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CHAPTER 1 

INTRODUCTION 

 

The number of human immunodeficiency virus (HIV) infected people is 

large and widespread. The Joint United Nations Programme on HIV/AIDS 

(UNAIDS) released the 2008 UNAIDS report on the global acquired 

immunodeficiency syndrome (AIDS) epidemic, stating that an estimated 30-36 

million people are living with HIV worldwide. More than 20 million people have 

died. Most of the individuals with this disease reside in developing nations [54,72]. 

The HIV-infected patients need timely and lifelong medical treatment in order to 

live. The expense of such treatment is even high in those lesser developed 

nations [14,17,18,57]. Additionally, there are not enough physicians with HIV/AIDS 

expertise to properly prescribe the appropriate and potentially life-saving drugs. 

This shortage leads to a significant number of deaths. Prescribing the right drugs 

can increase the HIV-infected patients’ lifespan. 

1.1    Problem Statement 

The challenge in treating most diseases is to optimize medical decision-

making. HIV/AIDS is an extremely severe disease. An HIV/AIDS patient has 

individual characteristics such as genetic traits, reaction to the side effects of 

drugs, and overall prognosis. Many symptoms and diagnoses are vague in their 

definitions and hard to measure. Treatment outcomes are also subjective, with 

some degree of uncertainty. To address treatment decisions for an individual 
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patient, a clinician gathers all these variables into a clinical decision process and 

then a treatment decision is judged. Expert opinions play a significant role in 

optimizing treatment outcomes for specific patients. Many variables and factors 

involved in the medical treatment could cause physicians with inconsistent 

treatment decision-making. 

In HIV/AIDS treatment, the highly active antiretroviral therapy (HAART) is 

an efficient therapy that can improve a patient’s mortality and morbidity [38]. A 

combination of two or three drugs from three drug classes, nucleoside reverse 

transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors 

(NNRTIs), and protease inhibitors (PIs), is used in HAART to suppress the viral 

load caused by HIV-infected CD4+ cells. When infected, the CD4+ cells are 

unable to signal the immune response cells (i.e., cytotoxic lymphocytes) in order 

to eliminate infection. The patient can retain low viral load and high population of 

CD4+ cells that would be the ideal clinical situation in HIV therapy. The desired 

drugs should provide such results with a minimum of side effects and toxicities 

(e.g., [38] listed common side effects and toxicities of anti-HIV drugs). Modeling 

the interaction between the viral load, CD4+ cells and the immune response cells 

was studied widely. That study included [35,37,43], [49]-[51], and their models 

were based on differential equations. 

Clinical studies as well as empirical studies demonstrate that the patient 

must be strict with medication adherence to achieve levels of low viral load and 

high CD4+ cells. Taking less than 75-80% of the regimen prescription is 
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considered as poor adherence, causing an underestimate of treatment effect. The 

patient’s individual characteristics and the treatment regimen affect patient 

adherence. Additionally, [40] provided other factors associated with patient 

adherence. 

The technical approaches that contribute to treatment decision-supporting, 

especially in HIV/AIDS treatment, mainly include statistical methods [35]-[37], 

expert systems [8,10,48], and fuzzy discrete event systems theory [22,25,31,34]. 

The statistical methods were employed to estimate the unknown parameters in 

HIV dynamic models based on differential equations. Bayesian approach 

[35,36,39,42] is a powerful statistical method to estimate dynamic parameters for 

complex HIV dynamic models without closed-form solutions available, but it is 

complicated in application. Conversely, the expert system approach sometimes 

referred to as knowledge-based approach is designed using either rule-based or 

case-based reasoning methods to emulate the performance of treatment 

professionals. In the expert system the representation of knowledge is intuitive 

and reasoning sequences of decisions are understandable. The expert system 

usually employs the probability theory to describe the uncertainties of clinical 

parameter characteristics. When merging to artificial neural network [8,9,15], the 

expert system gained profit on self-learning capabilities being able to handle 

frequent update of existing knowledge or inclusion of new knowledge. The expert 

system could be combined with fuzzy set theory [1]-[3] (e.g., [47,71]). That theory 

provided the expert system capable of handling the uncertainties in form of fuzzy 
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rules and memberships. The physician knowledge is subjective, and a consensus 

among a group of individual physicians is difficult and rarely achieved. Extracting 

and representing the consensus knowledge from diverse opinions into a usable 

form like the IF-THEN rules for the expert system would be complicated and 

costly. 

Recently, the theory of fuzzy discrete event systems (FDES) [12,13] was 

established and studied with the retrospective HIV/AIDS patients for the treatment 

regimen selection [22], [25]-[27], [31]. FDES theory merges the fuzzy system 

technology with the discrete event systems (DES) technology [4]. The DES is 

used to model a system which is described by sequences of events that involves 

changes of system states. Theoretically, the changes of the states would be 

occupied completely when the corresponding events take place. An evaluation of 

the state change can be mathematically described by a transition function (e.g., a 

partial function). A deterministic automaton can be used as a model of DES. On 

the other hand, a model of FDES is represented by a fuzzy automaton. FDES 

allows partial changes of states when the event occurs. The transition function 

involving fuzzy logic operations (e.g., max-product, max-min) will be employed to 

describe such changes of states. For example, for a partial change of states, in 

the medical field, saying a patient’s illness is bad would be vague because the bad 

condition may mean something different for different people. After a treatment 

event (e.g., prescribing a drug), the patient’s illness seems to be improved, which 

is between bad and fair state. The incomplete change of the illness states will 
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associate partially with corresponding states (i.e., saying 40% bad state and 60% 

fair state) in a state transition matrix.  Such uncertainties and vagueness of the 

patient’s illness state and state transition can be handled by the FDES but not the 

DES,  showing that FDES is capable of handling a system with uncertainties and 

vagueness of the state and state transition. 

The HIV/AIDS treatment regimen selection system is an interesting 

example of clinical applications achieved using FDES approach. Some important 

features of the application in concise details are given in the next session. This 

FDES-based system provided intuitive physical meanings of the parameter 

representation. The sequence process from beginning to end is easy, conceptual 

understanding for people. However, the situation of collecting consensuses may 

be undergone in difficult environments, especially in the biomedical field, and so 

may not be successful. This potential focused our attentions on how to correct this 

situation. Moreover, the HIV/AIDS epidemic is a global problem. Most of those 

suffering from this epidemic live in poor countries where the expertise of the 

physicians is limited and so the prescribed treatment is inefficient. The FDES-

based system could provide a significant tool for HIV/AIDS treatment decisions. 

1.2   Fuzzy Discrete Event System (FDES) in HIV/AIDS Treatment Regimen 

Selection System 

In the antiretroviral therapy, two major concerns in drug selection are 

choosing ones with sufficient ability to suppress the HIV replication and those that 

minimize side effects. Complying with these goals would slow down viral 
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resistance in HIV/AIDS patients with the proper doses, thus prolonging their lives. 

The combination of drugs used in antiretroviral therapy (i.e., HAART) for HIV-

infected patients is called a regimen. The HIV/AIDS specialists can prescribe 

proper regimens for specific characteristics of the patients. However, the 

prescriptions of the appropriate regimens could be inconsistent if the specialists 

deal with similar characteristics of patients time after time. The support system for 

treatment regimen selection (i.e., FDES-based system) providing a solution for 

such problem would be preferred by those specialists. In the FDES-based system, 

FDES theory was applied in HIV/AIDS treatment regimen selection system [22] 

being implemented in Fuzzy Finite State Models block illustrated in Figure 1.1. 

Three regimens were prescribed to patients. Each regimen consisted of Combivir 

(CBV) and one another drug, Efavirenz (EFV), Nevirapine (NVP), or Abacavir 

(ABC), shown in Table 1.1 with corresponding percentages of four clinic-

considered parameters. Potency of the regimen, expected patient adherence to 

the regimen, adverse events (side effects and toxicities), and future drug options 

due to failure of the current regimen were the clinical parameters used in the 

model that needed to be defined and balanced by an HIV/AIDS specialist. 
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Rule-based
Treatment Objective

Classifier

Patient's Medical

Information

Fuzzy
Finite State Models

Regimen Selection
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Regimen
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Specialist 1

Regimen
Preferred

by
Specialist N

Treatment Regimen for
Patient

 

Figure 1.1: Block diagram of the FDES-based regimen selection system 

 

Table 1.1: Values of four clinical parameters of the three HIV/AIDS  

treatment regimens 

 Potency Adherence 
Adverse 
Events 

Future Drug 
Options 

Regimen 1: 
CBV+EFV 

90% 80% 20% 60% 

Regimen 2: 
CBV+NVP 

85% 85% 20% 65% 

Regimen 3: 
CBV+ABC 

80% 90% 10% 85% 
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1.2.1 Fuzzy Sets in HIV/AIDS Treatment System 

In the application of FDES theory to the HIV/AIDS treatment regimen 

selection system, four clinical parameters were primarily used in optimizing an 

antiretroviral treatment regimen for HIV-infected patients. These parameters are 

the regimen’s expected potency, the patient’s expected adherence along with the 

regimen, adverse events (e.g., side effects, toxicities) caused by the regimen, and 

future drug options due to the drug-resistance that develops from the current 

regimen.  

Potency parameter is used to indicate a regimen capable of suppressing 

the HIV replication. As shown in Table 1.1, the measure of potency uses the 

percentage of patients who achieve clinical trials of plasma HIV RNA below a 

baseline (i.e., less than 400 copies/mL) after 48 weeks of treatment. Adherence is 

complicated and involves various factors that a patient faces in order to comply 

with the antiretroviral therapy. Effectively, at least 95% of the prescribed regimen 

doses are recommended for the patients to get desired outcomes of the treatment 

[55]. However, the HIV/AIDS studies indicate patients follow, at most, only 70% of 

prescribed regimens. Insufficient adherence cannot maintain suppression of HIV 

replication in an appropriate way and furthermore causes rapid development of 

drug-resistant HIV.  

Adherence was defined as the expected percentage of doses of regimen 

prescribed by HIV/AIDS specialists that the patient would take faithfully each 

week. Adverse events were defined as the risk in the form of the undesired side 
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effects and toxicities to the patient under the regimen. Some medical information 

and physical behavior were considered, involving, for example, patient’s age, 

gender, cholesterol, blood pressure, diseases like diabetes or hepatitis, etc. 

Finally, if the current regimen failed to maintain the suppression of HIV RNA 

replication and led to the development of resistance to the regimen, what is the 

feasibility that new regimens would be available for effective antiretroviral 

treatment? That is the definition of the clinical parameters of future drug options. 

In the FDES system, each of four parameters was fuzzified by type-1 fuzzy 

sets defined according to HIV/AIDS specialists’ knowledge as well as the clinical 

literatures. These type-1 fuzzy sets served to represent specialists’ consensus. 

Unfortunately, more often in clinical practice, specialists with distinct knowledge 

and expertise may have a difficult time reaching a consensus. As an example, the 

fuzzy sets “Medium” and “High” shown in Figure 1.2 are two fuzzy variables for the 

regimen’s future drug options parameter. The other three clinical parameters; 

potency, “Medium” and “High”; adherence: “Challenging”, “Moderate”, and “Easy”; 

and adverse events: “Very low”, “Low”, and “Medium”, were fuzzified using similar 

type-1 fuzzy sets. 

 

 

 

 

 



 

 

10 

 

Figure 1.2: Two type-1 fuzzy sets defined for future drug options in the FDES 

system. In case of regimen 2, after fuzzification of the 65%, 0.9560 and 

0.4111 are obtained as memberships for “Medium” and “High”. 

 

1.2.2 FDES-Based Model for HIV/AIDS Treatment System 

A fuzzy automaton can be used to model the FDES describing various 

parameters available and their potential output. The Fuzzy Finite State Model, a 

part in HIV/AIDS treatment system in Figure 1, is an example of the use of the 

fuzzy automaton.  Generally, the fuzzy automaton (G) [7,12,13,16], [19]-[21], [23] 

can be expressed as ),,,( 0qQG δΣ= . The formula describes how a state in the 

system changes from a current one to the next one when an event occurs. The 

current state q is a vector q=[v1, v2, …, vn] in the fuzzy state space Q=[0, 1]
n
, 

where ]1,0[∈iv  is the membership grade of the state i possibly taken in the 
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system. The Qq ∈0  is the initial state vector. An event kσ  is in the set of events 

}...,,,{ 21 mσσσ=Σ  represented by a state transition matrix [ ]
nn

k

ij

k

×
= σσ , 

where ]1,0[∈k

ijσ states the chance of the system shifting from state i to state j when 

the event takes place. Consequently, the occurrence of the event kσ causes the 

update of the current state vector q. This state transition would be described byδ . 

The update (next) state vector 'q can be computed by kqq σo=' , where o  a fuzzy 

logic operation is defined by δ . 

The FDES model may consist of N fuzzy automata: G1 G 2 … G N. Their 

corresponding state vectors and event sets are denoted by q1 q 2 … q N and Σ1 Σ2 

… ΣN , respectively. For instance, there were four automata in the FDES-based 

regimen selection system. Each was modeled for each of the clinical parameters. 

The state vectors could be either 1×3 vector or 1×4 vector, for instance, 

adherence state vector has four components: initial, challenging, moderate, and 

easy, with the initial state vector represented by [1 0 0 0]. (Numbers in the second, 

third, and fourth place are membership grade for “Challenging”, “Moderate”, and 

“Easy”, respectively). Since prescribing a regimen referred to the occurrence of 

events in the system, thus each of the four sets would have three events (three 

given regimens). 

1.2.3 Optimization in the FDES-Base Treatment System  

All the events in the FDES-based system can be assumed to be either 

disabled and/or enforced. Controllable events are events that can be disabled, 
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whereas enforceable events are those events that can be enforced. To optimize 

FDES is to disable some controllable events and/or enforce some enforceable 

events. The forward-looking tree was employed for an optimal control online 

shown in Figure 1.3. After each of the events occurs, the controller will assess the 

possible consequent state of the system and determine which events are to be 

disabled and/or enforced. 

 

q-state

q'-state

q
0
-initial state

i-th step

i+1-th step

-eventσσσσ

 

Figure 1.3: For FDES, q and q′ in an example forward-looking tree 

for optimal control synthesis are fuzzy states represented by a 

vector containing the fuzzy state vectors. 

 

Each node in the forward-looking tree for an FDES represents a fuzzy 

state. The fuzzy state (node) q in Figure 1.3 is a vector containing the fuzzy state 

vectors: ]...,,,[ 21 Nqqqq = . Occurrence of an event leads to movement of a fuzzy 

state. In Figure 1.3 the occurrence of the event σ  causes the movement of the 
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fuzzy state q to a new fuzzy state: ]...,,,[' ''

2

'

1 Nqqqq = , where '

iq  is obtained by 

either σoii qq =' , iG∈σ or ii qq =' , iG∉σ . 

Let h be a node in the forward-looking tree and designed as ),( sqh = , 

where q is the corresponding fuzzy state (vector of the fuzzy state vectors) and s 

is the sequence of events leading to the expected node from the initial fuzzy state 

q0. Furthermore, each node in the forward-looking tree can be calculated for the 

performance index, cost measure or other specified measurements. The 

effectiveness measure and cost measure are two common measurements for a 

branch as defined for its terminal nodes in the forward-looking tree for the FDES 

in HIV/AIDS treatment system. The effectiveness measure and cost measure for a 

node ),( sqh =  can be expressed as )],...,,,([),()( 21 sqqqfsqfhE N==  and 

)],...,,,([),()( 21 sqqqgsqghC N== , respectively, where f and g are the functions.  

For the HIV/AIDS treatment, the term of optimization used is to maximize 

the effectiveness of the expected treatment regimens for a given cost of the 

treatment regimen. Therefore, the optimization problem for characterized state or 

node h of the forward-looking tree for the HIV/AIDS treatment system can be 

expressed as 

    ),(max
)(

hE
hTr

 such that LhC <)(          (1.1) 

where Tr(h) is the forward-looking tree beginning at node h, L is a given number of 

the limited cost, and LhC <)( is the constraint of cost persistently maintaining 

during the optimization execution.  
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The level of the complex optimization depends upon the length of the 

forward-looking tree Tr(h). A node which is several levels apart from the beginning 

would have more complexity of optimization. Usually for the HIV/AIDS treatment, 

one or two levels of the optimization which corresponds to one or two rounds of 

the treatment are desired. A treatment is considered to be the same round of the 

treatment if the drug or regimen is used without changing.  

1.3 Issues on Representations of Physicians’ Expertise in FDES-Based 

HIV/AIDS Treatment Regimen Selection System 

As the compilation of many complicated factors, the FDES-based system 

can be considered to be the complex treatment system. All these factors were 

constructed based on the specialists’ knowledge and experience as well as clinical 

literatures.  Extracting knowledge and experience from specialist domains is a 

significant task. It is not easy for the specialists to express their opinions 

quantitatively. Accurate conversion of the expertise domains into a useable form 

for the system is a technical difficulty that the system developer encounters. In the 

FDES-based framework, point estimates (crisp numbers) and type-1 fuzzy sets 

are the FDES-useable forms describing subjectivity and imprecision in specialists’ 

knowledge and experience.  

In the knowledge acquisition for regimen’s characteristics, the HIV/AIDS 

specialist was asked to estimate and give a percentage of clinical parameters for 

all regimens used in the medical treatment, for example, such as those shown in 

Table 1.1. The percentages represented the specialist’s best point estimates of 
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the regimen’s anticipated clinical parameters. As seen, these numbers were 

uncertainties, as no such true values existed in the literature. If the specialist was 

allowed to use interval numbers (e.g., potency is [80%, 90%] for regimen 2), fuzzy 

numbers (e.g., potency is about 85%) or fuzzy sets, it would be a more realistic 

representation of the specialist’s knowledge. 

Since the absolute truth in HIV/AIDS treatment is mysterious and unknown, 

inequality respective to individual specialists’ opinions should be potentially 

mentioned. This inequality is an issue when specialists in the team have different 

opinions. For example, specialist A’s opinion on the potency of regimen 2 is 82%, 

whereas specialist B’s opinion is 88%. To meet the requirements for the FDES-

based system, the compromising consensus must be conducted. The specialists’ 

agreement would be 85% potency of regimen 2. If they insist on their own 

numbers, the potency consensus would not be achieved. The FDES-based 

system could not work under this situation.  

Furthermore, the interval value [80%, 90%] or the fuzzy number, around 

85%, would represent remarkably the diverse opinions. The issue is similar when 

the HIV/AIDS specialists define the fuzzy sets for the four clinical parameters. For 

instance, the fuzzy sets in Figure 1.2 represented the consensus of the specialists’ 

opinions describing the future drug options parameter characteristic of the system 

changing from initial state to “High” or “Medium” state. Failing to reach consensus 

and insisting on using different fuzzy sets cannot be handled by the current FDES-

based system. The issue may exist in the specialist domains dealing with equal 
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respective expertise among differences. Without doubt, such a problem of 

obtaining consensuses occurs in the biomedical field. The second issue seems to 

be a conflict of consensus achievement that would cause the first order fuzzy sets 

(i.e., type-1 fuzzy set) insufficient representation of the specialists’ knowledge. 
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(a) 

 

(b) 

Figure 1.4: Type-2 fuzzy sets in EFDES system as defined, for example, for future 

drug options: (a) the primary memberships with footprints of uncertainty of the 

type-2 fuzzy sets “Medium” and “High”, (b) the secondary membership function for 
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the fuzzy set “Medium” at future drug options of 65% is triangular (solid line) or 

rectangular (dotted line) as assumed the fuzzy sets is an interval type-2 fuzzy set. 

 

To handle this situation and accomplish the knowledge acquisition of such 

specialists’ distinct opinions, the higher order fuzzy sets need to be utilized. Type-

2 fuzzy set, one order higher than type-1 fuzzy set, can be described by a 

membership function of memberships over an entire universe of discourse which 

is called a secondary membership function. The membership function is now 

called a primary membership function. Type-2 fuzzy set [6,11,30,53,54,67,68] 

contains an infinite number of type-1 fuzzy sets (i.e., the primary membership 

functions) creating a footprint of uncertainty (FOU) [6,52] as shown in Figure 

1.4(a) that would characterize diversities and uncertainties of the specialists’ 

knowledge. The footprint of uncertainty can be described by an upper primary 

membership function and a lower primary membership function which bind 

countless type-1 membership functions. A second membership function shown in 

Figure 1.4(b) can be defined over the primary membership grades at a particular 

value of the universe of discourse (i.e., at 65% future drug options). A type-2 fuzzy 

set which has equal secondary memberships is named an interval type-2 fuzzy 

set.  

Type-3 fuzzy set [6] is one order higher than type-2 fuzzy set. A third 

membership function can be defined over the second memberships in the same 

manner as defining the secondary membership function over the primary 
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memberships. The higher the order of the fuzzy set, the more complicated the 

system. At present, the type-3 or higher orders fuzzy sets have not been 

implemented in practice. 

Alternatively, if type-1 fuzzy set could be derived as a 2-D function: y=f(x)), 

then type-2 fuzzy set would be derived as a 3-D function: z=f(x,y). The one 

dimension beyond type-1 fuzzy set for type-2 fuzzy set could be supplemented for 

capturing the specialists’ different opinions. Therefore, type-2 fuzzy set is the 

simplest among higher order fuzzy sets and would be effective enough to be 

applied to such a task. Thus the current FDES-based framework needs to be 

expanded in order to deal with type-2 fuzzy sets. The theory of the extended 

FDES (EFDES) is an approach in handling type-2 fuzzy sets to capture such 

specialists’ knowledge. The development of the new HIV/AIDS treatment regimen 

system under the implementation of the EFDES theory is significantly concerned 

as a new aspect of the decision-supporting system. The EFDES theory utilizes 

type-2 fuzzy sets to parameters or factors considered with imprecision and 

uncertainties applying not only for medical fields but others as well. 

As is known, the update of the HIV/AIDS treatment guidelines several times 

per year would reflect the treatment complexity. Approval of new antiretroviral 

regimens for the treatment, for example, would cause such updates. For the new 

approved regimens, the knowledge acquisition process will be required for the 

decision-supporting system. At this point, the system with the capacity of self-

learning will be preferable. As mentioned above, another issue on performance of 



 

 

20 

the new system under the EFDES theory would arise. The skepticism issue is that 

under the EFDES-based framework, whether the HIV/AIDS treatment regimen 

selection system constructed with or without the capability of self-learning could 

handle the diversities and uncertainties of specialists’ knowledge and could 

provide as such a good performance. 

The way to disclose or key this skepticism problem is to construct such an 

EFDES-base decision-supporting system with or without self-learning function 

using the patients’ medical information and specialist domains implemented in the 

FDES-based system as the basis of system data; the performance of the EFDES-

based system can be verified.  

1.4 Extended Fuzzy Discrete Event System (EFDES) Theory [24,33] 

The EFDES theory can be modeled by a fuzzy automaton (G) which is 

mathematically expressed as ),,,( 0qδΣQG = , where Q is the set of fuzzy state 

vectors. The k-th fuzzy state vector kq ( Qk ∈q ) is mathematically represented as 

kq ][ 21 N

kkk
VVV L= , where N is the total number of fuzzy states and i

k
V  is a 

fuzzy set with the universe of discourse [0, 100%]. Fuzzy state 0q  is an initial 

fuzzy state vector. Σ  is the set of fuzzy events. A fuzzy event jσ , ( Σj ∈σ ), is a 

fuzzy state transition matrix. The matrix is in the form of 
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where mn

j
A , Nnm ≤≤ ,1 , is a fuzzy set characterizing the transition from one state 

(m-state), to another state (n-state) when the j-th event occurs. The universe of 

discourse of mn

j
A  ranges from 0 to 100% on the x-axis and the corresponding 

membership ranges from 0 to 1 on the y-axis. M is the total number of possible 

events. 

δ  is a transition mapping that describes how to obtain a new fuzzy state 

vector from a current fuzzy state vector and a fuzzy event transition matrix. It can 

be mathematically represented as QQ →Σo:δ , where o is a fuzzy logic operation 

[1,5,28,69,70] (e.g., max-product() and max-min() etc). Thus, the new fuzzy state 

vector is determined from 1k k j+ =q q σo .  Since the max-product operation is 

desirable for the EFDES-based system, the equation becomes )max(1 jkk σqq ×=+  

in which n

k
V

1+  is determined by 
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,        (1.3) 

where ×  refers to product() operation. 

Like the FDES theory used in the HIV/AIDS treatment regimen selection, 

the EFDES theory will be implemented in the Fuzzy Finite State Model named 

Extended Fuzzy Finite State Models. Similar to the FDES-based system, the fuzzy 

state model of the EFDES-based system consists of four fuzzy automata, each of 

which corresponds to one of the four parameters, i.e., potency, adherence, 
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adverse events, and future drug options. The fuzzy states of the automata are 

defined as follows: the fuzzy automaton for potency has three states: initial, 

medium, and high; the fuzzy automaton for adherence has four states: initial, 

challenging, moderate, and easy; the fuzzy automaton for adverse events has four 

states: initial, very low, low, and medium; the fuzzy automaton for future drug 

options has three states: initial, medium, and high. The interpretation of each 

state, except initial state, should be associated with the corresponding parameters 

of regimens. For example, the “high” state in the fuzzy automaton for potency 

means the anticipated high potency of the regimen. A fuzzy event occurs when a 

treatment regimen is prescribed for a patient. This prescription leads to a 

transition of a fuzzy state vector from the current fuzzy state to the next fuzzy 

state. A detailed computational example of the fuzzy automata will be discussed 

later in the next chapter. 

1.5 Adaption of EFDES Theory into FDES-Based HIV/AIDS Treatment 

Regimen Selection System 

As in the previous section, the potential issues could have faced the current 

FDES-based HIV/AIDS treatment regimen selection system in which the 

specialists’ domains of knowledge were captured in the form of the consensuses 

(i.e., estimated points for the clinical parameter characteristic of the treatment 

regimens and type-1 fuzzy sets for the treatment regimen’s clinical parameter 

definitions) that may not be achieved as usual. The FDES-based system was 

discussed in the literature by [22], which provided the great details in the 
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implementation of the theory of fuzzy discrete event system to the HIV/AIDS 

treatment regimen selection system. Conducting the clinical parameters (e.g., 

regimen’s potency) in the useable forms for the system was demonstrated in the 

paper along with the forward-looking tree as an optimal control online approach 

discussed by [22] as well. The regimen effectiveness neglecting the treatment cost 

was the considered factor used for the optimization utilized with the genetic 

algorithm. The FDES-based system employed the 35 retrospective patients’ 

medical information in the evaluation of the performance of the system. 

In order to overcome such possible conflicts, the FDES-based system 

needs to be modified and generalized into the EFDES-based system. [24,33] 

demonstrated how to extend the FDES theory to the EFDES theory. The EFDES 

theory uses the fuzzy automaton as a model. Unlike the FDES, the elements in 

fuzzy state vectors could be crisp numbers in [0, 1], interval numbers, or fuzzy 

sets in general in which the prior two could be treated as special cases. [24,33] 

provided illustrative examples on how to obtain the fuzzy event transition matrices 

when applying the EFDES theory to the HIV/AIDS treatment regimen selection 

system. As in the examples in the next chapter (i.e., three different situations), two 

cases utilized the type-2 fuzzy sets  with either crisp numbers or fuzzy sets to 

capture diversities and uncertainties of the specialists’ knowledge and experience 

in determining the fuzzy event transition matrices.  

The system capable of self-learning is preferred significantly, as frequent 

updates of the information, such as the HIV/AIDS treatment in which guidelines 
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change several times in each year and the new regimens become available, as 

well. Paper [31] discussed the FDES-based system with self-learning ability that 

could be achieved by adjusting parameter weights via the Optimizer. In the paper 

four regimens were involved in learning for the system used in the initial round of 

the HIV/AIDS treatment regimen selection. The information of the experts’ 

knowledge on those regimens and patients’ clinical data used in the FDES-based 

system would be implemented into the EFDES-based system in order to evaluate 

the system performance. 

1.6 Research Objectives 

Representing a consensus of physician experts’ domains of knowledge with 

a useable form by utilizing type-1 fuzzy set in the HIV/AIDS treatment regimen 

selection system that is less acceptable in term of human sense and has a chance 

of being unachievable among respective experts’ distinct opinions, this 

dissertation presents the utilization of EFDES theory and type-2 fuzzy set to 

handle the consensus of the experts’ distinct opinions used in the system 

providing more realistic representation of expert knowledge and as good as the 

system performance of utilizing type-1 fuzzy set. 
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CHAPTER 2 

EFDES-BASED HIV/AIDS TREATMENT REGIMEN SELECTION SYSTEM 

  

Developing the FDES-based regimen selection system, HIV/AIDS 

specialists must compromise to reach consensus in terms of the parameter values 

and the type-1 fuzzy sets (e.g., Table 1.1 and Figure 1.1). If different specialists 

insist on using different parameter values or different fuzzy sets, then an FDES 

system cannot be constructed. To accommodate such needs, type-2 fuzzy sets [6, 

30] provide a solution. This solution led recently to development of an extended 

fuzzy discrete event system (EFDES) theory [33]. It is capable of handling a 

parameter value in the form of type-1 fuzzy set or interval and a type-1 fuzzy set in 

the form of a type-2 fuzzy set. In this research work, we will employ the EFDES 

theory to investigate seven distinct scenarios shown in Table 2.1. For the 

specialist domains, either type-1 fuzzy sets or type-2 fuzzy sets are used to 

represent the definitions of clinical parameters, whereas crisp numbers, interval 

numbers, type-1 fuzzy sets and type-2 fuzzy sets are served to represent the 

parameter characteristics of the regimens.  
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Table 2.1: Specialist Domains in the FDES and EFDES-Based System 

 

Fuzzy Set Type for 
the Clinical 
Parameter 
Definitions 

Value Type 
for the Clinical 

Parameter 
Characteristics 

FDES theory Type-1 fuzzy sets Crisp numbers 

EFDES theory   

Scenario 1 Type-1 fuzzy sets Interval numbers 

Scenario 2 Type-1 fuzzy sets Type-1 fuzzy sets 

Scenario 3 Type-1 fuzzy sets Type-2 fuzzy sets 

Scenario 4 Type-2 fuzzy sets Crisp numbers 

Scenario 5 Type-2 fuzzy sets Interval numbers 

Scenario 6 Type-2 fuzzy sets Type-1 fuzzy sets 

Scenario 7 Type-2 fuzzy sets Type-2 fuzzy sets 

 

2.1 EFDES-Based HIV/AIDS Treatment Regimen Selection System 

The block diagram of the EFDES-based HIV/AIDS treatment regimen 

selection system is illustrated in Figure 2.1. Its structure is similar to the FDES-

based system as mentioned in the Introduction. The major difference between the 

EFDES-based system and the FDES-based system is that the EFDES theory is 

now used to implement the Extended Fuzzy Finite State Models shown in Figure 

2.1. Concisely, each block of the EFDES-based system will be explained as 

follows.  



 

 

27 

Rule-based
Treatment Objective

Classifier

Extended Fuzzy
Finite State Models

Regimen Selection
Optimizer

Patient's Medical
Information

Ranking of Treatment Regimen
Made by

Specialist 1 ...   Specialist N

Optimized Regimen
for Patient

 

Figure 2.1: Block diagram of the EFDES-based HIV/AIDS treatment 

regimen selection system 

 

2.1.1 Rule-Based Treatment Objective Classifier 

The task of the rule-based classifier is to map a patient to one of the 32 

objectives based on his/her medical condition. Each objective is a combination of 

the four clinical parameters. Potency, adherence, adverse events and future drug 

options are the clinical parameters which an HIV/AIDS specialist considers when 

assigning which regimen to prescribe. Each clinical parameter is composed of 

stated variables: “medium” and “high” for potency, “challenging”, “moderate”, and  
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Table 2.2: Patient’s 32 clinical treatment objectives [22,31] 

Objective 
class no. 

Potency Adherence 
Adverse 
events 

Future drug 
options 

1 High Easy Medium High 

2 High Easy Medium Medium 

3 High Easy Low High 

4 High Easy Low Medium 

5 High Easy Very low High 

6 High Easy Very low Medium 

7 High Moderate Medium High 

8 High Moderate Medium Medium 

9 High Moderate Low High 

10 High Moderate Low Medium 

11 High Moderate Very low High 

12 High Moderate Very low Medium 

13 High Challenging Medium High 

14 High Challenging Medium Medium 

15 High Challenging Low High 

16 High Challenging Low Medium 

17 High Challenging Very low High 

18 High Challenging Very low Medium 

19 Medium Easy Medium High 

20 Medium Easy Medium Medium 

21 Medium Easy Low High 

22 Medium Easy Low Medium 

23 Medium Easy Very low High 

24 Medium Easy Very low Medium 

25 Medium Moderate Medium High 

26 Medium Moderate Low High 

27 Medium Moderate Very low High 

28 Medium Moderate Very low Medium 

29 Medium Challenging Medium High 

30 Medium Challenging Low High 

31 Medium Challenging Very low High 

32 Medium Challenging Very low Medium 
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“easy” for adherence, “very low”, “low”, and “medium” for adverse events and 

“medium” and “high” for future drug options, called a treatment objective. 

Practically, there are a total of 32 clinical treatment objectives. Four combinations 

are excluded because of the absurd situation in the treatment. For instance, the 

second treatment objective is the combination of “high” potency, “easy” 

adherence, “medium” adverse events and “medium” future drug options. The 

complete list of the treatment objectives is displayed in Table 2.2. The rules used 

by the classifier were constructed with the help of the HIV/AIDS specialists as a 

document according to [22] in which only two specialists were involved.  

In the classifier the patient’s CD4+ cell counts and HIV RNA level 56,58] 

were used to determine the regimen’s expected potency and future drug options 

needed. The rules for these two clinical parameters applied from [22,29] as 

follows are: 

• Potency 

 If a patient’s CD4+ counts <50 cell/µL, then high expected potency of the 

regimen is desired. 

If a patient’s CD4+ counts from 50 to 200 cell/µL, and a patient’s HIV RNA 

>100,000 copies/ml, then high expected potency of the regimen is desired. 

If a patient’s CD4+ counts from 50 to 200 cell/µL, and a patient’s HIV RNA 

<100,000 copies/ml, then either high or medium expected potency of the regimen 

is desired. 
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If a patient’s CD4+ counts > 200 cell/µL, and a patient’s HIV RNA ≥100,000 

copies/ml, then high expected potency of the regimen is desired. 

If a patient’s CD4+ counts > 200 cell/µL, and a patient’s HIV RNA <100,000 

copies/ml, then medium expected potency of the regimen is desired. 

• Future drug options 

If a patient’s CD4+ counts ≥ 350 cell/µL, then high expected future drug 

options of the regimen is desired. 

If a patient’s CD4+ counts from 200 to 350 cell/µL, and a patient’s HIV RNA 

<100,000 copies/ml, then high expected future drug options of the regimen is 

desired. 

If a patient’s otherwise conditions, then medium expected future drug 

options of the regimen is desired. 

In order to classify a patient into which regimen’s expected adherence, we 

need to answer questions about the criteria involving the patient’s behavior and 

medical information. There are 5 questions to be asked: 1) if a patient’s age is 

less than 25 year old, 2) if a patient is homeless, 3) if a patient uses any illegal or 

narcotic drugs or excessive alcohol, 4) if a patient has a mental illness, and 5) if a 

patient missed more than one clinic visit in the last year. The number of questions 

with which the corresponding patient complies is used to determine the adherence 

characteristic. Following are the rules used as guidelines for the regimen’s 

expected adherence. 
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• Adherence 

If a patient complies with two or more questions, then easy expected 

adherence of the regimen is desired. 

If a patient complies with only one question, then either easy or moderate 

expected adherence of the regimen is desired. 

If a patient complies with no questions, then any expected adherence of the 

regimen characteristic is desired. 

• Adverse events 

One of three treatment characteristics of adverse events (i.e., medium, low 

and very low) the classifier assigns as the regimen’s expected adverse events for 

a treatment objective deals with a patient’s risk of diseases, which include 

diabetes, hepatitis and cardiovascular disease. The patient with one or both of 

diabetes and hepatitis diseases will be avoided classifying with regimen’s medium 

expected adverse events.  
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Table 2.3: Cardiovascular Disease Risk Assessment Scoring 

Risk points 
Risk Factor 

Men Women 

<34 -1 -9 

35-39 0 -4 

40-44 1 0 

45-49 2 3 

50-54 3 6 

55-59 4 7 

60-64 5 8 

65-69 6 8 

Age, years 

70-74 7 8 

<160 -3 -2 

160-199 0 0 

200-239 1 1 

240-279 2 2 

Total cholesterol, 
mg/dL 

≥280 3 3 

<35 2 5 

35-44 1 2 

45-49 0 1 

50-59 0 0 

HDL cholesterol, 
mg/dL 

≥60 -2 -3 

<120 0 -3 

120-129 0 0 

130-139 1 1 

140-159 2 2 

Systolic blood 
pressure, mm Hg 

≥160 3 3 

No 0 0 
Diabetes 

Yes 2 4 

No 0 0 
Smoking 

Yes 2 2 



 

 

33 

Table 2.4: Risk Estimates for Cardiovascular Disease as Determined 

Framingham Scoring 

Below 
Moderately 

above Age 
average risk 

average risk 
average risk 

High risk 

years man woman man woman man woman man woman 

30-34 <1 <4 1 4 2-4 5 >4 >5 

35-39 <3 <5 3 5 4-6 6-7 >6 >7 

40-44 <4 <6 4 6 5-6 7-8 >6 >8 

45-49 <6 <7 6 7 6 8-10 >7 >10 

50-54 <6 <9 7 9 8 10-12 >8 >12 

55-59 <8 <10 8 10 9 11-15 >9 >15 

60-64 <9 <11 9 11 10 12-16 >10 >16 

65-69 <10 <12 10 12 11 13-16 >11 >16 

70-74 <11 <13 11 13 12 14-16 >12 >16 

 

The risk estimates of cardiovascular disease is derived by using the 

Framingham risk score [73,74] obtained by assessing the risk points of all risk 

factors shown in Table 2.3 that the individual associates with the risk of the 

cardiovascular disease. Then Table 2.4 is used to label the risk of the scores. For 

example, a 44-year male patient with a Framingham risk score of 4 will be labeled 

with average risk for the cardiovascular disease. With the risk label, the patient will 

be classified using the rules as follows: 

If a patient is below average risk, then any adverse events of the regimen 

characteristic is desired. 

If a patient is average risk, then either low or very low expected adverse 

events of the regimen is desired. 
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 If a patient is above average risk, then very low expected adverse events 

of the regimen is desired. 

Finally, all risks of diabetes, hepatitis and cardiovascular disease need to 

be evaluated to adopt which one has the most impact. 

As mentioned above in the rules for an individual’s clinical parameters, 

those rules need to meet clinical rules in order to classify a patient into a treatment 

objective. The clinical rules are 

If potency is high, then adherence is either moderate or challenging 

If potency is medium, then adherence is either easy or moderate 

If potency is high, then adverse events are either medium or low 

If potency is medium, then adverse events are very low 

If a patient’s adherence complies with at least one issue, then future drug 

options must be high. 

In case of conflicts, potency must be the first priority choice. The second 

priority is adherence mapping with the easiest adherence level available. The last 

priority is adverse events mapping with the lowest adverse events level available. 

2.1.2 Extended Fuzzy Finite State Models  

The fuzzy finite state models for the FDES-based system describe the 

sequences of the change of states when the corresponding events occur. In the 

HIV/AIDS treatment, a naïve patient’s state will change partially from a pre-treated 

state (an initial state) to a treated state (a next state) when an event of receiving a 

particular regimen happens. Correspondingly, the four clinical fuzzy state vectors 
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(parameters) of the model change to new fuzzy state vectors through fuzzy state 

transition matrices. The characteristics of the clinical parameters and the 

definitions of the corresponding state variables (e.g., the vertical line of the 

characteristic of the future drug options for regimen 2 and the fuzzy set definitions 

in Figure 1.1) are needed to construct the fuzzy state transition matrix. The new 

fuzzy state vector is determined by applying a fuzzy logic operation on the current 

fuzzy state with the fuzzy state transition matrix. This change of fuzzy states can 

be modeled by a fuzzy automaton. [13,22,25] provide great details. 

2.1.3 Regimen Selection Optimizer 

In the EFDES-based system, the interesting optimization issue is to 

maximize the expected HIV/AIDS treatment effectiveness without considering the 

treatment cost [41]. Therefore, at the nodes of the forward-looking tree, the L 

could be assumed to be infinity. We merely implemented an effectiveness 

measure introduced in [22,25] in order to search for regimens that best match 

those selected by the AIDS specialists for the 32 treatment objectives. The 

effectiveness measure (E) is computed in terms of the weighted average of the 

state vectors. It can be mathematically expressed by 

  T

FF

T

EE

T

AA

T

PP wSdefwSdefwSdefwSdefE ⋅+⋅+⋅+⋅= )()()()( ,        (2.1) 

where SP, SA, SE and SF are the next fuzzy state vectors for potency, adherence, 

adverse events and future drug options, respectively, whereas def () is 

defuzzification operation [6,56,57,63,64] which generates a crisp number (i.e., the 
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middle point of the interval) from each of the fuzzy elements (i.e., the intervals) of 

the fuzzy state vectors and wP, wA, wE and wF are their corresponding weight 

vectors. The weight vector for a parameter is the same regardless of regimens.  

To demonstrate an example, assume the regimen 2 with the scenario 4 of 

the specialist domains is prescribed to a patient classified to one of 32 treatment 

objectives saying “high” potency, “moderate” adherence, “medium” adverse 

events, and “high” future drug options. Let the fuzzified next fuzzy state vectors for 

potency, adherence, adverse events, and future drug options respectively be 

SP=[Z [0.3246 0.5460] [0.9802 1.000]],  

SA=[Z [0.0889 0.1977] [0.4578 0.7066] [0.9802 1.000]], 

SE=[Z [0.4867 0.7261] [0.9523 0.9785] [0.7827 0.9559]],  

SF=[Z [0.8968 0.9801] [0.3411 0.4867]]. 

where Z is the singleton fuzzy number 0. Then the defuzzification of the next fuzzy 

state vectors can be obtained as  

def(SP)=[0 0.4353 0.9901],  

def(SA)=[0 0.1433 0.5822 0.9901],  

def(SE)=[0 0.6064 0.9654 0.8693],   

def(SF)=[0 0.9384 0.4139]. 

Furthermore, assume that the weight vectors for “high” potency is wP=[0 

0.2031 0.7969], for “moderate” adherence wA=[0 0.1484 0.6523 0.1992], for 
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“medium” adverse events wE=[0 0.2422 0.3086 0.4492], and for “high” future drug 

options wF=[0 0.1836 0.8164]. The effectiveness measure for the regimen 2 with 

the scenario 4 of the specialist domains applied to the patient can be determined 

using the equation (2.1). 

E=[0 0.4353 0.9901][0 0.2031 0.7969]
T
 

  +[0 0.1433 0.5822 0.9901][0 0.1484 0.6523 0.1992]
T
 

        +[0 0.6064 0.9654 0.8693][0 0.2422 0.3086 0.4492]
T
 

  +[0 0.9384 0.4139][0 0.1836 0.8164]
T
 

                     = 2.8212 

For each treatment objective, three effectiveness measure values can be 

computed: E1 for regimen 1, E2 for regimen 2 and E3 for regimen 3. They are used 

by the models to rank the three regimens. The regimen with the highest value is 

the first choice regimen and the lowest value is the last choice. 

To rank the three regimens, we need to adjust the 10 weight vectors for the four 

parameters. There are 26 adjustable weights (i.e., 22333322 ×+×+×+× ) used 

for computing the effectiveness measures. The goal of the regimen selection 

optimizer is to search for a set of 26 weights that make the rankings of the three 

regimens made by the models best match those made by the specialists for the 

32 treatment objectives. The 26 weights were arranged for the 32 treatment 

objectives regarding Table 2.2, as shown in Table 2.5.
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Table 2.5: Optimal weight vectors for four parameters for 32 treatment objectives  

Optimal weight vector for four clinical parameters Treatment 
Objective 

No. Potency, (wP) Adherence, (wA) Averse Events, (wE) 
Future Drug   

Options , (wF) 

1 [ 0 W1 W2 ] [ 0 W5 W8 W11 ] [ 0 W14 W17 W20 ] [ 0 W23 W24 ] 

2 [ 0 W1 W2 ] [ 0 W5 W8 W11 ] [ 0 W14 W17 W20 ] [ 0 W25 W26 ] 

3 [ 0 W1 W2 ] [ 0 W5 W8 W11 ] [ 0 W15 W18 W21 ] [ 0 W23 W24 ] 

4 [ 0 W1 W2 ] [ 0 W5 W8 W11 ] [ 0 W15 W18 W21 ] [ 0 W25 W26 ] 

5 [ 0 W1 W2 ] [ 0 W5 W8 W11 ] [ 0 W16 W19 W22 ] [ 0 W23 W24 ] 

6 [ 0 W1 W2 ] [ 0 W5 W8 W11 ] [ 0 W16 W19 W22 ] [ 0 W25 W26 ] 

7 [ 0 W1 W2 ] [ 0 W6 W9 W12 ] [ 0 W14 W17 W20 ] [ 0 W23 W24 ] 

8 [ 0 W1 W2 ] [ 0 W6 W9 W12 ] [ 0 W14 W17 W20 ] [ 0 W25 W26 ] 

9 [ 0 W1 W2 ] [ 0 W6 W9 W12 ] [ 0 W15 W18 W21 ] [ 0 W23 W24 ] 

10 [ 0 W1 W2 ] [ 0 W6 W9 W12 ] [ 0 W15 W18 W21 ] [ 0 W25 W26 ] 

11 [ 0 W1 W2 ] [ 0 W6 W9 W12 ] [ 0 W16 W19 W22 ] [ 0 W23 W24 ] 

12 [ 0 W1 W2 ] [ 0 W6 W9 W12 ] [ 0 W16 W19 W22 ] [ 0 W25 W26 ] 

13 [ 0 W1 W2 ] [ 0 W7 W10 W13 ] [ 0 W14 W17 W20 ] [ 0 W23 W24 ] 

14 [ 0 W1 W2 ] [ 0 W7 W10 W13 ] [ 0 W14 W17 W20 ] [ 0 W25 W26 ] 

15 [ 0 W1 W2 ] [ 0 W7 W10 W13 ] [ 0 W15 W18 W21 ] [ 0 W23 W24 ] 

16 [ 0 W1 W2 ] [ 0 W7 W10 W13 ] [ 0 W15 W18 W21 ] [ 0 W25 W26 ] 

17 [ 0 W1 W2 ] [ 0 W7 W10 W13 ] [ 0 W16 W19 W22 ] [ 0 W23 W24 ] 

18 [ 0 W1 W2 ] [ 0 W7 W10 W13 ] [ 0 W16 W19 W22 ] [ 0 W25 W26 ] 

19 [ 0 W3 W4 ] [ 0 W5 W8 W11 ] [ 0 W14 W17 W20 ] [ 0 W23 W24 ] 

20 [ 0 W3 W4 ] [ 0 W5 W8 W11 ] [ 0 W14 W17 W20 ] [ 0 W25 W26 ] 

21 [ 0 W3 W4 ] [ 0 W5 W8 W11 ] [ 0 W15 W18 W21 ] [ 0 W23 W24 ] 

22 [ 0 W3 W4 ] [ 0 W5 W8 W11 ] [ 0 W15 W18 W21 ] [ 0 W25 W26 ] 

23 [ 0 W3 W4 ] [ 0 W5 W8 W11 ] [ 0 W16 W19 W22 ] [ 0 W23 W24 ] 

24 [ 0 W3 W4 ] [ 0 W5 W8 W11 ] [ 0 W16 W19 W22 ] [ 0 W25 W26 ] 

25 [ 0 W3 W4 ] [ 0 W6 W9 W12 ] [ 0 W14 W17 W20 ] [ 0 W23 W24 ] 

26 [ 0 W3 W4 ] [ 0 W6 W9 W12 ] [ 0 W15 W18 W21 ] [ 0 W23 W24 ] 

27 [ 0 W3 W4 ] [ 0 W6 W9 W12 ] [ 0 W16 W19 W22 ] [ 0 W23 W24 ] 

28 [ 0 W3 W4 ] [ 0 W6 W9 W12 ] [ 0 W16 W19 W22 ] [ 0 W25 W26 ] 

29 [ 0 W3 W4 ] [ 0 W7 W10 W13 ] [ 0 W14 W17 W20 ] [ 0 W23 W24 ] 

30 [ 0 W3 W4 ] [ 0 W7 W10 W13 ] [ 0 W15 W18 W21 ] [ 0 W23 W24 ] 

31 [ 0 W3 W4 ] [ 0 W7 W10 W13 ] [ 0 W16 W19 W22 ] [ 0 W23 W24 ] 

32 [ 0 W3 W4 ] [ 0 W7 W10 W13 ] [ 0 W16 W19 W22 ] [ 0 W25 W26 ] 
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A genetic algorithm in MATLAB’s Direct Search Toolbox is employed to 

perform the task. The objective function 332211 MMMf α+α+α= , where Mi (i=1, 2, 3) 

is how many the first-choice, second-choice and third-choice regimens ranked by 

the models match those ranked by the two specialists. αi represents the relative 

importance and we use α1=1, α2=0.01 and α3=0.001. In clinical practice, the first 

choice is much more important than the other two choices. To terminate the 

optimization process when running the genetic algorithm, either the tolerative 

changing of the objective function value or the number of generations can be 

conditionally applied. We prefer the latter in which the termination condition is set 

to 1,600 generations. That is, the optimization process stops after 1,600 

generations. f represents agreement between the models and the AIDS 

specialists. 

After the 26 optimal weights are obtained, the rankings of the three 

regimens for the 32 treatment objectives can be made using these weights. As a 

result, the EFDES models establish a table of regimen choices for the 32 objective 

classes. Once a patient is classified into an objective, his/her treatment regimen 

can be found in the table. 

2.2 Genetic Algorithm 

Genetic algorithm is an optimization algorithm inspired by the process 

observed in natural selection. Genetic algorithm attempts to duplicate the process 

and utilize it for solving optimization problems. Genetic algorithm performs random 

searches through a given set of individuals to find the best one with respect to a 
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given criteria expressed in terms of an objective function or usually  regarded as a 

fitness function. The individuals with better fitness values will contribute to the next 

population. From the current population the individuals are randomly selected to 

be parents in order to produce the children for the next generation. A genetic 

algorithm will modify a population of individuals from generation to the next 

generation. This successive process provides population evolvement toward an 

optimal solution. 

Genetic algorithm uses three kinds of rules to create the next generation; 

selection rules choose the individuals as parents contributing to the population for 

the next generation. Crossover rules merge two parents to create children for the 

next generation, and mutation rules make random change to parents to form 

children.  

This research implements the genetic algorithm in MATLAB’s Direct Search 

Toolbox. There are three types of children that the algorithm creates for the next 

generation: elite children, crossover children, and mutation children.  

Elite children are the individuals with the best fitness values in the current 

generation. These individuals grant privilege to the next generation.  

Crossover children are created by combining pairs of parents in the current 

population. The crossover function selects the gene and its coordinate from one of 

the two parents to form the child gene at the same position. There are 26 

adjustable weights which need to be optimized in this research. Each of them is in 

the form of a string of 8-bit binary numbers. The connection of these strings 
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provides a 208-bit-long string that represents a weight vector or an individual. With 

the crossover fraction of 0.5, the child receives the first half, 104-bit string, from 

one of two parents and the second half from the other. We use the crossover 

fraction of 0.75 for weight optimizing in this research. 

Mutation children are the children who receive the mutative genes from 

their parents. To create mutation children, the algorithm provides random change 

of the parent genes. We use the algorithm default setting that adds a random 

vector from a Gaussian distribution to the parent vectors. 

2.3 Fuzzy Sets for the Representation of the Specialist Domains 

2.3.1 Defined Fuzzy Set Types of Four Clinical Parameters 

According to [22], the type-1 fuzzy sets defined for the four clinical 

parameters in the FDES-based treatment regimen system took advantage of 

semi-Gaussian functions which could provide modest changes of the membership 

grades. In this research of the EFDES-based treatment regimen system, those 

defined type-1 fuzzy sets will be employed and regarded as the references for the 

upper and lower primary membership functions used to define type-2 fuzzy sets 

with the secondary membership grades.  

The interval type-2 fuzzy set is a specific type-2 fuzzy set with a unit 

secondary membership grade that is the one for the investigation. Generally, the 

upper and lower primary membership functions are used to describe the type-2 

fuzzy set. The area bounded by these two primary membership functions creates 

a footprint of uncertainty (FOU). Mathematical representations for the boundaries 
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of the footprint of uncertainties for the four clinical parameters are ordinarily listed 

in Table 2.6 and theirs corresponding graphical representations of the type-2 fuzzy 

sets when ∆m equals to 2% are shown in Figure 2.2 as well. As ∆m equals to 

zero, the interval type-2 fuzzy sets reduces to the type-1 fuzzy sets. 
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Table 2.6: Boundary membership Functions of the Foot of Uncertainties of the 

type-2 fuzzy sets for the Four Clinical Parameters 

Clinical Parameters Boundary Functions of FOU 

High 






∆±=≤

∆±=>








 −
−

mmmxe

mmmx

PHPH

mx

PHPH

PH

85,,

85,,1
2

102

1  

 
 
 

Potency 

Medium 






∆±=≤

∆±=>







 −
−

mmmx

mmmxe
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PMPM

mx PM

72,,1

72,,

2
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1
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





∆±=≤
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






 −
−
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85,,

85,,1
2
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1  

Moderate 
∞<<∞−∆±=








 −
−

xme AM

x

AM ,10,

2
75

2

1
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Adherence 

Challenging 






∆±=≤
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





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−

mmmx

mmmxe

ACAC
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Medium 



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
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∆±=>





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
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




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−
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x
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2

1
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Very Low 
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
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2
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(a)               (b) 

 

 

(c)                  (d) 

 

Figure 2.2: Graphical representations of the FOUs of the corresponding type-2 

fuzzy sets with ∆m being 2% according to Table 2.6. Also, an example 

demonstration of the fuzzification process shown in (d) in which the black area of 

FOU fuzzified from the “High” future drug options and the characteristic of future 

drug options for a particular regimen represented by the interval type-2 fuzzy set 

and its FOU shown as a shade of the triangular shape with ∆x being 5% and ∆w 

being 4%. 
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2.3.2 Fuzzy Sets for the Parameter Characteristic of the Regimen 

In order to express the specialist domains of the clinical parameter 

characteristics of the particular regimens, not only including crisp numbers used in 

the FDES-based system, but also extending to interval numbers, type-1 fuzzy sets 

and type-2 fuzzy sets that will be employed in the EFDES-based system. The 

fuzzy sets or the fuzzy numbers are constructed based on the estimated value 

(crisp) of the clinical characteristics of the regimens as the center points. Note that 

the interval numbers are not the fuzzy numbers but can be treated as a special 

case of the fuzzy numbers. These symmetrical shapes of the fuzzy numbers are 

illustrated in Figure 2.3 with specific variables that we use to assign values 

hereafter. For example, the interval number with ∆v being 10% for the regimen 2 

will refer to [80%, 90%] for potency, [80%, 90%] for adherence, [15%, 25%] for 

adverse events, and [60%, 70%] for the future drug options as illustrated in Figure 

2.3 (a). Jointly, ∆x and ∆w are used to specify FOU of the symmetrical triangular 

type-2 fuzzy sets. Shown in Figure 2.3 (c) is FOU of future drug options for the 

regimen 2 with ∆x being 5% and ∆w being 4% and FOUs of other parameters for 

the regimen 2 use the same values as well. As ∆w equals to zero, the interval 

type-2 fuzzy sets reduces to the type-1 shown in Figure 2.3 (b). 
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(a) 

 

(b) 

 

(c) 

Figure 2.3: Specific variables used to describe the fuzzy numbers of the clinical 

characteristics of the regimens. (a) ∆v used for the interval numbers (i.e., a special 

case of the fuzzy numbers), (b) ∆x used for symmetrical triangular type-1 fuzzy 

sets, and (c) ∆x and ∆w used for FOU of the symmetrical type-2 fuzzy sets. 
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2.4 Determine the Fuzzy Event Transition Matrices in Different Situations 

of Specialists’ Knowledge Representations 

Four clinical parameters need to be models by four fuzzy automata. Seven 

scenarios need to be investigated in the EFDES-based regimen selection system. 

As the special case of the EFDES-based system, the case of the FDES-based 

system (i.e., type-1 fuzzy sets for definitions of parameters and crisp numbers for 

regimens characteristics) was clearly explained in detailed information [22] that 

then will be ignored here. In the seven different scenarios, we merely demonstrate 

that the fuzzy automata for future drug options are the combinations of the clinical 

parameter definitions in the forms of type-1 fuzzy sets and type-2 and the 

parameter characteristics in the forms of crisp number, interval number, type-1 

fuzzy set and type-2 fuzzy set. Only regimen 2 is used in computing the fuzzy 

event transition matrices. 
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2.4.1 Type-1 Fuzzy Sets for the Parameter Definitions and Interval 

Numbers for the Parameter Characteristics (scenario 1) 

 

Figure 2.4: Determining the fuzzy event transition matrix for regimen 2 

under the scenario 1 

 

In this scenario an interval number instead of a crisp number is considered 

to describe diverse experts’ opinions on the clinical factors. The crisp number can 

be a consensus of the experts’ opinions but not each of them. The distinct 

opinions with different crisp numbers can be windowed into the interval number in 

which the opinions have the same weights. The interval number used in the 

EFDES-based system is illustrated in Figure 2.4. Its center at the value of the 

parameter characteristic value in Table 1.1 and ∆v equals to 10% for regimen 2 

which is the one in Figure 2.4. The fuzzy operation named fuzzification is 

processed to these two clinical parameters. The fuzzy sets for fuzzification for 
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future drug options are type-1 fuzzy sets. Their mathematical definitions ( FHµ for 

“High” and FMµ for “Medium”) are  

    







≤

>=







≤

>
=







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−








 −
−

60,1

60,)(

85,

85,1
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2

2
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60

2

1

15

85

2

1

x

xex

xe

x
x

x

FM

x
FH

µ

µ

,         (2.2) 

In the EFDES-based system, the initial state vectors in the fuzzy automata 

have similar initial conditions. For instance, the fuzzy automaton for future drug 

options has the initial state vector ]11[q0 ZZ/= , where 1/1 and Z are singleton 

fuzzy numbers 1 and 0, respectively. The change of a patient’s states occurs 

when he/she follows a regimen. 

The fuzzy state transition matrix for future drug options for the first-round 

treatment is  

High

Medium

Initial

ZZZ

ZZZ

FFZ

HighMediumInitial
















=

13

1

12

1

1σ  

where 12

1F  and 13

1
F  are type-1 fuzzy sets representing the transition of fuzzy 

states from the Initial state to the Medium state and High state, respectively. 

Figure 2.4 will be utilized to obtain 13

1
F . The dark and thick curve in the 

figure is its membership function:  
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    [ ]70,60,)(

2

15

85

2

1

∈=







 −
−

xex

x

FHxµ ,         (2.3) 

which is the result of applying the standard fuzzy intersection to the fuzzy set 

“High” and the interval number depicted in Figure 2.4 over the universe of 

discourse ranging from 50 to 100. According to [33], the range of )(xFHxµ , which is 

from 0.2494 to 0.6067, will be assigned as the domain of fuzzy set for 13

1
F . This is 

a special case involving only the domain of the fuzzy set (i.e., the interval [0.2494, 

0.6067]). This result is because the membership of 13

1
F is calculated or obtained 

from the secondary membership of )(xFHxµ , which can be regarded as 1 since 

)(xFHxµ is a type-1 fuzzy set. So, 13

1
F  is the interval [0.2494, 0.6067]. We do the 

same procedure in order to obtain 12

1F . Finally, the fuzzy state transition matrix is 

[ ] [ ]
















=

ZZZ

ZZZ

.,,Z 606702494.018009.0

σ1 . 

Consequently, we compute the next state by 

[ ] [ ][ ]6067.0,2494.018009.0σqq 101 ,Z== o  

The same process can be applied to other regimens as well as to other 

fuzzy automata: potency, adherence, and adverse events. 

The result of interval numbers in the fuzzy state vectors need to be reduced 

to crisp numbers. We use the middle point of the interval [45] for this purpose. 
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This result is the case for the next six scenarios. Then the fuzzy state vectors are 

ready for the Regimen Selection Optimizer. 

2.4.2 Type-1 Fuzzy Sets for the Parameter Definitions and Type-1 

Fuzzy Sets for the Parameter Characteristics (Scenario 2) 

 

Figure 2.5: Determining the fuzzy event transition matrix for regimen 2 

under the scenario 2 

 

A fuzzy number instead of a crisp number used in FDES-based system is 

employed to describe diverse experts’ opinions on the clinical factors. The fuzzy 

number in this scenario for the EFDES-based system is a symmetrical triangular 

type-1 fuzzy set as illustrated in Figure 2.5. Its center is the value of the parameter 

characteristic value in Table 1.1 and ∆x equals to 5% for regimen 2 that is the one 

in Figure 2.5. The fuzzy sets for fuzzification for future drug options are type-1 

fuzzy sets, and their mathematical definitions are the same shown in scenario 1. 
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Initial state vector ]11[q0 ZZ/=  and the fuzzy state transition matrix are the 

same for the first-round treatment.  

High

Medium

Initial

ZZZ

ZZZ

FFZ

HighMediumInitial
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












=

13

1

12

1

1σ  

Figure 2.5 will be utilized to obtain 13

1
F . The dark and thick curve in the 

figure is its membership function:  
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2

15

85

2

1

µ ,        (2.4) 

which is the result of applying the standard fuzzy intersection (i.e., min()) to the 

fuzzy set “High” and the fuzzy number depicted in Figure 2.4 over the universe of 

discourse ranging from 50 to 100. According to [33], the range of )(xFHxµ , which is 

from 0 to 0.5052, will be assigned as the domain of fuzzy set for 13

1
F . This domain 

is a special case involving only the domain of the fuzzy set (i.e., the interval [0, 

0.5052]). This result is because the membership of 13

1
F is calculated or obtained 

from the secondary membership of )(xFHxµ , which can be regarded as 1, since 

)(xFHxµ is a type-1 fuzzy set. Therefore, 13

1
F  is the interval [0, 0.5052]. We use the 

same procedure in order to obtain 12

1F . Finally, the fuzzy state transition matrix is 
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[ ] [ ]
















=

ZZZ

ZZZ

.,.,Z 505200950900

σ1 . 

Consequently, we compute the next state by 

[ ] [ ][ ]5052.0,0950900σqq 101 .,Z== o  

2.4.3 Type-1 Fuzzy Sets for the Parameter Definitions and Type-2 

Fuzzy Sets for the Parameter Characteristics (Scenario 3) 

 The symmetrical triangular type-1 fuzzy set in the scenario is not adequate 

to capture the diverse experts’ opinions if they have their own triangular type-1 

fuzzy sets on clinical factors. The conflict made by different experts can be 

managed by employing a type-2 fuzzy set with equal second membership grades 

(i.e., interval type-2). The type-2 fuzzy set can be thought of as blurring the 

triangular type-1 fuzzy set in the scenario 2, and it creates an FOU. The FOUs 

shown in Figure 2.6 for future drug options are bounded by the lower and upper 

primary membership functions whose mathematical expressions are equation 

(2.5) and equation (2.6), with ∆v and ∆w being 5% and 2%, respectively, as 

 

 

 

 



 

 

54 

 

Figure 2.6: Determining the fuzzy event transition matrix for regimen 2 

under the scenario 3 
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where )(x
Tri

µ and )(xTriµ are the respective upper and lower primary membership 

functions for the type-2 fuzzy set  used to describe the diverse experts’ opinions 

on the clinical parameter characteristics. 

In this scenario, the experts agree upon the type-1 fuzzy sets of the clinical 

parameter definitions. To obtain 12

1F  and 13

1
F , we have to process the fuzzy 

operation of the symmetrical triangular type-2 fuzzy set and the type-1 fuzzy sets 

for “Medium” and “High”, respectively. Applying the fuzzy intersection on the type-

2 fuzzy set and the type-1 fuzzy set for “High”, it results in an FOU which is the 

deep dark region shown in Figure 2.6. The FOU is bounded by the upper primary 

membership function in equation (2.7) and the lower primary membership function 

in equation (2.8) described below: 
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where 
FH

y  and FHy  are the respective upper and lower primary membership 

functions of  “High” for future drug options of regimen 2. 

Unlike the first two scenarios, the range of the primary membership grades 

of the type-2 fuzzy set (the dark region in Figure 2.6) assigned for the domain of 

fuzzy set for 13

1
F , as well as the membership function, can be determined by using 

the height type-reducer method [6,30]. The membership function for the reduced 

type-1 fuzzy set ))(( yψ  can be represented by 

     ),(sup)( yxy xϕψ = ,          (2.9) 

where y is the primary membership grade and ϕ is the secondary membership 

function of the type-2 fuzzy set, the result of applying a fuzzy intersection on two 

fuzzy sets. The ()supx operation gives the highest grades of ),( yxϕ for x in the 

universe of discourse. 

Applying equation (2.9) to the type-2 fuzzy set (the dark region for “High” in 

Figure 2.6) over the universe of discourse for x from 50 to 100 will result in the 

value of the primary grade changing from 0 to 0.5359 and the corresponding 

membership grade equal to 1. Therefore, 13

1
F can be represented by the interval [0, 

0.5359]. We employ the same procedure for “Medium” and yield its associated 

interval [0, 0.9527] for 12

1F . 

Hence, the fuzzy state transition matrix is represented as 
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














=

ZZZ

ZZZ

Z ]5359.0,0[]9527.0,0[

σ1 .  

The next state vector can be determined by 

[ ]]5359.0,0[]9527.0,0[σqq 101 Z== o . 

2.4.4 Type-2 Fuzzy Sets for the Parameter Definitions and Crisp 

Numbers for the Parameter Characteristics (Scenario 4) 

The experts are allowed to define individually the state using different type-

1 fuzzy sets. The diverse definitions made by different experts can be captured by 

a type-2 fuzzy set with equal second membership grades. The type-2 fuzzy set 

can be thought of blurring the type-1 fuzzy set in the scenario 1, and it creates an 

FOU. The FOUs of “High” and “Medium” shown in Figure 2.7 for future drug 

options are bounded by the lower and upper primary membership functions whose 

mathematical expressions are equation (2.10) and equation (2.11) with ∆m being 

2%. 
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Figure 2.7: Determining the fuzzy event transition matrix for regimen 2 

under the scenario 4 
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where )(x
FH

µ and )(xFHµ are the respective upper and lower primary membership 

functions for “High” and  )(x
FM

µ and )(xFMµ are the upper and lower primary 

membership functions for “Medium”, respectively. 

In this scenario, the experts agree upon the crisp numbers of the clinical 

parameters. To obtain 12

1F  and 13

1
F , we draw a vertical line at a parameter value 

(i.e., 65% future drug options in Figure 2.7). The intersections of the line and the 

lower and upper primary membership functions of the two type-2 fuzzy sets create 

two intervals: one for “Medium” and the other for “High”. These intervals are the 

ranges of the primary membership grades for “Medium” and “High” and so will be 

used as the domains of fuzzy sets for 12

1F and 13

1
F , respectively. The membership 

grades for 12

1F and 13

1
F over those range equal to 1. We normally represent this 

kind of a type-1 fuzzy set (i.e., an interval type-1 fuzzy set) by its domain of the 

fuzzy set. Hence, in Figure 2.7 the interval [0.8968, 0.9801] for “Medium” is for 

12

1F   and the interval [0.3411, 0.4867] for “High” is for 13

1
F . We therefore obtain the 

fuzzy state transition matrix, 

[ ] [ ]
















=

ZZZ

ZZZ

.,..,.Z 48670341109801089680

σ1 . 

Consequently, the next state vector is  

[ ] [ ][ ]4867.0,3411.09801089680σqq 101 .,.Z== o . 
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2.4.5 Type-2 Fuzzy Sets for the Parameter Definitions and Interval 

Numbers for the Parameter Characteristics (Scenario 5) 

 

Figure 2.8: Determining the fuzzy event transition matrix for regimen 2 

under the scenario 5 

 In this scenario, the type-2 fuzzy sets employed in scenario 4 are preferred 

to capture the distinct experts’ opinions on the clinical parameter definitions for 

future drug options as shown in Figure 2.7. The interval number employed in 

scenario 1 is used to represent the range largely over the deviation of experts’ 

opinions on the clinical factors for a regimen. This number is the combination of 

the scenario 1 and the scenario 4 as illustrated in Figure 2.8. The interval type-2 

fuzzy set is described by the FOU with unity of the secondary membership grade. 

The FOUs of “High” and “Medium” for future drug options are bounded by the 

lower and upper primary membership functions whose mathematical expressions 
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are the same equation (2.10) and equation (2.11), with ∆m being 2%. The interval 

number of which ∆v equals 10% for regimen 2 shown in Figure 2.8 has a center at 

the value of the parameter characteristic value in Table 1.1.  

 Applying the fuzzy intersection on the interval number and the type-2 fuzzy 

set for “High”, its result is an FOU which is the deep dark region shown in Figure 

2.8. The foot of uncertainty is bounded by the upper primary membership function 

in equation (2.12) and the lower primary membership function in equation (2.13) 

given below: 
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where )(x
FH

µ and )(xFHµ are the respective upper and lower primary membership 

functions for “High”, and  )(x
FM

µ and )(xFMµ are the upper and lower primary 

membership functions for “Medium”, respectively. 

Applying equation (2.9) to the type-2 fuzzy set with the FOU (the dark 

region for “High” in Figure 2.8) over the universe of discourse for x from 50 to 100 

will result in the value of the primary grade changing from 0.1976 to 0.6863 and 

the corresponding membership grade equals 1. Therefore, 13

1
F can be represented 
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by the interval [0.1976, 0.6863]. We construct the same procedure for the 

“Medium” and yield its associated interval [0.7264, 1] for 12

1F . 

Hence, the fuzzy state transition matrix is represented as 

 
















=

ZZZ

ZZZ

Z ]1,7264.0[]6863.0,1976.0[

σ1 .  

The next state vector can be determined by 

[ ]]1,7264.0[]6863.0,1976.0[σqq 101 Z== o . 

2.4.6 Type-2 Fuzzy Sets for the Parameter Definitions and Type-1 

Fuzzy Sets for the Parameter Characteristics (Scenario 6) 

 

Figure 2.9: Determining the fuzzy event transition matrix for regimen 2 

under the scenario 6 
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This scenario is the combination of scenario 2 and scenario 4. While the 

consensus of the diverse definitions of state is defined by type-2 fuzzy sets, the 

clinical parameters for a regimen are defined as symmetrical triangular type-1 

fuzzy sets. Applying the fuzzy intersection on the triangular type-1 fuzzy set and 

the type-2 fuzzy set for “High”, it results in an FOU which is the deep dark region 

shown in Figure 2.9. The FOU is bounded by the upper primary membership 

function in equation (2.14) and the lower primary membership function in equation 

(2.15) given below: 
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where 
FH

y  and FHy  are the respective upper and lower primary membership 

functions of  “High” for future drug options of regimen 2. 

The range of the primary membership grades of the type-2 fuzzy set (the 

dark region in Figure 2.9) assigned for the domain of fuzzy set for 13

1
F as well as 

the membership function can be determined by using the height type-reducer 
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method expressed in the equation (2.9). As the interval type-2 fuzzy set has the 

secondary membership grade of the interval type-2 fuzzy set equals 1, the 

equation (2.9) will determine the highest primary membership grade for each 

value of x in the universe of discourse. 

Applying equation (2.9) to the type-2 fuzzy set (the dark region for “High” in 

Figure 2.6) over the universe of discourse for x from 50 to 100 will result in the 

value of the primary grade changing from 0 to 0.5718 and the corresponding 

membership grade equal to 1. Therefore, 13

1
F can be represented by the interval [0, 

0.5718]. We employ the same procedure for the “Medium” and yield its associated 

interval [0, 0.9812] for 12

1F . 

Hence, the fuzzy state transition matrix is represented as 

 
















=

ZZZ

ZZZ

Z ]5718.0,0[]9812.0,0[

σ1 .  

The next state vector can be determined by 

[ ]]5718.0,0[]9812.0,0[σqq 101 Z== o . 
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2.4.7 Type-2 Fuzzy Sets for the Parameter Definitions and Type-2 

Fuzzy Sets for the Parameter Characteristics (Scenario 7) 

 

Figure 2.10: Determining the fuzzy event transition matrix for regimen 2 

under the scenario 7 

This scenario is the combination of scenario 3 and scenario 4. While the 

consensus of the diverse definitions of parameter state is defined by type-2 fuzzy 

sets, the clinical parameters for a regimen are defined as symmetrical triangular 

type-2 fuzzy sets. Their FOUs are depicted in Figure 2.10 and their boundary 

functions, the upper primary membership function and the lower primary 

membership function, have mathematical expressions in scenario 3 (equation 

(2.5) and (2.6)) and scenario 4 (equation (2.10) and (2.11)) for the clinical 

parameter and the definitions of parameter state, respectively. 
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Applying the fuzzy intersection on the triangular type-2 fuzzy set and the 

type-2 fuzzy set for “High” results in an FOU which is the deep dark region shown 

in Figure 2.10. The FOU is bounded by the upper primary membership function in 

equation (2.16) and the lower primary membership function in equation (2.17) 

given below: 
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where 
FH

y  and FHy  are the respective upper and lower primary membership 

functions of  “High” for future drug options of regimen 2. 

The equation (2.9) for the height type-reducer method is used to determine 

the range of the primary membership grades of the type-2 fuzzy set (the dark 

region in Figure 2.10) assigned for the domain of fuzzy set for 13

1
F , as well as the 
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membership function. The second membership grade of the interval type-2 fuzzy 

set is 1. 

Applying equation (2.9) to the type-2 fuzzy set (the dark region for “High” in 

Figure 2.10) over the universe of discourse for x from 50 to 100 will result in the 

value of the primary grade changing from 0 to 0.5987 and the corresponding 

membership grade equal to 1. Therefore, 13

1
F can be represented by the interval [0, 

0.5987]. We employ the same procedure for the “Medium” and yield its associated 

interval [0, 0.9818] is for 12

1F . 

Hence, the fuzzy state transition matrix is represented as 

 
















=

ZZZ

ZZZ

Z ]5987.0,0[]9818.0,0[

σ1 .  

The next state vector can be determined by 

[ ]]5987.0,0[]9818.0,0[σqq 101 Z== o . 

2.5 Retrospective patient data 

The patient database [22, 31] was from the HIV/AIDS center founded in 

1994. Clinical information of More than 4500 patients was collected. Since 1998 

various highly active antiretroviral therapy regimens have been provided to 

patients. Clinical information of 35 patients used in this research was from the 98 

treatment-naïve patients who received one of three treatment regimens for 

antiretroviral therapy at the AIDS clinical center in 2001. The data of all 35 
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patients was extracted from the database shown in Table 2.7-2.8. Table 2.10 was 

the regimen-choice of three treatment regimens for the 32 treatment objectives 

assigned by specialist A and B individually.  
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Table 2.7: 35 retrospective patients with their clinical information of physicians, 

CD4+ counts, HIV RNA, age, gender, and homelessness treated at AIDS Clinical 

Center in 2001 

Patient CD4+ HIV RNA Age 

No. 
Physician 

(cell/µL) (copies/mL) (years) 
Gender Homeless 

1 PHYSICIAN 1 81 8500 35 Male No 

2 EXPERT A 777 15000 32 Female No 

3 PHYSICIAN 2 64 300 36 Male No 

4 EXPERT B. 63 750000 55 Male No 

5 PHYSICIAN 3 210 60000 49 Male No 

6 PHYSICIAN 2 350 10000 48 Female No 

7 EXPERT A 512 100000 38 Male No 

8 PHYSICIAN 2 50 375000 49 Male No 

9 EXPERT B. 180 8500 48 Male No 

10 PHYSICIAN 1 10 85000 34 Male No 

11 EXPERT A 380 15000 36 Male No 

12 PHYSICIAN 4 532 125000 24 Male Yes 

13 PHYSICIAN 2 48 175000 42 Male No 

14 PHYSICIAN 5 135 400000 51 Male No 

15 PHYSICIAN 1 164 30000 45 Male No 

16 PHYSICIAN 6 288 225000 40 Female No 

17 PHYSICIAN 7 255 30000 32 Male No 

18 PHYSICIAN 4 440 25000 35 Male No 

19 PHYSICIAN 7 315 100000 33 Male No 

20 PHYSICIAN 3 575 15000 23 Male No 

21 PHYSICIAN 5 306 40000 40 Male No 

22 PHYSICIAN 8 714 750000 27 Male No 

23 EXPERT B. 480 6500 44 Female No 

24 PHYSICIAN 1 575 35000 25 Female No 

25 EXPERT B. 510 275000 33 Male No 

26 PHYSICIAN 6 644 3500 49 Male Yes 

27 EXPERT B. 656 2000 44 Male No 

28 EXPERT B. 45 725000 27 Male No 

29 PHYSICIAN 9 81 275000 43 Female No 

30 EXPERT B. 50 10000 40 Male No 

31 PHYSICIAN 10 24 150000 42 Male No 

32 PHYSICIAN 3 11 250000 38 Male No 

33 EXPERT A 342 2500 38 Male No 

34 PHYSICIAN 11 40 750000 70 Male No 

35 EXPERT B. 162 100000 43 Male No 
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Table 2.8: 35 retrospective patients with their clinical information of behavior on 

illegal drugs or alcohol, mental illness problems, clinic visits, smoking, diabetes, 

and hepatitis B treated at AIDS Clinical Center in 2001 

Clinic visit 
Patient No. 

Active 
abuse 

Mental 
illness Missed >1 

Smoking Diabetes Hepatitis B 

1 Yes No No Yes No No 

2 No No No No No No 

3 No No No No No No 

4 No Yes No No No No 

5 Yes No No Yes No No 

6 Yes Yes Yes No No No 

7 Yes No Yes No No No 

8 No No No No No No 

9 No No No No No No 

10 Yes No No Yes No Yes 

11 No No Yes No No No 

12 Yes No No No No No 

13 Yes Yes No No No No 

14 Yes No Yes Yes Yes Yes 

15 No No No Yes No No 

16 Yes No No Yes Yes No 

17 No No No Yes No No 

18 Yes Yes No Yes No No 

19 No No No Yes No No 

20 No No Yes No No No 

21 Yes Yes Yes Yes No No 

22 Yes No Yes Yes No No 

23 Yes No No Yes No No 

24 No No No No No No 

25 Yes Yes No Yes No No 

26 No Yes No No No No 

27 No No No Yes No No 

28 Yes No No Yes Yes No 

29 Yes No No Yes No No 

30 No No No No No No 

31 No No No No No No 

32 No No No No No No 

33 No No No No No Yes 

34 No No No No No No 

35 No Yes No No No No 
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Table 2.9: 35 retrospective patients with their clinical information of hepatitis C, 

total cholesterol, HDL cholesterol, blood pressure, and given medicines treated at 

AIDS Clinical Center in 2001 

Cholesterol HDL Blood Pressure 
Patient No. Hepatitis C 

(mg/dL) (mg/dL) (mm Hg) 
Medications 

1 Yes <100 <20 147 Regimen 3 

2 No 144 44 105 Regimen 3 

3 No 223 69 132 Regimen 3 

4 No <100 <20 99 Regimen 3 

5 No 166 43 138 Regimen 3 

6 Yes 107 34 113 Regimen 3 

7 No 165 <20 114 Regimen 3 

8 No <100 <20 131 Regimen 3 

9 No 198 53 136 Regimen 1 

10 No 156 <20 122 Regimen 3 

11 No 142 45 121 Regimen 3 

12 No 189 62 126 Regimen 3 

13 No <100 <20 120 Regimen 3 

14 No 159 36 141 Regimen 3 

15 No <100 <20 120 Regimen 1 

16 No 154 43 119 Regimen 3 

17 No 196 56 154 Regimen 2 

18 No 129 <20 110 Regimen 3 

19 No <100 <20 132 Regimen 3 

20 No <100 <20 120 Regimen 1 

21 No 139 33 137 Regimen 3 

22 No 168 34 95 Regimen 3 

23 Yes 133 52 112 Regimen 3 

24 No 149 <20 135 Regimen 3 

25 No <100 <20 118 Regimen 3 

26 No 172 35 139 Regimen 2 

27 No 141 30 118 Regimen 3 

28 No 108 <20 105 Regimen 3 

29 No <100 <20 133 Regimen 3 

30 No <100 <20 105 Regimen 3 

31 No 192 32 115 Regimen 1 

32 No 143 <20 104 Regimen 3 

33 No 171 42 134 Regimen 3 

34 No 163 21 160 Regimen 2 

35 No <100 <20 115 
Regimen 3 
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Table 2.10: Regimens assigned by AIDS expert A and B for the preferable 

regimen-choices regarding the 32 treatment objectives   

Treatment Objectives 1
st
 choice 2

nd
 choice 3

rd
 choice 

Potency Adherence 
Adverse 
Events 

Future Drug 
Options 

Expert 
A 

Expert 
B 

Expert 
A 

Expert 
B 

Expert 
A 

Expert 
B 

High Easy Medium High 1 3 2 1 3 2 

High Easy Medium Medium 1 1 2 2 3 3 

High Easy Low High 1 3 3 1 2 2 

High Easy Low Medium 1 1 2 2 3 3 

High Easy Very Low High 1 3 3 1 2 2 

High Easy Very low Medium 1 3 2 1 3 2 

High Moderate Medium High 1 3 2 1 3 2 

High Moderate Medium Medium 1 1 2 2 3 3 

High Moderate Low High 1 3 2 1 3 2 

High Moderate Low Medium 1 1 2 2 3 3 

High Moderate Very Low High 1 3 2 1 3 2 

High Moderate Very low Medium 1 3 2 1 3 2 

High Challenging Medium High 1 3 2 1 3 2 

High Challenging Medium Medium 1 1 2 2 3 3 

High Challenging Low High 1 3 2 1 3 2 

High Challenging Low Medium 1 1 2 2 3 3 

High Challenging Very Low High 1 3 2 1 3 2 

High Challenging Very low Medium 1 3 2 1 3 2 

Medium Easy Medium High 3 3 1 2 2 1 

Medium Easy Medium Medium 1 3 2 2 3 1 

Medium Easy Low High 3 3 2 2 1 1 

Medium Easy Low Medium 1 3 2 2 3 1 

Medium Easy Very Low High 3 3 1 2 2 1 

Medium Easy Very Low Medium 1 3 2 2 3 1 

Medium Moderate Medium High 3 3 1 2 2 1 

Medium Moderate Low High 3 3 1 2 2 1 

Medium Moderate Very Low High 3 3 1 2 2 1 

Medium Moderate Very Low Medium 1 3 2 2 3 1 

Medium Challenging Medium High 3 3 1 1 2 2 

Medium Challenging Low High 3 3 1 1 2 2 

Medium Challenging Very Low High 3 3 1 2 2 1 

Medium Challenging Very Low Medium 1 3 2 2 3 1 
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2.6 Simulation Results 

The EFDES-based regimen selection system was implemented by using 

MATLAB. The medical information on the same 35 patients used in the FDES-

based system was put into the system. We did experiments under the seven 

scenarios and evaluated the system’s performance in terms of retrospectively 

matching the 35 patients’ actual prescriptions. Twelve of the 35 patients were 

treated by the two HIV/AIDS experts. These two expert physicians involved in the 

system development (e.g., weighting the regimens for each of 32 treatment 

objectives).  The remaining 23 patients were treated by 11 HIV/AIDS experts 

without contributing to system training, those results in the mean and standard 

deviation of patients per expert being 2 and 1.97, respectively.  

The results are shown in Table 2.11, 2.11, 2.12 and Table 2.14, where the 

meanings of ∆m, ∆x, ∆w, and ∆v are given above (e.g., Figure 2.2 and Figure 2.3). 

Table 2.15 contains all seven scenarios that provide the patients’ details of 

regimens experimentally assigned by the system against the historical 

prescriptions.  
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Table 2.11: First-choice regimens assigned by the EFDES-based system model 

against the actual regimens given to the 35 patients under scenario 1, 2, and 3   

Assigned Regimens 

The EFDES- Based System Model 

Scenario 1 Scenario 2 Scenario 3 

∆v (%) ∆x (%) ∆x, ∆w (%) 
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p
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2 6 10 1 3 5 1,2 3,2 3,4 5,2 5,4 

1 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

2 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

3 10 3 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 

5 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

6 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

7 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

8 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 

9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 

11 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

12 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

13 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 

14 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 

15 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

16 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 

17 23 2 3 3 3 3 3 3 3 3 3 3 3 3 3 

18 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

19 24 3 1 3 1 1 1 1 1 3 1 1 1 1 1 

20 23 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

21 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

22 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

23 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

24 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

25 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

26 23 2 3 3 3 3 3 3 3 3 3 3 3 3 3 

27 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

28 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 

29 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 

30 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

31 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

32 10 3 1 1 1 1 1 1 1 1 1 1 1 1 1 

33 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

34 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 

35 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 
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Table 2.12: First-choice regimens assigned by the EFDES-based system model 

against the actual regimens given to the 35 patients under scenario 4 and 5   

Assigned Regimens 

The EFDES- Based System Model 

Scenario 4 Scenario 5 

∆m (%) ∆m, ∆v (%) 
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1 2 3 1,2 1,6 1,10 2,2 2,6 2,10 3,2 3,6 3,10 

1 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

2 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

3 10 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

5 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

6 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

7 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

8 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

11 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

12 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

13 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

14 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

15 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

16 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

17 23 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

18 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

19 24 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 

20 23 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

21 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

22 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

23 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

24 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

25 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

26 23 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

27 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

28 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

29 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

30 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

31 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

32 10 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

33 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

34 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

35 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 
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Table 2.13: First-choice regimens assigned by the EFDES-based system model 

against the actual regimens given to the 35 patients under scenario 6 

Assigned Regimens 

The EFDES- Based System Model 

Scenario 6 

∆m, ∆x (%) 
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1,1 1,3 1,5 2,1 2,3 2,5 3,1 3,3 3,5 

1 23 3 3 3 3 3 3 3 3 3 3 3 3 

2 23 3 3 3 3 3 3 3 3 3 3 3 3 

3 10 3 1 1 1 1 1 1 1 1 1 1 1 

4 9 3 1 3 3 3 3 3 3 3 3 3 3 

5 23 3 3 3 3 3 3 3 3 3 3 3 3 

6 23 3 3 3 3 3 3 3 3 3 3 3 3 

7 23 3 3 3 3 3 3 3 3 3 3 3 3 

8 9 3 1 3 3 3 3 3 3 3 3 3 3 

9 10 1 1 1 1 1 1 1 1 1 1 1 1 

10 9 3 1 3 3 3 3 3 3 3 3 3 3 

11 23 3 3 3 3 3 3 3 3 3 3 3 3 

12 23 3 3 3 3 3 3 3 3 3 3 3 3 

13 9 3 1 3 3 3 3 3 3 3 3 3 3 

14 9 3 1 3 3 3 3 3 3 3 3 3 3 

15 10 1 1 1 1 1 1 1 1 1 1 1 1 

16 9 3 1 3 3 3 3 3 3 3 3 3 3 

17 23 2 3 3 3 3 3 3 3 3 3 3 3 

18 23 3 3 3 3 3 3 3 3 3 3 3 3 

19 24 3 1 3 1 1 1 1 1 1 1 1 1 

20 23 1 3 3 3 3 3 3 3 3 3 3 3 

21 23 3 3 3 3 3 3 3 3 3 3 3 3 

22 23 3 3 3 3 3 3 3 3 3 3 3 3 

23 23 3 3 3 3 3 3 3 3 3 3 3 3 

24 23 3 3 3 3 3 3 3 3 3 3 3 3 

25 23 3 3 3 3 3 3 3 3 3 3 3 3 

26 23 2 3 3 3 3 3 3 3 3 3 3 3 

27 23 3 3 3 3 3 3 3 3 3 3 3 3 

28 9 3 1 3 3 3 3 3 3 3 3 3 3 

29 9 3 1 3 3 3 3 3 3 3 3 3 3 

30 23 3 3 3 3 3 3 3 3 3 3 3 3 

31 10 1 1 1 1 1 1 1 1 1 1 1 1 

32 10 3 1 1 1 1 1 1 1 1 1 1 1 

33 23 3 3 3 3 3 3 3 3 3 3 3 3 

34 10 2 1 1 1 1 1 1 1 1 1 1 1 

35 9 3 1 3 3 3 3 3 3 3 3 3 3 
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Table 2.14: First-choice regimens assigned by the EFDES-based system model 

against the actual regimens given to the 35 patients under scenario 7   

Assigned Regimens 

The EFDES- Based System Model 

Scenario 7 

∆m, ∆x, ∆w (%) 
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1,1,2 1,3,2 1,3,4 1,5,2 1,5,4 2,1,2 2,3,2 2,3,4 

1 23 3 3 3 3 3 3 3 3 3 3 3 

2 23 3 3 3 3 3 3 3 3 3 3 3 

3 10 3 1 1 1 1 1 1 1 1 1 1 

4 9 3 1 3 3 3 3 3 3 3 3 3 

5 23 3 3 3 3 3 3 3 3 3 3 3 

6 23 3 3 3 3 3 3 3 3 3 3 3 

7 23 3 3 3 3 3 3 3 3 3 3 3 

8 9 3 1 3 3 3 3 3 3 3 3 3 

9 10 1 1 1 1 1 1 1 1 1 1 1 

10 9 3 1 3 3 3 3 3 3 3 3 3 

11 23 3 3 3 3 3 3 3 3 3 3 3 

12 23 3 3 3 3 3 3 3 3 3 3 3 

13 9 3 1 3 3 3 3 3 3 3 3 3 

14 9 3 1 3 3 3 3 3 3 3 3 3 

15 10 1 1 1 1 1 1 1 1 1 1 1 

16 9 3 1 3 3 3 3 3 3 3 3 3 

17 23 2 3 3 3 3 3 3 3 3 3 3 

18 23 3 3 3 3 3 3 3 3 3 3 3 

19 24 3 1 3 1 1 1 1 1 1 1 1 

20 23 1 3 3 3 3 3 3 3 3 3 3 

21 23 3 3 3 3 3 3 3 3 3 3 3 

22 23 3 3 3 3 3 3 3 3 3 3 3 

23 23 3 3 3 3 3 3 3 3 3 3 3 

24 23 3 3 3 3 3 3 3 3 3 3 3 

25 23 3 3 3 3 3 3 3 3 3 3 3 

26 23 2 3 3 3 3 3 3 3 3 3 3 

27 23 3 3 3 3 3 3 3 3 3 3 3 

28 9 3 1 3 3 3 3 3 3 3 3 3 

29 9 3 1 3 3 3 3 3 3 3 3 3 

30 23 3 3 3 3 3 3 3 3 3 3 3 

31 10 1 1 1 1 1 1 1 1 1 1 1 

32 10 3 1 1 1 1 1 1 1 1 1 1 

33 23 3 3 3 3 3 3 3 3 3 3 3 

34 10 2 1 1 1 1 1 1 1 1 1 1 

35 9 3 1 3 3 3 3 3 3 3 3 3 

 



 

 

78 

Table 2.14: (continued) First-choice regimens assigned by the EFDES-based 

system against the actual regimens given to the 35 patients under scenario 7   

Assigned Regimens 

The EFDES- Based System Model 

Scenario 7 

∆m, ∆x, ∆w (%) 
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2,5,2 2,5,4 3,1,2 3,3,2 3,3,4 3,5,2 3,5,4 

1 23 3 3 3 3 3 3 3 3 3 3 

2 23 3 3 3 3 3 3 3 3 3 3 

3 10 3 1 1 1 1 1 1 1 1 1 

4 9 3 1 3 3 3 3 3 3 3 3 

5 23 3 3 3 3 3 3 3 3 3 3 

6 23 3 3 3 3 3 3 3 3 3 3 

7 23 3 3 3 3 3 3 3 3 3 3 

8 9 3 1 3 3 3 3 3 3 3 3 

9 10 1 1 1 1 1 1 1 1 1 1 

10 9 3 1 3 3 3 3 3 3 3 3 

11 23 3 3 3 3 3 3 3 3 3 3 

12 23 3 3 3 3 3 3 3 3 3 3 

13 9 3 1 3 3 3 3 3 3 3 3 

14 9 3 1 3 3 3 3 3 3 3 3 

15 10 1 1 1 1 1 1 1 1 1 1 

16 9 3 1 3 3 3 3 3 3 3 3 

17 23 2 3 3 3 3 3 3 3 3 3 

18 23 3 3 3 3 3 3 3 3 3 3 

19 24 3 1 3 1 1 1 1 1 1 1 

20 23 1 3 3 3 3 3 3 3 3 3 

21 23 3 3 3 3 3 3 3 3 3 3 

22 23 3 3 3 3 3 3 3 3 3 3 

23 23 3 3 3 3 3 3 3 3 3 3 

24 23 3 3 3 3 3 3 3 3 3 3 

25 23 3 3 3 3 3 3 3 3 3 3 

26 23 2 3 3 3 3 3 3 3 3 3 

27 23 3 3 3 3 3 3 3 3 3 3 

28 9 3 1 3 3 3 3 3 3 3 3 

29 9 3 1 3 3 3 3 3 3 3 3 

30 23 3 3 3 3 3 3 3 3 3 3 

31 10 1 1 1 1 1 1 1 1 1 1 

32 10 3 1 1 1 1 1 1 1 1 1 

33 23 3 3 3 3 3 3 3 3 3 3 

34 10 2 1 1 1 1 1 1 1 1 1 

35 9 3 1 3 3 3 3 3 3 3 3 
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Table 2.15: Comparison of 35 patients’ prescribed regimen with those assigned by 

the EFDES-based system 

  ∆m ∆x ∆w ∆v 

Number of  first-
choice regimens 

matched with 
prescribed regimens 
for the 35 patients 

      2% 28 

      6% 28 Scenario 1 

      10% 28 

  1%     28 

  3%     28 Scenario 2 

  5%     29 

  1% 2%   28 

  3% 2%   28 

  3% 4%   28 

  5% 2%   28 

Scenario 3 

  5% 4%   28 

1%       28 

2%       28 Scenario 4 

3%       28 

1%     2% 28 

1%     6% 28 

1%     10% 28 

2%     2% 28 

2%     6% 28 

2%     10% 28 

3%     2% 28 

3%     6% 28 

Scenario 5 

3%     10% 28 
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Table 2.15: (continued) Comparison of 35 patients’ prescribed regimen with those 

assigned by the EFDES-based system 

  ∆m ∆x ∆w ∆v 

Number of  first-
choice regimens 

matched with 
prescribed regimens 
for the 35 patients 

1% 1%     28 

1% 3%     28 

1% 5%     28 

2% 1%     28 

2% 3%     28 

2% 5%     28 

3% 1%     28 

3% 3%     28 

Scenario 6 

3% 5%     28 

1% 1% 2%   28 

1% 3% 2%   28 

1% 3% 4%   28 

1% 5% 2%   28 

1% 5% 4%   28 

2% 1% 2%   28 

2% 3% 2%   28 

2% 3% 4%   28 

2% 5% 2%   28 

2% 5% 4%   28 

3% 1% 2%   28 

3% 3% 2%   28 

3% 3% 4%   28 

3% 5% 2%   28 

Scenario 7 

3% 5% 4%   28 
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2.7 Discussion 

Specialist A treated patient numbers 2, 7, 11 and 33, whereas the specialist 

B treated the patient numbers 4, 9, 23, 25, 27, 28, 30 and 35. The clinical 

information of 35 retrospective patients is in Table 2.7-2.10. In all seven 

scenarios, the first-choice treatment regimens computed by the EFDES system 

match the regimens selected by the two specialists for the 12 patients 100% of 

times. This result may indicate that the system captures and represents the 

diverse knowledge of these two specialists well.  

As shown in the result tables, most agreement between the computer and 

the actual prescriptions is 80% (28 out of 35), exempting scenario 2 with ∆x being 

5% which is 82.9% (29 out of 35). To obtain such high numbers of 29 first-choice 

matching regimens, the system assigned the right regimen (i.e., regimen 3) to 

patient number 19 with the treatment objective: “medium” potency, “easy’ 

adherence, “very low” adverse events, and “medium” future drug options. Under 

other scenarios, patient number 19 was assigned with regimen 1 instead. 

Unfortunately, this case has never again been observed since the first time. 

Basically, an initial condition value for the genetic algorithm is randomly generated 

which takes time to initiate the right one. It will take even more time when dealing 

with a large dimension of the initial values like the one in the EFDES-based 

system. The system normally provides 80% matching.  

The uncertainties of the fuzzy state vectors like those in the seven 

scenarios need to be represented in a form of the certainties done by 
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defuzzification and then will be used for the Regimen Selection Optimizer. For 

instance, ])]5052.0,0[]9509.0,0[([Zdef is [0 0.4754 0.2526], according to 

equation (2.3.1.2) for the future drug options for regimen 2 (Figure 2.4) in scenario 

2 and the corresponding normalized state vector is [0 0.6530 0.3470]. While the 

normalized state vector for the future drug options for the FDES-based in Figure 

1.1 is [0 0.6993 0.3007], the closest normalized state vector [0 0.6963 0.3037] is 

obtained from scenario 4 when ∆x equals 1% and the farthest normalized state 

vector [0 0.6209 0.3791] is obtained from scenario 6 when ∆m and ∆x equal 3% 

and 5%, respectively. The system model shows that the Regimen Selection 

Optimizer for the EFDES-based system is able to handle at least those ranges of 

uncertainties in Table 2.11. For example, normalized state vectors for future drug 

options for regimen 2 are in the range from [0 0.6209 0.3791] to [0 0.6963 0.3037] 

that result in the same number of matching regimens (28 out of 35).  

The normal level of performance is a bit lower than the FDES-based 

system, which is 82.9% (29 out of 35). However, that level shows the benefit of 

the EFDES system providing the domain experts with the ability to use their 

individual diverse knowledge and expertise. The equality respective is kept to 

those experts. 
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CHAPTER 3 

SELF-LEARNING EFDES-BASED HIV/AIDS TREATMENT REGIMEN 

SELECTION SYSTEM 

  

The EFDES-based HIV/AIDS treatment selection system with static mode 

(i.e., without self-learning mode) is a part of the research work. It has been studied 

and experimented, as the results have shown in the previous chapter. An 

adaptation of the HIV disease to a new environment would be remarkable as 

recognized by the revising of the HIV/AIDS treatment every few years. How to 

adapt the ability of self-learning to the system would be another challenging task. 

The theory of self-learning for the fuzzy discrete event system would be 

contributed in the development of the EFDES-based system with self-learning.  

Adding a self-learning ability to the EFDES-based system will make the 

system even more useful where the evaluation of the HIV/AIDS treatment 

changes rapidly. The EFDES-based system with self-learning will be developed, 

and the complete system will then be used as an HIV/AIDS treatment decision-

supporting system that will give huge benefits to those clinical institutes with 

limited numbers of the HIV/AIDS specialists. 

3.1  EFDES-Based HIV/AIDS Regimen Selection System with Self-Learning 

The approach of the self-learning system will utilize the theory of the self-

learning fuzzy discrete system [31]. There will be four regimens involved in the 

system for self-learning. Each of them has the same four clinical parameters: 
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potency, adherence, adverse events, and future drug options. As mentioned in the 

previous chapter, without regarding the initial state, there are two states (e.g., 

medium and high) for potency, three for adherence, three for adverse events and 

two for future drug options. Theoretically, the combinations of the four clinical 

parameters generate 36 treatment objectives, but only 32 treatment objectives 

exist clinically. One of them will be labeled on a patient when classified. Which 

regimen to be assigned will be the one with the highest effectiveness measure 

computed by the system. Under the EFDES-based system, in general, the 

fuzzification of a fuzzy state vector of which components can be a type-1 fuzzy set 

or an interval number may need defuzzification into a crisp state vector in order to 

compute the effectiveness measure. The mathematical expression of the 

effectiveness measure (E) for the j-th regimen regarding the h-th treatment 

objective can be defined in a form of the function as 

,41,1),,...,( 11 <<≤≤⋅⋅= nPkWSWSfE nknhnjkjhhj           (3.1) 

where f is a function. Shnj is a new fuzzy state vector when an event occurs (i.e., 

prescribing a regimen), which is obtained by performing fuzzy logic operation (i.e., 

max-product) to the current fuzzy state vector with a state transition matrix. The 

four clinical parameters considered are indicated by n and Pn is the number states 

of the corresponding parameter (e.g., P1=2 for medium and high for potency). 

Finally, Wkn is the weight vector corresponding to Shnj. 
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The linear function in the form of the weighted average of clinical 

parameters will be utilized as a predicting function. With the same significant given 

to all clinical parameters, the linear function can be expressed as 

0

4

1

CWSE
n

knhnjhj +⋅=∑
=

          (3.2) 

where C0 is a constant offset. 

In the equation (3.2), only the weight vector Wkn will be considered as a 

part of the system to be learned. The self-learning EFDES-based system can be 

adapted as shown in Figure 3.1. In order to prove the adapted system model, sets 

of data need to be acquired for the system training.  There are four data-learning 

settings. Their criteria of these various data settings are in the following section. 
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Figure 3.1: Block diagram of the EFDES-based HIV/AIDS treatment 

selection system with self-learning 

 

3.2  Settings for the Self-Learning System Evaluation  

As from the clinical data base as well as in [31], the four treatment 

regimens, the three regimens in Table 1.1 and the regimen which consisted of 

Combivir (CBV) and Nelfinavir (NEV), will be used for the self-learning system. 

Table 3.1 provides the clinical parameter characteristics of these four treatment 

regimens. Each of the four regimens with points individually given by two AIDS 
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experts for all 32 treatment objectives in Table 3.2-3.3 would be data for data-

learning setting. The AIDS experts rated the four regimens following the 

instruction of a 10-point scoring with increments of 0.5. The highest score is 10. 

The experts’ preference of regimens for the treatment objective was indicated in 

the form of scores rated among the four regimens. The regimen with the highest 

score was the most preferable as the first choice. In the case of the same scores, 

one of the regimens involved was selected randomly. 

 

Table 3.1: Four clinical parameters of the four HIV/AIDS treatment regimens 

 Potency Adherence 
Adverse 
Events 

Future Drug 
Options 

Regimen 1: 
CBV+NEV 

85% 55% 30% 80% 

Regimen 2: 
CBV+EFV 

90% 80% 20% 60% 

Regimen 3: 
CBV+NVP 

85% 85% 20% 65% 

Regimen 4: 
CBV+ABC 

80% 90% 10% 85% 
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Table 3.2: Regimens assigned by AIDS experts A and B for the preferable scores 

of regimen 1 and regimen 2 regarding the 32 treatment objectives. Also marked 

are the 10 selected treatment objectives used in Learning Setting 3 [31]   

Treatment Objectives Regimen 1 Regimen 2 

Potency Adherence 
Adverse 
Events 

Future Drug 
Options 

Expert 
A 

Expert 
B 

Expert 
A 

Expert 
B 

10 Selected 
Objectives 

for Learning 
Setting 3 

High Easy Medium High 5.5 6.0 7.0 4.0 X 

High Easy Medium Medium 6.5 3.0 9.0 9.0  

High Easy Low High 5.5 3.5 6.5 5.0  

High Easy Low Medium 6.5 4.0 8.5 8.5  

High Easy Very Low High 5.0 3.0 6.5 7.0  

High Easy Very low Medium 6.0 2.0 8.5 8.0 X 

High Moderate Medium High 6.5 7.0 8.0 6.0 X 

High Moderate Medium Medium 6.5 7.0 10.0 9.0  

High Moderate Low High 6.5 7.0 7.5 5.0  

High Moderate Low Medium 7.5 6.0 9.5 8.5  

High Moderate Very Low High 3.0 3.0 7.5 5.0  

High Moderate Very low Medium 7.0 3.0 9.5 8.0 X 

High Challenging Medium High 7.5 9.0 8.0 4.0 X 

High Challenging Medium Medium 8.5 7.0 10.0 9.0  

High Challenging Low High 7.5 7.5 7.5 4.0  

High Challenging Low Medium 8.5 6.5 9.5 9.0  

High Challenging Very Low High 7.0 3.0 7.5 5.0  

High Challenging Very low Medium 8.0 3.0 9.5 8.0 X 

Medium Easy Medium High 6.5 7.0 7.0 4.5 X 

Medium Easy Medium Medium 7.5 5.0 9.0 8.0  

Medium Easy Low High 6.5 5.0 6.5 4.0  

Medium Easy Low Medium 7.5 2.0 8.5 8.0  

Medium Easy Very Low High 3.0 3.0 6.5 4.5  

Medium Easy Very Low Medium 7.0 3.0 8.5 7.0 X 

Medium Moderate Medium High 7.5 9.0 8.0 3.5  

Medium Moderate Low High 7.5 7.5 7.5 3.5 X 

Medium Moderate Very Low High 7.0 3.0 7.5 3.5  

Medium Moderate Very Low Medium 8.0 3.0 9.5 8.0  

Medium Challenging Medium High 8.5 9.0 8.0 6.0  

Medium Challenging Low High 8.5 9.0 7.5 4.0  

Medium Challenging Very Low High 8.0 3.0 7.5 3.5  

Medium Challenging Very Low Medium 9.0 6.0 9.5 8.0 X 
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Table 3.3: Regimens assigned by AIDS experts A and B for the preferable scores 

of regimen 3 and regimen 4 regarding the 32 treatment objectives. Also marked 

are the 10 selected treatment objectives used in Learning Setting 3 [31]   

Treatment Objectives Regimen 3 Regimen 4 

Potency Adherence 
Adverse 
Events 

Future Drug 
Options 

Expert 
A 

Expert 
B 

Expert 
A 

Expert 
B 

10 Selected 
Objectives 

for Learning 
Setting 3 

High Easy Medium High 6.5 3.5 6.5 9.0 X 

High Easy Medium Medium 8.5 8.5 6.5 8.0  

High Easy Low High 6.0 4.5 6.5 9.0  

High Easy Low Medium 8.0 8.0 6.5 7.0  

High Easy Very Low High 5.5 6.0 6.0 9.0  

High Easy Very low Medium 7.5 7.5 6.0 8.5 X 

High Moderate Medium High 7.5 5.0 6.5 8.5 X 

High Moderate Medium Medium 9.5 8.5 7.5 8.0  

High Moderate Low High 7.0 4.0 6.5 9.0  

High Moderate Low Medium 9.0 8.0 6.5 7.5  

High Moderate Very Low High 6.5 4.0 6.0 9.0  

High Moderate Very low Medium 8.5 7.5 6.0 8.5 X 

High Challenging Medium High 7.5 3.5 6.5 8.5 X 

High Challenging Medium Medium 9.5 8.5 6.5 6.5  

High Challenging Low High 7.0 3.5 6.5 9.0  

High Challenging Low Medium 9.0 8.5 6.5 7.0  

High Challenging Very Low High 6.5 4.0 6.5 8.5  

High Challenging Very low Medium 8.5 7.5 6.5 9.0 X 

Medium Easy Medium High 7.0 5.0 8.0 9.5 X 

Medium Easy Medium Medium 9.0 8.5 8.0 9.0  

Medium Easy Low High 6.5 3.0 8.0 9.5  

Medium Easy Low Medium 8.5 8.5 8.0 9.5  

Medium Easy Very Low High 6.0 5.0 7.5 9.5  

Medium Easy Very Low Medium 8.0 7.5 7.5 9.5 X 

Medium Moderate Medium High 8.0 4.0 8.0 9.5  

Medium Moderate Low High 7.5 4.0 8.0 9.5 X 

Medium Moderate Very Low High 7.0 4.0 7.5 9.5  

Medium Moderate Very Low Medium 9.0 8.0 7.5 9.5  

Medium Challenging Medium High 8.0 5.0 8.0 9.5  

Medium Challenging Low High 7.5 3.5 8.0 9.5  

Medium Challenging Very Low High 7.0 4.0 7.5 9.5  

Medium Challenging Very Low Medium 9.0 8.0 7.5 9.5 X 

 



 

 

90 

There are four data-learning settings as follows which will be conducted to 

evaluate the EFDES- based system’s prediction capabilities. 

• Data-learning setting 1 

In this data setting 1, a set of three regimens would be drawn from the pool 

of the four regimens. Thus, it provides 4 sets of the three regimens contributing 

with the consensus choices of specialist A and B or the individual choices of 

specialist A and B for all the 32 treatment objectives that the system would learn 

from and then predict the choices of the undrawn regimen regarding the 32 

treatment objectives. For instance, the system would predict the choice of the 

regimen 1 for all 32 treatment objectives after learning the set of [Regimen 2, 

Regimen 3, Regimen 4]. Eventually, these four sets consisted of [Regimen 2, 

Regimen 3, Regimen 4], [Regimen 1, Regimen 3, Regimen 4], [Regimen 1, 

Regimen 2, Regimen 4], and [Regimen 1, Regimen 2, Regimen 3].  

• Data-learning setting 2 

In this data setting 2, a set of two regimens would be drawn from the pool 

of the four regimens. Thus, it provides 6 sets of the two regimens contributing with 

the consensus choices of specialist A and B or the individual choices of specialist 

A and B regarding the 32 treatment objectives that the system would learn from 

and then predict the choices of the undrawn regimen for all the treatment 

objectives. For instance, the system would predict the choice of the Regimen 1 for 

all 32 treatment objectives after learning each of two different sets; [Regimen 2, 

Regimen 3] and [Regimen 2, Regimen4]. These six sets consisted of [Regimen 1, 
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Regimen 2], [Regimen 1, Regimen 3], [Regimen 1, Regimen 4], [Regimen 2, 

Regimen 3], [Regimen 2, Regimen 4], and [Regimen 3, Regimen 4]. 

• Data-learning setting 3 

In this data setting 3, a set of two regimens would be drawn from the pool 

of the three regimens: Regimen 2, Regimen 3, and Regimen 4. That drawing 

provides 3 sets of the two regimens contributing with the consensus choices of 

specialist A and B regarding ten selected treatment objectives that the system 

would learn from and then predict the choices of the undrawn regimens for 32 

treatment objectives. Those treatment objectives marked in the last column in 

Table 3.2-3.3 were the selected treatment objectives used for this learning setting. 

The system would predict the choice of Regimen 2, Regimen 3, and Regimen 4 

for all the 32 treatment objectives after learning the set of [Regimen 3, Regimen 

4], [Regimen 2, Regimen4], and [Regimen 2, Regimen3], respectively. 

• Data-learning setting 4 

In this data setting 4, it would be the same as the data setting 3. There were 

three sets of two regimens drawn from the pool of the three regimens: Regimen 2, 

Regimen 3, and Regimen 4. The system would learn each of these three sets 

under the 32 treatment objectives and then predict the choices of regimens for the 

35 retrospective patients under their treatment objectives involved. 
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Table 3.4: Rankings of the consensus of AIDS experts A & B for the four regimens 

regarding the 32 treatment objectives  

Treatment Objectives Rankings of Consensus of  Experts A & B 

Potency Adherence 
Adverse 
Events 

Future Drug 
Options 

Regimen 1 Regimen 2 Regimen 3 Regimen 4 

High Easy Medium High 3 2 4 1 

High Easy Medium Medium 4 1 2 3 

High Easy Low High 4 2 3 1 

High Easy Low Medium 4 1 2 3 

High Easy Very Low High 4 2 3 1 

High Easy Very low Medium 4 1 2 3 

High Moderate Medium High 3 1 4 2 

High Moderate Medium Medium 4 1 2 3 

High Moderate Low High 2 3 4 1 

High Moderate Low Medium 3 1 2 4 

High Moderate Very Low High 4 2 3 1 

High Moderate Very low Medium 4 1 2 3 

High Challenging Medium High 1 3 4 2 

High Challenging Medium Medium 3 1 2 4 

High Challenging Low High 1 3 4 2 

High Challenging Low Medium 3 1 2 4 

High Challenging Very Low High 4 2 3 1 

High Challenging Very low Medium 4 1 2 3 

Medium Easy Medium High 2 4 3 1 

Medium Easy Medium Medium 4 2 1 3 

Medium Easy Low High 2 3 4 1 

Medium Easy Low Medium 4 3 2 1 

Medium Easy Very Low High 4 2 3 1 

Medium Easy Very Low Medium 4 2 3 1 

Medium Moderate Medium High 2 4 3 1 

Medium Moderate Low High 2 4 3 1 

Medium Moderate Very Low High 4 2 3 1 

Medium Moderate Very Low Medium 4 1 2 3 

Medium Challenging Medium High 1 3 4 2 

Medium Challenging Low High 1 3 4 2 

Medium Challenging Very Low High 2 3 4 1 

Medium Challenging Very Low Medium 4 1 2 3 

 

 



 

 

93 

3.3  Performance Evaluation with Simulation  

To learn the information on the four clinical parameters assigned by the 

AIDS experts A and B shown in Table 3.2 and Table 3.3, it needed to be in the 

form of score rankings used by the genetic algorithm. Four rankings of the 

regimen for each of the 32 treatment objectives would create a table of expert 

choices for the weight optimizer to search the weights so that it would provide the 

most possible matching of the first-choice regimens assigned by the  system and  

selected by the expert individually. 

 The consensus scores of the distinct scores rated by two AIDS experts 

were calculated in the manner done in [31]. Each score of the individual expert 

was divided by the corresponding standard deviation. We then needed to 

calculate the average score for every treatment objective and every regimen. 

There would be the results of 128 average scores of the two experts for the 32 

treatment objectives and the four regimens. These average scores represented 

the consensus of the two experts and were converted to rankings. The score 

rankings of the consensus of experts A and B is shown in Table 3.4. The highest 

average score was ranked as 1 and the lowest average score was ranked as 4.  

 The exact agreements among two AIDS experts on regimen choice for the 

treatment objectives were derived from Table 3.2 and Table 3.3, and their 

measures under various settings were shown in Table 3.5. Also, the agreement 

between each of the experts and their consensus from Table 3.4 were included in 

Table 3.5. The EFDES system performance was evaluated under four various 
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learning settings as imitating medical situations which would be encountered. 

Basically, these situations would arise as new regimens become available. The 

system would predict the new regimens based on clinical information for existing 

available regimens provided by AIDS experts. The first two learning settings 

occupied all completed information for the existing regimens provided by the 

experts. The performance prediction after the system learned these two settings 

were shown in Table 3.6-3.14. Learning setting 3 occupied some information for 

the existing regimens provided by the experts. After learning, the system 

generated the prediction results shown in Table 3.15-3.17. Learning setting 4 

involved 35 historical treatment patients. The prediction results against the given 

regimens to the patients after learning setting 4 was learned shown in Table 3.18-

3.26. The corresponding optimal weight vectors were shown in Table 3.27-3.32. 
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Table 3.5: Measures of exact agreement between two experts and measure of 

exact agreement between each of the two experts and their consensus under 

various prescribing conditions. 

Prescribing 

Exact 
agreement 
between all 4 

regimens 

3 of the 4 
regimens 
(excluding 

Regimen 1) 

3 of the 4 
regimens 
(excluding 

Regimen 2) 

3 of the 4 
regimens 
(excluding 

Regimen 3) 

3 of the 4 
regimens 
(excluding 

Regimen 4) 

Mean rate 

expert A and 
expert B 

37.5% 46.9% 46.9% 37.5% 50.0% 43.8% 

expert A and 
consensus of 
experts A&B 

62.5% 65.6% 78.1% 65.6% 75.0% 69.4% 

expert B and 
consensus of 
experts A&B 

68.8% 75.0% 68.8% 68.8% 75.0% 71.3% 
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Table 3.6: Prediction results achieved after the EFDES-based system learned 

under condition of learning setting 1 compared with expert A’s choices. 

Scenario 
Accuracy of  System-prediction Choices 

vs. 
Expert A’s Choices 

 ∆m ∆x ∆w ∆v 

Predicting 
Regimen 1 

 using 
Regimen 
2, 3 & 4 

Predicting 
Regimen 2 

 using 
Regimen 
1, 3 & 4 

Predicting 
Regimen 3 

using 
Regimen 
1, 2 & 4 

Predicting 
Regimen 4 

 using 
Regimen 
1, 2 & 3 

Mean 
prediction 

   6% 30 (93.8%) 30 (93.8%) 32 (100%) 26 (81.3%) 29.5 (92.2%) 

Scenario 1  
   10% 31 (96.9%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.5 (92.2%) 

 3%   29 (90.6%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.0 (90.6%) 

Scenario 2 
 5%   29 (90.6%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.0 (90.6%) 

 3% 4%  32 (100%) 29 (90.6%) 28 (71.9%) 26 (81.3%) 28.8 (89.8%) 

Scenario 3 
 5% 4%  31 (96.9%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.5 (92.2%) 

1%    30 (93.8%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.3 (91.4%) 

Scenario 4 
2%    30 (93.8%) 32 (100%) 32 (100%) 26 (81.3%) 30.0 (93.8%) 

1%   6% 31 (96.9%) 29 (90.6%) 32 (100%) 32 (100%) 31.0 (96.9%) 

1%   10% 32 (100%) 31 (96.9%) 32 (100%) 26 (81.3%) 30.3 (94.5%) 

2%   6% 30 (93.8%) 29 (90.6%) 32 (100%) 32 (100%) 30.8 (96.1%) 

Scenario 5 

2%   10% 30 (93.8%) 32 (100%) 32 (100%) 32 (100%) 31.5 (98.4%) 

1% 3%   30 (93.8%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.3 (91.4%) 

1% 5%   32 (100%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.8 (93.0%) 

2% 3%   30 (93.8%) 31 (96.9%) 30 (93.8%) 26 (81.3%) 29.3 (91.4%) 

Scenario 6 

2% 5%   31 (96.9%) 30 (93.8%) 28 (87.5%) 26 (81.3%) 28.8 (89.8%) 

1% 3% 4%  29 (90.6%) 28 (87.5%) 32 (100%) 26 (81.3%) 28.8 (89.8%) 

1% 5% 4%  29 (90.6%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.0 (90.6%) 

2% 3% 4%  29 (90.6%) 31 (96.9%) 32 (100%) 26 (81.3%) 29.5 (92.2%) 

Scenario 7 

2% 5% 4%  29 (90.6%) 29 (90.6%) 32 (100%) 26 (81.3%) 29.0 (90.6%) 

Average 30.2 (94.4%) 29.7 (92.7%) 31.5 (98.4%) 26.9 (84.1%) 29.6 (92.4%) 
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Table 3.7: Prediction results achieved after the EFDES-based system learned 

under condition of learning setting 1 compared with expert B’s choices 

Scenario 
Accuracy of  System-prediction Choices 

vs. 
Expert B’s Choices 

 ∆m ∆x ∆w ∆v 

Predicting 
Regimen 1 

 using 
Regimen 
2, 3 & 4 

Predicting 
Regimen 2 

 using 
Regimen 
1, 3 & 4 

Predicting 
Regimen 3 

using 
Regimen 
1, 2 & 4 

Predicting 
Regimen 4 

 using 
Regimen 
1, 2 & 3 

Mean 
prediction 

   6% 32 (100%) 30 (93.8%) 31 (96.9%) 32 (100%) 31.3 (97.7%) 

Scenario 1  
   10% 31 (96.9%) 30 (93.8%) 32 (100%) 32 (100%) 31.3 (97.7%) 

 3%   32 (100%) 32 (100%) 30 (93.8%) 32 (100%) 31.5 (98.4%) 

Scenario 2 
 5%   32 (100%) 30 (93.8%) 31 (96.9%) 32 (100%) 31.3 (97.7%) 

 3% 4%  31 (96.9%) 32 (100%) 32 (100%) 30 (93.8%) 31.3 (97.7%) 

Scenario 3 
 5% 4%  32 (100%) 32 (100%) 31 (96.9%) 32 (100%) 31.8 (99.2%) 

1%    32 (100%) 32 (100%) 32 (100%) 32 (100%) 32.0 (100%) 

Scenario 4 
2%    31 (96.9%) 30 (93.8%) 32 (100%) 32 (100%) 31.3 (97.7%) 

1%   6% 32 (100%) 32 (100%) 32 (100%) 29 (90.6%) 31.3 (97.7%) 

1%   10% 32 (100%) 31 (96.9%) 31 (96.9%) 29 (90.6%) 30.8 (96.1%) 

2%   6% 31 (96.9%) 32 (100%) 32 (100%) 29 (90.6%) 31.0 (96.9%) 

Scenario 5 

2%   10% 32 (100%) 32 (100%) 32 (100%) 32 (100%) 32.0 (100%) 

1% 3%   32 (100%) 26 (81.3%) 28 (87.5%) 32 (100%) 29.5 (92.2%) 

1% 5%   32 (100%) 32 (100%) 32 (100%) 31 (96.9%) 31.8 (99.2%) 

2% 3%   31 (96.9%) 28 (87.5%) 32 (100%) 28 (87.5%) 29.8 (93.0%) 

Scenario 6 

2% 5%   31 (96.9%) 32 (100%) 32 (100%) 32 (100%) 31.8 (99.2%) 

1% 3% 4%  32 (100%) 28 (87.5%) 30 (93.8%) 31 (96.9%) 30.3 (94.5%) 

1% 5% 4%  32 (100%) 30 (93.8%) 30 (93.8%) 31 (96.9%) 30.8 (96.1%) 

2% 3% 4%  32 (100%) 32 (100%) 32 (100%) 32 (100%) 32.0 (100%) 

Scenario 7 

2% 5% 4%  32 (100%) 30 (93.8%) 32 (100%) 31 (96.9%) 31.3 (97.7%) 

Average 31.7 (99.1%) 30.7 (95.8%) 31.3 (97.8%) 31.1 (97.0%) 31.2 (97.5%) 
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Table 3.8: Prediction results achieved after the EFDES-based system learned 

under condition of learning setting 1 compared with the consensus of experts A&B 

Scenario 
Accuracy of  System-prediction Choices 

vs. 
Consensus of Experts A & B 

 ∆m ∆x ∆w ∆v 

Predicting 
Regimen 1 

 using 
Regimen 
2, 3 & 4 

Predicting 
Regimen 2 

 using 
Regimen 
1, 3 & 4 

Predicting 
Regimen 3 

using 
Regimen 
1, 2 & 4 

Predicting 
Regimen 4 

 using 
Regimen 
1, 2 & 3 

Mean 
prediction 

   6% 31 (96.9%) 31 (96.9%) 31 (96.9%) 31 (96.9%) 31.0 (96.9%) 

Scenario 1  
   10% 31 (96.9%) 30 (93.8%) 31 (96.9%) 29 (90.6%) 30.3 (94.5%) 

 3%   28 (87.5%) 31 (96.9%) 31 (96.9%) 30 (93.8%) 30.0 (93.8%) 

Scenario 2 
 5%   31 (96.9%) 31 (96.9%) 31 (96.9%) 29 (90.6%) 30.5 (95.3%) 

 3% 4%  31 (96.9%) 30 (93.8%) 31 (96.9%) 28 (87.5%) 30.0 (93.8%) 

Scenario 3 
 5% 4%  31 (96.9%) 29 (90.6%) 30 (93.8%) 28 (87.5%) 29.5 (92.2%) 

1%    30 (93.8%) 30 (93.8%) 31 (96.9%) 29 (90.6%) 30.0 (93.8%) 

Scenario 4 
2%    29 (90.6%) 30 (93.8%) 31 (96.9%) 29 (90.6%) 29.8 (93.0%) 

1%   6% 31 (96.9%) 30 (93.8%) 31 (96.9%) 30 (93.8%) 30.5 (95.3%) 

1%   10% 31 (96.9%) 31 (96.9%) 31 (96.9%) 28 (87.5%) 30.3 (94.5%) 

2%   6% 31 (96.9%) 30 (93.8%) 31 (96.9%) 28 (87.5%) 30.0 (93.8%) 

Scenario 5 

2%   10% 31 (96.9%) 30 (93.8%) 31 (96.9%) 31 (96.9%) 30.8 (96.1%) 

1% 3%   31 (96.9%) 30 (93.8%) 31 (96.9%) 29 (90.6%) 30.3 (94.5%) 

1% 5%   31 (96.9%) 29 (90.6%) 31 (96.9%) 30 (93.8%) 30.3 (94.5%) 

2% 3%   31 (96.9%) 31 (96.9%) 31 (96.9%) 28 (87.5%) 30.3 (94.5%) 

Scenario 6 

2% 5%   30 (93.8%) 29 (90.6%) 29 (90.6%) 28 (87.5%) 29.0 (90.6%) 

1% 3% 4%  30 (93.8%) 29 (90.6%) 31 (96.9%) 29 (90.6%) 29.8 (93.0%) 

1% 5% 4%  31 (96.9%) 29 (90.6%) 29 (90.6%) 28 (87.5%) 29.3 (91.4%) 

2% 3% 4%  30 (93.8%) 29 (90.6%) 30 (93.8%) 29 (90.6%) 29.5 (92.2%) 

Scenario 7 

2% 5% 4%  30 (93.8%) 31 (96.9%) 30 (93.8%) 30 (93.8%) 30.3 (94.5%) 

Average 30.5 (95.3%) 30.0 (93.8%) 30.7 (95.8%) 29.1 (90.8%) 30.1 (93.9%) 
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Table 3.9: Prediction results for Regimen 1 and Regimen 2 achieved after the 

EFDES-based system learned under condition of learning setting 2 compared with 

expert A’s choices 

Accuracy of  System-prediction Choices 
vs.  

Expert A’s Choices Scenario 

Predicting 

 ∆m ∆x ∆w ∆v 

Regimen 
1 

 using 
Regimen 

2 & 3 

Regimen 
1 

 using 
Regimen 

2 & 4 

Regimen 
1 

 using 
Regimen 

3 & 4 

Regimen 
2 

 using 
Regimen 

1 & 3 

Regimen 
2 

 using 
Regimen 

1 & 4 

Regimen 
2 

 using 
Regimen 

3 & 4 

   6% 31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 1  

   10% 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

 3%   31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 2 

 5%   31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

 3% 4%  31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 3 

 5% 4%  31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1%    31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 4 

2%    32(100%) 31(96.9%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1%   6% 31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1%   10% 32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

2%   6% 32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 5 

2%   10% 32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1% 3%   32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1% 5%   31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

2% 3%   31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 6 

2% 5%   31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1% 3% 4%  32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1% 5% 4%  31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

2% 3% 4%  31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 7 

2% 5% 4%  31(96.9%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

Average 31.3(97.8%) 31.9(99.8%) 32(100%) 31.1(97.2%) 31.8(99.4%) 32(100%) 
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Table 3.10: Prediction results for Regimen 3 and Regimen 4 achieved after the 

EFDES-based system learned under condition of learning setting 2 compared with 

expert A’s choices 

Accuracy of  System-prediction Choices 
vs. 

Expert A’s Choices Scenario 

Predicting 

 ∆m ∆x ∆w ∆v 

Regimen 
3 

 using 
Regimen 

1 & 2 

Regimen 
3 

 using 
Regimen 

1 & 4 

Regimen 
3 

 using 
Regimen 

2 & 4 

Regimen 
4 

 using 
Regimen 

1 & 2 

Regimen 
4 

 using 
Regimen 

1 & 3 

Regimen 
4 

 using 
Regimen 

2 & 3 

   6% 32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 1  

   10% 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

 3%   32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 2 

 5%   31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

 3% 4%  32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 3 

 5% 4%  31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

1%    32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 4 

2%    31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

1%   6% 32(100%) 29(90.6%) 32(100%) 32(100%) 32(100%) 32(100%) 

1%   10% 32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 

2%   6% 32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 5 

2%   10% 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

1% 3%   32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 

1% 5%   32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

2% 3%   31(96.9%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 6 

2% 5%   31(96.9%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 

1% 3% 4%  31(96.9%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 

1% 5% 4%  31(96.9%) 31(96.9%) 32(100%) 32(100%) 32(100%) 30(93.8%) 

2% 3% 4%  32(100%) 32(100%) 30(93.8%) 32(100%) 32(100%) 32(100%) 
Scenario 7 

2% 5% 4%  31(96.9%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 

Average 31.6(98.8%) 31.4(98.0%) 31.9(99.5%) 32(100%) 32(100%) 31.9(99.7%) 
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Table 3.11: Prediction results for Regimen 1 and Regimen 2 achieved after the 

EFDES-based system learned under condition of learning setting 2 compared with 

expert B’s choices 

Accuracy of  System-prediction Choices 
vs. 

Expert B’s Choices Scenario 

Predicting 

 ∆m ∆x ∆w ∆v 

Regimen 
1 

 using 
Regimen 

2 & 3 

Regimen 
1 

 using 
Regimen 

2 & 4 

Regimen 
1 

 using 
Regimen 

3 & 4 

Regimen 
2 

 using 
Regimen 

1 & 3 

Regimen 
2 

 using 
Regimen 

1 & 4 

Regimen 
2 

 using 
Regimen 

3 & 4 

   6% 32(100%) 32(100%) 31(96.9%) 32(100%) 31(96.9%) 32(100%) 
Scenario 1  

   10% 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

 3%   32(100%) 31(96.9%) 31(96.9%) 32(100%) 32(100%) 32(100%) 
Scenario 2 

 5%   32(100%) 31(96.9%) 31(96.9%) 32(100%) 31(96.9%) 32(100%) 

 3% 4%  32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 30(93.8%) 
Scenario 3 

 5% 4%  32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 

1%    32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 4 

2%    32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 

1%   6% 32(100%) 31(96.9%) 31(96.9%) 32(100%) 32(100%) 32(100%) 

1%   10% 32(100%) 32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 

2%   6% 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 5 

2%   10% 32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 

1% 3%   32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 30(93.8%) 

1% 5%   32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

2% 3%   32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 6 

2% 5%   32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 28(87.5%) 

1% 3% 4%  32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

1% 5% 4%  32(100%) 32(100%) 32(100%) 32(100%) 31(96.9%) 28(87.5%) 

2% 3% 4%  32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 
Scenario 7 

2% 5% 4%  32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

Average 32(100%) 31.7(98.9%) 31.7(98.9%) 32(100%) 31.8(99.4%) 31.4(98.1%) 
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Table 3.12: Prediction results for Regimen 3 and Regimen 4 achieved after the 

EFDES-based system learned under condition of learning setting 2 compared with 

expert B’s choices 

Accuracy of  System-prediction Choices 
vs. 

Expert B’s Choices Scenario 

Predicting 

 ∆m ∆x ∆w ∆v 

Regimen 
3 

 using 
Regimen 

1 & 2 

Regimen 
3 

 using 
Regimen 

1 & 4 

Regimen 
3 

 using 
Regimen 

2 & 4 

Regimen 
4 

 using 
Regimen 

1 & 2 

Regimen 
4 

 using 
Regimen 

1 & 3 

Regimen 
4 

 using 
Regimen 

2 & 3 

   6% 32(100%) 31(96.9%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 1  

   10% 32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

 3%   32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 2 

 5%   32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

 3% 4%  32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 3 

 5% 4%  32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1%    32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 4 

2%    31(96.9%) 32(100%) 30(93.8%) 32(100%) 32(100%) 32(100%) 

1%   6% 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

1%   10% 32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

2%   6% 32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 
Scenario 5 

2%   10% 32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 

1% 3%   32(100%) 32(100%) 32(100%) 31(96.9%) 32(100%) 32(100%) 

1% 5%   31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

2% 3%   32(100%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 6 

2% 5%   32(100%) 32(100%) 28(87.5%) 31(96.9%) 32(100%) 32(100%) 

1% 3% 4%  32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

1% 5% 4%  32(100%) 32(100%) 32(100%) 30(93.8%) 32(100%) 32(100%) 

2% 3% 4%  32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 
Scenario 7 

2% 5% 4%  32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 32(100%) 

Average 31.9(99.7%) 31.9(99.5%) 31.7(99.1%) 31.5(98.3%) 32(100%) 32(100%) 
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Table 3.13: Prediction results for Regimen 1 and Regimen 2 achieved after the 

EFDES-based system learned under condition of learning setting 2 compared with 

the consensus of experts A & B 

Accuracy of  System-prediction Choices 
vs. 

Consensus of Experts A & B Scenario 

Predicting 

 ∆m ∆x ∆w ∆v 

Regimen 
1 

 using 
Regimen 

2 & 3 

Regimen 
1 

 using 
Regimen 

2 & 4 

Regimen 
1 

 using 
Regimen 

3 & 4 

Regimen 
2 

 using 
Regimen 

1 & 3 

Regimen 
2 

 using 
Regimen 

1 & 4 

Regimen 
2 

 using 
Regimen 

3 & 4 

   6% 29(90.6%) 31(96.9%) 32(100%) 30(93.8%) 30(93.8%) 32(100%) 
Scenario 1  

   10% 29(90.6%) 32(100%) 32(100%) 30(93.8%) 30(93.8%) 31(96.9%) 

 3%   29(90.6%) 32(100%) 32(100%) 29(90.6%) 30(93.8%) 32(100%) 
Scenario 2 

 5%   29(90.6%) 32(100%) 32(100%) 30(93.8%) 30(93.8%) 31(96.9%) 

 3% 4%  29(90.6%) 31(96.9%) 32(100%) 30(93.8%) 30(93.8%) 31(96.9%) 
Scenario 3 

 5% 4%  29(90.6%) 32(100%) 32(100%) 30(93.8%) 30(93.8%) 32(100%) 

1%    28(87.5%) 31(96.9%) 32(100%) 30(93.8%) 30(93.8%) 31(96.9%) 
Scenario 4 

2%    30(93.8%) 31(96.9%) 32(100%) 30(93.8%) 30(93.8%) 32(100%) 

1%   6% 29(90.6%) 31(96.9%) 32(100%) 30(93.8%) 29(90.6%) 31(96.9%) 

1%   10% 29(90.6%) 32(100%) 32(100%) 30(93.8%) 30(93.8%) 32(100%) 

2%   6% 29(90.6%) 32(100%) 32(100%) 30(93.8%) 31(96.9%) 32(100%) 
Scenario 5 

2%   10% 29(90.6%) 31(96.9%) 32(100%) 30(93.8%) 31(96.9%) 31(96.9%) 

1% 3%   30(93.8%) 31(96.9%) 32(100%) 30(93.8%) 30(93.8%) 31(96.9%) 

1% 5%   30(93.8%) 31(96.9%) 32(100%) 30(93.8%) 29(90.6%) 31(96.9%) 

2% 3%   29(90.6%) 32(100%) 32(100%) 30(93.8%) 29(90.6%) 32(100%) 
Scenario 6 

2% 5%   27(84.4%) 31(96.9%) 32(100%) 30(93.8%) 29(90.6%) 32(100%) 

1% 3% 4%  29(90.6%) 31(96.9%) 32(100%) 30(93.8%) 30(93.8%) 32(100%) 

1% 5% 4%  29(90.6%) 32(100%) 32(100%) 30(93.8%) 30(93.8%) 31(96.9%) 

2% 3% 4%  30(93.8%) 31(96.9%) 32(100%) 30(93.8%) 29(90.6%) 32(100%) 
Scenario 7 

2% 5% 4%  30(93.8%) 32(100%) 32(100%) 29(90.6%) 29(90.6%) 31(96.9%) 

Average 29.1(90.9%) 31.5(98.3%) 32(100%) 29.9(93.4%) 29.8(93.1%) 31.5(98.4%) 
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Table 3.14: Prediction results for Regimen 3 and Regimen 4 achieved after the 

EFDES-based system learned under condition of learning setting 2 compared with 

the consensus of experts A & B 

Accuracy of  System-prediction Choices 
vs. 

Consensus of Experts A & B Scenario 

Predicting 

 ∆m ∆x ∆w ∆v 

Regimen 
3 

 using 
Regimen 

1 & 2 

Regimen 
3 

 using 
Regimen 

1 & 4 

Regimen 
3 

 using 
Regimen 

2 & 4 

Regimen 
4 

 using 
Regimen 

1 & 2 

Regimen 
4 

 using 
Regimen 

1 & 3 

Regimen 
4 

 using 
Regimen 

2 & 3 

   6% 28(87.5%) 31(96.9%) 31(96.9%) 31(96.9%) 32(100%) 29(90.6%) 
Scenario 1  

   10% 30(93.8%) 31(96.9%) 32(100%) 31(96.9%) 32(100%) 29(90.6%) 

 3%   30(93.8%) 31(96.9%) 32(100%) 32(100%) 32(100%) 31(96.9%) 
Scenario 2 

 5%   29(90.6%) 31(96.9%) 32(100%) 30(93.8%) 32(100%) 30(93.8%) 

 3% 4%  29(90.6%) 31(96.9%) 32(100%) 32(100%) 32(100%) 29(90.6%) 
Scenario 3 

 5% 4%  30(93.8%) 31(96.9%) 31(96.9%) 30(93.8%) 32(100%) 29(90.6%) 

1%    30(93.8%) 31(96.9%) 32(100%) 29(90.6%) 32(100%) 29(90.6%) 
Scenario 4 

2%    29(90.6%) 31(96.9%) 31(96.9%) 31(96.9%) 32(100%) 31(96.9%) 

1%   6% 29(90.6%) 32(100%) 31(96.9%) 30(93.8%) 32(100%) 32(100%) 

1%   10% 30(93.8%) 31(96.9%) 32(100%) 32(100%) 32(100%) 32(100%) 

2%   6% 30(93.8%) 31(96.9%) 32(100%) 31(96.9%) 32(100%) 31(96.9%) 
Scenario 5 

2%   10% 29(90.6%) 31(96.9%) 32(100%) 30(93.8%) 32(100%) 31(96.9%) 

1% 3%   28(87.5%) 31(96.9%) 31(96.9%) 31(96.9%) 32(100%) 29(90.6%) 

1% 5%   29(90.6%) 31(96.9%) 31(96.9%) 31(96.9%) 32(100%) 28(87.5%) 

2% 3%   30(93.8%) 31(96.9%) 32(100%) 30(93.8%) 32(100%) 31(96.9%) 
Scenario 6 

2% 5%   28(87.5%) 31(96.9%) 32(100%) 30(93.8%) 32(100%) 29(90.6%) 

1% 3% 4%  29(90.6%) 32(100%) 31(96.9%) 31(96.9%) 32(100%) 30(93.8%) 

1% 5% 4%  30(93.8%) 32(100%) 32(100%) 31(96.9%) 32(100%) 29(90.6%) 

2% 3% 4%  30(93.8%) 31(96.9%) 32(100%) 31(96.9%) 32(100%) 28(87.5%) 
Scenario 7 

2% 5% 4%  30(93.8%) 32(100%) 31(96.9%) 30(93.8%) 32(100%) 31(96.9%) 

Average 29.4(91.7%) 31.2(97.5%) 31.6(98.8%) 30.7(95.9%) 31.9(99.8%) 29.9(93.4%) 
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Table 3.15: Prediction results achieved after the EFDES-based system learned 

under condition of learning setting 3 compared with expert A’s choices 

Scenario 
Accuracy of  System-prediction Choices 

vs. 
Expert A’s Choices 

 ∆m ∆x ∆w ∆v 

Predicting 
Regimen 2 

 using 
Regimen 

3 & 4 

Predicting 
Regimen 3 

 using 
Regimen 

2 & 4 

Predicting 
Regimen 4 

using 
Regimen 

2 & 3 

Mean prediction 

   6% 25 (87.1%) 26 (81.3%) 23 (71.9%) 24.7 (77.1%) 
Scenario 1  

   10% 28 (87.5%) 28 (87.5%) 23 (71.9%) 26.3 (82.3%) 

 3%   22 (68.8%) 25 (78.1%) 23 (71.9%) 23.3 (72.9%) 
Scenario 2 

 5%   23 (71.9%) 26 (81.3%) 23 (71.9%) 24.0 (75.0%) 

 3% 4%  25 (78.1%) 24 (75.0%) 23 (71.9%) 24.0 (75.0%) 
Scenario 3 

 5% 4%  21 (65.6%) 24 (75.0%) 23 (71.9%) 22.7 (70.8%) 

1%    25 (78.1%) 25 (78.1%) 23 (71.9%) 24.3 (76.0%) 
Scenario 4 

2%    23 (71.9%) 23 (71.9%) 23 (71.9%) 23.0 (71.9%) 

1%   6% 27 (84.4%) 26 (81.3%) 23 (71.9%) 25.3 (79.2%) 

1%   10% 27 (84.4%) 27 (84.4%) 23 (71.9%) 25.7 (80.2%) 

2%   6% 27 (84.4%) 28 (87.5%) 23 (71.9%) 26.0 (81.3%) 
Scenario 5 

2%   10% 24 (75.0%) 24 (75.0%) 23 (71.9%) 23.7 (74.0%) 

1% 3%   21 (65.6%) 24 (75.0%) 23 (71.9%) 22.7 (70.8%) 

1% 5%   24 (75.0%) 24 (75.0%) 23 (71.9%) 23.7 (74.0%) 

2% 3%   20 (62.5%) 22 (68.8%) 23 (71.9%) 21.7 (67.7%) 
Scenario 6 

2% 5%   23 (71.9%) 23 (71.9%) 23 (71.9%) 23.0 (71.9%) 

1% 3% 4%  21 (65.6%) 23 (71.9%) 23 (71.9%) 22.3 (69.8%) 

1% 5% 4%  25 (78.1%) 29 (90.6%) 23 (71.9%) 25.7 (80.2%) 

2% 3% 4%  23 (71.9%) 24 (75.0%) 23 (71.9%) 23.3 (72.9%) 
Scenario 7 

2% 5% 4%  24 (75.0%) 24 (75.0%) 23 (71.9%) 23.7 (74.0%) 

Average 23.9 (74.7%) 25.0 (78.0%) 23.0 (71.9%) 24.0 (74.8%) 
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Table 3.16: Prediction results achieved after the EFDES-based system learned 

under condition of learning setting 3 compared with expert B’s choices 

Scenario 
Accuracy of  System-prediction Choices 

vs. 
Expert B’s Choices 

 ∆m ∆x ∆w ∆v 

Predicting 
Regimen 2 

 using 
Regimen 

3 & 4 

Predicting 
Regimen 3 

 using 
Regimen 

2 & 4 

Predicting 
Regimen 4 

using 
Regimen 

2 & 3 

Mean prediction 

   6% 23 (71.9%) 25 (78.1%) 26 (81.3%) 24.7 (77.1%) 
Scenario 1  

   10% 26 (81.3%) 26 (81.3%) 22 (68.8%) 24.7 (77.1%) 

 3%   26 (81.3%) 26 (81.3%) 21 (65.6%) 24.3 (76.0%) 
Scenario 2 

 5%   25 (78.1%) 20 (62.5%) 20 (62.5%) 21.7 (67.7%) 

 3% 4%  26 (81.3%) 26 (81.3%) 25 (78.1%) 25.7 (80.2%) 
Scenario 3 

 5% 4%  22 (68.8%) 26 (81.3%) 23 (71.9%) 23.7 (74.0%) 

1%    26 (81.3%) 22 (68.8%) 21 (65.6%) 23.0 (71.9%) 
Scenario 4 

2%    22 (68.8%) 26 (81.3%) 23 (71.9%) 23.7 (74.0%) 

1%   6% 26 (81.3%) 24 (75.0%) 27 (84.4%) 25.7 (80.2%) 

1%   10% 26 (81.3%) 26 (81.3%) 22 (68.8%) 24.7 (77.1%) 

2%   6% 26 (81.3%) 26 (81.3%) 23 (71.9%) 25.0 (78.1%) 
Scenario 5 

2%   10% 26 (81.3%) 26 (81.3%) 29 (90.6%) 27.0 (84.4%) 

1% 3%   26 (81.3%) 26 (81.3%) 22 (68.8%) 24.7 (77.1%) 

1% 5%   22 (68.8%) 26 (81.3%) 23 (71.9%) 23.7 (74.0%) 

2% 3%   23 (71.9%) 26 (81.3%) 19 (59.4%) 22.7 (70.8%) 
Scenario 6 

2% 5%   26 (81.3%) 20 (62.5%) 24 (75.0%) 23.3 (72.9%) 

1% 3% 4%  24 (75.0%) 26 (81.3%) 20 (62.5%) 23.3 (72.9%) 

1% 5% 4%  25 (78.1%) 25 (78.1%) 25 (78.1%) 25.0 (78.1%) 

2% 3% 4%  26 (81.3%) 25 (78.1%) 25 (78.1%) 25.3 (79.2%) 
Scenario 7 

2% 5% 4%  26 (81.3%) 26 (81.3%) 22 (68.8%) 24.7 (77.1%) 

Average 24.9 (77.8%) 25.0 (78.0%) 23.1 (72.2%) 24.3 (76.0%) 
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Table 3.17: Prediction results achieved after the EFDES-based system learned 

under condition of learning setting 3 compared with the consensus of experts A&B 

Scenario 
Accuracy of  System-prediction Choices 

vs. 
Consensus of Experts A & B 

 ∆m ∆x ∆w ∆v 

Predicting 
Regimen 2 

 using 
Regimen 

3 & 4 

Predicting 
Regimen 3 

 using 
Regimen 

2 & 4 

Predicting 
Regimen 4 

using 
Regimen 

2 & 3 

Mean prediction 

   6% 25 (78.1%) 26 (81.3%) 22 (68.8%) 24.3 (76.0%) 
Scenario 1  

   10% 26 (81.3%) 24 (75.0%) 25 (78.1%) 25.0 (78.1%) 

 3%   26 (81.3%) 24 (75.0%) 26 (81.3%) 25.3 (79.2%) 
Scenario 2 

 5%   26 (81.3%) 26 (81.3%) 23 (71.9%) 25.0 (78.1%) 

 3% 4%  26 (81.3%) 26 (81.3%) 23 (71.9%) 25.0 (78.1%) 
Scenario 3 

 5% 4%  23 (71.9%) 21 (65.6%) 22 (68.8%) 22.0 (68.8%) 

1%    26 (81.3%) 26 (81.3%) 24 (75.0%) 25.3 (79.2%) 
Scenario 4 

2%    22 (68.8%) 26 (81.3%) 21 (65.6%) 23.0 (71.9%) 

1%   6% 25 (78.1%) 24 (75.0%) 25 (78.1%) 24.7 (77.1%) 

1%   10% 26 (81.3%) 26 (81.3%) 25 (78.1%) 25.7 (80.2%) 

2%   6% 22 (68.8%) 23 (71.9%) 22 (68.8%) 22.3 (69.8%) 
Scenario 5 

2%   10% 20 (62.5%) 26 (81.3%) 24 (75.0%) 23.3 (72.9%) 

1% 3%   26 (81.3%) 26 (81.3%) 20 (62.5%) 24.0 (75.0%) 

1% 5%   26 (81.3%) 25 (78.1%) 22 (68.8%) 24.3 (76.0%) 

2% 3%   23 (71.9%) 23 (71.9%) 21 (65.6%) 22.3 (69.8%) 
Scenario 6 

2% 5%   26 (81.3%) 21 (65.6%) 22 (68.8%) 23.0 (71.9%) 

1% 3% 4%  26 (81.3%) 21 (65.6%) 20 (62.5%) 22.3 (69.8%) 

1% 5% 4%  25 (78.1%) 26 (81.3%) 22 (68.8%) 24.3 (76.0%) 

2% 3% 4%  26 (81.3%) 25 (78.1%) 20 (62.5%) 23.7 (74.0%) 
Scenario 7 

2% 5% 4%  25 (78.1%) 26 (81.3%) 26 (81.3%) 25.7 (80.2%) 

Average 24.8 (77.5%) 24.6 (76.7%) 22.8 (71.1%) 24.0 (75.1%) 
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Table 3.18: First-choice regimens predicted by the EFDES-based system model 

after regimen 2 was learned using regimens 3 & 4 against the actual regimens 

given to the 35 patients under scenarios 1, 2, 3, 4, and 5   

  
Predicted regimens  

after regimen 2 was learned using regimens 3 & 4 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

∆v (%) ∆x (%) ∆x, ∆w (%) ∆m (%) ∆m, ∆v (%) 

  
P

a
ti
e
n
t 
N

o
. 

  
O

b
je

c
ti
v
e
s
 

 G
iv

e
n
 R

e
g
im

e
n
s
 

  
E

x
p
e
rt

 A
 

  
E

x
p
e
rt

 B
 

6 10 3 5 3,4 5,4 1 2 1,6 1,10 

1 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

2 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

4 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

5 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

6 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

7 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

8 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

9 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

10 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

11 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

12 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

13 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

14 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

15 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

16 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

17 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

18 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

19 24 4 2 4 4 4 4 4 4 4 4 4 4 4 

20 23 2 4 4 4 4 4 4 4 4 4 4 4 4 

21 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

22 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

23 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

24 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

25 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

26 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

27 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

28 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

29 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

30 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

31 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

32 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

33 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

34 10 3 2 2 2 2 2 2 2 2 2 2 2 2 

35 9 4 2 4 4 4 4 4 4 4 4 4 4 4 
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Table 3.19: First-choice regimens predicted by the EFDES-based system model 

after regimen 2 was learned using regimens 3 & 4 against the actual regimens 

given to the 35 patients under scenarios 5, 6, and 7   

  
Predicted regimens  

after regimen 2 was learned using Regimens 3 & 4 

Scenario 5 Scenario 6 Scenario 7 

∆m, ∆v (%) ∆m, ∆x (%) ∆m, ∆x, ∆w (%) 
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2,6 2,10 1,3 1,5 2,3 2,5 1,3,4 1,5,4 2,3,4 2,5,4 

1 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

2 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

4 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

5 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

6 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

7 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

8 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

9 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

10 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

11 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

12 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

13 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

14 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

15 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

16 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

17 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

18 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

19 24 4 2 4 4 4 3 4 4 4 4 4 4 3 

20 23 2 4 4 4 4 4 4 4 4 4 4 4 4 

21 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

22 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

23 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

24 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

25 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

26 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

27 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

28 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

29 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

30 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

31 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

32 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

33 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

34 10 3 2 2 2 2 2 2 2 2 2 2 2 2 

35 9 4 2 4 4 4 4 4 4 4 4 4 4 4 
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Table 3.20: First-choice regimens predicted by the EFDES-based system model 

after regimen 3 was learned using regimens 2 & 4 against the actual regimens 

given to the 35 patients under scenarios 1, 2, 3, 4, and 5   

  
Predicted regimens  

after regimen 3 was learned using regimens 2 & 4 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

∆v (%) ∆x (%) ∆x, ∆w (%) ∆m (%) ∆m, ∆v (%) 
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6 10 3 5 3,4 5,4 1 2 1,6 1,10 

1 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

2 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

4 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

5 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

6 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

7 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

8 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

9 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

10 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

11 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

12 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

13 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

14 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

15 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

16 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

17 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

18 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

19 24 4 2 4 3 4 4 4 4 4 4 4 4 4 

20 23 2 4 4 4 4 4 4 4 4 4 4 4 4 

21 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

22 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

23 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

24 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

25 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

26 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

27 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

28 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

29 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

30 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

31 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

32 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

33 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

34 10 3 2 2 2 2 2 2 2 2 2 2 2 2 

35 9 4 2 4 4 4 4 4 4 4 4 4 4 4 
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Table 3.21: First-choice regimens predicted by the EFDES-based system model 

after regimen 3 was learned using regimens 2 & 4 against the actual regimens 

given to the 35 patients under scenarios 5, 6, and 7   

  
Predicted regimens  

after regimen 3 was learned using Regimens 2 & 4 

Scenario 5 Scenario 6 Scenario 7 

∆m, ∆v (%) ∆m, ∆x (%) ∆m, ∆x, ∆w (%) 
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2,6 2,10 1,3 1,5 2,3 2,5 1,3,4 1,5,4 2,3,4 2,5,4 

1 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

2 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

4 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

5 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

6 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

7 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

8 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

9 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

10 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

11 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

12 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

13 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

14 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

15 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

16 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

17 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

18 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

19 24 4 2 4 4 4 3 4 4 4 3 4 4 4 

20 23 2 4 4 4 4 4 4 4 4 4 4 4 4 

21 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

22 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

23 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

24 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

25 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

26 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

27 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

28 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

29 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

30 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

31 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

32 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

33 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

34 10 3 2 2 2 2 2 2 2 2 2 2 2 2 

35 9 4 2 4 4 4 4 4 4 4 4 4 4 4 



 

 

112 

Table 3.22: First-choice regimens predicted by the EFDES-based system model 

after regimen 4 was learned using regimens 2 & 3 against the actual regimens 

given to the 35 patients under scenarios 1, 2, 3, 4, and 5   

  
Predicted regimens  

after regimen 4 was learned using regimens 2 & 3 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

∆v (%) ∆x (%) ∆x, ∆w (%) ∆m (%) ∆m, ∆v (%) 
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6 10 3 5 3,4 5,4 1 2 1,6 1,10 

1 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

2 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

4 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

5 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

6 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

7 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

8 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

9 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

10 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

11 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

12 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

13 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

14 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

15 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

16 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

17 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

18 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

19 24 4 2 4 2 2 4 4 2 2 2 4 4 4 

20 23 2 4 4 4 4 4 4 4 4 4 4 4 4 

21 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

22 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

23 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

24 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

25 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

26 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

27 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

28 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

29 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

30 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

31 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

32 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

33 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

34 10 3 2 2 2 2 2 2 2 2 2 2 2 2 

35 9 4 2 4 4 4 4 4 4 4 4 4 4 4 
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Table 3.23: First-choice regimens predicted by the EFDES-based system model 

after regimen 4 was learned using regimens 2 & 3 against the actual regimens 

given to the 35 patients under scenarios 5, 6, and 7   

  
Predicted regimens  

after regimen 4 was learned using Regimens 2 & 3 

Scenario 5 Scenario 6 Scenario 7 

∆m, ∆v (%) ∆m, ∆x (%) ∆m, ∆x, ∆w (%) 
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2,6 2,10 1,3 1,5 2,3 2,5 1,3,4 1,5,4 2,3,4 2,5,4 

1 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

2 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

3 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

4 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

5 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

6 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

7 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

8 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

9 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

10 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

11 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

12 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

13 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

14 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

15 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

16 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

17 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

18 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

19 24 4 2 4 4 4 2 2 4 2 4 2 2 4 

20 23 2 4 4 4 4 4 4 4 4 4 4 4 4 

21 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

22 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

23 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

24 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

25 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

26 23 3 4 4 4 4 4 4 4 4 4 4 4 4 

27 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

28 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

29 9 4 2 4 4 4 4 4 4 4 4 4 4 4 

30 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

31 10 2 2 2 2 2 2 2 2 2 2 2 2 2 

32 10 4 2 2 2 2 2 2 2 2 2 2 2 2 

33 23 4 4 4 4 4 4 4 4 4 4 4 4 4 

34 10 3 2 2 2 2 2 2 2 2 2 2 2 2 

35 9 4 2 4 4 4 4 4 4 4 4 4 4 4 
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Table 3.24: Retrospective evaluation results after the EFDES-based system 

learned under condition of learning setting 4 involving 35 patients treated at AIDS 

Clinic in 2001 

Scenario 
Matching between regimen choices predicted by  EFDES-

based system and regimens prescribed by 
2 experts and 11 non-experts 

 ∆m ∆x ∆w ∆v 

After  
Regimen 2 was 
learned using  

Regimen 
3 & 4 

After  
Regimen 3 was 
learned using  

Regimen 
2 & 4 

After  
Regimen 4 was 
learned using  

Regimen 
2 & 3 

Mean prediction 

   6% 29 (82.9%) 28 (80.0%) 28 (80.0%) 28.3 (81.0%) 
Scenario 1  

   10% 29 (82.9%) 29 (82.9%) 28 (80.0%) 28.7 (81.9%) 

 3%   29 (82.9%) 29 (82.9%) 29 (82.9%) 29.0 (82.9%) 
Scenario 2 

 5%   29 (82.9%) 29 (82.9%) 29 (82.9%) 29.0 (82.9%) 

 3% 4%  29 (82.9%) 29 (82.9%) 28 (80.0%) 28.7 (81.9%) 
Scenario 3 

 5% 4%  29 (82.9%) 29 (82.9%) 28 (80.0%) 28.7 (81.9%) 

1%    29 (82.9%) 29 (82.9%) 28 (80.0%) 28.7 (81.9%) 
Scenario 4 

2%    29 (82.9%) 29 (82.9%) 29 (82.9%) 29.0 (82.9%) 

1%   6% 29 (82.9%) 29 (82.9%) 29 (82.9%) 29.0 (82.9%) 

1%   10% 29 (82.9%) 29 (82.9%) 29 (82.9%) 29.0 (82.9%) 

2%   6% 29 (82.9%) 29 (82.9%) 29 (82.9%) 29.0 (82.9%) 
Scenario 5 

2%   10% 29 (82.9%) 29 (82.9%) 29 (82.9%) 29.0 (82.9%) 

1% 3%   28 (80.0%) 28 (80.0%) 28 (80.0%) 28.0 (80.0%) 

1% 5%   29 (82.9%) 29 (82.9%) 28 (80.0%) 28.7 (81.9%) 

2% 3%   29 (82.9%) 29 (82.9%) 29 (82.9%) 29.0 (82.9%) 
Scenario 6 

2% 5%   29 (82.9%) 29 (82.9%) 28 (80.0%) 28.7 (81.9%) 

1% 3% 4%  29 (82.9%) 28 (80.0%) 29 (82.9%) 28.7 (81.9%) 

1% 5% 4%  29 (82.9%) 29 (82.9%) 28 (80.0%) 28.7 (81.9%) 

2% 3% 4%  29 (82.9%) 29 (82.9%) 28 (80.0%) 28.7 (81.9%) 
Scenario 7 

2% 5% 4%  28 (80.0%) 29 (82.9%) 29 (82.9%) 28.7 (81.9%) 

Average 28.9 (82.6%) 28.85 (82.4%) 28.5 (81.4%) 28.8 (82.1%) 
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Table 3.25: Retrospective evaluation results after the EFDES-based system 

learned under condition of learning setting 4 involving 35 patients against expert 

A’s regimen choices 

Scenario 
Matching between regimen choices predicted by  EFDES-

based system and regimens prescribed by 
expert A 

 ∆m ∆x ∆w ∆v 

After  
Regimen 2 was 
learned using  

Regimen 
3 & 4 

After  
Regimen 3 was 
learned using  

Regimen 
2 & 4 

After  
Regimen 4 was 
learned using  

Regimen 
2 & 3 

Mean prediction 

   6% 4 (100%) 4 (100%) 4 (100%) 4 (100%) 
Scenario 1  

   10% 4 (100%) 4 (100%) 4 (100%) 4 (100%) 

 3%   4 (100%) 4 (100%) 4 (100%) 4 (100%) 
Scenario 2 

 5%   4 (100%) 4 (100%) 4 (100%) 4 (100%) 

 3% 4%  4 (100%) 4 (100%) 4 (100%) 4 (100%) 
Scenario 3 

 5% 4%  4 (100%) 4 (100%) 4 (100%) 4 (100%) 

1%    4 (100%) 4 (100%) 4 (100%) 4 (100%) 
Scenario 4 

2%    4 (100%) 4 (100%) 4 (100%) 4 (100%) 

1%   6% 4 (100%) 4 (100%) 4 (100%) 4 (100%) 

1%   10% 4 (100%) 4 (100%) 4 (100%) 4 (100%) 

2%   6% 4 (100%) 4 (100%) 4 (100%) 4 (100%) 
Scenario 5 

2%   10% 4 (100%) 4 (100%) 4 (100%) 4 (100%) 

1% 3%   4 (100%) 4 (100%) 4 (100%) 4 (100%) 

1% 5%   4 (100%) 4 (100%) 4 (100%) 4 (100%) 

2% 3%   4 (100%) 4 (100%) 4 (100%) 4 (100%) 
Scenario 6 

2% 5%   4 (100%) 4 (100%) 4 (100%) 4 (100%) 

1% 3% 4%  4 (100%) 4 (100%) 4 (100%) 4 (100%) 

1% 5% 4%  4 (100%) 4 (100%) 4 (100%) 4 (100%) 

2% 3% 4%  4 (100%) 4 (100%) 4 (100%) 4 (100%) 
Scenario 7 

2% 5% 4%  4 (100%) 4 (100%) 4 (100%) 4 (100%) 

Average 4 (100%) 4 (100%) 4 (100%) 4 (100%) 
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Table 3.26: Retrospective evaluation results after the EFDES-based system 

learned under condition of learning setting 4 involving 35 patients  against expert 

B’s regimen choices 

Scenario 
Matching between regimen choices predicted by  EFDES-

based system and regimens prescribed by 
expert B 

 ∆m ∆x ∆w ∆v 

After  
Regimen 2 was 
learned using  

Regimen 
3 & 4 

After  
Regimen 3 was 
learned using  

Regimen 
2 & 4 

After  
Regimen 4 was 
learned using  

Regimen 
2 & 3 

Mean prediction 

   6% 8 (100%) 8 (100%) 8 (100%) 8 (100%) 
Scenario 1  

   10% 8 (100%) 8 (100%) 8 (100%) 8 (100%) 

 3%   8 (100%) 8 (100%) 8 (100%) 8 (100%) 
Scenario 2 

 5%   8 (100%) 8 (100%) 8 (100%) 8 (100%) 

 3% 4%  8 (100%) 8 (100%) 8 (100%) 8 (100%) 
Scenario 3 

 5% 4%  8 (100%) 8 (100%) 8 (100%) 8 (100%) 

1%    8 (100%) 8 (100%) 8 (100%) 8 (100%) 
Scenario 4 

2%    8 (100%) 8 (100%) 8 (100%) 8 (100%) 

1%   6% 8 (100%) 8 (100%) 8 (100%) 8 (100%) 

1%   10% 8 (100%) 8 (100%) 8 (100%) 8 (100%) 

2%   6% 8 (100%) 8 (100%) 8 (100%) 8 (100%) 
Scenario 5 

2%   10% 8 (100%) 8 (100%) 8 (100%) 8 (100%) 

1% 3%   8 (100%) 8 (100%) 8 (100%) 8 (100%) 

1% 5%   8 (100%) 8 (100%) 8 (100%) 8 (100%) 

2% 3%   8 (100%) 8 (100%) 8 (100%) 8 (100%) 
Scenario 6 

2% 5%   8 (100%) 8 (100%) 8 (100%) 8 (100%) 

1% 3% 4%  8 (100%) 8 (100%) 8 (100%) 8 (100%) 

1% 5% 4%  8 (100%) 8 (100%) 8 (100%) 8 (100%) 

2% 3% 4%  8 (100%) 8 (100%) 8 (100%) 8 (100%) 
Scenario 7 

2% 5% 4%  8 (100%) 8 (100%) 8 (100%) 8 (100%) 

Average 8 (100%) 8 (100%) 8 (100%) 8 (100%) 
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Table 3.27: Weight vectors optimized by the EFDES-based system model after 

regimen 2 was learned using regimens 3 & 4 regarding to regimen-choice 

prediction against the actual regimens given to the 35 patients under scenarios 1, 

2, 3, 4, and 5   

Optimal weight vectors  
after regimen 2 was learned using regimens 3 & 4 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

∆v (%) ∆x (%) ∆x, ∆w (%) ∆m (%) ∆m, ∆v (%) [W1  … W26]
T
 

6 10 3 5 3,4 5,4 1 2 1,6 1,10 

W1 0.9961 0.9648 0.8984 0.9258 0.5547 0.9063 0.9844 0.9609 0.9063 0.9844 

W2 0.0039 0.0352 0.1016 0.0742 0.4453 0.0938 0.0156 0.0391 0.0938 0.0156 

W3 0.6061 0.5664 0.5938 0.7148 0.3828 0.7148 0.6719 0.2344 0.4258 0.7852 

W4 0.3984 0.4336 0.4063 0.2852 0.6172 0.2852 0.3281 0.7656 0.5742 0.2124 

W5 0.5595 0.2550 0.3576 0.3948 0.1365 0.4167 0.3856 0.1476 0.2471 0.6165 

W6 0.0000 0.2114 0.0766 0.0798 0.0310 0.1173 0.1753 0.1518 0.1174 0.1091 

W7 0.2259 0.0615 0.1429 0.0361 0.0283 0.1335 0.0000 0.0320 0.0000 0.2166 

W8 0.1389 0.2928 0.4778 0.3333 0.2415 0.2014 0.4280 0.1978 0.4431 0.2756 

W9 0.2485 0.3307 0.3527 0.3568 0.4028 0.3464 0.3506 0.7855 0.5563 0.5477 

W10 0.3283 0.2062 0.4125 0.7590 0.7767 0.3552 0.5309 0.4306 0.4838 0.4679 

W11 0.3016 0.4522 0.1646 0.2718 0.6220 0.3819 0.1864 0.6546 0.3098 0.1080 

W12 0.7515 0.4579 0.5708 0.5634 0.5662 0.5363 0.4740 0.0627 0.3263 0.3432 

W13 0.4458 0.7323 0.4447 0.2048 0.1950 0.5113 0.4691 0.5374 0.5162 0.3155 

W14 0.4962 0.2220 0.3063 0.0942 0.4655 0.2884 0.3538 0.2977 0.2920 0.2253 

W15 0.2519 0.3067 0.2584 0.0376 0.1418 0.3352 0.0769 0.3531 0.4734 0.2319 

W16 0.2458 0.1186 0.1062 0.0072 0.1889 0.0000 0.1179 0.0443 0.2704 0.0980 

W17 0.3295 0.4379 0.5023 0.4448 0.3103 0.4775 0.2028 0.3550 0.5487 0.4660 

W18 0.1325 0.2073 0.5084 0.3145 0.3014 0.2700 0.2154 0.0323 0.0000 0.3831 

W19 0.0085 0.4787 0.2080 0.2862 0.1940 0.2072 0.1282 0.3986 0.2704 0.3358 

W20 0.1742 0.3401 0.1914 0.4610 0.2241 0.2340 0.4434 0.3473 0.1593 0.3086 

W21 0.6156 0.4860 0.2331 0.6478 0.5567 0.3948 0.7077 0.6146 0.5266 0.3851 

W22 0.7458 0.4027 0.6858 0.7065 0.6171 0.7928 0.7538 0.5571 0.4591 0.5662 

W23 0.9766 0.9141 0.9023 0.8750 0.9063 0.8867 0.9219 0.9102 0.9180 0.9023 

W24 0.0234 0.0859 0.0977 0.1250 0.0938 0.1133 0.0781 0.0898 0.0820 0.0977 

W25 0.4531 0.5977 0.5234 0.5156 0.5273 0.5078 0.4805 0.4297 0.5977 0.5898 

W26 0.5469 0.4023 0.4766 0.4844 0.4727 0.4922 0.5195 0.5703 0.4023 0.4102 
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Table 3.28: Weight vectors optimized by the EFDES-based system model after 

regimen 2 was learned using regimens 3 & 4 regarding to regimen-choice 

prediction against the actual regimens given to the 35 patients under scenarios 5, 

6, and 7   

Optimal weight vectors  
after regimen 2 was learned using regimens 3 & 4 

Scenario 5 Scenario 6 Scenario 7 

∆m, ∆v (%) ∆m, ∆x (%) ∆m, ∆x, ∆w (%) [W1  … W26]
T
 

2,6 2,10 1,3 1,5 2,3 2,5 1,3,4 1,5,4 2,3,4 2,5,4 

W1 0.7031 0.6953 0.9414 0.8242 0.9883 0.9570 0.9180 0.8477 0.9844 0.9922 

W2 0.2969 0.3047 0.0586 0.1758 0.0117 0.0430 0.0820 0.1523 0.0156 0.0078 

W3 0.1211 0.5742 0.8906 0.3906 0.8594 0.6875 0.6133 0.4023 0.7031 0.4219 

W4 0.8789 0.4258 0.1094 0.6094 0.1406 0.3125 0.3867 0.5977 0.2969 0.5781 

W5 0.4316 0.5556 0.7041 0.4044 0.4279 0.3481 0.4254 0.3977 0.3657 0.0227 

W6 0.0246 0.1147 0.0000 0.0162 0.0178 0.0706 0.0426 0.0000 0.0063 0.0000 

W7 0.0373 0.0000 0.1028 0.3941 0.0246 0.0860 0.0649 0.1904 0.0205 0.1199 

W8 0.2188 0.0480 0.2633 0.1444 0.0349 0.3038 0.0263 0.2917 0.0926 0.8333 

W9 0.5055 0.2907 0.6184 0.6757 0.8994 0.0118 0.4134 0.2185 0.5104 0.7360 

W10 0.4959 0.4533 0.0356 0.3501 0.4676 0.4507 0.3052 0.4729 0.6404 0.1901 

W11 0.3495 0.3964 0.0325 0.4511 0.5372 0.3481 0.5482 0.3106 0.5417 0.1439 

W12 0.4699 0.5947 0.3816 0.3081 0.0828 0.9176 0.5441 0.7815 0.4833 0.2640 

W13 0.4668 0.5467 0.8617 0.2558 0.5078 0.4633 0.6299 0.3367 0.3390 0.6901 

W14 0.4387 0.0158 0.1241 0.4140 0.3825 0.5850 0.4918 0.5943 0.3907 0.5356 

W15 0.0741 0.1231 0.4124 0.0149 0.1866 0.0333 0.0887 0.0335 0.0472 0.3312 

W16 0.2679 0.1388 0.2339 0.0032 0.2137 0.1229 0.0255 0.0217 0.0758 0.2792 

W17 0.3467 0.6474 0.8459 0.1646 0.3257 0.0751 0.2951 0.2547 0.1589 0.0627 

W18 0.5714 0.1415 0.2372 0.3358 0.2935 0.5917 0.0000 0.5223 0.1635 0.4183 

W19 0.1518 0.0239 0.3387 0.1812 0.1945 0.3455 0.0727 0.2446 0.0000 0.1484 

W20 0.2146 0.3368 0.0301 0.4214 0.2919 0.3399 0.2131 0.1509 0.4505 0.4017 

W21 0.3545 0.7354 0.3504 0.6493 0.5199 0.3750 0.9113 0.4442 0.7893 0.2505 

W22 0.5804 0.8373 0.4274 0.8155 0.5918 0.5316 0.9018 0.7337 0.9242 0.5724 

W23 0.9023 0.9844 0.9570 0.8594 0.9492 0.9648 0.9609 0.9922 0.9063 0.9531 

W24 0.0977 0.0156 0.0430 0.1406 0.0508 0.0352 0.0391 0.0078 0.0938 0.0469 

W25 0.4141 0.3789 0.1250 0.3789 0.6523 0.6484 0.4063 0.4648 0.5078 0.3164 

W26 0.5859 0.6211 0.8750 0.6211 0.3477 0.3516 0.5938 0.5352 0.4922 0.6836 
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Table 3.29: Weight vectors optimized by the EFDES-based system model after 

regimen 3 was learned using regimens 3 & 4 regarding to regimen-choice 

prediction against the actual regimens given to the 35 patients under scenarios 1, 

2, 3, 4, and 5   

Optimal weight vectors  
after regimen 3 was learned using regimens 3 & 4 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

∆v (%) ∆x (%) ∆x, ∆w (%) ∆m (%) ∆m, ∆v (%) [W1  … W26]
T
 

6 10 3 5 3,4 5,4 1 2 1,6 1,10 

W1 0.8516 0.9883 0.8125 0.9961 0.8242 0.9414 0.9531 0.9453 0.9766 0.7422 

W2 0.1484 0.0117 0.1875 0.0039 0.1758 0.0586 0.0469 0.0547 0.0234 0.2578 

W3 0.0117 0.0742 0.5430 0.4180 0.4531 0.3945 0.5664 0.2070 0.2695 0.3633 

W4 0.9883 0.9258 0.4570 0.5820 0.5469 0.6055 0.4336 0.7930 0.7305 0.6367 

W5 0.6284 0.4048 0.4257 0.4668 0.4542 0.4882 0.3830 0.3674 0.3991 0.4671 

W6 0.0764 0.0026 0.0633 0.0000 0.0361 0.0808 0.1182 0.0056 0.0339 0.0160 

W7 0.0118 0.0036 0.1444 0.0857 0.1655 0.1514 0.0320 0.1807 0.2733 0.1963 

W8 0.2020 0.0661 0.4119 0.4487 0.3250 0.1706 0.1491 0.5116 0.2363 0.4362 

W9 0.6545 0.3641 0.6051 0.3307 0.0201 0.4377 0.7389 0.6704 0.2000 0.3590 

W10 0.2835 0.1511 0.5802 0.4514 0.5374 0.2771 0.4160 0.7695 0.4990 0.3458 

W11 0.1696 0.5291 0.1624 0.0845 0.2208 0.3412 0.4679 0.1209 0.3646 0.0967 

W12 0.2691 0.6332 0.3316 0.6693 0.9438 0.4815 0.1429 0.3239 0.7661 0.6250 

W13 0.7047 0.8453 0.2754 0.4629 0.2971 0.5714 0.5520 0.0498 0.2277 0.4579 

W14 0.4092 0.3661 0.4836 0.2043 0.3991 0.4658 0.3410 0.3761 0.4289 0.4008 

W15 0.3584 0.0915 0.0102 0.1754 0.1368 0.1083 0.0975 0.2500 0.0701 0.0436 

W16 0.2158 0.0437 0.0052 0.0867 0.0060 0.1343 0.0947 0.2901 0.0000 0.2964 

W17 0.3175 0.3178 0.0922 0.5489 0.0540 0.1065 0.4276 0.2495 0.4444 0.3175 

W18 0.0050 0.2465 0.2653 0.3578 0.0211 0.4509 0.4665 0.4239 0.4227 0.5047 

W19 0.1612 0.2216 0.1510 0.2704 0.0299 0.0813 0.4474 0.1533 0.3473 0.0240 

W20 0.2733 0.3161 0.4242 0.2468 0.5469 0.4278 0.2314 0.3743 0.1267 0.2817 

W21 0.6366 0.6620 0.7245 0.4668 0.8421 0.4408 0.4359 0.3261 0.5072 0.4517 

W22 0.6230 0.7347 0.8438 0.6429 0.9641 0.7845 0.4579 0.5566 0.6527 0.6796 

W23 0.8984 0.9453 0.8555 0.9297 0.7695 0.8672 0.9609 0.9492 0.9688 0.8711 

W24 0.1016 0.0547 0.1445 0.0703 0.2305 0.1328 0.0391 0.0508 0.0313 0.1289 

W25 0.1719 0.2383 0.4297 0.4766 0.3359 0.4375 0.5469 0.5000 0.3555 0.4336 

W26 0.8281 0.7617 0.5703 0.5234 0.6641 0.5625 0.4531 0.5000 0.6445 0.5664 
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Table 3.30: Weight vectors optimized by the EFDES-based system model after 

regimen 3 was learned using regimens 3 & 4 regarding to regimen-choice 

prediction against the actual regimens given to the 35 patients under scenarios 5, 

6, and 7   

Optimal weight vectors  
after regimen 3 was learned using regimens 3 & 4 

Scenario 5 Scenario 6 Scenario 7 

∆m, ∆v (%) ∆m, ∆x (%) ∆m, ∆x, ∆w (%) [W1  … W26]
T
 

2,6 2,10 1,3 1,5 2,3 2,5 1,3,4 1,5,4 2,3,4 2,5,4 

W1 0.8750 0.7266 0.9648 0.9375 0.8828 0.8711 0.8750 0.8750 0.9375 0.9805 

W2 0.1250 0.2734 0.0352 0.0625 0.1172 0.1289 0.1250 0.1250 0.0625 0.0195 

W3 0.1719 0.2266 0.4570 0.6055 0.7813 0.4727 0.6289 0.5625 0.6016 0.5156 

W4 0.8281 0.7734 0.5430 0.3945 0.2188 0.5273 0.3711 0.4375 0.3984 0.4844 

W5 0.5457 0.4128 0.3730 0.4104 0.2670 0.3711 0.4530 0.4497 0.3198 0.4990 

W6 0.0126 0.0659 0.0453 0.1703 0.0664 0.0204 0.0041 0.1039 0.0080 0.0233 

W7 0.2527 0.1480 0.0282 0.2188 0.1159 0.0409 0.2143 0.1884 0.0676 0.1474 

W8 0.3370 0.0000 0.5000 0.3918 0.5668 0.3377 0.4384 0.3073 0.4291 0.1598 

W9 0.7573 0.4516 0.4887 0.1731 0.7345 0.3852 0.1317 0.0390 0.4987 0.4067 

W10 0.6374 0.3935 0.1975 0.0997 0.3123 0.3534 0.5652 0.1594 0.1351 0.1579 

W11 0.1174 0.5872 0.1270 0.1978 0.1662 0.2913 0.1086 0.2430 0.2510 0.3412 

W12 0.2301 0.4826 0.4660 0.6566 0.1991 0.5944 0.8642 0.8571 0.4933 0.5699 

W13 0.1099 0.4585 0.7743 0.6814 0.5718 0.6058 0.2205 .06522 0.7973 0.6947 

W14 0.3353 0.3646 0.4517 0.2121 0.3997 0.5395 0.3822 0.0868 0.4016 0.5195 

W15 0.0279 0.0996 0.0215 0.1189 0.1881 0.1447 0.0174 0.0404 0.1041 0.1689 

W16 0.0078 0.0000 0.0979 0.1406 0.0718 0.0000 0.0699 0.0090 0.0123 0.1667 

W17 0.4651 0.4827 0.2437 0.5939 0.2147 0.2719 0.3030 0.6497 0.3951 0.1273 

W18 0.0906 0.5125 0.5161 0.3351 0.0321 0.0675 0.0348 0.1324 0.0372 0.3406 

W19 0.0196 0.3649 0.2723 0.1484 0.2241 0.0000 0.0294 0.0135 0.1399 0.0349 

W20 0.1996 0.1527 0.3046 0.1939 0.3856 0.1886 0.3149 0.2635 0.2033 0.3532 

W21 0.8815 0.3879 0.4624 0.5459 0.7798 0.7878 0.9478 0.8272 0.8587 0.4905 

W22 0.9725 0.6351 0.6298 0.7109 0.7040 1.0000 0.9007 0.9776 0.8477 0.7984 

W23 0.9688 0.8984 0.9375 0.8633 0.8672 0.9727 0.8633 0.8047 0.9531 0.9531 

W24 0.0313 0.1016 0.0625 0.1367 0.1328 0.0273 0.1367 0.1953 0.0469 0.0469 

W25 0.1758 0.3945 0.4883 0.5273 0.6016 0.4336 0.3906 0.3906 0.4844 0.4961 

W26 0.8242 0.6055 0.5117 0.4727 0.3984 0.5664 0.6094 0.6094 0.5156 0.5039 
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Table 3.31: Weight vectors optimized by the EFDES-based system model after 

regimen 4 was learned using regimens 3 & 4 regarding to regimen-choice 

prediction against the actual regimens given to the 35 patients under scenarios 1, 

2, 3, 4, and 5   

Optimal weight vectors  
after regimen 4 was learned using regimens 3 & 4 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

∆v (%) ∆x (%) ∆x, ∆w (%) ∆m (%) ∆m, ∆v (%) [W1  … W26]
T
 

6 10 3 5 3,4 5,4 1 2 1,6 1,10 

W1 0.8125 0.8242 0.8281 0.9883 0.9805 0.9766 0.8633 0.9180 0.7188 0.9336 

W2 0.1875 0.1758 0.1719 0.0117 0.0195 0.0234 0.1367 0.0820 0.2812 0.0664 

W3 0.7266 0.6758 0.6055 0.7656 0.8359 0.9453 0.7773 0.4102 0.3047 0.6641 

W4 0.2734 0.3242 0.3945 0.2344 0.1641 0.0547 0.2227 0.5898 0.6953 0.3359 

W5 0.1103 0.0435 0.2248 0.2010 0.1006 0.0963 0.0725 0.3196 0.1304 0.3399 

W6 0.2015 0.0946 0.1986 0.0475 0.1374 0.0495 0.2115 0.1010 0.0222 0.0891 

W7 0.1522 0.0559 0.0763 0.0401 0.1072 0.1141 0.0279 0.0000 0.0314 0.0000 

W8 0.4766 0.1706 0.0906 0.1127 0.4043 0.5652 0.4352 0.5434 0.3681 0.4644 

W9 0.7839 0.7027 0.4513 0.4727 0.7863 0.4346 0.7038 0.7981 0.5817 0.7442 

W10 0.6505 0.5155 0.4322 0.4114 0.4239 0.3747 0.2351 0.8659 0.2780 0.1307 

W11 0.4131 0.7860 0.6846 0.6863 0.4951 0.3385 0.4923 0.1370 0.5014 0.1957 

W12 0.0147 0.2027 0.3502 0.4798 0.0763 0.5159 0.0846 0.1010 0.3961 0.1667 

W13 0.1972 0.4286 0.4915 0.5485 0.4688 0.5112 0.7371 0.1341 0.6906 0.8693 

W14 0.1117 0.1852 0.0729 0.3145 0.3441 0.6675 0.4222 0.0417 0.4425 0.1532 

W15 0.4390 0.0306 0.0000 0.1701 0.0952 0.4986 0.0765 0.0969 0.2831 0.3710 

W16 0.2149 0.3484 0.1284 0.2900 0.1107 0.2730 0.4563 0.0028 0.2874 0.2072 

W17 0.7011 0.7444 0.3576 0.3585 0.2847 0.0157 0.2997 0.4091 0.1692 0.5065 

W18 0.0528 0.4311 0.4144 0.5773 0.2143 0.0220 0.4074 0.2602 0.3108 0.1734 

W19 0.2829 0.2628 0.1318 0.1382 0.4777 0.1009 0.1944 0.3583 0.0323 0.3750 

W20 0.1872 0.0704 0.5694 0.3270 0.3713 0.3168 0.2781 0.5492 0.3883 0.3403 

W21 0.5081 0.5383 0.5856 0.2526 0.6905 0.4793 0.5160 0.6429 0.4062 0.4556 

W22 0.5022 0.3888 0.7399 0.5718 0.4117 0.6261 0.3492 0.6389 0.6804 0.4178 

W23 0.8555 0.9258 0.7031 0.9258 0.8945 0.9922 0.9023 0.8750 0.8281 0.8984 

W24 0.1445 0.0742 0.2969 0.0742 0.1055 0.0078 0.0977 0.1250 0.1719 0.1016 

W25 0.0547 0.5977 0.4766 0.7539 0.2773 0.1328 0.2813 0.4492 0.4570 0.6523 

W26 0.9453 0.4023 0.5234 0.2461 0.7227 0.8672 0.7188 0.5508 0.5430 0.3477 
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Table 3.32: Weight vectors optimized by the EFDES-based system model after 

regimen 4 was learned using regimens 3 & 4 regarding to regimen-choice 

prediction against the actual regimens given to the 35 patients under scenarios 5, 

6, and 7   

Optimal weight vectors  
after regimen 4 was learned using regimens 3 & 4 

Scenario 5 Scenario 6 Scenario 7 

∆m, ∆v (%) ∆m, ∆x (%) ∆m, ∆x, ∆w (%) [W1  … W26]
T
 

2,6 2,10 1,3 1,5 2,3 2,5 1,3,4 1,5,4 2,3,4 2,5,4 

W1 0.6328 0.9844 0.8125 0.8906 0.9844 0.9141 0.8945 0.8125 0.9688 0.9844 

W2 0.3672 0.0156 0.1875 0.1094 0.0156 0.0859 0.1055 0.1875 0.0312 0.0156 

W3 0.3906 0.5234 0.7344 0.8711 0.8008 0.8906 0.8555 0.7578 0.8711 0.7539 

W4 0.6094 0.4766 0.2656 0.1289 0.1992 0.1094 0.1445 0.2422 0.1289 0.2461 

W5 0.1525 0.4122 0.0136 0.1303 0.2735 0.0305 0.1353 0.0841 0.1696 0.2374 

W6 0.0823 0.1280 0.0132 0.1586 0.1527 0.0173 0.0352 0.0389 0.1449 0.0913 

W7 0.0102 0.0604 0.0282 0.0316 0.0600 0.1000 0.0870 0.0997 0.1461 0.0202 

W8 0.4159 0.2020 0.2678 0.2515 0.2531 0.3807 0.4244 0.4425 0.3743 0.0091 

W9 0.3591 0.2720 0.8987 0.3793 0.4466 0.5446 0.5352 0.8198 0.6996 0.3053 

W10 0.5563 0.5165 0.3548 0.5854 0.2067 0.0688 0.5761 0.3196 0.5205 0.1869 

W11 0.4315 0.3857 0.7186 0.6182 0.4735 0.5888 0.4403 0.4735 0.4561 0.7534 

W12 0.5586 0.6000 0.0881 0.4621 0.4008 0.4381 0.4297 0.1413 0.1555 0.6034 

W13 0.4334 0.4231 0.6169 0.3829 0.7333 0.8313 0.3370 0.5806 0.3333 0.7929 

W14 0.3877 0.2899 0.4574 0.1287 0.1319 0.5753 0.3351 0.0874 0.0853 0.3803 

W15 0.0815 0.2000 0.0435 0.3725 0.2417 0.4884 0.1198 0.0986 0.1671 0.3565 

W16 0.2686 0.1837 0.2763 0.0344 0.1010 0.0240 0.1596 0.0956 0.2042 0.1923 

W17 0.3111 0.3445 0.1064 0.3458 0.5852 0.2226 0.2193 0.5336 0.4167 0.2356 

W18 0.5778 0.2833 0.0725 0.0196 0.2384 0.2300 0.4392 0.0563 0.1813 0.0783 

W19 0.3039 0.2493 0.2538 0.5413 0.2500 0.7560 0.3245 0.4886 0.2222 0.3487 

W20 0.3012 0.3655 0.4362 0.5255 0.2830 0.2021 0.4456 0.3789 0.4980 0.3840 

W21 0.3407 0.5167 0.8841 0.6078 0.5199 0.2817 0.4410 0.8451 0.6516 0.5652 

W22 0.4275 0.5669 0.4699 0.4243 0.6490 0.2200 0.5160 0.4158 0.5736 0.4590 

W23 0.7813 0.8945 0.8750 0.8438 0.8359 0.9922 0.8398 0.7852 0.7813 0.8906 

W24 0.2188 0.1055 0.1250 0.1563 0.1641 0.0078 0.1602 0.2148 0.2188 0.1094 

W25 0.6055 0.5078 0.3398 0.2109 0.6250 0.0781 0.7383 0.5078 0.2852 0.7227 

W26 0.3945 0.4922 0.6602 0.7891 0.3750 0.9219 0.2617 0.4922 0.7148 0.2773 
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3.4  Discussion  

Two different sets of weight rankings made by two AIDS physician experts 

individually involved in the prediction results were used in learning by the systems 

to optimize their regimen choices to match expert A and B individually. 

Additionally, the prediction result involved used a consensus set of weight 

rankings that systems learned and predicted best match the consensus of the two 

experts. Each prediction result in Tables 3.6-3.18 was the highest match of three 

prediction results obtained using three different random initials. The prediction 

accuracy is defined as the ratio of the number of choices on which the system 

made right predictions as compared to the expert’s choices and the total number 

of the prediction choices.  

There were seven scenarios under the self-learning EFDES experiments. 

The descriptions on the tables made the prediction results with understandable 

contents. The overall prediction results were high levels of satisfaction that the 

models could provide under the variety of the seven scenarios with the different 

learning settings.  The prediction results using data-learning setting 1 provided the 

mean accuracy from 84.1% to 98.4% with the overall mean being 92.4% and from 

95.8% to 99.1%, with the overall mean being 95.8% as compared to expert A’s 

choices and expert B’s choices, respectively. The prediction accuracy depended 

on which regimens were used in learning. The system  learning by using regimen 

1, regimen 2, and regimen 4 would provide the best prediction result as compared 
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to the expert A’s choices, but using regimen 2, regimen 3, and regimen 4 would 

provide the best one as compared to expert B’s choices.   

The prediction results as compared to the consensus choices of the two 

experts under the condition of data-learning setting 1 came with the accuracy from 

90.8% to 95.8% with the overall mean being 93.9%, while their exact agreement 

rate was 43.8%. As compared to the consensus choices of the two experts under 

the conditions of data learning-setting 3, only ten of the 32 treatment objectives 

were contributed to the system learning that would lead to the lower mean 

prediction accuracy of 75.1% in Table 3.17, as compared to those mean 

prediction accuracy of 93.9% and 96.0% under the condition of data-learning 

setting 1 and data-learning setting 2, respectively. The prediction results using 

data-learning setting 3 provided the mean accuracy from 71.9% to 78.0%, with the 

overall mean being 74.8% and from 72.2% to 78.0%, with the overall mean being 

76.0% as compared to expert A’s choices and expert B’s choices, respectively. 

The fewer numbers of treatment objectives used in the system learning that 

contained information of the expert’s preferred choices would cause the lower 

mean prediction accuracy results either for the consensus of experts or an 

individual. 

The retrospective evaluation results of the 35 historical patient cases shown 

in Table 3.18-3.23 were obtained by providing the system with data-learning 

setting 4 including regimen 2, regimen 3, and regimen 4. The system optimized 

weight vectors from learning each regimen using other two regimens to predict the 
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regimen-choices for the 35 retrospective patients. The average agreement rates 

for seven scenarios were from 81.4% to 82.6%, with the overall average 

agreement rate of 82.1% for the 35 patients treated by 13 AIDS physicians. The 

overall mean agreement rate was 100% for expert A and expert B individually, 

while the agreement rate for the remaining 11 AIDS physicians was 72.8%. The 

exact agreement the system could provide was a high level of satisfaction above 

80%.  

 Seven patients with mismatching regimens assigned by the system were 

treated by non-system AIDS physicians. Three patients were classified with “high” 

potency that the system assigned regimen 2. It should be the appropriate regimen 

choice because regimen 2 could provide the most expected potency agreed with 

two AIDS experts’ regimen choice. Similarly, the system assigned regimen 4 as 

the same regimen two AIDS experts selected for other three patients classified 

with “medium” potency and “high” future drug options. Regimen 4 provided the 

lowest expected potency and the most expected future drug options that would be 

considered as a better regimen choice the system selected. Only one patient was 

the system assigned the right regimen choice rated from 50% to 90% under the 

seven scenarios.  
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CHAPTER 4 

SUMMARY AND FUTURE DIRECTIONS 

 

4.1  Summary and Conclusion 

The HIV/AIDS-EFDES system was based on applying the extended fuzzy 

discrete event system theory for optimal decision-making in HIV/AIDS treatment 

regimen selection. The system extended the FDES framework for HIV/AIDS 

treatment regimen selection, especially in the case of the initial round of 

combination antiretroviral therapy for HIV/AIDS. In the new EFDES framework, the 

type-2 fuzzy set was employed in representing the expert domain of knowledge 

and experiences with imprecision and uncertainties. All system parameters with 

intuitive meaning used in the FDES framework were contributed in the EFDES 

framework as well. The EFDES-based system would keep simple and 

understandable steps of the procedures from the beginning through to the final 

step of the decision-making. The change from one state to another in the sense of 

the forward-looking tree provides the treatment with a dynamic optimization 

process. The representations of experts’ knowledge and regimen information in 

the terms of type-2 fuzzy sets would be more flexible as consensus of diverse 

opinions with equal respect. Adding or updating clinical parameters could be done 

with ease.  

HIV/AIDS treatment is a complicated strategy involving not only the 

patient’s clinical participation but drug resistances. Frequent updating of treatment 
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guidelines many times in the past few years reflected the fast evolution of 

scientific knowledge on HIV/AIDS as a complex and severe disease. Research on 

developing HIV/AIDS drugs is on the fast track. Optimizing new weight vectors for 

a new HIV/AIDS regimen can be readily achieved when clinical parameter 

information on the potency, adherence, adverse events, and future drug options 

are provided by the HIV/AIDS experts. The system needs little time to be updated 

as new regimens become accessible. 

The HIV/AIDS-EFDES system provided impassive decision-making on 

selecting proper regimens for the retrospective patients in the initial round of the 

HIV/AIDS treatment. Twenty eight of 35 patients with the correctly selected 

regimens were in overall exact agreement under seven scenarios. Two HIV/AIDS 

physician experts were involved in the system development with three regimens in 

treatment.  

Self-learning is another significant feature of the HIV/AIDS-EFDES system. 

The self-learning system is able to predict outcomes for a new regimen with little 

required information on clinical trials. For example, only the potency, adherence, 

adverse events, and future drug options are required for the system to predict 

decision-making on a new fourth regimen among three other existing regimens. 

The retrospective performances of the HIV/AIDS-EFDES system’s self-learning 

provided an overall mean prediction rate under seven scenarios about 28 out of 

35 given prescriptions. These system predictions were obtained under 
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experimental environments of weak experts’ consensus and uncertainties of 

knowledge represented in the term of type-2 fuzzy sets. 

In conclusion, we applied the extended fuzzy discrete event theory for 

optimal decision-making on treatment regimen selection for naïve HIV/AIDS 

patients with highly active antiretroviral therapy. This HIV/AIDS EFDES system 

extended the FDES framework with use of the type-2 fuzzy sets to represent the 

uncertainties of clinical domains of diverse experts’ knowledge and experiences. 

Historically, three treatment regimens used in the model evaluation generated the 

agreement between experts and models with better results as compared to the 

agreement among experts. The retrospective performance of the system with the 

real patients treated in AIDS Clinic in 2001 provided the impassive promising 

results. The performance of the system’s self-learning was tested under various 

clinically possible settings for seven different scenarios involving four historical 

treatment regimens. The results show that in some certain circumstances, 

depending on which treatment regimens were learned, the models’ average 

prediction would be more accurate at the satisfaction level of more than 99%. The 

retrospective performance of the system provided overall mean accuracy around 

82% (28.8/35). That result was as good as the FDES-based system’s 

performance. However, the EFDES-based system would earn a benefit on the 

management of diverse and uncertainty of the experts’ knowledge and expertise. 
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4.2  Future Directions 

In the application of the EFDES theory to HIV/AIDS treatment regimen 

selection system, Type-2 fuzzy sets were allowed to play important role in 

extracting the expert’s knowledge and experiences into useable forms. The 

effectiveness measure was only used for online optimal control synthesis of the 

system to provide an appropriated treatment therapy. In realistic, there is an 

expense of the treatment therapy. What the treatment therapy a patient receives 

depends on his financial support. The cost of treatment therapy will then be 

needed to consider along with the treatment effectiveness measure for the system 

optimal control.  

There was an optimization problem in maximizing the overall matching 

between the treatment regimens assigned by the system and those regimens 

assigned by two AIDS experts for the 32 treatment objectives. The genetic 

algorithm in MATLAB’s Direct Search Toolbox was employed to solve that kind of 

problem through adjusting 26 weights for four clinical parameters for all of the 32 

treatment objectives. Other optimization approaches such as particle swarm 

optimization approach, simulated annealing method, etc., would be considered to 

be experimental search engines for the time-consuming task of optimizing the 26-

dimensional vector space. 

Finally, the challenge is the implementation of the EFDES-based system on 

the HIV/AIDS treatment selection for patients with the second round treatment. 
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HIV/AIDS is a global problem. Its treatment is dependent on the physician 

experts’ opinion. A system which is capable of supporting the treatment decision 

will be desired. Recently, the HIV/AIDS treatment regimen selection system 

appeared in literature that utilized theory of fuzzy discrete event system (FDES) to 

capture the meaning of experts’ knowledge; a form of consensus involving 

estimated points and type-1 fuzzy sets. The goal was to assign exact matching 

regimens as close as possible to those regimens preferred by the experts for 

patients. The system performance was 80% of satisfaction level with the 35 

retrospective patients. Extracting experts’ knowledge into the consensus forms 

would not be possible without being compromised by the experts. With equal 

respective experts, if one insists on his/her values, then the consensus would not 

be achieved. Conversely, the FDES theory would be no longer to handle such 

conflict. The theory of extended fuzzy discrete event system (EFDES) extended 
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the FDES theory that type-2 fuzzy sets would be allowed to be used in the system. 

This dissertation is to apply the EFDES theory to the HIV/AIDS treatment regimen 

selection system. Seven scenarios of the diversity of experts’ knowledge 

representation were categorized for the system. The MATLAB was implemented 

to model the system. Genetic algorithm in MATLAB’s Direct Search Toolbox was 

used to search an optimal vector of 26 weights for system parameters regarding 

the experts’ regimen-choices. As the same input of the retrospective patient data 

for the FDES-based system, the overall means of simulation results of EFDES-

based system demonstrated the degree of matching regimens being 80%. That 

result would be the same performance level of the FDES-based system as well. 

The EFDES-based system performance with self-learning provided the overall 

satisfaction level of above 80%. Moreover, the EFDES-based system with use of 

the type-2 fuzzy set gained the benefit on the extraction of diverse and uncertainty 

experts’ knowledge and expertise.  
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