. The base excision repair pathway 
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(BER), initiated by DNA glycosylases, is responsible for the removal of uracil once 

misincorporated into DNA. However, as these uracil residues are being repaired through BER; 

there is strong evidence suggesting that single and double strand breaks, chromosome breakage, 

point mutations, micronucleus formations are generated, increasing the risk of cancer [26, 29]. 

Additionally, studies have also shown uracil misincorporation into DNA and DNA strand breaks 

in animal models in response to folate deficiency [31-33]. 

We hypothesized that levels of uracil would increase in folate depleted UNG+/+ and 

UNG-/- mouse embryonic fibroblasts. Indeed, our hypothesis was proven by our results. Uracil 

levels significantly increased in UNG -/- folate depleted cells compared to folate added UNG-/- 

cells. Additionally, uracil levels were also elevated in folate depleted UNG+/+ cells compared to 

the folate added UNG+/+ cells. In the absence of folate in both the wildtype and knockout groups, 

uracil increased significantly. In the de novo pathway, dUMP is converted to dTMP by the 

enzyme thymidylate synthase using the folate co-substrate, N5, N10-methylene THF, as the 

carbon donor. Without folate, dUMP cannot be converted to dTMP by thymidylate synthase. 

Hence, dUMP begins to accumulate since it is not capable of being converted to dTMP due to 

the absence of folate. This mechanism explains as to why we observed high levels of uracil in 

folate depleted UNG+/+ and UNG-/- cells. As the dUMP/dTMP ratio increases in response to 

folate deficiency, uracil in DNA also increases. As a result, DNA base damage and DNA strand 

breaks also increase followed by an increase in mtDNA deletions, chromosomal instability, 

telomere dysfunction, and p53 dysfunction [30].  

Uracil DNA glycosylases (UDG) is encoded by the UNG gene [34]. Both UNG1 

(mitochondria) and UNG2 (nuclear) are major enzymes responsible enzymes for the removal of 

uracil in human cells. The removal of uracil by UDG represents the first step in the BER 
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sequential pathway. The UDG assay was used to determine UDG activity in response to folate 

depletion in both UNG+/+ and UNG-/- mouse embryonic fibroblasts. Majority of UDG activity 

(the presence of an 11-mer band) is due to the expression of the nuclear isoform UNG2 from the 

UNG gene locus [35]. We observed a significant decrease in UDG activity in response to folate 

depletion in UNG+/+, suggesting that folate depletion significantly reduces UDG activity. Such 

decrease in UDG activity is expected to affect BER pathway since BER is the sequential 

pathway initiated by UDG to repair misincorporated uracil. Corresponding to the UDG activity 

results, BER activity also significantly decreased in response to folate depletion. Previous 

research has shown BER to induce DNA damage [23]. Thus, we should expect BER to up-

regulated in response to increased levels of DNA damage due to folate deficiency. However, our 

results show that BER was down regulated in response to folate depletion.  

Several genes are involved in the BER pathway that have shown to be affected due to 

folate depletion. Hence, mRNA expression of UNG, β-pol, SMUG, MBD4, TDG, Ligase 3 and 

APE have been measured in order to determine the affect of folate depletion on the BER 

pathway. The monofunctional glycosylase, UNG, initiates the BER pathway by removing 

misincorporated uracil from DNA by cleaving the N-glycosylic bond. Consistent with UDG 

activity, UNG expression decreased in folate depleted UNG+/+ compared to folate added UNG-/-. 

However, as expected, there was no UNG expression in UNG-/- since the gene has been knocked 

from this group. The second step in BER is catalyzed by APE1, an AP endonuclease, which 

cleaves the DNA backbone on the 5' side of the AP site. APE 1 expression significantly 

decreased in folate depleted UNG +/+ and UNG -/-. As for the rate-limiting step, β-pol was down 

regulated in the presence of UNG in response to folate depletion. However, in the absence of 

UNG, β-pol was upregulated in response to folate depletion. The last enzyme in the BER 
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pathway, ligase 3, also significantly decreased in gene expression in UNG +/+ and UNG -/- in 

response to folate depletion. Levels of mRNA expression of other uracil DNA glycosylases such 

as TDG, MDB4, and SMUG were also measured using real time PCR. TDG can remove uracil 

and 5-bromouracil mispaired with guanine. This enzyme plays an important role in cellular 

defense against genetic mutation caused by the spontaneous deamination of 5-methylcytosine 

and cytosine. TDG significantly decreased in folate depleted UNG+/+ and was also significantly 

downregulated in UNG-/- folate depleted group. Smug is a single-strand selective monfunctional 

uracil DNA glycosylase that removes uracil from single and double stranded DNA in nuclear 

chromatin. Smug was down regulated in the presence and absence of UNG in response to folate 

depletion. Lastly, MBD4 acts as a G:T and G:U mismatch specific thymine and uracil 

glycosylase. Its activity is limited to G: U mismatches and does not move uracil present in 

single-stranded DNA. There was no significant change in MDB4 expression in the presence of 

UNG in response to folate depletion. However, MBD4 was upregulated in absence of UNG in 

response to folate depletion. Such results strongly demonstrate that genes involved in the BER 

pathway were differently regulated during folate deficiency.   

The objective of this research is to determine the impact of folate depletion on uracil 

accumulation, BER activity and UDG activity in UNG +/+ and UNG -/- mouse embryonic 

fibroblasts (MEFs). Previous studies have shown that folate deficiency results in uracil 

misincorporation in DNA and therefore increasing genomic instability. Uracil is excised from 

DNA by the uracil DNA glycosylase (UDG) during the BER pathway. Our results clearly 

demonstrated that uracil accumulation increased significantly in MEF’s in response to folate 

depletion. Moreover, BER activity and UDG activity also decreased in response to folate 

depletion while differently regulating the BER genes in the BER pathway.  
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 Folate is a water-soluble vitamin B that plays a critical co-enzyme in the de novo 

nucleotide synthesis and other biochemical processes including DNA	  metabolism,	  DNA	  repair,	  

DNA	  methylation,	  and	  cellular	  growth.	  Folate	  deficiency	  has	  been	  associated	  to	  increase	  the	  

risk	   of	   neural	   tube	   defects	   (NTDs)	   and	   cancers	   of	   the	   lung,	   breast,	   colon,	   cervix,	  

esposphagus	   and	   brain.	   Most	   importantly,	   folate	   deficiency	   has	   been	   shown	   to	   increase	  

uracil	  misincorporation	  into	  DNA	  and	  therefore	  induce	  DNA	  damage	  repaired	  by	  the	  base	  

excision	  repair	  (BER)	  pathway.	  In response to folate depletion, levels of thmidylate decrease in 

the deoxyribonucelotide pool, resulting in uracil being misincorporated into DNA instead of 

thymine during replication and repair. Uracil misincorporation into DNA is believed to be the 

biological mechanism of how folate affects carcinogenesis. We evaluated the impact of folate 

depletion on uracil accumulation, BER activity and UDG activity in folate depleted UNG+/+ and 

UNG-/- mouse embryonic fibroblasts (MEFs). Additionally, cell growth in response to folate 

deficiency was also determined by completing doubling time in folate depleted UNG+/+ and 

UNG-/- cells. As expected, levels of uracil significantly increased in UNG+/+ and UNG-/- cells in 

response to folate depletion. Uracil-DNA glycosylase (Udg) activity, which is responsible for the 
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removal of uracil during the base excision (BER) pathway, significantly decreased in folate 

depleted UNG-/- cells. Such decreases in Udg activity corresponded to the decrease in nuclear 

UDG protein levels in response to folate deficiency. Similarly, BER capacity significantly 

(p<0.001) decreased in response to folate depletion in UNG+/+ cells, suggesting that folate 

deficiency inhibits BER in mouse embryonic fibroblasts.  
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