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Campylobacter jejuni protein interactions<p>'Systematic identification of protein interactions for the bacterium <it>Campylobacter jejuni </it>using high-throughput yeast two-hybrid screens detected interactions for 80% of the organism's proteins.</p>

Abstract

Background: Data from large-scale protein interaction screens for humans and model eukaryotes
have been invaluable for developing systems-level models of biological processes. Despite this
value, only a limited amount of interaction data is available for prokaryotes. Here we report the
systematic identification of protein interactions for the bacterium Campylobacter jejuni, a food-
borne pathogen and a major cause of gastroenteritis worldwide.

Results: Using high-throughput yeast two-hybrid screens we detected and reproduced 11,687
interactions. The resulting interaction map includes 80% of the predicted C. jejuni NCTC11168
proteins and places a large number of poorly characterized proteins into networks that provide
initial clues about their functions. We used the map to identify a number of conserved subnetworks
by comparison to protein networks from Escherichia coli and Saccharomyces cerevisiae. We also
demonstrate the value of the interactome data for mapping biological pathways by identifying the
C. jejuni chemotaxis pathway. Finally, the interaction map also includes a large subnetwork of
putative essential genes that may be used to identify potential new antimicrobial drug targets for C.
jejuni and related organisms.

Conclusion: The C. jejuni protein interaction map is one of the most comprehensive yet
determined for a free-living organism and nearly doubles the binary interactions available for the
prokaryotic kingdom. This high level of coverage facilitates pathway mapping and function
prediction for a large number of C. jejuni proteins as well as orthologous proteins from other
organisms. The broad coverage also facilitates cross-species comparisons for the identification of
evolutionarily conserved subnetworks of protein interactions.
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Background
A catalog of all the protein interactions that occur in an organ-
ism could provide a useful starting point for understanding
the functions of proteins and entire biological systems. Sev-
eral research groups have performed large-scale screens with
the goal of identifying all of the protein interactions, or the
interactome, for a given organism. One productive approach
has been to co-affinity purify (co-AP) members of protein
complexes using affinity-tagged bait proteins and then to
identify the complex members using mass spectrometry
(MS). This approach has been particularly useful for single-
cell model organisms like Escherichia coli and Saccharomy-
ces cerevisiae, in which large sets of affinity-tagged proteins
can be expressed readily and co-AP/MS can be performed on
large quantities of cells [1-6]. A complementary approach that
detects binary protein interactions rather than protein com-
plexes is the yeast two-hybrid system [7]. In contrast to the
co-AP/MS studies, large-scale yeast two-hybrid screens
measure interactions in an artificial setting, the yeast nucleus,
with the goal of mapping all of the possible specific binary
interactions that may occur in vivo. Large-scale yeast two-
hybrid screens have been used to probe the interactomes of a
wide range of organisms from viruses to humans (see [8-10]
for reviews). The yeast two-hybrid screens and the co-AP/MS
studies provide at least a static picture of protein interactions
that may occur under one or a defined set of in vivo condi-
tions. The resulting interaction maps can provide a frame-
work for understanding pathways and molecular machines,
particularly when combined with other types of functional
genomics data, including gene phenotypes and dynamic
information such as gene expression, protein expression, and
protein localization data.

Very few bacterial species have been analyzed at the proteome
level for protein interactions. For example, large-scale sys-
tematic determination of binary protein interactions has been
described for only one bacterium to date, Helicobacter pylori
[11]. That study resulted in interactions covering 46% of the
H. pylori proteome (Additional data file 1). Meanwhile, E. coli
is the only bacterium for which protein complex purifications
have been applied at the proteome scale [1,6]. Binary protein
interactions predicted from these studies include 80% of the
E. coli proteome. With the immense number and diversity of
different bacterial species that exist, a huge reservoir of
prokaryotic protein interactions have yet to be sampled.

Campylobacter jejuni is a Gram-negative food-borne patho-
gen that is a major cause of gastroenteritis in humans [12].
Infection with C. jejuni has also been associated with the
autoimmune peripheral neuropathy known as Guillain Barré
syndrome and immunoproliferative small intestinal disease
[13-15]. Despite the importance of C. jejuni as a pathogen,
much remains to be learned about its biology and mecha-
nisms for causing disease. The functions of over 50% of the
1,654 proteins predicted to be encoded by the C. jejuni
NCTC11168 genome are either unknown or poorly character-

ized, as implied by their unnamed gene status [16]. Clues
about the functions of these proteins could come from protein
interaction data. Most of the protein interaction data for C.
jejuni come from small-scale experiments with individual
proteins or from the somewhat less reliable method of pre-
dicting interactions based on measurements with ortholo-
gous proteins in other organisms. Despite the proven utility of
protein interaction data, most of the C. jejuni proteins are not
yet known or predicted to be involved in an interaction. Thus,
interactome data could significantly aid C. jejuni research.
Because co-AP/MS studies would be difficult for this organ-
ism we set out to map interactions using the two-hybrid
system.

Here we report the results of a proteome-scale systematic
screen of C. jejuni protein interactions. Using a comprehen-
sive yeast two-hybrid approach we tested over 89% of the pre-
dicted C. jejuni NCTC11168 proteins for interactions and
identified thousands of novel protein interactions covering
80% of the proteome. For each interaction we generated a
confidence score that reflects its probability of being biologi-
cally relevant, resulting in 2,884 interactions with high confi-
dence scores. We demonstrate how these data can be used to
map pathways, generate hypotheses about protein function
and network evolution, and to identify potential new drug tar-
gets. We have assembled all of the interactions from this
study into a single comprehensive C. jejuni protein interac-
tion database [17] that also contains computational predic-
tions [18] and interolog [19] predictions based on E. coli and
H. pylori protein interactions. The interaction data can be
readily accessed and downloaded using the web-based appli-
cation tool called IM Browser [20].

Results
Systematic identification of protein interactions for C. 
jejuni NCTC11168
We used a yeast two-hybrid pooled matrix approach [21,22]
to screen for binary interactions among the predicted C.
jejuni NCTC11168 proteins. We generated two arrays of yeast
strains that express full length C. jejuni open reading frames
(ORFs) fused to the LexA DNA-binding domain (BD) or a
transcription activation domain (AD), respectively (Materials
and methods). Over 89% of the predicted C. jejuni ORFs are
represented in the arrays (Table 1). To sample all possible
binary interactions, each member of the BD array was mated
with pools containing approximately 96 AD strains and the
resulting diploids were assayed for reporter activity. Each BD
strain was then tested with every AD strain comprising the
pools with which it was positive to identify the specific inter-
acting protein pair. The activities of the two yeast two-hybrid
reporters were independently quantified based on growth on
selective media and color on X-Gal plates, as previously
described [21]. Our screen initially detected a total of 16,022
putative interactions with above-threshold reporter scores
(after subtraction of background activity for BD fusions
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capable of activating the reporters on their own). An addi-
tional 82 unique interactions were identified using a library
screen (Materials and methods). We retested the combined
16,104 initial positives in individual one-on-one mating
assays of BD strains and AD strains, and reproduced 11,687 of
them. The majority of non-repeating interactions initially had
shown low levels of reporter activity. The 11,687 repeated
interactions were included in our final dataset (CampyYTH
v3.1; Figure 1a).

The interaction map includes all of the major protein types
and is not significantly enriched for any particular gene clas-
sification (Additional data file 2). As expected, however, inte-
gral membrane proteins are slightly depleted (Additional
data file 3), which was likely due to failure to reach the
nucleus or improper folding in the nuclear environment. The
high coverage (80% of the predicted proteome) can be attrib-
uted in part to the number of proteins tested, to the system-

atic pooled matrix approach, and to the use of regulated
promoters to detect interactions with toxic proteins or pro-
teins that activated the reporters on their own. For example,
proteins toxic or inhibitory to yeast were successfully assayed
by expressing the fusion proteins with an inducible rather
than constitutive promoter [23]. Constitutive expression of
inhibitory proteins can result in down regulation of the fusion
proteins and loss of the ability to detect interactions [21]. In
this study we found that 114 (7%) of the proteins in our array
were either toxic or inhibitory to yeast (Additional data file 4).
Nevertheless, we were able to detect over 700 interactions
that involved these proteins, including the well-known
GroES-GroEL interaction.

Data quality and confidence scores
To help distinguish true positives from false positives we
applied a statistical method to generate confidence scores for
each interaction [24,25]. We used logistic regression to assign
weights to a set of experimental interaction attributes based
on how well they correlated with biological significance. Sets
of putative true positives and false positives were used to train
the scoring system on biological significance (Materials and
methods). One interaction attribute that strongly correlated
with putative true positives, for example, was the level of
reporter activity, an attribute not determined in most previ-
ous large-scale two-hybrid screens. An attribute that corre-
lated with false positives was the number of interactions per
protein. The weighted attributes were combined in a model
that assigned probability scores between 0 and 1 to each inter-
action. Choosing 0.5 as the threshold between low and high
confidence interactions resulted in 2,884 (25%) of the repro-
duced interactions falling into the higher confidence set (Fig-
ure 2a), which covered 67% of the C. jejuni proteins. As an
independent test of the confidence-scoring system, we dem-
onstrated that interactions with higher confidence scores
were significantly more likely to involve pairs of proteins

Table 1

Summary of array generation and interaction testing

ORFs total 1,654

ORFs cloned 1,477

BD fusions 1,398

AD fusions 1,442

Assays performed ~336,000

Interactions* 11,687

BD proteins 637

AD proteins 1,248

Unique ORFs 1,321

Higher confidence interactions*† 2,884

BD proteins 589

AD proteins 923

Unique ORFs 1,067

*Interactions that repeated upon retesting. †An additional 325 interactions received high confidence scores (> 0.5), but were not repeated in a 
second two-hybrid assay.

C. jejuni protein interaction networksFigure 1
C. jejuni protein interaction networks. (a) The C. jejuni interaction dataset 
(CampyYTH v3.1), and (b) the higher confidence subset. In each case 
most of the proteins (square nodes) are connected into a single large 
network; the unconnected interactions are in the upper right of each 
panel. The networks in (a, b) connect over 79% (663 total) and 65% (548 
total) of the unnamed and presumed poorly characterized proteins (yellow 
nodes), respectively.

(a) (b) 
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known to function in the same biological process, as would be
expected for true positives, than do an equal number of ran-
domly selected low scoring interactions (p < 3 × 10-57; Figure
2b). For this analysis we used the biological role classifica-
tions that had been assigned previously [26], but which
played no part in generating the confidence scores. Similarly,

we found that the higher confidence interactions generally
included more pairs of proteins that share more detailed
Gene Ontology (GO) [27] functional annotations (Figure 2c).
Combined, these analyses indicate that the confidence scores
are a useful measure of biological significance to guide future
studies.

Confidence scores assigned to the C. jejuni protein interactionsFigure 2
Confidence scores assigned to the C. jejuni protein interactions. (a) The distribution of confidence scores generated for the CampyYTH v3.1 protein 
interactions are shown in red. The distributions of scores for the training sets containing likely true positives (green) or true negatives (black) are also 
shown. (b) Protein interaction pairs with high confidence scores (HCS; confidence scores > 0.5) share the same functions significantly more frequently (p 
value < 3 × 10-57) than protein pairs comprising interactions with low confidence scores (LCS; confidence scores ≤ 0.5). Protein 'self' interactions were 
excluded from the analysis. (c) The average depth of shared GO biological process annotation was determined for the interactions comprising each 
confidence score bin. Higher confidence interactions generally involve proteins with the same functional annotation at greater depths of precision. The 
two dotted line segments are linearly fitted lines between average GO depth and bin number in two regions, from 0.5 to 0.9 and 0.9 to 1.0. Protein 'self' 
interactions were excluded from the analysis.
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To further assess the quality of the C. jejuni interaction data
we compared them to E. coli and H. pylori datasets presumed
to be enriched for true positives. First, we considered a set of
high-confidence E. coli protein interactions from literature-
cited low-throughput experiments compiled within the Data-
base of Interacting Proteins (DIP) [28]. Reciprocal best-
match C. jejuni orthologs of the E. coli proteins were used to
predict 147 conserved C. jejuni interactions or interologs. The
overlap between the two-hybrid data and the predictions
from the E. coli reference set was 28 of 147, significantly (p =
2 × 10-11) more than the overlap between the reference set and
random maps with the same size and topology as the two-
hybrid map (Figure 3a). The overlaps between our data and
interologs predicted from H. pylori yeast two-hybrid data [11]
or E. coli protein complexes [1,6] were also significantly
greater than expected by chance (Figure 3b-d). Moreover, the
fraction of C. jejuni data that overlaps with the reference set
is similar to that for the E. coli and H. pylori high throughput
datasets (Table 2). This analysis suggests that the C. jejuni
yeast two-hybrid map has rates of true positives, false posi-
tives, and false negatives similar to the previous maps for E.
coli and H. pylori.

The C. jejuni protein interaction network
The entire dataset of C. jejuni interactions and the subset of
higher confidence interactions each assemble primarily into
single large network components containing 99% and 95% of
their interactions, respectively (Figure 1). Both networks have
characteristics similar to those observed for other large-scale
protein interaction datasets (Additional data file 5). Global
analysis of the connectivity (k) of each protein, also known as
a protein's degree, revealed a network in which most proteins
have few connections, some (hubs) have many connections,
and the distribution of interactions per protein is nonrandom
(Figure 4a,b). A rank-degree plot of the CampyYTH v3.1 data
is best modeled by an exponential curve rather than the
power law expected for a scale-free network [29] (Figure 4c).
In many studies, the process of selecting the higher confi-
dence interactions has involved removal of the most highly
connected proteins, or in our case, trimming interactions
preferentially from those proteins. While this enriches for
biologically relevant true positives, it may also change the
topology of the network. Consistent with this, the higher con-
fidence C. jejuni network appears to be scale-free (Figure 4d).

Several studies have shown that highly interconnected
regions of experimentally derived protein interaction maps
correspond to biologically relevant protein modules, such as
complexes or pathways. Proteins with related functions, for
example, tend to be clustered into highly interconnected sub-
networks [25,30,31]. Moreover, interactions within more
highly interconnected regions of protein networks tend to be
enriched for true positives [32,33]. This suggests that cluster-
ing is a biological feature of a protein interaction map. The C.
jejuni protein network has many groups of highly intercon-
nected proteins, as indicated by its average clustering coeffi-

cient (0.10), which is high compared to other large-scale
interaction maps (Additional data file 5). The C. jejuni higher
confidence set, for example, is more highly clustered than the
Drosophila interaction map (average clustering coefficient of
0.05 versus 0.02, respectively) even though the average
number of interactions per protein in the two maps is similar.
This could be explained by the fact that the C. jejuni map cov-
ers much more of the proteome than the Drosophila map.
Indeed, among all the maps there is a general trend of
increased clustering as the coverage increases (Additional
data file 5).

Cross-species protein interaction network 
conservation
We compared the C. jejuni protein interaction network to
protein networks from E. coli, H. pylori, and S. cerevisiae
using the NetworkBlast algorithm, which can identify subnet-
works that are conserved among species (Materials and meth-
ods) [34]. The algorithm identified 48 conserved
subnetworks between C. jejuni and E. coli, and 19 between C.
jejuni and S. cerevisiae. Representative conserved subnet-
works are shown in Figure 5a. The subnetworks were found to
be statistically significant compared to a random distribution
generated by the NetworkBlast algorithm (Additional data
file 6). Most of the conserved subnetworks were enriched for
proteins with specific GO functions (Additional data file 6),
suggesting that they represent important functional pathways
or protein complexes. Surprisingly, comparison of C. jejuni
and H. pylori, two organisms from the same order, resulted in
no significant conserved subnetworks. This is possibly a
result of low interactome coverage in the H. pylori protein-
protein interaction network relative to the others (0.93 inter-
actions per protein in H. pylori versus 1.47, 2.44, or 9.52
interactions per protein in the entire proteome of E. coli, S.
cerevisiae, or C. jejuni, respectively). Furthermore, the frac-
tion of the genome covered by the interaction networks
differs markedly between species. Because the NetworkBlast
algorithm identifies densely conserved regions of protein net-
works, sparse regions conserved between H. pylori and C.
jejuni would not have been detected. Further analysis of the
conserved subnetworks in this study allowed the prediction of
a total of 379 new C. jejuni protein interactions (Additional
data file 7). These interactions were not present in the exper-
imental yeast two-hybrid analysis, but were derived from the
significant conserved subnetworks based on the presence of
the orthologous interactions in E. coli or S. cerevisiae (Mate-
rials and methods). Such predictions have become a powerful
way to construct more complete interaction maps using
incomplete experimental data [34,35].

To explore the potential relationships among conserved sub-
networks, we used hierarchical clustering to group proteins
by their subnetwork memberships (Figure 5b). These clusters
support the idea, previously argued by Gavin et al. [3], that
the network is composed of a set of functional 'cores' that
interact with interchangeable 'modules' to constitute distinct
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Figure 3 (see legend on next page)
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cellular functions. Both cores and modules appear as groups
of proteins with similar profiles of subnetwork membership;
however, while core proteins appear in many subnetworks,
modules appear in relatively few. Moreover, cores may
appear in the presence or absence of multiple modules,
whereas modules are generally found only in the presence of
a particular core. These data suggest a higher level of organi-
zation amongst protein interactions within organism-wide
interaction networks. Additionally, hierarchical clustering
also reveals that the conserved portion of the C. jejuni pro-
tein-protein interaction network generated from the compar-
ison of C. jejuni and E. coli is distinct from that generated by
the comparison of C. jejuni and S. cerevisiae. This may reflect
key differences in divergence between the prokaryotes C.
jejuni and E. coli versus the eukaryote S. cerevisiae.

A framework for protein function predictions and 
pathway mapping
Examination of proteins in the C. jejuni map that have been
assigned a function (for example, based on sequence similar-
ity to characterized proteins) reveals that proteins involved in
the same process tend to interact with each other more fre-
quently than expected by chance (Additional data file 10).
This is consistent with the idea that interacting proteins in the
map often function in the same pathway or protein complex.
The C. jejuni interaction map, therefore, can be used to pre-
dict the biological role of uncharacterized proteins based on

the functions of interacting proteins, as demonstrated for
eukaryotic protein networks [30]. An analysis of proteins
involved in flagellum biosynthesis provides a useful example.
The C. jejuni interaction map includes an interaction between
FliS, a putative flagellum assembly export chaperone, and
FlaA and FlaB, the flagellin subunits comprising the flagel-
lum. This is consistent with orthologous protein interactions
detected in Salmonella typhimurium [36], and in the solved
Aquifex aeolicus co-crystal structure of FliS in complex with a
FliC (flagellin) fragment [37]. Unique to our C. jejuni dataset,
however, is the additional interaction detected between FliS
and the secreted protein FlaC. Despite homology to FlaA and
FlaB at the amino and carboxyl termini, FlaC is not a compo-
nent of the flagellum, but rather may have a role in cell inva-
sion [38]. Experimental data indicate that the flagellar
apparatus is required for secretion of FlaC [38]. Our interac-
tion data suggest that FliS may help mediate FlaC export. The
map likewise connects 663 other poorly characterized pro-
teins into networks that provide initial clues about their func-
tions (Figure 1).

The C. jejuni protein interaction dataset can also serve as a
framework for mapping functional pathways, such as the
chemotaxis signaling pathway (Figure 6a,b). Although not
well characterized in C. jejuni, orthologs have been identified
for the prototypical chemotaxis proteins CheW, CheA, CheY,

Comparison of the C. jejuni interaction map with other datasetsFigure 3 (see previous page)
Comparison of the C. jejuni interaction map with other datasets. The interactions found in common, or overlap (red dots) between the C. jejuni two-hybrid 
map and interologs predicted from other organisms, were determined. This was compared to the overlap between the interolog datasets and 2,000 
random maps generated by randomly switching pairs of links in the original yeast two-hybrid map, which preserves network degree distribution. (a) The 
two-hybrid map shared 28 interactions with a reference set containing 147 interologs of E. coli low-throughput literature-cited protein interactions, 
significantly greater than the overlap with the random maps. (b) There were 50 C. jejuni interactions shared with 1,165 interologs predicted from the H. 
pylori protein interaction dataset [11]. (c) There were 124 interactions shared with a set of 3,743 interologs predicted from a large-scale E. coli protein 
complex study [1]. (d) There were 76 interactions shared with a set of 4,056 interologs predicted from a second E. coli protein complex pull-down study 
[6]. A complete list of the predicted interologs used for these analyses can be found in Additional data file 12.

Table 2

Comparison of C. jejuni, H. pylori, and E. coli protein interaction sets to an E. coli reference set containing 599 low-throughput literature-
cited interactions*

Reference set 
interologs†

Overlap with reference set 
interologs

Overlap (%) with total interactions 
detected for each study

Fraction of proteins in each study with 
orthologs in the reference set

C. jejuni 147 28 (19%) 0.24 7.9%

C. jejuni (HC) 147 27 (18%) 0.95 8.5%

H. pylori‡ 84 10 (12%) 0.70 7.9%

E. coli§ 599 81 (14%) 1.32 11.2%

E. coli¶ 599 49 (8%) 0.44 11.2%

*The reference set was derived from DIP [28]. †Interolog lists were generated separately for each organism based on BLASTP reciprocal best match 
determination of orthologs. ‡H. pylori interactions were detected by Rain et al. [11]. §E. coli interactions were predicted from Butland et al. [1]. ¶E. coli 
interactions were predicted from Arrifuzzaman et al. [6]. HC, high confidence set.
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Figure 4 (see legend on next page)
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and FliM [26,39]. In the canonical pathway,
chemoattractants bind chemoreceptors known as methyl-
accepting chemotaxis proteins (MCPs), which then activate
the histidine kinase CheA in a complex stabilized by CheW.
CheA phosphorylates CheY, which then interacts with the
FliM protein at the base of the flagellar motor, resulting in
changes in the direction of flagellar rotation. A search of the
C. jejuni map for interactions involving motility and chemo-
taxis-related proteins reveals a large connected subnetwork
of proteins (Figure 6a). The subnetwork includes the
expected interactions between a putative MCP (Cj0262c) and
CheW, CheW and CheA, and CheA and CheY (Figure 6b). The
interaction between CheY and FliM, however, was missed,
most likely because it depends upon CheY phosphorylation
on a specific aspartate residue [40,41], a modification
unlikely to be provided by yeast. We also identified interac-
tions between the poorly characterized CheV protein, and
three putative MCP proteins, Cj0262c, Cj0448c, and Cj1110c,
supporting previous suggestions that CheV may function
early in the signal transduction pathway, similar to CheW
[39,42]. Lastly, we detected an interaction between CheA and
Cj0643 (Figure 6a). This interaction was predicted previously
[43] because Cj0643 contains the conserved CheY-like
receiver domain. Cj0643 also contains a diguanylate-cyclase
domain, indicating the potential for 3',5'-cyclic diguanylic
acid (cdiGMP) biosynthetic activity [44]. CdiGMP is a signal-
ing molecule in some bacteria [44]. Perhaps in C. jejuni the
interaction between CheA and Cj0643 links cdi-GMP genera-
tion to conditions outside of the cell.

A network of putative essential genes
Several groups have shown that in yeast, essential genes,
which are genes required for growth or viability, are more
likely to encode hubs in the protein network than nonessen-
tial genes [45-47]. To explore the relationship between essen-
tial genes and protein interactions in the C. jejuni network we
generated a list of putative essential C. jejuni genes based on
orthology to genes proposed to be essential in E. coli and
Bacillus subtilis based on experimental evidence in those
organisms (Materials and methods). We found higher per-
centages of putative essential genes amongst proteins with
larger numbers of interactions (Figure 7; see also Materials
and methods). It follows from this finding that, like in yeast,
hub proteins are more likely to be essential than non-hub pro-
teins. Thus, network topology may provide one way to esti-
mate the potential importance of particular genes and may be
useful in searches for new candidate drug targets.

Essential proteins often function together in pathways or
processes that are important for cell growth or viability. Con-
sistent with this, we found that the C. jejuni map contains
interactions between putative essential proteins significantly
more frequently than expected by chance (Additional data file
11). Similar results have been described for yeast protein
interaction maps [46]. One consequence of this enrichment
for essential-essential interactions is that groups of essential
proteins can form interconnected subnetworks within the
interaction map. Additionally, the C. jejuni map may be used

Characteristics of the C. jejuni protein networkFigure 4 (see previous page)
Characteristics of the C. jejuni protein network. (a) Degree frequency distribution for the entire two-hybrid dataset (CampyYTH v3.1). k = degree, the 
number of connections to a protein. P(k) = the probability that a node has k connections. A power law fit yields: y = 0.4153 x-1.29; R2 = 0.88. (b) Degree 
frequency distribution for the high confidence dataset (confidence scores > 0.5). A power law fit yields: y = 482.2 x-1.53, R2 = 0.89. (c) Rank-degree 
distribution for the entire two-hybrid dataset. The semi-log plot more closely fits an exponential curve (red line, R2 = 0.97) than a power law curve (black 
line, R2 = 0.81). (d) Rank-degree distribution for the high confidence data. The semi-log plot more closely fits a power law curve (black line, R2 = 0.91) 
consistent with a scale-free network. (e, f) The distribution of the average clustering coefficient (C) for degree k for the entire two-hybrid dataset (e) and 
the high confidence set (f). C is equal to the number of interactions among a protein's interactors as a fraction of all possible interactions. (g) Frequency of 
pathlength (the shortest distance in interactions between two nodes) for the entire dataset. (h) Frequency of pathlength for the high confidence data.

Table 2

Comparison of C. jejuni, H. pylori, and E. coli protein interaction sets to an E. coli reference set containing 599 low-throughput literature-
cited interactions*

Reference set 
interologs†

Overlap with reference set 
interologs

Overlap (%) with total interactions 
detected for each study

Fraction of proteins in each study with 
orthologs in the reference set

C. jejuni 147 28 (19%) 0.24 7.9%

C. jejuni (HC) 147 27 (18%) 0.95 8.5%

H. pylori‡ 84 10 (12%) 0.70 7.9%

E. coli§ 599 81 (14%) 1.32 11.2%

E. coli¶ 599 49 (8%) 0.44 11.2%

*The reference set was derived from DIP [28]. †Interolog lists were generated separately for each organism based on BLASTP reciprocal best match 
determination of orthologs. ‡H. pylori interactions were detected by Rain et al. [11]. §E. coli interactions were predicted from Butland et al. [1]. ¶E. coli 
interactions were predicted from Arrifuzzaman et al. [6]. HC, high confidence set.
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to predict that some of the previously uncharacterized
proteins may be important for growth or viability based on
their interactions with known essential proteins. To create a
network enriched for important proteins we identified a sub-
network of interconnected proteins predicted to be essential
in C. jejuni based on orthology to essential proteins in E. coli
and B. subtilis (Figure 8, triangular, diamond, and rectangu-
lar nodes). To identify additional putative essential or impor-
tant proteins, we added proteins that connect to two or more
of the essential nodes through high confidence interactions
(circular nodes). The resulting map (Figure 8) contains 264
proteins, many of which are of unknown function (yellow),
and identifies potential connections amongst many proteins

involved in processes known to be essential for viability,
including ribosome function and DNA synthesis and repair.
For example, Box A in Figure 8 highlights the interaction
between RecJ and SSB. SSB is a single-stranded DNA
(ssDNA) binding protein that resolves secondary structure in
ssDNA (reviewed in [48]), while RecJ is a conserved exonu-
clease that degrades ssDNA [49]. Both proteins have roles in
homologous recombination and mismatch repair [48,50,51].
A recent report has demonstrated that binding of ssDNA by
SSB enhances RecJ binding and exonuclease activity [52],
suggesting a functional relationship between the two
proteins. This is further supported by the binary protein-pro-
tein interaction that we have detected in C. jejuni (this study)

Identification of conserved core subnetworksFigure 5
Identification of conserved core subnetworks. (a) Representative examples of subnetworks conserved between two organisms. C. jejuni subnetworks are 
on the left. The top and middle subnetworks (#142 and #307 in Additional data file 6) are conserved with E. coli. The bottom subnetwork (#56) is 
conserved with yeast S. cerevisiae. Bold lines represent direct interactions, whereas thin lines represent indirect interactions that are direct in the 
comparison organism (that is, these are predicted interactions). Gene names can be read by zooming in. A complete list of conserved subnetworks 
between E. coli and S. cerevisiae is available for download at [73]. (b) Hierarchical clustering of the conserved subnetworks. In the clustergram, rows 
represent proteins and columns represent C. jejuni subnetworks that are conserved with either yeast (left) or E. coli (right). Cores (boxed in red) and 
modules (boxed in blue) are defined as groups of proteins with similar profiles of subnetwork membership. The cores and modules are enriched for 
specific functions, for example: Core 1, serine family amino acid metabolism; Module 1-1, serine family amino acid biosynthesis; Module 1-2, generation of 
precursor metabolites and energy; Module 1-3, oxygen and reactive oxygen species metabolism. Larger versions of this figure are available in the 
Additional data files, including complex and protein names (Additional data file 8) and a list of function enrichments (Additional data file 9).
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and the purification of an E. coli protein complex containing
RecJ using affinity-tagged SSB [1].

The many uncharacterized proteins in the essential protein
network are potentially biologically important and may
include potential novel drug targets. For example, Box B in
Figure 8 highlights a protein of unknown function, Cj0189c,
which has interaction partners with five ribosomal proteins.
Based on this and the fact that proteins with related functions
tend to interact, it is reasonable to hypothesize that Cj0189c
may also be involved in ribosome assembly or function. This
is potentially significant given that the ribosome and protein
synthesis are frequent targets of antibiotics [53]. Box C in Fig-

ure 8 highlights the uncharacterized protein Cj0980, which is
homologous to the dipeptidase, peptidase D. In E. coli,
peptidase D is one of the enzymes that generates cysteine by
cleaving cysteinylglycine [54]. In our map, Cj0980 interacts
with nine proteins predicted to be essential. One of these pro-
teins, Cj0240c, is a homolog of IscS, a cysteine desulfurase
required for the synthesis of all tRNA thiolated nucleosides in
E. coli [55]. Interestingly, four additional interactors of
Cj0980 are tRNA synthetases. Whether or not their product
tRNAs are modified in C. jejuni has not been determined, but
this series of interactions suggests a possible pathway or pro-
tein complex that mediates the transfer of a thiol group orig-
inating from cysteinylglycine to specific tRNAs.

Discussion
The large-scale interaction studies performed to date have
fallen short of complete interactome coverage. The most com-
plete large-scale yeast two-hybrid screens have covered only
around 54% of the proteome in Drosophila [22,25,56], 46%
in H. pylori [11] and 55% in yeast [57-59], while co-AP/MS
studies have reached 80% and 67% of the E. coli and yeast
proteomes, respectively [1-6] (Additional data file 1). Com-
plete interactome coverage should include most of the pro-
teome, since most proteins are believed to function at least in
part through interactions with other proteins. A major factor
contributing to incomplete coverage is the incomplete nature
of the high-throughput screens, as indicated by the minimal
rate of overlap observed between independent large-scale
screens (Additional data file 1) [22,59]. Thus, despite the use-
fulness of the data from various interaction mapping efforts,
the low interactome coverage is likely to limit efforts to pre-
dict protein functions, map pathways, and characterize pro-
tein networks. Low coverage also limits the opportunity for
cross-validation, which is particularly important for high-
throughput datasets because they tend to have high rates of
false positives [24,60].

We have made substantial progress towards defining the C.
jejuni interactome. Based on the number of ORFs included in
the interaction dataset, we have covered 80% of the pro-
teome, and our higher confidence dataset covers 67%. An
expected consequence of performing high-throughput
screens, which tend to be subsaturating, is that some interac-
tions that are detectable by two-hybrid assays are missed
[10]. We set out to minimize these false negatives by using a
highly sensitive two-hybrid system, inducible promoters to
detect interactions with toxic proteins and transcriptional
activators, and a pooled-matrix mating scheme to maximize
the number of interactions sampled. Despite these efforts,
some interactions will be missed, especially those that are
refractory to standard two-hybrid assays. Detection of these
will require other technologies, such as isolation and identifi-
cation of protein complexes, and assays that target specific
classes of proteins, such as membrane proteins [61,62]. Inter-
action networks may also be made more complete by using

Identification of the C. jejuni motility protein networkFigure 6
Identification of the C. jejuni motility protein network. (a) The subset of 
high confidence interactions involving all proteins annotated [26] as having 
roles in motility. Only six small networks fall outside of the single large 
network. Protein colors are as follows: blue, putative chemotaxis proteins; 
red, putative methyl-accepting chemotaxis proteins (MCPs); green, 
putative flagellar/motility proteins; and yellow, proteins not annotated as 
motility-related. The box highlights CheA and its interactors, including 
Cj0643 (see text). Gene names can be read by zooming in. (b) A 
subsection of the motility network highlighting the proteins in the 
canonical chemotaxis signal transduction pathway (MCP, CheW, CheA, 
CheY, and FliM) and their interactors. Proteins are colored as in (a), 
above. To improve visibility of interactions comprising the chemotaxis 
backbone, nodes not previously identified as related to chemotaxis or 
motility (yellow) were removed if they connected to only one red, blue, or 
green node.
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computational approaches to predict missed interactions
[34,35]. In this study we applied a comparative algorithm to
align protein networks from C. jejuni to the interactomes of
other species to generate further predictions of protein inter-
actions. Like the high throughput experimental data, these
predictions provide a guide for directed validation studies.

An unfortunate side effect of large-scale protein interaction
datasets is the presence of significant numbers of false posi-
tive interactions. We addressed this problem in two ways.
First, we retested every interaction in a second independent
two-hybrid assay. Second, we calculated probability scores
that correlate with the likelihood that an interaction is biolog-
ically relevant. One advantage to this confidence scoring sys-
tem is that it scores interactions rather than proteins and,
therefore, does not specifically delete any proteins. Several
studies, including ours, have found an inverse correlation
between the biological significance of an interaction and the
total number of interactions for the two proteins involved; the
more interactions that a protein has, the less likely they are to
be biological true positives. One approach to increasing the
overall confidence of a dataset, therefore, is to delete these
'sticky' proteins. In contrast, it is possible to identify
biologically relevant interactions involving these proteins by
using a statistical scoring system that weighs multiple
attributes according to their correlation with biological signif-
icance. With such a scoring system an interaction may be
penalized because it involves a sticky protein, but redeemed
due to some other attribute. This is the case, for example, in
our data with the interactions FliS-FlaC, GroEL-GroES, Ilvl-
IlvH, PyrB-PyrC2, and TrxA-TrxB, all of which involve
proteins with more than 60 interactions, yet have confidence
scores above 0.8, and are likely to be biologically significant.

Another advantage to this scoring system is that it allows
user-defined confidence intervals to be chosen based on par-
ticular analysis needs. Global analyses, for example, may ben-
efit from using the highest confidence dataset. More focused
analyses involving one or few proteins, on the other hand,
may tolerate lower confidence interactions because validation
experiments can be performed. This reduces the chances of
missed interactions. Importantly, some low confidence inter-
actions may be found to be biologically significant by
experimental validation or by considering additional

information not used in the scoring system. For example, by
considering pairs of proteins with known functions, one can
find a number of likely true positives with confidence scores
below 0.2, including DnaX-DnaN, ExbD1-ExbD3, and FabF-
FabG.

Finally, the confidence that we have in any particular interac-
tion can change as new data become available about the two
proteins or about the interaction itself. We have shown that
the scores we assigned to the C. jejuni two-hybrid data corre-
late with biological significance such that more of the interac-
tions with higher scores will be biologically significant than
those with lower scores, and vice versa. Nevertheless, a frac-
tion of the low confidence interactions are true positives and
some of the high confidence interactions are false positives. It
is expected that these will be sorted out using new,
increasingly accurate confidence scoring systems that are
based, for example, on new information as it becomes availa-
ble. Thus, we have defined the scoring of the C. jejuni two-
hybrid data presented here as version 1.0.

Conclusion
Interactome maps such as the one generated in our study
begin to provide a tally of the binary protein interactions that
can occur within an organism. Although incomplete, the data
can provide a framework for understanding dynamic biologi-
cal processes, such as the C. jejuni chemotaxis response. The
map also can be mined for subnetworks of biological interest,
such as essential gene networks that suggest candidate drug
targets. Comparative analyses of protein interaction maps
generated for humans and model eukaryotes have provided
insights into the function and evolution of proteins and their
regulatory networks. The protein interactions detected for
each species also have enabled the prediction of interactions
in other species, which is particularly important given the dif-
ficulty of obtaining complete coverage in high throughput
screens, and the lack of suitable screening systems for many
species. The C. jejuni interaction map generated here sub-
stantially increases the protein interactions detected thus far
for the prokaryotic domain of life. The map should provide a
useful starting point for predicting the functions of uncharac-
terized proteins and for mapping functional pathways in C.
jejuni and other prokaryotes.

Fraction of putative C. jejuni essential genes among genes of the same degreeFigure 7 (see following page)
Fraction of putative C. jejuni essential genes among genes of the same degree. C. jejuni genes in the higher confidence interaction map (confidence score > 
0.5) were collected into different groups according to their degrees (number of interacting partners). For each degree group the fraction of putative 
essential genes was computed and plotted as shown. Solid lines in the graphs were fitted using the available data points. The r-values represent Pearson 
correlation coefficients between fractions of putative essential genes and their degrees. (a) Putative C. jejuni essential genes are orthologs of E. coli genes 
identified as essential by Baba et al., [76]. (b) Putative C. jejuni essential genes are orthologs of B. subtilits genes identified as essential by Kobayashi et al., 
[75]. (c) Putative C. jejuni essential genes are the intersection of genes predicted to be essential from the E. coli and B. subtilis sets. (d) Putative C. jejuni 
essential genes are the union of the E. coli and B. subtilis sets.



http://genomebiology.com/2007/8/7/R130 Genome Biology 2007,     Volume 8, Issue 7, Article R130       Parrish et al. R130.13

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

Genome Biology 2007, 8:R130

Figure 7 (see legend on previous page)
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Materials and methods
Strains and plasmids
The two-hybrid system used here is based on the version orig-
inally described by Brent and colleagues [63]. C. jejuni ORFs
were cloned into the yeast two-hybrid vector pJZ4-NRT for
expression of AD fusions driven by the yeast GAL1 promoter
[22], and pHZ5-NRT for expression of LexA DNA BD fusions
driven by the yeast MAL62 promoter [23]. Both vectors con-
tain recombination tags for direct cloning of tagged inserts
(see below). Yeast strain RFY231 (MATα trp1Δ::hisG his3

ura3-1 leu2::3LexAop-LEU2) contained the AD plasmids,
while Y309 (MATa trp1Δ::hisG his3Δ200 leu2-3 lys2Δ201
ura3-52 mal- pSH18-34(URA3, lacZ)) contained the BD plas-
mids. The reporter genes include LEU2, facilitating growth
on medium lacking leucine, and lacZ, expression of which
turns yeast colonies blue when the substrate X-Gal is present.

Generation of yeast two-hybrid arrays for C. jejuni
PCR amplification of over 87% of the predicted ORFs from C.
jejuni NCTC11168 genomic DNA was previously described
[64]. The amplification products included the 21 bp recombi-

A C. jejuni network enriched for putative essential proteinsFigure 8
A C. jejuni network enriched for putative essential proteins. The network contains C. jejuni orthologs of genes proposed to be essential in E. coli (triangles), 
B. subtilis (diamonds), or in both organisms (rectangles). Additional proteins (circles) were included only if they interacted with more than one of the 
putative essential proteins. All of the protein interactions shown have confidence scores > 0.5. The map contains 264 proteins and 480 interactions. 
Proteins are colored based on their functional classification [26]; red, ribosomal protein synthesis and modification; blue, DNA replication, restriction/
modification, recombination and repair; green, cell envelope; turquoise, aminoacyl tRNA synthetase and modification; orange, biosynthesis of amino acids 
and fatty acids; purple, energy and central intermediary metabolism; lavender, cofactor, prosthetic group and carrier biosynthesis; gray, purines, 
pyrimidines, nucleosides and nucleotide biosynthesis; brown, transcription and translation; yellow, hypothetical; pink, miscellaneous. Gene names can be 
read by zooming in.
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nation tags 5RT1 and 3RT1 at their 5' and 3' ends, respec-
tively, which match identical sites flanking the insertion site
in the yeast two-hybrid vectors. PCR products were cloned
into the vectors via homologous recombination in yeast as
described previously [22]. To validate the identity of the
insert in each vector, the 5' ends of the inserted PCR products
were sequenced. We generated 1,398 BD strains and 1,442 AD
strains containing the two-hybrid vectors with inserts, of
which 90% have been sequence verified. Most of the ORFs
missing from the arrays failed PCR amplification prior to
cloning.

High-throughput yeast two-hybrid analysis
We mated BD and AD strains using a two-phase pooling
(pooled matrix) strategy as described previously [21,22].
Briefly, 15 pools of approximately 96 AD strains each were
generated, along with one additional pool of 32 strains. Each
pool was mated with individual BD strains arrayed on 96-well
plates, and the resulting diploids were assayed for reporter
activities. Positive BD strains were then mated with each
member of the positive AD pool arrayed on 96-well plates to
identify the interacting pairs. Reporter activities were scored
using a custom program for image analysis [65] and at least
one manual scoring. LacZ scores ranged from 0 (white) to 5
(dark blue) and Leu scores ranged from 0 (no growth) to 3
(heavy growth); combined scores ranged from 0 to 8. Many
BDs have some level of background activity due to activation
independent of the AD fusion or non-specific interactions. To
correct for these we calculated the average interaction score
for each BD based on at least 96 interaction assays and
subtracted this background from the reporter scores for each
of its interactions. Of these corrected scores, only those ≥ 1
were considered initial positives and were retested (see
below). A small subset of BD strains (94 total) was also
assayed using a library approach as described [21,22]. Briefly,
BD strains were individually mated with a single pool con-
taining almost all of the AD strains (except Cj1718c (leuB) and
Cj1546, which activate reporters without a BD). Up to 30 dip-
loids with reporter activity were picked for each BD. Their AD
inserts were PCR amplified and restriction digested to iden-
tify strains carrying the same clones. Single representatives
from each restriction fragment class (RFC) were then
sequenced to identify the inserts. Of the 134 interactions
detected, 52 (39%) were also identified in the two-phase
matrix screen. Combined, 16,104 unique interactions were
retested in one-on-one binary mating assays between individ-
ual AD and BD strains on 96-well plates. A total of 11,687
interactions proved repeatable (background-corrected com-
bined activity score ≥ 1), including 73% of those from the two-
phase matrix screen, 75% of those from the library screen,
and 100% of those detected in both screens. The majority of
interactions that failed to repeat had been low-scoring (less
than 2) in the initial screen. The 11,687 interactions that
repeated were combined with 325 non-repeated interactions
that had high confidence scores (see below) to create a dataset
containing 12,012 interactions, which we named CampyYTH

v3.1. This version of the dataset was subsequently used for
bioinformatics analysis as indicated. The interaction data can
be visualized and downloaded at [17]. The CampyYTH v3.1
data are also listed in Additional data file 13.

Assignment of confidence scores
Confidence scores were determined for each interaction
based on methods described by Bader and colleagues [24,25].
We fit a generalized linear model [66] using experimental and
topological attributes of yeast two-hybrid interactions,
including the number of interactions for each protein in a pair
and the Leu and lacZ reporter activities Fitting the model
required both positive and negative training sets. Because a
reference set of known interactions is not available for C.
jejuni, we derived a set of positive training data (85 interac-
tions total) by assuming that the conserved interactions
(reciprocal best match interologs) in common with either the
E. coli low-throughput interaction set [28], the H. pylori
yeast two-hybrid set [11], or the E. coli protein complex set [1]
are likely to be true positives. We derived a set of likely true
negatives (111 total) for the negative training data by consid-
ering interactions between proteins whose orthologs in E. coli
or H. pylori were separated in the respective interaction maps
by greater than the average distance of all pairs (≥ 4). Positive
and negative training cases were weighted inversely to the
number of interactions in each set. When training sets are
weighted this way, a confidence score greater than 0.5 means
that available data and features support that a specific inter-
action has a better than random chance to be a true interac-
tion; this allows 0.5 to be used as the threshold between high
and low confidence interactions. Validation using protein fea-
tures not used in the scoring system support the choice of 0.5
as a threshold for higher confidence interactions (discussed
further in Additional data file 14; see also Figure 2c). Of the
attributes tested, the numbers of interactions per protein
were found to be negative predictors of biologically relevant
interactions, while reporter activities were positive predic-
tors. To evaluate the scoring model, we performed a stratified
five-fold cross-validation. Cross-validation reported a preci-
sion of 91.4% and a recall of 78.9%, which gave us confidence
that it is a reasonably well-fitted model. We then used the full
sets of positives and negatives in training and obtained our
final logistic model. The final model was used to compute
confidence scores for 16,104 initial positive interactions prior
to retesting. Of these, 3,209 scored higher than 0.5, which we
define as the high confidence set. Of the interactions with
high confidence scores (> 0.5), 90% corresponded to interac-
tions that repeated when retested, while only 68% of the low
confidence interactions repeated. Further discussion and
details of the confidence scoring system are available in Addi-
tional data file 14.

Evaluating the confidence score model
Main role annotations 'mainrole' were downloaded from [67].
Excluding self-interactions, out of the 3,209 high confidence
interactions, 2,599 have 'mainrole' annotations, and 454
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share at least one 'mainrole' annotation. We generated 5,000
groups of 2,599 randomly selected interactions that have
'mainrole' annotations and have a confidence score lower
than 0.5. The number of pairs in each set that share 'mainrole'
annotations was counted. The distribution was plotted in a
histogram and compared with the high confidence set (Figure
2b). To examine whether high confidence interactions tend to
share more detailed GO [27] annotations, we grouped inter-
actions into confidence bins so that each bin contains only
interactions with scores falling into a specific range. For each
interaction, we determined the deepest level of GO biological
process annotations shared by the pair of genes, and
calculated the average depth of shared biological process for
each group. Since GO for C. jejuni NCTC11168 was not avail-
able, we used annotations for best match orthologs of C. jejuni
RM1221 genes [68]. Figure 2c shows that there is a general
pattern of increased depth of shared GO terms for interac-
tions with confidence score higher than 0.5. This fact also
suggests that our choice of 0.5 as a high confidence threshold
is meaningful.

Assessment of functional enrichments
The frequency of each GO description from the iProClass
database [69], amongst all of the proteins comprising the pro-
teome was determined and compared to their frequency
within the CampyYTH v3.1 dataset or the high confidence
subset (Additional data file 3). A similar analysis was per-
formed using the functional classifications assigned by the
Sanger Institute [26] (Additional data file 2). We also looked
for pairs of GO annotations that were enriched in the
interaction data (Additional data file 10). To do this we
counted the number of interactions having a specific pair of
GO terms. We mapped the annotations to level 5; that is, for
a protein with GO annotation A that is at a deeper level than
5, we mapped A to level 5 using 'parent' and 'part of' relation-
ships in the ontologies, and we discarded A if it was above
level 5. Self-interactions were excluded from the analysis. We
did the same for all GO terms annotated to a protein. To com-
pute the significance of finding specific GO pairs, we gener-
ated 2,000 random networks by randomly switching pairs of
links while maintaining the degree distribution of the original
map, and counted the number of times we found each GO pair
in each randomized network. For each GO pair, a p value was
computed based on the distribution of the 2,000 counts
(assuming normal distribution) and the count in the original
yeast two-hybrid map. The p value represents the probability
of seeing such a pair in a random network. We listed only
pairs with a p value less than 5%.

Comparative network analysis
Additional details are in Additional file 14. Protein-protein
interactions from C. jejuni were compared with those from E.
coli [1], H. pylori [11] and S. cerevisiae from DIP [28]. Corre-
sponding protein sequences were obtained from the following
sources: C. jejuni NCTC11168 [26]; E. coli [70]; H. pylori [71];
and S. cerevisiae [72]. We used NetworkBlast to identify sig-

nificant conserved protein-protein interaction subnetworks
[34]. A stand-alone Java version of the program is available at
[73]. Briefly, the algorithm takes as input a pair of protein-
protein interaction networks, one for each of two species,
along with a set of homology relationships between the
proteins of the two networks. We constructed the homology
relationships from an all-versus-all BLAST of the complete
set of protein sequences for each of the two species, taking the
top 10 hits with E-value = 10-10. Next, a network alignment
graph was created where each node represents a homologous
pair of proteins from species 1 and 2 (for example, a1 and a2)
and each edge represents a conserved interaction (a1/a2
connects to b1/b2 if the a-b interaction is found in both spe-
cies; interactions may be either direct (distance 1) or indirect
(distance 2), in which a-b is connected through a common
neighbor, that is, a-c-b). A greedy search is initiated from
each node to identify conserved protein subnetworks, defined
as dense subgraphs within the network alignment graph (of
maximum size 15 proteins per species). When multiple sub-
networks contain protein homologs that overlap by ≥ 50%,
only the complex with the highest density was included in the
final result. GO annotations [27] of proteins in each con-
served complex were analyzed to identify significant func-
tional enrichments (Additional data file 6). We calculated a
hypergeometric p value of enrichment for each GO annota-
tion in the three divisions of the GO hierarchy and con-
strained the annotations by requiring that at least half of the
proteins in a complex ascribe to the enrichment. The most
specific annotations with hypergeometric p value < 0.05 in
each of the three divisions were then assigned to each com-
plex. A complete list of conserved complexes between C.
jejuni and E. coli or S. cerevisiae is available for download at
[73]. The significant conserved subnetworks provided predic-
tions of 379 new C. jejuni protein-protein interactions not
found in the two-hybrid screens (Additional data file 7). A
protein pair (a, b) was predicted to interact directly if: first,
both a and b were present in the same significant conserved
complex; second, this pair was observed to interact indirectly
in C. jejuni; and third, this pair corresponded to a direct inter-
action in the comparison species' network.

Clustering of conserved subnetworks
Since proteins can belong to more than one complex, we clus-
tered the significant conserved subnetworks by protein mem-
bership, in effect 'superclustering' the interactions (Figure
5b). An n × m matrix was constructed, where n is the number
of significant subnetworks and m is the number of unique
proteins involved in any of the significant subnetworks. Using
the open source tool ClustArray [74], we clustered the pro-
teins hierarchically using the unweighted pair group method
with arithmetic mean (UPGMA) and clustered the subnet-
works with a combination k-means algorithm followed by
UPGMA hierarchical clustering. The number of clusters k = 3
was chosen as the parameter that approximately minimized
within-cluster variability and maximized between-cluster
variability (data not shown). Identities of complexes and pro-
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teins are shown in the high resolution image of the
hierarchical clustering in Additional data file 8. Lists of the
proteins comprising complexes are available for download at
[73].

Essential gene analysis and network assembly
We generated lists of putative C. jejuni NCTC11168 essential
proteins by identifying reciprocal best match orthologs of
likely essential proteins from B. subtilis [75] and E. coli [76].
We removed genes from our putative essential list if viable
null mutants have been reported (Dr. B. Wren, personal com-
munication). To examine the relationship between essential-
ity and centrality in the interaction map, we computed the
numbers of essential and non-essential proteins in groups
having the same number of interactions (degree) in the higher
confidence dataset (interactions with confidence scores >
0.5). The result is shown in Figure 7, where r values in the
graphs represent Pearson correlation coefficients between
the fractions and the degrees. Figure 7 shows that there is a
correlation between degree of proteins and the likelihood of
being essential. A similar result was obtained with the entire
dataset CampyYTH v3.1 (not shown). Lastly, we computed
the fraction of essential and non-essential neighbors of each
essential protein and compared this to the fraction for ran-
dom groups of proteins (of the same size as the set of essential
proteins). The results shown in Additional data file 11 indicate
that essential genes tend to have more neighbors that are also
essential; p values indicate the probability of seeing the real
fraction (the red dot) by chance.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a table summa-
rizing proteome coverage from large-scale interaction
screens. Additional data file 2 is a table listing the representa-
tion of functional categories amongst the proteins in the
CampyYTH v3.1 dataset. Additional data file 3 is a table list-
ing the GO category representation amongst the proteins in
CampyYTH v3.1. Additional data file 4 lists C. jejuni genes
that were toxic or inhibitory to yeast growth. Additional data
file 5 is a table comparing network features across organisms.
Additional data file 6 lists conserved subnetworks between C.
jejuni and E. coli or C. jejuni and yeast. Additional data file 7
lists predicted C. jejuni protein interactions. Additional data
file 8 is a higher resolution version of Figure 5, showing hier-
archical clustering of conserved subnetworks. Additional data
file 9 is a table listing enriched functions within the cores and
modules of Figure 5. Additional data file 10 is a table showing
GO enrichment amongst the C. jejuni protein interactions.
Additional data file 11 is a figure showing that essential pro-
teins interact with each other more often than expected by
chance. Additional data file 12 is a table of C. jejuni interologs
predicted from large-scale protein interaction analyses per-
formed for E. coli or H. pylori. Additional data file 13 is an
annotated list of all C. jejuni protein interactions in the

CampyYTH v3.1 dataset. Additional data file 14 includes sup-
plementary materials and methods.
Additional data file 1Proteome coverage from large-scale interaction screensProteome coverage from large-scale interaction screensClick here for fileAdditional data file 2Representation of functional categories amongst the proteins in the CampyYTH v3.1 datasetRepresentation of functional categories amongst the proteins in the CampyYTH v3.1 datasetClick here for fileAdditional data file 3GO category representation amongst the proteins in CampyYTH v3.1GO category representation amongst the proteins in CampyYTH v3.1Click here for fileAdditional data file 4C. jejuni genes that were toxic or inhibitory to yeast growthC. jejuni genes that were toxic or inhibitory to yeast growthClick here for fileAdditional data file 5Comparison of network features across organismsComparison of network features across organismsClick here for fileAdditional data file 6Conserved subnetworks between C. jejuni and E. coli or C. jejuni and yeastConserved subnetworks between C. jejuni and E. coli or C. jejuni and yeastClick here for fileAdditional data file 7Predicted C. jejuni protein interactionsPredicted C. jejuni protein interactionsClick here for fileAdditional data file 8Higher resolution version of Figure 5, showing hierarchical cluster-ing of conserved subnetworksHigher resolution version of Figure 5, showing hierarchical cluster-ing of conserved subnetworksClick here for fileAdditional data file 9Enriched functions within the cores and modules of Figure 5Enriched functions within the cores and modules of Figure 5Click here for fileAdditional data file 10GO enrichment amongst the C. jejuni protein interactionsGO enrichment amongst the C. jejuni protein interactionsClick here for fileAdditional data file 11Essential proteins interact with each other more often than expected by chanceEssential proteins interact with each other more often than expected by chanceClick here for fileAdditional data file 12C. jejuni interologs predicted from large-scale protein interaction analyses performed for E. coli or H. pyloriC. jejuni interologs predicted from large-scale protein interaction analyses performed for E. coli or H. pyloriClick here for fileAdditional data file 13Annotated list of all C. jejuni protein interactions in the CampyYTH v3.1 datasetAnnotated list of all C. jejuni protein interactions in the CampyYTH v3.1 datasetClick here for fileAdditional data file 14Supplementary materials and methodsSupplementary materials and methodsClick here for file
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