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CHAPTER 1 

INTRODUCTION AND DISSERTATION OVERVIEW 

Computational chemistry is a branch of chemistry which combines 

concepts from physics and mathematics in order to assist in solving chemical 

problems. With recent advances in computer engineering and software 

technology, this field has grown from the study of a few small molecules to much 

larger systems such as clusters, nanotubes, and biomolecules. Theoretical 

calculations are often used to help understand the details of chemical reactions 

and molecular properties that are difficult to study in the experiments. Therefore, 

computational chemistry is becoming more and more useful and widespread. 

Close collaborations between experimental chemists and theoreticians are 

becoming very common. 

Potential energy surface (PES) plays an important role in computational 

chemistry.1,2 Reaction energies and barriers can be obtained by locating the 

minima and transition states on the potential energy surface. The calculation of 

accurate energetics often requires high levels of theory, which sometimes can be 

too expensive to be practical. Some well-defined compound methods, such as 

G4,3 W1U,4 and CBS-APNO,5  have been developed to achieve higher accuracy 

but with lower cost. However, for even larger systems, such as materials and 

biomolecules, molecular orbital (MO) methods become extremely expensive. 

New methodology which integrates molecular mechanics (MM) methods and 

quantum mechanics (QM), namely QM/MM, uses the strength of both methods 

and make it possible to study such a system.6-8 These advances all have 
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provided a way to explore the mechanisms of chemical reactions at the 

molecular level.  

Beyond searching for stationary points on the potential energy surface is 

modeling chemical kinetics and dynamics. Transition state theory has 

established a relationship between kinetics and the energetics and structures of 

the stationary points.9,10 RRKM theory is a more detailed statistical method, and 

can be applied to a large variety of chemical reactions, particularly unimolecular 

reactions, to predict reaction rates and branching ratios.10,11 However, this 

method can be a good approximation under certain assumptions, such as rapid 

redistribution of the available vibrational energy for RRKM. Recently, more and 

more reactions have been observed to break the traditional rules, such as the 

non-statistical unimolecular dissociation of acetone radical cation12-15 and the 

“roaming” mechanism16-22. To study these kind of reactions, accurate simulation 

of reaction dynamics are needed.  

Traditional classical trajectory calculations for chemical reactions were 

carried out primarily on analytical surfaces.23-25 These surfaces are generally 

fitted to experimental or theoretical data. This makes the treatments limited to 

small systems and special to each system. However, with the advances in 

computer technology and theory improvements, it has become practical to 

compute classical trajectories directly from ab initio electronic structure 

calculations. 

There are two approaches for ab initio molecular dynamics: extended 

Lagrangian and Born-Oppenheimer (BO). In the extended Lagrangian molecular 
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dynamics method, both nuclei and the wave function are propagated by the 

appropriate equations of motion. In the BO molecular dynamics, the wave 

function is converged at every step and the nuclei are propagated classically.26 In 

the present work, the Hessian based predictor-corrector method, developed by 

Schlegel and co-workers,27,28 is used to integrate the ab initio classical trajectory. 

This method enables the integration of trajectories with a much larger step size 

compared to the traditional Verlet algorithm. The trajectories are terminated when 

certain criteria are met. Once the trajectories are completed, the analysis of the 

final products can be carried out.  

The research covered in this thesis is as follows:  

In Chapter 2, the non-statistical dissociation of acetone radical cation has 

been studied by ab initio direct classical trajectory calculations at the MP2/6-

31G(d) level of theory.29 A bond additivity correction has been used to improve 

the MP2 potential energy surface (BAC-MP2). The energy dependence of the 

branching ratio, dissociation kinetics, and translational energy distribution for the 

two types of methyl groups have been investigated using a microcanonical 

ensemble and specific mode excitation. In each case, the dissociation favors the 

loss of the newly formed methyl group, in agreement with the experiments. For 

the microcanonical ensemble, the branching ratios for methyl loss are calculated 

to be 1.43, 1.88, 1.70, and 1.50 for 1, 2, 10, and 18 kcal/mol of excess energy, 

respectively. The energy dependence of the branching ratio is seen more 

dramatically in the excitation of individual modes involving C-C-O bending. For 

modes 3 and 6, the branching ratio rises to 1.6 and 1.8-2.3 when 1 or 2 kcal/mol 
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are added, respectively, but falls off when more energy is added. For mode 8, the 

branching ratio continues to rise monotonically from 1.5 to 2.76 when 1 to 8 

kcal/mol of excess energy are added. 

The dissociation of pentane-2,4-dione radical cation studied by ab initio 

direct classical trajectory calculations at the MP2/6-31G(d) level of theory is 

presented in Chapter 3.30 A bond additivity correction has been used to improve 

the MP2 potential energy surface (BAC-MP2). A microcanonical ensemble using 

quasiclassical normal mode sampling was constructed by distributing 10 kcal/mol 

of excess energy above ZPE for the transition state for the tautomerization of the 

enol with a terminal double bond, 4-hydroxypent-4-en-2-one radical cation, to the 

diketo form. A total of 244 trajectories were run starting from this transition state, 

yielding pentane-2,4-dione radical cation and depositing energy in the terminal 

CC bond.  As a result, the branching ratio for dissociation of the terminal CC bond 

versus the interior CC bonds is significantly larger than expected from RRKM theory.  

The branching ratio for the dissociation of the two interior CC bonds is ca 20:1, with 

the one closest to the activated methyl breaking more often.  Since the two interior 

bonds are equivalent and should dissociate with equal probability, this branching 

ratio represents a very large deviation from statistical behavior. A simple kinetic 

scheme has been constructed to model the dissociation rates. The non-statistical 

behavior is seen because the rate of energy flow within the molecule is 

comparable to or slower than the rates of dissociation for the activated system.  

In addition to the expected dissociation products, some of the trajectories also 
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lead to the formation of an ester-like product, prop-1-en-2-yl acetate radical 

cation. 

The research in Chapter 4 is the dissociation of 1,3-cyclobutanedione 

radical cation, which was studied by ab initio direct classical trajectory 

calculations at the BH&HLYP/6-31G(d) level of theory. A microcanonical 

ensemble using quasiclassical normal mode sampling was constructed by 

distributing 10 kcal/mol of excess energy above the transition state for the 

tautomerization of the enol to the diketo form. A total of 210 trajectories were run 

starting from this transition state, yielding chemically activated 1,3-

cyclobutanedione radical cation. The majority of the trajectories resulted in 

CH2CO+. + CH2CO, with the activated CC bond breaking nearly twice as often as 

the spectator CC bond. The non-statistical behavior is observed because the rate 

of energy redistribution within the molecule is comparable to or slower than the 

dissociation rates. In addition to the expected products, dissociation to 

CH2COCH2
+. + CO and formation a proton transferred product, HCCO. + CH3CO+ 

were also seen in some of the trajectories. 

Chapter 5 describes a study of the dissociation of neutral and positively 

charged methanimine.31 The structures and energetics of the reactants, 

intermediates, transition states and products for the dissociation of methanimine 

neutral, monocation, dication and trication were calculated at the CBS-APNO 

level of theory. The dissociations of the neutral, monocation and dication were 

studied by ab initio direct classical trajectory calculations at the B3LYP/6-

311G(d,p) level of theory. A microcanonical ensemble using quasiclassical 
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normal mode sampling was constructed by distributing 200, 150 and 120 

kcal/mol of excess energy above the local minima of the neutral, singly, and 

doubly charged species, respectively. Many of the trajectories dissociate directly 

to produce H+, H atom or H2. However, for a fraction of the cases, substantial 

migration of the hydrogen occurs within the molecule before dissociation. The 

preferred dissociation product for the neutral and the monocation is hydrogen 

atom. Elimination of H2 was seen in 20% of the trajectories for the neutral and in 

5% of the trajectories for the monocation. Dissociations of the dication and 

trication produced H+ rather than H atom. HCNH+ was formed in 85 – 90% of the 

dissociating trajectories for the monocation and dication. 

In Chapter 6, the gas phase reaction of Th+ with H2O to produce HThO+ + 

H and ThO+ + H2 was investigated by density functional theory and coupled 

cluster methods.32 RRKM calculations of the branching ratio favor the H atomic 

elimination channel in disagreement with experiment. Ab initio classical trajectory 

calculations were carried out to obtain a better model of the molecular dynamics. 

The molecular dynamics simulations yield a branching ratio of ca 80% for the H2 

elimination channel to 20% for the H atomic elimination channel in qualitative 

agreement with the observed ratio of 65% to 35%. 

Chapter 7 discusses the complexes of the form An2(C8H8)2 (An = Th, Pa, U 

and Np), which were investigated using density functional theory with scalar-

relativistic effective core potentials.33 For uranium, a coaxial isomer with D8h 

symmetry is found to be more stable than a Cs isomer, in which the dimetal unit 

is perpendicular to the C8 ring axis. Similar coaxial structures are predicted for 
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Pa2(C8H8)2 and Np2(C8H8)2, while in Th2(C8H8)2 the C8H8 rings tilt away from the 

An-An axis. Going from Th2(C8H8)2 to Np2(C8H8)2, the An-An bond length 

decreases from 2.81 Å to 2.19 Å and the An-An stretching frequency increases 

from 249 cm-1 to 354 cm-1. This is a result of electrons populating An-An 5f - 

and -type bonding orbitals and  non-bonding orbitals, thereby increasing in An-

An bond order. U2(C8H8)2 is stable with respect to dissociation into U(C8H8) 

monomers. Disproportionation of U2(C8H8)2 into uranocene and U atom is 

endothermic but is slightly exothermic for uranocene plus 1/2 U2, suggesting that 

it might be possible to prepare double stuffed uranocene if suitable conditions 

can be found to avoid disproportionation. 

Chapter 8 describes the collaboration with Dr. Mobashery on the inhibition of 

matrix metalloproteinases.34 SB-3CT, (4-phenoxyphenylsulfonyl)methylthiirane is 

a potent, mechanism-based inhibitor of the gelatinase sub-class of the matrix 

metalloproteinase (MMP) family of zinc proteases. The gelatinase MMPs are 

unusual in that there are several examples where both enantiomers of a racemic 

inhibitor have comparable inhibitory abilities. SB-3CT is one such example. Here, 

the inhibition mechanism of the MMP2 gelatinase by the (S)-SB-3CT enantiomer 

and its oxirane analogue is examined computationally, and compared to the 

mechanism of (R)-SB-3CT. Inhibition of MMP2 by (R)-SB-3CT was shown 

previously to involve enzyme-catalyzed C–H deprotonation adjacent to the 

sulfone, with concomitant opening by -elimination of the sulfur of the three-

membered thiirane ring. Similarly to the R enantiomer, (S)-SB-3CT was docked 

into the active site of MMP2, followed by molecular dynamics simulation to 
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prepare the complex for combined quantum mechanics and molecular 

mechanics (QM/MM) calculations. QM/MM calculations with 

B3LYP/6-311+G(d,p) for the QM part (46 atoms) and the AMBER force field for 

the MM part were used to compare the reaction of (S)-SB-3CT and its oxirane 

analogue in the active site of MMP2 (9208 atoms). These calculations show that 

the barrier for the proton abstraction coupled ring opening reaction of (S)-SB-3CT 

in the MMP2 active site is 4.4 kcal/mol lower than its oxirane analogue, and the 

ring opening reaction energy of (S)-SB-3CT is only 1.6 kcal/mol less exothermic 

than its oxirane analogue. Calculations also show that the protonation of the ring-

opened products by water is thermodynamically much more favorable for the 

alkoxide obtained from the oxirane, than for the thiolate obtained from the 

thiirane. In contrast to (R)-SB-3CT and the R-oxirane analogue, the double 

bonds of the ring-opened products of (S)-SB-3CT and its S-oxirane analogue 

have the cis-configuration. Vibrational frequency and intrinsic reaction path 

calculations on a reduced size QM/MM model (2747 atoms) provide additional 

insight into the mechanism. These calculations yield 5.9 and 6.7 for the 

deuterium kinetic isotope effect for C–H bond cleavage in the transition state for 

the R and S enantiomers of SB-3CT, in good agreement with the experimental 

results. 
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CHAPTER 2 

DISSOCIATION OF ACETONE RADICAL CATION (CH3COCH3
+· → CH3CO+ + 

CH3
·): AN AB INITIO DIRECT CLASSICAL TRAJECTORY STUDY OF THE 

ENERGY DEPENDENCE OF THE BRANCHING RATIO  

Reproduced with permission from J. Phys. Chem. A, 2008, 112, 13121-13127 
Copyright 2008, American Chemical Society 

2.1 Introduction:  

The non-statistical dissociation of acetone radical cation has been the 

subject of a number of experimental and theoretical studies over the past 35 

years. Isomerization from the more stable enol form to the keto isomer leads to 

chemical activation of the newly formed methyl group which dissociates 

preferentially. The gas phase chemistry and non-ergodic behavior of C3H6O
.+ 

ions has been reviewed by McAdoo.1 The enol form of acetone radical cation can 

be generated from higher aliphatic ketones via the McLafferty rearrangement or 

by cycloreversion of 1-methlcyclobutanol (Scheme 2.1).2  

The enol form of the acetone cation can isomerize to the keto form and 

then dissociate to produce acetyl cation and methyl radical (Scheme 2.2). The 

dissociation reaction proceeds non-ergodically, favoring the departure of the 

newly formed methyl group. 
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The average ratio for the loss of the active methyl versus loss of the 

spectator methyl was observed to be ca 1.4:1,3-6 whereas RRKM theory would 

predict that the two methyl groups should dissociate at equal rates.2,3,7-9,10 This 

indicates that randomization of the internal energy is incomplete before 

dissociation occurs. 

Preferential loss of the active methyl group has been seen in collisional 

activation, electron impact and metastable ion experiments.1 The energy 

dependence of the non-statistical dissociation was studied by Osterheld and 

Brauman by infrared multiphoton dissociation of acetone enol cation.6 A 

branching ratio of 1.16 was found at ca. 0 – 3 kcal mol-1 above threshold and 

increased to 1.55 at an estimated energy of 8 – 12 kcal/mol above the barrier. 

They attribute the increase in branching ratio to the excitation of a mode other 
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than the reaction coordinate, possibly the C-C-O bending involving the spectator 

methyl group. 

Recent photoionizantion11 and TPEPICO12 experiments yield 18.5±0.5 

kcal/mol for the energy difference between CH3COCH3
.+ and CH3CO+ + CH3

. at 0 

K. This is slightly lower than the previous experimental value 19.8±0.3 kcal/mol.13 

A number of groups have used ab initio calculations to explore the potential 

energy surface for CH3COCH3
.+.11,14,15 The experimental values for CH3COCH3

.+ 

 CH3CO+ + CH3
. fall in between the best calculated values, 17.7, 17.9, 21.1 

and 20.6 kcal/mol for G2MP2,14 G3,11 CBS-QB315 and CBS-APNO,15 

respectively. The best estimates for the keto to enol isomerization barrier 

CH3COCH3
.+ at 0 K are 36.0, 36.6, 35.8 and 34.7 kcal/mol for G2MP2,14 G3,11 

CBS-QB315 and CBS-APNO,15 respectively. 

The non-statistical dynamics of acetone radical cation dissociation has 

been studied by quasiclassical trajectory calculations. Nummela and Carpenter16 

used semi-empirical AM1 calculations with specific reaction parameters (AM1-

SRP) and obtained a branching ratio of 1.13±0.09 for dissociation of the active 

versus the spectator methyl group. The trajectories were started at the transition 

state for keto-enol tautomeriztion and were sampled from a microcanonical 

distribution with 10 kcal/mol energy in excess of the zero point energy of the 

transition state. Anand and Schlegel15 found a branching ratio of 1.53±0.20 at the 

MP2/6-31G(d) level of theory using the same starting conditions. In the present 

work, we used quasiclassical trajectory calculations at the MP2/6-31G(d) level of 
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theory with bond additivity corrections17-21 to study the energy dependence of the 

branching ratio.   

2.2 Computational Methods:  

The Gaussian22 suite of programs was employed to carry out the ab initio 

electronic structure and molecular dynamics calculations. The geometries of the 

minima and the transition states have been optimized previously15 by Hartree-

Fock theory (HF), density functional theory (DFT), second order Møller-Plesset 

perturbation theory (MP2) and quadratic configuration interaction with single and 

double excitations (QCISD).23 The density functionals used in this work include 

two hybrid GGA (generalized gradient approximation) functionals, B3LYP24,25 and 

PBE1PBE,26 and a meta-GGA, TPSSTPSS27. The complete basis set 

extrapolation methods (CBS-QB3 and CBS-APNO) of Petersson and co-

workers28 were used to compute accurate energy differences. The CBS-APNO 

calculations have a mean absolute deviation of 0.5 kcal/mol for heats of reaction. 

Accurate methods such as CBS-APNO are not practical for molecular 

dynamics corrections, but more affordable methods such as DFT and MP2 may 

not yield sufficiently accurate energetics. However, the errors are often 

systematic, e.g. arising from the making and breaking of bonds. The empirical 

corrections that have been used to correct computed thermochemistry17-21 can 

also be employed to improve potential energy surfaces for molecular dynamics 

calculations.29 As in the BAC-MP4 method21, a simple exponential is used to 

correct the potential for bond dissociations. In the present case, the bond 
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additivity correction (BAC) is applied only to the C-C bonds for the dissociation of 

the active and spectator methyl groups: 

                   1 2exp( ) exp( )BAC CC CCE A R A R                 (1) 

The parameters = 0.028A   and =0.196  are obtained by fitting the 

MP2/6-31G(d) energetics to the CBS-APNO level of theory. The structures used 

in the fit include the transition state (TS) for enol-keto isomerization, the keto 

isomer, and the methyl dissociation products. The corresponding first and second 

derivatives of EBAC are added to MP2 gradient and Hessian. This BAC approach 

has been used previously to study the branching ratios in CH2O
.- + CH3Cl  

CH3CH2O
. + Cl-, CH2O + CH3

. + Cl-.29 

Ab initio classical trajectories were computed at the BAC-MP2/6-31G(d) 

level of theory using a Hessian-based predictor-corrector method.30,31 A predictor 

step is taken on the quadratic surface obtained from the energy, gradient and 

Hessian from the beginning point. A fifth order polynomial is then fitted to the 

energies, gradients and Hessians at the beginning and end points of the 

predictor step, and the Bulirsch Stoer algorithm32 is used to take a corrector step 

on this fitted surface with the angular forces projected out. The Hessians are 

updated for 5 steps before being recalculated analytically.30 The trajectories were 

terminated when the centers of mass of the fragments were 8 bohr apart and the 

gradient between the fragments was less than 110-5 hartree/bohr. A step size of 

0.25 amu1/2 bohr was used for integrating the trajectories. The energy was 

conserved to better than 110-5 hartree and the angular momentum was 

conserved to 110-8 ħ.  
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Trajectories were initiated at the transition state for the keto-enol 

tautomerization. For the first part of the study, a microcannonical ensemble of 

initial states was constructed using quasi-classical normal mode sampling.33,34 A 

total energy of 1, 2, 10, and 18 kcal/mol above the zero point energy of the 

transition state was distributed among the 23 vibrational modes and translation 

along the transition vector. The total angular momentum was set to zero 

corresponding to a rotationally cold distribution and the phases of the vibrational 

modes were chosen randomly. For each initial condition, the momentum and 

displacement were scaled so that the desired total energy was the sum of the 

vibrational kinetic energy and the potential energy obtained from the ab initio 

surface. The initial conditions are similar to those chosen by Nummela and 

Carpenter.16  For each case, a total of 200 - 300 trajectories were integrated for 

up to 400 fs starting at the transition state and ending when the products were 

well separated. In the second part of the study, 1, 2, 4 and 8 kcal/mol was added 

to each of 3 selected vibrational modes and 0.5 kcal/mol of translational energy 

was added to the transition vector, while the remaining modes were given only 

zero point energy. The remaining conditions were the same as in the first part of 

the study, and 110 trajectories were integrated for each case. A total of ca 2500 

trajectories were calculated for the 17 different ensembles (200 – 300 trajectories 

for each of 4 microcanonical ensembles and 110 trajectories for each of the 13 

ensembles for specific mode excitation). 
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2.3 Results and Discussion 

Structures and Energetics 

Figure 2.1 shows the optimized geometries of the key structures on the 

potential energy surface for acetone radical cation dissociation at the 

TPSSTPSS, MP2, BAC-MP2 and QCISD levels of theory. The largest differences 

are the monomer separations in the ion-neutral complexes, (3) and (4). The 

transition states calculated by TPSS are somewhat earlier than those calculated 

by MP2 or QCISD. The bond additivity corrections produce only minor changes 

in the MP2 geometry. The bond lengths between heavy atoms at TPSS, MP2 

and BAC-MP2 have similar mean absolute deviations (ca 0.01 Å) when 

compared to the QCISD structures. 
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QCISD/6-311G(d,p) levels of theory (top row to bottom, 
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The relative energies are collected in Table 2.1. As can be judged from 

the mean absolute deviations, the QCISD(T) and CBS-QB3 calculations are in 

very good agreement with the CBS-APNO calculations. However, ab initio 

trajectory calculations are not feasible with CBS, QCI or MP3 methods. The 

methyl dissociation energy is too low at the MP2 level, but is much improved at 

the BAC-MP2 level. The TPSS calculations with a large basis set perform 

significantly better than B3LYP or PBE. However, trajectory calculations with the 

TPSS/cc-pVTZ level of theory are estimated to be ca 10 times more expensive 

than the BAC-MP2 trajectories. The B3LYP/6-31G(d) is comparable in cost to 

BAC-MP2/6-31G(d). However, B3LYP/6-31G(d) places the CH2CO+ + CH4 

channel (6) substantially below the CH3CO+ + CH3 channel (5). This cannot be 

fixed with a simple bond additivity correction involving only the two C-C bonds. 

Although higher levels of theory would provide a more accurate description of the 

potential energy surface, the BAC-MP2 level is a reasonable compromise 

between accuracy and affordability that allows us to calculate the ca 2500 

trajectories needed to explore the energy dependence of the branching ratio. 
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Table 2.1 Energies of the various points on the acetone radical cation PESa 

 1 TS1 2 3 TS3 4 5 6 MADb 

B3LYP/6-31G(d) -4.5 37.8 0.0 19.3 19.3 18.3 26.4 22.3 3.2 

B3LYP/cc-pVTZc -10.2 38.1 0.0 -- -- -- 24.4 --  

PBE1PBE/cc-pVTZ -8.6 33.5 0.0 19.5 19.3 19.9 25.7 24.1 3.1 

TPSSTPSS/cc-pVTZ -5.1 33.3 0.0 15.5 14.9 14.3 23.2 20.3 1.8 

MP2/6-31G(d) -12.2 36.0 0.0 4.6 12.5 9.0 8.5 11.1 5.7 

MP2/6-311+G(d,p) -13.9 34.0 0.0 2.3 8.5 6.4 5.7 9.0 7.7 

BAC-MP2/6-31G(d) -12.6 35.7 0.0 10.4 13.5 13.0 16.2 21.6 2.9 

MP3/6-31G(d,p)d -12.0 39.4 0.0 16.1 24.0 16.8 21.0 20.6 2.6 

QCISD/6-311G(d,p)e -6.1 40.1 0.0 13.1 20.2 14.5 16.1 16.7 2.1 

QCISD(T)/6-311++G(2df,p)f -7.6 36.6 0.0 14.0 18.4 15.0 17.3 17.9 0.8 

CBS-QB3 -7.8 35.8 0.0 16.1 18.9 15.4 19.4 18.5 0.3 

CBS-APNO -8.0 35.2 0.0 15.3 18.1 15.1 19.3 18.5  
a In kcal/mol at 0 K, relative to 2 (keto isomer).  
b Mean absolute deviation from the CBS-APNO level of theory.  
c Ref. 16.  
d Ref. 10.  
e with MP2/6-31G(d) zero point energies.  
f QCISD/6-311G(d,p) geometry with MP2/6-31G(d) zero point energies 
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Dynamics 

Microcanonical Ensemble  

Four sets of initial conditions were constructed with 1, 2, 10, and 18 

kcal/mol above the zero point energy of the transition state. The results of the 

trajectory calculations for the dissociation of acetone radical cation are listed in 

Table 2.2. For the 300 trajectories of with 1 kcal/mol extra energy, 109 resulted in 

the loss of the active methyl and 76 finished with the loss of the spectator methyl. 

The remaining 115 trajectories either went to the enol isomer (63 trajectories), or 

stayed near the keto minimum (52 trajectories), not meeting the stopping criteria 

within 400 fs. Of the 300 trajectories integrated with 2 kcal/mol extra energy, 150 

resulted in the loss of the active methyl and 80 finished with the loss of the 

spectator methyl. Integration of 250 trajectories of with 10 kcal/mol extra energy 

yielded 126 active methyl dissociations and 74 spectator methyl dissociations. 

The 237 trajectories with 18 kcal/mol extra energy resulted in 120 active methyl 

loses and 80 spectator methyl loses. As the energy of the microcanonical 

ensemble is increased from 1 to 2 kcal/mol, the branching ratio for active to 

spectator methyl group increases from 1.43 to 1.88. However, when the energy 

of the microcanonical ensemble continues to increase from 2 to 10 to 18 

kcal/mol, the branching ratio for active to spectator methyl group decreases from 

1.88 to 1.70 to 1.50.  By contrast, in the experiments of Osterheld and Brauman6 

the branching ratio increases with increasing laser intensity and then seems to 

reach a plateau. This suggests that energy may be deposited preferentially in 
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specific modes, rather than uniformly in all of the vibrational modes.  This will be 

examined in the second part of the study (see below). 

Table 2.2 Number of trajectories for the dissociation of acetone radical cation 

Ensemble 
Energy 

(kcal/mol) 

Nonreactive 
(enol/keto) 

Active 
Methyl 

Spectator 
Methyl 

Ratio 
(Active:Spectator)

1 63/52 109 76 1.43:1 

2 36/34 150 80 1.88:1 

10 11/39 126 74 1.70:1 

18 9/28 120 80 1.50:1 
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At each energy in the microcanonical simulations on the BAC-MP2 

surface, a number of trajectories stayed in the keto minimum, while in the 

previous study at the MP2 level without bond additivity corrections, none of the 

trajectories remained in the keto minimum. The MP2/6-31G(d) level of theory 

underestimates C-C bond energy of keto isomer in comparison to CBS-APNO, 

permitting the methyl group to dissociate more easily. The BAC-MP2/6-31G(d) 

calculations yield a higher methyl dissociation energy, and some trajectories 

cannot overcome the barrier for dissociation to the products within the simulation 

time. The higher barrier at the BAC-MP2/6-31G(d) level is much closer to 

experiment and the CBS-APNO calculations, and hence the dynamics should be 

more realistic at this level of theory. 
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Figure 2.2 Translational energy distributions of the methyl fragments derived 

from the active (filled) and spectator (empty) methyl fragments with 

1, 2, 10, and 18 kcal/mol excess energies. 
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The calculated translational energy distributions are plotted in Figure 2.2. 

The majority of methyl groups have a translational energy less than 4 kcal/mol. 

Of the methyl groups with larger translational energies, many come from 

dissociation of the active methyl. As indicated in Table 2.3, the active methyl has 

a larger average translational energy than spectator methyl. Experimentally, the 

kinetic energy releases for the active and spectator methyl groups are 5.0 and 

4.3 kcal/mol, respectively.8 As the total extra energy increases, the average 

translational energy of the active methyl group increases more than that of the 

spectator methyl group. Table 2.3 also lists the average dissociation times. The 

dissociation time is taken as the time when the C-C bond reaches 3.0 Å, 

provided that the methyl group does not return to form the C-C bond again. The 

average dissociation times generally decrease with increasing energy, and the 

average time for the active methyl dissociation time is always shorter than for the 

spectator methyl. Just as the branching ratio increases first and then decreases 

with increasing energy, the ratio of the spectator to active methyl group average 

dissociation times also has the same trend with increasing energy. 

Figure 2.3 plots the logarithm of the number of undissociated acetone 

radical cations versus time. The nearly linear plots are indicative of first-order 

kinetics as expected for unimolecular dissociation. The spectator methyl groups 

generally needed more time to dissociate than the active methyl, validating the 

result of average dissociation time listed in Table 2.3. 
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Table 2.3 Average translational energies E (in kcal/mol) and dissociation time T 

(in fs) 

Ensemble 
Energy 

(kcal/mol) 

Active Methyl Spectator Methyl 

E T E T 

1 2.737 181.09 1.996 224.39 

2 3.306 177.14 2.705 240.22 

10 4.177 147.47 2.256 185.69 

18 4.204 139.91 2.833 167.40 

 



30 
 

 

50 100 150 200 250 300 350 400 450

-4

-3

-2

-1

0
1 kcal/mol

Time (fs)

ln
([

A
]/
[A

0
])

50 100 150 200 250 300 350 400
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0 2 kcal/mol

ln
([

A
]/
[A

0]
)

Time (fs)

 

 



31 
 

50 100 150 200 250 300 350
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0 10 kcal/mol

ln
([

A
]/
[A

0]
)

Time (fs)

40 60 80 100 120 140 160 180 200 220 240 260

-2.0

-1.5

-1.0

-0.5

0.0

ln
([

A
]/
[A

0
])

Time (fs)

18 kcal/mol

 

Figure 2.3 Plot showing the first-order kinetics for active (filled) and spectator 

(empty) methyl fragments dissociation with 1, 2, 10, and 18 

kcal/mol excess energies. 
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Excitation of Specific Modes  

Osterheld and Brauman suggested that the increase in branching ratio 

with laser intensity was due to the excitation of specific vibrational modes. In 

particular, they indicated that the C-C-O bending modes may be suitable 

candidates. An examination of the vibrations of TS for enol-keto isomerization 

yields three modes involved C-C-O bending, as shown in Figure 2.4. For each 

mode, four ensembles were constructed with 1, 2, 4, and 8 kcal/mol excess 

amount of energy in the specific mode, 0.5 kcal/mol in the transition vector, and 

zero point energy in all modes. For comparison, one ensemble was also 

constructed without specific mode excitation, having only 0.5 kcal/mol in the 

transition vector and zero point energy in each of the vibrational modes. For each 

set, a total of 110 trajectories were integrated. 
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Mode 3, 374 cm-1 

 

Mode 6, 706 cm-1 

 

Mode 8, 952 cm-1 

Figure 2.4 Displacement vectors for vibrational modes 3, 6, and 8, along with 

corresponding vibrational frequencies. 
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Table 2.4 Branching ratio for exciting specific modesb 

Ensemble Energy 
(kcal/mol) 

Mode 3 Mode 6 Mode 8 

0 1.10:1 1.10:1 1.10:1 

1 1.59:1 1.58:1 1.54:1 

2  1.84:1 2.31:1 1.82:1 

4  1.46:1 1.85:1 2.36:1 

8  1.55:1 2.03:1 2.76:1 

b Zero point energy in the remaining vibrational modes and 0.5 kcal/mol in the transition 
vector. 
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The branching ratio for the various cases of specific mode excitation can 

be found in Table 2.4. If only 0.5 kcal/mol is added in the transition vector, the 

branching ratio is 1.10:1. This indicates that the energy released in descending 

from the transition state to the keto minimum is not deposited efficiently in the 

modes favoring the dissociation of the active methyl group. For each of the three 

modes involving C-C-O bending, the branching ratio increases to 1.5:1 when as 

little as 1 kcal/mol extra energy is in the mode. Adding 2 kcal/mol to any of the 

three modes increases the branching ratio to 1.8 – 2.3. Depositing energy in 

mode 8 is the most effective of the three modes examined. Adding more energy 

to mode 3 and 6 actually decreases the branching ratio. This parallels the study 

using a microcanonical ensemble, in which the branching ratio decreases when 

more than 2 kcal/mol extra energy is added. Most likely, specific excitation of 

other vibrational mode will alter the branching ratio as well.   

2.4 Conclusions: 

The energy dependence of the branching ratio for acetone radical cation 

has been investigated by ab initio direct classical trajectory calculations. The 

MP2/6-31G(d) level of theory with bond additivity corrections gives a better 

potential energy surface than the MP2 and B3LYP levels of theory when 

compared to the CBS-APNO results. The non-statistical dissociation of acetone 

radical cation has been studied using microcanonical ensembles and specific 

mode excitation. For microcanonical ensembles, the ratios of methyl radical 

production from the newly formed (active) methyl to the existing (spectator) 

methyl are 1.43, 1.88, 1.70, and 1.50 for 1, 2, 10, and 18 kcal/mol of excess 
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energy, respectively. The dissociations generally obey first-order unimolecular 

kinetics. The active methyl usually carries more kinetic energy than spectator 

methyl, and average dissociation time of active methyl is less than that of 

spectator methyl. Three vibrations involving C-C-O bending were chosen for the 

specific mode excitation. In each case, the branching ratio increases when 1 or 2 

kcal/mol was added. For two of the modes, the branching ratio decreased when 

more than 2 kcal/mol energy was added, similar to the study of microcanonical 

ensembles. However, for mode 8, the branching ratio continued to increase with 

added energy, reaching a ratio of 2.76:1 with 8 kcal/mol of excess energy. 
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CHAPTER 3 

LARGE NON-STATISTICAL BRANCHING RATIO IN THE DISSOCIATION OF 

PENTANE-2,4-DIONE RADICAL CATION: AN AB INITIO DIRECT CLASSICAL 

TRAJECTORY STUDY  

Reproduced with permission from J. Phys. Chem. A, 2009, 113, 1453-1458 
Copyright 2009, American Chemical Society 

3.1 Introduction:  

A chemically activated species can dissociate in a non-statistical manner if 

the rate for dissociation is faster than the rate for intramolecular energy 

redistribution. Acetone radical cation is an archetypal example of this process 

and has been studied experimentally and theoretically over the past 35 years.1-12 

Isomerization from the enol form to the keto form activates the newly formed 

methyl group which dissociates preferentially. Energy also flows to the other 

methyl group resulting in its dissociation at a slower rate and with a different energy 

distribution. The observed branching ratio is ca 1.5 in favor of the newly formed 

methyl group.1-9,11,12 Similar to acetone radical cation, it can be anticipated that 

pentane-2,4-dione radical cation will also show non-statistical behavior in its 

dissociation. The enol form with a terminal double bond can be generated by the 

McLafferty rearrangement13,14 from longer chain 2,4 diones, as shown in Scheme 

3.1. Upon isomerization to the diketo form, the energy from the activated CC bond 

can flow sequentially to three other CC bonds, potentially resulting in greater non-

statistical behavior than acetone radical cation.  
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Scheme 3.1 

The formation of pentane-2,4-dione radical cation has been studied 

experimentally15,16, but its dissociation has not been investigated. Similar to our 

previous studies on acetone radical cation,11,12 we have used ab initio classical 

trajectory calculations to study the non-statistical dissociation of 2,4-pentanedione 

radical cation. The Born-Oppenheimer molecular dynamics calculations were 

carried out at the MP2/6-31G(d) level of theory with bond additivity corrections fitted 

to the CBS-APNO energies. 

3.2 Computational Methods:  

The Gaussian suite of programs17 was used for the ab initio electronic 

structure and molecular dynamics calculations. The geometries of the minima 

and the transition states were optimized by Hartree-Fock (HF), hybrid density 

functional theory (B3LYP),18-20 second order Møller-Plesset perturbation theory 

(MP2) and quadratic configuration interaction (QCISD)21 methods. The complete 

basis set extrapolation methods (CBS-QB3 and CBS-APNO) of Petersson and 

co-workers22 were used to compute accurate energy differences. The CBS-
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APNO calculations have a mean absolute deviation of 0.5 kcal/mol for heats of 

reaction. 

Accurate methods such as CBS-APNO are not practical for molecular 

dynamics corrections. However, our calculations on the analogous dissociation of 

acetone radical cation12 showed that more affordable methods such as density 

functional theory and MP2 do not yield sufficiently accurate energetics. The 

errors in such cases are often systematic, arising primarily from the making and 

breaking of bonds. The empirical corrections that have been used to correct 

computed thermochemistry23-27 can also be employed to improve potential 

energy surfaces for molecular dynamics calculations.28 As in the BAC-MP4 

method,27 a simple exponential is used to correct the potential for bond 

dissociations.  In the present case, the bond additivity correction (BAC) is applied 

only to the CC bonds for the dissociation of the methyl and acetyl groups (the 

terminal and interior bonds, respectively): 

2 2

1 1

exp( ) exp( )CCinterior CCinterior CCterminal CCterminal
i i

E A R A R 
 

            (1) 

The parameters =0.0092CCinteriorA , = -0.0287CCterminalA  and =0.3604  are 

obtained by fitting the MP2/6-31G(d) energetics to the CBS-APNO level of 

theory. The structures used in the fit include the diketo isomer, the enol isomer, 

the diketo-enol transition state,  and the methyl and acetyl dissociation products 

(structure 1, 7, TS8, 9, 10). The corresponding first and second derivatives of 

EBAC are added to gradient and Hessian. This BAC approach has been used 

previously to study the branching ratios in CH2O
.- + CH3Cl  CH3CH2O

. + Cl-, 

CH2O + CH3
. + Cl- 28 and CH3COCH3

.+  CH3CO+ + CH3.
11,12 
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Ab initio classical trajectories were computed at the BAC-MP2/6-31G(d) 

level of theory using a Hessian-based predictor-corrector method.29,30 A predictor 

step is taken on the quadratic surface obtained from the energy, gradient and 

Hessian from the beginning point. A fifth order polynomial is then fitted to the 

energies, gradients and Hessians at the beginning and end points of the 

predictor step, and the Bulirsch-Stoer algorithm31 is used to take a corrector step 

on this fitted surface with the angular forces projected out. The Hessians are 

updated for 10 steps before being recalculated analytically. The trajectories were 

terminated when the centers of mass of the fragments were 8 bohr apart and the 

gradient between the fragments was less than 110-5 hartree/bohr. A step size of 

0.5 amu1/2 bohr was used for integrating the trajectories. The energy was 

conserved to better than 110-5  hartree and the angular momentum was 

conserved to 110-8 ħ.  

Trajectories were initiated at the transition state for the enol to diketo 

tautomerization. A microcanonical ensemble of initial states was constructed 

using the quasi-classical normal mode sampling.32,33 A total energy of 10 

kcal/mol above the zero point energy of the transition state was distributed 

among the 38 vibrational modes and translation along the transition vector 

toward the product. The total angular momentum was set to zero (corresponding 

to a rotationally cold distribution) and the phases of the vibrational modes were 

chosen randomly. The momentum and displacement were scaled so that the 

desired total energy was the sum of the vibrational kinetic energy and the 

potential energy obtained from the ab initio surface. The initial condition is similar 
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to those used previously for acetone radical cation.11,12 A total of 244 trajectories 

were integrated for up to 600 fs starting from the transition state and ending 

when the products were well separated.  

RRKM34,35 calculations were used to obtain a statistical estimate of the 

ratio of the dissociation rates for the terminal and interior CC bonds. Variational 

transition states for bond breaking were approximated by extending the CC 

bonds and optimizing the remaining coordinates at the BAC-MP2/6-31G(d) level 

of theory. For the conditions corresponding to the trajectory calculations, the 

RRKM calculations yield ratios of 0.10 and 0.11 for the dissociation of the 

terminal versus interior CC bonds using bond extensions of 2.5 and 3.0 Å, 

respectively. 

3.3 Results and Discussion  

Structures and Energetics 

The optimized geometries of diketo and enol forms of pentanedione 

radical cation, various intermediates, transition states and products are shown in 

Figure 3.1 for a number of levels of theory. The relative energies of these 

structures at the CBS-APNO level of theory are included in the figure and are 

summarized in Figure 3.2. In its diketo form, pentane-2,4-dione radical cation, 1, 

has a planar heavy atom skeleton and belongs to the C2v point group. A second 

diketo structure, 2, with both carbonyl groups syn to the central C-H bonds lies 

6.0 kcal/mol higher. A third conformer, 3, with one carbonyl syn to a CC bond 

and the other carbonyl syn to a central C-H bond is 11.5 kcal/mol higher. There 

are two enolic forms that differ by the location of the CC double bond. The one 
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with an interior CC double bond, 4 (4-hydroxypent-3-en-2-one), is significantly 

more stable than 1 because of a very strong hydrogen bond between the OH and 

the carbonyl, and conjugation between the double bond and the carbonyl. At 

lower levels of theory, this structure is symmetrical and there is no barrier for 

proton transfer between the oxygens. At the QCISD/6-311G(d,p) level, the proton 

transfer barrier (without zero point energy) is 2.5 kcal/mol. Transition state TS5 

for tautomerization from 1 to 4 lies 43 kcal/mol above pentanedione. For the enol 

isomer with the terminal CC double bond (4-hydroxypent-4-en-2-one), there are 

two major conformers to be considered. The conformer with the OH anti to the 

CC double bond, 6, is 11 kcal/mol more stable than the syn conformer, 7, 

because of a strong hydrogen bond between the OH and the carbonyl. However, 

it is the syn conformer, 7, that is connected to 1 through transition state TS8, 

which is 48 kcal/mol above pentanedione. TS8 closely resembles the transition 

state for keto-enol tautomerism in acetone radical cation, both in geometry and 

barrier height.11,12 The enol to diketo tautomerization of 7 via TS8 to 1 produces a 

chemically activated pentanedione radical cation that can dissociate to two 

different sets of products.  Breaking the terminal CC bond requires 33 kcal/mol 

and produces CH3C(O)CH2CO+ + CH3
., 9.  Breaking an interior CC bond cost 

only 27 kcal/mol and produces CH3C(O)CH2
. + CH3CO+, 10. The 

CH3C(O)CH2CO+ cation has an unusually long CC bond (1.597 Å) that is rather 

weak (23 kcal/mol). Breaking this bond leads to the triple dissociation product of 

ketene, acetyl cation and methyl radical, 11. The triple dissociation product can 

also be reached by breaking the CC bond in CH3C(O)CH2
. radical in 10 to yield 
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ketene and methyl radical. The weakness of the CC bonds in pentanedione 

radical cation can be attributed to the stability of the cationic products, RCH2CO+, 

which are isoelectronic to RCH2CN. 

 

 

 

 
 

 

     

 
 

1, (0.0 kcal/mol) 2, (6.0 kcal/mol) 3, (11.5 kcal/mol) 

4, (-9.1 kcal/mol) TS5, (42.8 kcal/mol) 6, (-6.8 kcal/mol) 

7, (3.8 kcal/mol) 9, (33.4 kcal/mol) 

+



48 
 

 

1.139
1.139
1.117

1.443
1.436
1.455

 

 
 

 

 

 

Figure 3.1 Translational energy distributions of the methyl fragments derived 
from the active Structures and selected geometric parameters of 
stationary points on the pentanedione radical cation potential 
energy surface optimized at the MP2/6-31G(d), BAC-MP2/6-
31G(d), and QCISD/6-311G(d,p) levels of theory (top, middle and 
bottom rows, respectively). For TS14 and 15, only the QCISD/6-
311G(d,p) values are listed. Bond distances are in Å. Relative 
energies are calculated at the CBS-APNO level of theory. 

+

+

TS8, (47.9 kcal/mol) 10, (26.8 kcal/mol) 

16, (28.4 kcal/mol) 

13, (-1.1 kcal/mol) TS14, (11.4 kcal/mol) TS12, (21.2 kcal/mol) 

15, (14.1 kcal/mol) 
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Figure 3.2  Potential energy profile for the isomerization and dissociation of the 

pentanedione radical cation computed at the CBS-APNO level of 

theory. For TS14 and 15, the relative energies are calculated by 

QCISD/6-311G(d,p) without ZPE (see text for details). 
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The trajectory calculations revealed a number of additional interesting 

structures on the pentanedione radical cation potential energy surface. 

Pentanedione radical cation can rearrange via TS12 to an ester-like product, 

CH3C(CH2)OC(O)CH3, 13. This product is slightly more stable than 1 and the 

transition state is lower than the CC bond dissociation energies of pentanedione 

radical cation. A second channel revealed by the trajectory calculations involves 

a proton transfer via TS14 between CH3C(O)CH2
. and CH3CO+ before they have 

separate completely. This produces a product complex, 15, which dissociates to 

the enol of acetone radical cation and ketene, CH3C(OH)CH2
+. + CH2CO, 16. 

TS14 can be optimized at QCISD/6-311G(d,p) and has an electronic energy 0.4 

kcal/mol higher than 15; however, TS14 cannot be located at the MP2 level. 

When zero point energy is included, 15 is higher than TS14, suggesting this 

feature may be only a shoulder on the potential energy surface.  
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Table 3.1 Relative energies (in kcal/mol) of the various points on the 

pentanedione radical cation potential energy surface 

 HF/6-
31G(d) 

B3LYP/6-
31G(d) 

MP2/6-
31G(d) 

CBS-
QB3 

CBS-
APNO 

BAC-MP2/6-
31G(d) 

1 0.0 0.0 0.0 0.0 0.0 0.0 

2 14.0 10.2 8.9 9.7 6.0 8.7 

3 -9.6 9.9 15.5 14.0 11.5 15.4 

4 -24.2 -2.7 -7.2 -8.9 -9.1 -7.4 

TS5 42.7 47.1 52.4 44.2 42.8 52.0 

6 -20.7 -0.4 -8.1 -6.6 -6.8 -8.6 

7 -12.3 8.6 3.5 11.3 3.8 3.0 

TS8 45.4 55.4 51.2 50.8 47.9 50.9 

9 11.6 43.0 25.0 34.8 33.4 31.4 

10 2.2 35.7 27.7 26.9 26.8 25.5 

11 33.6 66.6 51.2 56.9 56.6 46.0 

TS12 10.5 25.6 19.7 22.0 21.2 19.0 

13 -20.8 1.6 -6.2 -0.7 -1.1 -7.7 

TS14 0.2 9.5a b 12.9 11.4 b 

15 0.2 10.9a b 14.1 14.1 b 

16 9.4 34.3 29.3 28.6 28.4 26.4 

a using B3LYP/6-311G(d,p) geometries  

b could not be located (see text)  
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The relative energies of selected stationary points on the potential energy 

surface have been calculated at a number of levels of theory and are compared 

in Table 3.1. Energies are calculated relative to pentanedione radical cation, 1, 

and the CBS-APNO relative energies are taken as reference values in the 

comparisons. The CBS-QB3 relative energies agree quite well with the CBS-

APNO values, except for the enol isomer, 7. The CBS-QB3 calculatios are based 

on the B3LYP/6-311G(d,p) optimized geometries, while CBS-APNO uses 

QCISD/6-311G(d,p) optimized geometries. The B3LYP is relatively poor at 

predicting the enol geometry, while MP2 and QCISD give similar structures. If the 

MP2 structure is used for CBS-QB3 calculation, the relative energy of enol 7 is 

4.7 kcal/mol, in better agreement with the CBS-APNO value. The Hartree-Fock 

calculations greatly overestimate the stability of both the enol and ester 

conformations, while B3LYP underestimates their stabilities compared to the 

CBS calculations. The barrier height for 7  TS8  1 is approximately 50 

kcal/mol for all of the levels of theory. The CC bond dissociation energies (1  9 

and 1  10) are ca 20 kcal/mol too low by Hartree-Fock and 10 kcal/mol too high 

by B3LYP. A variety of other density functional methods were tested for the 

dissociation of acetone radical cation and none was found to provide dramatically 

superior performance.12 The MP2 dissociation energy for the interior CC bond is 

in good agreement with the CBS values, but the dissociation energy of the 

terminal CC bond is 8 – 10 kcal/mol too low. The MP2 values with the bond 

additivity correction are in good agreement with the CBS calculations for both 
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bonds individually. However, the rare event where both bonds break (1  11) 

was not included in the calibration of the bond additivity corrections, and the 

BAC-MP2 values are ca 10 kcal/mol too low. 

Dynamics 

The foregoing discussion has shown that the BAC-MP2/6-31G(d) level of 

theory is suitable and practical for simulating the molecular dynamics of the 

pentanedione radical cation dissociation. The trajectories were started at the enol 

to diketo transition state, TS8. As described in the Methods section, the initial 

conditions were chosen from a microcanonical ensemble with 10 kcal/mol extra 

energy above the zero point energy of the transition state. Of the 244 trajectories 

that were integrated, 6 had to be discarded because the energy was not 

conserved or the integration failed. Excluding these 6 trajectories, the distribution 

of products is shown in Table 3.2. There were 44 trajectories that returned to the 

enol isomer, and 9 that remained in the diketo minimum. The activated terminal 

CC bond dissociated in 70 trajectories producing a methyl radical. The interior 

CC bond adjacent to the activated terminal CC bond dissociated in 103 

trajectories, leading to the loss of an acetyl cation. Only one trajectory produced 

dissociation of the other interior CC bond. No trajectories showed dissociation of 

the unactivated terminal CC bond. Two of the trajectories resulted in triple 

dissociation via 9, first by losing the active methyl and then losing ketene. This 

fraction is probably too high because the BAC-MP2 energy is 10 kcal/mol too low 

for this channel. Of the 9 remaining trajectories, 5 yielded the proton transfer 

products, 16, and 4 formed the ester-like product, 13.  
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Table 3.2 Summary of the ab initio molecular dynamics calculations for the 

dissociation of pentanedione radical cationa 

Product Structure Description Branching Ratio 

10 loss of active acetyl 43.3% 

9 loss of active methyl 29.4% 

7 enol isomer 18.5% 

1 diketo isomer 3.8% 

16 proton transfer 2.1% 

13 ester-like product 1.6% 

11 triple dissociation 0.8% 

10 loss of spectator acetyl 0.4% 

a 238 trajectories integrated at the BAC-MP2/6-31G(d) level of theory starting 

from the diketo-enol transition state with 10 kcal/mol excess energy above ZPE 

in a microcannonical ensemble constructed using quasi-classical normal mode 

sampling 
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In acetone radical cation, the two CC bonds have equal bond energies 

and are expected to dissociate at equal rates. The observed branching ratio of ca 

1.5 to 1 thus indicates significant non-statistical behavior. In pentanedione, the 

dissociation energy of the interior CC bond is ca 6 kcal/mol lower than the 

terminal CC bond. RRKM calculations indicate a ratio 0.10 – 0.11 for terminal to 

interior CC bond dissociation. Thus the ratio of 70:103 (0.68) for terminal to 

interior CC bond dissociation obtained from the trajectory calculations represents 

a significant deviation from statistical behavior. As in acetone radical cation, it is 

the result of competition between the rate of dissociation and the rate of 

intramolecular energy flow. An even greater deviation from statistical behavior is 

seen when the dissociations of the two interior CC bonds are compared. While 

103 trajectories produced dissociation of the CC bond adjacent to the activated 

terminal CC bond, only 1 trajectory resulted in dissociation of the other interior 

CC bond. This gives a non-statistical branching ratio of ca 100:1. If the 9 

trajectories that remained in the pentanedione minimum at the end of the 

simulation are assumed to dissociate via the interior CC bonds in equal 

proportions, the branching ratio is ca 20:1 (Scheme 3.2). This represents a very 

large deviation from statistical behavior, and will hopefully stimulate some 

experimental studies. 

 

 

Scheme 3.2 
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Some additional understanding of the dissociation behavior of 

pentanedione radical cation can be obtained by examining the number of 

molecules dissociating versus time. For the purpose of this analysis, we consider 

a trajectory to be dissociated when the CC bond exceeds 3.0 Å and continues to 

lengthen. For the 70 trajectories leading to dissociation of the activated terminal 

CC bond within 600 fs, Figure 3.3 shows the logarithm of the fraction of 

undissociated trajectories versus time. The corresponding data is also shown for 

the 103 trajectories leading to dissociation of the adjacent interior CC bond. For 

unimolecular dissociations obeying first order kinetics, these plots should be 

straight lines. In the first ca. 50 fs, the hydrogen moves from its position in the 

transition state to form a C-H bond, activating the terminal methyl group, but not 

yet causing any CC bond dissociations. By the end of the next 50 fs, energy has 

flowed into the terminal CC bond and 50% of the trajectories leading to methyl 

loss have already dissociated. By contrast, only 20% of the trajectories leading to 

acetyl loss have dissociated. Energy continues to flow through the molecule and 

by 150 fs, 50% of the trajectories leading to acetyl loss have dissociated. 

Additional time is needed for energy to flow into the other interior CC bond, but 

the energy also flows into the remaining vibrational coordinates, approaching a 

statistical distribution and further reducing the dissociation probability. The 

average dissociated times are 152 fs for the active methyl group and 205 fs for 

the active acetyl group. The dissociation time for the single trajectory leading to 

loss of the spectator acetyl is ca 250 fs. 
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Figure 3.3 Translational Fraction of undissociated trajectories versus for loss 

of the active methyl group (filled symbols) and active acetyl group 

(open symbols). 
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Figure 3.3 also shows that the dissociation rate (i.e. the negative of the 

slope) is higher for the methyl group at earlier times than at later times. The 

number of methyl groups lost versus time can be fit by two exponentials starting 

at t0 = 60 fs. The loss of acetyl is also biexponential but the effect is less 

pronounced. This suggests that it may be possible to model pentanedione radical 

cation by assuming a portion of the population dissociates rapidly, losing the 

active methyl and acetyl groups, and that the rest of the population responds 

more slowly leading to the remaining products as well as additional methyl and 

acetyl dissociations. A simple kinetic scheme is given in Scheme 3.3. 

H3C CH2 CH3

O O

H3C CH2 CH3

O O

H3C CH2 CH3

O O

H3C CH2 CH3

O O

H3C CH2 CH3

O O

*
H3C CH2 CH3

O O

*
H3C CH2 CH3

O O

*
H3C CH2 CH3

O O

*
k4 k3'

k1k2

proton transfer and
ester-like product

k6k6

loss of
active methyl

loss of
active acetyl

loss of
spectator methyl

loss of
spectator acetyl

initial activation
of the terminal

CC bond

enol

k5

k1k1fast

k3fast

k3

k2k2fast

indicates
activated bond
* k1fast = 0.018 fs-1

k2fast = 0.040 fs-1

k3fast = 0.018 fs-1

k1 = 0.00114 fs-1, k2 = 0.012 fs-1

k3=k3' = 0.0032 fs-1, k4 = 0.001 fs-1

k5 = 0.00167 fs-1, k6 = 0.002 fs-1  

Scheme 3.3 

After some testing, we assumed that 40 methyl dissociations and 40 

acetyl dissociations arose from the fast mechanism and the remainders were 

produced by the slow mechanism. The total number of trajectories leading to 

each of the products imposes various constraints on the ratios of rate constants.  

This left four degrees of freedom which were adjusted to give the best fit to the 

data shown in Figure 3.4. Since other kinetic schemes and rate constants may 
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give equally good fits, qualitative relations among the rate constants are more 

relevant than their numerical values. 
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Figure 3.4 Number of dissociations of the active methyl and acetyl groups 

versus time obtained from the trajectory calculations (solid lines) 

and from the simple kinetic model (dashed lines). 

Figure 3.4 shows that the data can be modeled well if one assumes a 

partitioning of the problem into fast and slow populations. If this assumption is not 

made, then the data at short times (< 150 fs) and longer times (> 200 fs) cannot 

both be fit by the same set of rate constants. This suggests that only some of the 

molecules are highly activated for dissociation by the tautomerization from enol 

to diketo. Both the terminal and interior bonds of the highly activated diketo 

species dissociate rapidly. Energy flows rapidly between the terminal and interior 

CC bonds, possibly mediated by CCO bending as suggested by work on the 

acetone radical cation system.9,12 The rate constants for the dissociation of the 

slower population are governed by the behavior at longer times (> 200 fs). It is 
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satisfying to note that the ratio of the rate constants for methyl and acetyl 

dissociation (k1/k2 = 0.095) is very close to the ratio predicted by the RRKM 

calculations (0.10 – 0.11). The rate for energy transfer between the interior CC 

bonds (k4 = 0.001) is an order of magnitude smaller than the dissociation rate for 

an interior CC bond. This provides a rationalization for the large non-statistical 

branching ratio seen for the active versus spectator acetyl group.  

3.4 Conclusions: 

The energetics of pentanedione radical cation dissociation have been 

studied by electronic structure calculations at a variety of levels of theory up to 

CBS-APNO. The relative energies calculated at BAC-MP2/6-31G(d) gave a 

better fit to the CBS-APNO results than the MP2 and B3LYP levels of theory. The 

dissociation of pentanedione radical cation with 10 kcal/mol extra energy above 

the diketo-enol transition state has been simulated by ab initio classical 

trajectories at the BAC-MP2/6-31G(d) level of theory. This produces 

pentanedione with chemical activation of a terminal CC bond. Dissociation of this 

bond yields CH3C(O)CH2CO+ + CH3
., but energy also flows quickly to the 

adjacent interior CC bond, which dissociates to give CH3C(O)CH2
. + CH3CO+. 

The trajectory calculations also reveal some additional products that were not 

anticipated. The interior CC bonds are 6 kcal/mol weaker than the terminal CC 

bonds, and RRKM theory predicts a branching ratio of 0.10 – 0.11 for the 

breaking of the terminal CC versus the interior CC bond. However, the 

simulations yield a branching ratio of 0.68, indicating a substantial deviation from 

statistical behavior. An even larger deviation from statistical behavior is seen for 
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the dissociation of the two equivalent interior CC bonds, with a branching ratio of 

ca. 20:1 or greater. The biexponential behavior of the dissociations indicates that 

a fraction of the activated pentanedione radical cations reacts more rapidly. A 

simple kinetic scheme has been constructed to model the dissociation rates. The 

non-statistical behavior is seen in the dissociations because the rate of energy 

flow within the molecule is comparable to or slower than the rates of dissociation.   
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CHAPTER 4 

AB INITIO CLASSICAL TRAJECTORY CALCULATIONS OF 1,3-

CYCLOBUTANEDIONE RADICAL CATION DISSOCIATION  

4.1 Introduction:  

A chemically activated species can dissociate in a non-statistical manner if 

the rate for dissociation is faster than the rate for intramolecular energy 

redistribution. Acetone radical cation is an archetypal example of this process 

and has been studied experimentally and theoretically over the past 35 years.1-12 

Isomerization from the enol form to the keto form activates the newly formed 

methyl group which dissociates preferentially. Energy also flows to the other 

methyl group resulting in its dissociation at a slower rate and with a different energy 

distribution. The observed branching ratio is ca 1.5:1 in favor of the newly formed 

methyl group.1-9,11,12  Similar to acetone radical cation, in our ab initio MD study of 

pentane-2,4-dione radical cation,13 we saw a competition between thermodynamics 

and non-statistical behavior in C-C bond dissociation. The activated terminal C-C 

bond had a lower dissociation probability than the weaker neighboring C-C bond. 

The two interior C-C bonds are equal in strength, but the one closer to the activated 

bond dissociates ca 20 times more frequently. Based on the above studies, it would 

be interesting to design a chemically activated system that would allow the flow of 

energy through several bonds of equal strength, thereby avoiding any 

thermodynamic bias. 1,3-cyclobutanedione radical cation could be a good 

candidate. The enol form with a C-C double bond can be generated by the 

McLafferty rearrangement,14,15 as shown in Scheme 4.1. Upon isomerization to the 
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diketo form, the energy from the activated C-C bond can flow sequentially to three 

other C-C bonds, potentially resulting in greater variety of non-statistical behavior 

than acetone radical cation.   

 

Scheme 4.1 

4.2 Computational Methods:  

Similar to our previous studies on acetone radical cation11,12 and 

pentanedione radical cation,13 we have used ab initio classical trajectory calculations 

to study the non-statistical dissociation of 1,3-cyclobutanedione radical cation. The 

Gaussian suite of programs16 was used for the ab initio electronic structure and 

molecular dynamics calculations. The geometries of the minima and transition 

states were optimized by Hartree-Fock (HF), hybrid density functional theory 

(B3LYP and BH&HLYP),17-19 and second order Møller-Plesset perturbation 

theory (MP2).20 Higher accurate energy differences were calculated by the CBS-

QB321 and G422 methods. The G4 calculations have a mean absolute deviation 

of 0.83 kcal/mol for heats of reaction and thus will be used as a standard. 

Ab initio classical trajectories were computed at the BH&HLYP/6-31G(d) 

level of theory using a Hessian-based predictor-corrector method.23,24 The 

trajectories were terminated when the centers of mass of the fragments were 8 

bohr apart and the gradient between the fragments was less than 110-5 

hartree/bohr. A step size of 0.25 amu1/2 bohr was used for integrating the 
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trajectories. The energy was conserved to better than 110-5  hartree and the 

angular momentum was conserved to 110-8 ħ. Trajectories were initiated at the 

transition state for the enol to diketo tautomerization. A microcannonical 

ensemble of initial states was constructed using quasi-classical normal mode 

sampling.26,27 A total energy of 10 kcal/mol above the zero point energy of the 

transition state was distributed among the 23 vibrational modes and translation 

along the transition vector toward the product. The total angular momentum was 

set to zero (corresponding to a rotationally cold distribution) and the phases of 

the vibrational modes were chosen randomly. The initial conditions are similar to 

those used previously for acetone radical cation11,12 and pentanedione radical 

cation13. A total of 210 trajectories were integrated for up to 400 fs starting from 

the transition state and ending when the products were well separated. 

4.3 Results and Discussion 

Structures and Energetics 

The optimized geometries of the diketo and enol forms of 

cyclobutanedione radical cation, various intermediates, transition states and 

products are available in Figure 4.1 for a number of levels of theory. The relative 

energies of these structures at the G4 level of theory are summarized in Figure 

4.2. In its diketo form, 1,3-cyclobutanedione radical cation, 1, has D2h symmetry 

with a planar heavy atom skeleton. The enolic form, 3, also has a planar heavy 

atom skeleton, and lies 4.1 kcal/mol higher in energy than 1. The enol to diketo 

tautomerization of 3 via TS2 to 1 produces a chemically activated 

cyclobutanedione radical cation. Breaking one CC bond requires only 6.6 
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kcal/mol and produces CH2C(O)CH2CO+., 5. Because of the release of ring 

strain, 5 is 14.6 kcal/mol more stable than 1. Two CC dissociation paths lead 

from 5 to products with similar energies. One path yields CH2C(O)CH2
+. + CO, 6, 

and requires 33.4 kcal/mol. The other path produces CH2CO +. + CH2CO, 9, via 

transition state TS7 and intermediate 8, and requires 30.6 kcal/mol. The central 

CC bond in complex 8 is a 3 electron bond and is very long (ca 2.4 Å).  

Nevertheless, it has a dissociation energy of 20.7 kcal/mol. Similar to our 

previous study on pentanedione radical cation13, a proton transfer can occur 

between the products. This process happens via complex 10, transition state 

TS11 and complex 12. The product CH3CO + + HCCO., 13, is only 2 kcal/mol 

higher than 9. 
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Figure 4.1 Structures and selected geometric parameters of stationary points 
on the cyclobutanedione radical cation potential energy surface 
optimized at the BH&HLYP/6-31G(d) and G4 (B3LYP/6-31G(2df,p)) 
levels of theory (top and bottom rows, respectively). For structure 
10, QCISD/6-311G(d) value is listed. Bond distances are in 
angstroms. Relative energies in kcal/mol (given in parentheses) 
were calculated at the G4 level of theory. 
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Figure 4.2 Potential energy profile for the isomerization and dissociation of 

cyclobutanedione radical cation computed at the G4 level of theory.  
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The relative energies of selected stationary points on the potential energy 

surface have been computed at a number of levels of theory and are compared 

in Table 4.1. Energies are calculated relative to CH2CO+. + CH2CO, 9, and the 

G4 relative energies are taken as reference values in the comparisons. As 

expected, the CBS-QB3 relative energies agree well with the G4 values, with 

mean average deviation (MAD) of 1.0 kcal/mol. The B3LYP and MP2 perform 

similarly at predicting the relative energies (4 kcal/mol MAD) except that MP2 

fails to locate the TS4 structure. The Hartree-Fock calculations greatly 

underestimate the stability of 1, TS2 and 8 relative to 9, and fail to locate 

structure 12. Since the DFT methods were not able to locate structure 10, QCISD 

geometries were used instead. The BH&HLYP values are in excellent agreement 

with the G4 values (MAD of 1.9 kcal/mol) and are used for the molecular 

dynamics simulations. 
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Table 4.1 Relative Energies (kcal/mol) of Various Points on the 

Cyclobutanedione Radical Cation Potential Energy Surface  

 HF/ 

6-31G(d) 

B3LYP/ 

6-31G(d)

MP2/ 

6-31G(d)

BH&HLYP/

6-31G(d) 

CBS-QB3 G4 

1 7.8 -24.4 -21.3 -18.6 -20.0 -16.0 

TS2 75.7 51.4 72.3 60.3 54.3 56.8 

3 -10 -13.6 -3.5 -18.3 -12.6 -11.9 

TS4 1.8 -11.9 -9.7a -10.8 -8.3 -9.4 

5 -31.9 -30 -28.3 -33.3 -30.2 -30.6 

6 -1.9 4.1 -0.4 1.2 3.6 2.8 

TS7 -4.4 -18.7 -18.2 -14.7 -12.1 -13.5 

8 -6.0 -27.9 -25.9 -21.9 -21.5 -20.7 

9 0.0 0.0 0.0 0.0 0.0 0.0 

10 -4.1 -13.4a -8.6 -8.4a -6.5b -7.5b 

TS11 6.5 -11.1 -6.5 -5.2 -3.5 -4.3 

12 c -10.4 -8.6 -6.8 -6.4 -7.1 

13 5.1 2.6 2.8 3.8 2.1 1.9 

14 -36.9 -44.3 -42.2 -45.6 -43.2 -43.3 

MAD 8.4 3.6 3.7 1.9 1.0  

a Single point energy at QCISD/6-311G(d) geometry plus QCISD/6-311(d) ZPE  

b Using QCISD/6-311G(d) geometry  

c Stationary point could not be located  
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Dynamics 

The trajectories were started at the enol to diketo transition state, TS2 with 

initial conditions chosen from a microcanonical ensemble with 10 kcal/mol extra 

energy above the zero point energy of the transition state. Of the 210 trajectories 

that were integrated, 7 had to be discarded because the energy was not 

conserved or the integration failed. Excluding these 7 trajectories, the distribution 

of products is shown in Table 4.2. The enol to diketo reaction produces 

cyclobutanedione radical cation with an activated CC bond. To be consistent with 

acetone radical cation, we designate the CC bond separated from the activated 

bond by a carbonyl group as the spectator CC bond. The activated CC bond, 

along with the CC bond opposite to it, dissociated in 93 trajectories producing 

CH2CO+. + CH2CO, 9. The spectator CC bond and the CC bond opposite it 

dissociated in 50 trajectories. Four trajectories remained in the diketo minimum. 

There were 20 trajectories that did not reach the diketo minimum but crossed 

back to the enol isomer; 15 of these trajectories ended with breaking of a CC 

bond to form CH2C(OH)CHCO+., 14. Two trajectories yielded proton transfer 

products, 13. Another two trajectories lost CO producing CH2COCH2
+. + CO, 6 

(one for each carbonyl group). Several trajectories stop after one CC bond 

breaking, yielding CH2COCH2CO+., 5. Of the four possibilities for breaking one 

CC bond, the activated CC bond broke most frequently (17 trajectories), followed 

by the spectator CC bond (7 trajectories) and the other two bonds (4 trajectories 

each).  
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Table 4.2 Branching Ratios for Cyclobutanedione Radical Cation Dissociation 

from Molecular Dynamics at the BH&HLYP/6-31G(d) Level of Theory 

Product  

Structure 

Description Number of 

Trajectories

Percentages 
(%) 

9 active bond dissociation 93 45.8 

9 spectator bond dissociation 50 24.6 

5 active bond dissociation 17 8.4 

5 spectator bond dissociation 7 3.4 

5 opposite bond dissociation 8 4.0 

6 CO elimination 2 1.0 

13 proton transfer 2 1.0 

14 CH2C(OH)CHCO+. 15 7.5 

1 cyclobutanedione radical 
cation 4 2.0 

3 enol isomer 5 2.5 
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In acetone radical cation, the two CC bonds have equal bond energies 

and are expected to dissociate at equal rates. The observed branching ratio of ca 

1.5 to 1 thus indicates significant non-statistical behavior. In pentanedione, the 

active versus spectator bond dissociation ratio is complicated by differences in 

the bond strengths. Nevertheless, comparison with RRKM calculation indicates 

significant non-statistical behavior. The situation is simpler for cyclobutanedione 

radical cation, since all of the CC bonds have the same dissociation energy.  

There are two ways to produce CH2CO+. + CH2CO, 9, depending on whether the 

active CC bond or spectator CC bond breaks. Statistically they would be 

expected to have the same dissociate rate, but the molecular dynamics 

calculations yield a ratio of 93:50 = 1.86 for active versus spectator CC bond 

dissociation. This is a greater deviation from statistical behavior than for acetone 

radical cation with the same initial conditions. As in acetone radical cation, it is 

the result of competition between the rate of dissociation and the rate of 

intramolecular energy flow. Hopefully, these calculations will stimulate 

experimental studies on the non-statistical behavior of cyclobutanedione radical 

cation and related systems such as pentanedione radical cation.  

4.4 Conclusions: 

The dissociation of 1,3-cyclobutanedione radical cation was studied by ab 

initio direct classical trajectory calculations at the BH&HLYP/6-31G(d) level of 

theory. A microcanonical ensemble using quasiclassical normal mode sampling 

was constructed by distributing 10 kcal/mol of excess energy above the transition 

state for the tautomerization of the enol to the diketo form. A total of 210 
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trajectories were run starting from this transition state, yielding chemically 

activated 1,3-cyclobutanedione radical cation. The majority of the trajectories 

resulted in CH2CO+. + CH2CO, with the activated CC bond breaking nearly twice 

as often as the spectator CC bond. The non-statistical behavior is observed 

because the rate of energy redistribution within the molecule is comparable to or 

slower than the dissociation rates. In addition to the expected products, 

dissociation to CH2COCH2
+. + CO and formation a proton transferred product, 

HCCO. + CH3CO+ were also seen in some of the trajectories. 
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CHAPTER 5 

AB INITIO CLASSICAL TRAJECTORY STUDY OF THE DISSOCIATION OF 

NEUTRAL AND POSITIVELY CHARGED METHANIMINE (CH2NHn+ n=0,1,2) 

Reproduced with permission from J. Phys. Chem. A, 2009, 113, 9958-9964 
Copyright 2009, American Chemical Society 

5.1 Introduction:  

The simplest example of a molecule with a carbon-nitrogen double bond is 

H2C=NH, known variously as methanimine, methyleneimine and formaldimine. 

Similar to ethylene and formaldehyde, the simplest examples of CC and CO 

double bonds, the low energy dissociation channels of H2CNH are loss of 

hydrogen atom and elimination of molecular H2. Ionization to form the 

monocation simplifies the potential energy surface and reduces the barriers to 

rearrangement and dissociation. Formation of the dication favors dissociation into 

two monocations and should reduce the barriers further. When a third electron is 

removed, the barriers are less than 5 kcal/mol (see below) and the molecule 

dissociates via a Coulomb explosion. In the present paper we use accurate 

computational methods to explore the potential energy surfaces of H2CNH and 

its cations and use ab initio classical trajectory calculations to examine the 

molecular dynamics of these systems.  

Neutral H2CNH is a reactive intermediate that can be produced by 

pyrolysis of amines and azides.1-5 It has also been observed in interstellar dust 

clouds.6 The gas phase structure has been determined by microwave 

spectroscopy.1 The infrared spectrum has been observed in early matrix isolation 



84 
 

experiments7,8 and later in the gas phase.3,9-12 The electronic spectrum of H2CNH 

has been reported only recently.13 The best values for heat of formation of 

H2CNH obtained experimental (22±3 kcal/mol14) and computationally (21.1±0.5 

kcal/mol15) are in good agreement. In the numerous computational studies,16-25 

the aminocarbene isomer, HCNH2, is found to be 35-39 kcal/mol higher than 

H2CNH, and singlet methylnitrene, CH3N, is calculated to be ca 89 kcal/mol 

above H2CNH. Aminocarbene can be produced by pyrolysis of 

aminocyclopropane.26 Singlet methylnitrene can be generated by pyrolysis of 

methyl azide, CH3N3,
27 but calculations show that there is little or no barrier for 

singlet CH3N to rearrange to H2CNH.16-19,21-25 Dissociation of H2CNH has been 

studied experimentally and computationally.17-20,24,27 It can occur by loss of 

hydrogen atom from either the carbon or the nitrogen with barriers of 85 – 95 

kcal/mol to form HCNH and H2CN, which can lose another hydrogen atom with 

barriers of 30 – 35 kcal/mol to produce HCN.18,28-30 Alternatively, H2CNH, HCNH2 

and CH3N can dissociate by 1,1- or 1,2-H2 eliminations with barriers of 85 – 100 

kcal/mol above H2CNH.18-20,24  

Various isomers of H2CNH monocation can be generated from the 

decomposition of methylamine, cyclopropylamine, azetidine, and 

aminocarbenium ion, and by the reaction of C+ with NH3.
20,26,31-33 Ab initio 

calculations show that the HCNH2
+ isomer is ca 4 kcal/mol more stable than 

H2CNH + and separated from the latter by a barrier of ca 57 kcal/mol.17,34-36 The 

lowest energy dissociation channels involve loss of hydrogen atom.34,35 Of the 

three possible singlet products resulting from H dissociation, HCNH+ is the most 
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stable, CNH2
+ is a minimum lying ca 52 kcal/mol higher, and H2CN+ is a saddle 

point ca 74 kcal/mol above HCNH+.37-41 Loss of H2 from H2CNH + / HCNH2
+ leads 

to HNC+ and HCN+, with the former being 23 kcal/mol more stable than the 

latter.42-46 

By comparison to neutral H2CNH and the monocation, very few papers 

have examined the potential energy surface of the dication.47,48 The most stable 

singlet dication isomer is HCNH2
2+. CNH3

2+ is 48 kcal/mol higher and has a 

barrier of ca 30 kcal/mol for conversion to HCNH2
2+. H2CNH2+ is either a saddle 

point or a very shallow minimum ca 45 kcal/mol above HCNH2
2+. H3CN2+ 

dissociates to HCN2+ + H2. Barriers of 40 – 65 kcal/mol separate HCNH2
2+ and 

CNH3
2+ from dissociation products H+ plus HCNH+ and CNH2

+. No studies 

appear to have been published on the potential energy surface of the trication.  

The potential energy surfaces for the dissociation of H2CNH and its 

positively charged ions that have been published over the past three decades 

involve a wide variety of computational methods. The differing accuracies of 

these methods make comparisons somewhat difficult. In the present paper, we 

use high level ab initio calculations to provide a consistent and accurate 

description of the structures and energetics of neutral H2CNH and its cations on 

the ground state potential energy surfaces, and employ Born-Oppenheimer 

classical trajectory calculations at the B3LYP/6-311G(d,p) level to examine the 

dynamics of the dissociation of these species.  
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5.2 Computational Methods:  

The GAUSSIAN suite of programs49 was used for the ab initio electronic 

structure and molecular dynamics calculations. The geometries of the minima 

and the transition states were optimized by hybrid density functional theory 

(B3LYP50-52), second order Møller-Plesset perturbation theory (MP253) and 

quadratic configuration interaction (QCISD54) methods. The SCF stability of each 

structure was tested using standard methods55 (see Table 5.5 at the end of the 

text). The CBS-APNO complete basis set extrapolation method of Petersson and 

co-workers56 was used to compute accurate energy differences. The CBS-APNO 

calculations have a mean absolute deviation of 0.5 kcal/mol for heats of reaction. 

Because singlet CH3N requires a multi-reference treatment, its energy was 

estimated by adding the singlet-triplet energy difference calculated at the 

CASPT2/cc-pVTZ level of theory25 to the triplet energy calculated by CBS-APNO. 

Ab initio classical trajectories were computed at the B3LYP/6-311G(d,p) 

level of theory using a Hessian-based predictor-corrector method.57,58 A predictor 

step is taken on the quadratic surface obtained from the energy, gradient and 

Hessian from the beginning point. A fifth order polynomial is then fitted to the 

energies, gradients and Hessians at the beginning and end points of the 

predictor step, and the Bulirsch-Stoer algorithm59 is used to take a corrector step 

on this fitted surface with the angular forces projected out. The Hessians are 

updated for 5 steps before being recalculated analytically. The trajectories were 

terminated when the centers of mass of the fragments were 10 bohr apart and 

the gradient between the fragments was less than 110-5 hartree/bohr. A step 



87 
 

size of 0.25 amu1/2 bohr was used for integrating the trajectories. Each SCF 

calculation was started with an unrestricted initial guess (using the GUESS=MIX 

keyword in GAUSSIAN) to permit homolytic bond dissociation. The energy was 

conserved to better than 110-5 hartree and the angular momentum was 

conserved to 110-8 ħ. 

Trajectories were initiated at the local minima, H2CNH, H2CNH+ and 

H2NCH2+ (note that for the dication H2CNH2+ is a first order saddle point while 

H2NCH2+ is local minimum). A microcannonical ensemble of initial states was 

constructed using the quasi-classical normal mode sampling60,61. A total energy 

of 200, 150, and 120 kcal/mol above the zero point energy of H2CNH, H2CNH+, 

and H2NCH2+ was distributed among the 9 vibrational modes. The total angular 

momentum was set to zero corresponding to a rotationally cold distribution and 

the phases of the vibrational modes were chosen randomly. For each initial 

condition, the momentum and displacement were scaled so that the desired total 

energy was the sum of the vibrational kinetic energy and the potential energy 

obtained from the ab initio surface. A total of about 200 trajectories for each case 

were integrated for up to 400 fs starting from the local minima and ending when 

the products were well separated. 

5.3 Results and Discussion  

Structures and Energetics 

The structures, selected geometrical parameters and CBS-APNO relative 

energies of reactants, intermediates, transition states and products for the 

dissociation of H2CNHn+ are collected in Figures 5.1 – 5.8. The neutral, monocation, 



88 
 

dication and trication structures numbers have prefixes of N, C, D and T, 

respectively; the numbering of the structures is according to the potential energy 

profiles in Figures 5.2, 5.4, 5.6 and 5.8 (top to bottom in each column, left column to 

right column). Relative energies at the B3LYP/6-311G(d,p),  MP2/6-311G(d,p) and 

CBS-APNO levels of theory are compared in Table 5.1. Generally, B3LYP gives 

better agreement with the CBS-APNO energies than MP2 (mean absolute 

deviation of 3.0 and 4.7 kcal/mol, respectively). Adiabatic ionization energies are 

compared in Table 5.2. The CBS-APNO values for H2CNH and HCN are within 0.05 

eV of the experimental values (9.97 and 13.60 eV, respectively). 



89 
 

 

 

N-1 0.0 

 

N-7, 35.6 

 

N-TS2, 88.9 

 

N-TS3, 81.8 

 

Triplet N-4, 54.0  

(estimated singlet energy 86.0) 

 

N-TS5, 85.8 

 

N-TS6, 84.6 

 

N-TS8, 106.7 



90 
 

 

N-TS9, 100.5 

 

N-TS10, 95.7 

 

N-11, 117.6 

 

N-12, 99.1 

 

N-13, 94.4 

 

N-TS14, 131.1 

 

N-15, 86.7 

1.168
1.181
1.176

0.999
0.999
0.999

 

N-16, 22.5 (N-22, 126.3) 



91 
 

 

N-17, 8.2 (N-23, 111.9) 

 

N-TS18, 140.3 

 

N-TS19, 128.7 

1.068
1.068
1.072

1.161
1.153
1.178 1.620

1.409
1.517

 

N-TS20, 121.2 

 

N-TS21, 117.5 

 

N-TS24, 136.6 

 

N-25, 133.2 

 

Figure 5.1 Structures and selected geometric parameters of stationary points 
on the H2CNH potential energy surface optimized at the B3LYP/6-
311G(d,p), MP2/6-311G(d,p), and QCISD/6-311G(d,p) levels of 
theory (top, middle and bottom rows, respectively). The structure 
for CH3N is constrained to be C3v symmetry; all other structures are 
unconstrained. Bond distances are in Å, and angles are in degree. 
Relative energies are calculated at the CBS-APNO level of theory.  
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Figure 5.2  Potential energy profile for the isomerization and dissociation of 

neutral H2CNH computed at the CBS-APNO level of theory. 
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C-11, 93.6 (T-10, -285.2) 

 

C-12, 70.9 (T-7, -307.9) 

Figure 5.3  Structures and selected geometric parameters of stationary points 
on the H2CNH+. potential energy surface optimized at the B3LYP/6-
311G(d,p), MP2/6-311G(d,p), and QCISD/6-311G(d,p) levels of 
theory (top, middle and bottom rows, respectively). Bond distances 
are in Å, and angles are in degree. Relative energies are calculated 
at the CBS-APNO level of theory. 
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Figure 5.4  Potential energy profile for the isomerization and dissociation of 

H2CNH+. computed at the CBS-APNO level of theory. 
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D-TS5, 41.5 

Figure 5.5  Structures and selected geometric parameters of stationary points 
on the HCNH2

2+ potential energy surface optimized at the B3LYP/6-
311G(d,p), MP2/6-311G(d,p), and QCISD/6-311G(d,p) levels of 
theory (top, middle and bottom rows, respectively). Bond distances 
are in Å, and angles are in degree. Relative energies are calculated 
at the CBS-APNO level of theory. 
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Figure 5.6  Potential energy profile for the isomerization and dissociation of 

HCNH2
2+ computed at the CBS-APNO level of theory. 
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Figure 5.7  Structures and selected geometric parameters of stationary points 
on the HCNH2

3+ potential energy surface optimized at the B3LYP/6-
311G(d,p), MP2/6-311G(d,p), and QCISD/6-311G(d,p) levels of 
theory (top, middle and bottom rows, respectively). Bond distances 
are in Å, and angles are in degree. Relative energies are calculated 
at the CBS-APNO level of theory. 
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Figure 5.8  Potential energy profile for the isomerization and dissociation of 

HCNH2
3+ computed at the CBS-APNO level of theory. 
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Table 5.1 Relative energies (in kcal/mol) of the various points on the H2CNH,  

H2CNH+., HCNH2
2+, and HCNH2

3+ potential energy surfaces 

 B3LYP/6-
311G(d,p) 

MP2/6-
311G(d,p) 

CBS-APNO 

Neutral    

N-1 0.0 0.0 0.0 

N-TS2 88.9 91.6 88.9 

N-TS3 80.5 83.2 81.8 

N-4a 80.7 86.1 86.0 

N-TS5 84.0 90.0 85.8 

N-TS6 83.6 90.8 84.6 

N-7 34.6 38.4 35.6 

N-TS8 103.0 118.2 106.7 

N-TS9 97.8 107.6 100.5 

N-TS10 92.9 108.9 95.7 

N-11 113.1 113.6 117.6 

N-12 95.6 98.7 99.1 

N-13 91.5 93.7 94.4 

N-TS14 129.5 129.7 131.1 

N-15 82.8 90.1 86.7 

N-16 22.7 19.5 22.5 

N-17 8.4 0.8 8.2 

N-TS18 135.6 138.7 140.3 

N-TS19 126.7 120.9 128.7 
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N-TS20 117.3 120.9 121.2 

N-TS21 115.8 119.4 117.5 

N-22 126.4 113.8 126.3 

N-23 112.0 95.1 111.9 

N-TS24 135.4 145.3 136.6 

N-25 134.8 141.5 133.2 

MAD 2.1 5.1  

Monocation    

C-1 0.0 0.0 0.0 

C-TS2 100.2 94.4 98.7 

C-TS3 55.7 52.4 54.7 

C-TS4 47.2 41.2 42.2 

C-T5 34.2 29.1 31.2 

C-6 -2.8 -9.2 -3.8 

C-7 83.1 69.3 78.7 

C-TS8 39.9 39.7 39.0 

C-TS9 103.8 87.1 97.8 

C-10 33.5 12.1 26.9 

C-11 94.4 90.5 93.6 

C-12 77.6 70.7 70.9 

MAD 3.1 4.5  
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Dication    

D-1 0.0 0.0 0.0 

D-TS2 76.9 78.5 73.1 

D-TS3 63.6 66.6 64.5 

D-4 53.7 54.7 50.6 

D-TS5 41.5 39.4 41.5 

D-6 -5.7 -4.5 -7.9 

D-TS7 111.0 118.6 99.2 

D-TS8 15.0 13.2 11.2 

D-9 6.0 1.2 2.0 

D-10 -55.3 -61.7 -59.7 

MAD 3.4 4.1  

Trication    

T-1 0.0 0.0 0.0 

T-TS2 3.2 4.3 3.5 

T-TS3 0.7 0.9 1.9 

T-4 -225.2 -225.0 -231.2 

T-TS5 -193.0 -194.8 -199.3 

T-TS6 -198.1 -199.7 -205.3 

T-7 -239.1 -238.8 -244.4 

T-8 -297.3 -300.2 -307.9 

T-TS9 -200.2 -198.9 -203.5 
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a  Because singlet CH3N requires a multi-reference treatment, its energy was estimated 
by adding the singlet-triplet energy difference calculated at the CASPT2/cc-pVTZ level of 
theory25 to the energy calculated for the triplet. 

T-10 -280.4 -280.4 -285.2 

MAD 4.5 4.1  

MAD 
Overall 

3.0 4.7  
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Table 5.2  Adibatic ionization potentials (eV) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 B3LYP/6-
311G(d,p) 

MP2/6-
311G(d,p) 

CBS-APNO 

H2CNH  9.73 9.90 9.94 

HCNH2 8.11 7.84 8.23 

HCNH2
+ 17.64 17.20 17.52 

HCNH2
++ 30.56 30.57 30.78 

HCNH 7.21 6.36 7.01 

HCNH+ 22.59 22.90 22.76 

CNH2 8.43 7.98 8.25 

CNH2
+ 21.04 21.01 21.09 

HCN 13.46 13.79 13.64 

HNC 12.11 12.12 12.04 
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Neutral H2CNH  

The key equilibrium structures and transition states on the potential 

energy surface for H2CNH isomerization and dissociation are collected in Figure 

5.1. The relative energies of these structures at the CBS-APNO level of theory 

are plotted in Figure 5.2. HCNH2 (structure N-7) lies ca. 35 kcal/mol higher in 

energy than H2CNH (N-1), in good accord with previous results.16-25 

Isomerization from H2CNH to HCNH2 occurs more readily via N-TS3 with the H 

migrating in the plane of cis-HCNH than via N-TS2 with the H migrating across 

the bond of trans-HCNH. Dissociation of HCNH2 to HCN + H2 (N-17) can occur 

by a transition state with H2 cis or trans to the CH bond (N-TS9 and N-TS8, 

resp.). The HCN + H2 products can also be reached from H2CNH via singlet 

CH3N (N-4). There is little or no barrier for 1A’ CH3N isomerizing back to 

CH2NH.16-19,21-25 The transition state for CH3N  HCN + H2 (N-TS10) is ca 10 

kcal/mol lower than for HCNH2  HCN + H2. The lowest energy molecular 

dissociation pathway for H2CNH  leads to the higher energy HNC + H2 product 

(N-16), and can occur with the H2 either cis or trans to the NH bond (N-TS-6 and 

N-TS5, resp.) 

Aside from the thermodynamically favorable H2 molecule elimination 

channels, there are also several H atom dissociation channels to consider. 

Hydrogen atom dissociations from H2CNH and HCNH2 to form H2CN (N-15), cis-

HCNH (N-12), trans-HCNH (N-13) and H2NC (N-11) radicals are expected to 

occur without a reverse barrier. If the hydrogen atom does not depart promptly, it 

can abstract another hydrogen to form H2 plus HCN or HNC. This process has 
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been well documented in formaldehyde and acetaldehyde dissociation, and has 

been termed the “roaming atom” mechanism.62-68 Isomerization and dissociations 

of H2CN, HCNH and H2NC have been studied previously.18,28-30 Dissociations of 

H atom from these species to form HCN or HNC involves barriers of 22 - 34 

kcal/mol at the CBS-APNO level of theory and occur via transition states N-TS18 

– N-TS21. A final hydrogen atom dissociation from HCN and HNC leads to CN 

radical.  Alternatively, a free H atom could abstract a hydrogen to yield H2 + CN. 

The latter has been studied comprehensively in previous theoretical work.69,70 

Monocation    

Figures 5.3 and 5.4 summarize the structures and energetics for H2CNH+. 

radical cation. H2CNH+. (C-1) lies 4 kcal/mol higher in energy than the HCNH2
+. 

isomer (C-6), in good accord with the previous results.35 Like the neutral case, 

the barrier for isomerization from H2CNH+. to HCNH2
+. is lower for the proton 

migrating in the plane of cis-HCNH (C-TS4, 42 kcal/mol) than across the bond in 

trans-HCNH (C-TS3, 55 kcal/mol). Barriers for loss of hydrogen atom from 

HCNH2
+. and H2CNH+. to form HCNH+ + H (C-10) are 43 and 31 kcal/mol via C-

TS8 and C-TS5, respectively. HCNH2
+. can also dissociate to produce CNH2

+ + 

H, C-7, but this requires 82 kcal/mol. Isomerization of CNH2
+ to HCNH+ has a 

barrier of 19 kcal/mol (C-TS9). H2CN+ (C-TS2) is a saddle point and 72 kcal/mol 

above HCNH+. Dissociation of molecular hydrogen from HCNH2
+. and H2CNH+. 

could occur by 1,1-H2 or 1,2-H2 elimination to produce HNC+ + H2 (C-12) or 

HCN+ + H2 (C-11). Since these H2 eliminations are rather endothermic (e.g. 75 

and 97 kcal/mol from HCNH2
+.), H atom loss is the preferred channel for the 
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dissociation of HCNH2
+. and H2CNH+.. Hydrogen abstraction by a “roaming atom” 

mechanism62-68 is also unlikely because these reactions are quite endothermic 

(44 and 67 kcal/mol for HCNH+ + H  HNC+ + H2 and HCN+ + H2, resp.). The 

HNC+ is found to be 23 kcal/mol more stable than HCN+, in agreement with 

earlier work.42-46 

Dication    

The structures and energetics for the singlet dication potential energy surface 

are collected in Figures 5.5 and 5.6. Similar to the monocation, HCNH2
2+ (D-1) is the 

most stable structure. Even though the dication is isoelectronic with protonated 

acetylene, C2H3
+, there is no indication of a stable bridged structure.71-79 In previous 

calculations, H2CNH2+ was found to be a higher lying minimum at the HF and MP2 

levels of theory.47,48 We also find it to be a minimum at MP2, but with a barrier of 

less than 5 kcal/mol for conversion to H2CNH2+.  More highly correlated methods 

(CCSD, CCSD(T) and BD with 6-311+G(d,p) and 6-311+G(3df,2pd) basis sets) 

show that H2CNH2+ is a saddle point (See Figure 5.9 and Table 5.3). The small 

magnitude of the imaginary frequency (170i - 273i) indicates the potential energy 

surface is rather flat. A few density functionals (BMK, M052X, mPW1PW91, and 

PBE1PBE) find H2CNH2+ to be a saddle point, while other functionals (BLYP, 

PBE, PW91, and TPSS) find it to be a shallow local minimum (Table 5.3). For 

B3LYP and TPSSh, H2CNH2+ is a saddle point with the 6-311+G(3df,2pd) basis 

set, but a shallow minimum with the 6-311+G(d,p) basis set. In agreement with 

earlier calculations, CNH3
2+ (D-4) is a stable minimum, 51 kcal/mol above 

HCNH2
2+ and separated from it by a barrier of 22 kcal/mol. 
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Figure 5.9     Relax scan of energies versus H’-N-C bond angle at the CCSD 

(dashed) and MP2 (solid)  level of theory with 6-311+G(3df,2pd) 

basis set for HCNH2
2+. 
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Table 5.3 Relative energies and lowest vibrational frequencies of H2CNH2+ at 

various levels of theorya  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a E(H2CNH2+)-E(HCNH2
2+) in kcal/mol;  number of imaginary frequencies in  parenthesis.    

 6-311+G(d,p) 6-311+G(3df,2pd) 

 E Freq. E Freq. 

B3LYP 37.5 (0) 43 37.3 (1) 115i 

BLYP 33.2 (0) 210 33.0 (0) 185 

PBEPBE 32.8 (0) 196 32.6 (0) 160 

PW91PW91 32.9 (0) 201 32.7 (0) 165 

TPSSTPSS 34.8 (0) 166 34.6 (0) 118 

TPSSh 36.8 (0) 79 36.5 (1) 99i 

BMK 38.8 (1) 210i 38.8 (1) 250i 

M052X 44.0 (1) 284i 43.7 (1) 309i 

mPW1PW91 38.6 (1) 125i 38.4 (1) 188i 

PBE1PBE 38.3 (1) 130i 38.2 (1) 191i 

MP2 40.4 (0) 401 39.9 (0) 381 

BD 40.8 (1) 159i 40.8 (1) 169i 

CCSD 40.5 (1) 197i 40.6 (1) 273i 

CCSD(T) 37.8 (1) 60i 37.8 (1) 177i 

CASSCF(4,4)   36.0 (1) 111i 
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The lowest energy channel for dissociation of HCNH2
2+ is loss of a proton to 

give HCNH+ (D-10, -60 kcal/mol) with a barrier of 41 kcal/mol (D-TS5). Loss of a 

proton from HCNH2
2+ to form CNH2

+ (D-6) is less exothermic (-8 kcal/mol) and has a 

higher barrier (D-TS3, 65 kcal/mol). For the deprotonation of dications, AH2+  A+ + 

H+, careful attention must be paid to RHF/UHF instabilities80. If the second ionization 

potential of A (A+  A2+ + e-) is comparable to the ionization potential of hydrogen 

(13.6 eV), then spin unrestricted methods must be used. Since the ionization 

potentials of HCNH+ and CNH2
+ are 21 – 23 eV (see Table 5.2), spin restricted 

calculations are satisfactory for the deprotonation of HCNH2
2+, as confirmed by SCF 

stability calculations on transition states D-TS3 and D-TS5 (see Table 5.5). 

Trication   

Figures 5.7 and 5.8 summarize the structures and energetics for the 

trication. Surprisingly, HCNH2
3+ (T-1) is a local minimum. Dissociation to HCNH2+ 

+ H+ (T-7) is very exothermic (-244 kcal/mol) and has a barrier of only 2 kcal/mol 

(T-TS3). Dissociation to CNH2
2+ + H+ (T-4) is a little less exothermic (-231 

kcal/mol) and has a slightly higher barrier (T-TS2, 4 kcal/mol). HCNH2+ and 

CNH2
2+ can lose another proton to form HNC+ and HCN+. 
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(a) 

 

(b) 

Figure 5.10 Snapshots along typical trajectories for H2CNH  HCNH + H (a) 

direct dissociation, (b) indirect dissociation. 
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Dynamics 

Comparison of the data in Table 5.1 indicates that the B3LYP/6-311G(d,p) 

level of theory that should be suitable for simulating the molecular dynamics of 

neutral and charged H2CNH. The trajectories were started at local minima, 

namely H2CNH for the neutral, H2CNH+. for the monocation, and HCNH2
2+ for the 

singlet dication. Because of the low barriers for the trication, no trajectories were 

calculated for HCNH2
3+. Approximately 200 trajectories were initiated for each 

case. The initial energies were chosen so that most trajectories would finish 

within 400 fs (200, 150 and 120 kcal/mol for the neutral, monocation and 

dication, resp.). For these conditions, only dissociations involving H+, H atom and 

molecular H2 were seen. Trajectories are termed direct if H+ or H atom dissociate 

promptly. For indirect trajectories, hydrogen migrates within the molecule for 

some time before dissociation occurs. Figure 5.10 shows two examples of 

indirect trajectories (the corresponding movies are available on the ACS 

website). Because of the relatively high initial energy, H2 dissociation by the 

“roaming” mechanism was not observed. The results of the trajectory calculations 

are summarized in Table 5.4. 



114 
 

Table 5.4 Branching ratios for H2CNH, H2CNH+., and HCNH2
2+ dissociation 

obtained from molecular dynamics at the B3LYP/6-311G(d,p) level of theorya 

Product Structure Description Branching ratio 

Neutral   

HCNH + H Direct dissociation 28.26 

HCN + H + H Triple dissociation 21.74 

H2CN + H Direct dissociation 12.50 

CNH + H2 Molecular elimination 10.33 

HCN + H2 Molecular elimination 9.24 

CNH + H + H Triple dissociation 8.70 

HCNH + H Indirect dissociation 3.80 

H2CN + H Indirect dissociation 2.72 

HCNH + H H2CN converts to HCNH 1.63 

H2CN + H HCNH converts to H2CN 0.54 

CN + H2 + H Triple dissociation 0.54 

Monocation   

HCNH+ + H Direct dissociation 67.80 

HCNH+ + H Indirect dissociation 12.68 

HCNH+ + H H2CN+  converts to 
HCNH+ 

9.76 

H2CN+ + H Direct dissociation 3.41 

CNH+ + H2 Molecular elimination 2.93 

HCN+ + H2 Molecular elimination 2.44 

CNH2
+ + H Direct dissociation 0.98 

Dication   
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a Microcanonical ensemble with quasiclassical normal mode sampling with 200, 
150 and 120 kcal/mol excess energy above the H2CNH, H2CNH+., and HCNH2

2+ 
minima, respectively. 

HCNH+ + H+ Direct dissociation 51.01 

HCNH+ + H+ Indirect dissociation 23.89 

HCNH2
2+ No dissociation 12.55 

CNH2
+ + H+ Direct dissociation 10.12 

HCNH+ + H+ CNH2
+  converts to 
HCNH+ 

2.02 

CNH2
+ + H+ Indirect dissociation 0.41 
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For the neutral H2CNH, 17 trajectories resulted in HCN + H2 (8 by 1,2 

elimination, 5 by 1,1 elimination followed by isomerization, 3 by isomerization to 

H3CN followed by 1,1 elimination and 1 by isomerization to HCNH2 followed by 

1,1 elimination), while 19 produced HNC + H2 (primarily by 1,1 elimination). Even 

though HCN is more stable, the lower barrier for the direct dissociation of H2CNH 

to HNC + H2 leads to more trajectories yielding HNC as a product. Atomic H 

dissociation is more favorable than molecular H2 elimination: 52 trajectories went 

to HCNH + H directly and 7 indirectly, while 23 went to H2CN + H directly and 5 

indirectly (because of the large amplitude vibrations, it is not possible to 

distinguish cis-HCNH and trans-HCNH products the trajectory calculations). 

During the course of the simulations, an additional 3 trajectories lost H atom 

directly to form H2CN and then converted to HCNH, while 1 trajectory lost H atom 

directly to form HCNH and then converted to H2CN. Because CNH2 is much 

higher in energy, none of the trajectories produced this product. After the 

dissociation of the first H atom, a second H atom can be lost. Forty trajectories 

resulted in HCN + H + H, while 16 yielded CNH + H + H. The pathway leading to 

CN + H2 + H has the highest barrier of the reactions observed, and only 1 

trajectory out of 231 was seen for this channel. 

In trajectories of the monocation, HCNH+ accounts for 90% of the 

dissociation products. Of the 205 trajectories started from the H2CNH+. minimum, 

139 trajectories produce HCNH+ directly, and 26 indirectly. Another 20 

trajectories lost H atom first to produce H2CN+ which then isomerized to the more 

stable species, HCNH+. Seven more trajectories stopped at H2CN+ + H product 
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within the 400 fs simulation time. Since H2CN+ is a transition state, further 

propagation of these trajectories would yield HCNH+. Two additional trajectories 

produced CNH2
+ + H, which is separated from HCNH+ + H by a barrier of ca 20 

kcal/mol. Two H2 molecule elimination channels were also observed: 5 

trajectories resulted in HCN+ + H2 and 6 trajectories produced CNH+ + H2, each 

occurring by both 1,1 and 1,2-H2 elimination. 

For the dication, total 247 trajectories were integrated starting from 

HCNH2
2+ with an initial energy of 120 kcal/mol. The major product is HCNH+ + 

H+, with 126 trajectories resulting in direct dissociation and 59 trajectories 

indirect. Only few trajectories produced CNH2
+ + H+: 25 direct and 1 indirect. 

Additionally, 5 trajectories first formed CNH2
+ + H+ and then converted to the 

more stable species, HCNH+. There were also 31 trajectories that did not 

dissociated completely in the 400 fs simulation time.  

5.4 Conclusions: 

The energetics of neutral and positively charged H2CNH dissociations has 

been studied by electronic calculations at a variety of levels of theory up to CBS-

APNO. The results are in very good agreement with the best previous 

calculations. For H2CNH2+, higher correlated methods, such as CCSD and BD, 

reveal that it is a saddle point rather than a shallow local minimum. The 

dissociations of neutral and charged H2CNH dissociation have been simulated by 

ab initio classical trajectories at the B3LYP/6-311G(d,p) level of theory. For the 

initial energies selected, many of the trajectories dissociate directly to produce 

H+, H atom or H2. However, in a sizeable fraction of the trajectories, there was 
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substantial migration of the hydrogen within the molecule before dissociation 

occurred. Hydrogen atom was the preferred dissociation product for the neutral 

and the monocation. Elimination of H2 was seen in 20% of the trajectories for the 

neutral and in 5% of the trajectories for the monocation. The dication and 

trication produced only H+. For the monocation and dication, HCNH+ was formed 

in 85 – 90% of the dissociating trajectories. 
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Table 5.5 Relative energies (in kcal/mol), SCF stabilities and <S2> of various 

points on the H2CNH, H2CNH+., HCNH2
2+, and HCNH2

3+ potential energy 

surfaces 

 B3LYP/6-311G(d,p) MP2/6-311G(d,p) CBS-APNO 

Neutral singlet 

N-1, H2CNH 0.0 (stable) 0.0 (RHFUHF) 

0.0025 (S2=0) 

0.0 

N-TS2 88.9 (stable) 91.6 (RHFUHF) 

94.9 (S2=0.21) 

88.9 (restricted) 

89.1 
(unrestricted, 

S2~0.22) 

N-TS3 80.5 (stable) 83.2 (stable) 81.8 

N-4a 80.7 86.1 86.0 

N-TS5 84.0 (stable) 90.0 (RHFUHF) 

90.0 (S2=0) 

85.8 

N-TS6 83.6 (stable) 90.8 (RHFUHF) 

90.8 (S2=0) 

84.6 

N-7, H2NCH 34.6 (stable) 38.4 (stable) 35.6 

N-TS8 107.5 (RHFUHF) 

103.0 (S2=0.63) 

118.2 (RHFUHF) 

104.8 (S2=1.01) 

 

112.9 (restricted)

106.7 
(unrestricted,  

S2=0.0) 

N-TS9 99.1 (RHFUHF) 

97.8 (S2=0.27) 

107.6 (RHFUHF) 

104.8 (S2=1.01) 

100.5 (restricted)

103.8 
(unrestricted,  
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 S2~0.88) 

N-TS10 92.9 (RHFUHF) 

92.9 (S2=0.0) 

104.6 (RHFUHF) 

108.9 (S2=0.70) 

95.9 (restricted) 

95.7 
(unrestricted,  

S2~0.75) 

N-11, H2NC + H 113.1 (stable, 
S2=0.75) 

113.6 (stable, 
S2=0.77 

117.6 

N-12, cisHCNH + H 95.6 (stable, 
S2=0.75) 

98.7 (stable, 
S2=0.81) 

99.1 

N-13, transHCNH + 
H 

91.5 (stable, 
S2=0.75)  

93.7 (stable, 
S2=0.80)  

94.4 

N-TS14 129.5 (stable, 
S2=0.76) 

129.7 (stable, 
S2=0.81) 

131.1 

N-15, H2CN + H 82.8 (stable, 
S2=0.76) 

90.1 (stable, 
S2=0.90) 

86.7 

N-16, HNC + H2 22.7 (stable) 19.5 (stable) 22.5 

N-17, HCN + H2 8.4 (stable) 0.8 (stable) 8.2 

N-TS18 135.6 (stable, 
S2=0.76) 

138.7 (stable, 
S2=0.87) 

140.3 

N-TS19 126.7 (stable, 
S2=0.75) 

120.9 (stable, 
S2=0.80) 

128.7 

N-TS20 117.3 (stable, 
S2=0.76) 

120.9 (stable, 
S2=0.88) 

121.2 

N-TS21 115.8 (stable, 
S2=0.76) 

119.4 (stable, 
S2=0.94) 

117.5 

N-22, HNC + H + H 126.4 (stable) 113.8 (stable) 126.3 

N-23, HCN + H + H 112.0 (stable) 95.1 (stable) 111.9 

N-TS24 135.4 (stable, 
S2=0.76) 

145.3 (stable, 
S2=1.02) 

136.6 



121 
 

N-25, CN +  H2 + H 156.0 (instable) 

134.8 (S2=0.76) 

156.1 (instable) 

141.5 (S2=1.02) 

159.8 (instable) 

133.2 (S2~1.1) 

Monocation doublet 

C-1, H2CNH+. 0.0 (stable, S2=0.76) 0.0 (stable, S2=0.84) 0.0 

C-TS3 55.7 (stable, 
S2=0.76) 

52.4 (stable, 
S2=0.81) 

54.7 

C-TS4 47.2 (stable, 
S2=0.76) 

41.2 (stable, 
S2=0.79) 

42.2 

C-TS5 34.2 (stable, 
S2=0.75) 

29.1 (stable, 
S2=0.89) 

31.2 

C-6, H2NCH+. -2.8 (stable, S2=0.76) -9.2 (stable, 
S2=0.81) 

-3.8 

C-7, H2NC+ + H. 83.1 (stable) 69.3 (RHFUHF) 

71.9 (S2=0.17) 

78.7 

C-TS8 39.9 (stable, 
S2=0.77) 

39.7 (stable, 
S2=0.95) 

39.0 

C-TS9 103.8 (stable) 87.1 (stable) 97.8 

C-10,  HNCH+ + H. 33.5 (stable) 12.1 (stable) 26.9 

C-11, HCN+ + H2 94.4 (stable, 
S2=0.75) 

90.5 (stable, 
S2=0.77)  

93.6 

C-12, HNC+ + H2 77.6 (stable, 
S2=0.77) 

70.7 (stable, 
S2=0.98) 

70.9 

Dication Singlet 

D-1, H2NCH2+ 0.0 (stable) 0.0 (stable) 0.0 

D-TS2 76.9 (stable) 78.5 (stable) 73.1 

D-TS3 63.6 (RHFUHF) 

63.6 (S2=0.00) 

66.6 (stable) 64.5 
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D-4,   H3NC2+ 53.7 (stable) 54.7 (stable) 50.6 

D-TS5 41.5 (stable) 39.4 (stable) 41.5 

D-6,  H2NC+ + H+ -5.7 (stable) -4.5 (RHFUHF) 

-1.9 (S2=0.17) 

-7.9 

D-TS7 140.3 (RHFUHF) 

111.0 (S2=0.62) 

128.2 (RHFUHF) 

118.6 (S2=0.79) 

99.2 

D-TS8 15.0 (stable) 13.3 (stable) 11.2 

D-9, NH3
+ + C+ 6.0 (stable, S2=0.75) 1.2 (stable, S2=0.76) 2.0 

D-10,  HNCH+ + H+ -55.3 (stable) -61.7 (stable) -59.7 

Trication double 

T-1, H2NCH3+ 0.0 (stable, S2=0.75) 0.0 (stable, S2=0.76) 0.0 

T-TS2 3.2 (stable, S2=0.75) 4.3 (stable, S2=0.76) 3.5 

T-TS3 0.7 (stable, S2=0.75) 0.9 (stable, S2=0.76) 1.9 

T-4,  H2NC2+ + H+ -225.2 (stable, 
S2=0.77) 

-225.0(stable, 
S2=0.93) 

-231.2 

T-TS5 -193.0 (stable, 
S2=0.77) 

-194.8 (stable, 
S2=0.95) 

-199.3 

T-TS6 -198.1 (stable, 
S2=0.76) 

-199.7 (stable, 
S2=0.82) 

-205.3 

T-7,  HNCH2+ + H+ -239.1 (stable, 
S2=0.75) 

-238.8 (stable, 
S2=0.80) 

-244.4 

T-8,  HNC+ + 2H+ -297.3 (stable, 
S2=0.77) 

-300.2 (stable, 
S2=0.98) 

-307.9 

T-TS9 -200.2 (stable, 
S2=0.75) 

-198.9 (stable, 
S2=0.79) 

-203.5 

T-10,  HCN+ + 2H+ -280.4 (stable, 
S2=0.75) 

-280.4 (stable, 
S2=0.77) 

-285.2 
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a Because singlet CH3N requires a multi-reference treatment, its energy was 
estimated by adding the singlet-triplet energy difference calculated at the 
CASPT2/cc-pVTZ level of theory25 to the energy calculated for the triplet. 
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CHAPTER 6 

AB INITIO MOLECULAR DYNAMICS STUDY OF THE REACTION BETWEEN 

Th+ AND H2O 

Reproduced with permission from J. Phys. Chem. A, 2010, 114, 8613-8617 
Copyright 2010, American Chemical Society 

6.1 Introduction:  

Within the last decades, reactions of actinide cations with small molecules 

in the gas phase have attracted significant attention.1-21 In these reactions, the 

distinctive electronic structures and chemical properties of the f-block elements 

can be studied in the absence of perturbing factors such as solvation or lattice 

neighbors. The actinides are the 5f homologs of the lanthanides, with the 5f 

valence orbitals being filled between Ac and Lr, but they are notably different 

from the lanthanides, in which the 4f electrons do not participate in bond 

formation. Potential contribution of the 5f electrons to the reactivity is of great 

interest, particularly for early actinides, because the 5f electrons are relatively 

high in energy and are spatially extended. Consequently, numerous studies have 

then been carried out on the reactions of actinide cations with small molecules 

both experimentally1-17 and theoretically.18-21 The experimental studies have 

already been comprehensively reviewed.1-3 One of the techniques used in the 

study of the reactivity of actinides is laser ablation with prompt reaction and 

detection (LAPRD).3 Gibson and Haire reported the reactions of Pa+ and PaO+ 

with neutral molecules, showing that Pa+ is very reactive with the reagents as 

diverse as alkenes, ethylene oxide, and sulfur hexafluoride.4 Further 
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investigations by the same group also include, the reactions of Es+ with 

dimethylether, 1,2-ethanedithiol, and 1,2,3,4,5-pentamethylcyclopentadiene.5,6 

LAPRD studies have established a following ordering of reactivities: Th+ ≥ Pa+ ≥ 

U+ ≈ Np+ > Cm+ ≥ Pu+ > Bk+ > Am+ ≈ Cf+ ≥ Es+. Fourier transform ion cyclotron 

resonance mass spectrometry (FTICR/MS) has been used extensively to study 

actinide ion reactivity and can be used to measure reaction kinetics, which 

cannot be accomplished by LAPRD. Reactions of An+ and AnO+ (An=Th, U, Np, 

Pu, Am) with a number of oxidants were studied with the aid of FTICR/MS and 

reaction efficiencies were obtained.7-9 Additional investigations examined the 

reactivity of dications,10 and studied the activation of hydrocarbons11-14. 

Quadruple ion trap mass spectrometry (QIT/MS) has also been used to examine 

the reactivity of actinide ions, and the differences between QIT/MS and 

FTICR/MS were explored by Jackson et al.15-17 in a study of the reactivity of Th+, 

U+, ThO+, UO+, and UO2
+ with HCp*. 

The experimental techniques discussed above unquestionably provide 

novel information on the gas-phase reactivity of actinide ions. However, 

limitations do still exist in terms of detailed information about the reaction 

mechanisms. Therefore theoretical studies can be particularly valuable in 

providing additional information. Uranium is one of the most well-studied 

actinides, and in particular, the reactions of U+/2+ and UO+/2+ with H2O and N2O 

were first investigated by density functional theory (DFT) to examine O-H and N-

O bond activation by uranium ions.18-20   

In addition to uranium and its oxides, thorium cations are able to activate 
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the O-H bonds in water. Reactions of Th+ and Th2+ with water have been 

detected by the FTICR/MS experiments, and the products included ThO+ and 

ThOH+.8-10 Further analyses indicate that ThO+ is the major product (branching 

ratio 65%) over ThOH+ (branching ratio 35%) for Th+,8,9 whereas ThOH+ 

dominates with a branching ratio of 90% for Th2+.10 Furthermore, the potential 

energy surfaces of Th+ and Th2+ with water have been mapped by several DFT 

methods.21  

The present work focuses on the dynamics of the reaction of Th+ with 

water. A range of theoretical methods are used to obtain better estimates of the 

structure and thermodynamics. The dynamics of the reaction are investigated by 

means of ab initio molecular classical trajectory calculations. 

6.2 Computational Methods:  

Three different levels of theory were used to optimize the geometries of 

the minima and the transition states on the potential energy surface of the 

dissociation of ThOH2
+. First, the B3LYP22-24, PW91PW9125,26, TPSSTPSS27, 

BHandHLYP, and BMK28 functionals were used, along with the Stuttgart 

relativistic effective core potential (SDD)29 for Th (30 valence electrons), and the 

6-311++G(d,p) basis set for O and H atoms (designated as SDD). These 

calculations were carried out using the Gaussian suite of programs30. Secondly, 

calculations employing the relativistic two-component zero-order regular 

approximation (ZORA) with both scalar relativistic (SR) and spin-orbit (SO) 

effects were performed with the ADF code.31-33 The PW91 exchange correlation 

energy functional and the TZP basis set for Th (frozen core, 12 valence 
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electrons) and the TZ2P basis set for H2O (O 1s frozen) were used for geometry 

optimization and frequency calculations (designated as PW91/ZORA-SR and 

PW91/ZORA-SO). Finally, coupled cluster (CCSD(T))34 calculations with the 

SDD basis for Th and 6-311++G(d,p) for O and H atoms were carried out using 

the MOLPRO package35.  

Similar to G2(MP2)36 and G3(MP2)37 treatment, we estimated CCSD(T) 

energies for all the species with a even larger basis set (designated SDD+, SDD 

plus two additional g functions for Th atom and 6-311++G(3df,2p) for O and H 

atoms) by using a composite approach: 

( . ( ) / ) ( ( ) / ) ( ( 2 / ) ( 2 / ))E est CCSD T SDD E CCSD T SDD E MP SDD E MP SDD      (1) 

Ab initio classical trajectories were computed at the PW91/SDD level of 

theory using a Hessian-based predictor-corrector method38,39 with the Gaussian 

suite of program. A predictor step is taken on the quadratic surface obtained from 

the energy, gradient and Hessian from the beginning point. A fifth order 

polynomial is then fitted to the energies, gradients and Hessians at the beginning 

and end points of the predictor step, and the Bulirsch-Stoer algorithm40 is used to 

take a corrector step on this fitted surface with the angular forces projected out. 

The Hessians are updated for 5 steps before being recalculated analytically. The 

trajectories were terminated when the centers of mass of the fragments were 10 

bohr apart and the gradient between the fragments was less than 110-5 

hartree/bohr. A step size of 0.25 amu1/2 bohr was used for integrating the 

trajectories. The energy was conserved to better than 110-5  hartree and the 

angular momentum was conserved to 110-8 ħ.  
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Trajectories were initiated at the transition state for the Th+ insertion into 

the O-H bond of water. A microcanonical ensemble of initial states was 

constructed using the quasi-classical normal mode sampling.41,42 Since TS1 is 

estimated to be at least 20 kcal/mol below the Th+ + H2O reactants,21 a total 

energy of 20 kcal/mol above the zero point energy of the transition state was 

distributed among the 5 vibrational modes and translation along the transition 

vector toward the product. The total angular momentum was set to zero 

(corresponding to a rotationally cold distribution) and the phases of the 

vibrational modes were chosen randomly. The momentum and displacement 

were scaled so that the desired total energy was the sum of the vibrational kinetic 

energy and the potential energy obtained from the ab initio surface. The initial 

conditions are similar to those used in previous trajectory calculations.43,44 A total 

of 200 trajectories were integrated for up to 400 fs starting from the transition 

state. Of these, 36 were unsuccessful because of SCF convergence failure or 

lack of conservation of energy and had to be discarded. About half of the 

remaining trajectories did not react within 400 fs. A number of these initially 

unreactive trajectories were integrated for an additional 800 fs and showed 

roughly the same branching ratio. 

6.3 Results and Discussion  

Structures and Energetics 

The optimized geometries of the ThOH2
+ and various intermediates, 

transition states (TS), and products are shown in Figure 6.1 for a number of 

levels of theory. The relative energies of these stationary structures at the 
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PW91/SDD level of theory are summarized in Figure 6.2. The study by Russo 

and co-workers21 has shown that for the reaction of Th+ with water, the reaction 

path evolves along the doublet surface from the formation of the initial Th+-OH2
 

complex to the HThO+ + H and ThO+ + H2 products. The present calculations 

confirm that doublet transition state, TS1, is lower than the quartet TS1’. 

Although, the doublet Th+-OH2
 complex shows extensive spin contamination, the 

doublet transition state TS1 has much less spin contamination and the quartet 

TS1’ has even less (See Table 6.1). Spin projection would result in further 

lowering of the doublet TS1 relative to the quartet. Beyond the transition state, 

the doublet surface is much lower in energy than the quartet spin surface (see 

Figure 6.2 and ref 21), and has very little spin contamination. Thus, we will focus 

our study on the doublet spin surface, and start at the doublet Th+-OH2
 transition 

state. In addition to the B3LYP/SDD and PW91/ZORA-SR levels of theory used 

in the study by Russo and co-workers,21 we also investigated the potential 

energy surface at several other levels of theory, including the PW91/SDD, 

TPSS/SDD, PW91/ZORA-SO, CCSD(T)/SDD and est.CCSD(T)/SDD+ in order to 

assess the quality of these results (Table 6.1). These calculations cover pure 

GGA functionals, meta-GGAs, GGA with spin-orbit effect, and couple-cluster 

calculations with effective core potentials (ECP). This range of methods should 

provide a broad survey of the structures and energetics associated with the 

dissociation reaction of ThOH2
+.  

The calculations by Russo and co-workers21 have shown that ThOH2
+, 1, 

is in a deep potential minimum, ca 30 kcal/mol below reactants. At all levels of 
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theory, they find Th+ and H2O form a strong bond, with R(Th-O) around 2.4 Å. 

The reaction proceeds through TS1, which is 4.1 kcal/mol higher than ThOH2
+ at 

the PW91/SDD level. In TS1, one of the two H atoms migrates from O to Th 

leading to HThOH+, 2. For the H2 molecular elimination channel calculated at the 

PW91/SDD level, a barrier of 21.6 kcal/mol needs to be overcome first to reach 

H2ThO+, 3, and then H2 molecule dissociates. For the H atom elimination 

channel, the barrier to break the O-H bond is much higher, 47.1 kcal/mol at the 

PW91/SDD level. This transition state, TS3, cannot be located by CCSD(T)/SDD, 

suggesting that there is no reverse barrier for the O-H bond dissociation at this 

level of theory. 
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Figure 6.1 Structures and selected geometric parameters of stationary points 
on the ThOH2

+ potential energy surface optimized at the 
B3LYP/SDD, PW91/SDD, TPSS/SDD, PW91/ZORA-SR, 
PW91/ZORA-SO, and CCSD(T)/SDD levels of theory (from top to 
bottom rows, respectively). Bond distances are in Å, and angles are 
in degrees. 

HThO+  ThO+ 
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Figure 6.2  Potential energy profile for the isomerization and dissociation of the 

ThOH2
+ computed at the PW91/SDD level of theory.  
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The relative energies of selected stationary points on the potential energy 

surface have been computed at a number of levels of theory and are compared 

in Table 6.1. It is well-known that some DFT methods perform well in predicting 

energies, but the results can be sensitive to the functional. Therefore, a variety of 

DFT functionals have been employed to investigate the potential energy surface. 

Except for 1 and TS1, spin contamination is minimal. For the CCSD(T) 

calculation, the T1 diagnostic values for all the species are within the trust 

range45,46, less than 0.023, indicating single reference coupled cluster 

calculations should provide good results. The two methods that ought to be most 

reliable are PW91/ZORA-SO and est.CCSD(T)/SDD+. The latter uses a 

composite approach similar to G2(MP2) and G3(MP2) which are often employed 

in benchmark calculations. Spin-orbit effects are important in actinide 

compounds, and ZORA-SO calculations are an efficient way to take this into 

account. The est.CCSD(T)/SDD+ energies generally agree well with 

PW91/ZORA-SO with only one exception, TS2, which differs by approximately 10 

kcal/mol. B3LYP/SDD agrees well with est.CCSD(T)/SDD+. BMK/SDD and 

BHandHLYP/SDD provide results that are similar to each other, but when 

compared to est.CCSD(T)/SDD+ both underestimate all the relative energies 

except for TS2. TPSS/SDD shows better agreement in the dissociation energies 

of two products, but gives a higher relative energy for ThOH2
+, 1. PW91/SDD is 

generally an improvement over TPSS/SDD. For PW91 with the frozen core TZ2P 

basis set, the ZORA-SR and ZORA-SO calculations agree well with each other 
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(MAD less than 1.0 kcal/mol). Without ZORA-SR or ZORA-SO, some of the 

relative energies decrease by 5 – 20 kcal/mol. The PW91/SDD calculations are 

in good agreement with PW91/ZORA-SO (MAD 1.2 kcal/mol) and 

CCSD(T)/SDD+ (MAD 3.1 kcal/mol). Therefore, PW91/SDD has been chosen for 

the trajectory calculations as a satisfactory yet practical compromise between the 

most trusted results.  
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Table 6.1   Relative energies (in kcal/mol) of the various points on the doublet 

ThH2O
+ potential energy surface 

 1 TS1 2 TS2 3 TS3 ThO+ 

+ H2 
HThO+ + H 

B3LYPa 61.8 69.4 0.0 29.1 3.2 54.9 3.9 46.1 

PW91a 62.3 66.4 0.0 21.6 0.3 47.1 3.2 40.1 

TPSSa 73.1 72.5 0.0 23.3 -0.8 46.2 2.6 40.4 

BMKa 50.1 61.1 0.0 29.7 -4.5 51.4 -4.9 36.4 

BH&HLYPa 52.9 64.3 0.0 32.8 -1.6 54.5 -0.8 40.6 

PW91b 67.6 68.3 0.0 12.8 -19.5 40.1 -11.7 33.6 

PW91c 69.8 69.0 0.0 19.6 -0.7 46.0 2.9 38.8 

PW91d 66.1 68.1 0.0 19.8 0.0 46.5 4.0 39.6 

CCSD(T)a 49.3 67.3 0.0 29.7 2.0 ----f 2.9 46.4 

CCSD(T)e 60.4 72.4 0.0 29.7 0.4 ----f 2.3 44.5 

<S2> g 1.3714 0.9457 0.7517 0.7516 0.7516 0.7588 0.7511  

PW91h 67.0 75.3 64.7     65.3 

<S2> i 3.7525 3.7524 3.7527     2.0028+0.75

a SDD for Th and 6-311++G(d,p) for H & O atoms  
b frozen core TZP for Th and TZ2P for H & O atoms  
c frozen core TZP for Th and TZ2P for H & O atoms, ZORA-SR results 
d frozen core TZP for Th and TZ2P for H & O atoms, ZORA-SO results 
e estimated CCSD(T)/SDD+ energies using (1) formula 
f  Cannot be located; the bond dissociation appears to proceed without a reverse 

barrier 
g Expectation value of S2 for the doublet surface at the PW91/SDD level of theory 
h Quartet surface at the PW91/SDD level of theory 
i Expectation value of S2 for the quartet surface at the PW91/SDD level of theory 
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The optimized geometries for the various stationary points are compared 

in Figure 6.1, and show relatively little dependence on the level of theory. For the 

minima, most bond lengths agree to within 0.01 Å and angles agree to ±1. One 

exception is the Th-O bond length in complex 1. Among the transition states, TS1 

shows some dependence on the level of theory, with the CCSD(T)/SDD 

calculations yielding a structure that is a bit later along the path toward HThOH+. 

The transition state for H atom loss, TS3, could not be located at the 

CCSD(T)/SDD level, suggesting that O-H dissociation in HThOH+ occurs without 

a reverse barrier. The vibrational frequencies for the stationary points calculated 

at the PW91/SDD level are listed in Table 6.2. Similar values are obtained with 

other levels of theory. 
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Table 6.2  Vibrational frequencies (cm-1) of the stationary points at the 

PW91/SDD levela 

1 TS1 2 TS2 3 TS3 HThO+ 

326.1 939.7i 319.4 1296.4i 163.7 1275.8i 366.2 

370.2 322.4 471.0 804.2 344.6 211.5 910.4 

458.0 531.7 484.5 1024.3 419.5 264.1 1598.5 

1577.0 984.0 700.2 1145.0 689.4 349.5  

3572.3 1597.5 1629.1 1489.2 902.5 814.6  

3658.9 3662.5 3723.1 1880.9 4113.9 1596.1  

a ThO+ 930.7; H2 4330.0 
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Dynamics 

The formation of the initial Th-OH2
+ complex is quite exothermic, and a 

conservative estimate is that TS1 lies at least 20 kcal/mol below the reactants, 

Th+ + H2O.21 Since an additional 66.4 kcal/mol is released in the formation of the 

HThOH+ intermediate from TS1, at least 86.4 kcal/mol is available for the 

dissociation of the HThOH+. The branching ratio for the ThO+ + H2 and HThO+ + 

H products can be estimated by RRKM theory.47,48 Using the vibrational data in 

Table 6.2 and an initial energy of 86.4 kcal/mol, a branching ratio of 8:1 is 

calculated in favor of HThO+ + H. At first this may seem at odds with the 

energetics in Figure 6.2, since the barrier for the HThO+ + H channel is about 

twice as high as the barrier for the ThO+ + H2 channel. However, TS3 has three 

low frequency vibrations whereas TS2 has none, resulting in a much higher 

density of states at the available energy. The branching ratio predicted by RRKM 

is contrary to the observed branching ratio, which favors ThO+ + H2. With the 

large excess energy and the small number of vibrational modes, the reaction 

may occur more rapidly than the energy redistribution, and a statistical treatment 

may no longer be valid. 
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Figure 6.3  Snapshots of typical trajectories from the MD simulations. (a) 

ThOH2
+ → ThO+ + H2, (b) ThOH2

+ → HThO+ + H. 



153 
 

To obtain a better description of the branching ratio, the molecular 

dynamics of the Th+ + H2O reaction were simulated using ab initio classical 

trajectory calculations. The foregoing discussion of the energetics showed that 

the PW91/SDD level of theory is suitable and practical for simulating the 

molecular dynamics (MD) of the ThOH2
+ dissociation. Because the Th+ + H2O 

reactants are at least 20 kcal/mol above TS1, the trajectories were started at the 

TS1 with 20 kcal/mol extra energy distributed microcanonically among the 

vibration modes along with the transition vector. A total of 164 trajectories were 

integrated for up to 400 fs. The H2 molecular elimination channel is dominant with 

a branching ratio of 41.5% compared to 6.7% for the H atom elimination channel. 

However, 51.8% trajectories do not dissociate in a simulation time of ca. 400 fs, 

and stayed in isomer 2. Isomer 2 is a deep well on the potential energy surface 

and longer simulation times are needed for these trajectories to dissociate. We 

chose 16 of these unreactive trajectories and integrated them for an additional 

800 fs; 11 produced ThO+ + H2, 4 yielded HThO+ + H and 1 still did not 

dissociate. If the remaining trajectories dissociate with a similar ratio, the average 

branching ratio is ca 80% for ThO+ + H2 and ca 20% for HThO+ + H. 

Two representative snapshots for H2 molecular and H atomic elimination 

processes are shown in Figure 6.3 (the corresponding movies are available on 

the ACS website). The time to reach isomer 2 from TS1 is relatively short but 

dissociation of isomer 2 takes a longer time because it is in a fairly deep well. 

Both of the dissociation channels are exothermic compared to Th+ + H2O, but 

TS3 lies considerably higher in energy than TS2. Insertion of Th+ into H2O to 
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form HThOH+ does not directly activate the OH bond that dissociates to form 

HThO+ + H. However, the H bending modes are activated by the insertion, 

facilitating the two H atoms to come together to form an H-H bond.  

6.4 Conclusions: 

The energetics of dissociation have been studied by a number of DFT and 

CCSD(T) levels of theory. Although the various theoretical methods show some 

differences in the relative energies, the PW91/SDD level of theory provides a 

good compromise between accuracy and practicality. Both the H2 molecular and 

H atom elimination channels are thermodynamically accessible, with a lower 

barrier for the former channel. The ab initio molecular dynamics study finds a 

branching ratio of ca 80% for the H2 molecular elimination reaction versus ca 

20% for the H atomic elimination reaction, compared with a branching ratio of 

65% to 35%, respectively, observed in FTICR/MS experiments.   
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CHAPTER 7 

THEORETICAL STUDIES OF AnII
2(C8H8)2 (An = Th, Pa, U, AND Np) 

COMPLEXES: THE SEARCH FOR DOUBLE-STUFFED ACTINIDE 

METALLOCENES  

Reproduced with permission from Inorg. Chem. 2010, 49, 6545-6551 
Copyright 2010, American Chemical Society 

7.1 Introduction:  

The subject of metal-metal multiple bonds has received a great deal of 

attention from both experimentalists and theoreticians since Cotton’s 1964 

discovery of the  bond in [Re2Cl8]
2-.1 Although metal-metal multiple bonds 

abound in the transition metals,2,3 molecules containing unambiguous actinide-

actinide bonds are limited. In 1974 uranium dimer, U2, and U2O2 were detected in 

the gas phase via mass spectrometry, but were not isolated.4 More recently, 

Andrews et al. have detected, but not crystallized, UI(-H)2U
I in both solid Ar and 

Ne.5,6 Progress has been made in preparing and structurally characterizing U-M 

bonds for main group metals.7-10 However, creating an isolatable molecule 

containing actinide-actinide bonds that can be crystallized is still a cutting edge 

problem requiring synergistic efforts between experiment and theory. 

Bursten and co-workers were the first to theoretically investigate U2 and 

found that six of the twelve valence electrons occupy the 7sg and 6du 

orbitals.11-13 Gagliardi and Roos confirmed these results with state of the art 

calculations and predicted that U2 forms a quintuple bond with a dissociation 

energy of 127 kJ/mol.14 Roos and co-workers expanded their investigation and 
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showed that Ac2, Th2, and Pa2 will form double, quadruple, and quintuple bonds, 

respectively.15 They also predicted that [U2]
2+ is a metastable species with a triple 

bond that could be stabilized by complexation with chloride, carboxylate or 

phenyl ligands.16-18 Kaltsoyannis et al. studied the series M2X6 (M = U, W, Mo; X 

= Cl, F, OH, NH2, CH3) and [M2X8]
2- (M = U, Np, Pu, Mo, Tc, Ru, W, Re, Os; X = 

Cl, Br, I) with density functional and multiconfigurational methods and found 

multiple metal-metal bonds exist in all species.19,20 Straka and Pyykkö 

demonstrated that HThIThIH is linear, unlike UI(-H)2U
I 5, and has a Th-Th triple 

bond.21 They point out that HThIThIH may already have been seen in a solid Ar 

matrix and that it is stabilized by ligands other than hydrogen.21 Wu and Lu have 

calculated U2@C60, showing that U2 forms multiple bonds when encased 

endohedrally in a small fullerene.22 However, for larger fullerenes such as C70 

and C84, Infante, Gagliardi and Scuseria have demonstrated that the U-U bond 

no longer exists because the individual atoms bind preferentially to the inner 

walls of the fullerenes.23 The binding of actinides in smaller organometallic 

complexes is somewhat different. Infante et al. predicted that An2(C6H6)2 

complexes will be more stable than two isolated MC6H6 monomers for M = Th 

and U.24 In spite of all these theoretical efforts, the best ligand set for stabilizing 

actinide-actinide multiple bonds is still elusive, but recent experimental advances 

are hinting at new alternatives. 

The discovery of ZnI
2(5-C5Me5)2 and its derivatives has fundamentally 

changed the definition of metallocene by introducing bimetallic units to the center 

of the classic sandwich complex.25-27 Although no other dimetallocenes are 
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experimentally known so far, a plethora of theoretical work has predicted that 

such molecules should exist for a variety of alkaline earth and transition 

metals.26-42 Dimetallocenes may also exist for systems with rings that are not 

composed of carbon, such as hydrosilver, phosphorus, boron, and nitrogen.43-46 

Along with other recently synthesized LMIMIL compounds, M = Cr47 and Mg48, 

these molecules demonstrate how this bonding motif can stabilize unusual, low-

oxidation states of metals. Since metallocenes with D8h symmetry employing 

COT (COT = [C8H8]
2-) rings have been synthesized for thorium, protactinium, 

uranium, neptunium, and plutonium,49 actinide (An) dimers may be stabilized by 

two COT rings in a similar manner to LMIMIL compounds thereby forming new 

dimetallocenes complexes that might be isolatable. In this work, density 

functional theory (DFT) methods are employed to study the possible sandwich 

compounds of An2(COT)2 (An = Th, Pa, U, Np). To the best of our knowledge, 

there is no other earlier work on this aspect. 

7.2 Computational Methods:  

All computations employed the hybrid B3LYP functional50-52 and were 

carried out using the development version of Gaussian.53 For the actinide atoms, 

scalar relativistic effects were taken into account via the relativistic effective core 

potential (RECP) of Küchle et al.54 This RECP places 60 electrons in the actinide 

core leaving the 5s, 5p, 5d, 6s, 6p, 5f, 6d, and 7s electrons for explicit treatment. 

The most diffuse s, p, d, and f Gaussian functions of the associated actinide 

basis set were removed to generate the [7s 6p 5d 3f] basis that previously 

predicted accurate molecular structures.55,56 Ligand atoms were described with 
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Dunning’s cc-pVDZ basis set.57 Pure d and f functions were used in all Gaussian 

basis sets. Harmonic vibrational frequencies were computed to confirm that each 

structure was a local minimum on the potential energy surface and to provide 

zero-point energy corrections. An integration grid with 400 radial shells and 770 

angular points per shell was employed for all DFT calculations. The stability of 

each structure’s density was tested using standard methods58 and reoptimized if 

necessary. Natural population analysis59 (NPA) was performed on each structure 

using a valence space composed of 5f, 6d, 7s and 7p.60,61 GaussView was used 

to create all structure and molecular orbital pictures.62 For diuranocene, 

calculations employing a frozen-core approximation63 and the zero-order regular 

approximation64-66 (ZORA) Hamiltonian to account for scalar relativistic effects 

were also run with the ADF code.67 The BLYP50,51 functional, a TZ2P ligand basis 

set along with a TZP uranium basis set were used for the ZORA calculations. 

7.3 Results and Discussion 

The formation of an actinocene, AnIV(COT)2, is a well-known 

thermodynamic sink on the An plus COT potential energy surface. If the 

disproportionation channel converting AnII
2(COT)2 to AnIV(COT)2 can be cleverly 

disabled, then a rich field of actinide dimetallocene chemistry becomes 

accessible (vide infra). Because the uranium dimer has received more attention 

than other early An dimers, the discussion starts with U2(COT)2. Since 

proceeding to neptunium and beyond in the periodic table, places electrons in 

nonbonding 5f  orbitals, the maximum An-An bond order should be achieved in 

U2(COT)2 or Np2(COT)2. This is counterbalanced by contraction of the 5f orbitals 
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with increasing atomic number, which diminishing the bond strength. Based upon 

the energetics of U2(COT)2 isomers, only coaxial structures for protactinium, 

neptunium and thorium are presented. The energy difference between the D8d 

and D8h coaxial conformers is very small (∆G(0K) = 0.071 kJ/mol for Pa) as 

expected based on the actinocene crystal structures,68-73 so only D8h coaxial 

species were investigated. The thorium complex is unusual in comparison to the 

other early actinides and so is described last. 
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(a)     (b)  

Figure 7.1    Optimized structures of (a) D8h An2(COT)2 (An = Pa, U, and Np) and 

(b) C2v Th2(COT)2 with C and H atoms denoted in black and white, 

respectively. 
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7.3.1 Uranium 

Based upon Gagliardi’s work11,14 we expect the U2 complexes to be stable. 

A coaxial arrangement, where the uranium atoms lie along the C8 rotational axis 

of the COT rings, leads to a 3A1g predicted ground state (see Figure 7.1) with D8h 

symmetry. The value of S2 is 2.024 and orbital stability analysis indicates that the 

triplet wave function is stable (the quintet state is 63 kJ/mol higher). The U-U 

bond length of 2.240 Å (Table 7.1) is at least a U-U triple bond, based upon a U 

triple-bond covalent radius of 1.18 Å.74 This bond length agrees rather well with 

the ZORA-BLYP result of 2.285 Å. With a U to ring centroid distance only 0.065 

Å longer than in the crystal structure of uranocene,70 and 0.021 Å longer than in 

uranocene (1.968 Å) at the same level of theory, U2(8-COT)2 can be accurately 

described as a dimer of two UCOT half-sandwich complexes. The COT ring 

remains almost the same in diuranocene compared to that in uranocene: the C-C 

bond is 1.415 Å in diuranocene while the C-C bonds are 1.416 Å in uranocene, 

and C-H bond is 1.093 Å in both diuranocene and uranocene. Furthermore, the 

U-C distance is 2.715 Å in diuranocene, while it is only 0.015 Å shorter in 

uranocene. U2(COT)2 can be described equally well as [U2]
4+ complexed with two 

COT ligands. The U-U bond in U2(COT)2 (2.240 Å) is nearly the same as in [U2]
4+ 

(2.297 Å). This indicates that the strength of the U-U bond originates from the 

stability of [U2]
4+ and not from its interactions with the COT ligands. 
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Table 7.1 Calculated Gas-phase Bond Lengths (Å), Bond Angles (º), Natural 

Charges (e) and Vibrational Frequencies (cm-1) for An2(COT)2 Complexes with 

Vibrational Mode Symmetries in Parentheses 

An Symmetry An-An An-Xa HCXa AnAnXa An Natural 
Charge An-An sym 

Th C2v  
3B1 2.809 2.029 5.4 158.4 0.86 249(A1) 

Pa D8h  
5A1g 2.537 1.998 4.8 180.0 0.93 270(A1g) 

U D8h  
3A1g 2.240 1.989 5.7 180.0 0.77 349(A1g) 

Np D8h  
5A1g 2.189 1.938 5.8 180.0 0.80 354(A1g) 

a X is the centroid of the COT ring 
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1 a1

1 e1

1 e2

1 e3

1 a1g

1 e1u

1 e2g

1 e3u

1 e3g

1 e2u

1 e1g

1 a2u

5B1 UCOT 3A1g U2COT2

1 a1

1 a1

1 e1

1 e2

1 e3

5B1 UCOT

1 a1

 

Figure 7.2    Qualitative canonical MO diagram showing the interaction of two 5B1 
UCOT monomers under single-group C8v symmetry to form 3A1g 
U2(8-COT)2 under single-group D8h symmetry. Only the U 5f 
electron manifold of U2COT2 is shown for clarity (see text). Orbital 
energies are taken as the average of the  and  components. 
Since the UCOT density breaks symmetry, the closest C8v 
symmetry labels are used.  
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(a)   (b)  

 1e3u        1e2g 

(c)   (d)  

  1e1u           1a1g 

 

Figure 7.3   Selected D8h U2(COT)2  molecular orbitals (a) LUMO, (b) HOMO, 

(c) HOMO-1, and (d) HOMO-2 plotted at an isovalue of 0.02. 

Hydrogens were omitted for clarity. 
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Each UCOT monomer has four U valence electrons available for metal-

metal bonding. The quintet state is the most stable and has one electron in an s 

plus f -type orbital and two unpaired electrons in the f -type orbitals and one 

electron in an f -type orbital (See Figure 7.2). Under C8v symmetry, these 

orbitals are 1a1, 1e2 and 1e3, respectively. When two UCOT monomers brought 

together to form a U2(COT)2 dimer, these eight U f electrons occupy five bonding 

molecular orbitals (MOs) for an electron configuration of 242 and a formal U-U 

bond order of 4. Natural Population Analysis yields a Wiberg bond order of 4.3 

for this interaction. The U-U bonding MOs are shown in Figure 7.3 and it is 

interesting to compare them to those previously reported for U2
11,14 and [U2]

2+.16 

The 1a1g MO is the U-U  bond formed from the in-phase mixing of the UCOT 

1a1 group orbitals. This same MO is seen in both U2 and [U2]
2+ where the 

authors’ orbital assignment indicates that the 7s contribution was perceived to be 

larger than the 5f contribution.14,16 The 1e1u orbital in U2COT2 is a -type metal-

metal bonding MO formed from U 5f atomic orbitals. This U-U bonding MO was 

also found in U2, [U2]
2+ and diuranium tetraformate; since the 6d contribution 

appeared to be larger than the 5f, the orbital was designated 6d.
16,17 It should 

be noted that MO pictures can be deceiving. For example, Figure 7.4 shows that 

the choice of isovalue can artificially suggest a larger s contribution than is borne 

out by the Mulliken percent character analysis (See Table 7.2). As indicated by 

the Mulliken percent character, the 1g orbitals of [U2]
4+ and the 1a1g orbital in 

U2COT2 are better described as 5f ; likewise the 1 u and 1e1u orbitals should be 
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designated 5f. The 1e2g MO is the U-U  bond formed from the in-phase 

combination of 5f atomic orbitals and is also present in U2 and [U2]
2+. The 

gerade and ungerade combinations of the formally non-bonding U 5f orbitals 

lead to the 1e3u and 1e3g MOs that are also seen in U2 and [U2]
2+. Although spin-

orbit coupling should not significantly affect molecular geometries,75 it will remove 

the degeneracy of the eiu and eig, i = 1-3, MOs. Depending upon the energy 

difference between the e3/2g and e5/2g D8h
* double-group MOs resulting from the 

single-group 1e2g MO, the ground state may be singlet , but this is not expected 

based upon the high-spin nature of free U2.
14 
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 (a)  

(b)  

(c)  

Figure 7.4   1g MO for triplet [U2]
4+ plotted at an isovalue of (a) 0.02, (b) 0.04, 

and (c) 0.06. 
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Table 7.2 Actinide Mulliken % Character for Selected  MOs 

MO s p d f Assignment 

[U2]
4+  D∞h triplet 

1u  1 40 59 5f 

1g 8 3 6 83 5f 

1g   5 95 5f 

      

ThII
2(8-COT)2  D8h triplet 

1a1g 50 0 24 16 5f 

1e1u  4 56 32 5f 

1e2g   48 48 5f 

      

PaII
2(8-COT)2  D8h quintet 

1a1g 34 4 6 56 5f 

1e1u   20 76 5f 

1e2g   20 74 5f 

      

UII
2(8-COT)2  D8h triplet 

1a1g 34 6 14 46 5f 

1e1u   24 70 5f 

1e2g   24 76 5f 

      

NpII
2(8-COT)2  D8h quintet 

1a1g 24 6 10 60 5f 

1e1u   16 80 5f 

1e2g   22 76 5f 
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Based upon the work of Xie et al.28 on Ni2Cp2 and Cu2Cp2 in which metal-

metal bonds prefer to be perpendicular to the C5 axis of the Cp rings and the 

work of Infante et al.24 on U2(C6H6)2 and Th2(C6H6)2 where the An-An bonds are 

approximately perpendicular to the C6 axis of the benzene rings, a second 

isomer of U2(COT)2 with the U-U bond perpendicular to the C8 axis of the rings 

was also considered. Rotation of the U2 unit in D8h U2(8-COT)2 by 90 generates 

a D2h fifth-order saddle point (SP) 203 kJ/mol (∆G(0K)) higher in energy than the 

D8h isomer. The COT rings are slightly puckered in the D2h isomer and the U-U 

bond has lengthened to 2.368 Å. Reducing the symmetry constraints to C2h 

produces a lower energy (∆G(0K) = 138 kJ/mol), third-order SP in which two of 

the eight C atoms in each ring bend out of plane by 44 and the U-U bond is 

2.811Å. Further reduction of symmetry constraints increases the out-of-plane 

bending to 52 and forms a Cs structure 28.0 kJ/mol (∆G(0K)) higher in energy 

than the coaxial isomer. This energetic ordering of coaxial diuranocene more 

stable than perpendicular diuranocene is the opposite of Cu and Ni M2Cp2 

complexes where the perpendicular isomers are predicted to be more stable than 

the coaxial species. Diuranocene is more like Zn2Cp2, for which the coaxial 

structure is stable but perpendicular complex is not a stationary point.28 
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Figure 7.5  Perpendicular geometry for Cs U2(-6,4-C8H8)2 that is 28 kJ/mol 

higher in energy than the coaxial isomer. Bond distances are in 

Angstroms. The U-C bonds range from 2.474 to 2.748 Å and the C-

C bond values are averaged over the two rings. 
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As seen in Figure 7.5, the COT ring aromaticity is perturbed upon bending 

and the rings have slipped from 8 to -6,4. This reduced hapticity is a slight 

perturbation of the more common -5,5 interaction seen in M2(-5,5-COT)Rn 

(M=Cr, Mo, W; R=COT, OCH2
tBu, OiPr, OtBu) compounds.76-78 In these 

compounds, X-ray crystallography showed the pair of closely bonded metal 

atoms lies over one sharply folded COT ring, and each metal atom symmetrically 

bonds to five carbon atoms of this COT ring. Each metal atom also is attached to 

the R group. However, in our Cs conformer each ring can still interact with both 

metals since six U-C distances are less than 2.72 Å to one of the U atoms and 

four U-C distances are less than 2.75 Å to the other, compared with 2.715 Å in 

D8h U2(8-COT)2. The COT ligand in the perpendicular species can be compared 

to similar calculations on the free C8H8 ring, a.k.a. neutral [8]annulene, which 

adopts a ground state D2d geometry with alternating carbon single and double 

bonds of 1.475 and 1.345 Å respectively, and puckers to a boat-like structure, 

consistent with experiment values. Thus the C8H8 rings in the Cs isomer are best 

envisioned as the marriage of a delocalized butadiene unit and half of a slightly 

distorted [8]annulene ring. As expected for delocalized  systems, the COT rings 

in uranocene and diuranocene have C-C bond lengths of 1.416 and 1.415 Å, 

respectively. Due to the complex nature of the Cs isomer and its degree of spin-

contamination, multi-reference methods may be required for more detailed 

studies. 
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In the D8h isomer, the natural charge on each U, C, and H is 0.77, -0.35, 

and 0.25, respectively. In the Cs complex, the U charge increases to 1.04 and 

1.16 indicating that 0.66 electrons from the two rings moved unequally to the U 

centers. The ligand to metal electron migration is also manifested in the 3.005 Å 

U-U bond, which is approximately a single bond as indicated by a Wiberg NPA 

bond order of 0.92. Such shifting of electron density reflects the drastic change in 

metal-ligand orbital overlap arising from rotation of the U2 moiety. When the 

metals are coaxial, the uranium d and f electrons can interact with the COT ring 

group orbitals. After rotation these metal-based electrons are forced to interact 

with the individual -electrons on the carbon atoms resulting in the movement of 

electron density, elongation of the U-U bond, and distortion of the COT ring. 

In the gas-phase, the U2(C8H8)2 dimers are more stable than their 

separated monomers by 77.7 kJ/mol (∆G(0K)) for the coaxial D8h isomer, 

3A1g U2(8-COT)2  2 5B1 UCOT, and 49.8 kJ/mol for the perpendicular Cs 

isomer, 3A' U2(C8H8)2  2 5B1 UCOT. However, preparation of U2(COT)2 from 

two UCOT fragments is not practical because UCOT could dimerize in alternate 

ways (e.g. U-COT-U-COT) or could disproportionate. The disproportionation 

reaction 3A1g U2(8-COT)2  3B2g U(8-COT)2 + 5A2u U is predicted to be 

endothermic by 55.6 kJ/mol (∆G(0K)).  Utilizing a U2 dissociation energy of 127.6 

kJ/mol14 the disproportionation, 2 3A1g U2(8-COT)2  2 3B2g U(8-COT)2 + U2, 

reaction enthalpy becomes -16.4 kJ/mol when U2 is produced. Therefore, if 

U2(COT)2 can be prepared by a route not involving UCOT and if the 

disproportionation channel can be disabled, a whole new class of U2 complexes 
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become accessible. We are currently studying the stability of other Um(COT)n 

complexes.  

7.3.2 Protactinium & Neptunium 

Both Pa2COT2 and Np2COT2 adopt D8h structures similar to coaxial 

U2COT2 shown Figure 7.1a. The key geometric parameters are presented in 

Table 7.1.  Pa2COT2 has a singlet state with orbital occupancy 1a1g
2 1e1u

4 and S2 

= 0.794; the quintet (1a1g
2 1e1u

2 1e2g
2) is 7 kJ/mol lower and has S2 = 6.041.  

Quintet Np2COT2 (1a1g
2 1e1u

4 1e2g
2 1e3u

2, S2 = 6.054) is ca 115 kJ/mol more 

stable than the singlet (1a1g
2 1e1u

4 1e2g
4, S2 = 0.569). As a consequence of the 

spin-unrestricted formalism, there is additional orbital mixing in both quintets 

resulting in artefactual symmetry breaking.  Since these systems are too large to 

treat with CASSCF, the high symmetry D8h calculations are used for further 

discussions. As the atomic number increases from Pa to Np, the An-An bond 

distances decrease from 2.54 Å to 2.19 Å. Although the metal to ring bond also 

decreases, the change is an order of magnitude smaller. The C-H bonds bend 

out of the ring plane toward the actinide atom by about 5º. This kind of C-H 

bending has been described previously.75,79 For large rings, the carbon 2p π 

orbitals tip inward for maximum overlap with the metal orbitals, causing the C-H 

bonds to bend toward the metal. Although there are no accurate experimental 

atomic radii for the actinides, they were estimated by Slater to be 1.80 Å, 1.75 Å 

and 1.75 Å for Pa, U, and Np respectively.80 These values are very similar 

because electrons are being filled into compact 5f orbitals. A recent theoretical 

study shows that the range of the triple-bond covalent radii of the early actinides 
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is between 1.36 Å and 1.16 Å.74 The calculated An-An distances in Pa2(COT)2, 

U2(COT)2 and Np2(COT)2 (2.54 Å, 2.24 Å and 2.08 Å) are significantly shorter 

than single bonds and are closer to the length expected for triple bonds. The 

trend in bond lengths indicates that the actinide-actinide bond strength and bond 

order increases as the atomic number increases and more electrons are filled 

into 5f bonding orbitals. A corresponding increase in the An-An vibrational 

frequency (270, 349 and 354 cm-1) confirms the strengthening of the An-An 

bond. 

7.3.3 Thorium 

In the D8h Th complex, the 1a1g orbital is higher in energy than 1e1u orbital.  

However, the singlet with four electrons in the 1e1u orbital is higher in energy than 

the triplet, with two unpaired electrons in the 1e1u orbital and a pair of electrons in 

the 1a1g orbital. The triplet D8h complex is a second order saddle point with two 

degenerate imaginary frequencies, ca 15i cm-1 for tilting the COT rings away from 

the C8 axis. The corresponding frequencies for the Pa, U, and Np complexes are 

all real (26, 26, and 29 cm-1, respectively), indicating these structures are stable 

in the coaxial configuration. By following one of the degenerate imaginary 

vibrational modes, the triplet Th2(COT)2 optimizes to the structure shown in 

Figure 7.1b with C2v symmetry and a Th-Th-X angle of 158.4º (X is the centroid 

of the COT ring). The Th-Th bond length is 2.809 Å and the distance between Th 

and the COT ring is 2.029 Å, in line with the trends seen for the other An2COT2 

structures. 
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The HOMO of D8h Th2(COT)2 corresponds to 1e1u 5f -type orbital of the 

other diactinide metallocenes, but bending the structure lifts the original 

degeneracy and distorts its shape. Since the coaxial D8h structure is only 2.6 

kJ/mol higher than the bent C2v structure, the molecule may be very floppy at 

room temperature. By contrast, Pa2(COT)2, U2(COT)2 and Np2(COT)2 have 

partially filled  and  HOMOs and are not stabilized by bending. Both coaxial 

and bent structures are usual for actinide complexes depending upon the 

competition between the ligand repulsion, bond stabilization and electron 

repulsion.81,82  

7.3.4 Orbital Analysis 

The frontier molecular orbital diagram for An2COT2 is presented in Figure 

7.6 using the energies of the orbitals with significant f character from the high 

spin, high symmetry structures. The shapes of the orbitals of U2COT2 (Figure 

7.3) are representative of the corresponding orbitals of the other An2COT2 

complexes. As expected, the orbital energies decrease markedly as empty 

orbitals are populated. The 1a1g orbital is doubly occupied for the entire series. It 

is higher than the 1e1u orbital for Th and Pa but lower for U and Np. The Mulliken 

%f character (Table 7.2) of the 1a1g orbital increases significantly from Th to Np 

while the %s character decreases. The 1e1u orbital is an An-An  bonding orbital 

and is half filled for Th and Pa, and filled for U and Np. The 1e2g  bonding orbital 

is half filled for Pa, U and Np. Like the 1a1g and 1e1u orbitals, the Mulliken %f 

character of the 1e2g orbital increase from Th to Np. The 1e3u orbital is a  non-

bonding orbital that is empty for Th, Pa and U, but half filled for Np. These orbital 
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occupancies yield formal bond orders of 2, 3, 4 and 4 for Th2COT2, Pa2COT2, 

U2COT2 and Np2COT2, respectively. This compares well with the trend in An-An 

bond lengths: 2.81 Å, 2.54 Å, 2.24 Å and 2.19 Å, respectively. Adding a pair of 

electrons to a bonding orbital decreases the bond length by ca. 0.3 Å, while 

adding a pair of electrons to the non-bonding 1e3u orbital (going from U2COT2 to 

Np2COT2) decreases the bond length by only 0.05 Å. 
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Figure 7.6  High spin D8h An(II)2(COT)2  frontier molecular orbital energy   

levels.  
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7.4 Conclusions: 

The successful synthesis of decamethyldizincocene, supported by the 

robust theoretical investigations on its derivatives, suggests double-stuffed 

actinide metallocenes may be an interesting synthetic objective. Our studies 

show diuranocene is a D8h coaxial minimum with a triplet ground state and a 

short U-U bond at the B3LYP level of theory while the perpendicular structure is 

higher in energy, has distorted COT rings and a longer U-U bond. Coaxial 

U2(COT)2 is stable with respect to dissociation into UCOT monomers. 

Disproportionation of U2(COT)2 is endothermic for uranocene plus U atom but 

slightly exothermic for uranocene plus 1/2 U2. Similar coaxial diactinide structures 

have been obtained for Pa and Np, while the Th complex adopts a bent C2v 

structure. Calculations show that as the atomic number increases, more 

electrons are filled into An-An 5f - and -type bonding orbitals. Consequently, 

the An-An distance decreases from 2.81 Å to 2.19 Å for Th2(COT)2 to Np2(COT)2, 

respectively, and the An-An stretching frequency increases from 249 cm-1 to 354 

cm-1. Without doubt, designing synthetic routes to complexes containing actinide-

actinide bonds will require clever thinking. Hopefully the present computational 

study combined with recent low-oxidation state f-element chemistry advances in 

the Evans group83 will stimulate experimental endeavors to prepare this new 

class of diactinide complexes.  
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CHAPTER 8 

QM/MM STUDIES OF THE MATRIX METALLOPROTEINASE 2 (MMP2) 

INHIBITION MECHANISM OF (S)-SB-3CT AND ITS OXIRANE ANALOGUE 

Reproduced with permission from J. Chem. Theory Comput., 2010, 6, 3580-3587 
Copyright 2010, American Chemical Society 

8.1 Introduction:  

The matrix metalloproteinases (MMPs) are key proteolytic regulators of 

the integrity of the extracellular matrix. MMPs are implicated in embryonic 

development,1-3 tissue remodeling and repair,4-6 neurophathic pain processes,7 

cancer,8-11 and other diseases.12-15 MMP2 (Gelatinases A), one of these zinc-

dependent proteolytic enzymes, digests type IV collagens.16 The structure and 

function of this protein have been studied extensively for the purpose of selective 

inhibitor design.17-29 One of these inhibitors, 

(4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT), selectively inhibits MMP2 

with high potency.30,31 The inhibition mechanism of MMP2 by (R)-SB-3CT is 

coupled deprotonation of the methylene group juxtaposed between the sulfone 

and the thiirane, and the opening of the thiirane ring.31,32 This reaction creates a 

thiolate anion which strongly coordinates with the zinc at the active site.  

It is remarkable that the R and S enantiomers of SB-3CT display similar 

potency as inhibitors of MMP2, even though they are expected to have rather 

different binding modes in the active site.33 The kinetic parameters for the R 

enantiomer are Kon = 2.2 ± 0.5  104 M-1 s-1, Koff = 5.3 ± 0.5  10-4 s-1 and Ki = 24 

± 6 nM, and the corresponding values for the S enantiomer are Kon = 1.7 ± 0.4  
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104 M-1 s-1, Koff = 4.0 ± 0.3  10-4 s-1 and Ki = 23 ± 6 nM. Their similar potency 

suggests that both enantiomers have a similar inhibitory mechanism, despite this 

anticipated difference in their binding modes. In this study we used methods 

similar to our previous study of MMP2·(R)-SB-3CT32 to investigate these binding 

modes, and to compare the inhibition mechanism of (S)-SB-3CT (3) and its 

oxirane analogue (4) (Scheme 8.1). The MMP2·(S)-SB-3CT complex was 

constructed by docking and molecular dynamics studies. The details of the 

deprotonation/ring opening mechanism for inhibition were examined by combined 

quantum mechanics and molecular mechanics (QM/MM) methods, and 

compared to (R)-SB-3CT. Vibrational frequencies, intrinsic reaction paths and 

kinetic isotope effects were calculated for both the R and S enantiomers of SB-

3CT. 

 

Scheme 8.1 MMP2 inhibition mechanisms by SB-3CT (3, X = S) and its oxirane 

analogue (4, X = O) 
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8.2 Computational Methods: 

As in the previous study of the R isomer of SB-3CT, the initial structures of 

the MMP2 complex with (S)-SB-3CT and its oxirane analogue were built by 

docking and molecular dynamics (MD) methods.32 A two-layer ONIOM method34-

41 was used for the QM/MM study of the inhibition mechanism of 3 and 4. The 

QM region (46 atoms) consists of the zinc ion, the three imidazole rings from 

His403, His407 and His413, the CH2CO2
– part of the Glu404 side chain, the 

thiirane and the SO2CH2 group of the inhibitor, and one water molecule. The 

B3LYP/6-31G(d) level of density functional theory (DFT) described the QM part 

of the system, and the AMBER force field42 described the MM part of the system. 

QM/MM geometry optimization was carried out with a mechanical embedding 

scheme. The QM part and all residues and solvent molecules in the MM part 

within 6 Å of the QM part were fully optimized (936 atoms), while the remaining 

atoms were held fixed. Similar cut-offs have been used previously in QM/MM 

studies of enzymatic systems to avoid spurious changes in the energy due to 

remote fluctuation in the geometry.43,44 Because the MMP2 active site is rather 

open to the solvent, a smaller cut-off of 6 Å was used. The partial charges for the 

reactive system were refined by alternating between QM/MM geometry 

optimization and RESP45,46 charge fitting.32 With mechanical embedding, the 

electrostatic interactions between the QM and MM regions are calculated using 

these partial charges. Single point calculations with electronic embedding41 were 

used for the final QM/MM energies calculated at the 

ONIOM(B3LYP/6-311+G(d,p):AMBER) level of theory. When calculated with the 
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same basis set, the mean absolute difference in the relative energies with 

electronic embedding vs. mechanical embedding is 3 kcal/mol. All ONIOM 

calculations were performed with the development version of GAUSSIAN.47 The 

ONIOM toolkit48 facilitated the QM/MM calculations.  



195 
 

8.3 Results and Discussion 

The MMP2·(R)-SB-3CT·and MMP2·(S)-SB-3CT complexes are compared 

in Figure 8.1. These complexes are obtained by docking, followed by MD 

simulation and QM/MM geometry optimization. Similar to (R)-SB-3CT in the 

MMP2 active site,32 the phenoxyphenyl side chain of (S)-SB-3CT fits into the S1’ 

pocket, and the hydrogen bond (1.83 Å) between the backbone NH of Leu191 to 

the pro-S oxygen of the sulfone is preserved. The second oxygen of the sulfone 

is exposed to solvent. In contrast to (R)-SB-3CT, the plane of the thiirane ring of 

(S)-SB-3CT points away from the zinc. The Zn-S distance in MMP2·(S)-SB-3CT 

(4.55 Å) is significantly longer than in MMP2·(R)-SB-3CT (2.91 Å). As a 

consequence, a water molecule coordinates with the zinc in the (S)-SB-3CT 

complex (Zn-O distance is 2.11 Å) but not in the (R)-SB-3CT complex (3.58 Å). 

The MMP2 complex of the oxirane analogue of (S)-SB-3CT is generated by 

replacement of the sulfur of the thiirane with oxygen. The QM part and adjacent 

regions were examined visually (see Figure 8.2 for a superposition of the 

reactants and transition states for 3 and 4) to ensure that the reactant complex 

and the transition state have similar hydrogen-bonding patterns with the solvent 

water molecules, to avoid spurious differences in barrier heights caused by minor 

changes in the solvent. 
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(R)-SB-3CT (S)-SB-3CT 

Figure 8.1  Structures of (R)-SB-3CT and (S)-SB-3CT in the MMP2 active site 
optimized at the ONIOM(B3LYP/6-31G(d):AMBER) level of theory. 
Residues of MMP2·(R)-SB-3CT and MMP2·(S)-SB-3CT are shown 
in ball-and-stick representation with atom colored according to atom 
types (H, C, N, O, S, Zn, shown in white, cyan, blue, red, yellow, 
and grey, respectively). The same color scheme is used in all the 
figures. 
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Figure 8.2 The comparison of the MM water (in ball-and-stick representation) 

that is close to QM region (in cylinder representation) in 3-R, 3-TS, 

4-R, and 4-TS
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3-R 0.0 3-R’ 2.6 3-TS 16.1 

3-P1 -13.2 3-P1’ -20.2 3-P2 8.7 

4-R 0.0 4-R’ 3.9 4-TS 20.5 
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4-P1 -14.9 4-P1’ -20.3 4-P2 -11.2 

Figure 8.3    Reactants, transition states and products for (S)-SB-3CT (3) and its 
oxirane analogue (4) in the MMP2 active site optimized at the 
ONIOM(B3LYP/6-31G(d):AMBER) level of theory. Energies (in 
kcal/mol) were calculated at the ONIOM(B3LYP/6-
311+G(d,p):AMBER) using electronic embedding with the reactant 
complexes used as the reference states. 3-P1 and 4-P1 are the cis 
isomers of the unprotonated ring opening products. 3-P1’ and 4-P1’ 
are the trans isomers. In 3-P2 and 4-P2, the cis ring opening 
products are protonated by the water molecule, and the resulting 
hydroxide anion coordinates with the zinc.  
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Figure 8.4    Reactants, transition states and products for (S)-SB-3CT (3) and its 
oxirane analogue (4) in the MMP2 active site optimized at the 
ONIOM(B3LYP/6-31G(d):AMBER) level of theory. Energies (in 
kcal/mol) were calculated at the ONIOM(B3LYP/6-
311+G(d,p):AMBER) using electronic embedding with the reactant 
complexes used as reference states. Key bond lengths are in 
Angstroms. Ball-and-stick representation of QM region and cartoon 
representation of protein are shown in Figure 8.3. 
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(a) Deprotonation and Ring Opening of the Inhibitor  

The reactant, transition state (TS), and product structures for the inhibition 

of MMP2 by (S)-SB-3CT are shown in the top two rows of Figure 8.3 and 

selected geometrical parameters are given in Figure 8.4. The respective 

structures for the oxirane analogue are shown at the bottom of these Figures. In 

both reactant structures, the zinc at the MMP2 active site is coordinated with 

Glu404, three histidines, and one water molecule. Depending on how the Glu404 

coordinates with the zinc, two local minima are identified for the reactant complex 

of (S)-SB-3CT· MMP2 and of its oxirane analogue (3-R and 3-R’; 4-R and 4-R’ in 

Figure 8.3). In 3-R, the oxygen of the Glu404 that will accept the transferring 

proton of (S)-SB-3CT is coordinated (2.05 Å) to the zinc, while the other Glu404 

oxygen is not (3.29 Å). For 3-R’, the –CO2
- group of Glu404 is shifted so that the 

acceptor oxygen is farther from the zinc (3.60 Å) and the other oxygen is 

coordinated to the zinc (1.96 Å). 3-R’ is only 2.6 kcal/mol higher in energy than 3-

R. Likewise, the oxirane analogue 4-R’ is 3.9 kcal/mol higher than 4-R. In both 3-

R and 3-R’, the sulfur of the thiirane is significantly further from the zinc (by 4.55 

and 4.11 Å, respectively) than the distance between the oxygen of oxirane and 

the zinc in 4-R and 4-R’ (2.32 and 2.26 Å, respectively). The energy of 

MMP2·(S)-SB-3CT increases by 4.9 kcal/mol if the sulfur is constrained to be 

closer to the zinc, similar to the distance in MMP2·(R)-SB-3CT (2.86 Å).  

In the TS identified in the QM/MM calculations, 3-TS (Figure 8.3 and 

Figure 8.4), the transferring proton is 1.50 Å from the donor carbon and 1.18 Å 

from the acceptor oxygen, indicating the TS is a little earlier compared to 
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MMP2·(R)-SB-3CT (C–H and H–O distances of 1.57 Å and 1.14 Å, respectively). 

The breaking C–S bond of the thiirane is elongated to 2.04 Å in 3-TS. The 

Glu404 side chain moves away from the zinc in order to abstract the proton. The 

TS of the oxirane analogue (4-TS) is similar to the thiirane system (C–H and H–O 

distances are 1.58 Å and 1.13 Å), but a little later than the (R)-oxirane TS (C–H 

and H–O distances are 1.43 Å and 1.24 Å). In the transition states, the thiirane 

sulfur and oxirane oxygen are strongly coordinated to the zinc (Zn–S and Zn–O 

distances are 2.38 Å and 1.94 Å, respectively), but the glutamate is not. 
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(b) 

Figure 8.5   IRC profiles for (S)-SB-3CT (a) and its oxirane analogue (b) in the 

MMP2 active site using the partial model at the ONIOM(B3LYP/6-

31G(d):AMBER) level of theory. Key bond lengths are in 

Angstroms. 
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(b) 

Figure 8.6   IRC profiles for (R)-SB-3CT (a) and its oxirane analogue (b) in the 
MMP2 active site using the partial model at the ONIOM(B3LYP/6-
31G(d):AMBER) level of theory. Key bond lengths are in 
Angstroms. 
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(b) Vibrational Frequencies and Reaction Path Following  

While the full frequency calculations at the current level of theory are not 

feasible for the whole system (9208 atoms), the two lowest vibrational modes can 

be calculated. Only one imaginary frequency is found for 3-TS and 4-TS (1018i 

and 540i cm–1, respectively), verifying that these structures are transition states. 

Two reduced size (partial) models were built from the full thiirane and oxirane TS 

complexes by extracting all the QM atoms (46 atoms), the MM atoms which are 

allowed to move during geometry optimization (936 atoms) and enough frozen 

MM atoms to surround the first two parts, for a total of  2747 atoms. When the 

transition states of the reduced systems were re-optimized, the key parameters 

changed very little (RMSD = 0.04 Å, C-H and O-H distances involving the 

transferring proton changed by less than 0.01 Å). The fact that these changes 

are quite small suggests that the reduced systems are good models of the full 

protein-inhibitor complexes. Using the optimized transition states of these 

reduced size models, the full frequency analysis and calculation of the intrinsic 

reaction coordinate (IRC) are both practical with the latest version of the code.49 

The frequency analysis for the partial models of the TSs gives imaginary 

frequencies close to the full system for both the thiirane (1031i cm–1) and oxirane 

(601i cm–1). As a part of the present work, similar calculations were carried out 

for the TS structure for the inhibition of MMP2 by (R)-SB-3CT.32 The imaginary 

frequencies are 767i and 642i for the full and reduced size thiirane systems, 

respectively. For its oxirane analogue, the imaginary frequencies are 1217i and 

1234i for the full and reduced size systems, respectively. 
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The intrinsic reaction coordinate (IRC) was calculated using the reduced 

size model to generate the reaction path from the reactants to the products 

through the TSs. The profiles of the IRC paths, and the key structures, are shown 

in Figure 8.5 (see Figure 8.6 for R enantiomer). The reaction path calculations 

clearly demonstrate that there are no additional barriers between the TSs and the 

reactants, and TSs and the products, for both MMP2·(S)-SB-3CT and its oxirane 

analogue. The reaction path shows that the R enantiomer of SB-3CT and its 

oxirane analogue open to the trans products. The corresponding reaction paths 

for the S enantiomer of the thiirane and oxirane lead to the cis products, 3-P1 

and 4-P1. The cis products are 6.9 and 5.4 kcal/mol higherthan the trans 

products, 3-P1’ and 4-P1’, part because of less favorable interactions with the 

active site. The different stereochemical outcome for the two enantiomers 

demonstrates that stereoelectronic control exists in the transition state. 

Animations of the normal mode corresponding to the imaginary frequencies and 

the IRC paths for MMP2·(S)-SB-3CT and its oxirane analogue are provided on 

the ACS website.  
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Table 8.1 QM/MM calculations of the energetics for the ring-opening reactions of 

inhibitions in the active site of MMP2a 

Inhibitor 
Barrier 

Height 

Reaction Enthalpy 

P1 

(unprotonated 

cis product) 

P1’ 

(unprotonated 

trans product) 

P2 

(protonated 

cis product) 

(S)-SB-3CT (3)b 16.1 –13.3 –20.2 8.7 

(S)-Oxirane Analogue (4)b 20.5 –14.9 –20.3 –11.2 

a ONIOM(B3LYP/6-311+G(d,p):AMBER)//ONIOM(B3LYP/6-31G(d):AMBER) with 

electronic embedding; energies in kcal/mol. 

b See Figure 8.3. 
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(c) Thermodynamics  

The energy profiles for (S)-SB-3CT (3) and its oxirane analogue (4) in the 

MMP2 active site are shown in Figure 8.7 and summarized in Table 8.1. The ring 

opening barriers for the S-thiirane and S-oxirane in the active site of MMP2 are 

16.1 and 20.5 kcal/mol, respectively. The thiolate ring-opened product from the 

thiirane (3-P1), and the alkoxide ring-opened product from the oxirane (4-P1), 

both show tight coordination with the zinc in these product complexes. The 

protonated Glu404 moves significantly away from the zinc. The water molecule in 

both 3-P1 and 4-P1 moves away from the zinc to distances of 3.16 Å and 3.37 Å, 

respectively. The reaction energies for thiirane and oxirane are –13.3 and –14.9 

kcal/mol, respectively.  
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Figure 8.7   Energy profiles for (S)-SB-3CT (3) and its oxirane analogue (4) in 

the MMP2 active site. Relative energies (in kcal/mol) were 

calculated at the ONIOM(B3LYP/6-311+G(d,p):AMBER) using 

electronic embedding with the reactant complexes used as 

reference states. 
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(d) Product Protonation by Water 

Since solvent has substantial access to the active site of MMP2, the ring-

opened products can be protonated by solvent. Proton transfer from a nearby 

water to 3-P1 and 4-P1 gives structures 3-P2 and 4-P2, respectively (Figure 8.3 

and Figure 8.4). Proton transfer from the water molecule generates a hydroxide 

ion which coordinates with the zinc, replacing the thiolate and alkoxide as zinc 

ligands. For the thiirane system, the protonated product complex 3-P2 is 8.7 

kcal/mol endothermic compared to the reactant complex 3-R. For the oxirane 

system, by contrast, the protonated product complex 4-P2 is 11.2 kcal/mol 

exothermic compared to the reactant complex 4-R. A similar result was observed 

in the study of the R enantiomer.32 This difference between the thiirane and 

oxirane may explain why both the R and S enantiomers of SB-3CT are slow 

binding inhibitors of MMP2, while their oxirane analogues are linear competitive 

inhibitors.30  

(e) Kinetic Isotope Effect (KIE) Calculations using the QM/MM model  

In our earlier studies, the KIE calculation for the R-thiirane could only be 

carried out for the solution model.32 However, recent improvements in computer 

code and resources have made it feasible to calculate the full set of frequencies 

for QM/MM systems. Using the frequency calculations for the 2747 atom QM/MM 

models, deuterium KIEs were calculated for both the MMP2·(R)-SB-3CT and 

MMP2·(S)-SB-3CT complexes. The Wigner tunneling correction50 contributes a 

factor of 1.15 for R-thiirane and 1.27 for S-thiirane. The calculated KIE (kH/kD) is 

5.9 for the inhibition of MMP2 by (R)-SB-3CT, and 6.7 for (S)-SB-3CT. These 
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numbers agree well with the experimental result for the racemic mixture (kH/kD = 

5.0).31  

8.4 Conclusions: 

The inhibition of MMP2 by (S)-SB-3CT (3) and its oxirane analogue (4) 

involves the concurrent deprotonation of the inhibitor by the active-site glutamate, 

opening of the respective three-membered heterocycle, and coordination of the 

heteroatom anion product to the active-site zinc. For the present QM/MM 

calculations, the barrier for this ring-opening reaction of (S)-SB-3CT in the MMP2 

active site is 16.1 kcal/mol, and is 4.4 kcal/mol lower than the barrier for the 

oxirane analogue. Abstraction of a proton from the inhibitor by glutamate is the 

key event in the inhibition reaction, as indicated by the kinetic isotope effects, 

and is directly coupled with the ring-opening. In the transition state, the 

heteroatom of the three-membered ring moves closer to the zinc, facilitating 

completion of the deprotonation and ring opening events for progress toward the 

product complexes. The reaction enthalpies are quite similar (–13.3 kcal/mol for 

3 and –14.9 kcal/mol for 4). Reaction path following calculations show that ring 

opening of (S)-SB-3CT by MMP2 yields the cis product, while ring opening of 

(R)-SB-3CT in the MMP2 produces the trans product. The calculations show that 

the protonation of the alkoxide product from the ring opening of 4 by a water 

molecule in the active site is exothermic, whereas protonation of the thiolate from 

ring opening of 3 is endothermic. The calculated KIEs of the reaction agree well 

with the experimental results, increasing the confidence in the present study. The 
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previous and present studies provide the solid theoretical support for the 

inhibition mechanism of MMP2.  
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In this dissertation, ab initio classical trajectory calculations have been 

carried out to study the dissociation of acetone radical cation, pentane-2,4-dione 

radical cation, and 1,3-cyclobutanedione radical cation. For acetone radical cation 

and pentane-2,4-dione radical cation, MP2 with bond additivity corrections 

generates a better potential energy surface at low cost and is thus used for 

molecular dynamics calculations. The dissociation of acetone radical cation is 

found to favor the loss of the newly formed methyl group in agreement with the 

experiments. The branching ratios of methyl loss were also calculated with 

different amount of excess energy and of specific mode excitation. Dissociation 

of pentane-2,4-dione radical cation and 1,3-cyclobutanedione radical cation has not 

been investigated experimentally, and the present trajectory calculations provide the 

first theoretical description of the dissociation dynamics. 



222 
 

The dissociations of the methanimine neutral, monocation and dication 

have been studied by ab initio classical trajectory calculations. Many of the 

trajectories dissociate directly to produce H+, H atom or H2. However, for a 

fraction of the cases, substantial migration of the hydrogen occurs within the 

molecule before dissociation. The preferred dissociation product for the neutral 

and the monocation is hydrogen atom. Dissociations of the dication and trication 

produced H+ rather than H atom. 

The gas phase reaction of Th+ with H2O to produce HThO+ + H and ThO+ 

+ H2 has been investigated using density functional theory and coupled cluster 

methods. Ab initio classical trajectory calculations have been carried out to obtain 

a better model of the molecular dynamics. The molecular dynamics simulations 

yield a branching ratio of ca 80% for the H2 elimination channel to 20% for the H 

atomic elimination channel in qualitative agreement with the observed ratio of 

65% to 35%. 

Complexes of the form An2(C8H8)2 (An = Th, Pa, U and Np) have been 

studied using density functional theory with scalar-relativistic effective core 

potentials. For uranium, a coaxial isomer with D8h symmetry is found to be more 

stable than a Cs isomer in which the dimetal unit is perpendicular to the C8 ring 

axis. Similar coaxial structures are predicted for Pa2(C8H8)2 and Np2(C8H8)2, 

while in Th2(C8H8)2 the C8H8 rings tilt away from the An-An axis. Further 

thermodynamic calculations suggest that it may be possible to generate these 

new complexes experimentally. 
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SB-3CT, (4-phenoxyphenylsulfonyl)methylthiirane, is a potent, 

mechanism-based inhibitor of the gelatinase sub-class of the matrix 

metalloproteinase (MMP) family of zinc proteases. The gelatinase MMPs are 

unusual in that there are several examples where both enantiomers of a racemic 

inhibitor have comparable inhibitory abilities. SB-3CT is one such example. The 

inhibition mechanism of the MMP2 gelatinase by the (S)-SB-3CT enantiomer and 

its oxirane analogue is examined computationally by QM/MM method, and 

compared to the mechanism of (R)-SB-3CT. 
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