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A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to Data 
 

Steve Su 
Epi-stat Division, George Institute for International Health 

Sydney, New South Wales, Australia 
_____________________________________________________________________________________ 
 
This article presents a flexible approach to fit statistical distribution to data. It optimizes the bin-width of 
data histogram to find a suitable generalized lambda distribution. In addition to the default optimization, 
this approach provides additional flexibility akin to the concepts of loess and kernel smoothing, which 
allow the users to determine the amount of details they would like to smooth over the data. The approach 
presented in this article will allow users to visually compare and choose the parameters of generalized 
lambda distribution that best suit their purposes of study. 
 
Key words: generalized lambda distributions, quantile distributions, fitting distributions to data 
_____________________________________________________________________________________ 

 
Introduction 

 
An essential problem in data analysis is to find a 
probability distribution that will adequately fit 
the empirical data. Considerable literature exists 
in this area, ranging from the parametric work of 
generalized lambda distribution (Ramberg & 
Schmeriser, 1974; Ramberg, Tadikamalla, 
Dudewicz & Mykytka, 1979; Ozturk & Dale, 
1985; Freimer, Mudholkar, Kollia, & Lin, 1988; 
Okur, 1988; King & MacGillivray, 1999; Karian 
& Dudewicz, 2000; Lakhany & Massuer, 2000) 
to nonparametric work of kernel density 
estimation (Silverman, 1985). In spite of these 
works, no current work exists on allowing a 
range of possible generalized lambda 
distribution (GλD) fits to data, pending on users’ 
desire to suppress or accentuate certain features 
of the data based on prior knowledge of the 
distribution. This is important when a particular 
method fails to provide a fit that highlights the 
essential features of the data exhibited and 
known by the analyst. In these situations, it will 
often be preferable to explore other plausible 
GλDs. 
 
 
Steve Yu Shuo Su is a Research Fellow at the 
Epi-stat Division of the George Institute, 
affiliated with the University of Sydney. His 
research interests are in applied statistical 
methods in business and epidemiology. Email: 
ssu@thegeorgeinstitute.org. 

This article proposes an extension of the 
existing fitting method using GλD which offers 
more flexibility and in many cases can highlight 
features of the data not considered by the King 
and MacGillivray (1999)’s starship method. 
Instead of optimizing using goodness of fit 
method, this article suggests an alternative 
approach which is to optimize based on the 
number of classes or bins of the data.  The 
number of bins of the data can be determined by 
the user, offering flexibility to suppress or 
highlight details, much like the concept of 
smoothing a data set using different weights in 
loess or kernel smoothing. This is a valuable tool 
in practice because the real distribution of the 
data set is almost never known and the methods 
developed in this article can be used to conduct 
sensitivity analysis to assess the effects of using 
different yet plausible distributions.  

The principal emphasis in this article is 
to allow the user to fit a wide range of different 
distributions to data set rather than to satisfy the 
goodness of fit statistics. Also, the exclusive use 
of goodness of fit statistics in the fitting of 
distribution to data as was done in previous 
works (King & MacGillivray, 1999; Lakhany & 
Massuer, 2000) does not guarantee the resulting 
distribution fit will satisfy the goodness of fit, 
but merely tries to maximize it. The beauty of 
the approach in this article is that it allows the 
data to be represented in different angles. This is 
important because unlike theoretical simulated 
data, real life data is often messy. Very often, 
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real life data does not have a nice continuous 
range of values one can get from theoretical 
simulations. Due to this imperfection, it is often 
desirable to have an alternative data fitting 
method that could provide alternative fits 
beyond the traditional goodness of fit methods. 
This will give the user a possible range of 
distribution fits that could arise from the data set 
and this can lead to valuable sensitivity analysis 
on the impact of different distributions. The use 
of goodness of fit criteria could also enhance the 
credibility of fit under different fits but should 
not discredit it. This is because it is only 
possible to test the goodness of fit of one 
realization of the real life data from its 
underlying distribution, which may or may not 
be representative.  

The article begins with a literature 
review on the existing methods of GλD 
parameters estimation, which progressively 
result in the development of this new method. 
Results of the application of the new methods on 
real life data are then presented and the article 
concludes with a discussion on the shortcomings 
of this new method. 
 
Review of Literature 
 This literature review begins with the 
basic theory of GλD and discusses some of the 
fitting methods reported in literature. The 
literature review then presents two methods that 
appear to give promising results. These two 
methods are extended and discussed in the 
method section.  

The Ramberg-Schmeiser (1974) (RS) 
GλD is an extension of Tukey’s lambda 
distribution (Hastings, Mosteller, Tukey, & C 
1947). It is defined by its inverse distribution 
function: 
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In Expression (1), 0≤u≤1, λ2 ≠ 0 and λ1 
,λ2, λ3, λ4 are respectively the location, scale, 
skewness and kurtosis parameters of generalized 
lambda distribution GλD(λ1 ,λ2, λ3, λ4). In 

particular, Karian, Dudewicz and MacDonald 
(1996) noted that GλD is defined if and only if: 
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Another distribution known as FMKL 

GλD also exists, due to the work of Freimer 
Mudholkar, Kollia and Lin (1988). This 
distribution is slightly different to RS GλD and 
they overlap when λ3=λ4.  The FMKL GλD can 
be written as: 
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Under Expression (3), 0≤u≤1, and λ1, λ2, 

λ3, λ4 are consistent with the interpretations in 
RS GλD, namely λ1 ,λ2 are the location and scale 
parameters and  λ3, λ4 are the shape parameters. 
In particular, if λ3=λ4=0, both RS and FMKL 
GλD have: 
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 (4) 
The fundamental motivation for the 

development of FMKL GλD is that the 
distribution is proper over all λ3 and λ4 (Freimer, 
Mudholkar, Kollia, & Lin, 1988). This adds 
convenience to users who wish to program this 
function as there are fewer restrictions on the 
values of λ3 and λ4. The only restriction on 
FMKL GλD is λ2>0.  

The extensive use of FMKL GλD is 
reported in Freimer et al (1988). Due to the wide 
range of shapes GλD possesses, for example: U 
shaped, bell shaped, triangular, and 
exponentially shaped distributions and its 
simplicity, it has been used in Monte Carlo 
simulations (Hogben, 1963), the modeling of 
empirical distributions (Ramberg, Tadikamalla, 
Dudewicz, & Mykytka, 1979; Okur, 1988), and 
in the sensitivity analysis of robust statistical 
methods (Shapiro, Wilk, & Chen, 1968). Other 
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research works on GλD concentrate on 
estimating the parameters of the GλD from 
empirical data and these are discussed below. 
In any optimization problem, it is necessary to: 
 

1. Find suitable initial values, and 
2. Choose the appropriate optimization 

scheme. 
 

Perhaps the most common approach has 
been to use method of moments to estimate the 
parameters of GλD as demonstrated in Ramberg 
et al (1979) and Karian and Dudewicz (1996, 
2000).  These works covered only the RS GλD 
and often use tables based on the third and 
fourth moments or percentiles of the data to find 
suitable initial values. The appropriate 
optimization scheme involves finding a GλD 
with parameters λ1, λ2, λ3, λ4 that matches 
closely with the first four moments of the 
empirical data. This is done numerically through 
either the Nelder-Simplex (Nelder & Mead, 
1965) algorithm as in the work of Ramberg, et 
al. (1979) or the Newton-Raphson algorithm or 
tabulated values (Karian & Dudewicz, 2000). 
Karian and Dudewicz (1996) also discussed the 
use of the generalized beta distribution to model 
the distributions that were not covered by the 
original RS GλD. In Karian and Dudewicz 
(2000), an alternative method is also 
demonstrated which matches the RS GλD with 
the parameters λ1, λ2, λ3, λ4  based on the first 
four percentiles of the data set. This is a 
variation on the same theme of the matching of 
moment method but one in which Karian and 
Dudewicz (2000) reported can produce better 
fits than in the case with other methods of 
moment matching under RS GλD.  

In a different line of work, Ozturk and 
Dale (1985) used a version of least squares 
estimation to find the parameters of RS GλD. 
They derived the squared distance between 
empirical data points with the expected values of 
the order statistics, and numerically minimized 
this measure using Nelder-Simplex method to 
derive parameter estimates for the RS GλD. 

The literature recognizes that matching 
the first four moments or using the “least 
squares” method by Ozturk and Dale (1985) 
does not necessarily produce a good fit to the 
data (Karian & Dudewicz, 2000; Lakhany & 

Massuer, 2000). This is due to different 
parameters of the GλD can results in the similar 
first four moments. For example, in the case of 
the least squares method by Ozturk and Dale 
(1985), the goal of minimizing the squared 
distance between empirical data points with the 
expected values of the order statistics of GλD 
does not necessarily coincide with the formal 
goodness of fit objective such as the 
Kolmogorov-Smirnov Goodness-of-Fit Test. 

It is precisely the need to assess the 
resulting fit with the goodness of fit objective 
that King and MacGillivray (1999) used the 
starship methods. In the starship method, grid 
points comprising of λ1, λ2, λ3, λ4 aimed at 
covering a wide range of GλD, calculated from 
the sample quantiles. Then, for each of the grid 
points the theoretical GλD was transformed into 
uniform distribution and goodness of fit 
statistics like Anderson-Darling test statistics or 
Kolmogorov-Smirnov test statistics were 
calculated. The set of grid points with the lowest 
Anderson-Darling statistics was then being 
chosen as the initial values for optimization, 
usually through the Nelder-Simplex algorithm. 
The resulting values from the optimization 
scheme are the parameter estimates of the GλD, 
given by starship method.  

Lakhany and Mausser (2000) suggested 
a variation of using re-sampling method 
combined with the method of moments and a 
goodness of fit test via the FMKL GλD. They 
first generated initial values for the method of 
moment matching via quasi random number 
generator (i.e., the Sobol sequence generator 
(Bratley & Fox, 1988)), and then found the set 
of values λ1, λ2, λ3, λ4 that matched optimally 
(through the Nelder-Simplex algorithm) with the 
first four moments from the data. This set of 
values was then evaluated through a goodness of 
test statistic such as adjusted Kolmogorov-
Smirnov test statistics. Under this method, any 
solution that results in a p-value > 0.05 is 
accepted. Lakhany and Mausser (2000) 
commented that this method is much more 
efficient time-wise than the starship method 
developed by King and MacGillivray (1999) and 
allows for automatic restarts from different 
initial values to help to find a distribution that 
will adequately fit the data. The use of p-values 
in the optimization scheme, however, can be 
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somewhat problematic. The deficiency of p-
values is well known, since failure to reject does 
not mean the hypothesis is true since it may be 
that the sample size is too small to be able to 
detect differences between the empirical and 
fitted data. Conversely, rejection of the 
hypothesis does not mean the fitted model is 
inappropriate, as the user may have a different 
purpose to fitting the data other than to satisfy 
the goodness of fit criteria.  

An important improvement of Lakhany 
and Mausser (2000)’s approach is the flexibility 
of fits it offers to the users. As different initial 
values are chosen, different results can be 
obtained. However, this flexibility is rather 
limited as the users have no real control over the 
amount of smoothing they would like to achieve.  

The current literature does not appear to 
cover a comparison of the method of percentiles 
from Karian and Dudewicz (2000) with the other 
methods like starship by King and MacGillivray 
(1999), nor with the automatic re-sampling 
methods of Lakhany and Massuer (2000). The 
method below will consider both the method of 
percentiles under RS GλD and the method of 
moments under the FMKL GλD. The rationale is 
that the existing literature appears to recommend 
these two methods hence these methods are 
chosen for extension to offer greater flexibility 
of fit than the methods previously reported.  

A detailed discussion of the method of 
percentiles using the RS GλD and the method of 
moments using FMKL GλD is outlined below. 

Method of percentiles using the RS GλD:  

The following is obtained directly from 
Karian and Dudewicz (2000). For a given data 
set X with values x1, x2, xn, the p-th percentile 
defined by Karian and Dudewicz (2000) is 

)( 1

^

rrrp yyky ++= +π , where Y= y1, y2,… yn 

are sorted values of X in ascending order and r is 
the truncated value of (n+1)×p with k being 
(n+1)×p-r. 

Instead of using the first four moments, 
the following statistics are used: 
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5) 
where v is an arbitrary number from 0 to 0.25.  
 

The relationship between the theoretical 
ρ1, ρ2, ρ3, ρ4 and λ1, λ2, λ3, λ4 in the RS GλD is as 
follows: 
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6) 
The condition ]1,0[,0,0, 4321 ∈ρ≥ρ≥ρ∞<ρ<∞−  

must also be true, which is a direct consequence 
of the definition of ρ1, ρ2, ρ3, ρ4. In Karian and 
Dudewicz (2000), a fit for the GλD is found by 
solving Expression (7) through the use of tables. 
This can also be solved this numerically via 
Newton-Raphson method. 
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7) 
In the extended method described 

below, however, the following minimization 
scheme in Expression (8) is used. Once λ3, λ4 are 
obtained, λ1, λ2 can be obtained directly via 
Expression (6).  
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Method of Moments under the FMKL GλD: 

In an alternative approach, Lakhany and 
Mausser (2000) used the method of moments for 
the FMKL GλD. The following are extracts 
from Lakhany and Mausser (2000):  

For a given data set X with values x1, 
x2,… xn, the i-th moment αi is defined in 
Expression (9). 
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2

1

λ
 and b= 

4221
1

11

λλ
+

λλ
−λ , with Y=(X-b)/a, using 

( )∫
−=

1

0

1 )()( duuFXE
kk  and binomial 

expansion gives Expression (10). 

∑

∫∑

∫

=
−

=

λ

−

−λ

λλ

+λ+−λβ
λλ

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ
−−

λ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
−−

λ
=

=

k

oi
43j

4
jk

3

j

k

1

0

k

oj
j

4

j

jk
3

)jk(
j

k

1

0 43
k

k
k

)1j,1)jk((
)1(

j

k
s

du
)u1(u

)1(
j

k
s

du
)u1(u

s

)Y(Es

43

43

      (10) 

10) 
In Expression (10), β(*) denotes beta 

function. Note that both arguments of the beta 
function must be positive, implying that min(λ3, 
λ4) > -1/k if the distribution is to have finite k-th 
moments. The k-th central moment (except for 
the first which is the mean) of the distribution 

)(1 uF − denoted as µk are hence given in 
Expression (11). 
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The theoretical α3 and α4 are given in 
Expression (12). 
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The same methodology now follows as 
from Lakhany and Mausser (2000). They 
propose to find λ3, λ4 by minimizing Expression 

(13), where 3

^

α  and 4

^

α  are sample values using 
sample moments. 
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Once λ3, λ4 is determined it is possible to find λ1, 
λ2 as shown in Expression (14). 
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Extension of previous methodology 

 The principle underlying earlier 
methods (King & MacGillivray, 1999; Lakhany 
& Massuer, 2000) is to use goodness of fit as a 
criteria to determine whether the resulting GλD 
fits the data adequately. However this, as will be 
demonstrated later, does not give the potential 
for a wide range of different plausible 
distribution fits to data. 

The new method described here uses the 
percentile method from Karian and Dudewicz 
(2000) and the method of moments with the 
FMKL GλD. It also uses quasi random numbers 
to find initial values, but the optimization can be 
based on the number of classes or bins the user 
specifies. This optimization scheme allows users 
to suppress or accentuate part of the distribution 
as desired, a feature that is not explicitly 
considered in other methods. The range of initial 
values should be chosen based on the shape of 
the distribution shown by the histogram, or they 
maybe left unspecified with a default set of 
values chosen.  

 
 
 
 

A full description of the algorithm is 
provided below: 
 

1. Specify a range of initial values for λ3, 
λ4, and the number of initial values to be 
selected. Here, the λ3, λ4 are set by 
default to range from -1.5 to 1.5 for the 
RS GλD percentile method and -0.25 to 
1.5 for the FMKL GλD method of 
moment. These default values are from 
author’s clinical experiences and appear 
to work well in most situations. It is 
possible to change these initial values if 
desired. 

 
The quasi random generator used is 

based on the work of Hong and Hickernell 
(http://www.mcqmc.org/Software.html) and the 
scrambling method of Owen (1995) and Faure 
and Tezuka (2000). This code is available from 
the beta resample library in Splus 6.0 and 
scrambling methods are applied so that the 
numbers generated fills uniformly onto the λ3, λ4 
two dimensional space. To increase the speed, it 
is possible to set the initial values where λ3= λ4. 
This appears to work well in many situations. By 
default, 100 of such initial values are chosen in 
this case and used in step 2. 
 

2. Evaluate λ1, λ2 for each of the initial 
values λ3, λ4. Remove all the set of 
values that do not: 

a. Result in a legal 
parameterization of GλD. 

b. Span the entire region of the 
data set.  

 
From these sets of initial points, find the 

values of λ3, λ4 that matches closely with the 
data. This is to generate a set of initial values 
that produce the lowest values in Expression (8) 
and Expression (13), to be used as initial values 
in the optimization process.  
 

3. Sort the sample data in ascending order, 
and divide the data set into evenly 
spaced classes with bin edges that span  
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 the data set. Calculate the proportion of  
 the sample out of the total sample in 
 each class. Hence Table 1 maybe 
 constructed: 
 

Table 1 Calculating proportion of data in each class 
 

Classes 1.5-2 2-2.5 2.5-3 3-3.5 Sum 
Proportion 
of data 

0.1 0.6 0.2 0.1 1 

 
Table 1 shows four classes, with the 

proportion of the data set falling in each class in 
the second column. Let the proportion of data in 
each class be denoted di for i=1,2,3..n classes 
and the proportion of data from the theoretical 
GλD be the vector ti for i=1,2,3…n classes. The 
quantity that one wants to minimize is: 

 

∑
=

−
n

i
iii tdd

1

2)(          (15) 

15) 
Expression (15) is the weighted squared 

deviation of the theoretical proportions with the 
actual data proportions. This is weighted so that 
the data with higher proportions are given 
priority in the minimization scheme. The 
resulting fit will then be more likely to capture 
the majority of the data. The weighting factor di 
can be removed if desired. In addition, this 
optimization scheme also rejects estimations that 
do not span the entire data set. 

The number of classes, n, can be solely 
determined by the user, or determined by the 
formula devised by this article (discussed 
below), or via previous literature works as in 
Sturges, Scott (1979; 1992) or Freedman  and 
Diaconis (1981). 

Sturges’ formula is based a bin width of:  
 

)1m/(log)data(range 2 +              (16) 
 
This strategy often results the bin width being 
too wide as reported in Venables and Ripley 
(2002), and has the disadvantage that “outliers 
may inflate the range and increase the bin width 
in the centre of the distribution.”   

Hyndman (1995) also argued that the use of 
Sturges’ formula should be avoided since there 
is no sound statistical backing to its derivation. 

 Scott (1979) used 3/1
^

5.3 −mσ  , 
although Freedman & Diaconis (1981) proposed 

3/12 −Rm , where R is the inter-quartile range 

and 
^

σ  is the estimated standard deviation from 
the data, and m is the number of observations in 
the data. Freedman & Diaconis’s (1981) use of 
inter-quartile range is more robust against 
outliers and tends to choose smaller bins than 
the formula by Scott (1979). More complicated 
rules are also available in Scott (1992) but they 
are not discussed here.  

The methods developed in this article 
calculate the default number of classes to be 
optimized over as the one that gives ζ: the 
minimal squared error between the first two 
moments of the categorized data with the actual. 
For example, in the context of Table 1, the first 
two moments of the categorized data can be 
calculated using the following table, which takes 
the mid point of the class intervals and treat the 
data as discrete. The mean and variance of data 
shown in Table 2 are 2.4 and 0.1525 
respectively; this is then compared with the 
actual mean and variance of the continuous data 
with the squared error subsequently calculated. 
The number of classes chosen for optimization 
would be the one with minimal squared error or 
ζ. It is possible to choose any other number of 
classes such as the formula in Scott (1979) and 
Freedman & Diaconis (1981). 
 
Table 2 Calculating mean and variance from Table 1 
 
Observation 1.75 2.25 2.75 3.25 Sum 
Proportion 
of data 

0.1 0.6 0.2 0.1 1 

 
The philosophy for this approach is to 

choose the number of classes that best represents 
the first two moments of the data, so that the 
distribution fitted would resemble more or less 
an accurate representation of the data set. 

Although formulas for determining the 
optimal bin width for the histograms interval do 
exist, users can exercise their judgments by 
choosing the number of classes. Generally 
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speaking, higher number of classes will result in 
details of the distribution being accentuated, 
while lower number of classes will tend to 
suppress details of the distribution.  
 

4. The optimal result can be obtained via 
the Nelder-Mead Simplex algorithm or 
another suitable numerical optimization 
algorithm. It is advisable to re-use the 
initial values in the optimization process 
to ensure the result obtained is a global 
minimum rather than a local minimum. 
Steps 1 to 3 may be repeated if 
necessary, where the number of classes 
and the range of initial values can be 
adjusted until the results are deemed 
adequate. The final fitting result can be 
examined by plotting the result on the 
histogram with the fitted line as well as 
testing the goodness of fit using the 
Kolmogorov-Smirnov (KS) test. 

Results 

 
The analysis below is divided into two parts. 
The first part is a theoretical comparison 
between data fitting methods with well known 
statistical distributions. A two sample KS test is 
carried out by sampling 100 points from the 
theoretical and fitted distributions and the 
number of times the p-value exceeds 0.05 is 
recorded over 1000 times. This will give the user 
an independent measure as to the adequacy of 
fits beyond a visual comparison. The second part 
shows the fitting method over some real life 
data, and the goodness of fit test is carried out on 
the comparison between sampling 90% of the 
real life data with the fitted data using two 
sample KS test over 1000 runs. 
 This is also known as the Monte Carlo 
KS test in this article. It is worth cautioning that 
the use of goodness of fit as a measure for 
quality of fit would bias methods that seek to 
maximize goodness of fit. In fact, it is a circular 
logic. The use of goodness of fit to assess the 
quality of fits used in this article will not suffer 
from this problem, but it needs to bear in mind 
that the objective of fit in this article was not  to 
maximize the goodness of fit,  and  so  it  may  
not   always  be  as  high  as starship method 
(STAR) which uses standard statistical goodness 

of fit such as Kolmogorov-Smirnov and 
Anderson Darling test statistics in its data fitting 
algorithm. 

The following compares between the 
revised percentile method of the RS GλD 
(RPRS), the revised method of moment under 
the FMKL GλD (RMFMKL) and the STAR 
method. Previous literature such as King and 
MacGillivray (1999), Lakhany and Mausser 
(2000), and Karian and Dudewicz (2000) have 
already covered comparisons between the 
starship methods, the GλD under the RS and 
FMKL GλD using the method of moments and 
percentiles as well as the least square method 
used by Ozturk (1985); hence these will not be 
repeated here.  

Commentary 

The modified methods RPRS and 
RMFMKL are perhaps not appropriately termed 
as the percentiles and method of moments are 
not used in the optimization step but only for 
choosing the initial values for the optimization 
process. However, the differences in the two 
methods highlight the fact that the choices of 
initial values and type of GλD are important in 
the outcome of these extended methods, since 
different results are obtained even though both 
methods undergo the same optimization scheme.  

Comparison with Theoretical Distributions 

Figure 1 and Table 3 show the resulting 
fits of RPRS, RMFMKL and STAR on well 
known statistical distributions. Using the default 
fitting method described above, RPRS and 
RMFMKL are very close to the actual 
distribution in Figure 1. This result is further 
confirmed in Table 3, where more than 90% of 
the time, the Monte Carlo KS test will indicate 
there is no difference between the fitted and 
actual distributions. 

The real interest of the method of this 
article is not in the fitting of theoretical 
distributions. In the theoretical simulation it is 
possible to compare between the actual and 
approximate distributions, but not so in practice. 
It is precisely the reason that one does not know 
the real underlying distribution of real life data, 
one needs a flexible fitting method that could 
allow us to assess different distribution fits and 
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the stability of distribution fits under different 
data representations by the histogram.  

The following real life examples will 
compare different cases where different methods 
work well under different situations. It will also 
use the Monte Carlo KS tests results to 
demonstrate the quality of fit under the goodness 
of fit objective.  
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Figure 1: Demonstrating the distribution fits of well 
known statistical distributions. 
 

Table 3: Monte Carlo KS goodness of fit tests results 
over 1000 runs. A value close to 1000 indicates high 
level of confidence of a good fit. 
 
Distribution RPRS RMFMKL STAR 
normal(0,1) 941 966 955 
student(5) 943 940 960 
exp(1) 945 905 944 
gamma(5,3) 957 960 961 
lognormal(0, 967 977 969 
weibull(5,2) 964 968 952 
beta(1,1) 970 963 970 
beta(3,3) 966 966 959 
f(6,25) 939 964 961 
chisq(5) 962 966 958 
 

 
Dataset used 

The datasets used in here were supplied 
by research works of Sabri Hassan and Victoria 
Clout at School of Accountancy in Queensland 
University of Technology, Australia. The dataset 
by Sabri Hassan is based on 44 Australian 
extractive industries firms, listed on the ASX 
(Australian Stock Exchange) from 1998 to 2001. 
The dataset used is based on the mean value of 
each individual company over four years. 
Market to Book values (sh.mtb), transparency 
(sh.transp), and profit (sh.profit) variables were 
extracted and used in this demonstration.  There 
are 176 observations in this data set and the 
goodness of fit test below will sample 160 
observations from this data set and the fitted 
distribution. 

Victoria Clout’s data consisted of 361 
US firms, listed on the S&P500.  The selection 
requirements were December year-end firms for 
the 1977 to 1995 period. Similarly, the data used 
is based on the mean values for each company 
over the 12 years period. Market to Book ratio 
(vc.mbr), Ratio of cash and marketable 
securities over current assets (vc.flex), return on 
assets (vc.roa) were used in this demonstration.  
There are 143 observations in this data set and 
the goodness of fit test below will sample 130 
observations from this data set and the fitted 
distribution. 

In addition to financial data, geological 
data (faithful) on the duration of 272 eruptions 
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from the Old Faithful geyser in Yellowstone 
National Park (Hardle, 1991) was also used.  

The following examples are designed to 
demonstrate the flexibility the new methods 
which can fit alternative, convincing 
distributions other than suggested by the starship 
method. It also designed to offer a balanced 
view on some of the possible deficiencies of this 
method in relation to satisfying the goodness of 
fit tests.  

Figure 2 is an example of graphical 
over-fitting by the STAR method, and how the 
use of default settings described in this article 
appears to give a more adequate fit. The number 
of classes to be optimized over is 12, using the 
default calculations. The histogram shown in 
Figure 2 is plotted using 100 classes. Using the 
Monte Carlo KS test, the results are 0, 7 and 732 
for RPRS, RMFMKL and STAR respectively. 
This suggests that STAR is the best fit among 
the three under the Monte Carlo KS test.  It is 
however possible to improve the Monte Carlo 
KS test of the RPRS fit by increasing the 
number of classes to be fitted.  
 
Example 1: sh.mtb 
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Figure 2: Fitting of sh.mtb data using RPRS, 
RMFMKL and STAR methods. The extreme scale is 
due to an extreme outlier, which is retained for 
illustrative purposes. For example, a certain process 
may have a huge loss with a very small probability, 
but it is nevertheless important to model that 
scenario. 
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Figure 3: Fitting of sh.mtb data using RPRS, 
RMFMKL and STAR methods using 150 classes. 
This shows how it is possible to fit using different 
histogram bin widths to improve the goodness of fit.  
 
 Figure 3 shows the result of such fit 
graphically and the Monte Carlo KS results are 
585, 561 and 749 for RPRS, RMFMKL and 
STAR. A real strength of the method developed 
in this article is that it gives a range of plausible 
fits which the goodness of fit could be assessed 
objectively. For example, it can be considered 
that the results in Figure 2 are less likely to be 
the real representation of the data than Figure 3. 
 
Example 2: sh.transp, alternatives suggested by 
RPRS, RMFMKL: 
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Figure 4: Figures showing fitting of sh.transp data 
using RPRS, RMFMKL and STAR, the first 
histogram uses 100 classes while the second 
histogram uses 50 classes. 

 
 
 

The graphs in Figure 4 show two 
histograms with 100 and 50 classes with the 
default optimization classes to be optimized over 
being 31. STAR failed to capture the upward 
trend of the data. If it is desirable to reach the 
peak of the histogram data with 100 classes, it is 
possible to refit RPRS and RMFMKL over 100 
classes, resulting in Figure 5. Using 50 or 100 
classes will result in Monte Carlo KS test results 
of 0, 0, and 300 for RPRS, RMFMKL and 
STAR. 
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Figure 5: Figure showing alternative fitting of 
sh.transp sh.transp by RPRS and RMFMKL using 
100 histogram classes. 
 

This suggests that none of the methods 
appear to work well in this case, as STAR 
although the best out of the three in the Monte 
Carlo KS test, only really can be said to 
represent the data 3 times out of 10. In situation 
like this, where none of the method appears to 
work well, it is useful to explore other plausible 
fits and conduct sensitivity analysis to examine 
the impact on a particular analysis using 
different distributions. 
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Figure 6: Figure showing alternative fitting of 
sh.transp using 12 histogram classes. 

 
Figure 6 shows how STAR captured a 

different representation of the dataset; by 
manually adjusting the classes of histograms to 
12, the fit by STAR appears to be more 
plausible. Alternative fits by RPRS and 
RMFMKL using 12 classes appears to represent 
the data well. This example highlights the 
importance of allowing alternative methods, 
since they can give different and possibly valid 
representations to the same data set. The Monte 
Carlo KS test results are 23, 2 and 290 for 
RPRS, RMFMKL and STAR. It also shows the 
flexibility of RPRS and RMFMKL which can 
give different fits to the data set depending on 
the number of classes specified. An additional 
analysis showing the effect of changing number 
of classes from 5 to 55 and the corresponding 
RPRS and RMFMKL fits is shown in Figure 7. 
All the Monte Carlo KS test results under each 
of the class suggest 0, 0 and 300 for RPRS, 
RMFMKL  and  STAR  respectively. The graphs  

 
 
 

show how different fits may be obtained by 
varying the number of classes and it is possible 
these may not change the result of the Monte 
Carlo KS tests at all. The sharp spike exhibited 
in Figure 7 for 15 classes is characteristic of 
RPRS fits, as will be shown in more examples 
below. 
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Figure 7: Figure showing alternative fitting of 
sh.transp using different histogram classes. 

 
Example 3: vc.leverage, similar results: 

This example shows that consistent 
results can often be obtained between different 
methods. RPRS and RMFMKL used 89 classes 
by default calculations in this case. The result is 
shown in Figure 8 below with the histogram 
exhibiting 100 classes. The Monte Carlo KS 
tests suggest 882,887 and 945 for RPRS, 
RMFMKL and STAR respectively. It is 
normally the case that STAR has somewhat 
higher goodness of fit score, owing to its fitting 
objective. 
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Figure 8: Figure showing fitting of vc.roa data using 
RPRS, RMFMKL and STAR. All methods give 
similar results. 

 
Example 4: vc.mbr  

RPRS and RMFMKL used 20 classes by 
default calculations in this optimization scheme. 
Figure 9 shows a histogram with 100 classes, 
and all methods give different representations to 
the dataset. They are all valid representations as 
suggested by Monte Carlo KS tests, with 929, 
887 and 934 for RPRS, RMFMKL and STAR. A 
striking feature is that RPRS is similar to 
RMFMKL and they appear to capture the peak 
of data better than the STAR method. An 
additional analysis showing the effect of 
changing number of classes from 5 to 55 and the 
corresponding RPRS and RMFMKL fits is 
shown in Figure 10. This example shows how 
plausible fits can be gauged by using the method 
described in this article. Table 4 shows the 
resulting Monte Carlo KS tests for different 
number of classes and it can be used to as a 
rough guide  as to how credible certain fits are to  

 
 
 
 
 

the data set. For example, for RMFMKL, the 
most plausible fits are from classes of 15 and 35. 
This example at Table 4 also shows that the 
method developed in this article can be as good 
as STAR method, in addition to offering 
flexibility to provide convincing fits. 
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Figure 9: Figure showing fitting of vc.mbr data using 
RPRS, RMFMKL and STAR. RPRS and RMFMKL 
appear to represent the peak of the data better than 
STAR.  

 
 
 

Table 4: Monte Carlo KS test for vc.mbr over different 
number of classes 

 
     Classes 
 
Method 5 15 25 35 45 55 

RPRS 481 940 933 905 908 873 

RMFMKL 354 929 713 932 812 778 

STAR 932 930 923 917 942 925 
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Figure 10: Figure showing alternative fitting of 
vc.mbr using different histogram classes. 

 
Example 5: faithful, bimodal data, splitting fits by 
STAR, RPS and RMFMKL: 
 This last example shows cases where it 
may be difficult to fit the data adequately when 
one encounters a bimodal shaped data. In such 
cases, the data can be divided into two with two 
different distributions fitted on each side. 
Problem can arise when the end points do not 
match as appeared to be possible with the STAR 
method in this case. However, as shown in 
Figure 11, this can be easily corrected for 
example, by setting the optimization scheme to 
only include distributions that have maximum 
values less or equal to 3 for the distribution on 
the left hand side, and the distribution to have 
minimum values bigger or equal to 3 on the right 
hand side.  
 The original default number of classes 
was 52 on the RHS of Figure 11 and it does not 
satisfy the Monte Carlo KS test well, with 614 
and 187 for RPRS and RMFMKL. Instead of 
using the default class calculation, the number of 
classes was manually adjusted to 20 and this 
result in Monte Carlo KS test of 855, 873 and 
890 for RPRS, RMFMKL and STAR. On the 
LHS the default setting of 15 classes satisfy the 

Monte Carlo KS test well, resulting in 921, 927 
and 917 for RPRS, RMFMKL and STAR and 
very similar fits. Figure 11 shows three plausible 
alternative fits and it is possible some data set 
may require a mixture of RS and FMKL GλD. 
The alternative fit by KDE is also provided in 
Figure 12 for comparison purposes. Figure 12 
shows two different fits using KDE. However, 
the KDE fit, in an attempt to reach the more 
extreme points of the histogram became less 
smooth. This rugged appearance will not occur 
from using generalized lambda distributions. 
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Figure 11: Figure showing fitting of eruptions data 
using RPRS, RMFMKL and STAR and the use of 
splitting techniques in fitting bi-modal shaped data. 
The values below 3 are fitted first and the values 
above 3 are fitted later.  
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Figure 12: Graph showing two different KDE fits for 
the eruptions data.  
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Application of fitting distributions to data using 
GλD, and a comparison to Kernel Density 
Estimation method 
 The use of RPRS or RMFMKL can help 
users to model a wide variety of distributions as 
well as acting as a smoothing device with the 
flexibility of increasing or decreasing levels of 
details of the data. Another method that allows 
for density estimation is Kernel Density 
Estimation (KDE) (Silverman 1985). This is a 
nonparametric method of estimating the 
distribution of the data and can often result in a 
rather rugged appearance compared to the 
smooth fits from using GλD. Another advantage 
of using GλD is that the parametric form of the 
function is known. Consequently, mathematical 
analysis on the function is possible. In 
considering re-sampling from the modeled 
distributions for simulation purposes, both KDE 
and GλD could be used.  
 
Simulation from KDE and GλD 

Simulation from KDE is a simple 
exercise. KDE calculations give k sets of 
(x1,y1)… (xk,yk) co-ordinates which span the 
distribution of the data. For each consecutive set 
of points, the area under the line is a trapezium. 
Let this area be t1, t2,… tk-1.  

Assume one want to sample n numbers 
from the KDE distribution. For each of the 
interval i=1,2,3,… k-1, calculate nti, and 
generate nti numbers from a uniform distribution 
on the interval, repeating the process for all k-1 
intervals.  

Simulation from GλD simply requires 
generating n uniform distribution over [0, 1] and 
substituting the result into Expression (1) for the 
RS GλD and Expressions (3) for the FMKL 
GλD.  

Shortcomings of the RPRS AND RMFMKL 

 All methodologies have their 
shortcomings, and the method devised here is no 
exception. The design of the RPRS and 
RMFMKL can suffer from the following 
deficiencies.  

1. Different results in different runs for the 
same settings. RPRS and RMFMKL is 
based on re-sampling methods over the 
specified range of initial values, hence 
different runs will result in different 

initial values being chosen. This is the 
reason sampling is based on scrambled 
quasi random sampling (Owen 1995; 
Hong & Hickernell, 2002) available 
from the Splus beta resample library, so 
that the values span evenly throughout 
the ranges each time.  In most cases 
there are no dramatic changes between 
each run; however situations do occur 
when the one run results in a better fit 
than other runs. This problem can be 
minimized by increasing the number of 
values to be sampled in the region. For 
example, if one million points were 
chosen over the span of [-1.5, 1.5] then 
dramatic changes in the result between 
different runs would be less likely.  

 
2. Optimization method converges falsely 

or do not converge. This is a problem 
associated with all numerical 
optimization schemes, rather than 
related to this method directly. The 
program written for RPRS and 
RMFMKL allows for the quasi-Newton 
method, conjugate gradients method 
(Fletcher & Reeves, 1964), the Nelder-
Mead algorithm (Nelder & Mead, 1965) 
and SANN (Belisle, 1992). Hence if one 
optimization method fails, the other 
methods can be used instead. So far the 
use of Nelder-Mead algorithm has 
proven to be effective in the cases 
examined here and no case of non 
convergence have occurred in the 
application of this optimization 
procedure. 

 
3. Subjective choice of the number of 

classes required. Considerable 
difficulties can arise when choosing 
number of classes for optimization. 
While this flexibility is intended, it also 
may allow data analysts to manipulate 
the results and choose a method that 
appears to suit their needs, rather than 
one that is the most representative of the 
data. This deficiency does not affect the 
starship method, which only allows one 
optimal output based on the goodness of 
fit measure.  
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Conclusion 
 
The exposition in the result section shows the 
methods developed in this article can offer good 
alternatives of fitting distribution to data in 
terms of satisfying Monte Carlo KS tests.  While 
the use of RPRS and RMFMKL offers great 
flexibility, it also offers rooms for subjective 
bias in selecting the adequate fit. The use of 
goodness of fit statistics, however, can help the 
user to determine the likelihood of a certain 
distribution fit in the absence of expert 
knowledge of the underlying data set. 
 In some situations, where the goodness 
of fit statistics cannot be adequately satisfied the 
user could use the methods developed in this 
article to conduct sensitivity analysis on the 
impact of results using different distributions. 
Lastly, improvement on the current RPRS and 
RMFMKL is also possible by at least two ways, 
by either improving the optimization algorithm 
or set an algorithm to quickly find plausible 
initial values. 
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