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Regular Articles 
Estimation of Process Variances in Robust Parameter Designs 

 
T. K. Mak   Fassil Nebebe 

 
Concordia University 

Montreal, Quebec, Canada 
 
 
The modeling of variation through interactions is appealing in crossed array design as it leads to greater 
robustness to certain type of model misspecification. As an alternative to signal-to-noise analysis, a new, 
systematic method based on Taguchi type crossed array design is given. It is shown in this article that 
when fractional factorial design is used for the outer array, the crossed array design is not robust to the 
presence of noise-noise interactions and a method of rectifying the problem is suggested.  
 
Keywords: Inner and outer arrays, interactions, off-line quality control, orthogonal polynomial, PerMIA, 
Taguchi experiment. 
  
 

 
Introduction 

 
Robust design has been widely used in industry 
to improve productivity and achieve higher 
quality at a lower cost. The main idea in robust 
design is to develop product and process designs 
that can deliver at a minimal cost units of target 
performance which are usable or functional with 
maintained quality under all intended operating 
conditions.  
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 Thus, one major approach in robust 
design is to reduce variation in the quality 
characteristic without actually eliminating the 
causes of variation (the noise factors). Instead of 
replacing some components with more 
expensive ones to achieve smaller variation from 
target, robust design methodology seeks 
combinations of levels of factors affecting the 
quality characteristics that are least sensitive to 
environmental changes in production or 
operating conditions. This adjustment to the 
optimal levels are usually less expensive and are 
achieved through parameter design. 

In parameter design, techniques of design of 
experiments are widely used to obtain data for a 
number of experimental runs corresponding to 
different combinations of the factors. An 
analysis of the resulting data is performed to 
approximate the optimal combination yielding 
the smallest variation from the target. In these 
regards, Taguchi-type experiments consisting of 
crossed arrays are sometimes performed, and the 
experimental data are analyzed using signal to 
noise ratio as a performance measure. A factor 
affecting response or product characteristic can 
be classified as a control factor or a noise factor 
(internal or external). Control factors are factors 
the levels or values of which are controllable 
during production. In contrast, the levels of the 
noise factors are expensive to control in 
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production or uncontrollable during use in the 
lifetime of the product. However, for the 
purpose of assessing their effects on the quality 
characteristics, the levels of the noise factors 
may also be controlled in the experimental runs 
in parameter design. In crossed array designs, 
each treatment combination of the control 
factors considered appears with every member 
in a set of treatment combinations of noise 
factors. 

 Taguchi’s crossed array design and the 
signal-to-noise ratio analysis were criticized in 
the literature (Box, 1988). Some major 
difficulties in Taguchi’s approach are 
summarized in Barreau et al. (1999). Crossed 
array design generally calls for a larger number 
of experimental runs which may be deemed 
unnecessary when some of the interactions may 
be safely assumed to be zero (Shoemaker et al., 
1991). Furthermore, the use of signal-to-noise 
ratio may not always be appropriate as a 
performance measure to be minimized (Box, 
1988), and modeling directly the signal to noise 
ration as the response in ANOVA is generally 
not intuitive and problematic. As an alternative 
design, the use of combined arrays has been 
suggested in the literature (Welch et al., 1990; 
Shoemaker et al., 1991). 

In combined array design, both the control 
and noise factors are integrated into the same 
array, resulting in less number of experimental 
runs. The resulting data are then analyzed 
differently, with the control factors affecting 
variance through their interactions with the noise 
factors (O’Donnell and Vining, 1997; Myers, 
1997). Engel and Huele (1996) used a 
generalized linear modeling approach to analyze 
combined array designs. 

It is interesting to note that similar approach 
of modeling through interactions between the 
control and the noise factors is in fact more 
appropriate for crossed array designs (Barreau, 
et al., 1999). Despite some of its major 
drawbacks, Taguchi's approach is still embraced 
by many practitioners, largely because of its 
conceptual simplicity and easier implementation 
that requires less sophisticated analytical tools. 
Furthermore, the combined array methodology, 
though more economical, is less robust than the 
crossed array design to model misspecification 
especially when certain significant interactions 

among control factors are accidentally omitted 
in the design and analysis.  
 The number of experimental runs 
required in a crossed array design can be 
substantially reduced by employing fractional 
factorial designs for the inner (involving control 
factors) and outer array (involving noise 
factors). Barreau, et al. (1999) examined the role 
of interactions between control and noise factors 
in a Taguchi type experiment. These approaches 
of design and analysis have the advantages of 
being more economical, and yet are capable of 
retaining the benefits of having crossed inner 
and outer arrays. 
 The use of interaction analysis also 
throws light on how the noise variables affect 
the response, and provides a more natural 
analysis than a direct modeling of the signal-to-
noise ratio as a response variable. Design of 
resolution III can be used for the inner array 
without any adverse effects on the study of 
variation or performance measure even if some 
interactions exist between control factors. 
However, complication arises when two factor 
interactions exist between noise factors. Such 
interactions do not appear in the true unknown 
objective function to be minimized for finding 
optimal levels, but it is shown in this paper that 
they can seriously bias the estimation of this 
objective function. 
 It is suggested that this potential bias be 
corrected based on a small confirmatory 
experiment. It is also proposed to use orthogonal 
polynomials in the analysis to facilitate the 
identification of adjustment variables, variables 
that only affect variation through the mean 
function. It is well known that the use of 
adjustment variables greatly simplifies the 
process of minimizing variation while having 
the mean on target. Furthermore, the use of 
orthogonal polynomials when some variables are 
quantitative allows one to better relate the 
analysis to response surface methodology and to 
obtain interpolated values for improved results 
in variance minimization. 

 
Methodology 

 
In this section, an outline of a systematic 
approach for analyzing data from a crossed array 
design is given. The details are best explained by 
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a practical example, which will be left to the 
next section. Let y be the response variable 
representing a certain product characteristic. 
Suppose there are c control variables each with 
kc levels, and n noise variables each has kn levels. 
For the ease of discussion, all the control and 
noise variables are assumed to be quantitative, 
but the necessary modifications when there are 
both quantitative and qualitative variables will 
be demonstrated with a real example in the next 
section. 
 Suppose that there are Nc treatment 
combinations in the inner array, which is an 
orthogonal resolution III main effect plan. 
Similarly, there are Nn treatment combinations in 
the outer array, which is an orthogonal 
resolution III main effect plan. Assume all 
interactions involving three or more factors 
(both control and noise factors) are non-
significant. For the ith control factor xi, there are 
kc levels corresponding to kc numeric coded 
values. Denote the set of the kc numeric coded 
values by W. Let )(),...,( 11 xuxu

ck −  be 

orthogonal polynomials where )(xu j  is a 

polynomial of degree j such that 

( ) 0
i

j i
x W

u x
∈

=∑ , 
'( ) ( ) 0

i

j i j i
x W

u x u x
∈

=∑
, for all 

j and ,jj ≠ . 

 The n noise factors nzz ,...,1 are random 

variables assumed to be independent and, 
without loss of generality, to have mean 0 and 
standard deviation 1. Thus if all the two factor 
control-control and noise-noise interactions are 
suppressed, a linear model for the response y 
conditional also on nzz ,...,1 can be formulated 

as: 
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where iα  is a 1×ck  vector, ,i
γ  is a scalar, 

ii ,β is a 1×ck vector of unknown coefficients, 

and T
k xuxuxu

c
))(),...,(()( 11 −= . Here the error 

term e has mean 0 and constant variance 2
eσ . 

Thus for given cxx ,...,1 , treating nzz ,...,1 as 

random, the variance of y is therefore 
 

   2 2 2
1 '

' 1

( ,..., )
n

c i e
i

x x Vσ σ
=

= +∑
             (1) 

 
 where  
 

' ' '
1

( ( ))
c

T
i i ii i

i

V u xγ β
=

= +∑
. 

 
 Thus to estimate the unknown iα , ,i

γ  

and 
'iiβ  can be estimated by the least squares 

estimators iα̂ , ,ˆ
i

γ  and 
'îiβ  using data collected 

from a crossed array design where the outer 
array is an orthogonal Resolution III main effect 
plan with each noise factors set at two levels -1 
and +1 (corresponding to 1±  standard 
deviation). The optimal solution for achieving 
smallest variation is obtained by minimizing the 
objective function (1). To obtain an approximate 
solution for smallest variation, one can minimize 
with respect to cxx ,...,1 , the estimated objective 

function: 
 

, ,

2
1 '

' 1
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ˆ ˆ( ,..., ) 
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n

c i
i
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=

=
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 How is this variance minimization 
procedure affected if some or all of the two 
factor noise-noise interactions are in fact non-
negligible? It is not difficult to see that in such 
cases, for given cxx ,...,1  the variance of y 

differs from (2.1) by a positive term that does 
not involve cxx ,...,1 . Thus one might want to 

minimize the same function ),...,(ˆ 1 cxxh . 

However, because the main effects in the outer 
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array are aliased with certain two factor noise-

noise interactions, the estimator 'ˆiγ  no longer 

estimates 'iγ  alone, but the sum of 'iγ  and the 

effects of the two factor noise-noise interactions 
in the same alias set. Thus it is not appropriate to 

minimize directly ),...,(ˆ 1 cxxh  without 

adjustment. It is proposed here that a follow up 
2n factorial (or a faction of 2n) experiment of the 
n noise factors be performed to estimate all the 
two factor noise-noise interactions 
independently. The estimates obtained are used 
to correct for bias of the estimated coefficients 

in the function ),...,(ˆ 1 cxxh . This procedure will 

be illustrated with the example in next Section.  
If for a control factor xi , the vector 

' 0iiβ =  

for all ni ,...,1. = , then xi does not appear in the 
objective function and the optimal solution does 
not depend on xi. This kind of control factor is 
called adjustment factor. Their existence greatly 
simplifies the procedure of minimizing variance 
while the mean is made on target, as the 
variation can first be minimized using the non-
adjustment control variables, and then the values 
of the adjustment variable is set to give the 
targeted mean value. The identification of 
adjustment variables can be done by examining 
the magnitudes of the two factor control-noise 
interactions using graphical technique such as 
the half normal probability plot (Box, 1988).  

With the present formulation through 
orthogonal polynomials, one can also examine 
the sum of squares of the orthogonal contrasts 
corresponding to these interactions. It is also 
suggested that the effects of the interactions of 
each control variable with the noise variables on 
the results of variance minimization be studied 
for this purpose. 

These approaches will also be illustrated 
with an example in the next section. If the 
constant variance in the assumed model is 
violated, one might have to transform the 
response variable to attain approximate 
homogeneity of variances. As explained in Box 
(1988), the minimization of variance in the 
transformed metric can be seen as approximately 
minimizing a performance measure independent 
of the mean (PerMIA). 

Results 
 
The new methods are outlined to re-analyze the 
data from a crossed array design, studied by 
Vandenbrande (2000), using signal-to-noise 
ratio. The data involve a car body paint spray 
process in which it is required to spray paint on 
a plate evenly to a desirable width. Although the 
surface has to be adequately covered, overspray 
would result in unnecessarily higher cost in paint 
as well as causing quality problems on other part 
of the car body. The response measurement y is 
the width of the paint pattern. 
 There are four control variables: type of 
gun x1 (a qualitative variable with values 1, 2 
and 3 representing three different guns), paint 
flow x2, paint airflow x3 and atomizing airflow 
x4. The last three variables are quantitative and 
each is set at 3 levels (low, medium and high) 
which we take to be equally spaced and coded as 
-1, 0, +1. There are three noise factors: color z1, 
input air pressure z2, and paint viscosity z3. Each 
of the three noise factors has two levels: -1 and 
+1. A Taguchi type of crossed array experiment 
is performed using the L9 and L4 orthogonal 
arrays for, respectively, the inner and outer 
arrays, as displayed in Table 1. 
 There are therefore 36 experimental 
runs, determined by crossing the 4 treatment 
combinations in the outer array with each of the 
9 treatment combinations in the inner array. The 
observed data are given in (Vandenbrande, 
1998, 1999).  

The first step in the analysis involves 
defining indicator variables for any qualitative 
control variables and finding orthogonal 
polynomials for the quantitative control 
variables. Here, only type of gun is qualitative 
and we define x11 to be equal to 1 for type 1 and 
0 otherwise, x12 equal to 1 for type 2 and 0 
otherwise. The linear and quadratic orthogonal 
polynomials used for 

2 3,  x x  and x4 are u1(x)=x, 

u2(x)=2-3x2. 
The coefficients of the linear contrast 

corresponding to x =-1, 0, +1, are u1(x)=-1, 0, 
+1, and that of the quadratic contrast 
corresponding  to x =-1, 0 ,+1, are u2(x)=-1,2,-1. 
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Table 1. Inner and outer array layout 

Inner Array 

x1 x2 x3 x4 

1 0 0 0 
1 1 1 1 
1 -1 -1 -1 
2 -1 0 1 
2 0 1 -1 
2 1 -1 0 
3 -1 1 0 
3 0 -1 1 
3 1 0 -1 

Outer array 
z1 -1 1 1 
z2 -1 1 -1 
z3 -1 -1 1 

 
 

Our model, suppressing two factor control-
control, noise-noise as well as higher order 
interactions is therefore: 

 

‘
11 11 12 12
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1 1 2 2
2
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The least squares estimates of ijα , 

'iγ  and 
'ii jβ , 

4,...1=i , ' 1, 2,3i = , 2,1=j , and the broken 
down sum of squares for each degree of freedom 
are given in Table 2.  

In the second step, one may proceed if 
desirable to identify adjustment variables which 
do not interact with any of the noise variables. 
Specifically, we look for quantitative adjustment 
variables as these variables can be used to make 
continuous adjustment of the mean to the target 
value. By looking at the sum of squares (SS) 
corresponding to the orthogonal contrasts 

,)(
ii zxu , it is seen that the control factor paint 

flow x2 has small SS of interactions with all 
three noise factors. This suggests that using x2 as 
an adjustment variable and drop it from the 
variance function (1). The effect of excluding x2 

from the study of variance will be examined 
later.  

In step 3, minimize the estimated objective 

function ĥ  defined in Section 2, or equivalently, 
the estimated variance function of y given 31, xx  

and 4x . In principle, the mean and variance 

(treating 321 ,, zzz  as random along with e) of y 

given 321 ,, xxx  and 4x  can be estimated based 

on the analytical expression for the mean and 
variance derived from (3.1). However, an 
equivalent but more intuitive and easily 
programmable procedure is to calculate the 
mean and variance based on generated pseudo 
observations. 

To generate these pseudo observations, we 
first set a new variable z4 to two levels at -1 and 

+1 as other noise factors. Also let MSE=4γ̂ . 
The pseudo observations are generated using 
(3.1) with the least square estimates replacing 
the unknown coefficients and also the error e 
by 44ˆ zγ . Here, the zi, i=1,…, 4 can be -1 or +1, 
yielding a total of 24 pseudo observations. The 
conditional mean and variance of y given 

321 ,, xxx  and 4x  can then be estimated by the 

usual mean and variance of the pseudo 
observations (with 24 as the divisor in 
calculating variance). This procedure is justified 
as it is equivalent to using Gaussian Quadrature 
to evaluate the first two moments, and the two 
point Gaussian Quadrature is known to yield 
exact integral for polynomial of degree 3. 

The added advantage of using the 
approach of pseudo observations is that it can be 
readily applied to evaluate any expected loss 
function L(y), not just the quadratic loss 
function, by calculating the mean loss at the 
values of the pseudo observations. This can be 
particularly helpful if an analytical expression 
for the expected loss is difficult to obtain.  
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Table 3 gives the estimated standard 

deviation (column (1)) for all 27 treatment 
combinations of 31, xx , and 4x . The 

combination ,31 =x  ,13 −=x  ,14 =x  yields 

the smallest value of standard deviation of 1.6. 
However, because of practical consideration, 
high atomizing air must be combined with 
somewhat higher fan air. 

One might consider the next best 
combination at ,11 =x  ,13 −=x  ,04 =x  with 

an estimated standard deviation of 1.8. The use 
of orthogonal polynomials allows interpolation 
to obtain improved results at ,11 =x  ,1.13 −=x  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
,4.04 −=x  yielding a smaller standard 

deviation of 1.6. The last few columns of Table 
3 give the mean and standard deviation for each 
of x2 = -1, 0, +1 when x2 is also included in the 
variance analysis. The difference in standard 
deviations from column (1) is minimal. 
 Furthermore, if a target mean of 45 is 
desired, then x2 should be set around x2 = 1. As 
pointed out in the last section, the procedure of 
minimizing variance can be adversely affected if 
some of the two factor noise-noise interactions 
are non-zero. Thus we suggest, as a safeguard 
against this potential problem by assessing these 
interactions with small number of additional 
experimental runs.  In the present  example, each 

Table 2. Estimates and sum of squares: 
ŷ  = 39.6 + 1.02 x11 - 2.57 x12 + 3.84 u1(x2)+ 0.604 u2(x2) + 3.64 u1(x3)-1.69 u2(x3) 

-2.99 u1(x4) +1.37 u2(x4) -3.63 z1+ 0.308 z2 - 0.0417 z3 + 3.48 x11 z1 + 2.58 x12 z1 

+ 0.550 x11 z2 - 0.0500 x12 z2 - 1.15 x11 z3 + 0.233 x12 z3 - 0.0125 u1(x2) z1 

+ 0.0931 u2(x2) z1+0.438 u1(x2)z2 +0.121 u2(x2) z2-0.221 u1(x2)z3+0.290 u2(x2) z3 

-1.46 u1(x3) z1-0.253 u2(x3) z1-0.550 u1(x3) z2+0.717 u2(x3) z2 0.783 u1(x3) z3 

- 0.889 u2(x3) z3+1.73 u1(x4) z1-0.519 u2(x4) z1-1.08 u1(x4) z2-0.717 u2(x4) z2 

+ 0.850 u1(x4) z3 + 0.369 u2(x4) z3. 

 
 

Control factor 
x2 

Control factor 
x3 

Control factor 
x4 

 
Effects 

Sum of 
squares 

 
Effects 

Sum of 
squares 

 
Effects 

Sum of 
squares 

u1(x2) z1 0.004 u1(x3) z1 51.042 u1(x4) z1 72.107 

u2(x2) z1 0 .623 u2(x3) z1 4.601 u2(x4) z1 19.427 

u1(x2)z2 4.594 u1(x3) z2 7.260 u1(x4) z2 27.735 

u2(x2) z2 1.051 u2(x3) z2 36.980 u2(x4) z2 36.980 

u1(x2)z3 1.170 u1(x3) z3 14.727 u1(x4) z3 17.340 

u2(x2) z3 6.067 u2(x3) z3 56.889 u2(x4) z3 9.827 
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Table 3. Means and standard deviations 

 
main effect in the outer array is aliased with the 
interaction between the remaining two noise 
factors. For instance, the coefficient 3γ̂  of the 

noise factor “viscosity” is small, but since z3 is 
aliased with z1z2, it actually estimates the sum of 

123 γγ + , where 12γ  is the coefficient of z1z2.  

 In the last step, we propose to have a 22 

factorial (or a factional factorial so that the 
interactions suspected to be significant are 
estimable) of the noise factors conducted at the 
solution obtained in step 3, i.e. ,11 =x  

,1.13 −=x  40x4 .−= . To estimate 12γ , first 

subject the fitted value based on (3.1) from each 
of the y values from the new experiment and 
estimate 12γ  by the slope of the regression of 

the adjusted y on 321 zzz − .  

 

 
 

 
 As an illustrative example, suppose an 
estimate 855112 .ˆ −=γ  is obtained. Then the 

coefficient 3γ  can be re-estimated as -0.042-(-

1.855) = 1.813. Column (2) of Table 3 now 
gives the standard deviations based on the new 
model (model (2) together with the additional 
term 2112 zzγ ). The results are markedly different 
from column (1), and the smallest value no 
longer occurs at ,31 =x  ,13 −=x  ,14 =x  

suggesting that such adjustment might be 
necessary. 

 
Conclusion 

 
We have suggested in this article a systematic 
approach in analyzing crossed array designs, 
where fractional factorial design may be 
employed in the outer array. This kind of 

                                                                     x2 = -1                x2 = 0                    x2 = +1 

  x1            x3          x4                   (1)        (2)         mean      SD         mean      SD          mean    SD 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
 

-1 
-1 
-1 
0 
0 
0 
1 
1 
1 
-1 
-1 
-1 
0 
0 
0 
1 
1 
1 
-1 
-1 
-1 
0 
0 
0 
1 
1 
1 
 

-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
 

3.7 
1.8 
4.2 
6.3 
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32.2 
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31.9 
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33.5 
34.8 
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28.8 
33.4 
34.5 
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43.2 
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2.8 
5.8 
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designs is still popular because of its simplicity 
and its greater robustness than combined array 
designs to certain type of model mis-
specification. It is however demonstrated that 
non-ignorable noise-noise interactions may still 
create problems with the crossed array design. A 
method of rectifying these difficulties is 
proposed, but the problem of finding cost 
effective follow up design to complement the 
original design is worth studying. 
 Our approach also assumes the constant 
variance assumption conditional on values of 
both the control and noise factors. If this 
assumption is violated, the response variable 
may have to be transformed to attain constant 
variances before the suggested analysis can be 
carried out. 
 Alternatively, the use of generalized 
linear model (Nelder and Lee, 1991) or the 
approach of Engel (1982) may also be 
appropriate. The choice of an appropriate 
transformation may be facilitated using the 
graphical plot of Box (1988), or the analysis of 
Chan and Mak (1997). However, even if the 
quadratic loss function is used in the original 
metric, the induced loss function in the 
transformed scale is no longer quadratic. In this 
case, the expected loss can be approximated 
using the idea of pseudo observations. This 
approach is equivalent to using Gaussian 
Quadrature to carry out the integration in 
computing the expected loss. As is well known 
the approximation can be improved by using 
more data points for the noise factors in 
generating the pseudo observations. Details will 
not be given here.  
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