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GENERAL INTRODUCTION 

Cholera is a human illness that is characterized by massive watery 

diarrhea, leading to severe dehydration and hypovolemic shock if left untreated. 

The characteristic symptom of the disease is the painless shedding of a 

voluminous stool that resembles rice-water. Individuals can purge up to one liter 

per hour, which is equivalent to 50Ib water loss within one day. Cholera is 

endemic in Southeast Asia, Africa and Latin America where outbreaks are 

associated with poverty and poor sanitation. Although this illness can be treated 

simply by the replacement of fluid and electrolytes, it is associated with a 20-50% 

mortality rate without medical treatment (149). 

Cholera, which has a long history associated with humans, has had a 

significant impact on science. There have been seven cholera pandemics since 

1817, when the disease first spread from the Bay of Bengal along trade routes. In 

earlier times, it was thought that cholera was spread like a fog, or “miasma” 

coming from the river. However, during the third pandemic in 1854, which 

reached the British Isles, the classic epidemiologic study of John Snow showed 

that the disease was associated with ingestion of contaminated water (165). This 

study was the fundamental basis for the field of epidemiology. Around this same 

time, Filippo Pacini identified small comma-shaped particles, which he described 

as Vibrios, associated with the intestinal epithelium of deceased cholera patients 

in Florence, Italy (12). Pacini published this work in 1854 but it was almost 

completely ignored by the scientific community, and not until 85 years later was 
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he recognized as the discoverer of Vibrio cholerae, the causative organism of 

cholera. During the fifth pandemic in 1883, Robert Koch isolated Vibrio cholerae 

from a cholera patient in Calcutta, India, and was able to obtain a pure culture of 

the bacteria (71). Although this bacterium failed to adhere to Koch’s postulate 

that it causes disease in animals, Koch correctly interpreted the reason for this as 

being the disease was human specific. Koch’s work on cholera was essential in 

showing that a microorganism can cause disease, in addition to being a huge 

step in establishing the field of microbiology.  

Currently cholera outbreaks are still causing health disasters in many 

different parts of the world. It has been estimated that there are 3–5 million 

cholera cases and 100,000-120,000 deaths per year worldwide (34, 201). A 

major outbreak occurred in 1994 in Goma, Zaire, which resulted in 70,000 cases 

and 12,000 deaths (158). A more recent epidemic occurred in Zimbabwe. By July 

2009 it was reported that there were more than 98,000 cholera cases and 4,000 

deaths (1). It is important to realize that these figures might worsen in the near 

future because cholera outbreaks are heightening. The rising sea levels and an 

increase in water temperature are likely to dramatically increase cholera 

outbreaks since coastal aquatic environments are a natural reservoir for V. 

cholerae (44), the etiological agent of the disease. Thus studying and 

understanding the pathogenesis and ecology of this organism should help in 

developing strategies to reduce the severity and spreading of the disease.  
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V. cholerae is a Gram-negative curved bacillus, and is highly motile having 

a single polar sheathed flagellum. It is classified into serogroups based on its 

lipopolysaccharide (LPS) O antigen, and more than 200 serogroups have been 

identified to date (44, 149). Only serogroups O1 and O139 are responsible for 

epidemic and pandemic cholera (14, 40, 131). Serogroup O1 can be further 

divided into two biotypes, classical and El Tor, and this biotype classification is 

based on differing biochemical properties and susceptibility to bacteriophages 

(44). Each biotype is further subdivided into Ogawa, Inaba, and Hikojima 

serotypes based on antigenic profile. Ogawa strains produce antigen A, B and a 

small amount of C. Inaba strains produce antigen A and C, and Hikojima strains 

produce small amount of all the three antigens (149). Although V. cholerae 

isolates are available only from the 6th and 7th pandemics, it is thought that the 

classical biotype was responsible for the first six pandemics while El Tor is 

responsible for the current, seventh pandemic which began in Indonesia in 1961 

(44, 149). Non-O1/ non O139 serogroups have also been associated with 

diarrheal illness. However, these serogroups are not associated with endemic or 

pandemic cholera and they cause illness that is self-limiting and is rarely lethal 

(15). 

V. cholerae is a natural inhabitant of coastal areas as it associates with 

crustaceans such as copepods and shellfish, insect egg masses, and vertebrate 

fish (17, 29, 60, 78, 153). Humans are the only known natural host in which V. 

cholerae causes disease and an infection is acquired orally by ingesting 
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contaminated food or water (44, 149). Once the bacteria enter the body, they 

swim to the small intestine where they adhere to the epithelial cells and cause 

diarrhea. By inducing diarrhea, V. cholerae are shed back into the environment in 

the form of rice-water stool. The exact stimuli that induce virulence during 

infection have not been identified. Once the bacteria reach the duodenum of the 

small intestine, motility gene expression is down-regulated, virulence gene 

expression is up-regulated and the disease is initiated. Later in infection, 

virulence gene expression is down-regulated, motility gene expression is up-

regulated, and the bacteria escape the host. This “mucosal escape response 

(133)” also requires expression of other genes. For example, proteases are 

induced to help the bacteria detach from the epithelial surface while motility and 

chemotaxis genes allow the bacteria to swim away, exiting the host and entering 

back into the environment where V. cholerae completes its life cycle.   

In aquatic environments, V. cholerae persist between epidemics and this 

persistence is thought to be facilitated by biofilm formation and entering into a 

viable but non-culturable state (VNC). V. cholerae are found free swimming in 

planktonic form, or associated with marine organisms such as plants, green 

algae, copepods, chironomid insects, and fish (17, 29, 60, 78, 80, 153). It has 

been shown that V. cholerae form biofilms in the aquatic environment (4). 

Bacteria within the biofilm are more resistant to several kinds of environmental 

stress including antibiotics (156). When environmental conditions change, V. 

cholerae sense these changes and modulate gene expression to adapt to these 
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new conditions. Nutrient starvation and other stress responses that are found in 

the aquatic environment are postulated to induce a VNC state form of V. 

cholerae. These VNC V. cholerae cannot be recovered by standard culture 

technique and so they are difficult to characterize. However, these seemingly 

“dead” bacteria can cause infection and revert back to culturable bacteria when 

grown with eukaryotic cells (5, 154).   

There are two distinct acquired genetic elements that distinguish toxigenic 

V. cholerae, i.e. strains that can cause cholera, from non-toxigenic strains: the 

filamentous CTX bacteriophage (CTXΦ) (186), which encodes the cholera toxin 

genes, and the Vibrio pathogenicity island (VPI) (91), which encodes the genes 

that are required for production of toxin-coregulated structural pilus, accessory 

colonization factor genes and several other genes having unknown roles in 

pathogenesis. Non-toxigenic strains of V. cholerae can be converted into 

toxigenic strains under appropriate conditions (186). Toxigenic strains can be 

induced to produce extracellular CTXΦ particles. These phages can be 

propagated into recipient non-toxigenic strains and integrate into their 

chromosome to form stable lysogens. However, the propagation requires the 

production of the toxin-coregulated pilus (TCP) by recipient cells as the phage 

utilizes it as an entry receptor (186). Because TCP is produced during and 

absolutely required for an infection, it seems that the human intestine is not the 

only site that the bacteria exploit for infection, but also a site that augments the 

conversion of non-toxigenic strains into toxigenic ones. 
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Regulation of V. cholerae pathogenesis is complex and involves 

numerous regulatory factors; the virulence regulon is commonly known as the 

ToxR regulon due to the identification of ToxR as the first positive regulator of 

virulence (126). The ToxR regulon includes the cholera toxin genes, the toxin-

coregulated pilus structural and assembly genes, the accessory colonization 

factor genes, and other genes with undefined functions (43, 72, 90, 137, 177).  

However, ToxR is not the direct activator of expression of most, if not all, of these 

virulence genes.  Instead, ToxR is required for production of ToxT (68), the direct 

virulence activator, which will be discussed in more detail below. 

For V. cholerae to cause cholera, two major virulence factors are 

absolutely required: Cholera toxin (CT), which causes the diarrhea (45, 119), and 

TCP, which is required for colonization of the human intestine (66). CT is the 

most important V. cholerae virulence factor and is directly responsible for the 

watery diarrhea that is the hallmark of cholera. CT is encoded by the ctxAB 

genes on the filamentous lysogenic CTXΦ bacteriophage (186) and is a classical 

AB5 toxin composed of pentameric B subunits and one enzymatic A subunit (52, 

110). The B subunits recognize GM1 gangloside receptor on epithelial cells and 

facilitate translocation of the A subunit in the cells (70, 185). Activity of the A 

subunit requires processing to release the catalytic A1 component. The catalytic 

A1 subunit modifies adenylate cyclase by adding an ADP-ribosyl group to keep it 

locked in an active state and results in a greater than 100-fold increase in cellular 

cAMP (53, 149). As a consequence, an alteration in ion transport is manifested 
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by increasing chloride secretion and inhibition of sodium chloride absorption.  

Osmotic balance results in massive amounts of water being secreted along with 

the chloride ions, and the net result is a massive outpouring of fluid into the small 

intestine causing the watery diarrhea (45). In addition, CT inhibits water 

absorption by the colon, which also increases the severity of the disease (166). 

The secreted fluid is characterized by high amounts of sodium, chloride, 

potassium, bicarbonate and more importantly infectious V. cholerae (127). These 

secreted fluids could then get released back into the environment where water 

sources become contaminated. To make matters worse, the V. cholerae in rice-

water stool are hyperinfectious; greater than 106 bacteria are required for an 

initial infection, but once the V. cholerae have passed through a host, the 

infectious dose is lowered to under 100 bacteria (21, 132, 199). The end result is 

a quick spreading of V. cholerae within the population and an epidemic is 

initiated.  

The TCP type IV pilus is the other virulence factor that is absolutely 

required to be expressed by V .cholerae in order to colonize the human intestine 

and cause disease (66). It is termed “toxin co-regulated pilus” because its 

expression occurs under the same conditions as those of the cholera toxin. The 

TCP is composed of 5-6nm filaments containing a bundle of the TcpA pilin 

subunit (59). Production of the pilus by V. cholerae leads to agglutination of the 

cells. This auto-agglutination phenotype also provides a simple way to determine 

whether the TCP is produced in bacteria grown in the laboratory. The major 



8 

 

 

function of the TCP is to aid the overall colonization of the intestinal epithelial 

lining. A tcpA mutant strain of V. cholerae neither colonizes the intestine of 

human volunteers nor does it colonize the intestine of the infant mouse model 

(66, 179). The mechanism by which the TCP promotes intestinal colonization is 

not clear. However, in vitro and in vivo data suggest that it occurs through the 

formation of microcolonies via pilus-pilus contacts between individual bacteria to 

enhance overall colonization (89).  

Although the pilus is a polymer of repeating subunits of one protein 

(TcpA), several other genes are involved in the biogenesis of the pilus structure. 

The tcpB, tcpQ, tcpC, tcpR, tcpD, tcpS, tcpT, tcpE, tcpF and the tcpJ genes are 

all encoded within one operon termed the tcp operon (44) (Fig. 1). These genes 

are located downstream of and in the same orientation as tcpA (79). They are 

transcribed along with tcpA as a long transcript to promote the assembly of the 

TCP structure on the surface of the bacteria. Transposon insertions that disrupt 

tcpB, tcpC, tcpD, tcpE, or tcpF prevent assembly of a functional pilus on the 

resulting bacterial surfaces, despite the fact that the TcpA pilin is still expressed 

(16). The functions of these pilus biogenesis genes are poorly understood. TcpB 

has a pilin-like prepeptide sequence and has been proposed to regulate pilus 

length and/or function as a pilus anchor (175). TcpT possesses a putative ATP-

binding domain (135), which might function as an engine to drive the pilus 

translocation complex. TcpF is a soluble factor that is secreted by V. cholerae 

and is important for bacterial colonization of the intestinal epithelial cells (98, 
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128). TcpJ is the best-described protein, encodes a leader peptidase that is 

utilized to process the TcpA protein during secretion (87).  

Expression of a collection of other genes carried on the VPI is also co-

regulated with CT and TCP. These include the acfABCD genes, which encode 

the ACF, as well as tagA, aldA, and tcpI (39, 43, 61, 136, 137, 152, 190, 192). 

The functions of these genes and their requirements for inducing disease are not 

understood. However, deletion of any of the acf genes results in alteration of the 

swarm motility, a phenotype that is associated with altered chemotaxis (42, 74). 

In addition, based on protein alignments, AcfB and TcpI showed a significant 

relationship with other enteric methyl-accepting chemotaxis proteins (26, 42, 62). 

Collectively, V. cholerae may utilize these accessory genes to sense 

chemoattractants that are found in the small intestine milieu to guide the bacteria 

to the appropriate niche. tagA encodes a putative lipoprotein of unknown function 

(61), and aldA encodes an aldehyde dehydrogenase that has an unknown role in 

pathogenesis (136). 

Aside from the virulence factors that are acquired by the two separated 

mobile genetic elements, motility and chemotaxis genes are found in all V. 

cholerae strains and play an important role in establishing an infection. V. 

cholerae is highly motile via a single polar flagellum. There are conflicting results 

regarding the requirement of motility for virulence (47-49, 146, 178, 194, 195). 

This is the case especially when comparing different animal models and also 

when comparing the classical versus the El Tor biotype. However, defined non-



10 

 

 

motile mutants of the El Tor biotype are attenuated in the infant mouse model as 

several labs have demonstrated (20, 102, 159). The most convincing evidence to 

argue that motility is important in infection come from vaccine trials. Live-

attenuated V. cholerae vaccine produces side effects such as nausea, cramps 

and diarrhea, while non- motile variants do not (31, 88, 120). These differences 

were further linked to the ability of V. cholerae to reach the epithelial surfaces. In 

addition, there is an inverse relationship between motility and virulence gene 

expression. Hyper-swarming motile bacterial strains produce lower levels of TCP 

and CT, while non-swarming motile bacteria produce a larger amount of TCP and 

CT when compared to the wild type parent strain (49, 63, 64). Thus the current 

favored model is that motility allows the bacteria to penetrate the mucus layer to 

reach the epithelial cells, which is important for colonization and inducing 

disease.   

Chemotaxis genes have also been shown to be involved in the 

pathogenesis of V. cholerae. The genome of V. cholerae encodes three different 

general chemotaxis operons. However, only one of them is required for 

chemotaxis and the functions of the other two are unknown (54). Chemotaxis 

functions to direct movement of the bacteria in certain directions. This is 

achieved by changing the direction of flagellar rotation from the default 

counterclockwise (CCW) to clockwise (CW) direction. The CCW rotation propels 

the cells forward by smooth swimming in one direction while CW rotation causes 

the cells to tumble to change direction. CW-biased mutants have defects in net 
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movement and are attenuated for infection (20). However, mutants with a CCW-

bias out-compete wild type V. cholerae during an infection (20). This competitive 

dominance correlates with increased infectivity. Additional analysis revealed that 

this CCW-biased mutant is able to colonize the entire mouse intestine, whereas 

wild type V. cholerae preferentially colonize the distal end of the infant mouse 

intestine (20). This may suggest that both motility and chemotaxis are tightly 

regulated to direct V. cholerae to a localized niche during an infection.  

Regulation of V. cholerae virulence determinants requires a complex 

cascade of transcriptional events that involves numerous regulators. A schematic 

of virulence induction is shown in Fig. 2. ToxT is the major transcriptional 

activator that directly and positively induces expression of the vast majority of 

virulence genes including those that encode the major virulence factors CT and 

TCP (75, 190-192, 197, 198). Expression of toxT is induced by two membrane 

dimers, ToxR/ToxS and TcpP/TcpH (39, 65, 67, 100). While the toxRS operon is 

thought to be constitutively active, transcription of the tcpPH operon requires 

cooperation between two other transcription activators, AphA and AphB (94, 

160). Other regulatory circuits that affect AphA induction include quorum sensing 

and small regulatory RNAs, which work through the master regulator quorum 

sensing regulator, HapR (97, 124). 

ToxT is an AraC/XylS family protein (68) that directly activates 

transcription of the virulence genes of V. cholerae. ToxT positively activates 

transcription of several operons including tcp, ctx, and acf. It also activates 
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transcription of genes encoding a putative lipoprotein (tagA), aldehyde 

dehydrogenase (aldA) and methyl-accepting chemotaxis protein (tcpI) (75, 190-

192, 197, 198). As previously mentioned, the functions of some of these genes in 

pathogenesis are well characterized while the functions of others are unknown. 

The 276 amino acid long ToxT protein is separated into two domains: amino 

acids 1-160 comprise the N-terminal domain (NTD), whereas amino acids 170-

276 comprise the C-terminal domain (CTD). A linker (amino acids 161-169) 

further connects the two domains (111). The ToxT CTD shares the AraC/XylS 

family sequence homology and contains two helix-turn-helix motifs that are 

utilized for DNA binding. The NTD does not share significant sequence similarity 

with any protein in the database and its role is hypothesized to be for 

dimerization and/or for interacting with effectors that modulate ToxT activity. 

However, the crystal structures of ToxT protein and the AraC protein NTD 

indicate that the ToxT NTD and the AraC NTD share some structural similarity 

despite having only 11% amino acid identity (111).  The AraC NTD is required for 

dimerization and binding to its effector, arabinose (151).  It has been proposed 

that bile or the unsaturated fatty acids (UFA) present in bile are natural effectors 

of ToxT. Bile and UFA have been shown to inhibit ToxT activity and the overall 

growth of V. cholerae (57, 76, 152). Mutational analysis demonstrated that bile 

might interact with the N-terminal domain of ToxT, as a ToxT mutant somewhat 

resistant to bile was isolated that had a single amino acid change at residue 107 

(141). Furthermore, the crystal structure of ToxT contained a buried 16-carbon 



13 

 

 

UFA, cis-palmitoleate, which inhibits the activity of ToxT and may be a minor 

component of crude bile (111). Virstatin, a synthetic compound that was found to 

reduce ctxAB expression, also likely interacts with ToxT in the same region as 

bile; a L114F mutation in ToxT makes ToxT resistant to virstatin (77, 155). This 

suggests that this region of the NTD is important for controlling ToxT activity. 

Although the activities of ToxR/S and TcpP/H are required for ToxT 

production, evidence of ToxT auto-regulation also exists. The genetic 

organization of the tcp operon is shown in Fig. 1; the toxT gene is located within 

this tcp operon between tcpF and tcpJ. Transposon insertions in the region 

between tcpA and tcpF cause a polar effect on ToxT activity as determined by 

measuring CT production and expression of a tcpA-lacZ fusion (16). Further 

analysis of toxT transcripts using primer extension revealed the presence of 

transcripts that originated from two different promoters. Short transcripts 

correspond to product that depends on the toxT promoter and long transcripts 

correspond to tcpA promoter activity (67, 197). Transcription from the tcpA 

promoter depends on the activity of ToxT and the long toxT transcripts depend 

on the tcpA promoter, suggesting a model in which ToxT positively activates 

more of itself through an auto-regulatory loop that is initiated from the tcpA 

promoter. 

ToxT activates the transcription of virulence gene promoters by binding to 

degenerate thirteen base-pair DNA sequences termed toxboxes (191) (Fig. 3). 

These toxboxes are organized differently within each promoter. For example, 
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within the tcpA promoter there are two toxboxes that are organized as a direct 

repeat, while between the divergently transcribed acfA and acfD genes the two 

toxboxes are organized as an inverted repeat. Furthermore, within the aldA 

promoter there is only a single toxbox, while the ctxAB promoter contains a 

series of half toxboxes that are oriented as direct repeats. Although the toxbox 

configuration and spacings are different within each promoter, all toxboxes are 

located upstream of the core -35 sequence. This is consistent with class I 

promoter architecture and suggests that ToxT directly interacts with RNA 

polymerase α subunits to induce transcription (19). Mutational analysis of toxbox 

spacings revealed that ToxT binds as a monomer to each toxbox and 

dimerization is not required for DNA binding (11, 190, 191). However, 

dimerization might be required to attract RNA polymerase and induce gene 

expression. It has been proposed that virstatin acts to inhibit ToxT activity by 

inhibiting dimerization; however, currently the evidence for this model is not 

compelling.  The difference in the architecture of the toxboxes may suggest a 

unique interaction between ToxT and RNA polymerase at each promoter, which 

dictates the strength of that promoter.  

The ToxR/ToxS and the TcpP/TcpH dimers act in conjunction to control 

the activation of toxT transcription (39, 65, 67, 100). The toxR gene is not linked 

to the two acquired genetic elements, CTXΦ and VPI. ToxR is found in all V. 

cholerae strains as well as other Vibrio species and was discovered based on its 

ability to activate expression of a ctxAB::lacZ fusion construct in E. coli (126). 
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ToxR is a 32kDa integral membrane protein that is localized to the inner 

membrane and contains a cytoplasmic DNA binding domain, a transmembrane 

domain, and a periplasmic domain. Its dimerization partner protein, ToxS, which 

is also an integral membrane protein, enhances ToxR activity (37, 41, 138). 

Current models suggest that ToxS functions to facilitate assembly and to stabilize 

ToxR. The ToxR/ToxS dimer also regulates the expression of other genes such 

as those encoding outer membrane porins (Omp). ToxR/S positively activates 

ompU transcription while repressing ompT transcription (33, 106). These outer 

membrane porins have been shown to protect the bacteria against bile that is 

secreted into the small intestine (142).    

The TcpP/TcpH dimer is also required for activation of the toxT promoter 

(65, 100). Like ToxR, TcpP is an integral membrane protein that is localized to 

the inner membrane and contains a cytoplasmic DNA binding domain, a 

transmembrane domain, and a periplasmic domain. It also has a dimerization 

partner, TcpH that functions to stabilize TcpP and protect it from proteolytic 

degradation (8, 23). Utilizing the cytoplasmic DNA binding motifs, ToxR and 

TcpP bind to the toxT promoter and positively activate the transcription of toxT 

(65, 100). The binding sites for ToxR and TcpP proteins within the toxT 

promoters are located in close proximity; ToxR binding sites are located between 

-104 to -68 while the TcpP binding sites are located between -54 and -32 relative 

to the start of transcription. Interestingly, overproduction of TcpP/TcpH 

overcomes the ToxR/ToxS requirement and can alone activate the toxT promoter 
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(100). These data may suggest that the TcpP/TcpH dimer is essential to activate 

the toxT promoter and the ToxR/ToxS dimer functions to enhance this activation. 

Additional regulators tightly regulate the tcpPH promoter, while the toxRS 

is constitutively active under several growth conditions. AphA and AphB 

cooperatively activate the tcpPH promoter (94, 160). AphA shares sequence 

homology with the PadR repressor, which regulates expression of genes 

involved in the detoxification of phenolic acids (6). AphB is a member of LysR 

family of transcriptional regulators that acts synergistically with AphA to activate 

transcription of the tcpPH promoter (94). The binding sites of AphA and AphB 

within the tcpPH promoter overlap. AphA binds to a region between -101 and -71 

while AphB binds to a region between -78 and -43 relative to the start of 

transcription (96). The regulation of AphB is not yet defined. However, 

expression of AphA is controlled by the master quorum sensing regulator, HapR 

protein (97).  

Besides controlling tcpP and tcpH induction, AphA and AphB have 

additional roles in V. cholerae. AphA represses expression of genes involved in 

the biosynthesis of acetoin from pyruvic acid (92). Shutting off this metabolic 

pathway increases the accumulation of organic acid when the bacteria are grown 

on excess glucose or carbohydrate. Because V. cholerae are sensitive to acidic 

pH, increasing organic acids in the culture medium will lower the pH and reduce 

cell viability. On the other hand, recent microarray analysis has identified five 

genes (cadC, VC0770, clc, nhaB and cah) besides tcpP and tcpH that are 
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activated by AphB (93). The cadC gene is the best characterized of these (181). 

CadC is a transcriptional activator that plays a role in acid tolerance. CadC 

protein activates the cadBA promoter, which encodes the lysine/cadaverine 

antiporter and lysine decarboxylase respectively. These genes function to induce 

the synthesis and excretion of cadaverine to buffer the external acidic 

environment. It seems that AphB counteracts the activity of AphA to allow the 

cells to tolerate any environmental acidification.  AphB was also recently found to 

have increased activity in the presence of low pH and anaerobic growth 

conditions (93).  

Expression of AphA is controlled by the quorum sensing master regulator 

HapR (97). HapR shuts off expression of AphA by binding to the aphA promoter 

and repressing transcription (97). As a result, the accumulated levels of AphA are 

reduced and become insufficient to activate the tcpPH promoter. In addition to 

virulence, HapR plays a central role in regulating other cellular processes 

including biofilm formation and protease production. It represses the vps operon, 

which prevents production of the exopolysaccharide involved in building a biofilm 

nest (200). HapR also induces expression of HapA, a secreated hemagglutinin 

and protease that functions in detaching the bacteria off epithelial cells during 

host escape (46, 85).   

The action of HapR is controlled by several quorum sensing cascades and 

small regulatory RNA molecules. Quorum sensing is a process of cell-cell 

communication that allows the bacteria to respond as a group to chemical signals 
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and modulate their gene expression (123). V. cholerae has at least three 

systems of signaling to control the level of hapR (104) (Fig. 4). The first system 

involves the auto-inducer CAI-1 and the sensor kinase CqsS. The second system 

involves the auto-inducer AI-2 and the LuxPQ receptor complex. In the presence 

of low concentration of CAI-1 and AI-2 at low cell density, a phosphorelay 

mechanism is initiated that leads to transfer of a phosphate group to LuxO 

resulting in activation. LuxO in turn activates the production of four regulatory 

sRNAs termed Qrr1-4, and, together with the chaperone Hfq protein these RNAs 

destabilize hapR mRNA (105). The third quorum- sensing system, which involves 

the two components VarSA, activates expression of three sRNAs (CsrBCD) to 

inhibit the activity of the global posttranscriptional regulator CsrA. This also leads 

to activation of LuxO through an unknown mechanism (104).    

Other regulators that affect virulence gene expression levels, which 

include the catabolic activator cAMP-CAP, the histone-like protein H-NS, and the 

EAL/GGDEF proteins that regulate cellular concentrations of the secondary 

messenger cyclic diguanylate, have been demonstrated to repress virulence 

induction. The catabolic activator cAMP-CAP represses tcpPH transcription (96). 

H-NS, which is a histone-like DNA binding protein that also acts as a major 

transcriptional repressor, represses several other V. cholerae virulence genes 

including ctxAB and toxT (134), and an increase in c-di-GMP concentrations 

lowers accumulation of toxT mRNA via a mechanism that is not yet clear (180). 



19 

 

 

cAMP-CRP negatively affects regulation of virulence gene expression by 

repressing the tcpPH promoter (96). cAMP-CRP is a catabolic activator that 

plays a major role in cellular metabolism by regulating the utilization of carbon 

sources. Deletion of the crp gene in both the classical and the El Tor biotypes 

causes virulence de-repression and increased levels of TCP and CT production 

under non-permissive growth conditions (161). Despite the presence of potential 

cAMP-CRP binding sites in the tcpA promoter, electrophoretic mobility shift 

analysis (EMSA) failed to prove that purified functional CRP could occupy the 

tcpA, toxT, or ctxAB promoters. Further analysis revealed that the crp deletion 

strain increased tcpPH promoter activity, a step before toxT activation in the 

regulatory cascade. In addition, cAMP-CRP binds to a region between -98 and -

75 of the tcpPH promoter relative to the start of transcription (96). This region 

overlaps the sites where the two activators AphA and AphB recognize and bind 

to activate transcription. Thus it seems that cAMP-CRP competes with these 

activators to turn off further activation and affects overall virulence induction.  

H-NS is a global repressor, which silences virulence gene expression of V. 

cholerae at multiple levels (134). H-NS has been implicated in transcriptional 

repression of foreign genes that are acquired by horizontal transfer and this is 

true for V. cholerae as well. It has been demonstrated that H-NS has the ability to 

repress transcription from the tcpA, toxT, and the ctxAB promoters (134). H-NS is 

a small protein that is encoded by the vicH gene on the large V. cholerae 

chromosome. A vicH deletion strain de-represses virulence and produces higher 
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levels of CT and TCP compared to wild type parent strains under non-permissive 

pH growth conditions (134). The vicH mutant also produces higher levels of 

β−galactosidase from toxT-lacZ and ctx-lacZ reporter constructs when grown 

under many different conditions (169).  

Although H-NS silences the tcpA, toxT and the ctxAB promoters, the 

mechanism by which it does so is poorly understood. There are several 

mechanisms that describe how H-NS represses transcription. However, they all 

involve direct binding of H-NS to the promoter (169). The DNA binding 

sequences that are usually occupied by H-NS are rich in A + T nucleotides. The 

toxT, tcpA, and ctxAB promoter regions all possess A + T rich sequence, but the 

H-NS binding sites within these promoters have yet to be determined. 

Furthermore, there is conflicting data regarding tcpA repression by H-NS. If H-NS 

repression of tcpA occurs, it is less dramatic than that of toxT and the ctxAB 

(134).  Repressing the toxT promoter would affect the level of ToxT protein and 

so it would indirectly affect the transcription of the tcpA and the ctxAB promoters.  

Signaling by the cytoplasmic secondary messenger cyclic diguanylate (c-

di-GMP) also modulates virulence gene expression. c-di-GMP is used by most 

bacteria to regulate numerous cellular processes including virulence (174). The 

intracellular concentration of c-di-GMP is controlled by its total synthesis and 

degradation. It is synthesized from two GTP molecules by enzymes that harbor 

GGDEF domains and is hydrolyzed by enzymes that contain EAL domains into 

linear pGpG, and then into two GMPs by enzymes that contain a HD-GYP 
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domain (174). The genome of V. cholerae encodes 31 GGDEF, 22 EAL, 9 HD-

GYP, and 9 GGDEF-EAL proteins which indicate the complex regulation of c-di-

GMP cytoplasmic concentration. However, in classical biotype V. cholerae, 

increasing and decreasing cytoplasmic c-di-GMP concentration is achieved by 

deletion or over-production, respectively, of the response regulator vieA (180). 

Increasing intracellular c-di-GMP causes a defect in colonizing the infant mouse 

gut due to decreased CT production. Further analysis shows that increasing 

cytoplasmic c-di-GMP concentration affects transcription of toxT, but does not 

affect the transcription of tcpP or toxR (180). These results suggest that 

increasing cytoplasmic c-di-GMP may affect the activity of TcpP and ToxR to 

activate the toxT promoter, or the ability of ToxT to amplify more of itself from the 

tcpA promoter.     

In vivo environmental signals that are sensed by V. cholerae and induce 

its virulence determinants are not known. However, in vitro studies led to the 

discovery of a variety of physical and chemical environmental signals that the 

bacteria sense to modulate virulence regulation. Culturing the bacteria under 

specific pH, temperature, ion concentrations, carbon dioxide level and/or in the 

presence of certain amino acids (asparagine, glutamate, serine, and arginine) 

induces virulence (83, 125). This virulence induction is inhibited by the addition to 

growth media of bile or bile components, which are also present in the human 

small intestine where V. cholerae colonize (28, 57, 152). These in vitro 
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environmental signals might differ from those in vivo, but could mimic what 

occurs during the course of infection to regulate virulence expression. 

Maximal virulence induction in vitro for the two biotypes of V. cholerae 

requires different sets of growth conditions. In the classical biotype, maximal 

virulence induction requires growing the bacteria in LB at pH 6.5 and 30º C. This 

was termed ToxR-inducing conditions due to the significant role of the ToxR 

protein in virulence induction. In contrast, minimal virulence induction results 

when the cells are cultured in LB at pH 8.5 and 37º C (ToxR-repressing 

conditions) (125). In the El Tor biotype, virulence induction occurs when growing 

the bacteria under biphasic conditions termed AKI (82, 83). During the first 

phase, the bacteria are cultured for several hours statically in AKI medium which 

contains 1.5% peptone, 0.3% yeast extract, 0.5% NaCl, and 0.3% sodium 

bicarbonate. During the second phase, an aliquot from the first phase is shifted to 

vigorous aeration for another several hours. Under virulence inducing conditions, 

both AphA and AphB induce TcpP/H expression and in conjunction with ToxR/S 

dimer, toxT transcription is activated. Once ToxT protein is expressed, it 

positively activates its own expression along with the tcp operon and other 

various virulence factors including CT (117).  

The difference between the two biotypes in growth condition requirements 

that lead to virulence induction is due to differential transcription of the tcpPH 

operon. Both the classical and the El Tor strains of V. cholerae express their 

virulence factors under AKI conditions. However, the El Tor biotype does not 



23 

 

 

express these genes under classical ToxR-inducing conditions (low pH and 

temperature) (38, 129).  Further analyses of virulence induction demonstrated 

that the toxT and tcpPH transcripts are absent in the El Tor biotype but are 

present in the classical biotype when culturing under classical ToxR-inducing 

conditions. In addition, overexpression of ToxT or TcpPH under low pH and 

temperature in the El Tor biotype results in restoration of virulence induction 

(129). Complementation studies showed that toxT and tcpPH from one biotype 

restored virulence expression in the corresponding alternate biotype deletion 

strain (38, 129). These results suggest that the difference in virulence induction 

between the two biotypes depends on activation of the tcpPH promoter, and this 

could be differentially regulated either by trans-acting elements, cis-acting 

elements, or both. AphA and AphB, which are the cis-acting activators of the 

tcpPH promoter, are expressed at the same level in both biotypes under different 

conditions (93, 160). Over-expression of AphA or AphB restores tcpPH induction 

by El Tor under low pH and temperature, which suggests the difference in amino 

acid sequence of these activators between the biotypes can’t account for this 

non-induction phenotype. Instead, the tcpPH promoter DNA sequence slightly 

differs between the biotypes; this difference could affect the binding of either 

transcription activators or repressors that have been shown to bind to this region 

under certain growth conditions. One major change occurs in the binding site of 

AphB at the position of –65 relative to the start of transcription. Change from an 

A to a G (classical to El Tor) disrupts a dyad symmetry and reduces tcpPH 
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expression (95). Other changes are at the  –87 and –86 positions within the 

binding sites of AphA and cAMP-CRP.  At these positions, the classical biotype 

has a G and a C, while the El Tor has a T and an A, respectively. The 

significance of these changes to differences in virulence induction has not yet 

been characterized. 

Alteration of pH, growth media, and temperature under ToxR inducing and 

repressing conditions for the classical biotype has also been characterized and 

acts to influence virulence induction at multiple levels. The expression and the 

activity of AphA and AphB are reduced when grown at high pH and temperature 

(93, 94, 160). This causes lower tcpPH expression and leads to lower toxT 

induction and lower virulence as a whole. However, constitutive expression of 

TcpPH or ToxT under ToxR-repressing conditions increases virulence 

expression, but the amount of virulence induction is still at a minimum when 

compared to ToxR-inducing conditions (129). These results suggest additional 

regulation occurs to control the activity of TcpP and ToxT posttranscriptionally. 

Although ToxT regulation at the posttranscriptional level has not been 

characterized (but it will be explored later in this dissertation), the level of TcpP is 

shown to be regulated by proteolysis (8, 23, 116). TcpP degradation occurs 

under ToxR-repressing conditions and is controlled by at least two sequential 

steps with different proteases (116). Initially, TcpP is cleaved by an unknown 

protease, and during the second step it is further degraded by YaeL protease. 
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Controlling the level of TcpP through expression and degradation processes 

could be an essential checkpoint to turn on and off the virulence cascade.   

In vitro virulence growth conditions have been extensively studied and 

most of the regulators that are involved in the virulence cascade were discovered 

through these studies. However, in vivo studies have shown that virulence 

regulation during infection might differ from in vitro conditions (103). First, 

activation of ctxA in vitro requires both ToxR/ToxS and TcpP/TcpH dimers, 

whereas in vivo activation requires only the ToxR/ToxS dimer (not the 

TcpP/TcpH dimer) (103). Activation of ctxA, though, still occurs in a ToxT-

dependent manner. This suggests that the discrepancy between in vivo and in 

vitro regulation occurs during the initial activation of the toxT promoter. Secondly, 

analysis of the temporal and spatial expression patterns of tcpA and ctxA 

revealed a difference in expression during infection versus during in vitro growth 

(103). During infection, tcpA transcription occurs in two separate peaks while 

ctxA occurs during the second peak of tcpA expression. In contrast, during in 

vitro growth, expression patterns of these genes occur simultaneously in a toxT-

dependent manner (25, 36, 39, 197, 198). Lastly, in vivo TCP production is 

required to produce maximum tcpA and ctxA promoter activity while this 

requirement is absent during in vitro conditions. An in-frame tcpA deletion strain 

produces lower tcpA and ctxA activity in vivo when compared to in vitro 

conditions (103). Collectively, these results may suggest that the bacteria sense 
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additional signals during infection to promote maximum virulence induction and 

this requires production of TCP.  

In summary, V. cholerae has evolved to utilize a complex array of gene 

regulation to induce a devastating pandemic disease. Understanding at the 

molecular level the mechanisms for how this pathogen induces virulence to 

cause illness could identify new therapeutic targets to disrupt this virulence 

regulation in cholera patients during outbreaks. 
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FIG. 1. Genetic map of V.cholerae pathogenicity island (VPI).
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FIG. 2. The virulence regulatory network of V.cholerae. 
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FIG. 3. The organization of toxboxes within ToxT activating gene promoters.
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FIG. 4. Quorum sensing systems and the small RNA molecules of V.cholerae 
that regulate HapR expression.  



31 

 

 

CHAPTER ONE  

Bicarbonate Induces Vibrio cholerae Virulence Gene Expression by Enhancing 

ToxT Activity 

ABSTRACT 

Vibrio cholerae is a gram-negative bacterium that is the causative agent of 

cholera, a severe diarrheal illness. The two biotypes of V. cholerae O1 capable of 

causing cholera, classical and El Tor, require different in vitro growth conditions 

for induction of virulence gene expression. Growth under the inducing conditions 

or infection of a host initiates a complex regulatory cascade that results in 

production of ToxT, a regulatory protein that directly activates transcription of the 

genes encoding cholera toxin (CT), toxin-coregulated pilus (TCP), and other 

virulence genes. Previous studies have shown that sodium bicarbonate induces 

CT expression in the V. cholerae El Tor biotype. However, the mechanism for 

bicarbonate-mediated CT induction has not been defined. In this study, we 

demonstrate that bicarbonate stimulates virulence gene expression by enhancing 

ToxT activity. Both the classical and El Tor biotypes produce inactive ToxT 

protein when they are cultured statically in the absence of bicarbonate. Addition 

of bicarbonate to the culture medium does not affect ToxT production but causes 

a significant increase in CT and TCP expression in both biotypes. 

Ethoxyzolamide, a potent carbonic anhydrase inhibitor, inhibits bicarbonate-

mediated virulence induction, suggesting that conversion of CO2 into bicarbonate 

by carbonic anhydrase plays a role in virulence induction. Thus, bicarbonate is 
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the first positive effector for ToxT activity to be identified. Given that bicarbonate 

is present at high concentration in the upper small intestine where V. cholerae 

colonizes, bicarbonate is likely an important chemical stimulus that V. cholerae 

senses and that induces virulence during the natural course of infection. 

INTRODUCTION 

Cholera is a human disease that is characterized by massive loss of water 

and electrolytes, which leads to severe dehydration and hypovolemic shock if the 

condition is not treated. The causative agent of cholera is Vibrio cholerae, a 

highly motile, gram-negative, curved rod having a single polar flagellum. V. 

cholerae strains are classified into serogroups based on the lipopolysaccharide O 

antigen, and more than 200 serogroups have been identified to date. Only 

serogroups O1 and O139 are responsible for epidemic and pandemic cholera 

(145, 149). Serogroup O1 can be further divided into two biotypes, classical and 

El Tor, based on biochemical properties and susceptibility to bacteriophages (44, 

149). Classical biotype V. cholerae strains are thought to have caused the first 

six cholera pandemics, beginning in 1817, whereas the El Tor biotype has been 

responsible for the seventh pandemic, which has been ongoing since 1961 (44, 

149). 

A major difference between the classical and El Tor biotypes is that they 

require different in vitro growth conditions for virulence gene induction. The 

classical biotype is cultured in LB medium at 30°C and pH 6.5 for maximal 

virulence gene expression and is cultured in LB medium at 37°C and pH 8.5 for 
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minimal virulence gene expression (125). The El Tor biotype is cultured under 

biphasic conditions termed AKI conditions for maximal virulence gene expression 

(82-84). During the first phase, the bacteria are cultured for several hours 

statically in a stationary tube in AKI medium, which contains 1.5% peptone, 0.3% 

yeast extract, and 0.5% NaCl (82). During the second phase, an aliquot is 

vigorously aerated and cultured for another several hours. Cholera toxin (CT) 

expression in the El Tor biotype was also observed when bacteria were grown in 

AKI media supplemented with 0.3% sodium bicarbonate under strictly static 

conditions (83). The mechanisms that induce virulence gene expression under 

either of these conditions are unknown.  

Growth under virulence-inducing conditions results in production of the 

two major virulence factors, CT and toxin-coregulated pilus (TCP) (125, 176, 

177), as well as an assortment of other gene products having functions that are 

poorly understood (43, 61, 62, 73, 74, 136). CT and TCP are absolutely required 

for V. cholerae to cause cholera. CT, a classical AB toxin composed of 

pentameric B subunits and one enzymatic A subunit (52, 110), is encoded by the 

ctxAB genes in the genome of a filamentous bacteriophage (CTX) (186). The CT 

A subunit ADP ribosylates a regulatory G protein in the intestinal epithelium, 

leading to constitutive adenylate cyclase activity and subsequent hypersecretion 

of water and electrolytes (149). This results in the voluminous watery diarrhea 

that is the hallmark of cholera. TCP is a type IV pilus that is encoded in the tcpA 

operon on the Vibrio pathogenicity island and aids in the formation of 
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microcolonies during colonization of the intestinal epithelial lining (89, 177, 179). 

TCP also acts as the receptor for CTX, which allows nontoxigenic V. cholerae 

carrying the Vibrio pathogenicity island to acquire the CT genes (186). 

The regulation of V. cholerae virulence gene expression is complex (117). 

The V. cholerae virulence genes have collectively been known as the ToxR 

regulon due to the central role that the ToxR protein plays in activating virulence 

gene expression. However, the major direct transcription activator of the 

virulence genes is the ToxT protein. ToxT is produced by the action of the 

transcription activators ToxR and TcpP (39, 65, 67, 100). Once produced, ToxT 

activates transcription of many virulence genes, including tcpA and ctxAB, 

leading to pathogenesis (75, 190-192, 197, 198). ToxR has also been shown to 

play a role in virulence gene expression independent of ToxT. Studies of 

classical biotype V. cholerae have shown that ToxR alone can induce CT 

production in the presence of bile (76). However, the amount of secreted toxin is 

very small compared to the amount of secreted toxin produced in a ToxT-

dependent manner, and this ToxR-dependent expression has not been observed 

in El Tor strains or in vivo (103). 

ToxT belongs to the large AraC/XylS family of transcription regulators 

(68). The carboxyl terminus of ToxT, corresponding to the conserved AraC family 

domain, contains two helix-turn-helix motifs that are utilized for DNA binding 

(114). The amino terminus does not share similarity with any protein in the 

databases and is hypothesized to be involved in dimerization and/or interaction 
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with an effector(s) that modulates ToxT activity (141). Bile and bile components 

have been shown to decrease ToxT activity, perhaps through direct binding by 

ToxT (28, 57, 152). However, no positive effector for ToxT activity has been 

identified. 

While the in vivo signals that induce V. cholerae virulence gene 

expression have not been determined, V. cholerae has been shown to modulate 

the expression of its virulence genes in vitro in response to environmental factors 

and conditions, such as temperature, pH, osmolarity, chemotaxis toward certain 

amino acids, and bile salts (28, 57, 125, 152). Another potential inducer of 

virulence gene expression is sodium bicarbonate, which is included in some El 

Tor AKI media (83) and is present at a high concentration in the upper small 

intestine, which V. cholerae colonizes. Sodium bicarbonate protects the small 

intestine from the acidity of fluid arriving from the stomach and is secreted by the 

pancreatic duct epithelium at concentrations ranging from 70 to 140 mM (69). 

Data from human volunteers indicated that the infectious dose of V. cholerae 

decreased from 108 to 104 cells when volunteers were fed 2 g of sodium 

bicarbonate along with the inoculum (24). Although the interpretation of these 

data was that administration of bicarbonate enhanced survival of the bacteria in 

the acidic environment of the stomach, an alternative explanation is that 

bicarbonate could induce virulence gene expression, signaling to the bacteria 

that they are entering a human host. The bicarbonate ion has been shown to 

promote virulence gene expression in other bacteria, such as Bacillus anthracis 
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(189), Streptococcus pyogenes (22), enterohemorrhagic Escherichia coli (2), and 

the murine pathogen Citrobacter rodentium (196). 

To determine whether bicarbonate alone could induce expression of the V. 

cholerae virulence genes, we monitored the effects of bicarbonate on expression 

of TCP and CT in both classical and El Tor biotype V. cholerae. The data 

strongly suggest that bicarbonate enhances virulence gene expression in both 

biotypes in a ToxT-dependent manner. ToxT protein was observed in bacteria 

grown with and without sodium bicarbonate in the growth medium, but virulence 

gene expression was observed only if bicarbonate was present. Addition of a 

carbonic anhydrase (CA) inhibitor caused a significant reduction in virulence 

gene expression. Thus, we propose that bicarbonate induces V. cholerae 

virulence gene expression by enhancing ToxT activity and that this may be the 

primary mechanism for virulence gene induction in vivo. 

MATERIALS AND METHODS 

Strains and growth conditions. V. cholerae classical biotype strain 

O395 and El Tor biotype strain E7946 and isogenic ∆toxT (25) and ∆toxR (100) 

mutants of these strains were maintained at −70°C in LB medium containing 20% 

glycerol. All strains were grown overnight in LB medium at 37°C and then 

subcultured in AKI medium (83) in the presence or absence of 0.3% bicarbonate. 

Sodium bicarbonate was freshly prepared and used on the day of the 

experiment. The classical strains were subcultured in the AKI medium from an 

overnight culture using a 1:100 dilution, while the El Tor strains were diluted 
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1:1,000. 

Plasmid and strain construction. A chromosomal tcpA-lacZ fusion was 

constructed as follows. The V. cholerae O395 tcpA promoter region was 

amplified by PCR with 500-bp segments on either side corresponding to the DNA 

sequence surrounding the V. cholerae lac promoter. The product was cloned into 

suicide vector pKAS32, transformed into E. coli SM10(λpir), and moved into V. 

cholerae strain O395 by conjugation as previously described (162). Thus, PtcpA 

replaced Plac as the promoter driving lacZ expression from the normal 

chromosomal locus. A toxT::lacZ fusion plasmid was constructed by PCR 

amplifying the toxT promoter from V. cholerae O395 genomic DNA and cloning it 

into pTL61T (108) using XbaI and HindIII restriction sites. The tcpA::lacZ fusion 

plasmid was constructed previously (191). An arabinose-inducible toxT plasmid 

(pBAD-toxT) was constructed by amplifying the toxT gene from V. cholerae O395 

genomic DNA and cloning it into pBAD33 (58) using XbaI and PstI restriction 

sites. 

RNA isolation and reverse transcription (RT)-PCR. Cell pellets 

harvested at different time points during static growth or AKI growth were 

collected by centrifugation. RNA was isolated using Trizol reagent (Invitrogen) 

according to the manufacturer's protocol. Total RNA was subjected to DNase I 

digestion for 1 h at 37°C to eliminate any DNA contamination. RNA was 

recovered by ethanol precipitation and resuspended in RNase-free water. The 

RNA concentration was adjusted to 5 µg/µl based on A260 measurement. To 
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monitor the presence of toxT mRNA, an aliquot of each RNA sample was reverse 

transcribed using SuperScript III reverse transcriptase (Invitrogen). This was 

followed by PCR using Taq DNA polymerase (Denville Scientific) and an 

Eppendorf Mastercycler gradient thermal cycler. The PCR conditions were as 

follows: 60 s at 94°C, followed by 30 cycles of 30 s at 94°C for denaturation, 30 s 

at 55°C for annealing, and 60 s at 72°C for extension and then 5 min at 72°C. 

The upstream forward primer ATGATTGGGAAAAAATCTTTTC was used (the 

underlined sequence is the start codon). The reverse primer sequence was 

TCAAGATCATCAGTAATAAATATAG (the underlined codon is complementary to 

the leucine codon at position 168 of ToxT relative to the start codon). 

β-Galactosidase and CT assays. β-Galactosidase activity was measured 

using the basic procedure of Miller (122). CT was detected in the culture 

supernatant by a GM1 enzyme-linked immunosorbent assay (ELISA) (173), 

using polyclonal anti-CT antibody (Sigma). A positive control assay for 

quantification of the level of CT in the samples was performed using purified CT 

(List Biological Laboratories).   

Immunodetection of ToxT. Aliquots of cells harvested at different time 

points during growth were normalized based on the optical density at 600 nm and 

resuspended in 10 µl water and 10 µl of 2X protein buffer (123 mM Tris-HCl, 4% 

sodium dodecyl sulfate, 1.4 M 2-mercaptoethanol, 20% glycerol, 0.2% 

bromophenol blue). The samples were boiled for 5 min and subjected to 12% 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gel was blotted 
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on nitrocellulose paper for 2 h using a semidry electroblotter apparatus (Fisher 

Scientific). Blots were incubated for 2 h in TBS buffer (20 mM Tris-HCl, 0.5 M 

NaCl, 0.025% Tween 20; pH 7.5) containing 5% milk to reduce nonspecific 

binding. After the blots were washed with TBS buffer, they were incubated 

overnight in TBS buffer containing 5% milk and a 1:3,000 dilution of rabbit 

polyclonal anti-ToxT serum. After three washes for a total of 15 min with TBS 

buffer, each blot was incubated for 2 h in TBS buffer containing 5% milk and a 

1:5,000 dilution of goat anti-rabbit immunoglobulin G conjugated to alkaline 

phosphatase (Southern Biotech). After the blots were washed with TBS buffer, 

they were developed using 5 ml of immuno-BCIP (5-bromo-4-chloro-3-

indolylphosphate)—nitroblue tetrazolium liquid substrate (Invitrogen). 

RESULTS 

Sodium bicarbonate stimulates CT and TCP production. To begin our 

investigation into the effects of bicarbonate on V. cholerae virulence gene 

expression, we assessed expression of the tcpA and ctxAB operons. Previous 

work indicated that CT was produced by El Tor V. cholerae cells when the 

bacteria were grown in a stationary tube (static conditions) in the presence of 

bicarbonate (83). CT was not detected when the cells were cultured under the 

same conditions in the absence of bicarbonate. However, adding a shaking 

phase after the static growth phase resulted in production of high levels of CT 

regardless of the presence of bicarbonate in the medium (82). We repeated 

these experiments using a CT ELISA to measure CT production and β-
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galactosidase assays to measure tcpA::lacZ expression. CT and β-galactosidase 

levels were measured at 3, 4, 5, and 6 h after subculturing and again after 4 h of 

shaking for AKI conditions.  

Our results indicate that bicarbonate does indeed induce expression of 

both CT and TCP under static growth conditions. As shown in Fig. 5A, CT was 

expressed at very low or undetectable levels when V. cholerae El Tor strain 

E7946 was grown statically in the absence of bicarbonate. High levels of CT 

were expressed when the E7946 strain was grown statically in the presence of 

0.3% sodium bicarbonate. CT expression peaked at 4 h after subculturing and 

remained stable during the rest of the experiment (Fig. 5A). An isogenic V. 

cholerae strain in which toxT, which encodes the major activator of ctxAB and 

tcpA transcription, was deleted did not produce detectable levels of CT at any 

time point under any growth conditions, indicating that the observed CT 

production required ToxT protein activity. 

Induction of tcpA transcription was also observed to be dependent on both 

bicarbonate and ToxT. β-Galactosidase production from a plasmid-borne 

tcpA::lacZ fusion in E7946 was measured at 3, 4, 5, and 6 h after subculturing in 

medium either containing or lacking 0.3% sodium bicarbonate (Fig. 5B). In 

contrast to the very low CT production that we observed when bacteria were 

grown under static conditions in media lacking bicarbonate, some tcpA::lacZ 

expression was observed over the time course in the absence of bicarbonate, 

starting at 4 h after subculturing. However, the β-galactosidase levels were much 
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higher when the bacteria were grown in the presence of 0.3% sodium 

bicarbonate. Once again, an otherwise isogenic ∆toxT strain did not produce 

significant β-galactosidase activity at any time point or under any growth 

conditions. These results demonstrate that bicarbonate stimulates the expression 

of tcpA and ctxAB and that this stimulation is toxT dependent. 

Under AKI growth conditions, which include an additional shaking phase 

after the static growth phase, CT production was observed to be much higher if 

bicarbonate was present in the growth medium, but tcpA::lacZ expression was 

similar in the presence and in the absence of bicarbonate (Fig. 5A and B). Similar 

results were obtained using El Tor strains C6706 and N16961 (data not shown). 

An otherwise isogenic ∆toxT strain did not produce significant CT or β-

galactosidase activity under AKI conditions, confirming that the induction of 

virulence gene expression under AKI conditions is ToxT mediated. 

To determine whether bicarbonate also induces virulence gene expression 

in classical biotype V. cholerae, CT production and tcpA-lacZ expression in 

classical strain O395 were measured. Previously, it was found that some 

classical strains produced CT under AKI conditions, whereas other did not (82). 

Our results indicate that bicarbonate induces virulence gene expression in 

classical V. cholerae strain O395. Both CT levels (Fig. 5C) and β-galactosidase 

production from a chromosomal tcpA-lacZ fusion (Fig. 5D) were greatly 

increased by addition of 0.3% bicarbonate to the growth medium. AKI growth 

conditions with medium lacking bicarbonate resulted in some induction of CT and 
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tcpA-lacZ expression, but addition of bicarbonate under AKI conditions still 

caused a significant increase in CT and tcpA-lacZ expression. No significant CT 

or tcpA-lacZ expression was observed in an isogenic O395 ∆toxT strain under 

any conditions (data not shown). 

The pH of AKI medium increased from 7.0 to 7.2 when 0.3% bicarbonate 

was added. To rule out the possibility that the induction of virulence was due to 

the pH difference, we measured the expression of tcpA::lacZ after the starting pH 

of AKI medium was increased to 7.2 with sodium hydroxide. No significant 

induction was observed for either El Tor strain E7946 or classical strain O395 

(Fig. 6). The pH of the culture with added bicarbonate remained 7.2 during 4 h of 

static growth, whereas the pH of the culture whose pH was raised to 7.2 with 

NaOH dropped to 6.8 during 4 h of static growth, indicating that bicarbonate 

buffers the medium. Addition of morpholinepropanesulfonic acid (MOPS) buffer 

to AKI medium with a starting pH of 7.2 kept the pH at 7.2 during 4 h of static 

growth but had no effect on virulence gene expression unless bicarbonate was 

also added (data not shown). Overall, these results demonstrate that bicarbonate 

induces tcpA and ctxAB expression in El Tor and classical V. cholerae strains 

and that this induction is ToxT dependent. 

toxT mRNA production is independent of bicarbonate. toxT 

transcription is initially activated by the inner membrane protein pairs ToxR-ToxS 

and TcpP-TcpH (39, 65, 67, 100). Once ToxT protein is expressed, it can 

produce more of itself by activating transcription of the tcpA operon, in which the 
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toxT gene is located (197). One possible explanation for the minimal virulence 

gene expression observed when V. cholerae was cultured under static conditions 

in the absence of bicarbonate is that the initial activation of toxT did not occur. To 

examine this possibility, we analyzed the effects of bicarbonate on β-

galactosidase production from a toxT::lacZ reporter plasmid. Because the 

reporter is plasmid based and not located downstream of tcpA, ToxT should have 

no effect on its expression. When V. cholerae was grown in the absence of 

bicarbonate, the amount of β-galactosidase activity per cell was larger than the 

amount when V. cholerae was grown in the presence of bicarbonate (Fig. 7A), 

strongly suggesting that bicarbonate is not required for and does not positively 

affect toxT transcription. Addition of bicarbonate to the growth medium caused a 

~50% reduction in toxT::lacZ expression at every time point. Regardless of the 

presence of bicarbonate, toxT::lacZ expression peaked at 4 h after subculturing, 

consistent with the ToxT-dependent CT and tcpA::lacZ expression peaks shown 

in Fig. 5. As a control, β-galactosidase production by a ∆toxR strain that harbors 

the same toxT::lacZ fusion plasmid was also measured. The toxT::lacZ 

expression in the ∆toxR strain was low at all time points, and no effect of 

bicarbonate was observed, confirming that toxT transcription is ToxR dependent 

and bicarbonate independent. 

To directly assess whether the toxT mRNA level or stability was affected 

by bicarbonate, RT-PCR experiments using primers specific for the toxT gene 

were performed (Fig. 7B). toxT transcripts were present under both static and 
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AKI growth conditions regardless of the presence of bicarbonate. These results 

indicate that the effect of bicarbonate on virulence gene expression is mediated 

downstream from toxT transcription. 

ToxT protein is produced but inactive in the absence of bicarbonate. 

Because toxT mRNA production was not dependent on bicarbonate, we next 

investigated whether ToxT protein production was dependent on bicarbonate. 

Bicarbonate could possibly act at the translational level, affecting ToxT protein 

synthesis, or at the protein level, affecting ToxT activity. Using polyclonal 

antibodies specific for ToxT, we assessed by Western blotting whether ToxT 

protein was produced in V. cholerae grown in the presence or absence of 

bicarbonate. Our results paralleled the results that we obtained for toxT mRNA 

expression. ToxT protein was stably produced regardless of the presence of 

bicarbonate in the growth medium (Fig. 8). Using cell extracts harvested from El 

Tor strain E7946 after 4 h of static growth in medium either containing or lacking 

bicarbonate, a ToxT-specific band was visible in Western blots under both growth 

conditions (Fig. 8A, lanes 3 and 4). An isogenic ∆toxT strain did not produce this 

band (Fig. 8A, lane 2). 

Similar results were obtained using cell extracts from classical strain 

O395. At the 4- and 6-h time points, a ToxT-specific band that corresponded to 

purified ToxT protein was observed (Fig. 8B, lanes 1, 3, 4, 6, and 7). An isogenic 

∆toxT strain did not produce this band (Fig. 8B, lane 2). The ToxT-specific band 

was also observed for extracts of O395 grown under AKI conditions (Fig. 8B, 
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lanes 5 and 8). However, the ToxT levels in bacteria grown under AKI conditions 

with bicarbonate were significantly lower; the reasons for this are unclear. 

Paralleling the toxT::lacZ expression results indicating that toxT transcription was 

lower in the presence of bicarbonate, lower ToxT protein levels were observed in 

cells grown in the presence of bicarbonate in general, strongly suggesting that 

bicarbonate does not increase ToxT protein expression or stability. 

Over-expression of ToxT can compensate for the absence of 

bicarbonate. The experimental results described above are consistent with a 

model in which bicarbonate positively affects ToxT activity rather than ToxT 

expression levels. Previous work indicated that ToxT expression from a plasmid 

in V. cholerae or E. coli resulted in activation of virulence factor transcription, 

even under virulence-repressing growth conditions (198). To investigate whether 

this over-expression of ToxT could compensate for the absence of bicarbonate 

as the inducing agent, we constructed a plasmid carrying toxT fused to ParaBAD 

(pBAD-toxT). ToxT expression can be induced from pBAD-toxT by addition of 

0.2% arabinose to the growth medium. This plasmid was transformed into our 

E7946 ∆toxT derivative, and CT production and ToxT protein levels in the new 

strain were then measured. 

Our results indicate that ToxT was indeed overproduced from the pBAD-

toxT plasmid and that this resulted in increased CT production. In Western blot 

experiments (Fig. 8A, lanes 5 and 6) much higher levels of ToxT were present in 

extracts of the E7946 ∆toxT strain carrying pBAD-toxT than in extracts of wild-
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type strain E7946 carrying the pBAD33 vector. CT production was approximately 

sixfold greater in the E7946 ∆toxT strain carrying pBAD-toxT than in wild-type 

strain E7946 carrying the pBAD33 vector when both strains were grown in the 

absence of bicarbonate (Fig. 9). The CT production by the E7946 ∆toxT strain 

carrying pBAD-toxT grown without bicarbonate was remarkably similar to the CT 

production by wild-type strain E7946 carrying the pBAD33 vector grown with 

bicarbonate. However, bicarbonate still increased CT expression in the E7946 

∆toxT strain carrying pBAD-toxT more than twofold, suggesting that ToxT activity 

could be enhanced by bicarbonate even when ToxT levels are far higher than 

normal. 

A CA inhibitor, ethoxyzolamide (EZA), inhibits the effect of 

bicarbonate on virulence induction. The results described above strongly 

suggest that bicarbonate induces ToxT-dependent V. cholerae virulence gene 

expression. In mammals, bicarbonate is secreted by the pancreas into the upper 

small intestine at a concentration of ~140 mM (69). V. cholerae colonizes the 

upper small intestine and therefore encounters high levels of bicarbonate during 

the course of infection. Bicarbonate could enter bacterial cells by at least two 

routes. First, bicarbonate and CO2 are interconvertible in aqueous solution. CO2 

can enter the bacterial cell by passive diffusion and then be converted into 

bicarbonate by CA. Second, bicarbonate transporters can directly bind to 

bicarbonate and import it into the cell. Recent studies of other pathogens that 

utilize bicarbonate/CO2 to induce virulence have produced different results 



47 

 

 

regarding the effects of CA inhibition. Inhibition of CA reduces virulence 

activation in C. rodentium (196) but has no effect on B. anthracis (189). These 

results suggest that C. rodentium utilizes CA to accumulate bicarbonate in the 

cell, while B. anthracis mainly utilizes direct bicarbonate transport. 

To determine whether CA inhibition affects bicarbonate-mediated virulence 

induction in V. cholerae, we measured β-galactosidase production from 

tcpA::lacZ in the presence of EZA in both classical (O395) and El Tor (E7946) V. 

cholerae strains. Addition of 400 µM EZA resulted in a >50% reduction in 

tcpA::lacZ expression in both E7946 and O395 grown with bicarbonate in the 

medium (Fig. 10). The effect of EZA was observed in bacteria grown under both 

static and AKI conditions. In the absence of bicarbonate, EZA had no effect when 

V. cholerae was cultured under static conditions but caused 50% inhibition of 

tcpA::lacZ expression when V. cholerae was cultured under AKI conditions, 

suggesting that the shaking phase of AKI conditions mimics the presence of 

bicarbonate in static culture. EZA had no detectable effect on V. cholerae growth 

rates. These data suggest that CA plays an important role in V. cholerae 

virulence induction by modulating intracellular bicarbonate levels. 

DISCUSSION 

Sodium bicarbonate has previously been found to induce CT production in 

the El Tor biotype of V. cholerae (82, 83), but the mechanism for this induction 

was unknown. Medrano et al. (118) found that ToxR-dependent toxT transcripts 

were produced when El Tor biotype V. cholerae was cultured under static 
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conditions in the absence of bicarbonate. However, ToxT activity in terms of 

increased ctxAB transcription was not detected. These results suggested that the 

ToxT protein was either present but inactive or not present when the cells were 

cultured statically in the absence of bicarbonate. Here we have shown that the 

initial activation of the toxT promoter by ToxR-ToxS and TcpP-TcpH occurs when 

the bacteria are cultured statically in the presence or absence of bicarbonate. 

These results are in agreement with previous data showing that transient 

expression of toxT occurs during the static phase under AKI conditions (118). 

Moreover, our data indicate that the ToxT protein was present but had minimal 

activity in both the classical and El Tor biotypes when bacteria were grown in the 

absence of bicarbonate. Growing the bacteria with bicarbonate in the medium 

enhances the activity of ToxT, and both CT production and tcpA promoter 

activation are maximally induced. This bicarbonate-mediated virulence induction 

is ToxT dependent, as the isogenic toxT deletion strains did not express 

virulence genes in the presence of bicarbonate. 

The V. cholerae in vitro virulence-inducing conditions do not resemble the 

conditions that V. cholerae encounters in the small intestine. The classical 

biotype is cultured in LB medium at pH 6.5 and 30°C for maximum virulence 

gene induction (125). Neither low temperature nor low pH occurs in the upper 

small intestine that V. cholerae colonizes. The El Tor biotype is cultured in rich 

medium statically for several hours, followed by shaking for several more hours, 

for maximal virulence gene induction (82). Again, these conditions are not found 



49 

 

 

in the upper small intestine. The presence of bicarbonate is not required for CT 

production and tcpA::lacZ expression under AKI conditions, although bicarbonate 

does increase the amount of CT produced. However, static growth conditions 

with bicarbonate in the medium might more closely mimic what happens during 

the course of infection, as V. cholerae is grown at 37°C, with exposure to very 

low levels of oxygen, and in the presence of bicarbonate, all of which are similar 

to conditions in the small intestine. Based on the evidence that we obtained 

regarding the requirement of bicarbonate for maximal ToxT activity and knowing 

that bicarbonate is present at high concentrations in the small intestine, we 

propose that V. cholerae utilizes bicarbonate during infection as an effector 

molecule to induce virulence. 

Bicarbonate could also be responsible for the temporal regulation of 

virulence that has been observed in vivo. Bicarbonate is produced by pancreatic 

cells and secreted into the lumen of the small intestine to neutralize the acid that 

comes from the stomach. Lee et al. (103) have observed that during infection 

tcpA expression is induced in two stages, while ctxAB expression is induced 

subsequent to the second stage of tcpA induction. On the basis of these results, 

these authors proposed a model for temporal regulation in which the primary 

pulse of tcpA expression allows the bacteria to colonize the epithelial lining and 

in response to a second signal ctxAB expression is induced. Studies have shown 

that there is a pH gradient in the mucus gel in the human duodenum (144), 

suggesting that the concentration of bicarbonate is higher close to the epithelial 
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surface, so bicarbonate could be the second signal that stimulates maximum 

virulence induction. 

The following model describes a mechanism for bicarbonate-mediated 

virulence gene induction and its involvement in temporal regulation patterns (Fig. 

11). As the bacteria enter the lumen of the small intestine, they encounter the 

primary signal, which remains unclear and which induces transcription of toxT. In 

the lumen, lower levels of pancreatic bicarbonate are present due to diffusion 

throughout the intestine. The low concentration of bicarbonate produces low 

levels of ToxT activity, resulting in a low level of tcpA expression. At later stages 

of infection, the bacteria enter the mucus layer, where they encounter a higher 

concentration of bicarbonate that is secreted by the epithelial cells. This leads to 

enhanced ToxT activity and maximal tcpA and CT expression. 

Bicarbonate has the same effects on ToxT protein activity and virulence 

gene expression in both the classical and El Tor V. cholerae biotypes. This 

suggests that the mechanism of bicarbonate-mediated enhancement of ToxT 

activity is conserved. Bicarbonate could act as a positive effector molecule and 

directly modulate ToxT protein activity, or it could act indirectly to enhance ToxT 

function. Recent work on RegA of C. rodentium, which like ToxT shares 

sequence homology with the AraC/XylS protein family, has shown that 

bicarbonate stabilizes RegA binding to promoter regions. Addition of bicarbonate 

in vitro resulted in different migration patterns of RegA-DNA complexes in 

electrophoretic mobility shift assay (EMSA) experiments (196). ToxT binds to 
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promoter DNA sequences in vitro without bicarbonate (190-192, 198). We tested 

for a similar direct effect of bicarbonate on ToxT-DNA complexes using EMSA. 

However, no differences in the binding profiles were observed after addition of 

bicarbonate to the binding reaction mixtures (data not shown). Although we did 

not observe direct effects of bicarbonate on ToxT using the EMSA technique, the 

possibility that bicarbonate directly binds to the ToxT protein and modulates its 

activity cannot be ruled out. The possible mechanisms for modulation of ToxT 

activity by bicarbonate include enhancing the binding affinity of ToxT for 

toxboxes, enhancing the interaction between DNA-bound ToxT monomers, 

enhancing the interactions between ToxT and RNA polymerase, and some other 

direct mechanisms. Our data indicating that overexpression of ToxT can 

compensate for the absence of bicarbonate in the growth medium suggest that 

bicarbonate may enhance the binding affinity of ToxT for its DNA or protein 

partners. Thus, an increased ToxT concentration compensates for reduced ToxT 

binding affinity. 

Indirect effects of bicarbonate on ToxT are also possible. Bicarbonate 

could induce or modulate gene products to enhance the activity of ToxT. Sträter 

et al. have found that bicarbonate ion activates E. coli aminopeptidase A (PepA) 

(172). The pepA gene product is a multifunctional protein. It has peptide 

proteolysis activity (27), acts as a repressor involved in regulation of the 

carboamoylphosphate synthetase operon (35), and plays a role in site-specific 

recombination at the ColE1 site, a mechanism that is involved in resolving 
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multimers of multicopy plasmids into monomers to allow stable heredity of the 

plasmids (168). The X-ray crystallographic structure of PepA indicated that a 

bicarbonate anion is bound to an arginine side chain (171). Interestingly, deletion 

of the V. cholerae pepA gene has also been shown to increase the levels of CT, 

tcpA, toxT, and tcpP when the cells are cultured under ToxR-repressing 

conditions (LB medium at pH 8.5 and 37°C) (10). One possible indirect effect of 

bicarbonate is that pepA or other gene products negatively regulate the activity of 

ToxT and addition of bicarbonate could modify such gene products to relieve this 

inhibition. 

Bacteria can increase cytosolic bicarbonate levels through at least two 

routes. First, transporters can directly bind to and import bicarbonate. The 

cmpABCD gene cluster encodes the bicarbonate transport system of 

Synechococcus elongatus PCC 6301 (112). Proteins with sequence homology to 

proteins in this system have been shown to play a role in B. anthracis 

pathogenesis (189). However, BLAST searches of the V. cholerae genome have 

yielded no sequences having homology to this system. This suggests either that 

V. cholerae does not utilize transporters to accumulate cellular bicarbonate or 

that V. cholerae utilizes a different system of transporters to import bicarbonate. 

Second, both metabolic CO2 and atmospheric CO2 that enter the cell by simple 

diffusion are converted into bicarbonate by the action of CA. CAs are zinc 

metalloenzymes that catalyze the hydration of CO2 into bicarbonate. CAs have 

been shown to be involved in many cellular processes, such as photosynthesis, 
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respiration, CO2 transport, and cyanate metabolism in E. coli (164). CAs are 

classified into three classes, α, β, and γ, and they share little sequence homology 

with each other but catalyze the same reaction. V. cholerae encodes one 

putative CA homolog belonging to each class; the cah gene (VC0395_0957) 

product belongs to the α class; the putative gene VC0395_A 0118 product 

belongs to the β class; and the putative VC0395_A2463 product belongs to the γ 

class. Our data indicate that addition of the CA inhibitor EZA resulted in a >50% 

reduction in tcpA promoter activity. This suggests that one or more of the putative 

CAs and/or other CA-like molecules play a role in virulence induction in V. 

cholerae. Notably, EZA also caused a decrease in virulence gene expression 

under AKI conditions in the absence of bicarbonate. This finding suggests that 

the shaking phase of AKI conditions has an effect that is similar to addition of 

bicarbonate to a static culture and that the induction of virulence gene expression 

induced by both bicarbonate and AKI conditions is due to increased cytosolic 

bicarbonate levels mediated by one or more of the V. cholerae CAs. 

Culturing V. cholerae under AKI conditions likely mimics the presence of 

bicarbonate in the medium by increasing the CO2 concentration in the medium. 

CO2 and HCO3
− freely interconvert in solution, so an increase in the CO2 

concentration would result in an increase in the bicarbonate concentration. 

Production of CT has been observed when the El Tor biotype was cultured in the 

absence of bicarbonate. However, either a shaking period or culturing the 

bacteria with a low ratio of volume to surface area was required (82, 150). Under 
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these conditions, V. cholerae could produce enough CO2 so that there was an 

increase in cellular bicarbonate levels. The increase in bicarbonate levels could 

occur through direct transport of bicarbonate by the bacteria and/or through CO2 

uptake and conversion into bicarbonate by CAs. Increasing the cellular 

bicarbonate level would enhance ToxT activity so that CT was maximally 

expressed. In the absence of bicarbonate, V. cholerae produces mainly CO2 as a 

product of metabolism. When the bacteria are grown under static conditions with 

a small exposed surface area, the amount of CO2 produced by the cells is 

relatively small as the growth rate is low. CO2 diffuses out of the cells at a rate 

greater than the rate of conversion into cellular bicarbonate by CA. The low level 

of bicarbonate produced by CA under these conditions is not sufficient to induce 

virulence. In contrast, addition of a shaking period or culturing using a large 

exposed surface area increases the growth rate due to aerobic metabolism, and 

thus the cells produce more CO2. The higher level of CO2 could increase the 

cytoplasmic level of bicarbonate, and virulence gene expression would be 

induced. It has been reported that under anaerobic growth conditions in either 

classical virulence-inducing medium (classical biotype) (99, 113) or syncase 

medium (El Tor biotype) (113) TCP expression is observed but CT production is 

low or nonexistent. This is somewhat similar to the expression patterns that we 

observed under AKI conditions in the absence of bicarbonate, in which a high 

level of tcpA expression but a low level of CT production was observed (Fig. 5). 

Both of these growth conditions may mimic the early stages of infection shown in 
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Fig. 11, in which the bicarbonate concentration is relatively low. A possible 

mechanism for the observed differential expression of CT and TCP under low-

bicarbonate conditions arises from the observation that H-NS is a major negative 

regulator of ctx transcription (51, 134), whereas H-NS has little or no effect on 

tcpA transcription (198). When bicarbonate levels are low, a small pool of 

“activated” ToxT may be blocked from binding to the ctx promoter by H-NS but 

may bind to the tcpA promoter unhindered and activate its transcription. 

In summary, we have found that bicarbonate induces expression of the V. 

cholerae major virulence factors by enhancing the activity of the ToxT protein 

that is already present in the bacteria. This is the first example of a positive 

effector for ToxT activity, and bicarbonate is likely to be an important in vivo 

signal that induces V. cholerae virulence gene expression during infection. 
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FIG. 5. Effect of bicarbonate on CT and tcpA::lacZ expression. Open bars, wild-
type V. cholerae grown without bicarbonate; dark gray bars, wild-type V. cholerae 
grown with 0.3% bicarbonate; light gray bars, V. cholerae ∆toxT mutant grown 
with 0.3% bicarbonate. (A) CT production by El Tor strain E7946. (B) β-
Galactosidase produced from plasmid-borne tcpA::lacZ in El Tor strain E7946. 
(C) CT production by classical strain O395. (D) β-Galactosidase produced from 
chromosomal tcpA-lacZ in classical strain O395. Statistical significance was 
determined by Student's t test (*, P < 0.025; **, P < 0.005; ***, P < 0.0005). 
OD600, optical density at 600 nm; WT, wild type. 
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FIG. 6. Effect of pH on tcpA expression. V. cholerae were grown for 4 hours in a 
static tube in AKI medium. Light gray bars indicate neither NaOH nor bicarbonate 
were added to the medium, white bars indicate NaOH was added to adjust 
starting pH to 7.2, and dark gray bars indicate 0.3% bicarbonate was added, 
which changed pH to 7.2. A. β-galactosidase produced from plasmid-borne 
tcpA::lacZ in El Tor strain E7946. B. β-galactosidase produced from 
chromosomal tcpA-lacZ in classical strain O395. Statistical significance was 
determined by Student’s T test with * indicating P <0.0025 and ** indicating P < 
0.0001.
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FIG. 7. Bicarbonate does not increase toxT transcription. (A) β-Galactosidase 
produced from plasmid-borne toxT::lacZ in El Tor strain E7946. Light gray bars, 
V. cholerae ∆toxR mutant grown without bicarbonate; black bars, V. cholerae 
∆toxR mutant grown with 0.3% bicarbonate; open bars, wild-type V. cholerae 
grown without bicarbonate; dark gray bars, wild-type V. cholerae grown with 
0.3% bicarbonate. Statistical significance was determined by Student's t test (*, P 
< 0.02). WT, wild type. (B) RT-PCR to detect toxT mRNA in whole-cell RNA 
preparations. − RT, no RT was performed before PCR; + RT, RT was performed 
before PCR. Lane M contained molecular weight standards, and 4 hr and 6 hr 
indicate the time of growth in a stationary tube. AKI indicates addition of a 
shaking phase of growth. The presence or absence of bicarbonate in the growth 
medium is indicated below the gels. 
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FIG. 8. Detection of ToxT protein in V. cholerae grown in the presence or 
absence of bicarbonate. ToxT protein was detected by Western blotting using 
polyclonal anti-ToxT antibodies. 6His-ToxT, purified His-tagged ToxT protein 
loaded as a control. (A) El Tor strain E7946. The presence or absence of 
bicarbonate in the growth medium is indicated above the lanes. E7946 ∆toxT + 
pBAD-toxT indicates that the ∆toxT strain was complemented in trans with 
pBAD-toxT and arabinose was included in the growth medium. (B) Classical 
strain O395. 4 hr and 6 hr indicate the time of growth in a stationary tube, and 
AKI indicates that a shaking phase of growth was added. Lane M contained 
protein molecular weight markers. 
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FIG. 9. Effect of ToxT overproduction from pBAD-toxT on CT production in V. 
cholerae El Tor strain E7946. Open bars, bacteria grown without bicarbonate; 
gray bars, bacteria grown with 0.3% bicarbonate. Both strains were grown 
statically for 6 h in the presence of arabinose before a CT ELISA was performed. 
E7946 ∆toxT + pBAD-toxT indicates that the ∆toxT E7946 strain was 
complemented in trans with pBAD-toxT, and E7946 + pBAD33 indicates wild-
type V. cholerae carrying the empty pBAD33 vector. Statistical significance was 
determined by Student's t test (*, P < 0.005). OD600, optical density at 600 nm. 
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FIG. 10. Effects of the CA inhibitor EZA on tcpA::lacZ expression. Gray bars, 
dimethyl sulfoxide (DMSO) alone added to the growth medium; open bars, EZA 
dissolved in dimethyl sulfoxide added to the growth medium. (A) β-Galactosidase 
produced from plasmid-borne tcpA::lacZ in El Tor strain E7946. (B) β-
Galactosidase produced from chromosomal tcpA-lacZ in classical strain O395. 
Statistical significance was determined by Student's t test (*, P < 0.015; **, P < 
0.005). 
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FIG. 11. Model for induction of virulence gene expression by bicarbonate in vivo. 
On the left, motile V. cholerae containing inactive ToxT protein enters the upper 
small intestine. In the center, V. cholerae in the intestinal lumen encounters 
bicarbonate, ToxT becomes active, and TCP production begins. On the right, 
bacteria entering the mucus layer encounter higher levels of bicarbonate, 
virulence genes are fully induced, and CT production begins. The gradient of 
increasing bicarbonate levels from the lumen to the mucosal surface is indicated 
by the triangle on the right. 
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CHAPTER TWO 

Regulation of Vibrio Cholerae Virulence by Proteolysis of ToxT 

ABSTRACT 

Vibrio cholerae is a gram negative bacterium that is the causative agent of 

the severe diarrheal illness, cholera. While over 200 different V. cholerae 

serogroups have been identified, only serogroups O1 and O139 have exhibited 

the ability to cause epidemics. V. cholerae O1 is further divided into two biotypes, 

classical and El Tor. For the classical biotype, maximal virulence induction in vitro 

requires growing the bacteria at 30º C in LB at starting pH 6.5 (ToxR-inducing 

conditions). In contrast, minimal virulence induction results when the cells are 

cultured at 37º C in LB at starting pH 8.5 (ToxR-repressing conditions). Under 

virulence inducing conditions, both the ToxR/S and TcpP/H heterodimers initially 

activate toxT transcription. Once ToxT is expressed, it activates expression of the 

two major virulence factors: cholera toxin (ctx operon) and toxin co-regulated 

pilus (tcp operon). ToxT also produces more of itself via a positive feedback loop 

by activating transcription of the tcp operon, within which toxT is located. It is 

known that V. cholerae terminates virulence gene expression prior to escape 

from the host, but it is unknown how the ToxT positive feedback loop is broken, 

which is an essential step in terminating virulence gene expression. To 

understand better the regulation of ToxT protein, we monitored its accumulation 

and its activity under virulence inducing and repressing growth conditions. Our 

results suggest that ToxT protein undergoes proteolytic degradation under 
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virulence repressing conditions. The degradation of ToxT under repressing 

conditions suggests a model for terminating V. cholerae virulence gene 

expression during the late stage of infection, with both ToxT and TcpP undergoing 

proteolysis prior to escaping the host.  

INTRODUCTION 

Vibrio cholerae, the causative agent of severe dehydrating diarrhea, uses 

a complex array of gene regulation to control virulence gene expression during 

infection (117). ToxT is the direct transcriptional activator that induces expression 

of most virulence factors including the cholera toxin (CT) and the toxin co-

regulated pilus (TCP) (75, 190-192, 197, 198). CT is responsible for fluid loss into 

the intestinal milieu that results from the constitutive production of cAMP by the 

intestinal epithelial cells (45, 53). CT is an AB5 toxin composed of five B subunits 

that binds to the GM1 ganglioside receptor of the epithelial cells, and an 

enzymatic A subunit that upon activation modifies adenylyl cyclase by adding an 

ADP-ribosyl group and keeps it in its active state (52, 110). The TCP is a type IV 

pilus that is thought to be involved in bacteria-bacteria interaction to form 

microcolonies and enhance colonization over the epithelial cells that line the 

small intestine (89, 177, 179).  

ToxT protein belongs to the AraC/XylS family of proteins (68) that directly 

binds to virulence gene promoters of V. cholerae, recruits RNA polymerase and 

positively activates these promoters (75, 191, 198). It is composed of 276 amino 

acids that are separated into two domains: The N-terminal domain (NTD) 
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comprises amino acids 1-160, whereas the C-terminal domain comprises amino 

acids 170-276. These two domains are connected by a short linker, amino acids 

161-169 (111). The ToxT CTD is a conserved AraC/XylS family domain, having 

two helix-turn-helix motifs that are utilized for DNA binding. The NTD does not 

share significant sequence similarity with any protein in the database and its role 

is hypothesized to be dimerization and/or interacting with effectors that modulate 

ToxT activity. However, the crystal structures of ToxT protein and the AraC 

protein NTD indicate that the ToxT NTD and the AraC NTD share some 

structural similarity despite having only 11% amino acid identity (111). The AraC 

NTD is required for dimerization and binding to its effector, arabinose (114). It 

has been proposed that bile or the unsaturated fatty acids (UFA) present in bile 

are natural effectors of ToxT. Bile and UFA have been shown to inhibit ToxT 

activity and the overall growth of V. cholerae (28, 57, 141-143, 152, 188). 

Mutational analysis demonstrated that bile might interact with the N-terminal 

domain of ToxT, as a ToxT mutant somewhat resistant to bile was isolated that 

had a single amino acid change at residue 107 (141). Furthermore, the crystal 

structure of ToxT contains a buried 16-carbon UFA, cis-palmitoleate, which 

inhibits the activity of ToxT and may be a minor component of crude bile (111). A 

synthetic inhibitor of ToxT activity, virstatin, also apparently interacts with the 

ToxT NTD (155). 

toxT expression is controlled by two promoters. Initially, activation of toxT 

transcription occurs via the activity of the two membrane localized heterodimers, 
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toxR/S and tcpP/H (39, 65, 67, 100). ToxR and TcpP have been shown to bind to 

the toxT proximal promoter to produce toxT transcripts. Deletion of toxR or tcpP 

inhibits activation of this promoter and abrogates toxT mRNA production. Once 

ToxT protein is present in the cells, a second, longer mRNA containing toxT is 

produced from the distal tcpA promoter. Deletion of the tcpA promoter or the 

ToxT helix-turn-helix motifs required to inactivate tcpA transcription decreases 

toxT mRNA level (197). Furthermore, transposon insertions in the region 

between tcpA and tcpF cause a polar effect on ToxT activity as determined by 

measuring CT production and expression of a tcpA-lacZ fusion (16). These 

results support a positive auto-regulatory mechanism that controls toxT 

expression and activity.  

While virulence induction has been vigorously studied in the past decade 

and is characterized to some extent, repression of virulence once it has been 

established is not well understood. Down-regulation of virulence genes including 

those encoding TCP and CT during the late period of infection (in rice water 

stool) has been observed (101, 121, 132) and has been proposed to be 

important for environmental survival. In order for V. cholerae to shut down the 

virulence cascade, two things must occur: 1) activation of the toxT promoter must 

be curtailed, and 2) activation of the tcpA promoter auto-regulatory loop that 

produces ToxT must be curtailed. In the former case, studies have shown that 

the TcpP level is tightly controlled by expression and degradation processes, 

which could provide a check point to turn on and off the toxT promoter (8, 23, 93, 
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94, 116). tcpP expression requires two transcription activators, AphA and AphB, 

and tcpP transcription is inhibited by cAMP-CRP, which is responsive to the 

presence or absence of glucose as an available carbon source (96). Once TcpP 

protein has been produced, it is degraded by a sequential event involving YaeL 

and another unknown protease (116); the role of TcpH is to protect TcpP from 

this degradation. In the latter case, it is unknown how the tcpA promoter auto-

regulatory loop that continues ToxT production is broken. In this report, we 

present data that suggest proteolysis of ToxT protein is the major factor 

responsible for breaking this auto-regulatory loop. ToxT proteolysis occurs when 

V. cholerae is grown in vitro at pH 8.5 and 37ºC, a growth condition that is known 

to repress virulence production. These are the same growth conditions under 

which TcpP is proteolyzed. These results indicate that rapid shutdown of 

virulence prior to escape of V. cholerae from the human host back into the 

aquatic environment may be mediated by directed proteolysis of both TcpP and 

ToxT. 

MATERIALS AND METHODS 

Bacterial strains, plasmids, culture conditions and reagents. All 

bacterial strains and plasmids are listed in Table 1. Strains are maintained at -

70˚C in LB media containing 20% glycerol. The strains were grown overnight at 

37˚C in LB medium with a starting pH of 8.5 and then were sub-cultured using a 

1:40 dilution into either LB at starting pH 6.5 and 30ºC (virulence inducing 

conditions) or LB at starting pH 8.5 and 37ºC (virulence repressing conditions). 
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For the experiments shifting from inducing to repressing growth conditions, cells 

were harvested by centrifugation after 3 hours growth under inducing conditions 

and cell pellets were re-suspended into the same volume of fresh LB at either pH 

8.5 or pH 6.5 and continued to be cultured at the corresponding temperature 

(37˚C or 30˚C). Antibiotics were used at the following final concentrations unless 

otherwise stated: streptomycin 100 µg/ml; ampicillin 100 µg/ml; and 

chloramphenicol 5 µg/ml. To induce protein expression, a final concentration of 

0.2% arabinose was used to induce pBAD33 vector derivatives while a final 

concentration of 1mM of isopropyl-β-D-thiogalactopyranoside (IPTG) was used to 

induce pMAL-c2e vector derivatives. To deplete cellular ATP, cells were treated 

with a combination of 10 mM of α-methylglucoside and 20 mM of sodium azide 

as previously described (86).  

β-Galactosidase assay. After the cells were grown under the indicated 

time and growth conditions, β-galactosidase activity was measured and 

expressed in Miller units as previously described (122).   

Plasmid and strain construction. The tcpA promoter deletion strains 

were constructed as previously described (197). Briefly, 500-bp segments on 

either side of the tcpA promoter were amplified by nested recombinate PCR 

method and cloned into suicide vector pKAS32 using KpnI and SacI restriction 

sites. The resulted plasmid was transformed into E. coli SM10(λpir), and moved 

into both V. cholerae strains O395 and JW 611 by filter conjugation. Arabinose-

inducible toxT plasmids which has either N-terminal or C-terminal polyhistidine 
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tag was constructed by amplifying the toxT gene from V. cholerae O395 genomic 

DNA and cloning it into pBAD33 (58) using XbaI and PstI restriction sites For N-

terminal His tagged ToxT, the forward primer BP 81 (5'-GATCTCTAGATTTAGG 

ATACATTTTTATGCATCATCATCATCATCATATGATTGGGAAAAAATCTTTTCA

AACTAATG-3') and the reverse primer BP 193 (5’-GATCCTGCAGTTATTTTTCT 

GCAACTCCTGTCAAC-3) is used. For C-terminal His tagged, the forward primer 

BP 22 (5’-GCTCTAGATTTAGGATACATTTTTATGATTGGGAAAAAATCTTTTCA 

AAC-3') and the reverse prime BP 195 (5’-GATCCTGCAGTTAATGATGATGATG 

ATGATGTTTTTCTGCAACTCCTGTC-3’) were used. IPTG inducible plasmids 

that contain translational fusion of MBP with ToxT that bears his tag at the C-

terminal and its N-terminal truncation derivatives using the reverse primer BP 

195 and the following forward primers; for full length of ToxT1-276, BP 171 (5’- GA 

CAAGGTACCGATGATTGGGAAAAAATCTTTTCAAAC-3’), for ToxT101-276, BP 

174 (5’- GACAAGGTACCGGATCTCATGATAAGGAATTTATATAG-3’), for 

ToxT110-276, BP 185 (5’- GACAAGGTACCGGAAAATAAAGATCTATTACTTTGG-

3’), for ToxT115-276, BP 186 (5’- GACAAGGTACCGTTACTTTGGAATTGTGAACA 

TAATG-3’), for ToxT120-276, BP 187 (5’-GACAAGGTACCGGAACATAATGATATA 

GCTGTCCTTTC-3’), for ToxT130-276 BP 188 (5’ GACAAGGTACCGGTGGTAAAT 

GGTTTCAGAG-3’), for ToxT151-276, BP 175 (5’- GACAAGGTACCGTTCTTCTCG 

AAAGTAGAAAAAAAATATAAC-3’). The PCR products were cloned into pMAL-

c2e using KpnI and PstI restriction sites. 
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RNA isolation and qRT-PCR. Cell pellets from different strains were 

harvested by centrifugation after 3 hours growth under virulence inducing 

conditions. RNA was isolated using Trizol reagent (Invitrogen) according to the 

manufacturer's protocol. Total RNA was subjected to DNase I digestion for 1 hr at 

37°C to eliminate any DNA contamination. RNA was recovered by ethanol 

precipitation and re-suspended in RNase-free water. The RNA concentration was 

adjusted to 1 µg/µl based on A260 measurement. To monitor the level of toxT 

mRNA, 1 µg of total RNA was subjected to one-step SYBR Green quantitative 

RT-PCR using the manufacturer’s protocol (Invitrogen). Specific primers for the 

toxT gene were used. The forward BP 105 primer is (5’-TGGGCAGATATTTGTG 

GTGA-3’) and the reverse BP 106 primer is (5’- AAACGCTAGCAAACCCAGAC-

3’). The level of toxT mRNA in each sample was normalized to the level of rpoB 

mRNA using the forward BP 100 primer (5’- ATCGAGCGTAACGTCGCGGTTGA 

C-3’) and the reverse BP 101 primer (5’- AGTCAGGTTGTAGATGTCGATACC-

3’). The data represent an average of three independent experiments ± standard 

deviation (S.D.) Statistical significance of lower levels of toxT mRNA in the tcpA 

promoter deletion was determined by student’s t-test with p value of 0.0101. 

Protein analysis and purification. Aliquots of cells harvested at different 

time points during growth were normalized unless otherwise stated based on the 

optical density at 600 nm and re-suspended in 30 µl water and 10 µl of 4x protein 

buffer (246 mM Tris-HCl, 8% sodium dodecyl sulfate, 2.8 M 2-mercaptoethanol, 

40% glycerol, 0.4% bromophenol blue). The samples were boiled for 5 min and 
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subjected to 12% or 15% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). The gel was blotted on nitrocellulose paper as 

previously described (3) and probed with a 1:3000 dilution of rabbit polyclonal 

anti-ToxT serum or 1:5000 dilution of mouse anti-His tag monoclonal antibody 

(Millipore). As an internal loading control, the primary mouse anti-elongation 

factor alpha 1 (anti-EF-α1) was used at a dilution of 1:3000 (Millipore). Goat anti-

rabbit or anti-mouse immunoglobulin antibodies conjugated to either alkaline 

phosphatase (AP) or Horseradish peroxidase (HRP) were used at a dilution of 

1:5000 (Southern Biotech). After washing the blots, they were developed using 

the corresponding substrate. For AP, immuno-BCIP (5-bromo-4-chloro-3-

indolylphosphate)—nitroblue tetrazolium was used (Invitrogen). For HRP, 

western lightning chemiluminescence substrate (PerkinElmer) was used and the 

blots were visualized using Autoradiography X-ray Film.  

To purify ToxT fragments, C-terminal His tagged ToxT was overexpressed 

for 3 hours under virulence repressing conditions. Bacteria were collected by 

centrifugation and re-suspended into buffer A (50 mM sodium phosphate, 300 

mM NaCl, 10 mM Imidazole, and 8M Urea at pH 8.0). The cells were lysed by 

French press at 1200 psi. Cell debris was removed by centrifugation and the 

clear cell extract was incubated overnight with nickel coated beads (Bio-Rad). 

The beads were washed 4 times for a total of 40 minutes with buffer A and 

collected after each wash by brief centrifugation. The His-tagged protein 
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fragments were eluted using 2 ml of elution buffer B (50 mM sodium phosphate, 

300 mM NaCl, 250 mM Imidazole, and 8M Urea at pH 8.0). 

RESULTS 

Monitor the expression and activity of ToxT protein under different 

conditions. In classical biotype V. cholerae, maximal virulence induction in vitro 

is induced by growing the bacteria at 30º C in LB at starting pH 6.5 (125). These 

growth conditions were termed ToxR-inducing conditions due to the significant 

role of the ToxR in virulence induction; however, these conditions do not 

significantly affect ToxR activity. Instead, these conditions permit production of 

TcpP, which acts together with ToxR to activate toxT expression (94, 96, 100, 

160), and we will refer to them as virulence inducing conditions. Minimal 

virulence induction results when the cells are cultured at 37º C in LB at beginning 

pH 8.5 (125), which we will refer to as virulence repressing conditions. Under 

virulence inducing conditions, both ToxR and TcpP initiate the activation of toxT 

from the toxT promoter. Once ToxT protein is made, it amplifies itself by 

activating transcription of the large tcp operon, which contains genes encoding 

TCP components and the toxT gene (197). Virulence induction is minimal under 

the high pH and temperature virulence repressing conditions, likely due to the 

absence of significant TcpP levels, and thus low ToxT levels, under these 

conditions. However, there is basal toxT transcription that should result in some 

ToxT expression, which could then ostensibly activate tcpA and produce more 

ToxT. Overexpression of tcpPH from a constitutive promoter in El Tor V. cholerae 
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under virulence repressing conditions results in an increase in CT expression but 

the amount of CT produced is still minimal when compared to CT production 

under inducing conditions (129), suggesting that ToxT activity is low under these 

conditions even when its production is induced by TcpP.  

To better understand the regulation of ToxT, a time course experiment 

was conducted to monitor the accumulation of ToxT protein by western analysis 

and its activity in terms of tcpA activation under both ToxT-inducing and 

repressing conditions. tcpA activation was monitored using a chromosomal tcpA-

lacZ fusion present at the endogenous lacZ locus. The data in Fig. 12A show that 

maximal ToxT activity occurs when culturing under virulence inducing conditions 

but minimal activity results when culturing under virulence repressing conditions. 

Consistent with the observed ToxT activity, ToxT protein (Fig. 12B) was detected 

in the bacteria as early as two hours and continually present in the cells up to at 

least four hours after subculture into inducing conditions. In contrast, ToxT 

protein was undetected at any time point after subculture into repressing 

conditions. As a positive control, lane 1 shows purified His6-ToxT and as a 

negative control, lane 2 shows a ToxT deletion strain, which lacks the 

corresponding ToxT band. 

Absence of any detected ToxT protein under virulence repressing 

conditions can be explained either by the fact that maximal activation of the toxT 

promoter is required to overcome the dilution of ToxT that results from bacterial 

replication, or ToxT can’t amplify more of itself by activating the tcpA 



74 

 

 

autoregulatory loop under repressing conditions. To assess whether toxT 

transcription via the autoregulatory loop occurs under virulence repressing 

conditions, we utilized a derivative of classical V. cholerae strain O395 carrying a 

chromosomal toxT-lacZ fusion. This strain does not produce functional ToxT 

because the lacZ gene is inserted into toxT gene at the HindIII restriction 

endonuclease site (65), but transcription into toxT can be monitored by β–

galactosidase assay.  

First we assessed the contribution of the tcpA autoregulatory loop under 

virulence inducing conditions but in the absence of ToxT. Approximately 300 

Miller units of β-galactosidase were produced; this total is the combined 

production from both the toxT and tcpA promoters. However, if functional ToxT 

was expressed in-trans from a pBAD-toxT plasmid, a three-fold increase in β-

galactosidase production to about 800 Miller units was observed (Fig. 13A). 

These results suggest that this increase in β-galactosidase production is due to 

activation of the tcpA promoter autoregulatory loop by ToxT. Deletion of the tcpA 

promoter in this strain prevents the increase in β-galactosidase production 

induced by ToxT in-trans, which confirms that autoregulation occurs by activating 

the tcpA promoter.  

When grown under virulence repressing conditions, the V. cholerae toxT-

lacZ parent strain produced about 10 Miller units of β-galactosidase, but when 

ToxT is applied in trans there is more than a sixty-fold increase in lacZ 

production. These results suggest that ToxT is highly active under virulence 
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repressing conditions, at least when is it expressed at a high level in trans. The 

observed increase in β-galactosidase is a result of the autoregulatory loop of 

activation, as parallel experiments in the strain having a deletion of the tcpA 

promoters showed no increase in β-galactosidase production despite applying 

ToxT in-trans. To more directly measure how much the autoregulatory loop 

contributes to the level of toxT mRNA, we performed qRT-PCR to compare the 

levels of toxT mRNA in the wild type V. cholerae strain and the tcpA promoter 

deletion strain. Deleting the tcpA promoter causes a 2 fold reduction in toxT 

mRNA (Fig. 13B). Collectively, these results confirm that the ToxT positive 

autoregulatory loop functions through activation of the tcpA promoter under both 

virulence inducing and repressing conditions, and contributes to toxT expression. 

The above results confirm that ToxT is active when over-produced under 

virulence repressing conditions and that ToxT is produced via activation of the 

tcpA promoter autoregulatory loop. The next question we asked was whether 

ToxT protein produced at natural levels could amplify itself as part of an 

autoregulatory loop under repressing conditions. To circumvent the problem that 

the initial activation of the toxT promoter by ToxR and TcpP is required for ToxT 

production, we cultured the bacteria first under virulence inducing conditions to 

induce ToxT production, and then the bacteria were harvested by centrifugation 

and resuspended in an equal volume of either fresh inducing medium or fresh 

repressing medium. This ensured that there was no dilution of the culture. A 

sample from each set of conditions was taken every hour and ToxT protein was 
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monitored by western analysis. Fig 14A shows that in primary culture under 

inducing conditions, ToxT is present in the cells (Lane 2). However, after shifting 

the bacteria into repressing conditions, ToxT protein disappeared after one hour 

(Lanes 6, 7, and 8). In contrast, when the cells were resuspended into inducing 

media, ToxT protein was continuously detected in the cells (Lane 3, 4 and 5). It is 

important to note that the dilution factor that arises from cell division is controlled 

by collecting the same volume of cultured media over time. This is apparent in 

the internal loading control as the amount of control protein increased over time. 

To determine an earlier time point for the fate of ToxT protein after shifting the 

culture from inducing to repressing conditions, samples were taken at 0, 15, 30, 

60, and 90 minutes and western analysis was performed. The results in Fig. 14B 

show that the level of ToxT protein declined after 15 minutes and became 

completely undetectable after one hour of incubation. These results suggest that 

pre-existing ToxT protein is degraded under virulence-repressing conditions and 

this could prevent ToxT auto-amplification under these conditions.  

Proteolysis of ToxT requires protein synthesis and ATP. Most of the 

cytoplasmic degradation in prokaryotes requires energy (55). V. cholerae 

possess at least five different ATP-dependent protease systems (ClpXP, ClpAP, 

Lon, HslUV, and HflB) and expression of some of these systems increases in 

response to high temperatures as their promoter regions contain a heat shock 

σ32 factor binding site (163). To test whether ToxT degradation under virulence-

repressing conditions requires protein synthesis to induce a specific protease 
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and/or if proteolysis occurs through an ATP-dependent mechanism, two methods 

were utilized. We either stopped further protein synthesis by adding high 

amounts of chloramphenicol (200 µg/m/) to the bacteria, or we depleted the 

bacteria of ATP by adding a combination of sodium azide and non-metabolized 

glucose (α-methylglucoside) prior to shifting into repressing conditions; after both 

these treatments ToxT accumulation was monitored by western blot. This ATP 

depletion method was chosen because it has been shown to rapidly lower ATP 

concentration in the cells within ten minutes (86). Treatment of the cells with 

chloramphenicol or ATP depletion prior to shifting to repressing growth conditions 

prevents ToxT degradation (Fig. 15, lanes 5 and 6). However, depleting the cells 

of ATP causes a smaller ToxT band to appear (Fig. 15, lane 5). These results 

suggest that ToxT degradation might occur in a sequential manner with at least 

two different proteases. ToxT could be initially cleaved by a protease that is less 

sensitive to ATP depletion but is induced in response to temperature and pH, and 

then further ToxT degradation occurs in an ATP-dependent proteolysis.  

ToxT degradation analysis. Because ToxT protein is not detected under 

normal growth conditions but produces a smaller protein band when ATP is 

depleted from the cells after shifting into repressing conditions, we hypothesized 

that overexpression of ToxT under repressing conditions could lead to the 

production of ToxT degradation fragments that can be detected by western 

analysis. To test this possibility, we overexpressed ToxT protein that carries a 

polyhistidine tag at either the N-terminal or the C-terminal end. When His-tagged 
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ToxT was over-expressed under virulence repressing conditions, a major smaller 

band was reproducibly detected in the cell lysate in addition to full length His-

tagged ToxT (Fig. 16). Interestingly, the size of this smaller band differed 

between the N-terminally and C-terminally tagged ToxT constructs. N-terminally 

His-tagged ToxT produced a predominant band smaller than 17kDa.  However, 

C-terminally His tagged ToxT construct produced a predominant band smaller 

than 23kDa but bigger than the 17kDa marker band. These data suggest that 

ToxT is initially cleaved at one primary site and then subjected to further 

degradation. To confirm that the smaller bands that were detected by western 

blotting are part of ToxT, we purified the predominant band that arises from the 

C-terminal His tagged ToxT on a nickel column, subjected it to SDS-PAGE, and 

then subjected a tryptic digest of the excised band to mass spectroscopy 

analysis. The peptide mass spectroscopy fingerprinting from the fragment band 

successfully identified multiple peaks corresponding to the C-terminal domain of 

ToxT protein. These data confirmed proteolytic cleavage of ToxT under 

virulence-repressing conditions.  

We attempted to identify the protease that is responsible for ToxT 

degradation by both screening a transposon library for mutants that fail to 

degrade ToxT and by directly obtaining in-frame deletions of specific cytoplasmic 

proteases and assessing whether the deletion prevented ToxT proteolysis under 

virulence repressing conditions. However, these methods did not identify any 
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individual protease responsible for ToxT degradation. This could be due to the 

possibility that more than one protease is capable of degrading ToxT. 

Next we determined whether the protease(s) that degrade ToxT are 

conserved between the classical and El Tor V. cholerae biotypes and/or other 

gram negative bacteria. We assessed whether ToxT degradation occurs in the El 

Tor biotype of V. cholerae and in E. coli when His-tagged ToxT is over-expressed 

from a plasmid. Overexpression of C-terminally His tagged ToxT protein both in 

the El Tor biotype of V. cholerae and in E. coli K12 under virulence repressing 

growth conditions resulted in detection of the same small fragments that arise 

from ToxT degradation in classical V. cholerae (Fig. 17A and B). Overexpression 

of C-terminally His tagged ToxT protein in classical V. cholerae and E. coli K12 

under virulence inducing growth conditions resulted in  minimal ToxT degradation 

(Fig. 18B) when compared to the amount of ToxT proteolysis under repressing 

conditions. However, some degradation fragments were detected in E. coli when 

cultured under inducing conditions. These results suggest that maximal ToxT 

degradation occurs under virulence repressing growth conditions and minimal 

degradation occurs under virulence inducing conditions in both V. cholerae 

biotypes and even in E. coli.  

Identification of the cleavage site(s) within ToxT. To better understand 

the sequential degradation of ToxT, we attempted to identify the cleavage site(s) 

within ToxT. Several attempts were made to obtain N-terminal sequence 

information from the fragments that arise from the C-terminally His tagged ToxT 
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degradation. However, these fragments were blocked for Edman degradation 

chemistry. As an alternative we sought to map the domain within ToxT that is 

recognized by the protease and gives rise to the predominant band that is 

detected from the C-terminally His tagged ToxT construct. Translational fusions 

of maltose binding protein (MBP) with wild type ToxT-His6 or various N-terminal 

ToxT-His6 truncations were constructed, and these proteins were over-expressed 

under virulence repressing conditions such that the degradation intermediate 

could be detected. Truncation of the first 110, 115, 120,130, and 150 amino acids 

abolishes detection of the predominant band that migrates just below the 23kDa 

maker band (Fig. 18, lanes 5-9). However, this band was produced by full length 

ToxT or ToxT lacking the first 100 amino acids (Fig. 18, lanes 3 and 4). These 

results suggest that the region between amino acids 100 and 110 plays a role in 

ToxT proteolysis. It is significant to note that this region of ToxT has been shown 

to be important for its function. Alanine substitute mutations in amino acids 102, 

103, 105, and 106 causes increase in ToxT activity (30). Increasing the activity of 

ToxT could be due to increase in stability of ToxT. 

DISCUSSION 

V. cholerae uses a coordinate regulatory cascade to induce its virulence 

determinants (117). While ToxT protein is the primary transcriptional activator 

that directly activates expression of major virulence factors including CT and TCP 

(75, 190-192, 198), ToxT expression is controlled by ToxR/S and TcpP/H as well 

as the positive auto-regulatory mechanism mediated through activation of tcpA 
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transcription (39, 65, 67, 100, 197). The current model for the virulence 

regulatory circuit is that ToxR and TcpP initiate toxT expression from the toxT 

promoter. Once ToxT is made, it maintains its expression through the auto-

regulatory mechanism by activating the tcpA promoter. Evidence of virulence 

down-regulation during the late stage of infection, prior to escaping the host, has 

been observed (101, 121, 132). However the mechanism of this down-regulation 

is not understood. To turn off virulence expression, toxT expression must be 

stopped and this can be achieved by terminating activation of both the toxT and 

the tcpA promoters. Recent studies have shown that the level of TcpP is 

negatively controlled at multiple levels through promoter repression and protein 

degradation (8, 96, 116). This complex regulation might account for shutting off 

transcription from the toxT promoter. However, the mechanism for turning off the 

tcpA promoter is unknown, and here we present evidence for ToxT proteolysis 

when the bacteria are grown under conditions that do not favor virulence 

production. Maximal ToxT degradation occurs when the cells are grown under 

classical virulence-repressing conditions, whereas minimal or no degradation 

occurs when bacteria are grown under virulence-inducing conditions. Further 

analysis suggests that the unstructured motif located between ToxT amino acids 

100-110 is required for this degradation. ToxT proteolysis likely accounts for the 

shutting down of the autoregulatory loop as the bacteria prepare to escape from 

the human host and resume their environmental lifestyle.    
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There are few examples in the literature of proteolysis controlling the level 

and activity of transcriptional regulators in bacteria. It is widely accepted that the 

concentrations of these regulators are controlled by their rate of synthesis and 

their concentration is decreased due to repeated cell division. However, it has 

been shown that lambda CII, lambda CI repressor and LexA repressor proteins 

are controlled by proteolytic degradation (56, 109, 147). The CII protein is a 

positive regulator for lysogen formation and is cleaved by the ATP-dependent 

Lon protease (56). Both lambda and lexA repressors that normally prevent gene 

transcription are also autocleaved in an ATP-dependent manner when targeted 

by RecA, and so their repression is relieved (109, 187). Further analysis revealed 

that the proteolytic degradation of these repressors results in production of two 

stable smaller fragments (109, 147). Interstingly, a similar circumstance occur in 

regard to ToxT degradation. Proteolytic cleavage of ToxT also produces smaller 

fragments with one predominant fragment that is approximately half the size of 

ToxT. Proteolytic cleavage of ToxT into fragments should inactivate pre-existing 

ToxT as it loses specific motifs that are required for its activity (30).  

Depletion of cellular ATP prior to culturing the cells under high pH and 

temperature was able to rescue ToxT from degradation. However, a band 

smaller than full length ToxT was resolved on SDS-PAGE. This band could result 

from cleavage of ToxT protein to produce a slightly smaller polypeptide in a step 

that is less sensitive to ATP depletion, and further ToxT degedation is inhibited 

by ATP depletion as it occurs in ATP-dependent manner. V. cholerae encodes at 
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least three different cytoplasmic ATP-dependent proteases (ClpP, Lon, and 

HslV). Thus, we suspected that one of these systems is responsible for ToxT 

degradation. However, individual in-frame deletions of clpP, lon, or hslV did not 

prevent ToxT degradation. Additionally, inactivation of the recA gene, which 

prevents proteolysis of Lambda and LexA repressors (109, 187), did not prevent 

proteolysis of ToxT. The degradation fragments that resulted from ToxT 

degradation in wild type V. cholerae strain were still detected by western analysis 

in recA, lexA, clpP, lon, and hslV mutant strains of V. cholerae (data not shown). 

These results suggest that these proteases individually are not required for ToxT 

degradation and additional proteases might be able to cleave ToxT. It is worth 

noting that deletion of the lon gene from V. cholerae does not result in production 

of mucoid colony morphology as it is in E. coli. Searching the V. cholerae 

genome revealed additional proteases that are related to the Lon protease. 

These or other proteases could possibly substitute for any defective Lon function 

and prevent the mucoid phenotype and perhaps ToxT degradation.   

Degradation of ToxT is enhanced by increasing temperature. Maximum 

ToxT proteolysis occurs when culturing the bacteria in LB with high pH and 

temperature. In contrast, minimal degradation occurs when culturing the bacteria 

in LB with a lower starting pH and temperature. Further analysis suggests that 

the temperature, rather than pH, is the major environmental factor that enhances 

ToxT degradation (data is not shown). In general, increased temperature leads to 

increased expression and activity of several cytoplasmic protease systems. V. 
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cholerae also responds to increased temperature with increased expression of 

several proteases and chaperones (163). Additionally, clpB1 and clpB2, which 

function to dissociate inactive protein aggregates, are differentially induced in 

vivo (inside rabbit intestine) and clpB1 expression increases in response to 

higher temperature and pH (130).  

Treatment of V. cholerae with chloramphenicol to stop protein synthesis 

rescues ToxT degradation. These results suggest that the protease(s) that 

degrade ToxT require protein synthesis to function. We further tested whether 

any of the above proteases induced at higher temperature are responsible for 

ToxT degradation. However, none of the individual mutants prevented ToxT 

degradation. Again, a possible explanation is that more than one protease can 

degrade ToxT and inactivating one protease at the time might not be sufficient to 

prevent ToxT degradation.  

The unstructured region of ToxT plays a role in controlling ToxT 

expression and activity. Protein fusions of MBP with different parts of ToxT 

suggested that the motif located between amino acids 100-110 is important for 

ToxT degradation as this region is required to produce the predominant 

degradation fragment of ToxT. The recently solved ToxT crystal structure 

revealed the 100-110 region of ToxT remained unstructured under the conditions 

that were used (111). Unstructured regions of proteins commonly serve as 

initiation sites for efficient degradation by the mammalian proteasome (140). In 

bacteria these unstructured regions of proteins are less common, but a recent 
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study showed that the unstructured motif of the bacterial Pub (prokaryotic 

ubiquitin-like) protein is required for its degradation (107). These results may 

suggest that bacteria could recognize these unstructured regions of protein to 

initiate their degradation. Furthermore, mutational analysis by alanine substitution 

in this region enhances ToxT function. Changing amino acids at positions 103, 

105, or 106 causes more than a 300% increase in ToxT activity when compared 

to wild type ToxT when measured in terms of ctxA-lacz expression (30). Amino 

acid substitutions in this region could result in a conformational change in this 

motif to stabilize and/or enhance the activity of ToxT.      

In summary, we have demonstrated that the ToxT protein is regulated by 

proteolysis. The degradation of ToxT maximally occurs under conditions that do 

not favor virulence induction while it minimally occurs under conditions that do 

favor virulence induction. Furthermore, the disordered domain that extends 

between amino acids 100 and 110 appears to play a role in ToxT degradation. 

ToxT proteolysis may suggest a model for terminating V. cholerae virulence gene 

expression during the course of infection, with both ToxT and TcpP undergoing 

proteolysis prior to escape from the host. 
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FIG. 12. ToxT protein levels and activity under virulence inducing and repressing 
conditions. (A) ToxT activity was measured by tcpA-lacZ fusion expression. Open 
bars, culturing under virulence repressing conditions. Grey bars, culturing under 
virulence inducing conditions. (B) Time course monitoring ToxT protein 
accumulation under inducing and repressing conditions. ToxT protein was 
detected using anti-ToxT antibody. For protein loading control; mouse anti-EF-α1 
(elongation factor- α1) was used. 
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FIG. 13. Transcriptional analysis of the ToxT autoregulatory loop. (A) β-
galactosidase production from the chromosomal toxT-lacZ fusion strain. Under 
inducing conditions, production of β-galactosidase occurs both through activation 
of the toxT promoter and via the autoregulatory loop by activation of the tcpA 
promoter (dark grey bars). Under repressing conditions, production of β-
galactosidase occurs only through the autoregulatory loop by activation of the 
tcpA promoter (dark grey bars). In the absence of ToxT (white bars) or deletion of 
the tcpA promoter (light grey bars), production of β-galactosidase occurs only 
through the toxT promoter activation. (B) Contribution of the autoregulatory loop 
to the level of toxT mRNA. White bar is the tcpA promoter deletion strain. Grey 
bar is wild type O395 strain. *Significant difference in toxT mRNA level was 
determined by student’s t-test with a p Value of < 0.02. 
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FIG. 14. The fate of ToxT protein when shifting the cells from inducing to 
repressing conditions. (A) ToxT was undetected after one hour post shifting from 
inducing to repressing growth conditions. (B) Earlier time points show the loss of 
ToxT protein starts within 15 minutes post shifting and ToxT was undetected after 
one hour. Protein loading control shows an increasing in the amount of control 
protein over time.  Arrows indicate ToxT protein band. 
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FIG. 15. ToxT fate in the absence of protein synthesis and cellular ATP. Primary 
cultures were grown under inducing conditions to produce ToxT (lane 2). Prior to 
shifting into repressing conditions, cells were either not treated (lane 4), treated 
with α-methylglucoside and sodium azide to deplete cellular ATP (lane 5), or 
treated with chloramphenicol to inhibit protein synthesis (lane 6). ToxT protein 
was monitored by western analysis using anti-ToxT antibody. Purified His6-ToxT 
was used as a positive control, ∆toxT and ∆toxR strain backgrounds served as 
negative controls, and Anti-EF-α1 was used for protein loading control. 
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FIG. 16. Proteolytic cleavage of ToxT protein. N-terminal and C-terminal His-
tagged ToxT was overexpressed while the cells were grown at 37°C in LB with 
starting pH 8.5 (virulence repressing conditions). Protein samples were run on 
15% SDS-PAGE and His-tagged ToxT and its cleavage fragments were detected 
with anti-polyhistidine monoclonal antibody. Solid arrows indicate the 
predominant ToxT fragments, whereas light arrows indicate full length and the 
minor ToxT degradation fragments. M for protein marker ladder with the 
correspond sizes.  
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FIG. 17. ToxT degradation in both V .cholerae biotypes and E. coli. Both the 
classical and El Tor biotypes of V. cholerae (A) as well as E. coli K12 (B) can 
degrade ToxT when cultured under high pH and temperature. (B) ToxT 
degradation was observed when V. cholerae or E. coli were grown in either LB at 
pH 8.5 and 37°C or in LB at pH 6.5 and 30°C. Full lengh ToxT and the fragments 
that resulted from the C-terminal His-tagged protein degradation were detected 
with anti-His6 monoclonal antibody. 
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FIG. 18. ToxT motif located between amino acids 100-110 is required for ToxT 
degredation. When grown under virulence repressing conditions, overexpression 
of the translational MBP-ToxT-His6 fusion produces a predominant degradation 
fragment just below the 23 kDa protein marker band (arrow) in addition to full 
length protein construct (lane 3) similar to the ToxT-His6 control (lane 2). N-
terminal truncation of the first 100 amino acids did not interfere with production of 
the degradation fragment (lane 4). However, truncation of 110 amino acids or 
more prevents production of the degradation fragment. Full length ToxT and the 
degradation protein fragment were detected with anti-His6 antibody. 
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Strain or Plasmid Discriptions Reference or Source 
Strain   
  JW 419 E.coli K12 Lab collections 
  JW 75 E.coli SM10λpir (162) 
  JW 9 V.cholerae classical biotype 

O395  
Lab collections 

  JW 513 V.cholerae El Tor biotype 
E7946 

Lab collections 

  JW 150 O395∆toxT (25) 
  JW 199 O395∆toxR (100) 
  JW 690 O395tcpA-lacZ (3) 
  JW 611 O395toxT-lacZ (65) 
  JW 714 JW 150tcpA-lacZ This work 
  JW 919 JW 611∆PtcpA This work 
  JW 922 JW 690∆PtcpA This work 
  JW 672 JW 611 + pBAD33 This work 
  JW 673 JW 611 + pJW 181 This work 
  JW 808 JW 714 + pJW 342 This work 
  JW 812 JW 714 + pJW 347 This work 
  JW 928 JW 919 + pJW 181 This work 
  JW 895 JW 513 + pJW 342  This work 
  JW 811 JW 419 + pJW 342 This work 
  JW 1076 JW 714 + pJW 412 This work 
  JW 1077 JW 714 + pJW 413 This work 
  JW 1078 JW 714 + pJW 414 This work 
  JW 1120 JW 714 + pJW 429 This work 
  JW 1121 JW 714 + pJW 430 This work 
  JW 1122 JW 714 + pJW 431 This work 
  JW 1123 JW 714 + pJW 432 This work 
Expression Plasmids   
  pBAD33 Arabinose-inducible plasmid (58) 
  pJW 181 pBAD-toxT (3) 
  pJW 342 pBAD-toxT-his6 This work 
  pJW 347 pBAD-his6-toxT This work 
  pMAL-c-2e IPTG-inducible plasmid New England Biolabs 
  pJW 412 pMal- ToxT1-276-His6 This work 
  pJW 413 pMal- ToxT101-276-His6 This work 
  pJW 429 pMal- ToxT110-276-His6 This work 
  pJW 430 pMal- ToxT115-276-His6 This work 
  pJW 431 pMal- ToxT120-276-His6 This work 
  pJW 432 pMal- ToxT130-276-His6 This work 
  pJW 414 pMal- ToxT151-276-His6 This work 

Table 1. List of strains and expression plasmids used in this work.
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CHAPTER THREE 

Genetic Screening for Bacterial Mutants in Liquid Growth Media by 

Fluorescence-Activated Cell Sorting 

ABSTRACT 

 Many bacterial pathogens have defined in vitro virulence inducing 

conditions in liquid media which lead to production of virulence factors important 

during an infection. Identifying mutants that no longer respond to virulence 

inducing conditions will increase our understanding of bacterial pathogenesis. 

However, traditional genetic screens require growth on solid media. Bacteria in a 

single colony are in every phase of the growth curve, which complicates the 

analysis and make screens for growth phase-specific mutants problematic. Here, 

we utilize fluorescence-activated cell sorting in conjunction with random 

transposon mutagenesis to isolate bacteria grown in liquid media that are 

defective in virulence activation. This method permits analysis of an entire 

bacterial population in real time and selection of individual bacterial mutants with 

the desired gene expression profile at any time point after induction. We have 

used this method to identify Vibrio cholerae mutants defective in virulence 

induction.  

INTRODUCTION 

A common theme among bacterial pathogens is the response to host or 

environmental cues during an infection, followed by modulation of virulence gene 

expression. Isolating bacterial mutants that no longer respond to these cues 
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allows us to identify genes involved in virulence regulation and increases our 

understanding of how environmental cues contribute to virulence. Screening for 

regulatory mutants utilizing lacZ fusion technology has been successfully applied 

to a wide range of biological processes (157). In this method, transcriptional 

fusions are constructed between a promoter of interest and lacZ, which encodes 

β-galactosidase. By screening for bacteria with altered β-galactosidase 

production, mutations of interest can be isolated. However, this method requires 

culturing the bacteria on solid media to identify blue and white colonies using X-

Gal. Within a single colony, bacteria in each stage of the growth curve are 

present, which can make identification of some mutants difficult. The lengthy 

growth period required to form a colony may also result in the slow accumulation 

of β-galactosidase, resulting in failure to identify mutants of interest.   

Many bacterial pathogens have well-defined in vitro conditions that induce 

virulence gene expression in liquid media. Developing a screening method to 

isolate mutants in liquid media, in which most bacteria are in similar phases of 

the growth curve, and which may, in some cases, better mimic the interaction 

between the bacteria and the stimuli in vivo (3), would be a major improvement 

over traditional genetic screening methods.  

Fluorescence-activated cell sorting (FACS) technology has been shown to 

be an efficient method to isolate specific bacterial populations (9, 139). FACS 

has also been used to isolate intracellular bacteria and bacteria grown during 

infections that modulate gene expression (18, 184), and to identify promoters 
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induced during infection (183); this method is generally known as differential 

fluorescence induction. Here, we utilized FACS technology to screen a bacterial 

random transposon mutant library grown in vitro in liquid medium. We used the 

gram-negative pathogenic bacterium Vibrio cholerae for our screen as its 

virulence inducing and repressing conditions in liquid media are well-

characterized (50, 125). 

V. cholerae is the causative agent of cholera and responds to 

environmental factors including pH, temperature, osmolarity, certain amino acids, 

bile, and bicarbonate to modulate virulence (57, 82, 125). Classical biotype V. 

cholerae virulence gene expression can be controlled simply by altering the 

starting pH of LB medium and growth temperature. In LB starting at a low pH (pH 

6.5) and lower temperature (30°C) virulence gene expression is fully induced. In 

LB starting at a high pH (pH 8.5) and higher temperature (37°C), virulence gene 

expression is minimal (50, 125).   

We designed a screening method that utilized FACS to identify and select 

bacterial mutants having lowered V. cholerae virulence gene transcription under 

virulence inducing conditions in liquid media. The V. cholerae strains used in this 

screen carry a fusion of the tcpA promoter region, which controls expression of 

the toxin-coregulated pilus, a major V. cholerae virulence factor, to the gfp gene 

encoding green fluorescent protein (GFP). The GFP produced from these 

constructs has a half life of ~20 minutes (18), so the problem of slow 

accumulation of GFP over time, leading to false positives, is avoided. The V. 
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cholerae mutant library was created using random transposon mutagenesis. This 

FACS screening method identified all genes known to positively regulate V. 

cholerae virulence gene expression as well as genes that had no previously 

known role in virulence gene expression. Similar screens are likely to be very 

useful for other bacterial pathogens having defined growth conditions in liquid 

media. 

MATERIALS AND METHODS 

 Bacterial Strains, Reagents, and DNA Manipulation. V. cholerae 

classical biotype strain O395 was used as the parent strain to generate the 

transposon mutant library, an isogenic ∆toxT strain was used as a negative 

control, and E. coli SM10 (λpir) was used for conjugation. All strains were 

maintained at -70°C in LB medium containing 20% glycerol. Bacteria were grown 

in LB medium containing antibiotics at the following concentrations: streptomycin, 

100 µg/ml; ampicillin, 100 µg/ml; and kanamycin, 50 µg/ml. The tcpA::gfp fusion 

plasmid (pJW316) was constructed by PCR amplifying the tcpA promoter from V. 

cholerae O395 genomic DNA and cloned into pMW82 (18) using SphI and XbaI 

restriction sites. To construct the chromosomal tcpA-gfp fusion, tcpA::gfp was 

amplified by PCR along with 600 bp segments of the lacZ gene and cloned into 

the suicide vector pKAS32. The resulting product was moved into the V. cholerae 

lacZ locus by filter conjugation as previously described (162). 

Transposon Mutagenesis and Identifying Site of Insertion. The suicide 

plasmid pFD1, which encodes the Kanamycin resistance Himar1-derived 
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transposon and Himar1 transposase, was introduced by filter conjugation into V. 

cholerae O395 carrying pJW316. This was done by co-incubating V. cholerae 

(recipient strain) and SM10 (λpir) (donor strain) on nitrocellulose filter paper over 

an LB plate for 3 hours at 37°C. Cells were then washed into LB media 

containing Streptomycin and Ampicillin and 2mM of isopropyl b–D-1-

thiogalactopyranoside (IPTG) was added to induce the expression of the 

transposase. V. cholerae transposon mutants were selected on LB plates 

containing streptomycin, ampicillin, and kanamycin. The plates were incubated 

for 7 hours at 37°C, which was sufficient for colony formation. Resulting colonies 

were pooled and cultured in liquid medium for 3 hours under virulence inducing 

(LB at pH 6.5 and 30°C) or repressing conditions (LB at pH 8.5 and 37°C).  At 

this point the bacteria are in logarithmic growth phase (115) and the V. cholerae 

virulence regulon is fully induced (190-192). 

Direct sequencing by using genomic DNA was performed to identify the 

insertion site of the transposon. Briefly, genomic DNA was isolated from each 

mutant using the Wizard Genomic DNA Purification Kit (Promega). The DNA 

sequence adjacent to the transposon was obtained by using primers BP 30 (5'-

ATGCATTTAATACTAGCGACGCC-3') or BP 31 (5'-

CGCTCTTGAAGGGAACTATGTTG-3'), which bind near the ends of the 

transposon.  

Flow Cytometry and FACS. V. cholerae O395 strain lacking gfp was 

grown under inducing conditions for 3 hours and used to set the parameter 
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channels of the flow cytometer and the cell sorter. The three parameters; forward 

scatter (FSC), sideward scatter (SSC) and green fluorescence (515-545 nm), 

were set using a logarithmic scale. For flow cytometry analysis, the level of green 

fluorescence was measured by using a FACSscan flow cytometer (Becton 

Dickinson) and the data were further analyzed with FlowJo analysis software. For 

bacterial sorting, low GFP-expressing mutants were sorted using a FACS Diva 

(Becton Dickinson) into LB media containing 20% glycerol and stored at -70°C. 

Individual colonies were recovered by plating the FACS isolates on LB plates 

containing ampicillin, streptomycin and kanamycin. 

Statistical analysis. The percentage of GFP-expressing cells was 

calculated as the average of three independent experiments ± standard deviation 

(S.D.) Statistical significance of the low level of gfp-producing mutants was 

determined by student’s t-test with p value <0.0006. 

RESULTS 

gfp fusion constructs. We constructed strains carrying the tcpA::gfp 

fusion on either the bacterial chromosome or on a plasmid. The plasmid-based 

construct is a derivative of pMW82 (18) in which the tcpA promoter region from 

classical V. cholerae strain O395 has been inserted upstream of gfp to create 

pJW316. Wild-type O395 and JW150, an isogenic strain containing a deletion of 

toxT, the major virulence activator, were then transformed with pJW316. 

Because ToxT activates transcription of all major V. cholerae virulence genes, 

including tcpA, we used the tcpA promoter region as a prototypical major 
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virulence promoter. Preliminary flow cytometry experiments with these strains 

indicated that high GFP levels were produced when bacteria were grown under 

virulence inducing conditions (Fig. 19A), whereas very low GFP levels were 

produced when bacteria were grown under virulence repressing conditions. GFP 

production is ToxT -dependent, as the ∆toxT strain that carries tcpA::gfp did not 

express any GFP. 

Transposon mutagenesis and FACS screening. V. cholerae O395 

carrying tcpA::gfp was subjected to mariner-based transposon mutagenesis. This 

method was chosen because it has proven very effective in producing mutant 

libraries (148). Approximately 105 mutant colonies were pooled after growth on 

LB plates containing proper antibiotic. The mutant pool was also tested for 

response to virulence inducing and repressing conditions by measuring GFP 

levels. As expected, most of the mutant pool resembled wild type V. cholerae 

and produced high GFP levels under inducing conditions and low GFP levels 

under repressing conditions (Fig. 19B). To identify mutants with defects in 

activation of tcpA expression we grew the mutant pool under virulence inducing 

conditions and screened for low GFP-expressing cells by FACS.   

Identification of genes that are required for V. cholerae virulence 

gene expression. Using the FACS screen/selection described above, we sorted 

approximately 3 X105 transposon mutants having low tcpA::gfp expression in 

liquid medium from a population of 6 X 108 V. cholerae. Individual mutants were 

plated and resulting colonies were re-suspended in liquid medium as before, 
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grown for 3 hours under virulence inducing conditions, and retested by flow 

cytometry to verify low GFP expression levels in liquid medium under inducing 

conditions. One hundred fifty-five mutants were individually tested in this manner 

and fifty-three transposon mutants were identified that had reproducibly low GFP 

expression; genes carrying the transposon insertion were identified by DNA 

sequencing out of the transposon. The genes containing transposon insertions 

included known positive virulence regulators aphA, aphB, tcpP, toxR, and toxT 

that validate our screening method (Fig. 20). In addition we identified genes 

encoding N-acetylmuramoyl-L-alanine amidase (amiB), DNA mismatch repair 

protein MutL (mutL) and DNA polymerase II (polB), as previously unknown 

positive virulence regulators (Fig. 20). 

DISCUSSION 

Here we describe a FACS-based screening system for identifying bacterial 

mutants with altered virulence gene expression in liquid growth media. Our data 

indicate that this screening system works well for V. cholerae, which has well-

defined virulence inducing and repressing conditions in liquid media. In addition 

to experiments described above that identified mutants with defects in virulence 

gene expression under classical virulence inducing conditions, we have 

successfully performed screens for mutants that have increased virulence gene 

expression under classical virulence repressing growth conditions (B. H. Abuaita 

and J. H. Withey, unpublished data). We have also observed altered GFP 

expression when either classical or El Tor biotype V. cholerae are grown in the 
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presence of two natural effectors, bile and bicarbonate, and have isolated 

mutants that do not respond to either of these effectors (B. H. Abuaita and J. H. 

Withey, unpublished data). Therefore, this screen should be useful in general for 

identifying V. cholerae mutants with alterations in the virulence regulatory 

cascade. Our screen successfully identified all known positive virulence 

regulators, as well as genes not previously known to be involved in the virulence 

cascade. These results strongly validate the methodology of screening for 

bacterial mutants by FACS in liquid culture.  

In addition to V. cholerae, this screen should prove useful for any bacterial 

species with defined growth conditions in liquid medium. Other bacterial 

pathogens having well-defined virulence-inducing conditions in liquid media 

include Bacillus anthracis, Streptococcus pyogenes, Enterohemorrhagic 

Escherichia coli, and Citrobacter rodentium, all of which stimulate virulence 

induction in response to the presence of CO2/ bicarbonate in liquid media (2, 7, 

22, 81, 196). Additionally, Yersinia pestis induces its type-three secretion system 

in response to low calcium levels (170), and Bordetella pertussis induces the 

BvgAS system when subcultured into media lacking MgSO4 or nicotinic acid (32, 

167). These different growth conditions have been designed to maximize 

virulence factor production. However, the mechanisms by which these 

environmental signals stimulate virulence are not well defined. Isolating bacterial 

mutants that no longer respond to these cues using FACS technology will 

increase our understanding of how these different systems work. Utilizing FACS 
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technology to screen for mutants grown in liquid media allows examination of an 

entire bacterial population (or entire mutant library) in real time and provides a 

significant advantage over the classical lacZ screens on solid media. 

Our screen for V. cholerae mutants with defects in virulence activation 

identified not only all the known positive virulence regulators but also amiB, mutL 

and polB, three potential positive regulators. Both mutL and polB are involved in 

the DNA repair system, while amiB is involved in cell wall hydrolysis (13, 182). 

amiB is located adjacent to mutL and in E. coli the mutL promoter region is 

located within amiB (182). Because the transposon inserted near the end of 

amiB, we suspect that this mutant may have a polar effect on mutL expression.   

The DNA repair systems could positively affect virulence induction by 

maintaining the integrity of the V. cholerae genome. Both mutL and polB are 

involved in DNA repair. One explanation for how mutations to these genes may 

affect virulence gene induction is by an increase in secondary mutations. 

Secondary mutations could affect known transcriptional activators (AphA, AphB, 

TcpP, ToxR, and/or ToxT), or alter DNA binding sites recognized by these 

activators. An in-frame mutL deletion strain constructed after identifying mutL in 

the FACS screen had the same tcpA expression defects as the mutL transposon 

insertion strain and also had a defect in cholera toxin production (data not 

shown), confirming that disrupting mutL causes a bona fide defect in virulence.  

Further work is being done to understand how the mutL and polB mutations 

reduce virulence induction.  
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Here, the FACS-based screening method was shown to be effective for 

identifying transposon insertions that disrupt virulence activation. However, the 

screen can easily be modified for other applications. Isolating transposon 

mutants with constitutively active virulence promoters can identify negative 

virulence regulators. Another application of this technique could be isolating 

mutants based on cell size. Different cell sizes can be distinguished and isolated 

by FACS based on forward and sideward scatter profiles. This type of screen 

would be useful for further understanding the mechanism by which different 

growth conditions lead to different cell sizes, as we have limited knowledge 

regarding the regulatory pathways that govern this process. 

In summary, we were able to identify and select mutants that did not 

induce PtcpA-gfp expression under virulence-inducing growth conditions in liquid 

using FACS. Because V. cholerae has well-defined virulence inducing and 

repressing conditions in liquid media but ill-defined virulence characteristics on 

solid media, this screen has proven very useful to us for many different 

applications.  Many other bacteria, especially pathogens, also have well-defined 

growth conditions in liquid that induce virulence, and thus we believe FACS 

genetic screening will prove very useful to many labs. 
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FIG. 19. GFP production under inducing and repressing conditions. (A) 
Histograms show the level of gfp fluorescence intensity of V. cholerae O395 and 
its isogenic ∆toxT strain that carry the tcpA::gfp fusion plasmid and grown under 
inducing or repressing conditions. The red histograms represent gfp negative V. 
cholerae grown under inducing conditions, the blue histograms represent the 
fluorescent bacteria. The percentage of gated cells is the average of three 
independent experiments with ±S.D. (B) FACS analysis of a pool of mutants 
grown under inducing or repressing conditions. A wide range of gfp expressing 
mutants was produced when grown under inducing conditions as most of the 
mutants produce high fluorescence while some produced low gfp. Under 
repressing conditions, most of the mutants produce low gfp while some produce 
intermediate fluorescence levels. 
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FIG. 20. Individual transposon insertion mutants exhibit a lower level of tcp::gfp 
expression when grown under inducing conditions. The red histograms show 
non-fluorescent V. cholerae grown under inducing conditions. The blue 
histograms represent gfp fluorescence intensity of different transposon insertion 
mutants and parent strain. The percentage of gated cells is an average of three 
independent experiments. Statistical significance between each individual mutant 
and the parent strains was determined by student’s t-test with P value <0.0006. 
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APPENDIX A 

The effect of ToxT on swarming motility 

Virulence and motility are two processes that are inversely regulated by V. 

cholerae. Hyper-swarming motile bacterial strains produce lower levels of TCP 

and CT, while non-swarming motile bacteria produce larger amounts of TCP and 

CT when compared to the wild type parent strain (49). The mechanism by which 

one process regulates the other is not well understood. The two processes 

require massive amounts of energy and one explanation is that V. cholerae can’t 

perform the two functions at once. Therefore, regulators must somehow activate 

one process while repressing the other. The primary virulence activator is ToxT 

and a ∆toxT strain is hyper-motile (Table 2). To further analyze the role of ToxT 

in the capability of the bacteria to swarm, we overexpressed ToxT in trans from 

pBAD-toxT in a ∆toxT strain and assessed the overall swarming motility. Different 

strains of V. cholerae were stabbed using a toothpick onto swarming plates (LB 

with 0.3% agar) that contain arabinose to induce ToxT expression and 

chloramphenicol for plasmid stability. The plates were incubated at 37°C for 16 

hours and the swarming diameter for each strain was measured. 

Overexpressing ToxT significantly inhibits total motility. ToxT-expressing 

strains produce swarming circles of 14 mm in diameter on average, whereas the 

control plasmid produces swarming circles 32 mm in diameter on average (Table 

2). These results suggest that ToxT can repress or induce gene products that 

affect the swarming motility. One mechanism for this is that ToxT directly 
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activates the production of the TCP. Over-produced pili could lead to the 

formation of microcolonies, which could interfere with flageller rotation and thus 

reduce swarming motility. To test this possibility, we overexpressed ToxT in a 

∆toxT and ∆PtcpA (tcpA promoter deletion) strain and assessed total swarming 

motility. Overexpressing ToxT in this strain still inhibits swarming motility when 

compared to a strain that harbors the control plasmid. Double deletion of toxT 

and the tcpA promoter strain which harbors pBAD-toxT produced a 15 mm 

swarming diameter as apposed to a strain harboring the control plasmid, which 

produced 30 mm. These results suggest that the effect of ToxT on 

overproduction of TCP can’t account for the effect of ToxT on swarming motility. 

To further assess whether functional ToxT is required to reduce swarming 

motility, we overexpressed a ToxT mutant that either has a point mutation at 

amino acid 52 or a truncation mutant that lost the second helix-turn-helix motif. 

These ToxT mutants are defective in activation of a tcpA-lacZ fusion (M. Bellair; 

unpublished data). Overexpressing ToxT∆hth mutants in a ∆toxT strain did not 

inhibit swarming motility, while an amino acid substitution at position 52 

somewhat reduced the swarming motility by an average of 7 mm. These results 

suggest that functional ToxT is required for swarming motility inhibition.    

In vivo virulence and motility have also been proposed to be inversely 

regulated. To assess whether overexpression of ToxT, which interferes with 

swarming motility, affects overall colonization of the infant mouse gut, we utilized 

two approaches. First, a strain with plasmid-based overexpression of ToxT 
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protein was competed with a control parent plasmid strain. Second, a 

constitutively ToxT-expressing strain (ToxTC) was constructed and assessed for 

its ability to compete with wild type O395 for colonization of the infant mouse 

intestine.  

The ToxTC strain was constructed by fusing a λ PR promoter to toxT (λ PR-

toxT) and inserted into the lacZ locus of V. cholerae. The new strain was 

confirmed for its ability to constitutively express ToxT under repressing conditions 

when ToxT protein is normally undetected in wild type parent strains (Fig. 21A). 

ToxT protein is also functionally active in the ToxTC strain (Fig. 21B). Notably, the 

level of ToxT protein and its activity is still at minimum when compared to the 

level of ToxT protein produced by the cells that are grown under inducing 

conditions (Figs. 21A and B). The difference in ToxT protein is not due to lower 

toxT transcripts as real time PCR showed that the level of toxT transcripts are the 

same under inducing and repressing conditions (Fig. 21C). These results 

suggest that ToxT protein is regulated at a posttranscriptional level and perhaps 

by degradation (see Chapter 2 of this dissertation).  

To test the ability of ToxTC strains to colonize the infant mouse intestine, a 

competitive index was determined. An equal amount of wild type O395 and 

ToxTC strains were inoculated intra-gastrically into 4-day old mice. After 16 hours 

of incubation at 30ºC, the mice were sacrificed, their intestines were 

homogenized, serially diluted with LB and plated on LB plates containing 

streptomycin and X-Gal. White colonies (ToxTC, lacZ-), and blue colonies (wild-
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type, lacZ+) were counted after 16 hours of incubation at 30ºC. In vitro control 

growth was done in which the combined inocula were plated on LB plates 

containing streptomycin and X-Gal and incubated at 30ºC for 16 hours. The 

competitive index (CI) was calculated by utilizing the following formula; CI = 

(white/blue during infection) / (white/blue in vitro). Data in Fig. 22 show there was 

a small defect (about half fold) in the ability of the ToxTC strain to colonize the 

infant mouse intestine. Similar results were obtained when ToxT protein was 

overexpressed from a plasmid and competed with a strain that harbors the 

control plasmid (Fig. 22). Collectively, these results suggest that overexpressing 

ToxT might not be deleterious to the cells as V. cholerae has multiple 

mechanisms to regulate its level and activity during infection.  
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Strain Genetic Discriptions Swarming Motility 
Diameter (mm) 

JW 715 O395∆toxT + pBAD33 32 ± 3 

JW 716 O395∆toxT + pBAD-toxT 14 ± 2 

JW 927 O395∆∆PtcpAtoxT + 
pBAD33 

30 ± 3 

JW 928 O395∆∆PtcpAtoxT + 
pBAD-toxT 

15 ± 3 

JW 952 O395∆toxT + pBAD-
toxT∆hth 

31 ± 3 

JW 953 O395∆toxT + pBAD-
toxTE52A 

23 ± 3 

JW 989 O395 + pBAD33 17 ± 2 

 
Table 2. ToxT affects the swarming motility of V. cholerae. Overexpression of 
ToxT, ToxT mutation or a control parent plasmid in the indicative strain were 
assessed for effects on swarming motility. Swarming motility was measured by 
diameter of migration in soft agar. 
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FIG. 21.Charecterstics of a strain expressing ToxT constitutively (ToxTC). 
Expression of ToxT protein (A) and its activity in terms of cholera toxin production 
(B) were measured after wild type O395 or its derivative ToxTC strain were grown 
under inducing and repressing conditions. (C) The level of toxT mRNA that is 
produced by the two strains when grown under both conditions was determined 
by quantitative RT-PCR and normalized to the level of rpoB mRNA. ToxT protein 
was detected with anti-ToxT antibody. 
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FIG. 22. Competitive indices of V. cholerae strains that overexpress ToxT in the 
infant mouse model. The constitutive ToxT expressing strain (O395toxTC) was 
competed with wild-type O395 while the plasmid-based ToxT overexpressing 
strain (O395 + pBAD-toxT) was competed with O395 + pBAD33. Shaped boxes 
represent individual mice. 
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Appendix B 

 
Isolating Bacterial Mutants that Affect the Activity of ToxT protein  

To identify negative regulators that affect the activity of ToxT, we utilized a 

tcp-gfp fusion construct to isolate mutants with elevated ToxT activity when 

cultured under virulence repressing conditions. A pool of mutants was cultured 

under high pH and temperature, conditions under which wild type bacteria 

express a small amount of GFP, and high GFP expressing mutants were 

selected. This screen identified phosphoenol carboxykinase (pckA) and isocitrate 

dehydrogenase (icd) as potential negative regulators of ToxT activity. When 

these mutants were cultured under repressing conditions, they produced higher 

amounts of GFP when compared to the wild type strain (Fig. 23). Both pckA and 

icd are involved in central metabolism, therefore virulence and central 

metabolism could somehow be intertwined. 

The second screen was done to isolate mutants that are required for the 

ToxT autoregulatory loop. We used the toxT-lacZ reporter strain. This strain does 

not produce functional ToxT. However, when ToxT is applied in trans and the 

cells are grown at high pH and temperature on plate media (virulence repressing 

conditions), β-galactosidase is produced through the autoregulatory loop by 

ToxT-dependent activation of the tcpA promoter. A pool of mutants of this parent 

strain were grown on LB plates at pH 8.5 containing arabinose, triple antibiotic 

(streptomycin, kanamycin, and chloramphenicol), and X-Gal. Arabinose was 

added to induce toxT expression while X-Gal was added to monitor β-
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galactosidase activity. White and light blue colonies were picked for further 

analysis. All white colonies gave transposon insertions in the toxT gene. This 

confirms and validates our screen. Seven out of forty-four light blue colonies 

were isolated and lower levels of β-galactosidase were confirmed to be produced 

when cultured in liquid media (Fig. 24). The transposon insertions for three of the 

seven mutants were determined to be in pntB, varA, and uvrC. The varA gene is 

the response regulator that has been shown to activate three small regulatory 

RNAs (csrB, csrC, and csrD) implicated in quorum sensing (104) (Fig. 4). In 

addition, the varA deletion strain produces lower levels of TCP and CT, and is 

attenuated in mice (193). However, the mechanism for how varA negatively 

affects virulence is not understood. To further study the effect of VarA, an in-

frame deletion of V. cholerae varA was constructed. Deletion of the varA gene 

produces translucent colony morphology. It is severely attenuated in mice, but 

produces the same levels of TCP and CT in vitro when it is compared with the 

wild type strain. Future analysis should be conducted to understand the 

mechanism of attenuation of the ∆varA strain in vivo. This type of screen should 

also be repeated to isolate additional mutants that affect the activity of ToxT 

protein.   
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FIG. 23. V. cholerae mutants with elevated ToxT activity. Histograms show the 
level of gfp fluorescence intensity of V. cholerae O395 and transposon mutant 
derived strains that carry the tcpA::gfp fusion plasmid after growth under inducing 
or repressing conditions. The red histograms represent gfp negative V. cholerae 
grown under inducing conditions, the blue histograms represent the fluorescent 
bacteria. Both pckA and icd transposon mutants show elevated tcpA::gfp 
expression under repressing conditions. 
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FIG. 24. Defective mutants in activation of the autoregulatory loop. Seven 
mutants (1, 2, 3, 4, 13, 17, and 24) showed more than three fold reduction in the 
ability of ToxT to activate the autoregulatory loop when compared to a wild-type 
parent strain.  All mutant strains carry the pBAD-toxT plasmid and were grown 
under repressing conditions in the presence of 0.2% arabinose. Mutant 20 
produced a basal level of β-galactosidase activity. 
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CONCLUSION 

Vibrio cholerae, which is part of the normal aquatic flora around the world, 

uses a complex regulatory cascade to control expression of virulence 

determinants that it has acquired though horizontal gene transfer to facilitate 

colonization of the human intestine and to cause disease. For the past forty 

years, V. cholerae research has led to the discoveries of several regulators that 

are involved in the controlling virulence. Most of these studies were focused on 

understanding how expression of these regulators is controlled at the 

transcription level. However, posttranscriptional regulation of several key 

regulators such as TcpP and ToxT has been observed. ToxT protein is the 

primary transcriptional regulator that activates most virulence factors of V. 

cholerae, including TCP and CT, and can also activate itself through an 

autoregulatory loop of activation. The research that is presented in this 

dissertation highlights the regulation of ToxT protein after its initial production.  

Two effectors with opposite function control the activity of ToxT protein. 

Addition of bile or bile components to the culture media reduces the activity of 

ToxT whereas addition of bicarbonate enhances ToxT activity. Bile and 

bicarbonate are found in the small intestine where V. cholerae colonizes, and 

could be the natural effectors or signal molecules that V. cholerae senses to 

direct the bacteria into the appropriate niche within the intestine and provide a 

specific time for when virulence is induced and repressed. Future work should be 

conducted to better understand the mechanism of reduction and enhancement of 
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bile and bicarbonate over the activity of ToxT. With this knowledge we would 

have a better understanding of how ToxT protein is regulated and design simple 

cheap synthetic molecules that inactivate the function of this protein. 

ToxT protein is also regulated by proteolysis and this could be the 

mechanism for virulence termination. Early studies that monitored the V. 

cholerae transcriptome during infection led to the discovery of temporal virulence 

regulation. Both TCP and CT expression are induced during the early stages of 

infection and are repressed during the late stage of infection.  We have a 

relatively good understanding of how virulence is turned on as many studies 

have been conducted to elucidate this induction. However, how virulence is 

terminated is not known. Virulence induction occurs through coordinate activation 

of the ToxR/TcpP/ToxT system in response to a still unknown in vivo signal. 

Here, ToxT degradation by proteolysis under certain conditions has been 

demonstrated and this could account for virulence repression during the natural 

course of infection. Future work that identifies the protease that is responsible for 

ToxT degradation would be a major scientific achievement as it would increase 

our knowledge and understanding of the mechanism that the bacteria utilize to 

control the activity of transcriptional regulators at posttranscriptional levels and 

perhaps through proteolysis regulation.  
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Vibrio cholera, the causative agent of the severe diarreal illness cholera, 

uses a complex array of gene regulation to induce its virulence determinants. 

During the early stage of infection, and upon response to unknown signals, 

virulence genes are turned on. ToxT protein is the primary virulence gene 

transcription activator.  Once ToxT is produced, it amplifies its own expression 

through an auto-regulatory loop and directly binds and activates expression of 

various virulence factors including the toxin-coregulated pilus (TCP) and cholera 

toxin (CT). During the late stage of infection, virulence genes are turned off and 

the bacteria escape the host to resume their lifestyle in the aquatic environment. 

While posttranscriptional regulation of ToxT has been observerd, most studies 

were focused on revealing how toxT expression is initiated. Here, the regulation 

of ToxT protein at the posttranscriptional level has been explored.  
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In chapter one, experiments are presented that indicate bicarbonate is a 

positive effector molecule that enhances ToxT activity. Culturing the bacteria in 

the presence of bicarbonate increases the ToxT activity without inreasing the 

protein level. Bicarbonate is found in the small intestine where V. cholerae 

colonize humans and could be the natural signal that the bacteria sense during 

the course of infection to maximally induce its virulence determinents.  

In chapter two, the mechanism of virulence down-regulation as V.cholerae 

terminates its virulence expression during the late stage of infection preparing to 

enter back into the environment is assessed. The data suggest that virulence 

expression could terminate through ToxT proteolytic degradation. ToxT 

proteolysis was observed when culturing the bacteria at high temperature and 

pH, condition that has been found to repress virulence induction. Further analysis 

revealed that the unstructured motif which is located between amino acids 100-

110 of ToxT is important for this degradation.  

In the last chapter, a method of utilizing fluorescence-activated cell sorting 

(FACS) technology in conjuction with transposon mutagenesis is described. This 

method was used to isolate bacterial mutants that produce different gene 

expression profiles in response to environmental cues while cultured in vitro in 

liquid growth media.This technique should be applicable for isolating bacterial 

mutants that respond differently to chemical and physical inducers or repressors 

that are present in the liquid growth conditions. 
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